11 research outputs found

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids

    Technology, Science and Culture: A Global Vision, Volume IV

    Get PDF

    Estimating Leaf Carotenoid Concentration of Ginger in Different Layers Based on Discrete Wavelet Transform Algorithm

    No full text
    International audienceGinger is one of the very important industrial crops in southwest, China. Accurate estimation of its leaf carotenoid concentration (LCC) is important to assess ginger photosynthetic capacity and direct the precision agriculture management. This study focused on introducing a new approach for estimating the LCC of ginger leaves in different leave layers. First, five commonly used vegetation indices (PSSR, PSND, CRI550, CRI700, BRI) were performed to estimate the LCC. The PSSR got a better result with the higher estimation accuracy (R2 = 0.46). Second, the discrete wavelet transform algorithm (DWTA) was used to extract the wavelet feature vectors for estimating the LCC. The result showed that the most sensitive wavelet feature vector was in the sixth decomposition scale. The highest estimation accuracy (R2) was 0.86 for the lower leaf layer. Compared with those vegetation indices, the estimation accuracy (R2) improved 46.5%–71.1%, which indicated that the LCC of ginger in different leave layers can be accurately estimated by DWTA

    Molecular phylogeny of horseshoe crab using mitochondrial Cox1 gene as a benchmark sequence

    Get PDF
    An effort to assess the utility of 650 bp Cytochrome C oxidase subunit I (DNA barcode) gene in delineating the members horseshoe crabs (Family: xiphosura) with closely related sister taxa was made. A total of 33 sequences were extracted from National Center for Biotechnological Information (NCBI) which include horseshoe crabs, beetles, common crabs and scorpion sequences. Constructed phylogram showed beetles are closely related with horseshoe crabs than common crabs. Scorpion spp were distantly related to xiphosurans. Phylogram and observed genetic distance (GD) date were also revealed that Limulus polyphemus was closely related with Tachypleus tridentatus than with T.gigas. Carcinoscorpius rotundicauda was distantly related with L.polyphemus. The observed mean Genetic Distance (GD) value was higher in 3rd codon position in all the selected group of organisms. Among the horseshoe crabs high GC content was observed in L.polyphemus (38.32%) and lowest was observed in T.tridentatus (32.35%). We conclude that COI sequencing (barcoding) could be used in identifying and delineating evolutionary relatedness with closely related specie

    Crab and cockle shells as heterogeneous catalysts in the production of biodiesel

    Get PDF
    In the present study, the waste crab and cockle shells were utilized as source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shells are calcium carbonate which transformed into calcium oxide upon activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be catalyst amount, 5 wt.% and methanol/oil mass ratio, 0.5:1. The waste catalysts perform equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to five times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity

    XVI Agricultural Science Congress 2023: Transformation of Agri-Food Systems for Achieving Sustainable Development Goals

    Get PDF
    The XVI Agricultural Science Congress being jointly organized by the National Academy of Agricultural Sciences (NAAS) and the Indian Council of Agricultural Research (ICAR) during 10-13 October 2023, at hotel Le Meridien, Kochi, is a mega event echoing the theme “Transformation of Agri-Food Systems for achieving Sustainable Development Goals”. ICAR-Central Marine Fisheries Research Institute takes great pride in hosting the XVI ASC, which will be the perfect point of convergence of academicians, researchers, students, farmers, fishers, traders, entrepreneurs, and other stakeholders involved in agri-production systems that ensure food and nutritional security for a burgeoning population. With impeding challenges like growing urbanization, increasing unemployment, growing population, increasing food demands, degradation of natural resources through human interference, climate change impacts and natural calamities, the challenges ahead for India to achieve the Sustainable Development Goals (SDGs) set out by the United Nations are many. The XVI ASC will provide an interface for dissemination of useful information across all sectors of stakeholders invested in developing India’s agri-food systems, not only to meet the SDGs, but also to ensure a stable structure on par with agri-food systems around the world. It is an honour to present this Book of Abstracts which is a compilation of a total of 668 abstracts that convey the results of R&D programs being done in India. The abstracts have been categorized under 10 major Themes – 1. Ensuring Food & Nutritional Security: Production, Consumption and Value addition; 2. Climate Action for Sustainable Agri-Food Systems; 3. Frontier Science and emerging Genetic Technologies: Genome, Breeding, Gene Editing; 4. Livestock-based Transformation of Food Systems; 5. Horticulture-based Transformation of Food Systems; 6. Aquaculture & Fisheries-based Transformation of Food Systems; 7. Nature-based Solutions for Sustainable AgriFood Systems; 8. Next Generation Technologies: Digital Agriculture, Precision Farming and AI-based Systems; 9. Policies and Institutions for Transforming Agri-Food Systems; 10. International Partnership for Research, Education and Development. This Book of Abstracts sets the stage for the mega event itself, which will see a flow of knowledge emanating from a zeal to transform and push India’s Agri-Food Systems to perform par excellence and achieve not only the SDGs of the UN but also to rise as a world leader in the sector. I thank and congratulate all the participants who have submitted abstracts for this mega event, and I also applaud the team that has strived hard to publish this Book of Abstracts ahead of the event. I wish all the delegates and participants a very vibrant and memorable time at the XVI ASC

    Mathematical model of interactions immune system with Micobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) remains a public health problem in the world, because of the increasing prevalence and treatment outcomes are less satisfactory. About 3 million people die each year and an estimated one third of the world's population infected with Mycobacterium Tuberculosis (M.tb) is latent. This is apparently related to incomplete understanding of the immune system in infection M.tb. When this has been known that immune responses that play a role in controlling the development of M.tb is Macrophages, T Lymphocytes and Cytokines as mediators. However, how the interaction between the two populations and a variety of cytokines in suppressing the growth of Mycobacterium tuberculosis germ is still unclear. To be able to better understand the dynamics of infection with M tuberculosis host immune response is required of a model.One interesting study on the interaction of the immune system with M.tb mulalui mathematical model approach. Mathematical model is a good tool in understanding the dynamic behavior of a system. With the mediation of mathematical models are expected to know what variables are most responsible for suppressing the growth of Mycobacterium tuberculosis germ that can be a more appropriate approach to treatment and prevention target is to develop a vaccine. This research aims to create dynamic models of interaction between macrophages (Macrophages resting, macrophages activated and macrophages infected), T lymphocytes (CD4 + T cells and T cells CD8 +) and cytokine (IL-2, IL-4, IL-10,IL-12,IFN-dan TNF-) on TB infection in the lung. To see the changes in each variable used parameter values derived from experimental literature. With the understanding that the variable most responsible for defense against Mycobacterium tuberculosis germs, it can be used as the basis for the development of a vaccine or drug delivery targeted so hopefully will improve the management of patients with tuberculosis. Mathematical models used in building Ordinary Differential Equations (ODE) in the form of differential equation systems Non-linear first order, the equation contains the functions used in biological systems such as the Hill function, Monod function, Menten- Kinetic Function. To validate the system used 4th order Runge Kutta method with the help of software in making the program Matlab or Maple to view the behavior and the quantity of cells of each population

    Annual Report of the University, 1992-1993, Volumes 1-4

    Get PDF
    SIGNIFICANT DEVELOPMENTS Preparation, approval by President Peck, delivery to NMCHE of UNM\u27s response to House Memorials 38 and 25 (on minorities and women). Development and packaging of a presentation on minorities at UNM to Hispanic community people and organizations. Renewal of faculty instructional workload report and other information for use by President Peck and others in the President\u27s Council in testimony to the legislature on accountability by faculty. Significant workload and contributions to WICHE\u27s Diversity Project: - responses to long questionnaire - projected demographics - substitution for O. Forbes on planning for diversity Reprogramming of obsolete computer program of the University of Southern California\u27s Faculty Planning Model. Work remains incomplete. Support and staff work for University Planning Council, Faculty Senate Long Range Planning Committee, Senate President, Senate Budget Committee, Student Learning Outcomes Assessment Committee, Admissions and Registration Committee, Staff Council; Graduate Petition and grade Review Subcommittee Service to NMCHE\u27s Outcomes Assessment Advisory Group; NMCHE\u27s review group on diversity plans Service on Albuquerque Business/Education Compact Conducted several special data analyses to provide user outcome information for the Center for Academic Program Support (CAPS). Wrote reports to summarize analyses. Served in an advisory capacity to VP Zuniga Forbes for the two surveys (Campus Climate for Diversity, ACT Student Opinion Survey) and helped to draw the sample for the ACT survey. Conducted secondary analyses and prepared report of all analyses of the Freshman Survey (CIRP) for VP Zuniga Forbes. Gave presentation of CIRP findings to the Regents Subcommittee on Student Affairs. Conducted secondary analyses and prepared report of all analyses of the Campus Climate for Diversity Survey for VP Zuniga Forbes

    Radiobiology Textbook:Space Radiobiology

    Get PDF
    The study of the biologic effects of space radiation is considered a “hot topic,” with increased interest in the past years. In this chapter, the unique characteristics of the space radiation environment will be covered, from their history, characterization, and biological effects to the research that has been and is being conducted in the field. After a short introduction, you will learn the origin and characterization of the different types of space radiation and the use of mathematical models for the prediction of the radiation doses during different mission scenarios and estimate the biological risks due to this exposure. Following this, the acute, chronic, and late effects of radiation exposure in the human body are discussed before going into the detailed biomolecular changes affecting cells and tissues, and in which ways they differ from other types of radiation exposure. The next sections of this chapter are dedicated to the vast research that has been developed through the years concerning space radiation biology, from small animals to plant models and 3D cell cultures, the use of extremophiles in the study of radiation resistance mechanisms to the importance of ground-based irradiation facilities to simulate and study the space environment
    corecore