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Abstract— Localization is one of the key challenges that
needs to be considered beforehand to design truly autonomous
MAV teams. In this paper, we present a cooperative method to
address the localization problem for a team of MAVs, where
individuals obtain their position through perceiving a sound-
emitting beacon MAV that is flying relative to a reference point
in the environment. For this purpose, an on-board audio-based
localization system is proposed that allows individuals to mea-
sure the relative bearing to the beacon robot and furthermore
to localize themselves and the beacon robot simultaneously,
without the need for a communication network. Our method is
based on coherence testing among signals of a small on-board
microphone array, to obtain the relative bearing measurements,
and an estimator, to fuse these measurements with sensory
information about the motion of the robot throughout time,
to estimate robustly the MAV positions. The proposed method
is evaluated both in simulation and in real world experiments.

I. INTRODUCTION

Employing a swarm of autonomous robots, for achieving
tasks in a collaborative manner, has been of great interest in
the field of robotics. Teams of micro air vehicles (MAVs)
can accomplish aerial coverage tasks more robustly and
more efficiently compared to a single flying robot. Tasks
such as security patrols or searching for victims inside a
disaster area can benefit from several autonomous MAVs
operating in parallel. In addition, by employing multiple
MAVs and by sharing resources among them, it is potentially
possible to use teams of low cost, lightweight and safe
Micro Air Vehicles (MAVs) instead of a large and expensive
aerial platform. Other possible applications of MAV swarms
include rapidly-deployable communication networks [1], en-
vironmental monitoring, aerial surveillance and mapping,
traffic monitoring and search and rescue [2].

A key challenge in designing truly autonomous MAVs
is the robot localization problem, that is the problem of
estimating the MAV’s location relative to its environment.
Individual’s knowledge about their 3D position is essential
for allowing MAVs to navigate autonomously to different
points in space and to achieve aerial coverage tasks such
as exploration and mapping. This information could also be
used in multi-MAV systems to avoid inter robot collisions by
priori spatial separation of individuals at different altitudes
or locations [3]. Furthermore, by sharing their position with
other team members, individuals can obtain the relative
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position of their neighbouring robots and use this information
to form formations [4] [5] and avoid collisions with other
MAVs without the need of priori spatial separation [6].

A localization system for a MAV must satisfy strict
constraints in terms of weight, size, power consumption, pro-
cessing power, three-dimensional coverage and price. These
constraints limit the use of many successful localization
systems, used on ground robots or large aerial vehicles, for
MAVs. Inspired by some animal groups [7], [8], which use
sound for localization, we propose an audio-based local-
ization system that allows individuals in a MAV group to
obtain their absolute location, by only measuring the relative
bearing to a beacon MAV that is emitting a bird-like chirp
sound throughout time. An audio-based localization system
satisfies the imposed constraints on MAVs and furthermore
have the advantage of being independent of illumination,
weather conditions, such as fog, smoke and dust, and pos-
sible occlusions caused by obstacles or other MAVs. In
previous works we showed the success of using sound to
locate acoustic targets on the ground [2] and to obtain the
relative position between members of a multi-MAV system
[9]. Such systems could potentially be exploited to perceive
other non-cooperative noise emitting aerial platforms.

This paper is organized as follows: Section II describes
the related work on localization systems for MAVs. Section
III describes our proposed method for MAV localization in
a Multi-MAV system, by firstly explaining the estimator that
localizes the MAVs when bearing-only measurements are
available, in Subsection III-A, and furthermore explaining the
on-board audio-based relative bearing measurement system,
in Subsection III-B. Section IV provides the results of sim-
ulation and real world experiments of the proposed method.

II. STATE OF THE ART

In general, robot localization methods that are addressed
in the literature can be divided into two main categories:

1) Global Localization methods
2) Local Localization methods
Methods based on the former approach determine the

absolute position of robots relative to a global reference
frame with the assist of an external system. Using external
Colour vision cameras or infrared 3-D motion tracking
cameras [10], for indoor aerial robots, and using Global
Positioning System (GPS) and wireless positioning beacons
[11], for outdoor aerial robots, are examples of methods in
this category. The advantage with solutions based on this
approach is the accuracy that they usually provide while
having a low computational complexity. The main drawback
is their dependency on an external system that is not always
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available. Deployment of wireless positioning beacons in the
environment and in advance of each mission, if not impos-
sible, is both costly and time-consuming. Furthermore, GPS
technologies are vulnerable to jamming and interferences,
have low resolution, and are impossible to use in cluttered
environments where there is no direct line of sight with the
transmitting satellites [12]. GPS vulnerability is considered
as one of the main problems that need to be solved before
allowing MAVs to operate in civilian airspace [13].

Due to disadvantages of the first approach, effort has been
put into the design of local localization methods, where
the position of robots are obtained locally, using onboard
sensors, and independent of any external systems. In this
group of methods, localization is achieved using probabilistic
techniques and by only employing on-board proprioceptive
and exteroceptive sensor information. The most common ex-
amples of this approach are the vision based SLAM (Simul-
taneous Localization and Mapping) algorithms that mainly
use an onboard camera to map features in the environment
and to localize the robot [14], [15], [16]. A drawback with the
local localization methods is that they mainly require a high
computational power and a high data storage for operation.
This might not always be available, specially on small scale
micro air vehicles. The need for real-time processing of
high resolution and high frame-rate images, the dependency
on illumination, visual contrast, weather conditions and the
limited field of view of vision sensors, the errors caused due
to the high or insufficient number of features in the images,
the long displacement between loop closings and the fast
dynamic nature of MAVs, are some of the major drawbacks
of the visual SLAM methods for aerial robots [16].

III. PROPOSED METHOD

This section explains our method for localizing MAVs in
a Multi-MAV system. This method can be considered as a
combination between the two class of approaches, as dis-
cussed in Section II, to employ some of the advantages from
both classes. It allows a group of MAVs to cooperatively
localize themselves using only their onboard sensors, and
without the need for any external systems, while avoiding
the high complexity nature of the local localization methods.
The idea here is that a single MAV in the group starts to fly
in a circular pattern around a static reference point and fur-
thermore acts as a positioning beacon attracting the attention
of other MAVs in the group. Other MAVs then measure the
relative bearing to this beacon robot and estimate the position
of both the beacon robot and themselves, throughout time,
relative to the reference point. No communication between
the robots is required and only prior knowledge of the
behaviour of the beacon robot is used in the estimations.

As illustrated in Figure 1, the beacon robot is controlled
to circle around a desired reference point, while trying to
maintain a previously defined altitude, speed and circling
radius. Many control strategies for guiding a MAV on a
circular path exists [17], [18]. In this work, a vector field
based controller, similar to the one proposed in [18], was
used to control the motion of the beacon MAV around the

Fig. 1. Diagram illustrating the positions of two MAVs, beacon MAV (pb)
and observing MAV (po), for two successive time steps.

reference point. The beacon MAV can consider a static point
on the ground, detected by an onboard camera [19], or a
static acoustic target on the ground, detected by an onboard
microphone array [2], as the reference point.

A. Bearing-only localization

In this section, an Extended Kalman Filtering (EKF) based
estimator is derived to provide an observing MAV with a
robust estimate of its location. This is achieved by fusing
the noisy relative bearing measurements with information
about the motion of the MAV through out time, given by its
onboard proprioceptive sensors, and taking into account the
prior knowledge about the behaviour of the beacon robot.
The estimator is recursive and consists of an Initialization
step and two iterative steps, Prediction and Update, that are
explained in the following subsections.

1) Extended Kalman Filtering (EKF):
At time instant k, the position of the beacon MAV and

an observing MAV, relative to the reference point, is given
by position vectors pb(k) and po(k) respectively, where pb is
defined in Cylindrical coordinate system by pb = (ρb, φb, zb)
and po is defined in Cartesian coordinate system by po =
(xo, yo, zo). The combination of both position vectors is
considered as the state vector X for the EKF:

X =

(
pb
po

)
=
[
ρb φb zb xo yo zo

]T
(1)

Furthermore, a 6×6 covariance matrix P (k) defines the state
error covariance matrix at time instant k.

Initialization: In this work, an initial state estimation
strategy is proposed in order to obtain a good initial guess
of the state vector X(0) to have a faster convergence in the
state estimation. The EKF is initialized after the first reli-
able bearing measurement is obtained, by using the MAV’s
orientation and altitude sensor values:

pb(0) = (Rb, 0, Zb) (2)

po(0) = Zb
−→
j − `(RGO

−→
b0) (3)

` =

{
(Zb−Zo)

sign(Zb−Zo(0))
−→
j ·RGO(0)

−→
b0

Zb 6= Zo
DM
2 Zb = Zo

where, Zb and Rb are the prior knowledge of the beacon
MAV’s altitude and circling radius respectively,

−→
j is a unit

vector along the positive z axis of the global coordinate
system G, (·) is the vector dot product, Zo(0) is the measured
altitude of the observer MAV at time zero and DM is the
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maximum detection range of the bearing measuring sensor.
Vector

−→
b0 is a unit vector in the observer MAV’s body

fixed coordinate system O pointing along the direction of
the initial relative bearing measurement. RGO(0) is a rotation
matrix that rotates vectors from coordinate system O to G:

RGO(k) = Rz(−λo(k))Ry(−βo(k))Rx(−αo(k)) (4)

(λo(k), βo(k), αo(k)) are the yaw, roll and pitch orientation
measurements of the observer robot and (Rz, Ry, Rx) are
basic rotation matrices that rotate vectors about the local
z, y, x axis respectively. In the case of ideal measurements
and when Zb 6= Zo, equation (3), obtained using basic
vector operations, calculates the center point of a circle of
radius Rb that have the observer MAV on its circumference.
Furthermore, a covariance matrix P (0) is initialized:

P (0) = diag(σ2
ρb(0)

, σ2
φb(0)

, σ2
zb(0)

, σ2
xo(0)

, σ2
yo(0)

, σ2
zo(0)

)

where σ2
x(0) is the initial covariance of the state variable

x that are chosen in accordance to the reliability of sensor
readings and the uncertainties in the initial state estimation.

Prediction: In the prediction step, the current state of the
system X̃(k) is predicted from X(k − 1). For the observer
MAV, a probabilistic motion model and the onboard sensor
information, providing the speed and orientation of the MAV,
is used to predict the position vector p̃o(k) from po(k − 1).

p̃o(k) = po(k − 1) +RGO(k − 1)

 Vo(k − 1)dt
0
0

 (5)

where Vo(k) is the speed sensor reading and dt is the time
interval between the two time steps. The motion model (5) is
derived by assuming that, at every iteration, the MAV has a
forward motion along the x-axis of its body fixed coordinate
system, followed by a three dimensional rotation.

If communication between the robots were available, the
speed and orientation values of the beacon MAV along with
conversions between Cylindrical and Cartesian coordinate
systems could also be used to predict the beacon MAV’s
position vector p̃b(k). However, as we are interested in a
solution that does not depend on a communication network,
only the prior knowledge about the speed Vb and circling
radius Rb is used to obtain p̃b(k):

p̃b(k) = pb(k − 1) +
[
0 Vb

Rb
dt 0

]T
(6)

Furthermore, a prediction of the state covariance matrix,
P̃ (k), is obtained by assuming that the uncertainty in state
predictors (5) and (6) is a zero mean multivariate Gaussian.

Update: In the Update step, the relative bearing measure-
ment, presented by vector ~bk, is used to update the state
prediction X̃(k). For this, a measurement model to predict
the relative bearing from the state predictions is defined:

θ = tan−1
(
ry
rx

)
ϕ = tan−1

(
rz√

rx2+ry2

)
(7)

where

~r = (rx, ry, rz) = (ρb cosφb − xo, ρb sinφb − yo, zb − zo)

is a vector in the global coordinate system G that starts at
the position po and ends at the position pb. θ and ϕ are the
azimuth and elevation of vector ~r. The predicted bearing (θ̃,
ϕ̃) is found by substituting the state predictions X̃(k), from
equations (5) and (6), into equation (7).

Furthermore, an innovation µ(k) is defined as the dif-
ference between the predicted bearing (θ̃k, ϕ̃k) and the
measured bearing (θ̂k, ϕ̂k):

µ(k) =
[
θ̂k − θ̃k ϕ̂k − ϕ̃k

]T
(8)

where θ̂k and ϕ̂k are the azimuth and elevation of vector
~bk expressed in the coordinate system G, i.e RGO(k)~bk. The
innovation covariance matrix S(k) is computed by:

S(k) = HP̃ (k)HT +D (9)

where D is the error covariance of bearing measurements and
is found empirically. H is the Jacobian of the measurement
model (7) with respect to the states:

H =

[
∂θ
∂X
∂ϕ
∂X

]∣∣∣∣
X̃(k)

=

[
H11 ... H16

H21 ... H26

]∣∣∣∣∣
X̃(k)

(10)

where

H11 = (yo cosϕb − xo sinϕb)/<1

H12 = ρb (ρb − xo cosϕb − yo sinϕb)/<1

H14 = (−yo + ρb sinϕb)/<1

H15 = (xo + ρb cosϕb)/<1

H13 = H16 = 0
H21 = ((zo − zb) (ρb − xo cosϕb − yo sinϕb))/<3

H22 = −ρb (zo − zb) (yo cosϕb − xo sinϕb)/<3

H24 = (zo − zb) (xo − ρb cosϕb)/<3

H25 = (zo − zb) (yo − ρb sinϕb)/<3

H23 = −H26 =
√
<1

/
<2

<1 = ρb
2 + xo

2 + yo
2 − 2ρb (xo cosϕb + yo sinϕb)

<2 = <1 + (zo − zb)2

<3 = <2

√
(xo − ρb cosϕb)2 + (yo − ρb sinϕb)2

Finally the states are updated:

X(k) = X̃(k) +K(k)µ(k)

P (k) = P̃ (k)−K(k)HP̃ (k)

where K(k) is the Kalman gain at time k derived by:

K(k) = P̃ (k)HTS(k)−1

B. Audio-based relative bearing measurement

The previous section described a method of estimating
the 3D position of members in a swarm of MAVs when
only relative-bearing measurements to a flying beacon MAV
is available. In this section, the proposed sensor suite for
obtaining these measurements is described. Figure 2 shows
the schematic diagram of the on-board audio-based relative
bearing measurement system, describing its key units.

The beacon robot is equipped with a small piezo trans-
ducer and is programmed to continuously generate periodic
chirps of predefined frequency. To generate a loud sound
wave, that would result in a higher detection range of the
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Fig. 2. Schematic diagram of the proposed Audio-based relative bearing
measurement system illustrating the key parts of the system.

beacon MAV, a band-limited chirp with frequencies close
to the resonance frequency of the piezo element is used. A
chirp is used instead of a pure tone to avoid the problem of
ambiguous measurements caused due to the repetitive nature
of narrowband sounds. Figure 4(a) shows the frequency
spectrogram of a single chirp, recorded in flight by an
observer MAV, in presence of a chirping beacon MAV.

Observing MAVs are equipped with a microphone array,
shown in figure 3, to measure the sound waves at different
points in space. An incoming chirp is picked up by the
spatially separated microphones at different time instances.
The existing delay between the microphone signals is used
to measure the direction of arrival of the chirp. A minimum
number of four microphones is needed to obtain the direction
of arrival in 3D without ambiguity. Here, four microphones
are used to minimize the hardware and computational loads.
A tetrahedral microphone array geometry is used to obtain
equivalent localization performance in all directions [20].

Microphone signals are continuously checked by the Chirp
Detector for existence of the desired chirp in the sound
mixture. The presence of a chirp is detected by template
matching, where a template of the chirp, stored in the
memory, is continuously cross-correlated with the signals.
Upon detection of a chirp, the time window holding the entire
chirp, for all microphones, is passed to the Chirp Extractor.

The Chirp Extractor filters the chirp from other sounds
that might exist in the signal segment. For this, the time
window containing the chirp is passed through a band pass
filter to remove the unwanted low frequency wind noise and
other high frequency noises (see Figure 4(b)). Furthermore,

Fig. 3. Picture of the MAV platform [21] used in the experiments. A
Microphone array of four microphones and a digital sound recorder is used
for recording sounds during flight.

Fig. 4. In-flight sound of a chirping MAV recorded by an observing
MAV. (a) Spectrogram of a detected chirp (b)Spectrogram of the signal
after band-pass filtering (c) FRFT transform of the band-passed chirp and
the corresponding passband region (d) Spectrogram of the final filtered chirp.

the Fractional Fourier transform (FRFT) [22] of the filtered
signal is computed with a FRFT order of α obtained by:

α =
2

π
tan−1 (a× fs) (11)

where fs is the sampling frequency and a is the chirp rate
used by the beacon MAV. The computed FRFT contains a
single impulse-shaped peak that corresponds to the chirp.
The chirp is filtered out from other sounds that have made it
through the band-pass filter, by only retaining the bin with
the highest peak along with its few nearby bins and setting
all other bins to zero (see Figure 4(c)). The ratio of the peak
value to the mean value of all zeroed bins prior to zeroing
provides a good measure for the quality of the perceived
chirp. This measure is computed and used as a measure
of reliability of the obtained bearing measurement and only
measurements that satisfy a predefined reliability level are
used in the update step of the EKF estimator. The filtered
chirp in the FRFT domain is then transformed back to the
time domain by computing the inverse FRFT.

After filtering, a measure of similarity between the chirps
of every microphone pair is obtained by computing the
inverse Fourier transform of the cross spectrum:

Rij (τ) =

N−1∑
k=0

Pi [k]P
∗
j [k]ei

2πkτ
N (12)

where Pi(k) is the discrete Fourier transform of the signal
of microphone i, P ∗j denotes the complex conjugate of Pj
and τ is the correlation lag in samples in the range:

−dm
c
< τ <

dm
c

where dm is the distance between the microphones and c is
the speed of sound.

A weighting function was introduced into equation (12)
by [23] to whiten the cross-spectrum of the signals and
allow equal contribution of all the frequencies in the cross
correlation. Although this results in sharper cross correlation
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peaks for broadband sounds, it amplifies the background
noise for narrowband sounds. A modified version of weight-
ing function [23] is used here instead to only allow equal
contribution of the desired frequencies:

Rij (τ) =

N−1∑
k=0

χ

[
PiP

∗
j

|Pi| |Pj |

]
ei

2πkτ
N (13)

χ =

{
1 fmin < f < fmax

0 otherwise

where fmin and fmax are the minimum and maximum
frequencies of the chirp.

Upon finding Rij from (13), for all microphone pairs ij, a
search for the most likely source direction

−→
b m is performed.

−→
bm = argmax

−→
b

∑
i,j

Rij(τ~bij) (14)

where time delay τ~bij corresponds to direction
−→
b and is

computed from the coordinates of microphones i and j in the
body fixed coordinate system. In this work a full direction
grid search, for a spherical geodesic grid of 2562 points,
is performed. Other search methods for further reducing the
cost of this search is available [24]. Figure 5 shows the result
of a grid search for the perceived chirp described in Figure
4 illustrating the likelihood of all grid cells.

IV. EXPERIMENTS AND RESULTS

To verify the bearing-only position estimator, described
in section III-A, a group of MAVs were modelled using
a computer simulation. Simulated MAVs were presented
by a first order 3D flight model with three degrees of
freedom for the airspeed, turn rate and the altitude, all
controlled by PID controllers. The MAV’s airspeed, turn
rate and altitude dynamics have rate limitations and are
influenced by a uniform noise. Furthermore, the sensors
that provide the MAV’s orientations, speed, altitude and the
relative bearing to the beacon MAV were modelled to be
affected by a zero mean uniform noise while the relative
bearing sensor was limited in range. Model parameters were
tuned to best represent a simple MAV platform that was
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Fig. 6. Results of simulation with 1 observer and 1 beacon MAV. A
uniform noise of ±5o for relative-bearing/attitude sensors and ±1m for
altitude/speed sensors is used. The bearing sensor’s detection range is 150m.
top: Position estimates. bottom: Absolute estimation error of EKF states (1).

used throughout the real experiments [21]. A vector field
controller is used to steer the motion of the MAVs onto a
circular path around a point of interest. For a beacon robot
this point is always static, while for an observer robot random
points are generated sequentially to steer the robot between
random points. Figure 6 shows the results of a simulation run
involving a beacon MAV and an observer MAV. It shows
the gradual convergence of the position estimations to the
true position and the reduction in the error covariance.As
expected, the convergence speed depends on the relative
motion between the robots, where for the motions that result
in a faster change of the relative bearing a faster localization
is obtained. Upon localization, a good position tracking is
achieved by the estimator.

Multiple real experiments were performed to verify the
proposed audio-based relative bearing measurement system
and the localization performance of the EKF estimator. A
beacon MAV, equipped with an autopilot, was programmed
to fly in circles around a GPS coordinate with constant
velocity and constant altitude while emitting chirps using
an on-board piezo. An observing MAV, shown in Figure 3,
was then flown manually in proximity of the beacon MAV to
record the sound waves using the on-board microphone array.
The engine power of the observer MAV was occasionally
reduced or turned off to increase the chirp to noise ratio and
the detection range. The orientation, altitude, air-speed and
global positioning information of both MAVs are measured
using on-board sensors and are transmitted and stored on to
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based position estimates and error covariance ellipsoid along with path
of MAVs provided by GPS sensors. bottom: Audio-based relative bearing
measurements along with the relative bearings and the relative distance
between the robots obtained by the GPS sensors.

a ground station. Figure 7 shows the audio-based relative
bearing measurements and the observer MAV’s position es-
timates, along with a comparison against GPS based values,
for an experiment. A good coherence between the GPS-based
and audio-based estimates is observed. A root mean square
error (rms) value of 6.9 degrees, as the error between the
GPS-based and Audio-based bearing measurements, were
obtained from 240 in-flight bearing measurements.

V. CONCLUSION AND FUTURE WORK

A solution to the problem of MAV swarm localization was
presented. This solution consists of a single beacon MAV
that circles around a reference point in space while emitting
continuous linear chirps of predefined frequency spectrum
to assist other MAVs in localizing themselves. MAVs are
equipped with an on-board audio-based relative positioning
system, to measure the bearing to the beacon MAV, and
on-board sensors, to obtain information about their motions
throughout time. The proposed EKF-based filter was shown
to be well-suited for the sensor fusion and achieving a robust
localization. No communication between the robots was
required and only prior knowledge about robot’s behaviour
were used in the estimations. Investigating different types
of MAV motions that could result in a faster localization,
employing multiple beacon MAVs to improve localization
performance, and study of switching protocols to switch
MAVs between beacon and observer states, for exploration
and reduction in the swarm’s overall localization error, are
some of the areas of work we are currently pursuing.
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