521 research outputs found

    Land and cryosphere products from Suomi NPP VIIRS: overview and status

    Get PDF
    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS

    Diurnal emissivity dynamics in bare versus biocrusted sand dunes

    Get PDF
    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel–Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Climatic impacts of bushland to cropland conversion in Eastern Africa

    Get PDF
    Bushlands (Acacia-Commiphora) constitute the largest and one of the most threatened ecosystems in East Africa. Although several studies have investigated the climatic impacts of land changes on local and global climate, the main focus has been on forest loss and the impacts of bushland clearing thus remain poorly understood. Measuring the impacts of bushland loss on local climate is challenging given that changes often occur at fragmented and small patches. Here, we apply high-resolution satellite imagery and land surface flux modeling approaches to unveil the impacts of bushland clearing on surface biophysical properties and its associated effects on surface energy balance and land surface temperature. Our results show that bushland clearing leads to an average reduction in evapotranspiration of 0.4 mm day(-1). The changes in surface biophysical properties affected the surface energy balance components with different magnitude. The reduction in latent heat flux was stronger than other surface energy fluxes and resulted in an average net increase in daytime land surface temperature (LST) of up to 1.75 K. These results demonstrate the important impact of bushland-to-cropland conversion on the local climate, as they reveal increases in LST of a magnitude comparable to those caused by forest loss. This finding highlights the necessity of bushland conservation for regulating the land surface temperature in East Africa and, at the same time, warns of the climatic impacts of clearing bushlands for agriculture. (c) 2020 The Authors. Published by Elsevier B.V.Peer reviewe

    Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years

    Get PDF
    Global land surface temperature (LST) data derived from satellite-based infrared radiance measurements are highly valuable for various applications in climate research. While in situ validation of satellite LST data sets is a challenging task, it is needed to obtain quantitative information on their accuracy. In the standardised approach to multi-sensor validation presented here for the first time, LST data sets obtained with state-of-the-art retrieval algorithms from several sensors (AATSR, GOES, MODIS, and SEVIRI) are matched spatially and temporally with multiple years of in situ data from globally distributed stations representing various land cover types in a consistent manner. Commonality of treatment is essential for the approach: all satellite data sets are projected to the same spatial grid, and transformed into a common harmonized format, thereby allowing comparison with in situ data to be undertaken with the same methodology and data processing. The large data base of standardised satellite LST provided by the European Space Agency’s GlobTemperature project makes previously difficult to perform LST studies and applications more feasible and easier to implement. The satellite data sets are validated over either three or ten years, depending on data availability. Average accuracies over the whole time span are generally within ±2.0 K during night, and within ± 4.0 K during day. Time series analyses over individual stations reveal seasonal cycles. They stem, depending on the station, from surface anisotropy, topography, or heterogeneous land cover. The results demonstrate the maturity of the LST products, but also highlight the need to carefully consider their temporal and spatial properties when using them for scientific purposes

    Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions

    Get PDF
    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation

    Detection of vegetation drying signals using diurnal variation of land surface temperature: Application to the 2018 East Asia heatwave

    Get PDF
    Satellite-based vegetation monitoring provides important insights regarding spatiotemporal variations in vegetation growth from a regional to continental scale. Most current vegetation monitoring methodologies rely on spectral vegetation indices (VIs) observed by polar-orbiting satellites, which provide one or a few observations per day. This study proposes a new methodology based on diurnal changes in land surface temperatures (LSTs) using Japan's geostationary satellite, Himawari-8/Advanced Himawari Imager (AHI). AHI thermal infrared observation provides LSTs at 10-min frequencies and ∼ 2 km spatial resolution. The DTC parameters that summarize the diurnal cycle waveform were obtained by fitting a diurnal temperature cycle (DTC) model to the time-series LST information for each day. To clarify the applicability of DTC parameters in detecting vegetation drying under humid climates, DTC parameters from in situ LSTs observed at vegetation sites, as well as those from Himawari-8 LSTs, were evaluated for East Asia. Utilizing the record-breaking heat wave that occurred in East Asia in 2018 as a case study, the anomalies of DTC parameters from the Himawari-8 LSTs were compared with the drying signals indicated by VIs, latent heat fluxes (LE), and surface soil moisture (SM). The results of site-based and satellite-based analyses revealed that DTR (diurnal temperature range) correlates with the evaporative fraction (EF) and SM, whereas Tmax (daily maximum LST) correlates with LE and VIs. Regarding other temperature-related parameters, T0 (LST around sunrise), Ta (temperature rise during daytime), and δT (temperature fall during nighttime) are unstable in quantification by DTC model. Moreover, time-related parameters, such as tm (time reaching Tmax), are more sensitive to topographic slope and geometric conditions than surface thermal properties at humid sites in East Asia, although they correlate with EF and SM at a semi-arid site in Australia. Additionally, the spatial distribution of the DTR anomaly during the 2018 heat wave corresponds with the drying signals indicated as negative SM anomalies. Regions with large positive anomalies in Tmax and DTR correspond to area with visible damage to vegetation, as indicated by negative VI anomalies. Hence, combined Tmax and DTR potentially detects vegetation drying indetectable by VIs, thereby providing earlier and more detailed vegetation monitoring in both humid and semi-arid climates

    Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

    Get PDF
    Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE
    • …
    corecore