653 research outputs found

    Description of a method for localizing swarming mosquitoes and other insects in 3D space with visualizations

    Get PDF
    Male mosquitoes swarm to find mates, but the characteristics of these swarms have not yet been quantitatively analyzed in the field. This paper describes a simple method used recently to localize individual Anopheles gambiae in a swarm via stereoscopic image analysis of video footage swarms recorded in Doneguebougou, Mali. The methods described here represent a streamlining of simple triangulation for insect localization in the hope that other researchers will be able to apply the method for studying fundamental questions about flying insects or other taxa.
&#xa

    Searching for Effective Forces in Laboratory Insect Swarms

    Full text link
    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours

    Communication-based UAV Swarm Missions

    Get PDF
    Unmanned aerial vehicles have developed rapidly in recent years due to technological advances. UAV technology can be applied to a wide range of applications in surveillance, rescue, agriculture and transport. The problems that can exist in these areas can be mitigated by combining clusters of drones with several technologies. For example, when a swarm of drones is under attack, it may not be able to obtain the position feedback provided by the Global Positioning System (GPS). This poses a new challenge for the UAV swarm to fulfill a specific mission. This thesis intends to use as few sensors as possible on the UAVs and to design the smallest possible information transfer between the UAVs to maintain the shape of the UAV formation in flight and to follow a predetermined trajectory. This thesis presents Extended Kalman Filter methods to navigate autonomously in a GPS-denied environment. The UAV formation control and distributed communication methods are also discussed and given in detail

    Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    Get PDF
    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses

    Radar, Insect Population Ecology, and Pest Management

    Get PDF
    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives

    Acoustic and ecological investigations into predator-prey interactions between Antarctic krill (Euphausia superba) and seal and bird predators

    Get PDF
    1. Antarctic krill (Euphausia superba) form aggregations known as swarms that vary greatly in size and density. Six acoustic surveys were conducted as part of multidisciplinary studies at two study sites, the western and eastern core boxes (WCB and ECB), during the 1997, 1998 and 1999 austral summers, at South Georgia. A quantitative, automated, image processing algorithm was used to identify swarms, and calculate swarm descriptors, or metrics. In contrast to acoustic surveys of aggregations of other pelagic species, a strong correlation (r = 0.88, p = 0.02, 95% C.I.= 0.24 to 0.99) between the number of krill swarms and the mean areal krill density [rho.hat] was found. Multivariate analysis was used to partition swarms into three types, based on contrasting morphological and internal krill density parameters. Swarm types were distributed differently between inter-surveys and between on and off-shelf regions. This swarm type variation has implications for krill predators, by causing spatial heterogeneity in swarm detectability, suggesting that for optimal foraging to occur, predators must engage in some sort of adaptive foraging strategy. 2. Krill predator-prey interactions were found to occur at multiple spatial and temporal scales, in a nested, or hierarchical structure. At the largest inter-survey scale, an index of variability, I, was developed to compare variation in survey-scale predator sightings, sea temperature and [rho.hat]. Using I and a two-way ANOVA, core box, rather than year, was found to be a more important factor in determining species distribution. The absence of Blue-petrels (Halobaena caerulea) and the elevated number of Antarctic fur seals (Arctocephalus gazella) suggest that 1998 was a characterised by colder than average water surrounding South Georgia, and a high [rho.hat] in the ECB. At the smaller, intra-survey scales (<80 km, <5 day), the characteristic scale (distances in which predator group size, or krill density were similar, L_s) were determined. For krill and predators L_s varied by survey and the L_s of krill also varied by depth within a survey. Overlap in L_s were stronger between predator species than between a predator species and krill, indicating predators were taking foraging cues from the activity of predators, rather than from the underlying krill distribution. No relationship was found between swarm characteristics and predator activity, suggesting either there is no relationship between krill swarms and predators, or that the predator and acoustic observation techniques may not be appropriate to detect such a relationship. 3. To overcome the 2-D sampling limitations of conventional echosounders, a multibeam echosounder (MBE) observed entire swarms in three-dimensions. Swarms found in the nearshore environment of Livingston Island situated in the South Shetland Islands, exhibited only a narrow range of surface area to volume ratios or roughnesses (R = 3.3, CV = 0.23), suggesting that krill adopt a consistent group behaviour to maintain swarm shape. Generalized additive models (GAM) suggested that the presence of air-breathing predators influenced the shape of a krill swarm (R decreased in the presence of predators: the swarm became more spherical). A 2D distance sampling framework was used to estimate the abundance, N, and associated variance of krill swarms. This technique took into account angular and range detectability (half-normal, [sigma_r.hat] = 365.00 m, CV = 0.16) and determined the vertical distribution of krill swarms to be best approximated by a beta-distribution ([alpha.hat] = 2.62, [CV.hat] = 0.19; [beta.hat] = 2.41, [CV.hat] = 0.15), giving the abundance of swarms in survey region as [N.hat] = 5,062 ([CV.hat] = 0.35). This research represents a substantial contribution to developing estimation of pelagic biomass using MBEs. 4. When using a single- or split-beam missing pings occur when the transmit or receive cycles are interrupted, often by aeration of the water column, under the echosounder transducer during rough weather. A thin-plate regression spline based approach was used to model the missing krill data, with knots chosen using a branch and bound algorithm. This method performs well for acoustic observations of krill swarms where data are tightly clustered and change rapidly. For these data the technique outperformed the standard MGCV GAM, and the technique is applicable for estimating acoustically derived biomass from line transect surveys

    Dynamics and Clustering in Locust Hopper Bands

    Get PDF
    In recent years, technological advances in animal tracking have renewed interests in collective animal behavior, and in particular, locust swarms. These swarms pose a major threat to agriculture in northern Africa, the Middle East, and other regions. In their early life stages, locusts move in hopper bands, which are huge aggregations traveling on the ground. Our main goal is to understand the underlying mechanisms for the emergence and organization of these bands. We construct an agent-based model that tracks individual locusts and a continuum model that tracks the evolution of locust density. Both these models are motivated by experimental observations of individuals’ behavior. The macroscopic emergent behavior of the group is studied through numerical simulation of these models

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Audio-based Localization for Swarms of Micro Air Vehicles

    Get PDF
    Localization is one of the key challenges that needs to be considered beforehand to design truly autonomous MAV teams. In this paper, we present a cooperative method to address the localization problem for a team of MAVs, where individuals obtain their position through perceiving a sound-emitting beacon MAV that is flying relative to a reference point in the environment. For this purpose, an on-board audio-based localization system is proposed that allows individuals to measure the relative bearing to the beacon robot and furthermore to localize themselves and the beacon robot simultaneously, without the need for a communication network. Our method is based on coherence testing among signals of a small on-board microphone array, to obtain the relative bearing measurements, and an estimator, to fuse these measurements with sensory information about the motion of the robot throughout time, to estimate robustly the MAV positions. The proposed method is evaluated both in simulation and in real world experiments
    • …
    corecore