5 research outputs found

    Estimating surface soil moisture over Sahel using ENVISAT radar altimetry

    No full text
    International audienceThis paper analyses the potential of the radar altimeter onboard ENVISAT for estimating surface soil moisture in the semi-arid Gourma region in Northern Mali. To this end, the relationships between observed backscattering coefficients derived from 4 retracking algorithms, namely Ocean, Ice-1, Ice-2 and Sea-Ice, and ground data, including soil type, topography, vegetation and soil moisture are investigated. The considered period is 2002-2010. Results show a strong linear relationship between the backscattering coefficients and surface soil moisture measured at six different stations along the satellite track. The best results are obtained with the Ice-1 and Ice-2 algorithms. In these cases, correlation coefficients are higher than 0.8 with RMSE smaller than 2%. Vegetation effects are found to be small due both to the nadir-looking configuration of the radar altimeter and to the low vegetation cover. Finally, the relationship between soil moisture and normalized backscattering coefficient is used to retrieve soil moisture from the altimeter data. These estimates are then compared to soil moisture estimations obtained from the METeorological Operational (METOP) Advanced SCATterometer (ASCAT). These results highlight the high capabilities of Ku-band altimeters to provide an accurate estimation of surface soil moisture in semiarid regions

    Estimating surface soil moisture over Sahel using ENVISAT radar altimetry

    No full text
    International audienceThis paper analyses the potential of the radar altimeter onboard ENVISAT for estimating surface soil moisture in the semi-arid Gourma region in Northern Mali. To this end, the relationships between observed backscattering coefficients derived from 4 retracking algorithms, namely Ocean, Ice-1, Ice-2 and Sea-Ice, and ground data, including soil type, topography, vegetation and soil moisture are investigated. The considered period is 2002-2010. Results show a strong linear relationship between the backscattering coefficients and surface soil moisture measured at six different stations along the satellite track. The best results are obtained with the Ice-1 and Ice-2 algorithms. In these cases, correlation coefficients are higher than 0.8 with RMSE smaller than 2%. Vegetation effects are found to be small due both to the nadir-looking configuration of the radar altimeter and to the low vegetation cover. Finally, the relationship between soil moisture and normalized backscattering coefficient is used to retrieve soil moisture from the altimeter data. These estimates are then compared to soil moisture estimations obtained from the METeorological Operational (METOP) Advanced SCATterometer (ASCAT). These results highlight the high capabilities of Ku-band altimeters to provide an accurate estimation of surface soil moisture in semiarid regions

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Assimilation de données satellitaires pour le suivi des ressources en eau dans la zone Euro-Méditerranée

    Get PDF
    Une estimation plus prĂ©cise de l'Ă©tat des variables des surfaces terrestres est requise afin d'amĂ©liorer notre capacitĂ© Ă  comprendre, suivre et prĂ©voir le cycle hydrologique terrestre dans diverses rĂ©gions du monde. En particulier, les zones mĂ©diterranĂ©ennes sont souvent caractĂ©risĂ©es par un dĂ©ficit en eau du sol affectant la croissance de la vĂ©gĂ©tation. Les derniĂšres simulations du GIEC (Groupe d'Experts Intergouvernemental sur l'Evolution du Climat) indiquent qu'une augmentation de la frĂ©quence des sĂ©cheresses et des vagues de chaleur dans la rĂ©gion Euro-MĂ©diterranĂ©e est probable. Il est donc crucial d'amĂ©liorer les outils et l'utilisation des observations permettant de caractĂ©riser la dynamique des processus des surfaces terrestres de cette rĂ©gion. Les modĂšles des surfaces terrestres ou LSMs (Land Surface Models) ont Ă©tĂ© dĂ©veloppĂ©s dans le but de reprĂ©senter ces processus Ă  diverses Ă©chelles spatiales. Ils sont habituellement forçés par des donnĂ©es horaires de variables atmosphĂ©riques en point de grille, telles que la tempĂ©rature et l'humiditĂ© de l'air, le rayonnement solaire et les prĂ©cipitations. Alors que les LSMs sont des outils efficaces pour suivre de façon continue les conditions de surface, ils prĂ©sentent encore des dĂ©fauts provoquĂ©s par les erreurs dans les donnĂ©es de forçages, dans les valeurs des paramĂštres du modĂšle, par l'absence de reprĂ©sentation de certains processus, et par la mauvaise reprĂ©sentation des processus dans certaines rĂ©gions et certaines saisons. Il est aussi possible de suivre les conditions de surface depuis l'espace et la modĂ©lisation des variables des surfaces terrestres peut ĂȘtre amĂ©liorĂ©e grĂące Ă  l'intĂ©gration dynamique de ces observations dans les LSMs. La tĂ©lĂ©dĂ©tection spatiale micro-ondes Ă  basse frĂ©quence est particuliĂšrement utile dans le contexte du suivi de ces variables Ă  l'Ă©chelle globale ou continentale. Elle a l'avantage de pouvoir fournir des observations par tout-temps, de jour comme de nuit. Plusieurs produits utiles pour le suivi de la vĂ©gĂ©tation et du cycle hydrologique sont dĂ©jĂ  disponibles. Ils sont issus de radars en bande C tels que ASCAT (Advanced Scatterometer) ou Sentinel-1. L'assimilation de ces donnĂ©es dans un LSM permet leur intĂ©gration de façon cohĂ©rente avec la reprĂ©sentation des processus. Les rĂ©sultats obtenus Ă  partir de l'intĂ©gration de donnĂ©es satellitaires fournissent une estimation de l'Ă©tat des variables des surfaces terrestres qui sont gĂ©nĂ©ralement de meilleure qualitĂ© que les simulations sans assimilation de donnĂ©es et que les donnĂ©es satellitaires elles-mĂȘmes. L'objectif principal de ce travail de thĂšse a Ă©tĂ© d'amĂ©liorer la reprĂ©sentation des variables des surfaces terrestres reliĂ©es aux cycles de l'eau et du carbone dans le modĂšle ISBA grĂące Ă  l'assimilation d'observations de rĂ©trodiffusion radar (sigma°) provenant de l'instrument ASCAT. Un opĂ©rateur d'observation capable de reprĂ©senter les sigma° ASCAT Ă  partir de variables simulĂ©es par le modĂšle ISBA a Ă©tĂ© dĂ©veloppĂ©. Une version du WCM (water cloud model) a Ă©tĂ© mise en Ɠuvre avec succĂšs sur la zone Euro-MĂ©diterranĂ©e. Les valeurs simulĂ©es ont Ă©tĂ© comparĂ©es avec les observations satellitaires. Une quantification plus dĂ©taillĂ©e de l'impact de divers facteurs sur le signal a Ă©tĂ© faite sur le sud-ouest de la France. L'Ă©tude de l'impact de la tempĂȘte Klaus sur la forĂȘt des Landes a montrĂ© que le WCM est capable de reprĂ©senter un changement brutal de biomasse de la vĂ©gĂ©tation. Le WCM est peu efficace sur les zones karstiques et sur les surfaces agricoles produisant du blĂ©. Dans ce dernier cas, le problĂšme semble provenir d'un dĂ©calage temporel entre l'Ă©paisseur optique micro-ondes de la vĂ©gĂ©tation et l'indice de surface foliaire de la vĂ©gĂ©tation. Enfin, l'assimilation directe des sigma° ASCAT a Ă©tĂ© Ă©valuĂ©e sur le sud-ouest de la France.More accurate estimates of land surface conditions are important for enhancing our ability to understand, monitor, and predict key variables of the terrestrial water cycle in various parts of the globe. In particular, the Mediterranean area is frequently characterized by a marked impact of the soil water deficit on vegetation growth. The latest IPCC (Intergovernmental Panel on Climate Change) simulations indicate that occurrence of droughts and warm spells in the Euro-Mediterranean region are likely to increase. It is therefore crucial to improve the ways of understanding, observing and simulating the dynamics of the land surface processes in the Euro-Mediterranean region. Land surface models (LSMs) have been developed for the purpose of representing the land surface processes at various spatial scales. They are usually forced by hourly gridded atmospheric variables such as air temperature, air humidity, solar radiation, precipitation, and are used to simulate land surface states and fluxes. While LSMs can provide a continuous monitoring of land surface conditions, they still show discrepancies due to forcing and parameter errors, missing processes and inadequate model physics for particular areas or seasons. It is also possible to observe the land surface conditions from space. The modelling of land surface variables can be improved through the dynamical integration of these observations into LSMs. Remote sensing observations are particularly useful in this context because they are able to address global and continental scales. Low frequency microwave remote sensing has advantages because it can provide regular observations in all-weather conditions and at either daytime or night-time. A number of satellite-derived products relevant to the hydrological and vegetation cycles are already available from C-band radars such as the Advanced Scatterometer (ASCAT) or Sentinel-1. Assimilating these data into LSMs permits their integration in the process representation in a consistent way. The results obtained from assimilating satellites products provide land surface variables estimates that are generally superior to the model estimates or satellite observations alone. The main objective of this thesis was to improve the representation of land surface variables linked to the terrestrial water and carbon cycles in the ISBA LSM through the assimilation of ASCAT backscatter (sigma°) observations. An observation operator capable of representing the ASCAT sigma° from the ISBA simulated variables was developed. A version of the water cloud model (WCM) was successfully implemented over the Euro-Mediterranean area. The simulated values were compared with those observed from space. A more detailed quantification of the influence of various factors on the signal was made over southwestern France. Focusing on the Klaus storm event in the Landes forest, it was shown that the WCM was able to represent abrupt changes in vegetation biomass. It was also found that the WCM had shortcomings over karstic areas and over wheat croplands. It was shown that the latter was related to a discrepancy between the seasonal cycle of microwave vegetation optical depth (VOD) and leaf area index (LAI). Finally, the direct assimilation of ASCAT sigma° observations was assessed over southwestern France

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa
    corecore