102,120 research outputs found

    Brain covariance selection: better individual functional connectivity models using population prior

    Get PDF
    Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.Comment: in Advances in Neural Information Processing Systems, Vancouver : Canada (2010

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.

    Get PDF
    Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition

    Causal connectivity of evolved neural networks during behavior

    Get PDF
    To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics
    • …
    corecore