
D5.3: Beta release of casmacat workbench

Ragnar Bonk, Vicent Alabau, Michael Carl, Philipp Koehn

Distribution: Public

casmacat
Cognitive Analysis and Statistical Methods
for Advanced Computer Aided Translation

ICT Project 287576 Deliverable D5.3

Project funded by the European Community
under the Seventh Framework Programme for
Research and Technological Development.

Project ref no. ICT-287576
Project acronym casmacat
Project full title Cognitive Analysis and Statistical Methods for Advanced

Computer Aided Translation
Instrument STREP
Thematic Priority ICT-2011.4.2 Language Technologies
Start date / duration 01 November 2011 / 36 Months

Distribution Public
Contractual date of delivery April 30, 2013
Actual date of delivery June 13, 2013
Date of last update June 13, 2013
Deliverable number D5.3
Deliverable title Beta release of casmacat workbench
Type Report
Status & version Draft
Number of pages 42
Contributing WP(s) WP5
WP / Task responsible UEDIN, CBS, UPV
Other contributors
Internal reviewer Philipp Koehn
Author(s) Ragnar Bonk, Vicent Alabau, Michael Carl, Philipp Koehn
EC project officer Aleksandra Wesolowska
Keywords

The partners in casmacat are:

University of Edinburgh (UEDIN)
Copenhagen Business School (CBS)
Universitat Politècnica de València (UPVLC)
Celer Soluciones (CS)

For copies of reports, updates on project activities and other casmacat related infor-
mation, contact:

The casmacat Project Co-ordinator
Philipp Koehn, University of Edinburgh
10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom
pkoehn@inf.ed.ac.uk
Phone +44 (131) 650-8287 - Fax +44 (131) 650-6626

Copies of reports and other material can also be accessed via the project’s homepage:
http://www.casmacat.eu/

c© 2012, The Individual Authors
No part of this document may be reproduced or transmitted in any form, or by any means,

electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission from the copyright owner.

Executive Summary

This document contains details about the implementation of the 2nd prototype of the casmacat
workbench and the Translation Process Research Database (TPR-DB). It outlines the major
components of the workbench and their usage (Sections 1, 2, 3 and 6), as well as the structure
and feature of the TPR-DB (Section 7). Since gaze information is the most valuable source
for tracking translator effort in text understanding, and due to the noise inherent in current
head-free eye-tracking technology, Sections 4 and 5 report attempts to implement solutions for
obtaining better gaze-to-word mapping accuracy.

At the time of this writing, an installation guide1 has been written and made available to a
select group of alpha testers (researchers from universities and research laboratories) to prepare
a wider release of the prototype.

Contents

1 T5.2 Graphical Interface 4
1.1 The new UI . 4

1.1.1 Upload . 4
1.1.2 Translate (PE) . 4
1.1.3 Translate (ITP) . 5
1.1.4 Replay . 7
1.1.5 List Documents . 7

1.2 Server . 8
1.3 Configuration . 9
1.4 Demo . 9

2 T5.3 E-pen Interaction 9
2.1 E-pen UI . 9
2.2 HTR server . 10

3 T5.5 Machine Translation Server 11
3.1 Translation . 11
3.2 Report tokenization and alignment . 12
3.3 N-Best Lists . 12
3.4 Search Graphs . 12
3.5 Word Posterior Probabilities as Word Level Confidence Estimate 13

4 T5.6 Manual Gaze-to-Word Alignment 13

5 T5.7 Automatic Gaze-to-Word Alignment 13

6 T5.8 Replay Mode for User Activity Data 14

7 T5.9 Visualization of Translation Processes 15

1http://www.casmacat.eu/index.php?n=Workbench.Workbench

3

1 T5.2 Graphical Interface

This section describes the current state of the GUI of the 2nd casmacat prototype. It deals with
the new GUI design and functionality taken over from matecat and the casmacat extensions
that have been added.

To fulfill the requirement of a collaboration between the casmacat and the matecat
projects, attempts have been made to merge both projects into one common code base. After
analysing the capabilities of the matecat UI and testing its compatibility with casmacat
requirements, especially eye tracking (ET), the decision has been made to adapt the matecat
code and extend it with the casmacat features. The goal is to get a common UI where
particular functionality can be switched on or off as needed. Additionally, test results of field
trials which will be carried out in the two projects will be better comparable with a common
UI.

Even though there clear advantages in a matecat and casmacat collaboration, there is
also a price to pay: casmacat’s 1st prototype already had important functionality (especially
multi-user capabilities), that had to be dropped and is not yet implemented in matecat. Also,
requirements and handling of data is in some cases very different, as for instance the format of
a translation in the database: matecat stores additional formatting information (HTML and
XLIFF) and uses the encoding given in the original document while casmacat stores UTF-8
encoded pure text. If and how this can be normalized, is still a challenge to face.

1.1 The new UI

The new casmacat / matecat UI consists of a couple of views designated to different tasks. Of
course, the translate view is the central view, where the user can translate a document and post-
editing assistance and logging takes place. Other views offer a way to upload new documents
or to manage the documents that are already in the system. Also, a replay mode has been
(re-)implemented by re-using the knowledge gathered in the 1st prototype. The different views
will now be shown and described in the sequence they are typically used.

1.1.1 Upload

If the user opens the default URL without giving any special parameters, he or she is taken to the
upload view. This is currently the entry point of the application, see Figure 1 for a screenshot.
At this point a user can specify one or several documents to upload and to translate. The
documents uploaded must be in the XLIFF format, the only currently supported format. The
language can either be chosen manually or auto-detected from the XLIFF file. Not all entries
in the drop-down menu have a working MT engine behind them. If several documents are
uploaded at once, they are bundled into one job and are translated in a sequence. Note that
for casmacat it is per definition not allowed to upload several documents. This would make
logging and replay more complex and would (especially with ET) create such a huge amount of
data, that replay would become impossible. If the user clicks on the ’Start Translating’ button
he or she is taken to the translate view and can start working.

1.1.2 Translate (PE)

In the translate view, the user can now translate the document (see Figure 2). The document
is presented in segments, while the currently active segment is highlighted and assistance is
provided for this segment. If using the post-editing configuration without ITP up to three MT
or TM suggestions are provided, from which the user can choose. The user can use shortcuts,

4

Figure 1: View for uploading new documents

for instance, to go to the next segment or to copy the source text to the target. The user can
assign different states to a segment, for instance, ’translated’ for finished ones or ’draft’ for
segments, where he or she is not yet sure about the translation and where he or she wants to
review it again later. When finished, the ’Download Project’ button may be used to download
the translated document, again in the XLIFF format.

When in this view, all the actions of the user that are related to the translation task,
e.g. typing, choosing a suggestion, closing a segment and so on, are logged by the casmacat
logging module. This logging module has been completely re-written from scratch, based on the
knowledge of the 1st prototype and implementing new better techniques for more reliable log
data. Traditional key and mouse logging has been fully replaced by text change logging based
on the HTML5 input element. This makes the log of text activities much more robust, e.g.
it allows to log changes from paste or cut actions triggered by the browser’s menu bar or the
context menu of the mouse. Of course, mouse clicks are still logged to track user interactions
with UI elements. Key logging is also still available and running in parallel by default. It is
optional now and not required (for replay), but for offline analysis, it may still be of interest
(e.g. calculate typing rate).

1.1.3 Translate (ITP)

In the following paragraphs we present a short description of the main features that were
implemented in the prototype, which are summarized in Figure 3. Such features are different
in nature, but all of them aimed at boosting translator productivity.

Intelligent Autocompletion IMT takes place every time a keystroke is detected by the
system [2]. In such event, the system produces a (full) suitable prediction according to the
text that the user is writing. This new prediction replaces the remaining words of the original
sentence at the right of the text cursor.

5

Figure 2: Translate view with post-editing configuration

Confidence Measures In our workbench, we use confidence measures to inform the users
about translation reliability under two different criteria. On the one hand, we highlight in red
color those translated words that are likely to be incorrect. We use a threshold that maximizes
precision in detecting incorrect words. On the other hand, we highlight in orange color those
translated words that are dubious for the system. In this case, we use a threshold that maximizes
recall. See Figure 4 for a screenshot.

Prediction Length Providing the user with a new prediction whenever a key is pressed has
been proved to be cognitively demanding [1]. Therefore, it was decided to limit the number of
predicted words that are shown to the user by only predicting up to the first erroneous word
according to the CMs. In our implementation, pressing the Tab key allows the user to ask the
system for the next set of predicted words. See Figure 5 for a screenshot.

Search and Replace Most of the computer-assisted translation tools provide the user with
intelligent search and replace functions for fast text revision. Our prototype features a straight-
forward function to run search and replacement rules on the fly. Whenever a new replacement
rule is created, it is automatically populated to the forthcoming predictions made by the system,
so that the user only needs to specify them once. See Figure 6 for a screenshot.

Word Alignment Information Alignment of source and target information is an important
part of the translation process [3]. In order to display the correspondences between both the
source and target words, this feature was implemented in a way that every time the user places
the mouse (yellow) or the text cursor (cyan) on a word, the alignments made by the system are
highlighted. See Figure 7 for a screenshot.

Prediction Rejection With the purpose of easing user interaction, our prototype also sup-
ports a one-click rejection feature [5]. This invalidates the current prediction for the sentence
that is being translated, and provides the user with an alternate one, in which the first new
word is different from the previous one.

6

Figure 3: Translate view with advanced ITP configuration

Figure 4: Visualization of Confidence Measures

1.1.4 Replay

The prototype implements detailed logging of user activity, which enables both automatic anal-
ysis of translator behavior by aggregating statistics and enabling replay of a user session. This
capability is explained in detail in Section 6. Replay takes place in the translate view of the
UI, it shows the screen at any time exactly the way the user encountered it when he or she
interacted with the tool.

1.1.5 List Documents

As in the 1st prototype it is possible to list all documents in the system (Figure 8). From
there a user can start a replay, download the logged data or continue a translation session.
Unfortunately, as there is currently no real multi-user support, this view shows all documents
of all users. So it is currently more an administration tool. Later, when a user management is

Figure 5: Interactive Translation Prediction

7

Figure 6: Interactive Translation Prediction

. .

Figure 7: Visualization of Word Alignment

added, this view could present documents only ’per-user’. For this reason, the url is not exposed
in one of the other views. To open this view, one needs to specify ’listDocuments’ as the action:

http://<server>/<baseurl>/index.php?action=listDocuments

For the post-editing demo (see Section 1.4), this would be

http://bridge.cbs.dk/prototype2/pe/index.php?action=listDocuments

Figure 8: Documents

1.2 Server

On the server side the matecat code has been adjusted and casmacat modules have been
added. Integration has been carried out very carefully so as not to break existing functionality

8

http://<server>/<baseurl>/index.php?action=listDocuments
http://bridge.cbs.dk/prototype2/pe/index.php?action=listDocuments

and to make it easy merging the code back into the matecat code base. If possible, files
were put into separate directories or a prefixed was added. Function hooks have been used to
extend the orignal code without altering it. If this was not possible, then changes to the original
matecat code have been cleanly commented. Also, the additional database tables reside in an
extra script and can be easily imported over the original matecat database.

1.3 Configuration

The system has been designed in a manner that all casmacat modules are optional and can be
switched on or off as needed. The particular configuration can be changed in the config.ini file.
Currently, the selected configuration is then applied for the whole system. All users work then
with the same configuration. This implies that two instances of casmacat need to be run, if
one would like to run two different settings. However, the structure of the current implemention
opens up the possibility to easily allow a system later, where each user can have it’s own setting,
either configured by himself or herself or by some administrator.

1.4 Demo

The 2nd prototype can be tried out in two different modes, post-editing and ITP (with search
and replace). As this is a beta version, there are no particular security checks. The application is
vulnerable against several types of attacks (e.g. XSS) and should not be used in any production
environment. The URL’s to try the system are:

• http://bridge.cbs.dk/prototype2/pe

• http://bridge.cbs.dk/prototype2/itp-sr

2 T5.3 E-pen Interaction

This section is devoted to the integration of the e-pen subsystem in the casmacat UI. E-pen
interaction should be regarded as a complementary input rather than a complete replacement
of the keyboard. However, this should not be an obstacle to completely redesign the original
interface to better accommodate for the e-pen interaction specific needs. Nevertheless, in a first
approach, we have extended the casmacat UI with the minimum components necessary to
enable e-pen gestures and handwriting in a comfortable way.

2.1 E-pen UI

The e-pen UI can be enabled by setting penenabled = 1 and htrserver = "address" in the
server configuration file. As a result, a new button is displayed in the button area (). This
button toggles the e-pen view. When activated, the display of the current segment is changed
so that the source segment is shown above the target segment. This way, the drawing area
is maximized horizontally, which facilitates handwriting particularly in tablet devices. Next,
an HTML canvas element is added over the target segment. This drawing area is highlighted
with a dashed border. In addition, a clear button () is added to refresh the drawing area. A
screenshot of such display can be seen in Figure 9.

The user can interact with the system by writing on the canvas. Although in principle
it would be interesting to allow the user to introduce arbitrary strings and gestures, in this
approach we have decide to focus on usability. We believe that a fast response and a good

9

http://bridge.cbs.dk/prototype2/pe
http://bridge.cbs.dk/prototype2/itp-sr

Figure 9: Sketch of a document fragment

accuracy are critical for user acceptance. Thus, we decided to use MinGestures [4], a highly
accurate, high-performance, gestures for interactive text edition. The gestures in MinGestures
are defined by 8 straight lines that can be configured to be direction dependent and be aware of
the context where they gestures takes place. In addition, they can be easily differentiated from
handwritten text with line fitting algorithms. Gestures are recognized in the client side so the
response is almost immediate. On the other hand, when handwritten text is detected, the pen
strokes are sent to the server. At this moment, only single words can be written. However, In
future releases also substrings and multiple words will be allowed. The set of gestures used in
the prototype are summarized in Figure 10.

ACTION RESULT ACTION RESULTLABEL LABEL

Substitute

<help event>

Reject

Merge

Delete

Insert

Split

Validate

Undo

Redo

Help

Lorem IpsanLorem Ipsum

Lorem ...Lorem Ipsum

Lorem Ipsum LoremIpsum

Lorem Ipsum Lorem

Lorem et IpsumLorem Ipsum

Lorem Lor em

Lorem Ipsum Lorem Ipsum

Lorem Lorem Ipsum

Lorem Ipsum Lorem

Lorem Ipsum

Figure 10: Set of gestures

2.2 HTR server

The HTR server is responsible for decoding the user handwriting into digital text. The tech-
nology is based very much on the ITP server technology. An HTR server must implement the
following API:

10

startSession This function instructs the server to initialize a new HTR session with the ap-
propriate contextual information. A session consists of one or more strokes that constitute
one user interaction. The input parameters are the source string, the current transla-
tion and the last position validated by the user. At this stage, the server does not return
a value.

addStroke When a user finishes writing a stroke, the points are encoded into an array of points
that are defined by the x and y coordinates along with the timestamp when they were
acquired. The HTR server processes this information and, optionally, returns a partial
decoding.

endSession When the user stops writing for a specific amount of time (400ms in our set-up),
the users session finishes. The final decoding is then returned to the UI, possibly with a
list of n-best solutions.

The HTR server is based on iAtros, an open source HMM decoder. The current version
does not leverage contextual information, but it is prepared to support that in future releases.

3 T5.5 Machine Translation Server

In the casmacat workbench, the UI (implemented in Javascript running in a web browser)
connects to the Computer Aided Translation (CAT) server via web sockets. The CAT server
implements interactive translation prediction as described in Section 1.1.3, alongside other ad-
vanced types of assistance such as confidence measures and word alignment. For many of the
CAT server’s functions, information from the Machine Translation (MT) server is required.
This includes not only the translation of the input sentence, but also n-best lists, search graphs,
word alignments, etc.

We separate the functionalities of the MT server and the CAT server to support more
modularity and allow for the use of multiple MT server implementations, and even external MT
services. Within the casmacat, we bring together two machine translation systems, Thot and
Moses, and extend them to support the requirements of the project. In this section we describe
how these machine translation systems are accessible as a server process that response to API
calls via TCP/IP.

3.1 Translation

The main call to the server is a request for a translation. In the request, the source sentence (q),
source and target language (source, target) and optionally a key identifying the user (key).
Here is an example request:

http://demo.casmacat.eu:8000/translate?q=test&key=0&source=en&target=es

The server responds to requests with an JSON object.

{"data":

{"translations":

[{"sourceText": "test",

"translatedText": "testo",

"tokenization": {"src": [[0, 3]], "tgt": [[0, 4]]}

}]

}

}

Note that this is the same API specification as Google Translate. Our server implementation
extends this API in various ways.

11

3.2 Report tokenization and alignment

Tokenization is reported by default. Now also the alignment should make sense since this
is based on the tokenized and preprocessed src and raw output. Alignment info is returned
including a parameter align in the request. The alignment can deal with cases like:

• raw: Mein Haus @-@ Tier , > Fisch .

• postprocessed: Mein Haus-Tier , > Fisch.

from which these spans would be extracted:

• raw:
[[0, 3], [5, 8], [10, 12], [14, 17], [19, 19], [21, 24], [26, 30], [32, 32]]

• postprocessed:
[(0, 3), (5, 8), (9, 9), (10, 13), (15, 15), (17, 17), (19, 23), (24, 24)]

representing these tokens:

• raw: | Mein | Haus | @-@ | Tier | , | > | Fisch | . |

• postprocessed: | Mein | Haus | - | Tier | , | > | Fisch | .

3.3 N-Best Lists

By adding nbest=n to the request the server gives an n-best list of size n in two formats, raw
and post-processed. The latter format consists of a list of entries which look similar to what we
get for the first-best translation the former contains the raw output and scores:

"raw_nbest":

[{"hyp": "the American President Obama comes after Oslo . ",

"totalScore": -21.49662780761718

},

{"hyp": "the American President Obama comes after Oslo . " ",

"totalScore": -23.7340850830078

},

[...]

]

3.4 Search Graphs

By adding sg to the request the server also returns a search graph. The search graph is a set
of states and transitions that mirror the process of hypothesis generation during decoding. The
search graph currently uses the Moses format for search graphs. See below for an example for
the format.

"searchGraph":

[{"forward": 1.0,

"hyp": 0,

"stack": 0,

"fscore": -2.447231531143188

},

12

{"transition": -2.447231531143188,

"back": 0,

"hyp": 1,

"score": -2.447231531143188,

"cover-start": 0,

"forward": -1.0,

"cover-end": 0,

"stack": 1,

"fscore": 0.0,

"out": "test"},

{"transition": -2.85275387763977,

[...]

}

]

3.5 Word Posterior Probabilities as Word Level Confidence Estimate

Re-using the n-best list all entries are aligned to the first-best hypothesis and posterior probs
are computed using the scores. Use ’wpp=n’ to set length of the nbest list used to this purpose.
The resulting values are just a single float per token.

Example (on toy data):

"translatedText": "The American President Obama comes after Oslo.",

"wpp": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.99],

4 T5.6 Manual Gaze-to-Word Alignment

The DOW specifies that ”We will implement a tool for aligning and correcting erroneous fixa-
tions so as to manually map them on the words that are likely to be fixated. The tool will be
instrumental in creating a corpus of high-quality gaze-to-word mappings, and will be used as a
training set of automatic gaze-to-word mappings algorithms.”

A first prototype of the manual alignment tool has been implemented in Translog-II and
fixations in 64 files were manually re-mapped. These files are part of TPR-DB v1.0 and can be
downloaded through the TPR-DVv1.0 svn server. The re-mapped files include all 10 translation
sessions in the study BD08 and 54 files of the study BML12.

5 T5.7 Automatic Gaze-to-Word Alignment

We implemented two algorithms for automatic gaze-to-word alignment. The manually re-
mapped fixations were used to evaluate the precision of these algorithms. The algorithms
and their evaluation are described in two publications (one published, one draft), which are
attached in the appendix of this deliverable.

• Abhijit Mishra, Michael Carl and and Pushpak Bhattacharyyya (2012). A heuristic-based
approach for systematic error correction of gaze data for reading. Proceedings of the First
Workshop on Eye-tracking and Natural Language Processing, December 2012, Mumbai,
India (http://www.aclweb.org/anthology/W/W12/W12-4906.pdf)

• Dynamic programming for re-mapping noisy fixations in translation tasks. Draft.

We are currently working on a comparison of the two programs.

13

http://www.aclweb.org/anthology/W/W12/W12-4906.pdf

Figure 11: Replay view

6 T5.8 Replay Mode for User Activity Data

The replay view now works very differently from the one of the 1st prototype. The replay view
loads the translate view into an iframe and remote-controls it with the data from the log file.
This is more robust, requires less changes in the translate view and allows for changes of the
replaying window geometry (like resizing).

The log data is now fetched in small chunks when replaying. When replay is started, only
the first chunk of the log data is loaded and the replay starts. When the next chunk is needed,
the replay is paused and the next chunk is fetched. This minimizes the initial loading time
when starting the replay. This was a problem in the 1st prototype where the whole log data
has been fetched first before starting the replay, which took easily up to 15 minutes and more.
The new loading mechanism may also be optimized in the future so that the next chunk(s) are
pre-fetched, while replay is still running. In this way there will only be a short waiting time at
the beginning of the replay (or, of course, if the user starts seeking).

The new replay engine now uses a more precise internal clocking. In the 1st prototype,
events with the same timestamp have been grouped and replayed together. Now, each event is
replayed on its on. This makes the engine more precise, more robust and allows for arbitrary
jumps between events.

A lot of new events have been added to the logging (especially ITP) and those new events
are not yet fully integrated in the replay mode. Currently, only PE session are replayed. But
the functionality will be extended in the next weeks to include the new events and to allow for
arbitrary seeking in the replay (e.g. by time or segment). Additionally, the replay mode will
soon allow to re-compute or re-map particular data, like gaze-to-char mapping. See Figure 11
for a screenshot.

Latest tests have confirmed that the current strategy of visualizing the ET data via the
browser’s DOM is too slow. The new idea is to let the ET plugin take over this task by creating
a new native but invisible system window on which the ET data is drawn. This still has to be
implemented and tested but promises a high performance visualization of ET data.

14

The replay of a document can be reached either by going to the view ’List Documents’ (see
1.1.5) or by changing the string ’translate’ to ’replay’ in the URL of a document. For instance,
the URL

http://localhost/matecat_source/translate/moke.xliff/en-es/171-zwrczyxk

would become

http://localhost/matecat_source/replay/moke.xliff/en-es/171-zwrczyxk

7 T5.9 Visualization of Translation Processes

Besides visualising of the translation process data in a replay mode, the Translation Process
Research Database (TPR-DB) also allows for plotting translation sessions in the form of transla-
tion progression graphs. However, translation progression graphs only visualize a small fraction
of the information that is contained in the TPR-DB.

A overview of the features that are contained in the database and their current visualization
possibilities are describe a draft paper which is included in full in the appendix.

• Feature Representation in the Translation Process Research DB. Draft.

15

http://localhost/matecat_source/translate/moke.xliff/en-es/171-zwrczyxk
http://localhost/matecat_source/replay/moke.xliff/en-es/171-zwrczyxk

References

[1] Vicent Alabau, Luis A. Leiva, Daniel Ortiz-Mart́ınez, and Francisco Casacuberta. User
evaluation of interactive machine translation systems. In Proc. EAMT, pages 20–23, 2012.

[2] Sergio Barrachina, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa Cubel,
Shahram Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, Enrique Vidal, and Juan-
Miguel Vilar. Statistical approaches to computer-assisted translation. Computational Lin-
guistics, 35(1):3–28, 2009.

[3] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computational
linguistics, 19(2):263–311, 1993.

[4] Luis A. Leiva, Vicent Alabau, and Enrique Vidal. Error-proof, high-performance, and
context-aware gestures for interactive text edition. In Proceedings of the 2013 annual confer-
ence extended abstracts on Human factors in computing systems (CHI EA), pages 1227–1232,
2013.

[5] G. Sanchis-Trilles, Daniel Ortiz-Mart́ınez, Jorge Civera, Francisco Casacuberta, Enrique
Vidal, and Hieu Hoang. Improving interactive machine translation via mouse actions. In
Proc. EMNLP, 2008.

Appendix

This appendix contains three publications that give more details to the automatic gaze-to-
word alignment methods mentioned in Section 5 and visualization of translation processes in
Section 7.

• Abhijit Mishra, Michael Carl and and Pushpak Bhattacharyyya (2012). A heuristic-based
approach for systematic error correction of gaze data for reading. Proceedings of the First
Workshop on Eye-tracking and Natural Language Processing, December 2012, Mumbai,
India (http://www.aclweb.org/anthology/W/W12/W12-4906.pdf)

• Dynamic programming for re-mapping noisy fixations in translation tasks. Draft.

• Feature Representation in the Translation Process Research DB. Draft.

16

http://www.aclweb.org/anthology/W/W12/W12-4906.pdf

Proceedings of the First Workshop on Eye-tracking and Natural Language Processing, pages 71–80,
COLING 2012, Mumbai, December 2012.

A heuristic-based approach for systematic error
correction of gaze data for reading

Abhijit Mishra Michael Carl Pushpak Bhattacharya

(1) Indian Institute Of Technology, Bombay
(2)CRITT, Copenhagen Business School

(3) Indian Institute Of Technology, Bombay

abhijitmishra@cse.iitb.ac.in, mc.isv@cbs.dk, pb@cse.iitb.ac.in

ABSTRACT

In eye-tracking research, temporally constant deviations between users’ intended gaze location

and location captured by eye-samplers are referred to as systematic error. Systematic errors are

frequent and add a lot of noise to the data. It also takes a lot of time and effort to manually correct

such disparities. In this paper, we propose and validate a heuristic-based technique to reduce such

errors associated with gaze fixations by shifting them to their true locations. This technique is

exclusively applicable for reading tasks where the visual objects (characters) are placed on a grid

in a sequential manner; which is often the case in psycholinguistic studies.

KEYWORDS: EYE-TRACKING, FIXATION CORRECTION, GAZE DATA MANIPULATION, SYSTEMATIC

ERROR

71

1 Introduction

In psycholinguistic studies, eye tracking experiments have often been conducted to study the

human way of analysing and synthesizing text. During reading, eye movement significantly

relates to the cognitive load on participants. So, analysing gaze data is useful in

proving/disproving hypotheses and extracting features for training and tuning machines. But eye

trackers, after all, have certain limitations and they exhibit error in capturing gaze points of

individuals. Such errors could be classified into variable and systematic errors (Harnof and

Halverson, 2002). Variable error is nothing but dispersed gaze-points around the intended

fixation which indicate lack of precision of eye-trackers. Systematic error, on the other hand, is

the drift between the gaze-point locations captured by the eye-trackers and the intended fixation.

It may be caused by imperfect calibration, head movement, astigmatism and other sources (LC

Technologies, 2000). With the advent of sophisticated eye-trackers (Tobii, SR Research Eyelink

etc.) it has been possible to reduce variable errors. But yet there is still a demand of tools and

techniques to handle systematic errors which often imposes adverse impact on gaze-point

analysis.

Various methods have been proposed to handle systematic error associated with fixations.

Abrams and Jonides (1988) and Juhasz et.al (2006) proposed recalibration in the course of

experiment which may not be applicable for linguistic analysis since such interruptions would

reduce the quality of task. For example: during translation process studies participants cache

contextual evidences in their short term memory, which could be lost by such interruptions.

Hornof and Halverson (2002) introduced Required Fixation Location (RFL) technique in which

they identify RFLs i.e some points on the screen which indicates the actual fixation of the

candidates at a specified time. In some of the experiments they record RFLs by asking

participants to place the mouse cursor over the objects they were looking at. Then they measure

the discrepancies between RFLs and fixations recorded by eye-trackers and shift the fixations to

the true locations. This method is not very useful where one cannot ask the user to indicate RFLs.

For example, during translation studies the participant might be busy typing the translations and

reading the text simultaneously. Similar is the case with annotation tasks where the user has to

read and annotate a text.

The Gaze to Word Mapping (GWM) modules introduced by Špakov, (2007) is a heuristic based

approach. The underlying algorithm does not make a simplistic link between the x-y coordinates

of a fixation and the location of a word on the monitor, but rather tries to account for certain

documented effects, closely resembling to our technique. While is it quite reasonable to believe

that participants tilt towards the end of reading lines; it doesn’t clearly show us a way to

determine the line which the participant is looking at; given initial few fixations are nonlinear in

nature. Our algorithm tries to overcome this by introducing a scoring function which guesses

which line a participant is focusing on; given N initial non-linear/linear fixations starting at time

T.

The Mode-of-disparities error correction technique proposed by Zhang and Hornof (2011) is

useful when the visual objects are arranged in an irregular manner but fails when objects are

placed on a grid such as placing a paragraph for reading.

Intuitively, for reading and writing tasks vertical displacement of fixations contribute more to the

noise than that of horizontal. So in this article, we focus more on vertical directional adjustment.

72

Initially, before processing fixations, a set of virtual horizontal lines are drawn by joining the

centre coordinates of character belonging to the respective textual lines. Fixations are extracted

from the noisy data and stored sequentially in a temporal order
1
. Then they are processed and

corrected in three stages. In first stage, fixations are shifted to lie on the nearest virtual lines. In

the second stage transient fixations are corrected. Finally, participant’s Reading Line (RL) is

predicted and deviating fixations are shifted to the corresponding RLs.

This technique is applied on the Translation Process Research (TPR) database (Carl, 2012)

recorded by Tobii eye-tracker using Translog-II (Carl 2012) software. Then validation is done

across manually corrected fixations. Qualitative analysis is done by replaying the recorded and

corrected data in Translog. In all the cases we have assumed left to right reading and writing but

the technique could be slightly modified to support for languages adopting Arabic scripts.

2 Heuristics for Fixation Correction

In order to hand code rules for fixation correction, we have extensively studied the fixation

sequences in TPR database. The database contains more than 450 recordings for translation, post-

editing and reading experiments in 7 languages and are collected over last 5 years by a following

a systematic initial experimental setup (Carl, M. and Jakobsen A.L. 2009); the eye-tracker used

being Tobii, a remote eye-tracker. However, this does not bias our heuristics since many of the

psycholinguistic experiments involving reading and writing tend to follow similar set-up.

Moreover, other state of the art remote eye-trackers (such as SR research, SMI vision) report

same or more accuracy as Tobii.

Fixations in the recorded data are corrected in three phrases as described below.

2.1 Shifting fixations to the nearest line

First of all, recorded fixations could be dispersed over the screen whereas the intended fixation

should only possibly lie on visual objects such as characters. A fixation lying on the blank space

between two lines is nothing but an indication of error. So the first step is to shift the fixations

vertically to the nearest line. To come up with discrete lines we have taken the cursor coordinates

of each character in a line and joined them to draw a virtual line. Figure 1 illustrates a set of

virtual lines going through the text. These lines serve as Reading Lines (RLs) in the later

processing stages.

FIGURE 1 – Shifting fixations to nearest virtual lines

1 Fixation sequencing is done on the basis of time of occurrence of the fixations. For exemple, if we say a particular
fixation (say F2) follows/precedes another fixation (F1), we mean, F1 occurs sooner/later than F2 even if F2
appears to the left/right of F1 co-ordinate wise.

73

Figure 1 is a screen dump of Translog II, The orange lines represent virtual lines (Reading Lines).

The red and green dots represent gaze samples of left and right eyes and blue circles represent

fixations.

Sometimes, shifting fixations to the nearest virtual line is not enough. Upon closely looking at

figure-1, one would predict that the participant is trying to read line1. But after shifting the

fixations most of the fixations fall on line2.

After this step, it becomes easy to obtain systematic patterns which reduces the randomness and

hence, the number of rules to be used for correction.

2.2 Discarding transient fixations

Transient Fixations (TFs) are very short duration fixations which occur in between two fixations

falling nearer to each other (on the same line or just a line apart) and located far away from each

of them. In other words, upon joining three fixations if we observe a spike and the tip of the spike

is a short duration fixation, it is said to be transient. Figure 1 illustrates one TF.

FIGURE 2 – Transient Fixations

Figure 2 shows one transient fixations. Upon joining 3 consecutive fixations involving one TF,

we observe a spike.

In some studies, we do not need TFs to be present in our data as the fixation count un-necessarily

grows on account of TFs. Transient fixation may also add noise to the data in some cases where,

for example, fixation count for a region is a part of our study. Suppose, for our translation studies

if we want to count fixations in source text window (src) and target text window (tgt) during an

interval of 20 seconds and a lot of transient fixations fall on tgt, the distribution will be

completely different from that of if we discard transient fixations. Such cases would require

discarding TFs.

2.3 Correcting continuous abnormalities in fixation sequences

In this stage we try to predict the Reading Line (RL) of the participant at a specified time period

and try to shift way-ward fixations within that time period to the corresponding RL. For instance,

consider the case where the user starts reading the text from left to right and the eye-tracker

records F fixations within the timespan of T. After shifting those fixations to the nearest lines, it

is observed that first N out of the F fixations lie on line1. Here we can, to some extent, believe

that the RL for the participant for the timespan T is line1. Now suppose the rest (F-N) fixations

74

lie on line2 and the X co-ordinate of these fixations are greater than those of first N fixations. In

this case, it is unlikely that the RL of the user has changed from line 1 to line2. Hence those (F-

N) fixations have to be relocated to line1.

Assuming that the initial calibration is perfect enough for a particular experiment session and the

line spacing width significant (which is often the set up in linguistic studies) , it is reasonable to

believe that most of the first N (co-ordinate wise) fixations decide the RLs. The intuition behind

such an assumption is that, if the participant is reading from left to right, after reading certain

words from left, there will be a gradual head movement and tilting which might contribute to

shifting of fixations to the next/previous line.

The value of N is decided by taking samples from the recorded data and observing it by replaying

the recordings. It is highly possible that the first N fixations could be distributed amongst

different lines; each being a candidate RL. In such cases we infer the RL by ranking the

candidates as follows

 ∑ ∑)))

 and dur(f) is duration of fixation f

The first part of the summation represents fixation frequency distribution amongst the RIs. The

intuition behind taking such a function is that during reading/writing, fixation duration and

frequency are measurable factors providing evidences regarding participant’s attention. The

rationale behind taking Dirac Delta is that one particular fixation at time T could lie only on one

Reading Line.

If the scores of two potential RLs match, RL is assigned to the line having maximum fixation. If

that still matches, random assignment has to be done. Once the RL for a particular time period

has been detected, the following two types of deviations are corrected.

Type A: This is a case when the user tries to read M
th

 line from left to right. A few fixations (say

P) lie on line M spatially followed by a number of fixations (say F) on line M+1. The x-

coordinates of those F fixations are greater than those of P. In such cases those F fixations are

shifted upward to line M unchanging x-coordinates. (Figure 3 Type A)

Type B: Here, the user tries to read M
th

 line from left to right. A few fixations (say P) lie on line

M spatially followed by a number of fixations (say F) on line M-1. The x-coordinates of those F

fixations are greater than those of P. In such cases those F fixations are shifted downward to line

M unchanging x-coordinates. (Figure 3 Type B)

FIGURE 3 – Type A and Type B deviations

75

3 Algorithm

correctFixations (N, loggedData):

 fixationSet := extractFixations(loggedData)

 fixationSet = sortByTimeOfOccurrence (fixationSet)

 RL_Set := extractDistinctYCoordinate(loggedData)

 Foreach fixation in fixationSet:

 Re-assign the y-coordinate of the fixation to that of the closest RL

 correctTransientFixations (fixationSet)

 correctAbnormalities (fixationSet,N,RL_Set)

 Update logged data with fixationSet

 return

correctTransientFixations (fixationSet):

 averageFixationDuration := ComputeAvarageFixationDuration(fixationSet)

 Foreach fixation in fixationSet:

 IF previousFixation doesn’t exist OR nextFixation doesn’t exist

 Continue

 IF abs(previousFixation.Y-nextFixation.Y) << abs(previousFixation.Y -fixation.Y)

AND fixation.duration << averageFixationDuration)

 Delete fixation from fixationSet

correctAbnormalities (fixationSet,N,RL_Set):

 startingPoint := 1

firstN: = selectNFixations(fixationSet, startingPoint,N)

RL:= getRLWithMaximumScore(firstN,RL_Set)

 X: = getLargestXCoordinate(firstN,RL)

 targetSet: = setDifference(fixationSet,firstN)

 Foreach fixation in targetSet -:

 startingPoint+=1

 L1 = getLineNumber(fixation.Y)

 L2 = getLineNumber (RL)

 IF previousFixation doesn’t exist OR nextFixation doesn’t exist

 Continue

 IF (previousFixation.X > fixation.X and previousFixation.X>nextFixation.X)

 RL = getRLWithMaximumScore(firstN,RL_Set)

 X = getLargestXCoordinate(firstN,RL)

 targetSet = setDifference(fixationSet,firstN)

 Continue

 IF (abs(L2-L1)==1 and fixation.X >X)

 fixation.Y = RL

getRLWithMaximumScore (firstN,RL_Set)

RL = ∑ ∑))

 Return RL

76

The subroutines selectNFixations returns N fixations from the starting index. Similarly,

getLargestXCoordinate returns the right-most fixation lying on an RL.

4 Validation

This technique was applied on Spanish and Danish translation and post-editing recording sessions

from Translation Process Research (TPR) database. Qualitative analysis of the corrected data

showed improvement.

FIGURE 5 – Uncorrected fixations

FIGURE 6 – Automatically corrected fixations

77

As we can see in the initial data (Figure 5), the fixation distribution is noisy and there is an

overlap among fixations lying on line 3 and 4. After correction (Figure 6) the noise is

significantly reduced. Fixations are labelled as per their temporal ordering.

5 Comparison with manual correction

We compared our output with manual corrections done for Spanish and Danish TPR data. Since

our method shifts most of the fixations and manual correction only involves correcting only

certain badly shifted fixations by mapping an appropriate word to the fixation, we checked for

what fraction of manual correction could be successfully carried out by our method.

First, we mapped our fixations to the words on which they lie. Then from the original data we

took the timestamp of those fixations which were corrected manually. For those timestamps we

collected Fixation-to-word mapping for both the corrected versions and produced the Longest

Overlapping Subsequence (LOS) between the mapped words. If the length of the LOS is more

than the sum of the character counts of those two corresponding words, it is considered to be a

valid correction.

For different values of N, we checked for the percentage of correction done with respect to

manual correction. The results are shown by the following table

 N=3 N=6 N=10

Danish

(10 sessions)

63% 83% 79%

Spanish

(40 sessions)

55% 81% 81%

TABLE 1 – Automatic Vs Manual Correction

6 Conclusions

In this article, we presented a mechanism to correct systematic error associated with fixations by

applying certain heuristics. The advantage of this method is, it can be applied both online (in the

course of experiments) and offline. But the correction quality depends on the value of N and

other parameters like initial experimental set-up and degree of randomness of fixations etc. It

works best for shallow visualization studies; making it quite useful in studies like Translation

Process Study, Sentiment Analysis etc.

There are certainly several factors for drift and imprecision apart from what we have taken into

account. For instance, if the eye-tracker maps all gaze sampled, say 3cm below the intended

location (because the head was permanently moved), all gaze samples are 3cm distorted,

including the ones on the first N words in a line. Our algorithm fails to detect this. Of course, for

the studies involving writing, we can get this constant drift (3cm) by comparing the cursor and

the fixation positions during writing and finding out the average deviations. This is somewhat

similar to RFL techniques assuming that a person’s region of interest should not be very far away

from the cursor position.

78

Our technique also fails if fixations are highly randomly distributed; which might be a case for

studies involving detailed reading. In such cases, we also do not know the all the causes of the

deviating fixations. Future work includes exploring and involving other case than just the two

types of deviations that we took into account here. More cases and heuristics have to be included.

A better validation technique has to be introduced as well.

References

Abrams, R. A., & Jonides, J. (1988). Programming saccadic eye movements. Journal of

Experimental Psychology: Human Perception and Performance, 14, 428–443.

Hornof, A. J., & Halverson, T. (2002). Cleaning up systematic error in eye-tracking data by

using required fixation locations. Behavior Research Methods, Instruments, & Computers, 34,

592–604.

Zhang, Y., & Hornof, A. J. (2011). Mode-of-disparities error correction of eye-tracking data.

Behavior Research Methods, 43, 834–842. doi:10.3758/s13428-011-0073-0

Technologies, L. C. (2000). The Eyegaze Development System: A tool for eyetracking

applications. Fairfax, VA

Carl, Michael (2012). Translog-II: A Program for Recording User Activity Data for Empirical

Reading and Writing Research, In Proceedings of the Eight International Conference on

Language Resources and Evaluation, European Language Resources Association (ELRA)

Carl, M. and Jakobsen A.L. (2009). Towards statistical modelling of translators’ activity data.

International Journal of Speech Technology, 12(4).

http://www.springerlink.com/content/3745875x22883306/.

Carl Michael (2012). The CRITT TPR-DB 1.0: A Database for Empirical Human Translation

Process Research. AMTA 2012 Workshop on Post-Editing Technology and Practice (WPTP-

2012)

Špakov, O. (2007). GWM – the Gaze-to-Word Mapping Tool, available online at

http://www.cs.uta.fi/~oleg/gwm.html.

79

1

Introduction

Translation Process Research has advanced to a state
where recordings of behavioural data is used to elicit and
model cognitive processes in the translators mind. In
particular, the interrelation between the rhythm and speed
of typing activities and the gazing behaviour is a valuable
resource to understanding the translators black box.
While the gazing behaviour reveals details about the text
comprehension process, the typing of the translation
shows us how the target text is produced and revised. In
between these two activities lies the human translation
process which we aim at understanding and modelling by
looking at the physically measurable in- and output. The
accuracy of the gaze data is crucial to obtain an
undistorted approximation of these cognitive processes.

However, gaze data collected from eyetrackers is
often noisy. The measured gaze location often does not
exactly correspond to the spot that a subject actually
looked at so that an analysis of the data may lead to
misleading conclusions. This is harmful when studying
gaze data during reading (or writing) activities where we
deal with relatively small spacial areas - words or

characters - on the screen that are read. A horizontal
displacement of a few characters is still tolerable as it
may still map to the same, or at least a neighbouring
word, while a vertical displacement of only one line
corresponds to a jump of perhaps 10 words, which may
imply completely misleading conclusions when analysing
the data. A vertical drift thus contributes more noise and
may falsify major parts of the findings.

Noise and drift in gaze data has been addressed in
several instances. A frequent method is to assess the
collected data after an experimental sessions and
disregard data which is too noisy. However, this seems
unpractical in a setting which allows for free-head
movements and which potentially add noise in almost
every recording. Other methods make use of re-
calibration on the fly Juhasz et.al (2006), or by means of
Required Fixation Location (Hornof and Halverson,
2002). In this latter method, participants are asked to
place the mouse cursor over the objects they are looking
at. The measured discrepancies between the mouse cursor
and the recorded fixations indicates a drift or noise offset
between which may then be corrected. Also such methods
are undesirable as they distract a translators, readers or
writers form their usual working habit. Other solutions

Dynamic programming for re-mapping
noisy fixations in translation tasks

Eyetracker which allow for free head movements are in many cases imprecise to the extent
that reading patterns become heavily distorted. The reduced usability of these patterns for
the gaze analysis is due to a "naïve" gaze-to-symbol mapping approach, which often
wrongly maps the possibly drifted center of the observed fixation on the symbol directly
below it. In this paper I extend this naïve fixation-to-word mapping by introducing
background knowledge about the gazing task. In a first step, the sequence of naïve fixation-
to-word mappings is projected into a lattice of several possible fixation locations, including
those on the line above and below the naïve fixation mapping. In a second step a dynamic
programming algorithm applies a number of heuristics to find the best path through the
lattice, based on the likely distance in characters, in words and in pixels between successive
fixations, so as to smooth the gazing path.
Keywords: Fixation-to-word mapping, drift in gaze data, drift-correction algorithm

2

are necessary, in order to allow as much as possible for
an ecologically valid working environment.

Mishra et al (2012) propose a heuristics-based
technique to reduce temporally constant deviations
between users’ intended gaze location and the location
captured by eye-samplers, so-called systematic errors.
These error-correcting heuristics intend to shift gaze
fixations to their “true locations”, under the assumption
that the measured gaze data at the beginning of a new line
is often correct, while effects of gaze drift worsen as the
eyes move towards the end of the line. Accordingly, the
method of Mishra et al. places most importance to the
first few fixations on each line, to which the remaining
fixations are subsequently shifted. A similar method has
been described by Špakov (2007), however, with a less
sophisticated mechanism to determine the reading line
from the first observed fixations.

In this paper we describe a fixation re-mapping

algorithm that is tailored especially towards translation
activities. In translation, the eyes move frequently
between two texts, the source text and its translation,
which calls for specific solutions. In the first section I
discuss drifting problems in a sequence of recorded
translation activity data, and why these drifting problems
are difficult to capture with previous methods. From the
description of the drifting problem I subsequently
elaborate criteria for enhanced fixation-to-word mapping
in translation tasks. The following section describes the
implementation of the fixation remapping algorithm
algorithm and a final section discusses evaluation issues.

The Problem

Figure 1 (top) shows an 8 second long fragment of a
translation session from an English text into Estonian. In
these 8 seconds were typed the characters
”[pöllu]majandus ja sellest tulene” (excluding the part in

square brackets) which - according to my
back-translation from Estonian using
google - corresponds to a translation of
”agriculture and its pressure” in the
English text.

The figure has three different types of
gaze information: First: red dots represent
gaze samples collected from the left eye,
green dots are gaze samples of the right
eye, and, second the blue circles represent
fixations (i.e. clusters of coherent gaze
points). The numbers on the fixations
reflect their temporal ordering, so that
fixation 0 occurred first, followed by
fixation 2, then 3 etc. The third type of
information are fixation-to-word
mappings indicated by the violet
background behind sequences of
characters. Figure 1 shows a naïve
fixation-to-word mapping. That is, the
center of a fixation is mapped to the
closest character and the background of
the surrounding 8 characters are

coloured in violet. These characters and
words are then supposed to represent the
words that were looked at by the

Figur 1 Replay situation with naïve fixation-to-word mapping showing a translation
segment of 8 seconds. Top: the Translog-II replay shows the gaze sample points (red
and green), the fixations and fixation to word mapping. Bottom: the translation pro-
gression graph shows the same segment of time with fixations on the source text
(blue) fixations on the target text (green) and keystrokes on the time scale.

3

translator and are the basis of further analysis of reading
behaviour.

A number of imprecisions may distort this fixation-to-
word mapping process, among others:

 due to calibration difficulties, free head
movement or changing light or other conditions,
the measured gaze sample points may not
exactly correspond to the place which was gazed
at.

 the choices that are taken when computing the
fixation, e.g. based on the left or the right eye
gaze sample, their average, how proximity or
saccades between successive gaze samples are
defined etc.

 the computation of the closest character for a

given x/y position depends on which place of the
character is taken as a reference, e.g. the upper
left corner, or the center of the character, etc.

In Figure 1 (top), the fixations (blue circles) were
computed based on the average of the left and the right
eye sample, with the assumption that fixations should be
at least 40ms in duration, and that all gaze samples within
a fixation are no more than 25 pixels from the fixation
center. In Figure 1 (top) most of the gaze samples lie
between the first and the second line, but the fixations
centers are mostly mapped on the words in the second
line.

However, it is likely that the translator actually read a
segment in the first line, since s/he is currently producing
the translation of ”agriculture and its pressure” while the
gaze moves back and forth between the source segment in
the upper window and its translation in the lower

window.

Figure 1 (bottom) shows the
same segment in the form of a
translation progression graph. The
horizontal axis represents 8
seconds in which the fragment of
the translation was typed
(70.000ms to 78.000ms) while the
vertical axis presents the source
text to which the translation
activities relate. The graph plots
how the characters were typed in
time: black characters are
insertions and red characters
deletions. The graph shows that
there are several stretches of
fluent writing (e.g. “jandus” and
“ja”) and several pauses of
different length (e.g. there is a
pause of almost 1 sec between the
typing of “jandus” and “ja”). Blue
dots represent fixations on the
source text words in the upper part
of the Translog-II window while
the green diamonds represent
fixations on the translations in the
lower window. Note that the blue
dots in the bottom part in figures 1
and 2 correspond to the violet

Figur 2: Replay situation with re-computed fixation-to-word mapping showing the translation
segment of 8 seconds from figure 1. top: the Translog-II replay shows the gaze sample points
(red and green), the fixations and fixation to word mapping a lineabove the mappings in fig-
ure 1. bottom: the translation progression graph shows the same segment of time with fixa-
tions on the source text (blue) fixations on the target text (green) and keystrokes on the time
scale.

4

fixation-to-word mappings in the top part of the figure.

The segment shows that the translator was typing
“ma” while the gaze was on the target window. The gaze
moved then to the source window (blue dots), while
typing “jandus ja” and then came back to the target,
inspecting the just typed words (green diamonds), and
then keeps on typing in “sellest tulene”, while correction
a few typos (characters in red).

Figure 1 clearly shows the drift of gaze data and
wrong fixation-to-word mapping in the source window:
while the translation of source words 3 to 5 were typed,
fixations in the source text are around words 17 to 26.
However, it is likely that a translator read approximately
the same words that s/he is currently translating, and not
12 or 20 words ahead.

A rectification of the fixation-to-word mapping to the
first line in the source window is shown in Figures 2.
While the location of the keystrokes, as well as the gaze
samples and the computation of the fixation center are
identical in the two pairs of figures, only the fixation-to-
word mapping has changed. Figure 2 (bottom) shows the
progression graph of the re-mapped segment, so that the
distances between successive fixations become smoothed.

Even though we cannot be sure what a translator
actually looked at – e.g. whether s/he read a segment in
the first or second line - intuitively is seems more
plausible that a translator reads source words which he or
she is currently translating (as in Figure 2) instead of
those words one line below (as in Figure 1). These
observations lead us to criteria for a fixation-to-word re-
mapping algorithm:

 successive fixations are more likely on
neighbouring words than in the lines above or
below

 translators are likely to read passages of source
text which they are currently translating

 the distance between the fixation center and the
fixated characters should be minimal

A Fixation-remapping Algorithm

Before applying the actual fixation re-mapping
algorithm, we have re-computed fixations in a consistent
manner with the following parameters:

 the minimum fixation duration was set to 40 ms

 each gaze-sample point must occur within 25
pixels from the center of the fixation

 a gap of gaze-sample data for more than 30ms
would trigger a fixation boundary

The closest character to the median gaze sample
within each fixation would then be taken as the fixation-
to-word mapping. Figure 1 and Figure 4 show the results
of this naïve fixation-to-word mapping, which was
subsequently re-mapped based on the following
algorithm.

In a first step, the sequence of "naïve" gaze-to-symbol
mappings (as in Figure 1) is projected into a lattice of
several possible gaze locations above and below the
current fixation on the text. In a second step a dynamic
programming algorithm applies a number of heuristics to
find the best path through the lattice, based on the likely
distance in characters, in words and in pixels between
successive fixations, so as to smooth the gazing path
according to observations reported in the literature.

Figures 3a to 3d illustrate this process based on the
sequence of fixations and keystrokes between time
stamps 70.000 and 73.000 in the previous figures 1 and 2.
It illustrates the re-mapping of the fixation path in figure
1 (bottom) on the path plotted in figure 2 (bottom).
Additional fixations are computed from the gaze sample
points, in the following way:

 compute the fixation center only from the left
eye gaze samples

 compute the fixation center only from the right
eye gaze samples

 compute the fixation center from the average of
the left and the right eye gaze samples

The fixation centers are then mapped on the closest
nearby character in the source or target window, a so-
called fixation-to-word mapping. There are thus three
different fixation-to-word mappings average, left and
right, depending on which fixation they are based on. In
addition, a character is retrieved in the line above the
upper most fixation-to-word mapping (up), and a
character is retrieved in the line below the lowest
fixation-to-word mapping (down). In this way, five
fixation-to-word mappings are generated in addition to

5

the original one, which may be however partially
identical.

While figure 1 (bottom) shows the naïve average
fixation, figure 3a shows the same situation, where the
original naïve fixation-to-word mapping path is plotted
(in blue) and additionally re-computed fixation-to-word
mappings are represented as dots on the vertical fixation
time line Ft. Figure 3a shows the projection of fixations
on the lines above and below the naïve default mapping.
For fixation time F1, two additional fixation-to-word
mappings are generated in the lines below the naïve
mapping (in the progression graphs the words further
down in the text appear higher in the graph), while for
fixations times F2 and F3 are generated fixation-to-word
mappings in the lines above and below the default one.
Note that different fixation-to-word mappings at one

fixation time may also be distributed in different
windows. For instance, a down re-mapping of the
fixation numbered 0 in figure 1 (top) at the bottom of the
source window may be re-located in the top of the target
window, while the up alternative would appear in the
source window, e.g. on decreased, as shown in figure 2
(top), where the same fixation is numbered 1.

In a second step a path through the lattice of fixation-
to-word re-mappings is re-computed based on the
minimum penalty score of the distances between
successive nodes. Assuming that a fixation-to-word
mapping n is consolidated for a given fixation time Ft. A
penalty score for each possible fixation-to-word mapping
m at the next fixation time Ft+1 and its fixation center f
is computed by summing up a number of features as
described below. The fixation-to-word mapping m with

Figure 3a to 3d from top left to bottom right: Figure 3a shows the projection of the naïve mapping into a lattice of
alternative fixation-to-word re-mappings (red dots). Figure 3b (top, right) plots links to the first successor node, figures 3c
(bottom, left) and 3d (bottom, right) show successive steps in the re-mapping algorithm, including links to pre-predecessor
nodes.

6

the lowest penalty score is then consolidated. Figure 3b
shows the links to the three possible successor nodes,
where the link in bold represents the strongest connection
with lowest penalty score.

Different features are considered to compute the
scores between successive mapping nodes, depending on
whether the two successive fixation mappings occur in
the same window, or whether the gaze moves from the
source window to the target window or vice versa. In case
two successive fixations occur in the same window (i.e.
the source or target window), we assume that a sequence
of text is being read so that the eyes move likely forward
over the text. In case the eyes move from one window to
the other, we assume that the eyes move (close) to the
translation of the sequence that was previously looked at
in the other window.

According to (Rayner, 1998), during “normal”
reading the eyes jump in distances of around 5 to 15
characters along the text from left to the right, often
skipping short function words. As drift of gaze data is the
more unusual case, we assume that the measured gaze
sample points which are received from the eye tracker,
and thus the center of the various fixations that we
compute from it, are close to the characters and words
which are actually read. In addition, we assume that
translators read a piece of text (in the source or the target
window) which is close to currently translated sequence.
These considerations are formalized in the following four
functions:

 Cursor distance:

C(n, m) = abs(CurPos(m)–CurPos(n) - 10)

 Source ID distance:

S(n, m) = abs(STID(m) – STID(n) + 2) * K

 Last keystroke distance:

L(m) = abs(STID(m) – STID(l)) * K

 Character-pixel distance:

P(f, m) = EuclidDistance(f, m) / z
i.e.: sqrt((f(x)–m(x))^2 + (f(y)–m(y))^2)/z

where n and m represent two fixation-to-word

mappings, f is the fixation center of m, K=6 is

approximately the average length in characters of
(English) words, z=24 is the size of the characters on the

screen that we used in these experiments, and l is the
cursor position of the last character that was typed in the
target window.

The SourceTextId STID(.) is computed based on the
alignment between the source and target text. Words in
the source and target target text are numbered, and the
alignment information allows us to know the
SourceTextId for each target word in the translation. This
information can be spread out to the keystrokes which
actually produce the target words and the target text. An
algorithm described in (Carl, 2013) which describes how
SourceTextIDs for keystrokes and fixations are computed
from the alignments.

Between each consolidated fixation-to-word mapping

n at Ft and every possible successor node m at the

following fixation time Ft+1, a penalty score is

computed as:

CSLP1(n,m,f) = C(n,m)+S(n,m)+L(m)+P(f,m)

Since sometimes the eye may slip up or down a line
or two (particularly when switching between the two
windows) we also compute the penalty score between the

consolidated node o of the preceding fixation time
Ft-1 and the successor mapping m, so as to skip the
impact of the current, possibly slipped fixation on the
gaze path:

CSLP2(o,m,f) = C(o,m)+S(o,m)+L(m)+P(f,m)

This situation is depicted in figure 3c. There is one

consolidated node n at fixation time F1 which is

connected to all three possible successor nodes m1..3 at

fixation time F2. These connections are represented in
fine dotted lines. In addition, there are also connections

from the consolidated node o at fixation time F0 which
link to the three possible fixation-to-word mappings in

F2. These links are represented with dashed curved
connectors. There are thus six penalty scores for three

nodes m1..3 in F2. The node which the lowest penalty
is consolidated, and the link to the previous consolidated
fixation mapping is plotted in bold arrows in figure 3c.
Even though the distance to its immediate predecessor

node in F2 is quite large, the node in F2 was
consolidated due to the similar SourceTextId which it
shares with the consolidated fixation-mapping node in

7

F2 and its proximity to the previously typed character.
The algorithm iterates through the expanded fixation-to-
word mapping lattice. Once a fixation-to-word mapping
is consolidated, the penalties of the next fixation nodes
are computed as shown in figure 3c and so on until the
end of the lattice is reached.

As mentioned previously, penalty scores are slightly
differently computed if the two successive fixation-to-
word mappings are in different windows. In this case we
assume that the eyes seek to retrieve the translation of the
word that was looked at (or worked on) in the other
window, rather than proceeding in the text. That is,
penalty score increases as the two successive fixations-to-
word mappings return a different SourceTextID:

 Source ID window change:

W(n, m) = abs(STID(m) – STID(n)) * K

Since shifting of windows is different from usual
reading behaviour, we also do not assume that eyes move
in jumps of around 10 characters, as above, and omit the

cursor distance penalty function C(.). For window-
changing sequences of fixations, we thus introduce two
functions, analogous to the previous ones, where:
WLP1(n, m, f) computes the penalty scores for

immediate successive nodes and WLP2(o, m, f)
computes the penalty scores for two nodes distance:

WLP1(n, m, f) = W(n, m) + L(m) + P(f, m)

WLP2(o, m, f) = W(o, m) + L(m) + P(f, m)

The brain usually prefers visual input from one eye
which is referred to as the dominant eye. Accordingly,
fixations computed with the gaze data of the dominant
eye correspond more precisely to the visual input and
hence reveal more accurately what the brain was actually
processing. According to wikipedia
(http://en.wikipedia.org/wiki/Ocular_dominance),
approximately two-thirds of the population is right-eye

dominant and one-third left-eye dominant. As
explained above, we compute up, down, left,
right and average fixation-to-word re-
mappings. Since we do not know the eye dominance of

our participants, the left and the right fixation-to-
word mappings take into account the fact that the
preferred visual input may be on the left or right side eye

respectively. In addition, we frequently observe
phenomena of gaze drift, where the observed gaze data is
a line below or above the one that we think is plausible to

assume the person was actually reading. The up and

down fixation-to-word re-mappings take into account

such gaze drifts by simulating a shifting of the observed
fixation a line up or down. However, we can expect that
the left, right, up or down mappings do not change from
one fixation to the next: the dominant eye does not
change from one fixation to the other fixation and gaze
usually does not drift in short distances of time from the
line above to the line below. We thus assume that these
fixation mappings are stable over stretches of time. To
take this constraint into account, the penalty score P(f,m)
is hat up and down drifts

P(f,m) = 0, if (ReMap(n) eq ReMap(m)

 or (ReMap(o) eq ReMap(m)

P(f,m) = EuclidDistance(f, m) / z, otherwise

where ReMap(x) returns one of the values up,
down, left, right or average, according to the way
how the fixation-to-word mapping was computed.

Evaluation

The assessment and evaluation of a fixation-to-word
re-mapping method is problematic, since we cannot know
for sure where translators really look on the screen when
they translate. Hence an adjustment (manual or
automatic) can always be wrong, and an objective
function or a test set against which a re-mapping method
could be evaluated may be troublesome to establish.

A number of cognitive models of the human
translation process exist which give us an intuition of the
observed translation process data and which may serve as
a basis for an evaluation of re-computed fixation-to-word
alignment patterns. For instance, Jakobsen (2011) has
found indications of a recurrent “micro-cycle”, i.e. a
processing pattern consisting of six steps, some of which
can be skipped or repeated several times. The processing
cycle starts with an act of comprehension, namely reading
the chunk of ST which is about to be translated (step 1).
The translator then shifts his/her gaze to the TT to locate
the position where the TT is about to be produced (step
2). The translation is typed and monitored (steps 3 and 4),

8

and the translator’s gaze shifts back to the ST, where the
relevant reading area is located and the current ST word
is read again (steps 5 and 6) (Jakobsen 2011, 48).

While such models give us a general picture of what
we may expect in the translation activity data, they are
still far from exactly predicting where the next fixation is
to be expected. In addition, a large variation of individual
translation styles has been described, for instance in
(Dragsted & Carl 2013), so that the evaluation of the re-
mapped log files remains, for the moment, subjective and
intuitive. In the future we hope that in a real-time reactive
application the success of a re-mapping method could be
evaluated based on its usefulness, Figures 4 show an
example of the present re-mapping algorithm.

The progression graph in Figure 4a clearly shows a
systematic drift of the source text fixation mappings
about 12 to 20 words ahead of the translations on which
the translator is working. Figure 4b shows a re-mapping
which clearly comes closer to the initial main criteria
which were previously established to design of the re-
mapping algorithm:

 successive fixations are one or two words apart

 translators are likely to read source passages
which they are currently translating

 The re-mapped version also better accounts for the
recurrent micro-cycle, as described above (Jakobsen
2011).

Figur 4a (top) naïve mapping vs. its re-mapped version 4b (bottom). Both figures represent the same translation segment.

9

References

Dragsted, B., & Carl, M. (2013). Towards a classification
of translation styles based on eye-tracking and
keylogging data. Journal of Writing Research, in
press.

Hornof, A. J., & Halverson, T. (2002). Cleaning up
systematic error in eye-tracking data by using
required fixation locations. Behavior Research
Methods, Instruments, & Computers, 34, 592–604.

Jakobsen, A.L. (2011). Tracking translators’ keystrokes
and eye movements with Translog. In C. Alvstad, A.
Hild & E. Tiselius (Eds.), Methods and Strategies of
Process Research (pp. 37-55). Amsterdam: John
Benjamins.

Abhijit Mishra, Michael Carl, Pushpak Bhattacharya
(2012). A heuristic-based approach for systematic
error correction of gaze data for reading, Workshop
on Eye-tracking and Natural Language Processing,
Coling 2012, 24th International Conference on
Computational Linguistics, 15 December, 2012
Mumbai, India

Rayner K. (1998) Eye movements in reading and
information processing: 20 years of research. Psychol
Bull. 1998 Nov; 124(3):372-422.

Špakov, O. (2007). GWM – the Gaze-to-Word Mapping
Tool, available online at
http://www.cs.uta.fi/~oleg/gwm.html.

Feature Representation in the Translation Process Research DB

Abstract

For more than 10 years CRITT has been involved in Translation Process Research (TPR). TPR-data was collected by
the Translog tool and released in 2012 as a Translation Process Research Database (TPR-DB). Within the CASMACAT
project, data for post-editing machine translation is collected and added to the TPR-DB. The second release of the TPR-
DB contains more than 900 translation sessions accumulating more than 300 hours of recorded translation sessions.
This paper describes the features and visualization options of the recent release of the Translation Process Research DB.
This database contains recorded logging data, as well as derived and annotated information. Seven kinds of simple and
compound process- and product units are described which are suited to investigate human and computer-assisted
translation processes and for advanced user modeling.

1 Introduction

Since 2006 CRITT has developed a data acquisition software, Translog (Jakobsen and Schou, 1999, Carl 2012) with
which translators’ keystroke and gaze activities can be recorded. This tool is now the most widely used tool of its kind
(Jakobsen, 2006). In contrast to previous think - aloud elicitation methods, a keylogger runs in the background so as not
interfere with the writing or translation process. Translog-II (Carl, 2012a), which is its most recent implementation, logs
the exact time at which each keystroke operation is made and in a reply mode the translation session can be played
back. If connected to an eye-tracker, Translog-II also records gaze-sample points, computes gaze fixations and maps the
fixations to the closest character on the screen. The information is stored in an XML format and can be analyzed in
external tool (Carl, 2012).

While Translog was originally designed to investigate reading, writing and translation processes, it was recently also
extended to record post-editing sessions of machine-translation output. However, Translog-II does not provide an
ecologically valid working environment, with which post-editors are used to work in their daily environment. Translog-
II presents two running text in a source and target window, while modern translation aides, such as translation
memories, segment the texts into fragments and present a source segment with its translation in a more structured
manner. In order to obtain a more realistic picture of professional translators' working styles and to assess how to
support their translation processes with advanced machine translation technology, the CASMACAT project seeks to
implement an advanced state-of-the art browser-based post-editing environment and combine this with Translog-II style
keyboard logging and eyetracking possibilities. In this way, detailed empirical data can be collected from a realistic
translation environment, and the assessment of this data may lead to a more complete picture of human computer-aided
translation processes.

The structure and content of the collected data from Translog-II and from CASMACAT is different in terms of the
attributes and containers, but the logged data undergoes a similar compilation process (Carl, 2012b) to generate a
number of tables, which can then be used as a basis for further analysis (Carl et al. Forthcoming, Balling and Carl 2013,
Elming et al, forthcoming; Wilker et al, forthcoming) and visualization (e.g. Carl, Dragsted & Jakobsen, 2011). The
logged data together with the derived tables is released in the form of Translation Process Database (TPR-DB), which
can be freely downloaded from http://bridge.cbs.dk/platform/?q=node/18

As in the first version of this data (Carl, 2012b), also the current version of the CRITT TPR-DBv1.3 contains for each
translation session seven different types of units. The logging data provides two basic types of data: text modifying
keystroke data (KD), that is insertions and deletions, and fixations on the source or target text (FD). From these basic
units are derived two more complex processing units: text production units (PU) and fixation units (FU) which represent
respectively sequences of coherent writing and reading. In addition to these production units, the TPR-DB contains
three text-based units, which are derived from the final translation product: source text tokens (ST), target text tokens
(TT) and alignment units (AU):

1. Keystrokes: basic text modification operations (insertions or deletions), together with time of stroke, and the
word in the final text to which the keystroke contributes.

2. Fixations: basic gaze data of text fixations on the source or target text, defined by the starting time, end time
and duration of fixation, as well as character offset and word index of fixated symbol in the source or target
window.

3. Production units: coherent sequence of typing (cf. Carl and Kay, 2011), defined by starting time, end time and

duration, percentage of parallel reading activity during unit production, duration of production pause before
typing onset, as well as number of insertion, deletions.

4. Fixation units: coherent sequences of reading activity, including two or more subsequent fixations,
characterized by starting time, end time and duration, as well as scan path indexes to the fixated words.

5. Source tokens: as produced by a tokenizer, together with TT correspondence, number, and time of keystrokes
(insertions and deletions) to produce the translation, micro unit information.

6. Target tokens: as produced by a tokenizer, together with ST correspondence, number, and time of keystrokes
(insertions and deletions) to produce the token, micro unit information, amount of parallel reading activity
during.

7. Alignment units: transitive closure of ST-TT token correspondences, together with the number of keystrokes
(insertions and deletions) needed to produce the translation, micro unit information, amount of parallel reading
activity during AU production, etc.

Figure XX shows a visualization of the keystroke and fixation data, as collected in a post-editing session of the
Casmacat Prototype-2 which involves a text of approximately 140 words of six segments. Translation progression
graphs visualize how translations emerge in time, enumerating the source text words on the vertical axis and the
translation time on the horizontal axis. We have adapted the visualization of translation progression graphs, which was
developed for Translog-II logging data to both, the Casmacat Prototype-1 and the Casmacat Prototype-2.In addition to
the original Translog-II logging data, the CASMACAT workbench plots the source and the target text in the form of
segments, and produces automatic translations, as well as deletions and insertions in the interactivity mode.
Accordingly, the representation and visualization schema was extended to take these additional features into account.
The vertical axis enumerates the source text words (0.. 140) and the horizontal axis shows the time in which the
translations of the source text were produced. The dotted lines divide the six segment, which are sequentially (pre)
loaded, filled into the target buffer and then edited. The various symbols in the graph represent:

• blue diamonds represent fixations on the source text
• green diamonds represent fixations on the target text
• black characters represent insertions
• grey characters represent automatic insertions
• red characters represent deletions

The graph shows the temporal sequence of when segments are loaded into the target buffer, when and where translators
read the source segments and the translations, and when which MT suggestions are modified. The unit information in
the TPR-DB tables is thus instrumental to analyze and visualize translation processes. Much more information is
contained in the TPR-DB tables, besides the one plotted in figure XX. This paper describes the features

The paper describes the units and the features1 that are extracted from from logged and annotated data. Section 2
describes the two basic keystroke and fixation units. Section 3 illustrates examples of the derived production and
fixation units. A special property of those units is parallel and alternating reading and typing behavior which indicates
workload of the translator. The idea and the way to assess this property is described in section 4. Section 5 looks into
characteristics of units that can be automatically derived from the final translation product: source tokens, target tokens
and alignment units. Section 6 exemplifies how the translation construction of these production units can be
decomposed into several micro units.

2 Basic units

For each translation session, the TPR-DB contains seven tables, each of which identifying a different type of unit. The
first column in each TPR-DB table is an identifier of the event or unit
(KEYid, FIXid, FUid, STid, TTid, PUid, AUid). Successive columns
encode various features which characterize the event or unit.

2.1 Keystroke data

The Keystroke tables encode single events in time with no duration.
All other TPD-DB tables encode textual or temporal units which
stretch over parts of one or more words and which have at least one
starting time and a duration, as described below.
As shown in Table 1, keystrokes have a Time at which they were
produced, a Type, indicating whether it was an insertion or deletion, a
position in the text (a Cursor offset) at which the text was modified,
the actual character (Char) which was inserted or deleted, as well as
the target text token (TTid) to which the keystroke has contributed and
the source text token (STid) of which the TTid is the translation. Note
that the TTid refers to the token in the final text.
During a fixation, the gaze is maintained on a single location.
Reading involves fixating on a successive locations across a text, but
neither is the eye perfectly steady during fixations, nor do the eyes
move smoothly over a text. There are many methods to compute
fixations. In Translog-II we currently use a density-driven fixation
computation algorithm, which clusters gaze samples within a distance
of 60 pixels into a single fixation, if the duration is longer than 40ms.
The center of the fixation is then mapped on the closest character
using build-in functions.

2.1 Fixation data

The table in Table 2 indicates the beginning of a fixation (Time) and
its duration (Dur). The fixation table shows in which window (Win) a
fixation was detected, 1 for source text window and 2 for the target
text window and the Cursor offset of the closest character at which the
center of the fixation was detected. While the cursor offset refers to
the text as it emerges, the STid and TTid refer to the source and target
text tokens of the final text. Thus at a certain time during text
production cursor position 5 of the TT may for instance contain an “a”
which is part the word “asesino”. The fixation will be assigned TT4 if
“asesino” turns out to be the 4th word in the final translation,
irrespectively of where in the text this word occurred when it was
fixated. In this way we can count the number of fixations on one word,
even if the word changes its locations in the text during the editing
process. Note, however, that the precision of this information has to be
handled with care, since 1. movements of text fragments, particularly
deletions, can be traced only very imprecisely, and 2. fixations and
their mapping on the symbols may be quite noisy, due to different
reasons of fixation drift.

1 Some of the features are only available in the CRITT TPR-DB V1..1

Table 1: Keystroke information

KEYid Time Type Cursor Char STid TTid
0 92016 ins 0 E 2 1
1 92172 ins 1 l 2 1
2 92313 ins 2 _ 2 1
3 92375 ins 3 e 2 2
4 92563 ins 4 n 2 2
5 92828 ins 5 f 2 2
6 92938 ins 6 e 2 2
7 93047 ins 7 r 2 2
8 93266 ins 8 e 2 2
9 93610 del 8 e 2 2
10 93797 ins 8 m 2 2
11 93875 ins 9 e 2 2
12 93938 ins 10 r 2 2
13 94078 ins 11 o 2 2

Table 2: Fixation information

FIXid Time Win Dur Cursor STid TTid
251 93921 2 250 7 2 2
252 94171 2 150 9 2 2
253 94374 1 183 65 10 13
254 94546 1 267 25 4 5
255 94937 1 100 26 4 5
256 95077 1 184 25 4 5
257 95671 2 400 15 1 3
258 96062 1 316 791 152 170
259 96374 2 200 13 1 3
260 98765 1 217 25 4 5
261 98984 1 283 36 6 6
262 99265 1 217 24 4 5
263 99499 1 100 17 3 4
264 99624 1 116 17 3 4
265 99812 1 982 26 4 5
266 101562 1 1199 32 6 6
267 103812 2 299 32 4 5
268 105780 1 200 38 6 6
269 105999 1 117 425 82 86
270 108062 1 133 185 33 42
271 108359 1 100 54 8 8+9
272 108452 1 333 179 31 39
273 108796 1 133 295 54 62
274 109077 1 200 51 8 8+9
275 109452 1 117 58 9 12

3 Process Units

3.1 Production units

Production units (PUs) are sequences of coherent typing activity (cf. Carl and Kay, 2011). A production unit boundary is
defined as a delay of 1000ms or more without keyboard activity. It is assumed that coherent typing is interrupted
beyond this delay of time, with a likely shift of attention towards another text segment. As a coherent temporal/textual
segment PUs have a temporal beginning (Time) and a duration (Dur), and as they cover one or more insertion or
deletion keystrokes (Edit operations) which contribute to build up one or more target text tokens (TTid). In the example
in Table 3, the sequence:

 El_enfere[e]mero_asesiono_re[er_ono]no_recibe

was typed within 7250ms, starting at time 92016 with no inter-key delay of more than 1000ms. A delay (Pause) of
1140ms follows this typing sequence before the next PU starts at Time 100406ms. The table 3 also indicates the number
of insertions and deletions of the PUs. PU0 contains 34 insertions and 7 deletions. The latter are within square brackets
and must be read in the reverse direction. Thus, the substring “[er_ono]” is actually the deletion “ono_re” which reflects
the correction of:

asesiono_re --> asesino_recibe

Note that PU1 “_cuatro_” accounts for two target words (TT4+5), as the blank, represented by an underscore “_” already
counts as part of the next word. Table 3 also indicates where and how long the translator looked at the screen while
typing the translation. The feature ParalS and ParalT give the amount of time the translator was looking at the source
and the target window respectively while producing the translation. That is, during the 7250ms that it took to produce
PU0, the translator looked almost 1sec (900ms) at the source text window, but did not look at the target window.

3.2 Fixation Units

Similar to PUs, Fixation Units (FUs) indicate
sequences of coherent reading behavior.
Based on experimental evidence (Carl and
Kay, 2011) we define a boundary between two
successive FUs if a gazing pause is longer
than 400ms. That is, if the stream of gaze
samples indicates the gaze directs away from

the screen for more than 400ms, thus interrupting coherent reading
activity, we assume a boundary of a fixation unit and the beginning of the
next fixation. This may happen, for instance, when the gaze is shifts away
from the screen to the keyboard, or to some other places.

Table 4 shows four FUs
(FU11 to FU14). As with
the PUs, the Time
indicates the beginning of
the FU while the duration
(Dur) indicates its length.
The fixation path is a sequence of fixations on the source window (1) or
the target window (2) and the word ID looked at. The path consists of one
or more fixations indicated by a tuple ”Window:WordID” where
successive fixations are separated by a “+”. The first FU in Table 4
(FU11) shows a sequence of six fixations, first on the second word in the
target window “enfermo” (2:2), followed by a number of fixations on
fourth source word “four” (1:4). On the way from the target text word
“enfermo” to the source text word “four”, a fixation on word 10 “Colin”

Table 4: Four fixation units

FUid Time Dur Pause ParalK Path
11 93921 1340 410 1340 2:2+2:2+1:10+1:4+1:4+1:4+
12 95671 903 2191 903 2:3+1:152+2:3+
13 98765 2029 768 888 1:4+1:6+1:4+1:3+1:3+1:4+
14 108062 1507 665 0 1:33+1:8+1:31+1:54+1:8+1:9+

Figure 1: Screen shot of replay situation FU12

Figure 2: Screen shot of replay situation FU13

Table 3: Production units

PUid Time Dur Pause ParalS ParalT Ins Del STid TTid Edit
0 92016 7250 1140 900 0.00 34 7 1+2+3 1+2+3+4 El_enfere[e]mero_asesiono_

re[er_ono]no_recibe
1 100406 1313 1875 562 0.00 8 0 3+4 4+5 _cuatro_
2 103594 4187 13735 299 0.00 23 3 4+5 5+7 sentencias_de_vida.__[__.]__

was recorded, which is just one line below the “four”. Figure 1 shows the a screen shot of the Translog-II replay at time
98573, just before the start of the third FU. FU12 comprises of three fixations (marked by a blue circle), two of which
are on word 3 “asesino” in the target text, while one fixation is at the end of the source text on word 152. While this
accounts for the measured gaze data, it is more likely that a slight drift causes the second fixation is mapped into the ST
window, while the translator was actually looking at the ST word.
The third fixation unit in Table 4, FU13 is plotted in Figure 2 and represents a reading sequence of the title (Killer nurse
receives four life sentences). It shows how the eyes go back and forth between word 6 (“sentences”), 4 (“four”) and 3
(“receives”). As it is not particularly difficult to understand the meaning of the sequence of words, the long reading time
of more than 2 seconds (2029ms) suggests that a process of pre-translation takes place during ST reading, in which the
translator reflects on how the translation should be rendered.
Note that the sum of all FU durations may be longer than the sum of all fixation durations, since FUs include inter
fixation delays shorter than 400ms which may not be part of any fixation.

3.3 Parallel and alternating reading and writing

Similar to the ParalS and ParalT features in the PU tables, the ParalK feature in the FU table indicates the amount of
parallel keyboard activity. This FU11 and FU12 take place while the translator is at the same time writing, while no
keyboard activity was obserbed during FU14.

Figure 3 illustrates the overlap of reading and writing activity. It puts into relation the source text (vertical axis) and the
translation time (horizontal axis). Insertions are represented in black letters, deletions are red. The progression graph in
Figure 3 plots the keystroke data of Table 1, the fixation data from Table 2, as well as the three production units of Table
4 and four fixation units from Table 3. The first part in Figure 3 (approx. Time 92000ms to 94000ms) reproduces the
production of words 1 and 2 (“El enfermero”) as plotted in Table 1. The linked blue x-es represent the fixations (Table
2). The red horizontally striped boxes indicate PUs while the green boxes represent FUs.

Reading and writing activity can go on concurrently in parallel. For instance, the FU11 between Time 93921-95260 and
FU12 between 95671 -- 96574 take place while the translator performs a coherent typing activity at the same time
generating PU0. While FU11 and FU12 overlap 100% with PU0, FU13 between Time 93921-95260 only partially
overlaps with two adjacent PU0 and PU1. While there is 43.81% overlap with production activity of FU13, FU14 has no
overlap at all. Progression graphs, as in Figure 1 may thus illustrate in a graphical manner the relation between reading
and writing activities.

4 Product Units

Besides fixation and production units, there are three more units in the TPD-DB tables: Source Token (ST), Target
Token (TT) and Alignment Units (AU).

4.1 Alignment Units, Source and Target Tokens

Source and target tokens correspond
to sequences of characters, usually
separated by a blank, while AUs
refer to m-to-n source-to-target token
correspondences. The tables provide

similar kind of information for these three different kinds of units. These tables contain various information concerning
the source/target correspondances, who and how the translation was produced, and information concerning the session.

Table 5 shows three English --> Spanish AUs: the column AUtarget contains the TL
string, while AUsource has the corresponding SL string. The column “Study” gives
the name of the study, “Person” indicates the study unique identification of the
translator, the “Text” column indicates which text was translated, and “Task” gives
the kind of text production (T: translation, P: post-editing, E: editing).

Table 6, 7 and 8 are continuations of the AU information. Table 6 gives session information, Table 7 (macro unit)
production information and Table 8 decomposes the macro unit in Table 7 into various micro units.
In Table 6, the column “Session” indicates the duration to the translation/post-editing/editing session, “Draft” shows the

Figure 3: The progression graph shows information from Tables 1 to 4

Table 5: Alignment unit

AUid AUtarget AUsource SL TL Study Person Text Task
44 de of en es BML12 P01 1 T
45 tranquilizantes sleeping_medicine en es BML12 P01 1 T

Table 6: Session information

AUid Session Draft Revise
44 757281 92016 290391
45 757281 92016 290391

lapse of time before the first keystroke was typed, i.e. the end of the orientation phase and beginning of the drafting
phase, while “Revise” indicates the time when the drafting phase ended and the revision phase started. This is defined
as the end of the first micro unit in which the last token of the text was translated (cf Jakobsen, 2002).

4.2 Typing Inefficiency

While Table 5 indicates for AU44 and AU45 that the final translation was “de” and “tranquilizantes” respectively, table 7
shows in the “Edit” column that first “de medicinas para dormir” was typed and later “medicinas para dormir” was
again deleted. The table shows the overall number of keystrokes produced: there were 24 insertions, of which 21
characters (the string in square brackets) were later deleted. Even though “medicinas para dormir” and “tranquilizantes”
are paraphrases, the former is part of AU44, since deletions are attributed to the preceding word. The time needed to
type the translation is given by the duration feature (Dur).

The editing inefficiency measure (InEff) is the ratio of the number of produced characters divided by the length of the
final translation. This is equivalent to the number of insertions and deletions divided by their difference:

InEff = Insertions + Deletions / Insertions – Deletions +1, where Insertions ≥ Deletions ≥ 0.

In most of the cases, the length of the final string in the translation product is equal the number of insertions – deletions
+ 1. We add 1 since the white space following the word is counted as being part of it. However, in some cases, no white
space follows a words, in which case the InEff value can be smaller than 1.Thus, for AU44 in table 7 the number of the
insertion and deletion keystrokes amounts to 45 which, divided by the length 3 of the final word “of ” (including the
following white space charater), results in an editing inefficiency of 15, while the number of keystroke string to produce
“tranquilizantes” in AU45 amounts to the length of the final translation, and thus the editing effort is 0.94. Note that for
post-editing the InEff can be 0 if a MT proposal was accepted without any modifications, while it would be 2 it the
word was deleted and another word of identical length was retyped.
GazeT and GazeS indicate the total amount of gaze time on the source unit and the target unit respectively. In contrast
to the “Paral” feature in Tables 3 and 8 this is not necessarily during translation production.

4.3 Micro units

Source and Target tokens, as well as AUs may be characterized by the number and type of micro units by which the
translations are constructed. Alves and Vale (2012) refers to recurring editing activities of the same word translations as
micro units. For them, “a micro TU is defined as the flow of continuous TT production ... separated by pauses during
the translation process”. A macro unit, then is a collection of micro units “that comprises all the interim text
productions that correspond to the translator’s focus on the same ST segment”. The TPR-DB computes a micro unit as a
coherent typing activity which contributes to the translation of the source or target token, or a AU. While there can be,

in principle, any number of
micro units (a translator can
revise a piece of text very
often), only information of the
first two micro units is
explicitly listed. Tables 8 shows
the micro unit information for
AU44 and AU45, while their
macro unit information is given

in table 7. The micro unit is characterised by the actual typing activity (Edit), the starting Time and duration (Dur) of the
typing activity, the pause preceding that typing activity, and the amount of parallel reading and writing activity (Paral).
Table 8 decomposes the production activity in Table 7 into two micro units: at Time 225703 the translator first types “de
medicinas para dormir” in AU44. During a revision more than 4 minutes later, at time 569781 in micro unit2, the string
“medicinas para dormir” is deleted and replaced by “tranquilizantes” at Time 570250 which is part of AU45, micro
unit1. The duration of those activities is indicated, together with the pause following it and the parallel activity as
described in section 4. Given the information in Table 6, we know that revision phase started in this translation session
at time 290391, we see that micro unit 1 in AU44 takes place during translation drafting, while micro unit2 of AU44 and
AU45 micro unit 1 are both revision events.

Table 7: AU production information

AUid Ins Del Dur Cross GazeT GazeS InEff Edit
44 24 21 11407 1 549 200 15 de_medicinas_para_dormir[rimrod_arap_sanicidem]
45 15 0 1610 2 566 1963 0.94 tranquilizantes

Table 8: Micro unit1 and micro unit2

AUid Edit1 Time1 Dur1 Pause1 ParalS1 ParalT1
44 de_medicinas_para_dormir 225703 11110 187 965 149
45 tranquilizantes 570250 1610 172 0 669

Edit2 Time2 Dur2 Pause2 ParalS2 ParalT2
44 [rimrod_arap_sanicidem] 569781 297 22937 0 281
45 --- 0 0 0 0 0

4.4 Cross value

The Cross feature represents alignment information in a procedural manner. It indicates how many words need to be
consumed in the source text to produce the next word in the translation output. The assumption is that the source text is
processed word by word from left to right (or from right to left) thereby emitting target words in the order they appear
in the target text, following the ST-TT alignment links. The minimum number of words moved in the ST to produce the
TT represents the cross value. Figure 9 gives an example from an English → Spanish translation: in order to produce
the first Spanish TT word (El), two English words (Killer nurse) have to be consumed, which results in a cross value of

2 for ”El”. The second source word (nurse) emits two adjacent TT
words. No further ST word has, thus, to be consumed to produce
”enfermo”, which results in a cross value is 0. To produce the third
Spanish word, ”assesino”, one ST word to the left of ”nurse” has to be
processed together with a cross value of -1. Spanish ”recibe” is the
translation of two ST words to the right, ”cuatro” one ST word ahead

etc. and the respective cross values of 2 and 1 are emitted. The more syntactic reordering between source and target
text take place the higher the average cross value will be. In case of a monotoneous translation, all cross values are 1.

5 Conclusion

The paper describes several units and their feature characteristics in the CRITT TPR-DB. We hope that this can be a
solid basis for future translation process research.

References

Alves, Fabio, Daniel Couto Vale, 2012, On drafting and revision in translation: a corpus linguistics oriented
analysis of translation process data. Translation: Corpora, Computation, Cognition. Special Issue on the
Crossroads between Contrastive Linguistics, Translation Studies and Machine Translation. Volume 2, Number 1.
July 2012.www.t-c3.org

Balling, Laura Winther and Michael Carl. Forthcoming. Production time across languages and tasks: a large-scale
analysis using the critt translation process database

Carl, Michael (2012a). Translog-II: a Program for Recording User Activity Data for Empirical Reading and Writing
Research, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC12),

Carl, Michael (2012b). "The CRITT TPR-DB 1.0: A Database for Empirical Human Translation Process Research".
Proceedings of the AMTA 2012 Workshop on Post-Editing Technology and Practice (WPTP 2012). ed. / Sharon
O'Brien; Michel Simard; Lucia Specia. Stroudsburg, PA : Association for Machine Translation in the Americas
(AMTA), 2012. p. 9-18.

Carl, Michael, Silke Gutermuth and Silvia Hansen-Schirra. Forthcoming. “Post-editing machine translation – a
usability test for professional translation settings”. In Psycholinguistic and cognitive inquiries in translation and
interpretation studies, edited by John W. Schwieter and Aline Ferreira. Cambridge Scholars Publishing

Carl, Michael and Kay, Martin, 2011, Gazing and Typing Activities during Translation : A Comparative Study of
Translation Units of Professional and Student Translators. I: Meta, Vol. 56, Nr. 4, 2011, s. 952-975.

Carl, Michael; Barbara Dragsted; Arnt Lykke Jakobsen / A Taxonomy of Human Translation Styles
In: Translation Journal, Vol. 16, No. 2, Tralogy 2011. Translation Careers and Technologies: Convergence Points
for the Future, Paris, Frankrig. 2011

Elming, Jakob, Michael Carl, and Laura Winther Balling. Forthcoming. “Investigating User Behaviour in Post-
editing and Translation Using the CASMACAT Workbench.” In Expertise in Post-editing: Processes,
Technology and Applications, edited by Sharon O’Brien, Michael Simard, Lucia Specia, Michael Carl and Laura
Winther Balling. Cambridge Scholars Publishing.

Jakobsen, Arnt Lykke (2002) "Translation drafting by professional translators and by translation students."
Empirical Translation Studies: Process and Product. Copenhagen Studies in Language 27, 191-204.

Jakobsen, A. L. 1999. Logging target text production with Translog. In Hansen, G. (ed.), Probing the process in
translation: methods and results, Copenhagen Studies in Language, volume 24. Copenhagen: Samfundslitteratur.
Pages 9–20.

Wilker Aziz, Maarit Koponen and Lucia Specia . Forthcoming. “Post-editing time and cognitive effort.” In
Expertise in Post-editing: Processes, Technology and Applications, edited by Sharon O’Brien, Michael Simard,
Lucia Specia, Michael Carl and Laura Winther Balling. Cambridge Scholars Publishing.

	T5.2 Graphical Interface
	The new UI
	Upload
	Translate (PE)
	Translate (ITP)
	Replay
	List Documents

	Server
	Configuration
	Demo

	T5.3 E-pen Interaction
	E-pen UI
	HTR server

	T5.5 Machine Translation Server
	Translation
	Report tokenization and alignment
	N-Best Lists
	Search Graphs
	Word Posterior Probabilities as Word Level Confidence Estimate

	T5.6 Manual Gaze-to-Word Alignment
	T5.7 Automatic Gaze-to-Word Alignment
	T5.8 Replay Mode for User Activity Data
	T5.9 Visualization of Translation Processes

