7 research outputs found

    Second report on dissemination activities

    Get PDF
    Workpackage 7 comprises of dissemination activities of the casmacat project. In this report, we summarize the promotion of project goals, progress and outcomes to the larger academic research community, the commercial sector targeted by the work, and beyond

    CASMACAT: An open source workbench for advanced computer aided translation

    Full text link
    [EN] We describe an open source workbench that offers advanced computer aided translation (CAT) functionality: post-editing machine translation (MT), interactive translation prediction (ITP), visualization of word alignment, extensive logging with replay mode, integration with eye trackers and e-pen.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 287576 (CASMACT). The workbench was developed in close collaboration with the MATECAT project.Alabau, V.; Bonkb, R.; Buck, C.; Carlb, M.; Casacuberta Nolla, F.; García-Martínez, M.; Gonzalez Rubio, J.... (2013). CASMACAT: An open source workbench for advanced computer aided translation. Prague Bulletin of Mathematical Linguistics. 100(1):101-112. https://doi.org/10.2478/pralin-2013-0016S1011121001Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., … Vilar, J.-M. (2009). Statistical Approaches to Computer-Assisted Translation. Computational Linguistics, 35(1), 3-28. doi:10.1162/coli.2008.07-055-r2-06-2

    Interactive translation prediction versus conventional post-editing in practice: a study with the CasMaCat workbench

    Full text link
    [EN] We conducted a field trial in computer-assisted professional translation to compare interactive translation prediction (ITP) against conventional post-editing (PE) of machine translation (MT) output. In contrast to the conventional PE set-up, where an MT system first produces a static translation hypothesis that is then edited by a professional (hence "post-editing"), ITP constantly updates the translation hypothesis in real time in response to user edits. Our study involved nine professional translators and four reviewers working with the web-based CasMaCat workbench. Various new interactive features aiming to assist the post-editor/translator were also tested in this trial. Our results show that even with little training, ITP can be as productive as conventional PE in terms of the total time required to produce the final translation. Moreover, translation editors working with ITP require fewer key strokes to arrive at the final version of their translation.This work was supported by the European Union’s 7th Framework Programme (FP7/2007–2013) under grant agreement No 287576 (CasMaCat ).Sanchis Trilles, G.; Alabau, V.; Buck, C.; Carl, M.; Casacuberta Nolla, F.; Garcia Martinez, MM.; Germann, U.... (2014). Interactive translation prediction versus conventional post-editing in practice: a study with the CasMaCat workbench. Machine Translation. 28(3-4):217-235. https://doi.org/10.1007/s10590-014-9157-9S217235283-4Alabau V, Leiva LA, Ortiz-Martínez D, Casacuberta F (2012) User evaluation of interactive machine translation systems. In: Proceedings of the 16th Annual Conference of the European Association for Machine Translation, pp 20–23Alabau V, Buck C, Carl M, Casacuberta F, García-Martínez M, Germann U, González-Rubio J, Hill R, Koehn P, Leiva L, Mesa-Lao B, Ortiz-Martínez D, Saint-Amand H, Sanchis-Trilles G, Tsoukala C (2014) Casmacat: A computer-assisted translation workbench. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp 25–28Alves F, Vale D (2009) Probing the unit of translation in time: aspects of the design and development of a web application for storing, annotating, and querying translation process data. Across Lang Cultures 10(2):251–273Bach N, Huang F, Al-Onaizan Y (2011) Goodness: A method for measuring machine translation confidence. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp 211–219Barrachina S, Bender O, Casacuberta F, Civera J, Cubel E, Khadivi S, Lagarda AL, Ney H, Tomás J, Vidal E, Vilar JM (2009) Statistical approaches to computer-assisted translation. Comput Linguist 35(1):3–28Brown PF, Della Pietra SA, Della Pietra VJ (1993) The mathematics of statistical machine translation: parameter estimation. Comput Linguist 19(2):263–311Callison-Burch C, Koehn P, Monz C, Post M, Soricut R, Specia L (2012) Findings of the 2012 workshop on statistical machine translation. In: Proceedings of the Seventh Workshop on Statistical Machine Translation, pp 10–51Carl M (2012a) The CRITT TPR-DB 1.0: A database for empirical human translation process research. In: Proceedings of the AMTA 2012 Workshop on Post-Editing Technology and Practice, pp 1–10Carl M (2012b) Translog-II: a program for recording user activity data for empirical reading and writing research. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, pp 4108–4112Carl M (2014) Produkt- und Prozesseinheiten in der CRITT Translation Process Research Database. In: Ahrens B (ed) Translationswissenschaftliches Kolloquium III: Beiträge zur Übersetzungs- und Dolmetschwissenschaft (Köln/Germersheim). Peter Lang, Frankfurt am Main, pp 247–266Carl M, Kay M (2011) Gazing and typing activities during translation : a comparative study of translation units of professional and student translators. Meta 56(4):952–975Doherty S, O’Brien S, Carl M (2010) Eye tracking as an MT evaluation technique. Mach Transl 24(1):1–13Elming J, Carl M, Balling LW (2014) Investigating user behaviour in post-editing and translation using the Casmacat workbench. In: O’Brien S, Winther Balling L, Carl M, Simard M, Specia L (eds) Post-editing of machine translation: processes and applications. Cambridge Scholar Publishing, Newcastle upon Tyne, pp 147–169Federico M, Cattelan A, Trombetti M (2012) Measuring user productivity in machine translation enhanced computer assisted translation. In: Proceedings of the Tenth Biennial Conference of the Association for Machine Translation in the AmericasFlournoy R, Duran C (2009) Machine translation and document localization at adobe: From pilot to production. In: Proceedings of MT Summit XIIGreen S, Heer J, Manning CD (2013) The efficacy of human post-editing for language translation. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp 439–448Guerberof A (2009) Productivity and quality in mt post-editing. In: Proceedings of MT Summit XII-Workshop: Beyond Translation Memories: New Tools for Translators MTGuerberof A (2012) Productivity and quality in the post-editing of outputs from translation memories and machine translation. Ph.D. ThesisJust MA, Carpenter PA (1980) A theory of reading: from eye fixations to comprehension. Psychol Rev 87(4):329Koehn P (2009a) A process study of computer-aided translation. Mach Transl 23(4):241–263Koehn P (2009b) A web-based interactive computer aided translation tool. In: Proceedings of ACL-IJCNLP 2009 Software Demonstrations, pp 17–20Krings HP (2001) Repairing texts: empirical investigations of machine translation post-editing processes, vol 5. Kent State University Press, KentLacruz I, Shreve GM, Angelone E (2012) Average pause ratio as an indicator of cognitive effort in post-editing: a case study. In: Proceedings of the AMTA 2012 Workshop on Post-Editing Technology and Practice, pp 21–30Langlais P, Foster G, Lapalme G (2000) Transtype: A computer-aided translation typing system. In: Proceedings of the 2000 NAACL-ANLP Workshop on Embedded Machine Translation Systems, pp 46–51Leiva LA, Alabau V, Vidal E (2013) Error-proof, high-performance, and context-aware gestures for interactive text edition. In: Proceedings of the 2013 annual conference extended abstracts on Human factors in computing systems, pp 1227–1232Montgomery D (2004) Introduction to statistical quality control. Wiley, HobokenO’Brien S (2009) Eye tracking in translation process research: methodological challenges and solutions, Copenhagen Studies in Language, vol 38. Samfundslitteratur, Copenhagen, pp 251–266Ortiz-Martínez D, Casacuberta F (2014) The new Thot toolkit for fully automatic and interactive statistical machine translation. In: Proceedings of the 14th Annual Meeting of the European Association for Computational Linguistics: System Demonstrations, pp 45–48Plitt M, Masselot F (2010) A productivity test of statistical machine translation post-editing in a typical localisation context. Prague Bulletin Math Linguist 93(1):7–16Sanchis-Trilles G, Ortiz-Martínez D, Civera J, Casacuberta F, Vidal E, Hoang H (2008) Improving interactive machine translation via mouse actions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp 485–494Simard M, Foster G (2013) Pepr: Post-edit propagation using phrase-based statistical machine translation. In: Proceedings of MT Summit XIV, pp 191–198Skadiņš R, Puriņš M, Skadiņa I, Vasiļjevs A (2011) Evaluation of SMT in localization to under-resourced inflected language. In: Proceedings of the 15th International Conference of the European Association for Machine Translation, pp 35–4

    Error-proof, High-performance, and Context-aware Gestures for Interactive Text Edition

    Full text link
    [EN] We present a straightforward solution to incorporate text-editing gestures to mixed-initiative user interfaces (MIUIs). Our approach provides (1) disambiguation from handwritten text, (2) edition context, (3) virtually perfect accuracy, and (4) a trivial implementation. An evaluation study with 32 e-pen users showed that our approach is suitable to production-ready environments. In addition, performance tests on a desktop PC and on a mobile device revealed that gestures are really fast to recognize (0.1 ms on average). Taken together, these results suggest that our approach can help developers to deploy simple but effective, high-performance text-editing gesturesThis work is supported by CasMaCat Project 287576 (FP7 ICT-2011.4.2)Leiva, LA.; Alabau, V.; Vidal, E. (2013). Error-proof, High-performance, and Context-aware Gestures for Interactive Text Edition. ACM. 1227-1232. http://hdl.handle.net/10251/179831S1227123

    Beta release of CASMECAT workbench

    Get PDF
    This document contains details about the implementation of the 2nd prototype of the casmacat workbench and the Translation Process Research Database (TPR-DB). It outlines the major components of the workbench and their usage (Sections 1, 2, 3 and 6), as well as the structure and feature of the TPR-DB (Section 7). Since gaze information is the most valuable source for tracking translator e ort in text understanding, and due to the noise inherent in current head-free eye-tracking technology, Sections 4 and 5 report attempts to implement solutions for obtaining better gaze-to-word mapping accuracy. At the time of this writing, an installation guide1 has been written and made available to a select group of alpha testers (researchers from universities and research laboratories) to prepare a wider release of the prototype

    Contex-aware gestures for mixed-initiative text editings UIs

    Full text link
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Interacting with computers following peer review. The version of record is available online at: http://dx.doi.org/10.1093/iwc/iwu019[EN] This work is focused on enhancing highly interactive text-editing applications with gestures. Concretely, we study Computer Assisted Transcription of Text Images (CATTI), a handwriting transcription system that follows a corrective feedback paradigm, where both the user and the system collaborate efficiently to produce a high-quality text transcription. CATTI-like applications demand fast and accurate gesture recognition, for which we observed that current gesture recognizers are not adequate enough. In response to this need we developed MinGestures, a parametric context-aware gesture recognizer. Our contributions include a number of stroke features for disambiguating copy-mark gestures from handwritten text, plus the integration of these gestures in a CATTI application. It becomes finally possible to create highly interactive stroke-based text-editing interfaces, without worrying to verify the user intent on-screen. We performed a formal evaluation with 22 e-pen users and 32 mouse users using a gesture vocabulary of 10 symbols. MinGestures achieved an outstanding accuracy (<1% error rate) with very high performance (<1 ms of recognition time). We then integrated MinGestures in a CATTI prototype and tested the performance of the interactive handwriting system when it is driven by gestures. Our results show that using gestures in interactive handwriting applications is both advantageous and convenient when gestures are simple but context-aware. Taken together, this work suggests that text-editing interfaces not only can be easily augmented with simple gestures, but also may substantially improve user productivity.This work has been supported by the European Commission through the 7th Framework Program (tranScriptorium: FP7- ICT-2011-9, project 600707 and CasMaCat: FP7-ICT-2011-7, project 287576). It has also been supported by the Spanish MINECO under grant TIN2012-37475-C02-01 (STraDa), and the Generalitat Valenciana under grant ISIC/2012/004 (AMIIS).Leiva, LA.; Alabau, V.; Romero Gómez, V.; Toselli, AH.; Vidal, E. (2015). Contex-aware gestures for mixed-initiative text editings UIs. Interacting with Computers. 27(6):675-696. https://doi.org/10.1093/iwc/iwu019S675696276Alabau V. Leiva L. A. Transcribing Handwritten Text Images with a Word Soup Game. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 2012.Alabau V. Rodríguez-Ruiz L. Sanchis A. Martínez-Gómez P. Casacuberta F. On Multimodal Interactive Machine Translation Using Speech Recognition. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011a.Alabau V. Sanchis A. Casacuberta F. Improving On-Line Handwritten Recognition using Translation Models in Multimodal Interactive Machine Translation. Proc. Assoc. Comput. Linguistics (ACL) 2011b.Alabau, V., Sanchis, A., & Casacuberta, F. (2014). Improving on-line handwritten recognition in interactive machine translation. Pattern Recognition, 47(3), 1217-1228. doi:10.1016/j.patcog.2013.09.035Anthony L. Wobbrock J. O. A Lightweight Multistroke Recognizer for User Interface Prototypes. Proc. Conf. Graph. Interface (GI). 2010.Anthony L. Wobbrock J. O. N-Protractor: a Fast and Accurate Multistroke Recognizer. Proc. Conf. Graph. Interface (GI) 2012.Anthony L. Vatavu R.-D. Wobbrock J. O. Understanding the Consistency of Users' Pen and Finger Stroke Gesture Articulation. Proc. Conf. Graph. Interface (GI). 2013.Appert C. Zhai S. Using Strokes as Command Shortcuts: Cognitive Benefits and Toolkit Support. Proc. SIGCHI Conf. Hum. Fact. Comput. Syst. (CHI) 2009.Bahlmann C. Haasdonk B. Burkhardt H. On-Line Handwriting Recognition with Support Vector Machines: A Kernel Approach. Proc. Int. Workshop Frontiers Handwriting Recognition (IWFHR). 2001.Bailly G. Lecolinet E. Nigay L. Flower Menus: a New Type of Marking Menu with Large Menu Breadth, within Groups and Efficient Expert Mode Memorization. Proc.Work. Conf. Adv. Vis. Interfaces (AVI) 2008.Balakrishnan R. Patel P. The PadMouse: Facilitating Selection and Spatial Positioning for the Non-Dominant Hand. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1998.Bau O. Mackay W. E. Octopocus: A Dynamic Guide for Learning Gesture-Based Command Sets. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2008.Belaid A. Haton J. A syntactic approach for handwritten formula recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1984;6:105-111.Bosch V. Bordes-Cabrera I. Munoz P. C. Hernández-Tornero C. Leiva L. A. Pastor M. Romero V. Toselli A. H. Vidal E. Transcribing a XVII Century Handwritten Botanical Specimen Book from Scratch. Proc. Int. Conf. Digital Access Textual Cultural Heritage (DATeCH). 2014.Buxton W. The natural language of interaction: a perspective on non-verbal dialogues. INFOR 1988;26:428-438.Cao X. Zhai S. Modeling Human Performance of Pen Stroke Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2007.Castro-Bleda M. J. España-Boquera S. Llorens D. Marzal A. Prat F. Vilar J. M. Zamora-Martinez F. Speech Interaction in a Multimodal Tool for Handwritten Text Transcription. Proc. Int. Conf. Multimodal Interfaces (ICMI) 2011.Connell S. D. Jain A. K. Template-based on-line character recognition. Pattern Recognition 2000;34:1-14.Costagliola G. Deufemia V. Polese G. Risi M. A Parsing Technique for Sketch Recognition Systems. Proc. 2004 IEEE Symp. Vis. Lang. Hum. Centric Comput. (VLHCC). 2004.Culotta, A., Kristjansson, T., McCallum, A., & Viola, P. (2006). Corrective feedback and persistent learning for information extraction. Artificial Intelligence, 170(14-15), 1101-1122. doi:10.1016/j.artint.2006.08.001Deepu V. Madhvanath S. Ramakrishnan A. Principal Component Analysis for Online Handwritten Character Recognition. Proc. Int. Conf. Pattern Recognition (ICPR). 2004.Delaye A. Sekkal R. Anquetil E. Continuous Marking Menus for Learning Cursive Pen-Based Gestures. Proc. Int. Conf. Intell. User Interfaces (IUI) 2011.Dimitriadis Y. Coronado J. Towards an art-based mathematical editor that uses on-line handwritten symbol recognition. Pattern Recognition 1995;8:807-822.El Meseery M. El Din M. F. Mashali S. Fayek M. Darwish N. Sketch Recognition Using Particle Swarm Algorithms. Proc. 16th IEEE Int. Conf. Image Process. (ICIP). 2009.Goldberg D. Goodisman A. Stylus User Interfaces for Manipulating Text. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 1991.Goldberg D. Richardson C. Touch-Typing with a Stylus. Proc. INTERCHI'93 Conf. Hum. Factors Comput. Syst. 1993.Stevens, M. E. (1968). Selected pattern recognition projects in Europe. Pattern Recognition, 1(2), 103-118. doi:10.1016/0031-3203(68)90002-2Hardock G. Design Issues for Line Driven Text Editing/ Annotation Systems. Proc. Conf. Graph. Interface (GI). 1991.Hardock G. Kurtenbach G. Buxton W. A Marking Based Interface for Collaborative Writing. Proc.ACM Symp. User Interface Softw. Technol. (UIST) 1993.Hinckley K. Baudisch P. Ramos G. Guimbretiere F. Design and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2005.Hong J. I. Landay J. A. SATIN: A Toolkit for Informal Ink-Based Applications. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2000.Horvitz E. Principles of Mixed-Initiative User Interfaces. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999.Huerst W. Yang J. Waibel A. Interactive Error Repair for an Online Handwriting Interface. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010.Jelinek F. Cambridge, Massachusetts: MIT Press; 1998. Statistical Methods for Speech Recognition.Johansson S. Atwell E. Garside R. Leech G. The Tagged LOB Corpus, User's Manual. Norwegian Computing Center for the Humanities. 1996.Karat C.-M. Halverson C. Horn D. Karat J. Patterns of Entry and Correction in Large Vocabulary Continuous Speech Recognition Systems. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999.Kerrick, D. D., & Bovik, A. C. (1988). Microprocessor-based recognition of handprinted characters from a tablet input. Pattern Recognition, 21(5), 525-537. doi:10.1016/0031-3203(88)90011-8Koschinski M. Winkler H. Lang M. Segmentation and Recognition of Symbols within Handwritten Mathematical Expressions. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP). 1995.Kosmala A. Rigoll G. On-Line Handwritten Formula Recognition Using Statistical Methods. Proc. Int. Conf. Pattern Recognition (ICPR) 1998.Kristensson P. O. Discrete and continuous shape writing for text entry and control. 2007. Ph.D. Thesis, Linköping University, Sweden.Kristensson P. O. Denby L. C. Text Entry Performance of State of the Art Unconstrained Handwriting Recognition: a Longitudinal User Study. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2009.Kristensson P. O. Denby L. C. Continuous Recognition and Visualization of Pen Strokes and Touch-Screen Gestures. Proc. Eighth Eurograph. Symp. Sketch-Based Interfaces Model. (SBIM) 2011.Kristensson P. O. Zhai S. SHARK2: A Large Vocabulary Shorthand Writing System for Pen-Based Computers. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2004.Kurtenbach G. P. The design and evaluation of marking menus. 1991. Ph.D. Thesis, University of Toronto.Kurtenbach G. P. Buxton W. Issues in Combining Marking and Direct Manipulation Techniques. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 1991.Kurtenbach G. Buxton W. User Learning and Performance with Marking Menus. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 1994.Kurtenbach, G., Sellen, A., & Buxton, W. (1993). An Empirical Evaluation of Some Articulatory and Cognitive Aspects of Marking Menus. Human-Computer Interaction, 8(1), 1-23. doi:10.1207/s15327051hci0801_1LaLomia M. User Acceptance of Handwritten Recognition Accuracy. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 1994.Leiva L. A. Romero V. Toselli A. H. Vidal E. Evaluating an Interactive–Predictive Paradigm on Handwriting Transcription: A Case Study and Lessons Learned. Proc. 35th Annu. IEEE Comput. Softw. Appl. Conf. (COMPSAC) 2011.Leiva L. A. Alabau V. Vidal E. Error-Proof, High-Performance, and Context-Aware Gestures for Interactive Text Edition. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2013.Li Y. Protractor: A Fast and Accurate Gesture Recognizer. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010.Li W. Hammond T. Using Scribble Gestures to Enhance Editing Behaviors of Sketch Recognition Systems. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2012.Liao C. Guimbretière F. Hinckley K. Hollan J. Papiercraft: a gesture-based command system for interactive paper. ACM Trans. Comput.–Hum. Interaction (TOCHI) 2008;14:18:1-18:27.Liu P. Soong F. K. Word Graph Based Speech Rcognition Error Correction by Handwriting Input. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2006.Long A. Landay J. Rowe L. Implications for a Gesture Design Tool. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 1999.Long A. C. Jr. Landay J. A. Rowe L. A. Michiels J. Visual Similarity of Pen Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2000.MacKenzie, I. S., & Chang, L. (1999). A performance comparison of two handwriting recognizers. Interacting with Computers, 11(3), 283-297. doi:10.1016/s0953-5438(98)00030-7MacKenzie I. S. Tanaka-Ishii K. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2007. Text Entry Systems: Mobility, Accessibility, Universality.MARTI, U.-V., & BUNKE, H. (2001). USING A STATISTICAL LANGUAGE MODEL TO IMPROVE THE PERFORMANCE OF AN HMM-BASED CURSIVE HANDWRITING RECOGNITION SYSTEM. International Journal of Pattern Recognition and Artificial Intelligence, 15(01), 65-90. doi:10.1142/s0218001401000848Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071Martín-Albo D. Romero V. Toselli A. H. Vidal E. Multimodal computer-assisted transcription of text images at character-level interaction. Int. J. Pattern Recogn. Artif. Intell. 2012;26:1-19.Marzinkewitsch R. Operating Computer Algebra Systems by Hand-Printed Input. Proc. Int. Symp. Symbolic Algebr. Comput. (ISSAC). 1991.Mas, J., Llados, J., Sanchez, G., & Jorge, J. A. P. (2010). A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. Pattern Recognition, 43(12), 4148-4164. doi:10.1016/j.patcog.2010.07.003Moyle M. Cockburn A. Analysing Mouse and Pen Flick Gestures. Proc. SIGCHI-NZ Symp. Comput.–Hum. Interact. (CHINZ). 2002.Nakayama Y. A Prototype Pen-Input Mathematical Formula Editor. Proc. AACE EdMedia 1993.Ogata J. Goto M. Speech Repair: Quick Error Correction Just by Using Selection Operation for Speech Input Interface. Proc. Eurospeech. 2005.Ortiz-Martínez D. Leiva L. A. Alabau V. Casacuberta F. Interactive Machine Translation using a Web-Based Architecture. Proc. Int. Conf. Intell. User Interfaces (IUI) 2010.Ortiz-Martínez D. Leiva L. A. Alabau V. García-Varea I. Casacuberta F. An Interactive Machine Translation System with Online Learning. Proc. Assoc. Comput. Linguist. (ACL). 2011.Michael Powers, V. (1973). Pen direction sequences in character recognition. Pattern Recognition, 5(4), 291-302. doi:10.1016/0031-3203(73)90022-8Raab F. Extremely efficient menu selection: Marking menus for the Flash platform. 2009. Available at http://www.betriebsraum.de/blog/2009/07/21/efficient-gesture-recognition-and-corner-finding-in-as3/ (retrieved on May 2012).Revuelta-Martínez A. Rodríguez L. García-Varea I. A Computer Assisted Speech Transcription System. Proc. Eur. Chap. Assoc. Comput. Linguist. (EACL). 2012.Revuelta-Martínez, A., Rodríguez, L., García-Varea, I., & Montero, F. (2013). Multimodal interaction for information retrieval using natural language. Computer Standards & Interfaces, 35(5), 428-441. doi:10.1016/j.csi.2012.11.002Rodríguez L. García-Varea I. Revuelta-Martínez A. Vidal E. A Multimodal Interactive Text Generation System. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI). 2010a.Rodríguez L. García-Varea I. Vidal E. Multi-Modal Computer Assisted Speech Transcription. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI) 2010b.Romero V. Leiva L. A. Toselli A. H. Vidal E. Interactive Multimodal Transcription of Text Images using a Web-Based Demo System. Proc. Int. Conf. Intell. User Interfaces (IUI). 2009a.Romero V. Toselli A. H. Vidal E. Using Mouse Feedback in Computer Assisted Transcription of Handwritten Text Images. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2009b.Romero V. Toselli A. H. Vidal E. Study of Different Interactive Editing Operations in an Assisted Transcription System. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011.Romero V. Toselli A. H. Vidal E. Vol. 80. Singapore: World Scientific Publishing Company; 2012. Multimodal Interactive Handwritten Text Transcription.Rubine, D. (1991). Specifying gestures by example. ACM SIGGRAPH Computer Graphics, 25(4), 329-337. doi:10.1145/127719.122753Rubine D. H. 1991b. The automatic recognition of gestures. Ph.D. Thesis, Carnegie Mellon University.Sánchez-Sáez R. Leiva L. A. Sánchez J. A. Benedí J. M. Interactive Predictive Parsing using a Web-Based Architecture. Proc. North Am. Chap. Assoc. Comput. Linguist. 2010.Saund E. Fleet D. Larner D. Mahoney J. Perceptually-Supported Image Editing of Text and Graphics. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2003.Shilman M. Tan D. S. Simard P. CueTIP: a Mixed-Initiative Interface for Correcting Handwriting Errors. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2006.Signer B. Kurmann U. Norrie M. C. igesture: A General Gesture Recognition Framework. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2007.Smithies S. Novins K. Arvo J. A handwriting-based equation editor. Proc. Conf. Graph. Interface (GI). 1999.Suhm, B., Myers, B., & Waibel, A. (2001). Multimodal error correction for speech user interfaces. ACM Transactions on Computer-Human Interaction, 8(1), 60-98. doi:10.1145/371127.371166Tappert C. C. Mosley P. H. Recent advances in pen computing. 2001. Technical Report 166, Pace University, available: http://support.csis.pace.edu.Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019Toselli A. H. Vidal E. Casacuberta F. , editors. Berlin, Heidelberg, New York: Springer; 2011. Multimodal-Interactive Pattern Recognition and Applications.Tseng S. Fogg B. Credibility and computing technology. Commun. ACM 1999;42:39-44.Vatavu R.-D. Anthony L. Wobbrock J. O. Gestures as Point Clouds: A P Recognizer for User Interface Prototypes. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2012.Vertanen K. Kristensson P. O. Parakeet: A Continuous Speech Recognition System for Mobile Touch-Screen Devices. Proc. Int. Conf. Intell. User Interfaces (IUI) 2009.Vidal E. Rodríguez L. Casacuberta F. García-Varea I. Mach. Learn. Multimodal Interact., Lect. Notes Comput. Sci. Vol. 4892. Berlin, Heidelberg: Springer; 2008. Interactive Pattern Recognition.Wang X. Li J. Ao X. Wang G. Dai G. Multimodal Error Correction for Continuous Handwriting Recognition in Pen-Based User Interfaces. Proc. Int. Conf. Intell. User Interfaces (IUI). 2006.Wang L. Hu T. Liu P. Soong F. K. Efficient Handwriting Correction of Speech Recognition Errors with Template Constrained Posterior (TCP). Proc. INTERSPEECH 2008.Wobbrock J. O. Wilson A. D. Li Y. Gestures without Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2007.Wolf C. G. Morrel-Samuels P. The use of hand-drawn gestures for text editing. Int. J. Man–Mach. Stud. 1987;27:91-102.Zeleznik R. Miller T. Fluid Inking: Augmenting the Medium of Free-Form Inking with Gestures. Proc. Conf. Graph. Interface (GI). 2006.Yong Zhang, McCullough, C., Sullins, J. R., & Ross, C. R. (2010). Hand-Drawn Face Sketch Recognition by Humans and a PCA-Based Algorithm for Forensic Applications. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(3), 475-485. doi:10.1109/tsmca.2010.2041654Zhao S. Balakrishnan R. Simple vs. Compound Mark Hierarchical Marking Menus. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2004

    Multi-modal post-editing of machine translation

    Get PDF
    As MT quality continues to improve, more and more translators switch from traditional translation from scratch to PE of MT output, which has been shown to save time and reduce errors. Instead of mainly generating text, translators are now asked to correct errors within otherwise helpful translation proposals, where repetitive MT errors make the process tiresome, while hard-to-spot errors make PE a cognitively demanding activity. Our contribution is three-fold: first, we explore whether interaction modalities other than mouse and keyboard could well support PE by creating and testing the MMPE translation environment. MMPE allows translators to cross out or hand-write text, drag and drop words for reordering, use spoken commands or hand gestures to manipulate text, or to combine any of these input modalities. Second, our interviews revealed that translators see value in automatically receiving additional translation support when a high CL is detected during PE. We therefore developed a sensor framework using a wide range of physiological and behavioral data to estimate perceived CL and tested it in three studies, showing that multi-modal, eye, heart, and skin measures can be used to make translation environments cognition-aware. Third, we present two multi-encoder Transformer architectures for APE and discuss how these can adapt MT output to a domain and thereby avoid correcting repetitive MT errors.Angesichts der stetig steigenden Qualität maschineller Übersetzungssysteme (MÜ) post-editieren (PE) immer mehr Übersetzer die MÜ-Ausgabe, was im Vergleich zur herkömmlichen Übersetzung Zeit spart und Fehler reduziert. Anstatt primär Text zu generieren, müssen Übersetzer nun Fehler in ansonsten hilfreichen Übersetzungsvorschlägen korrigieren. Dennoch bleibt die Arbeit durch wiederkehrende MÜ-Fehler mühsam und schwer zu erkennende Fehler fordern die Übersetzer kognitiv. Wir tragen auf drei Ebenen zur Verbesserung des PE bei: Erstens untersuchen wir, ob andere Interaktionsmodalitäten als Maus und Tastatur das PE unterstützen können, indem wir die Übersetzungsumgebung MMPE entwickeln und testen. MMPE ermöglicht es, Text handschriftlich, per Sprache oder über Handgesten zu verändern, Wörter per Drag & Drop neu anzuordnen oder all diese Eingabemodalitäten zu kombinieren. Zweitens stellen wir ein Sensor-Framework vor, das eine Vielzahl physiologischer und verhaltensbezogener Messwerte verwendet, um die kognitive Last (KL) abzuschätzen. In drei Studien konnten wir zeigen, dass multimodale Messung von Augen-, Herz- und Hautmerkmalen verwendet werden kann, um Übersetzungsumgebungen an die KL der Übersetzer anzupassen. Drittens stellen wir zwei Multi-Encoder-Transformer-Architekturen für das automatische Post-Editieren (APE) vor und erörtern, wie diese die MÜ-Ausgabe an eine Domäne anpassen und dadurch die Korrektur von sich wiederholenden MÜ-Fehlern vermeiden können.Deutsche Forschungsgemeinschaft (DFG), Projekt MMP
    corecore