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Executive Summary

This document contains details about the implementation of the 2nd prototype of the casmacat
workbench and the Translation Process Research Database (TPR-DB). It outlines the major
components of the workbench and their usage (Sections 1, 2, 3 and 6), as well as the structure
and feature of the TPR-DB (Section 7). Since gaze information is the most valuable source
for tracking translator effort in text understanding, and due to the noise inherent in current
head-free eye-tracking technology, Sections 4 and 5 report attempts to implement solutions for
obtaining better gaze-to-word mapping accuracy.

At the time of this writing, an installation guide1 has been written and made available to a
select group of alpha testers (researchers from universities and research laboratories) to prepare
a wider release of the prototype.
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1 T5.2 Graphical Interface

This section describes the current state of the GUI of the 2nd casmacat prototype. It deals with
the new GUI design and functionality taken over from matecat and the casmacat extensions
that have been added.

To fulfill the requirement of a collaboration between the casmacat and the matecat
projects, attempts have been made to merge both projects into one common code base. After
analysing the capabilities of the matecat UI and testing its compatibility with casmacat
requirements, especially eye tracking (ET), the decision has been made to adapt the matecat
code and extend it with the casmacat features. The goal is to get a common UI where
particular functionality can be switched on or off as needed. Additionally, test results of field
trials which will be carried out in the two projects will be better comparable with a common
UI.

Even though there clear advantages in a matecat and casmacat collaboration, there is
also a price to pay: casmacat’s 1st prototype already had important functionality (especially
multi-user capabilities), that had to be dropped and is not yet implemented in matecat. Also,
requirements and handling of data is in some cases very different, as for instance the format of
a translation in the database: matecat stores additional formatting information (HTML and
XLIFF) and uses the encoding given in the original document while casmacat stores UTF-8
encoded pure text. If and how this can be normalized, is still a challenge to face.

1.1 The new UI

The new casmacat / matecat UI consists of a couple of views designated to different tasks. Of
course, the translate view is the central view, where the user can translate a document and post-
editing assistance and logging takes place. Other views offer a way to upload new documents
or to manage the documents that are already in the system. Also, a replay mode has been
(re-)implemented by re-using the knowledge gathered in the 1st prototype. The different views
will now be shown and described in the sequence they are typically used.

1.1.1 Upload

If the user opens the default URL without giving any special parameters, he or she is taken to the
upload view. This is currently the entry point of the application, see Figure 1 for a screenshot.
At this point a user can specify one or several documents to upload and to translate. The
documents uploaded must be in the XLIFF format, the only currently supported format. The
language can either be chosen manually or auto-detected from the XLIFF file. Not all entries
in the drop-down menu have a working MT engine behind them. If several documents are
uploaded at once, they are bundled into one job and are translated in a sequence. Note that
for casmacat it is per definition not allowed to upload several documents. This would make
logging and replay more complex and would (especially with ET) create such a huge amount of
data, that replay would become impossible. If the user clicks on the ’Start Translating’ button
he or she is taken to the translate view and can start working.

1.1.2 Translate (PE)

In the translate view, the user can now translate the document (see Figure 2). The document
is presented in segments, while the currently active segment is highlighted and assistance is
provided for this segment. If using the post-editing configuration without ITP up to three MT
or TM suggestions are provided, from which the user can choose. The user can use shortcuts,
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Figure 1: View for uploading new documents

for instance, to go to the next segment or to copy the source text to the target. The user can
assign different states to a segment, for instance, ’translated’ for finished ones or ’draft’ for
segments, where he or she is not yet sure about the translation and where he or she wants to
review it again later. When finished, the ’Download Project’ button may be used to download
the translated document, again in the XLIFF format.

When in this view, all the actions of the user that are related to the translation task,
e.g. typing, choosing a suggestion, closing a segment and so on, are logged by the casmacat
logging module. This logging module has been completely re-written from scratch, based on the
knowledge of the 1st prototype and implementing new better techniques for more reliable log
data. Traditional key and mouse logging has been fully replaced by text change logging based
on the HTML5 input element. This makes the log of text activities much more robust, e.g.
it allows to log changes from paste or cut actions triggered by the browser’s menu bar or the
context menu of the mouse. Of course, mouse clicks are still logged to track user interactions
with UI elements. Key logging is also still available and running in parallel by default. It is
optional now and not required (for replay), but for offline analysis, it may still be of interest
(e.g. calculate typing rate).

1.1.3 Translate (ITP)

In the following paragraphs we present a short description of the main features that were
implemented in the prototype, which are summarized in Figure 3. Such features are different
in nature, but all of them aimed at boosting translator productivity.

Intelligent Autocompletion IMT takes place every time a keystroke is detected by the
system [2]. In such event, the system produces a (full) suitable prediction according to the
text that the user is writing. This new prediction replaces the remaining words of the original
sentence at the right of the text cursor.
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Figure 2: Translate view with post-editing configuration

Confidence Measures In our workbench, we use confidence measures to inform the users
about translation reliability under two different criteria. On the one hand, we highlight in red
color those translated words that are likely to be incorrect. We use a threshold that maximizes
precision in detecting incorrect words. On the other hand, we highlight in orange color those
translated words that are dubious for the system. In this case, we use a threshold that maximizes
recall. See Figure 4 for a screenshot.

Prediction Length Providing the user with a new prediction whenever a key is pressed has
been proved to be cognitively demanding [1]. Therefore, it was decided to limit the number of
predicted words that are shown to the user by only predicting up to the first erroneous word
according to the CMs. In our implementation, pressing the Tab key allows the user to ask the
system for the next set of predicted words. See Figure 5 for a screenshot.

Search and Replace Most of the computer-assisted translation tools provide the user with
intelligent search and replace functions for fast text revision. Our prototype features a straight-
forward function to run search and replacement rules on the fly. Whenever a new replacement
rule is created, it is automatically populated to the forthcoming predictions made by the system,
so that the user only needs to specify them once. See Figure 6 for a screenshot.

Word Alignment Information Alignment of source and target information is an important
part of the translation process [3]. In order to display the correspondences between both the
source and target words, this feature was implemented in a way that every time the user places
the mouse (yellow) or the text cursor (cyan) on a word, the alignments made by the system are
highlighted. See Figure 7 for a screenshot.

Prediction Rejection With the purpose of easing user interaction, our prototype also sup-
ports a one-click rejection feature [5]. This invalidates the current prediction for the sentence
that is being translated, and provides the user with an alternate one, in which the first new
word is different from the previous one.
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Figure 3: Translate view with advanced ITP configuration

Figure 4: Visualization of Confidence Measures

1.1.4 Replay

The prototype implements detailed logging of user activity, which enables both automatic anal-
ysis of translator behavior by aggregating statistics and enabling replay of a user session. This
capability is explained in detail in Section 6. Replay takes place in the translate view of the
UI, it shows the screen at any time exactly the way the user encountered it when he or she
interacted with the tool.

1.1.5 List Documents

As in the 1st prototype it is possible to list all documents in the system (Figure 8). From
there a user can start a replay, download the logged data or continue a translation session.
Unfortunately, as there is currently no real multi-user support, this view shows all documents
of all users. So it is currently more an administration tool. Later, when a user management is

Figure 5: Interactive Translation Prediction
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Figure 6: Interactive Translation Prediction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7: Visualization of Word Alignment

added, this view could present documents only ’per-user’. For this reason, the url is not exposed
in one of the other views. To open this view, one needs to specify ’listDocuments’ as the action:

http://<server>/<baseurl>/index.php?action=listDocuments

For the post-editing demo (see Section 1.4), this would be

http://bridge.cbs.dk/prototype2/pe/index.php?action=listDocuments

Figure 8: Documents

1.2 Server

On the server side the matecat code has been adjusted and casmacat modules have been
added. Integration has been carried out very carefully so as not to break existing functionality
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and to make it easy merging the code back into the matecat code base. If possible, files
were put into separate directories or a prefixed was added. Function hooks have been used to
extend the orignal code without altering it. If this was not possible, then changes to the original
matecat code have been cleanly commented. Also, the additional database tables reside in an
extra script and can be easily imported over the original matecat database.

1.3 Configuration

The system has been designed in a manner that all casmacat modules are optional and can be
switched on or off as needed. The particular configuration can be changed in the config.ini file.
Currently, the selected configuration is then applied for the whole system. All users work then
with the same configuration. This implies that two instances of casmacat need to be run, if
one would like to run two different settings. However, the structure of the current implemention
opens up the possibility to easily allow a system later, where each user can have it’s own setting,
either configured by himself or herself or by some administrator.

1.4 Demo

The 2nd prototype can be tried out in two different modes, post-editing and ITP (with search
and replace). As this is a beta version, there are no particular security checks. The application is
vulnerable against several types of attacks (e.g. XSS) and should not be used in any production
environment. The URL’s to try the system are:

• http://bridge.cbs.dk/prototype2/pe

• http://bridge.cbs.dk/prototype2/itp-sr

2 T5.3 E-pen Interaction

This section is devoted to the integration of the e-pen subsystem in the casmacat UI. E-pen
interaction should be regarded as a complementary input rather than a complete replacement
of the keyboard. However, this should not be an obstacle to completely redesign the original
interface to better accommodate for the e-pen interaction specific needs. Nevertheless, in a first
approach, we have extended the casmacat UI with the minimum components necessary to
enable e-pen gestures and handwriting in a comfortable way.

2.1 E-pen UI

The e-pen UI can be enabled by setting penenabled = 1 and htrserver = "address" in the
server configuration file. As a result, a new button is displayed in the button area ( ). This
button toggles the e-pen view. When activated, the display of the current segment is changed
so that the source segment is shown above the target segment. This way, the drawing area
is maximized horizontally, which facilitates handwriting particularly in tablet devices. Next,
an HTML canvas element is added over the target segment. This drawing area is highlighted
with a dashed border. In addition, a clear button ( ) is added to refresh the drawing area. A
screenshot of such display can be seen in Figure 9.

The user can interact with the system by writing on the canvas. Although in principle
it would be interesting to allow the user to introduce arbitrary strings and gestures, in this
approach we have decide to focus on usability. We believe that a fast response and a good
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Figure 9: Sketch of a document fragment

accuracy are critical for user acceptance. Thus, we decided to use MinGestures [4], a highly
accurate, high-performance, gestures for interactive text edition. The gestures in MinGestures
are defined by 8 straight lines that can be configured to be direction dependent and be aware of
the context where they gestures takes place. In addition, they can be easily differentiated from
handwritten text with line fitting algorithms. Gestures are recognized in the client side so the
response is almost immediate. On the other hand, when handwritten text is detected, the pen
strokes are sent to the server. At this moment, only single words can be written. However, In
future releases also substrings and multiple words will be allowed. The set of gestures used in
the prototype are summarized in Figure 10.

ACTION RESULT ACTION RESULTLABEL LABEL

Substitute

<help event>

Reject

Merge

Delete

Insert

Split

Validate

Undo

Redo

Help

Lorem IpsanLorem Ipsum

Lorem ...Lorem Ipsum

Lorem Ipsum LoremIpsum

Lorem Ipsum Lorem

Lorem et IpsumLorem Ipsum

Lorem Lor em

Lorem Ipsum Lorem Ipsum

Lorem Lorem Ipsum

Lorem Ipsum Lorem

Lorem Ipsum

Figure 10: Set of gestures

2.2 HTR server

The HTR server is responsible for decoding the user handwriting into digital text. The tech-
nology is based very much on the ITP server technology. An HTR server must implement the
following API:
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startSession This function instructs the server to initialize a new HTR session with the ap-
propriate contextual information. A session consists of one or more strokes that constitute
one user interaction. The input parameters are the source string, the current transla-
tion and the last position validated by the user. At this stage, the server does not return
a value.

addStroke When a user finishes writing a stroke, the points are encoded into an array of points
that are defined by the x and y coordinates along with the timestamp when they were
acquired. The HTR server processes this information and, optionally, returns a partial
decoding.

endSession When the user stops writing for a specific amount of time (400ms in our set-up),
the users session finishes. The final decoding is then returned to the UI, possibly with a
list of n-best solutions.

The HTR server is based on iAtros, an open source HMM decoder. The current version
does not leverage contextual information, but it is prepared to support that in future releases.

3 T5.5 Machine Translation Server

In the casmacat workbench, the UI (implemented in Javascript running in a web browser)
connects to the Computer Aided Translation (CAT) server via web sockets. The CAT server
implements interactive translation prediction as described in Section 1.1.3, alongside other ad-
vanced types of assistance such as confidence measures and word alignment. For many of the
CAT server’s functions, information from the Machine Translation (MT) server is required.
This includes not only the translation of the input sentence, but also n-best lists, search graphs,
word alignments, etc.

We separate the functionalities of the MT server and the CAT server to support more
modularity and allow for the use of multiple MT server implementations, and even external MT
services. Within the casmacat, we bring together two machine translation systems, Thot and
Moses, and extend them to support the requirements of the project. In this section we describe
how these machine translation systems are accessible as a server process that response to API
calls via TCP/IP.

3.1 Translation

The main call to the server is a request for a translation. In the request, the source sentence (q),
source and target language (source, target) and optionally a key identifying the user (key).
Here is an example request:

http://demo.casmacat.eu:8000/translate?q=test&key=0&source=en&target=es

The server responds to requests with an JSON object.

{"data":

{"translations":

[{"sourceText": "test",

"translatedText": "testo",

"tokenization": {"src": [[0, 3]], "tgt": [[0, 4]]}

}]

}

}

Note that this is the same API specification as Google Translate. Our server implementation
extends this API in various ways.
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3.2 Report tokenization and alignment

Tokenization is reported by default. Now also the alignment should make sense since this
is based on the tokenized and preprocessed src and raw output. Alignment info is returned
including a parameter align in the request. The alignment can deal with cases like:

• raw: Mein Haus @-@ Tier , &gt; Fisch .

• postprocessed: Mein Haus-Tier , > Fisch.

from which these spans would be extracted:

• raw:
[[0, 3], [5, 8], [10, 12], [14, 17], [19, 19], [21, 24], [26, 30], [32, 32]]

• postprocessed:
[(0, 3), (5, 8), (9, 9), (10, 13), (15, 15), (17, 17), (19, 23), (24, 24)]

representing these tokens:

• raw: | Mein | Haus | @-@ | Tier | , | &gt; | Fisch | . |

• postprocessed: | Mein | Haus | - | Tier | , | > | Fisch | .

3.3 N-Best Lists

By adding nbest=n to the request the server gives an n-best list of size n in two formats, raw
and post-processed. The latter format consists of a list of entries which look similar to what we
get for the first-best translation the former contains the raw output and scores:

"raw_nbest":

[{"hyp": "the American President Obama comes after Oslo . ",

"totalScore": -21.49662780761718

},

{"hyp": "the American President Obama comes after Oslo . &quot; ",

"totalScore": -23.7340850830078

},

[...]

]

3.4 Search Graphs

By adding sg to the request the server also returns a search graph. The search graph is a set
of states and transitions that mirror the process of hypothesis generation during decoding. The
search graph currently uses the Moses format for search graphs. See below for an example for
the format.

"searchGraph":

[{"forward": 1.0,

"hyp": 0,

"stack": 0,

"fscore": -2.447231531143188

},
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{"transition": -2.447231531143188,

"back": 0,

"hyp": 1,

"score": -2.447231531143188,

"cover-start": 0,

"forward": -1.0,

"cover-end": 0,

"stack": 1,

"fscore": 0.0,

"out": "test"},

{"transition": -2.85275387763977,

[...]

}

]

3.5 Word Posterior Probabilities as Word Level Confidence Estimate

Re-using the n-best list all entries are aligned to the first-best hypothesis and posterior probs
are computed using the scores. Use ’wpp=n’ to set length of the nbest list used to this purpose.
The resulting values are just a single float per token.

Example (on toy data):

"translatedText": "The American President Obama comes after Oslo.",

"wpp": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.99 ],

4 T5.6 Manual Gaze-to-Word Alignment

The DOW specifies that ”We will implement a tool for aligning and correcting erroneous fixa-
tions so as to manually map them on the words that are likely to be fixated. The tool will be
instrumental in creating a corpus of high-quality gaze-to-word mappings, and will be used as a
training set of automatic gaze-to-word mappings algorithms.”

A first prototype of the manual alignment tool has been implemented in Translog-II and
fixations in 64 files were manually re-mapped. These files are part of TPR-DB v1.0 and can be
downloaded through the TPR-DVv1.0 svn server. The re-mapped files include all 10 translation
sessions in the study BD08 and 54 files of the study BML12.

5 T5.7 Automatic Gaze-to-Word Alignment

We implemented two algorithms for automatic gaze-to-word alignment. The manually re-
mapped fixations were used to evaluate the precision of these algorithms. The algorithms
and their evaluation are described in two publications (one published, one draft), which are
attached in the appendix of this deliverable.

• Abhijit Mishra, Michael Carl and and Pushpak Bhattacharyyya (2012). A heuristic-based
approach for systematic error correction of gaze data for reading. Proceedings of the First
Workshop on Eye-tracking and Natural Language Processing, December 2012, Mumbai,
India (http://www.aclweb.org/anthology/W/W12/W12-4906.pdf)

• Dynamic programming for re-mapping noisy fixations in translation tasks. Draft.

We are currently working on a comparison of the two programs.
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Figure 11: Replay view

6 T5.8 Replay Mode for User Activity Data

The replay view now works very differently from the one of the 1st prototype. The replay view
loads the translate view into an iframe and remote-controls it with the data from the log file.
This is more robust, requires less changes in the translate view and allows for changes of the
replaying window geometry (like resizing).

The log data is now fetched in small chunks when replaying. When replay is started, only
the first chunk of the log data is loaded and the replay starts. When the next chunk is needed,
the replay is paused and the next chunk is fetched. This minimizes the initial loading time
when starting the replay. This was a problem in the 1st prototype where the whole log data
has been fetched first before starting the replay, which took easily up to 15 minutes and more.
The new loading mechanism may also be optimized in the future so that the next chunk(s) are
pre-fetched, while replay is still running. In this way there will only be a short waiting time at
the beginning of the replay (or, of course, if the user starts seeking).

The new replay engine now uses a more precise internal clocking. In the 1st prototype,
events with the same timestamp have been grouped and replayed together. Now, each event is
replayed on its on. This makes the engine more precise, more robust and allows for arbitrary
jumps between events.

A lot of new events have been added to the logging (especially ITP) and those new events
are not yet fully integrated in the replay mode. Currently, only PE session are replayed. But
the functionality will be extended in the next weeks to include the new events and to allow for
arbitrary seeking in the replay (e.g. by time or segment). Additionally, the replay mode will
soon allow to re-compute or re-map particular data, like gaze-to-char mapping. See Figure 11
for a screenshot.

Latest tests have confirmed that the current strategy of visualizing the ET data via the
browser’s DOM is too slow. The new idea is to let the ET plugin take over this task by creating
a new native but invisible system window on which the ET data is drawn. This still has to be
implemented and tested but promises a high performance visualization of ET data.
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The replay of a document can be reached either by going to the view ’List Documents’ (see
1.1.5) or by changing the string ’translate’ to ’replay’ in the URL of a document. For instance,
the URL

http://localhost/matecat_source/translate/moke.xliff/en-es/171-zwrczyxk

would become

http://localhost/matecat_source/replay/moke.xliff/en-es/171-zwrczyxk

7 T5.9 Visualization of Translation Processes

Besides visualising of the translation process data in a replay mode, the Translation Process
Research Database (TPR-DB) also allows for plotting translation sessions in the form of transla-
tion progression graphs. However, translation progression graphs only visualize a small fraction
of the information that is contained in the TPR-DB.

A overview of the features that are contained in the database and their current visualization
possibilities are describe a draft paper which is included in full in the appendix.

• Feature Representation in the Translation Process Research DB. Draft.
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Miguel Vilar. Statistical approaches to computer-assisted translation. Computational Lin-
guistics, 35(1):3–28, 2009.

[3] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computational
linguistics, 19(2):263–311, 1993.

[4] Luis A. Leiva, Vicent Alabau, and Enrique Vidal. Error-proof, high-performance, and
context-aware gestures for interactive text edition. In Proceedings of the 2013 annual confer-
ence extended abstracts on Human factors in computing systems (CHI EA), pages 1227–1232,
2013.

[5] G. Sanchis-Trilles, Daniel Ortiz-Mart́ınez, Jorge Civera, Francisco Casacuberta, Enrique
Vidal, and Hieu Hoang. Improving interactive machine translation via mouse actions. In
Proc. EMNLP, 2008.

Appendix

This appendix contains three publications that give more details to the automatic gaze-to-
word alignment methods mentioned in Section 5 and visualization of translation processes in
Section 7.

• Abhijit Mishra, Michael Carl and and Pushpak Bhattacharyyya (2012). A heuristic-based
approach for systematic error correction of gaze data for reading. Proceedings of the First
Workshop on Eye-tracking and Natural Language Processing, December 2012, Mumbai,
India (http://www.aclweb.org/anthology/W/W12/W12-4906.pdf)

• Dynamic programming for re-mapping noisy fixations in translation tasks. Draft.

• Feature Representation in the Translation Process Research DB. Draft.
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ABSTRACT 

In eye-tracking research, temporally constant deviations between users’ intended gaze location 

and location captured by eye-samplers are referred to as systematic error. Systematic errors are 

frequent and add a lot of noise to the data. It also takes a lot of time and effort to manually correct 

such disparities. In this paper, we propose and validate a heuristic-based technique to reduce such 

errors associated with gaze fixations by shifting them to their true locations. This technique is 

exclusively applicable for reading tasks where the visual objects (characters) are placed on a grid 

in a sequential manner; which is often the case in psycholinguistic studies.  

 

KEYWORDS: EYE-TRACKING, FIXATION CORRECTION, GAZE DATA MANIPULATION, SYSTEMATIC 

ERROR 
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1 Introduction 

In psycholinguistic studies, eye tracking experiments have often been conducted to study the 

human way of analysing and synthesizing text. During reading, eye movement significantly 

relates to the cognitive load on participants. So, analysing gaze data is useful in 

proving/disproving hypotheses and extracting features for training and tuning machines. But eye 

trackers, after all, have certain limitations and they exhibit error in capturing gaze points of 

individuals. Such errors could be classified into variable and systematic errors (Harnof and 

Halverson, 2002). Variable error is nothing but dispersed gaze-points around the intended 

fixation which indicate lack of precision of eye-trackers. Systematic error, on the other hand, is 

the drift between the gaze-point locations captured by the eye-trackers and the intended fixation. 

It may be caused by imperfect calibration, head movement, astigmatism and other sources (LC 

Technologies, 2000). With the advent of sophisticated eye-trackers (Tobii, SR Research Eyelink 

etc.) it has been possible to reduce variable errors. But yet there is still a demand of tools and 

techniques to handle systematic errors which often imposes adverse impact on gaze-point 

analysis.  

Various methods have been proposed to handle systematic error associated with fixations. 

Abrams and Jonides (1988) and Juhasz et.al (2006) proposed recalibration in the course of 

experiment which may not be applicable for linguistic analysis since such interruptions would 

reduce the quality of task. For example: during translation process studies participants cache 

contextual evidences in their short term memory, which could be lost by such interruptions. 

Hornof and Halverson (2002) introduced Required Fixation Location (RFL) technique in which 

they identify RFLs i.e some points on the screen which indicates the actual fixation of the 

candidates at a specified time.  In some of the experiments they record RFLs by asking 

participants to place the mouse cursor over the objects they were looking at. Then they measure 

the discrepancies between RFLs and fixations recorded by eye-trackers and shift the fixations to 

the true locations. This method is not very useful where one cannot ask the user to indicate RFLs. 

For example, during translation studies the participant might be busy typing the translations and 

reading the text simultaneously. Similar is the case with annotation tasks where the user has to 

read and annotate a text. 

The Gaze to Word Mapping (GWM) modules introduced by Špakov, (2007) is a heuristic based 

approach. The underlying algorithm does not make a simplistic link between the x-y coordinates 

of a fixation and the location of a word on the monitor, but rather tries to account for certain 

documented effects, closely resembling to our technique. While is it quite reasonable to believe 

that participants tilt towards the end of reading lines; it doesn’t clearly show us a way to 

determine the line which the participant is looking at; given initial few fixations are nonlinear in 

nature. Our algorithm tries to overcome this by introducing a scoring function which guesses 

which line a participant is focusing on; given N initial non-linear/linear fixations starting at time 

T. 

The Mode-of-disparities error correction technique proposed by Zhang and Hornof (2011) is 

useful when the visual objects are arranged in an irregular manner but fails when objects are 

placed on a grid such as placing a paragraph for reading. 

Intuitively, for reading and writing tasks vertical displacement of fixations contribute more to the 

noise than that of horizontal. So in this article, we focus more on vertical directional adjustment. 
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Initially, before processing fixations, a set of virtual horizontal lines are drawn by joining the 

centre coordinates of character belonging to the respective textual lines.  Fixations are extracted 

from the noisy data and stored sequentially in a temporal order
1
. Then they are processed and 

corrected in three stages. In first stage, fixations are shifted to lie on the nearest virtual lines. In 

the second stage transient fixations are corrected. Finally, participant’s Reading Line (RL) is 

predicted and deviating fixations are shifted to the corresponding RLs.  

This technique is applied on the Translation Process Research (TPR) database (Carl, 2012) 

recorded by Tobii eye-tracker using Translog-II (Carl 2012) software. Then validation is done 

across manually corrected fixations. Qualitative analysis is done by replaying the recorded and 

corrected data in Translog. In all the cases we have assumed left to right reading and writing but 

the technique could be slightly modified to support for languages adopting Arabic scripts. 

2 Heuristics for Fixation Correction 

In order to hand code rules for fixation correction, we have extensively studied the fixation 

sequences in TPR database. The database contains more than 450 recordings for translation, post-

editing and reading experiments in 7 languages and are collected over last 5 years by a following 

a systematic initial experimental setup (Carl, M. and Jakobsen A.L. 2009); the eye-tracker used 

being Tobii, a remote eye-tracker. However, this does not bias our heuristics since many of the 

psycholinguistic experiments involving reading and writing tend to follow similar set-up. 

Moreover, other state of the art remote eye-trackers (such as SR research, SMI vision) report 

same or more accuracy as Tobii. 

Fixations in the recorded data are corrected in three phrases as described below.  

2.1 Shifting fixations to the nearest line 

First of all, recorded fixations could be dispersed over the screen whereas the intended fixation 

should only possibly lie on visual objects such as characters. A fixation lying on the blank space 

between two lines is nothing but an indication of error. So the first step is to shift the fixations 

vertically to the nearest line. To come up with discrete lines we have taken the cursor coordinates 

of each character in a line and joined them to draw a virtual line. Figure 1 illustrates a set of 

virtual lines going through the text. These lines serve as Reading Lines (RLs) in the later 

processing stages. 

 

 

 

 

 

FIGURE 1 – Shifting fixations to nearest virtual lines 

                                                           
1 Fixation sequencing is done on the basis of time of occurrence of the fixations. For exemple, if we say a particular 
fixation (say F2) follows/precedes another fixation (F1), we mean, F1 occurs sooner/later than F2 even if F2 
appears to the left/right of F1 co-ordinate wise. 
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Figure 1 is a screen dump of Translog II, The orange lines represent virtual lines (Reading Lines). 

The red and green dots represent gaze samples of left and right eyes and blue circles represent 

fixations. 

Sometimes, shifting fixations to the nearest virtual line is not enough. Upon closely looking at 

figure-1, one would predict that the participant is trying to read line1. But after shifting the 

fixations most of the fixations fall on line2. 

After this step, it becomes easy to obtain systematic patterns which reduces the randomness and 

hence, the number of rules to be used for correction. 

2.2 Discarding transient fixations 

Transient Fixations (TFs) are very short duration fixations which occur in between two fixations 

falling nearer to each other (on the same line or just a line apart) and located far away from each 

of them. In other words, upon joining three fixations if we observe a spike and the tip of the spike 

is a short duration fixation, it is said to be transient. Figure 1 illustrates one TF. 

 

 

 

 

 

 

 

 

FIGURE 2 – Transient Fixations 

Figure 2 shows one transient fixations. Upon joining 3 consecutive fixations involving one TF, 

we observe a spike. 

In some studies, we do not need TFs to be present in our data as the fixation count un-necessarily 

grows on account of TFs. Transient fixation may also add noise to the data in some cases where, 

for example, fixation count for a region is a part of our study. Suppose, for our translation studies 

if we want to count fixations in source text window (src) and target text window (tgt) during an 

interval of 20 seconds and a lot of transient fixations fall on tgt, the distribution will be 

completely different from that of if we discard transient fixations. Such cases would require 

discarding TFs. 

2.3 Correcting continuous abnormalities in fixation sequences 

In this stage we try to predict the Reading Line (RL) of the participant at a specified time period 

and try to shift way-ward fixations within that time period to the corresponding RL. For instance, 

consider the case where the user starts reading the text from left to right and the eye-tracker 

records F fixations within the timespan of T. After shifting those fixations to the nearest lines, it 

is observed that first N out of the F fixations lie on line1. Here we can, to some extent, believe 

that the RL for the participant for the timespan T is line1. Now suppose the rest (F-N) fixations 

74



lie on line2 and the X co-ordinate of these fixations are greater than those of first N fixations. In 

this case, it is unlikely that the RL of the user has changed from line 1 to line2. Hence those (F-

N) fixations have to be relocated to line1. 

Assuming that the initial calibration is perfect enough for a particular experiment session and the 

line spacing width significant (which is often the set up in linguistic studies) , it is reasonable to 

believe that most of the first N (co-ordinate wise) fixations decide the RLs. The intuition behind 

such an assumption is that, if the participant is reading from left to right, after reading certain 

words from left, there will be a gradual head movement and tilting which might contribute to 

shifting of fixations to the next/previous line. 

The value of N is decided by taking samples from the recorded data and observing it by replaying 

the recordings. It is highly possible that the first N fixations could be distributed amongst 

different lines; each being a candidate RL. In such cases we infer the RL by ranking the 

candidates as follows 

              ∑ ∑            )              )) 

                                                    and dur(f) is duration of fixation f 

The first part of the summation represents fixation frequency distribution amongst the RIs. The 

intuition behind taking such a function is that during reading/writing, fixation duration and 

frequency are measurable factors providing evidences regarding participant’s attention. The 

rationale behind taking Dirac Delta is that one particular fixation at time T could lie only on one 

Reading Line. 

If the scores of two potential RLs match, RL is assigned to the line having maximum fixation. If 

that still matches, random assignment has to be done. Once the RL for a particular time period 

has been detected, the following two types of deviations are corrected. 

Type A: This is a case when the user tries to read M
th

 line from left to right. A few fixations (say 

P) lie on line M spatially followed by a number of fixations (say F) on line M+1. The x-

coordinates of those F fixations are greater than those of P. In such cases those F fixations are 

shifted upward to line M unchanging x-coordinates. (Figure 3 Type A) 

Type B: Here, the user tries to read M
th

 line from left to right. A few fixations (say P) lie on line 

M spatially followed by a number of fixations (say F) on line M-1. The x-coordinates of those F 

fixations are greater than those of P. In such cases those F fixations are shifted downward to line 

M unchanging x-coordinates. (Figure 3 Type B) 

 

FIGURE 3 – Type A and Type B deviations 
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3 Algorithm 

correctFixations (N, loggedData):   

 fixationSet := extractFixations(loggedData) 

 fixationSet = sortByTimeOfOccurrence (fixationSet)  

 RL_Set := extractDistinctYCoordinate(loggedData) 

 Foreach fixation in fixationSet: 

  Re-assign the y-coordinate of the fixation to that of the closest RL 

 correctTransientFixations (fixationSet) 

 correctAbnormalities (fixationSet,N,RL_Set) 

 Update logged data with fixationSet 

 return  

correctTransientFixations (fixationSet): 

 averageFixationDuration := ComputeAvarageFixationDuration(fixationSet) 

 Foreach fixation in fixationSet: 

 IF previousFixation doesn’t exist OR nextFixation doesn’t exist 

  Continue 

 IF abs(previousFixation.Y-nextFixation.Y) << abs(previousFixation.Y -fixation.Y) 

AND fixation.duration  << averageFixationDuration) 

  Delete fixation from fixationSet 

correctAbnormalities (fixationSet,N,RL_Set): 

 startingPoint := 1 

firstN: = selectNFixations(fixationSet, startingPoint,N) 

RL:= getRLWithMaximumScore(firstN,RL_Set) 

 X: = getLargestXCoordinate(firstN,RL) 

 targetSet: = setDifference(fixationSet,firstN) 

 Foreach fixation in targetSet -: 

  startingPoint+=1 

  L1 = getLineNumber(fixation.Y)   

  L2 = getLineNumber (RL) 

  IF previousFixation doesn’t exist OR nextFixation doesn’t exist 

   Continue 

  IF (previousFixation.X > fixation.X and previousFixation.X>nextFixation.X) 

  RL = getRLWithMaximumScore(firstN,RL_Set) 

   X = getLargestXCoordinate(firstN,RL) 

   targetSet = setDifference(fixationSet,firstN) 

  Continue 

  IF (abs(L2-L1)==1 and fixation.X >X) 

   fixation.Y = RL 

getRLWithMaximumScore (firstN,RL_Set) 

RL =                 ∑ ∑                        )        ) 

 Return RL 
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The subroutines selectNFixations returns N fixations from the starting index. Similarly, 

getLargestXCoordinate returns the right-most fixation lying on an RL. 

4 Validation 

This technique was applied on Spanish and Danish translation and post-editing recording sessions 

from Translation Process Research (TPR) database. Qualitative analysis of the corrected data 

showed improvement. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 – Uncorrected fixations 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 – Automatically corrected fixations 
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As we can see in the initial data (Figure 5), the fixation distribution is noisy and there is an 

overlap among fixations lying on line 3 and 4. After correction (Figure 6) the noise is 

significantly reduced. Fixations are labelled as per their temporal ordering.  

5 Comparison with manual correction 

We compared our output with manual corrections done for Spanish and Danish TPR data. Since 

our method shifts most of the fixations and manual correction only involves correcting only 

certain badly shifted fixations by mapping an appropriate word to the fixation, we checked for 

what fraction of manual correction could be successfully carried out by our method. 

First, we mapped our fixations to the words on which they lie. Then from the original data we 

took the timestamp of those fixations which were corrected manually. For those timestamps we 

collected Fixation-to-word mapping for both the corrected versions and produced the Longest 

Overlapping Subsequence (LOS) between the mapped words. If the length of the LOS is more 

than the sum of the character counts of those two corresponding words, it is considered to be a 

valid correction. 

For different values of N, we checked for the percentage of correction done with respect to 

manual correction. The results are shown by the following table 

 N=3 N=6 N=10 

Danish 

(10 sessions) 

63% 83% 79% 

Spanish 

(40 sessions) 

55% 81% 81% 

TABLE 1 – Automatic Vs Manual Correction 

6 Conclusions 

In this article, we presented a mechanism to correct systematic error associated with fixations by 

applying certain heuristics. The advantage of this method is, it can be applied both online (in the 

course of experiments) and offline. But the correction quality depends on the value of N and 

other parameters like initial experimental set-up and degree of randomness of fixations etc. It 

works best for shallow visualization studies; making it quite useful in studies like Translation 

Process Study, Sentiment Analysis etc. 

There are certainly several factors for drift and imprecision apart from what we have taken into 

account. For instance, if the eye-tracker maps all gaze sampled, say 3cm below the intended 

location (because the head was permanently moved), all gaze samples are 3cm distorted, 

including the ones on the first N words in a line. Our algorithm fails to detect this. Of course, for 

the studies involving writing, we can get this constant drift (3cm) by comparing the cursor and 

the fixation positions during writing and finding out the average deviations. This is somewhat 

similar to RFL techniques assuming that a person’s region of interest should not be very far away 

from the cursor position. 
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Our technique also fails if fixations are highly randomly distributed; which might be a case for 

studies involving detailed reading. In such cases, we also do not know the all the causes of the 

deviating fixations. Future work includes exploring and involving other case than just the two 

types of deviations that we took into account here. More cases and heuristics have to be included. 

A better validation technique has to be introduced as well. 
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Introduction 

Translation Process Research has advanced to a state 
where recordings of behavioural data is used to elicit and 
model cognitive processes in the translators mind. In 
particular, the interrelation between the rhythm and speed 
of typing activities and the gazing behaviour is a valuable 
resource to understanding the translators black box. 
While the gazing behaviour reveals details about the text 
comprehension process, the typing of the translation 
shows us how the target text is produced and revised. In 
between these two activities lies the human translation 
process which we aim at understanding and modelling by 
looking at the physically measurable in- and output. The 
accuracy of the gaze data is crucial to obtain an 
undistorted approximation of these cognitive processes. 

However, gaze data collected from eyetrackers is 
often noisy. The measured gaze location often does not 
exactly correspond to the spot that a subject actually 
looked at so that an analysis of the data may lead to 
misleading conclusions. This is harmful when studying 
gaze data during reading (or writing) activities where we 
deal with relatively small spacial areas - words or 

characters - on the screen that are read. A horizontal 
displacement of a few characters is still tolerable as it 
may still map to the same, or at least a neighbouring 
word, while a vertical displacement of only one line 
corresponds to a jump of perhaps 10 words, which may 
imply completely misleading conclusions when analysing 
the data. A vertical drift thus contributes more noise and 
may falsify major parts of the findings.  

Noise and drift in gaze data has been addressed in 
several instances. A frequent method is to assess the 
collected data after an experimental sessions and 
disregard data which is too noisy.  However, this seems 
unpractical in a setting which allows for free-head 
movements and which potentially add noise in almost 
every recording. Other methods make use of re-
calibration on the fly Juhasz et.al (2006), or by means of 
Required Fixation Location (Hornof and Halverson, 
2002). In this latter method, participants are asked to 
place the mouse cursor over the objects they are looking 
at. The measured discrepancies between the mouse cursor 
and the recorded fixations indicates a drift or noise offset 
between which may then be corrected. Also such methods 
are undesirable as they distract a translators, readers or 
writers form their usual working habit. Other solutions 

Dynamic programming for re-mapping 
noisy fixations in translation tasks 

 

  

Eyetracker which allow for free head movements are in many cases imprecise to the extent 
that reading patterns become heavily distorted. The reduced usability of these patterns for 
the gaze analysis is due to a "naïve" gaze-to-symbol mapping approach, which often 
wrongly maps the possibly drifted center of the observed fixation on the symbol directly 
below it. In this paper I extend this naïve fixation-to-word mapping by introducing 
background knowledge about the gazing task. In a first step, the sequence of naïve fixation-
to-word mappings is projected into a lattice of several possible fixation locations, including 
those on the line above and below the naïve fixation mapping. In a second step a dynamic 
programming algorithm applies a number of heuristics to find the best path through the 
lattice, based on the likely distance in characters, in words and in pixels between successive 
fixations, so as to smooth the gazing path. 
Keywords: Fixation-to-word mapping, drift in gaze data, drift-correction algorithm  
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are necessary, in order to allow as much as possible for 
an ecologically valid working environment. 

Mishra et al (2012) propose a heuristics-based 
technique to reduce temporally constant deviations 
between users’ intended gaze location and the location 
captured by eye-samplers, so-called systematic errors. 
These error-correcting heuristics intend to shift gaze 
fixations to their “true locations”, under the assumption 
that the measured gaze data at the beginning of a new line 
is often correct, while effects of gaze drift worsen as the 
eyes move towards the end of the line. Accordingly, the 
method of Mishra et al. places most importance to the 
first few fixations on each line, to which the remaining 
fixations are subsequently shifted. A similar method has 
been described by Špakov (2007), however, with a less 
sophisticated mechanism to determine the reading line 
from the first observed fixations.  

In this paper we describe a fixation re-mapping 

algorithm that is tailored especially towards translation 
activities. In translation, the eyes move frequently 
between two texts, the source text and its translation, 
which calls for specific solutions. In the first section I 
discuss drifting problems in a sequence of recorded 
translation activity data, and why these drifting problems 
are difficult to capture with previous methods. From the 
description of the drifting problem I subsequently 
elaborate criteria for enhanced fixation-to-word mapping 
in translation tasks. The following section describes the 
implementation of the fixation remapping algorithm 
algorithm and a final section discusses evaluation issues.   

The Problem 

Figure 1 (top) shows an 8 second long fragment of a 
translation session from an English text into Estonian. In 
these 8 seconds were typed the characters 
”[pöllu]majandus ja sellest tulene” (excluding the part in 

square brackets) which - according to my 
back-translation from Estonian using 
google - corresponds to a translation of  
”agriculture and its pressure” in the 
English text.  

The figure has three different types of 
gaze information: First: red dots represent 
gaze samples collected from the left eye, 
green dots are gaze samples of the right 
eye, and, second the blue circles represent 
fixations (i.e. clusters of coherent gaze 
points). The numbers on the fixations 
reflect their temporal ordering, so that 
fixation 0 occurred first, followed by 
fixation 2, then 3 etc. The third type of 
information are fixation-to-word 
mappings indicated by the violet 
background behind sequences of 
characters. Figure 1 shows a naïve 
fixation-to-word mapping. That is, the 
center of a fixation is mapped to the 
closest character and the background of 
the surrounding 8 characters are 

coloured in violet. These characters and 
words are then supposed to represent the 
words that were looked at by the 

Figur 1 Replay situation with naïve fixation-to-word mapping showing a translation 
segment of 8 seconds. Top: the Translog-II replay shows the gaze sample points (red 
and green), the fixations and fixation to word mapping. Bottom: the translation pro-
gression graph shows the same segment of time with fixations on the source text 
(blue) fixations on the target text (green) and keystrokes on the time scale.  
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translator and are the basis of further analysis of reading 
behaviour.  

A number of imprecisions may distort this fixation-to-
word mapping process, among others:  

 due to calibration difficulties, free head 
movement or changing light or other conditions, 
the measured gaze sample points may not 
exactly correspond to the place which was gazed 
at.  

 the choices that are taken when computing the 
fixation, e.g. based on the left or the right eye 
gaze sample, their average, how proximity or 
saccades between successive gaze samples are 
defined etc. 

 the computation of the closest character for a 

given x/y position depends on which place of the 
character is taken as a reference, e.g. the upper 
left corner, or the center of the character, etc. 

In Figure 1 (top), the fixations (blue circles) were 
computed based on the average of the left and the right 
eye sample, with the assumption that fixations should be 
at least 40ms in duration, and that all gaze samples within 
a fixation are no more than 25 pixels from the fixation 
center. In Figure 1 (top) most of the gaze samples lie 
between the first and the second line, but the fixations 
centers are mostly mapped on the words in the second 
line.  

However, it is likely that the translator actually read a 
segment in the first line, since s/he is currently producing 
the translation of ”agriculture and its pressure” while the 
gaze moves back and forth between the source segment in 
the upper window and its translation in the lower 

window.  

Figure 1 (bottom) shows the 
same segment in the form of a 
translation progression graph. The 
horizontal axis represents 8 
seconds in which the fragment of 
the translation was typed 
(70.000ms to 78.000ms) while the 
vertical axis presents the source 
text to which the translation 
activities relate. The graph plots 
how the characters were typed in 
time: black characters are 
insertions and red characters 
deletions. The graph shows that 
there are several stretches of 
fluent writing (e.g. “jandus” and 
“ja”) and several pauses of 
different length (e.g. there is a 
pause of almost 1 sec between the 
typing of “jandus” and “ja”). Blue 
dots represent fixations on the 
source text words in the upper part 
of the Translog-II window while 
the green diamonds represent 
fixations on the translations in the 
lower window. Note that the blue 
dots in the bottom part in figures 1 
and 2 correspond to the violet 

Figur 2: Replay situation with re-computed fixation-to-word mapping showing the translation 
segment of 8 seconds from figure 1. top: the Translog-II replay shows the gaze sample points 
(red and green), the fixations and fixation to word mapping a lineabove the mappings in fig-
ure 1. bottom: the translation progression graph shows the same segment of time with fixa-
tions on the source text (blue) fixations on the target text (green) and keystrokes on the time 
scale.  
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fixation-to-word mappings in the top part of the figure. 

The segment shows that the translator was typing 
“ma” while the gaze was on the target window. The gaze 
moved then to the source window (blue dots), while 
typing “jandus ja” and then came back to the target, 
inspecting the just typed words (green diamonds), and 
then keeps on typing in  “sellest tulene”, while correction 
a few typos (characters in red). 

Figure 1 clearly shows the drift of gaze data and 
wrong fixation-to-word mapping in the source window: 
while the translation of source words 3 to 5 were typed, 
fixations in the source text are around words 17 to 26. 
However, it is likely that a translator read approximately 
the same words that s/he is currently translating, and not 
12 or 20 words ahead. 

A rectification of the fixation-to-word mapping to the 
first line in the source window is shown in Figures 2. 
While the location of the keystrokes, as well as the gaze 
samples and the computation of the fixation center are 
identical in the two pairs of figures, only the fixation-to-
word mapping has changed. Figure 2 (bottom) shows the 
progression graph of the re-mapped segment, so that the 
distances between successive fixations become smoothed.  

Even though we cannot be sure what a translator 
actually looked at – e.g. whether s/he read a segment in 
the first or second line - intuitively is seems more 
plausible that a translator reads source words which he or 
she is currently translating (as in Figure 2) instead of 
those words one line below (as in Figure 1). These 
observations lead us to criteria for a fixation-to-word re-
mapping algorithm: 

 successive fixations are more likely on 
neighbouring words than in the lines above or 
below 

 translators are likely to read passages of source 
text which they are currently translating 

 the distance between the fixation center and the 
fixated characters should be minimal 

A Fixation-remapping Algorithm 

Before applying the actual fixation re-mapping 
algorithm, we have re-computed fixations in a consistent 
manner with the following parameters: 

 the minimum fixation duration was set to 40 ms 

 each gaze-sample point must occur within 25 
pixels from the center of the fixation 

 a gap of gaze-sample data for more than 30ms 
would trigger a fixation boundary  

The closest character to the median gaze sample 
within each fixation would then be taken as the fixation-
to-word mapping. Figure 1 and Figure 4 show the results 
of this naïve fixation-to-word mapping, which was 
subsequently re-mapped based on the following 
algorithm. 

In a first step, the sequence of "naïve" gaze-to-symbol 
mappings (as in Figure 1) is projected into a lattice of 
several possible gaze locations above and below the 
current fixation on the text. In a second step a dynamic 
programming algorithm applies a number of heuristics to 
find the best path through the lattice, based on the likely 
distance in characters, in words and in pixels between 
successive fixations, so as to smooth the gazing path 
according to observations reported in the literature. 

Figures 3a to 3d illustrate this process based on the 
sequence of fixations and keystrokes between time 
stamps 70.000 and 73.000 in the previous figures 1 and 2. 
It illustrates the re-mapping of the fixation path in figure 
1 (bottom) on the path plotted in figure 2 (bottom). 
Additional fixations are computed from the gaze sample 
points, in the following way: 

 compute the fixation center only from the left 
eye gaze samples 

 compute the fixation center only from the right 
eye gaze samples 

 compute the fixation center from the average of 
the left and the right eye gaze samples 

The fixation centers are then mapped on the closest 
nearby character in the source or target window, a so-
called fixation-to-word mapping. There are thus three 
different fixation-to-word mappings average, left and 
right, depending on which fixation they are based on. In 
addition, a character is retrieved in the line above the 
upper most fixation-to-word mapping (up), and a 
character is retrieved in the line below the lowest 
fixation-to-word mapping (down). In this way, five 
fixation-to-word mappings are generated in addition to 
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the original one, which may be however partially 
identical.  

While figure 1 (bottom) shows the naïve average 
fixation, figure 3a shows the same situation, where the 
original naïve fixation-to-word mapping path is plotted 
(in blue) and additionally re-computed fixation-to-word 
mappings are represented as dots on the vertical fixation 
time line Ft. Figure 3a shows the projection of fixations 
on the lines above and below the naïve default mapping. 
For fixation time F1, two additional fixation-to-word 
mappings are generated in the lines below the naïve 
mapping (in the progression graphs the words further 
down in the text appear higher in the graph), while for 
fixations times F2 and F3 are generated fixation-to-word 
mappings in the lines above and below the default one. 
Note that different fixation-to-word mappings at one 

fixation time may also be distributed in different 
windows. For instance, a down re-mapping of the 
fixation numbered 0 in figure 1 (top) at the bottom of the 
source window may be re-located in the top of the target 
window, while the up alternative would appear in the 
source window, e.g. on decreased, as shown in figure 2 
(top), where the same fixation is numbered 1. 

In a second step a path through the lattice of fixation-
to-word re-mappings is re-computed based on the 
minimum penalty score of the distances between 
successive nodes. Assuming that a fixation-to-word 
mapping n is consolidated for a given fixation time Ft. A 
penalty score for each possible fixation-to-word mapping 
m at the next fixation time Ft+1 and its fixation center f 
is computed by summing up a number of features as 
described below. The fixation-to-word mapping m with 

Figure 3a to 3d from top left to bottom right: Figure 3a shows the projection of the naïve mapping into a lattice of 
alternative fixation-to-word re-mappings (red dots). Figure 3b (top, right) plots links to the first successor node, figures 3c 
(bottom, left)  and 3d (bottom, right) show successive steps in the re-mapping algorithm, including links to pre-predecessor 
nodes. 
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the lowest penalty score is then consolidated. Figure 3b 
shows the links to the three possible successor nodes, 
where the link in bold represents the strongest connection 
with lowest penalty score. 

Different features are considered to compute the 
scores between successive mapping nodes, depending on 
whether the two successive fixation mappings occur in 
the same window, or whether the gaze moves from the 
source window to the target window or vice versa. In case 
two successive fixations occur in the same window (i.e. 
the source or target window), we assume that a sequence 
of text is being read so that the eyes move likely forward 
over the text. In case the eyes move from one window to 
the other, we assume that the eyes move (close) to the 
translation of the sequence that was previously looked at 
in the other window.  

According to (Rayner, 1998), during “normal” 
reading the eyes jump in distances of around 5 to 15 
characters along the text from left to the right, often 
skipping short function words. As drift of gaze data is the 
more unusual case, we assume that the measured gaze 
sample points which are received from the eye tracker, 
and thus the center of the various fixations that we 
compute from it, are close to the characters and words 
which are actually read. In addition, we assume that 
translators read a piece of text (in the source or the target 
window) which is close to currently translated sequence. 
These considerations are formalized in the following four 
functions:  

 Cursor distance: 

C(n, m) = abs(CurPos(m)–CurPos(n) - 10) 

 Source ID distance:  

S(n, m) = abs(STID(m) – STID(n) + 2) * K 

 Last keystroke distance:  

L(m) = abs(STID(m) – STID(l)) * K 

 Character-pixel distance:  

P(f, m) = EuclidDistance(f, m) / z 
i.e.: sqrt((f(x)–m(x))^2 + (f(y)–m(y))^2)/z 

where n and m represent two fixation-to-word 

mappings, f is the fixation center of m,  K=6 is 

approximately the average length in characters of 
(English) words, z=24 is the size of the characters on the 

screen that we used in these experiments, and l is the 
cursor position of the last character that was typed in the 
target window.  

The SourceTextId STID(.) is computed based on the 
alignment between the source and target text. Words in 
the source and target target text are numbered, and the 
alignment information allows us to know the 
SourceTextId for each target word in the translation. This 
information can be spread out to the keystrokes which 
actually produce the target words and the target text. An 
algorithm described in (Carl, 2013) which describes how 
SourceTextIDs for keystrokes and fixations are computed 
from the alignments. 

Between each consolidated fixation-to-word mapping 

n at Ft and every possible successor node m at the 

following fixation time Ft+1, a penalty score is 

computed as: 

CSLP1(n,m,f) = C(n,m)+S(n,m)+L(m)+P(f,m)  

Since sometimes the eye may slip up or down a line 
or two (particularly when switching between the two 
windows) we also compute the penalty score between the 

consolidated node o of the preceding fixation time 
Ft-1 and the successor mapping m, so as to skip the 
impact of the current, possibly slipped fixation on the 
gaze path: 

CSLP2(o,m,f) = C(o,m)+S(o,m)+L(m)+P(f,m) 

This situation is depicted in figure 3c. There is one 

consolidated node n at fixation time F1 which is 

connected to all three possible successor nodes m1..3 at 

fixation time F2. These connections are represented in 
fine dotted lines. In addition, there are also connections 

from the consolidated node o at fixation time F0 which 
link to the three possible fixation-to-word mappings in 

F2. These links are represented with dashed curved 
connectors. There are thus six penalty scores for three 

nodes m1..3 in F2.  The node which the lowest penalty 
is consolidated, and the link to the previous consolidated 
fixation mapping is plotted in bold arrows in figure 3c. 
Even though the distance to its immediate predecessor 

node in F2 is quite large, the node in F2 was 
consolidated due to the similar SourceTextId which it 
shares with the consolidated fixation-mapping node in 
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F2 and its proximity to the previously typed character. 
The algorithm iterates through the expanded fixation-to-
word mapping lattice. Once a fixation-to-word mapping 
is consolidated, the penalties of the next fixation nodes 
are computed as shown in figure 3c and so on until the 
end of the lattice is reached. 

As mentioned previously, penalty scores are slightly 
differently computed if the two successive fixation-to-
word mappings are in different windows. In this case we 
assume that the eyes seek to retrieve the translation of the 
word that was looked at (or worked on) in the other 
window, rather than proceeding in the text. That is, 
penalty score increases as the two successive fixations-to-
word mappings return a different SourceTextID:  

 Source ID window change: 

W(n, m) = abs(STID(m) – STID(n)) * K 

Since shifting of windows is different from usual 
reading behaviour, we also do not assume that eyes move 
in jumps of around 10 characters, as above, and omit the 

cursor distance penalty function C(.). For window-
changing sequences of fixations, we thus introduce two 
functions, analogous to the previous ones, where: 
WLP1(n, m, f) computes the penalty scores for 

immediate successive nodes and WLP2(o, m, f) 
computes the penalty scores for two nodes distance: 

WLP1(n, m, f) = W(n, m) + L(m) + P(f, m) 

WLP2(o, m, f) = W(o, m) + L(m) + P(f, m) 

The brain usually prefers visual input from one eye 
which is referred to as the dominant eye. Accordingly, 
fixations computed with the gaze data of the dominant 
eye correspond more precisely to the visual input and 
hence reveal more accurately what the brain was actually 
processing.  According to wikipedia 
(http://en.wikipedia.org/wiki/Ocular_dominance), 
approximately two-thirds of the population is right-eye 

dominant and one-third left-eye dominant. As 
explained above, we compute up, down, left, 
right and average fixation-to-word re-
mappings. Since we do not know the eye dominance of 

our participants, the left and the right fixation-to-
word mappings take into account the fact that the 
preferred visual input may be on the left or right side eye 

respectively. In addition, we frequently observe 
phenomena of gaze drift, where the observed gaze data is 
a line below or above the one that we think is plausible to 

assume the person was actually reading. The up and 

down fixation-to-word re-mappings take into account 

such gaze drifts by simulating a shifting of the observed 
fixation a line up or down. However, we can expect that 
the left, right, up or down mappings do not change from 
one fixation to the next: the dominant eye does not 
change from one fixation to the other fixation and gaze 
usually does not drift in short distances of time from the 
line above to the line below. We thus assume that these 
fixation mappings are stable over stretches of time. To 
take this constraint into account, the penalty score P(f,m) 
is hat up and down drifts  

P(f,m) = 0, if (ReMap(n) eq ReMap(m)  

  or (ReMap(o) eq ReMap(m) 

P(f,m) = EuclidDistance(f, m) / z, otherwise 

where ReMap(x) returns one of the values up, 
down, left, right or average, according to the way 
how the fixation-to-word mapping was computed.   

Evaluation 

The assessment and evaluation of a fixation-to-word 
re-mapping method is problematic, since we cannot know 
for sure where translators really look on the screen when 
they translate. Hence an adjustment (manual or 
automatic) can always be wrong, and an objective 
function or a test set against which a re-mapping method 
could be evaluated may be troublesome to establish.  

A number of cognitive models of the human 
translation process exist which give us an intuition of the 
observed translation process data and which may serve as 
a basis for an evaluation of re-computed fixation-to-word 
alignment patterns. For instance, Jakobsen (2011) has 
found indications of a recurrent “micro-cycle”, i.e. a 
processing pattern consisting of six steps, some of which 
can be skipped or repeated several times. The processing 
cycle starts with an act of comprehension, namely reading 
the chunk of ST which is about to be translated (step 1). 
The translator then shifts his/her gaze to the TT to locate 
the position where the TT is about to be produced (step 
2). The translation is typed and monitored (steps 3 and 4), 
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and the translator’s gaze shifts back to the ST, where the 
relevant reading area is located and the current ST word 
is read again (steps 5 and 6) (Jakobsen 2011, 48). 

While such models give us a general picture of what 
we may expect in the translation activity data, they are 
still far from exactly predicting where the next fixation is 
to be expected. In addition, a large variation of individual 
translation styles has been described, for instance in 
(Dragsted & Carl 2013), so that the evaluation of the re-
mapped log files remains, for the moment, subjective and 
intuitive. In the future we hope that in a real-time reactive 
application the success of a re-mapping method could be 
evaluated based on its usefulness, Figures 4 show an 
example of the present re-mapping algorithm.  

The progression graph in Figure 4a clearly shows a 
systematic drift of the source text fixation mappings 
about 12 to 20 words ahead of the translations on which 
the translator is working. Figure 4b shows a re-mapping 
which clearly comes closer to the initial main criteria 
which were previously established to design of the re-
mapping algorithm: 

 successive fixations are one or two words apart 

 translators are likely to read source passages 
which they are currently translating 

 The re-mapped version also better accounts for the 
recurrent micro-cycle, as described above (Jakobsen 
2011). 

Figur 4a (top) naïve mapping vs. its re-mapped version 4b (bottom). Both figures represent the same translation segment. 
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Feature Representation in the Translation Process Research DB

Abstract

For more than 10 years CRITT has been involved in Translation Process Research (TPR). TPR-data was collected by 
the Translog tool and released in 2012 as a Translation Process Research Database (TPR-DB). Within the CASMACAT 
project, data for post-editing machine translation is collected and added to the TPR-DB. The second release of the TPR-
DB contains more than 900 translation sessions accumulating more than 300 hours of recorded translation sessions. 
This paper describes the features and visualization options of the recent release of the Translation Process Research DB. 
This database contains recorded logging data, as well as derived and annotated information. Seven kinds of simple and 
compound process- and product units are described which are suited to investigate human and computer-assisted 
translation processes and for advanced user modeling. 

1 Introduction

Since 2006 CRITT has developed a data acquisition software, Translog (Jakobsen and Schou, 1999, Carl 2012) with 
which translators’ keystroke and gaze activities can be recorded. This tool is now the most widely used tool of its kind 
(Jakobsen, 2006). In contrast to previous think - aloud elicitation methods, a keylogger runs in the background so as not 
interfere with the writing or translation process. Translog-II (Carl, 2012a), which is its most recent implementation, logs 
the exact time at which each keystroke operation is made and in a reply mode the translation session can be played 
back. If connected to an eye-tracker, Translog-II also records gaze-sample points, computes gaze fixations and maps the 
fixations to the closest character on the screen. The information is stored in an XML format and can be analyzed in 
external tool (Carl, 2012).

While Translog was originally designed to investigate reading, writing and translation processes, it was recently also 
extended to record post-editing sessions of machine-translation output. However, Translog-II does not provide an 
ecologically valid working environment, with which post-editors are used to work in their daily environment. Translog-
II presents two running text in a source and target window, while modern translation aides, such as translation 
memories, segment the texts into fragments and present a source segment with its translation in a more structured 
manner. In order to obtain a more realistic picture of professional translators' working styles and to assess how to 
support their translation processes with advanced machine translation technology, the CASMACAT project seeks to 
implement an advanced state-of-the art browser-based post-editing environment and combine this with Translog-II style 
keyboard logging and eyetracking possibilities. In this way, detailed empirical data can be collected from a realistic 
translation environment, and the assessment of this data may lead to a more complete picture of human computer-aided 
translation processes. 

The structure and content of the collected data from Translog-II and from CASMACAT is different in terms of the 
attributes and containers, but the logged data undergoes a similar compilation process (Carl, 2012b) to generate a 
number of tables, which can then be used as a basis for further analysis (Carl et al. Forthcoming, Balling and Carl 2013, 
Elming et al, forthcoming; Wilker et al, forthcoming) and visualization (e.g. Carl, Dragsted & Jakobsen, 2011).  The 
logged data together with the derived tables is released in the form of Translation Process Database (TPR-DB), which 
can be freely downloaded from http://bridge.cbs.dk/platform/?q=node/18

As in the first version of this data (Carl, 2012b), also the current version of the CRITT TPR-DBv1.3 contains for each 
translation session seven different types of units. The logging data provides two basic types of data: text modifying 
keystroke data (KD), that is insertions and deletions, and fixations on the source or target text (FD). From these basic 
units are derived two more complex processing units: text production units (PU) and fixation units (FU) which represent 
respectively sequences of coherent writing and reading. In addition to these production units, the TPR-DB contains 
three text-based units, which are derived from the final translation product: source text tokens (ST), target text tokens 
(TT) and alignment units (AU):

1. Keystrokes: basic text modification operations (insertions or deletions), together with time of stroke, and the 
word in the final text to which the keystroke contributes.

2. Fixations: basic gaze data of text fixations on the source or target text, defined by the starting time, end time 
and duration of fixation, as well as character offset and word index of fixated symbol in the source or target 
window.

3. Production units: coherent sequence of typing (cf. Carl and Kay, 2011), defined by starting time, end time and 



duration, percentage of parallel reading activity during unit production, duration of production pause before 
typing onset, as well as number of insertion, deletions.

4. Fixation units: coherent sequences of reading activity, including two or more subsequent fixations, 
characterized by starting time, end time and duration, as well as scan path indexes to the fixated words.

5. Source tokens: as produced by a tokenizer, together with TT correspondence, number, and time of keystrokes 
(insertions and deletions) to produce the translation, micro unit information.

6. Target tokens: as produced by a tokenizer, together with ST correspondence, number, and time of keystrokes 
(insertions and deletions) to produce the token, micro unit information, amount of parallel reading activity 
during.

7. Alignment units: transitive closure of ST-TT token correspondences, together with the number of keystrokes 
(insertions and deletions) needed to produce the translation, micro unit information, amount of parallel reading 
activity during AU production, etc.

Figure XX shows a visualization of the keystroke and fixation data, as collected in a post-editing session of the 
Casmacat Prototype-2 which involves a text of approximately 140 words of six segments. Translation progression 
graphs visualize how translations emerge in time, enumerating the source text words on the vertical axis and the 
translation time on the horizontal axis. We have adapted the visualization of translation progression graphs, which was 
developed for Translog-II logging data to both, the Casmacat Prototype-1 and the Casmacat Prototype-2.In addition to 
the original Translog-II logging data, the CASMACAT workbench plots the source and the target text in the form of 
segments, and produces automatic translations, as well as deletions and insertions in the interactivity mode. 
Accordingly, the representation and visualization schema was extended to take these additional features into account. 
The vertical axis enumerates the source text words (0.. 140) and the horizontal axis shows the time in which the 
translations of the source text were produced. The dotted lines divide the six segment, which are sequentially (pre) 
loaded, filled into the target buffer and then edited.  The various symbols in the graph represent:

• blue diamonds represent fixations on the source text
• green diamonds represent fixations on the target text
• black characters represent insertions
• grey characters represent automatic insertions 
• red characters represent deletions

The graph shows the temporal sequence of when segments are loaded into the target buffer, when and where translators 
read the source segments and the translations, and when which MT suggestions are modified. The unit information in 
the TPR-DB tables is thus instrumental to analyze and visualize translation processes. Much more information is 
contained in the TPR-DB tables, besides the one plotted in figure XX. This paper describes the features



The paper describes the units and the features1 that are extracted from from logged and annotated data. Section 2 
describes the two basic keystroke and fixation units. Section 3 illustrates examples of the derived production and 
fixation units. A special property of those units is parallel and alternating reading and typing behavior which indicates 
workload of the translator. The idea and the way to assess this property is described in section 4. Section 5 looks into 
characteristics of units that can be automatically derived from the final translation product: source tokens, target tokens 
and alignment units. Section 6 exemplifies how the translation construction of these production units can be 
decomposed into several micro units. 

2 Basic units

For each translation session, the TPR-DB contains seven tables, each of which identifying a different type of unit. The 
first column in each TPR-DB table is an identifier of the event or unit 
(KEYid, FIXid, FUid, STid, TTid, PUid, AUid). Successive columns 
encode various features which characterize the event or unit. 

2.1 Keystroke data

The Keystroke tables encode single events in time with no duration. 
All other TPD-DB tables encode textual or temporal units which 
stretch over parts of one or more words and which have at least one 
starting time and a duration, as described below. 
As shown in Table 1, keystrokes have a Time at which they were 
produced, a Type, indicating whether it was an insertion or deletion, a 
position in the text (a Cursor offset) at which the text was modified, 
the actual character (Char) which was inserted or deleted, as well as 
the target text token (TTid) to which the keystroke has contributed and 
the source text token (STid) of which the TTid is the translation. Note 
that the TTid refers to the token in the final text.
During a fixation, the  gaze is maintained on a single location. 
Reading involves fixating on a successive locations across a text, but 
neither is the eye perfectly steady during fixations, nor do the eyes 
move smoothly over a text. There are many methods to compute 
fixations. In Translog-II we currently use a density-driven fixation 
computation algorithm, which clusters gaze samples within a distance 
of 60 pixels into a single fixation, if the duration is longer than 40ms. 
The center of the fixation is then mapped on the closest character 
using build-in functions. 

2.1 Fixation data

The table in Table 2 indicates the beginning of a fixation (Time) and 
its duration (Dur). The fixation table shows in which window (Win) a 
fixation was detected, 1 for source text window and 2 for the target 
text window and the Cursor offset of the closest character at which the 
center of the fixation was  detected. While the cursor offset refers to 
the text as it emerges, the STid and TTid refer to the source and target 
text tokens of the final text. Thus at a certain time during text 
production cursor position 5 of the TT may for instance contain an “a” 
which is part the word “asesino”. The fixation will be assigned TT4 if 
“asesino” turns out to be the 4th word in the final translation, 
irrespectively of where in the text this word occurred when it was 
fixated. In this way we can count the number of fixations on one word, 
even if the word changes its locations in the text during the editing 
process. Note, however, that the precision of this information has to be 
handled with care, since 1. movements of text fragments, particularly 
deletions, can be traced only very imprecisely, and 2. fixations and 
their mapping on the symbols may be quite noisy, due to different 
reasons of fixation drift.

1  Some of the features are only available in the CRITT TPR-DB V1..1

Table 1: Keystroke information 

KEYid Time Type Cursor Char STid TTid
0 92016 ins 0 E 2 1
1 92172 ins 1 l 2 1
2 92313 ins 2 _ 2 1
3 92375 ins 3 e 2 2
4 92563 ins 4 n 2 2
5 92828 ins 5 f 2 2
6 92938 ins 6 e 2 2
7 93047 ins 7 r 2 2
8 93266 ins 8 e 2 2
9 93610 del 8 e 2 2
10 93797 ins 8 m 2 2
11 93875 ins 9 e 2 2
12 93938 ins 10 r 2 2
13 94078 ins 11 o 2 2

Table 2: Fixation information

FIXid Time Win Dur Cursor STid TTid
251 93921 2 250 7 2 2
252 94171 2 150 9 2 2
253 94374 1 183 65 10 13
254 94546 1 267 25 4 5
255 94937 1 100 26 4 5
256 95077 1 184 25 4 5
257 95671 2 400 15 1 3
258 96062 1 316 791 152 170
259 96374 2 200 13 1 3
260 98765 1 217 25 4 5
261 98984 1 283 36 6 6
262 99265 1 217 24 4 5
263 99499 1 100 17 3 4
264 99624 1 116 17 3 4
265 99812 1 982 26 4 5
266 101562 1 1199 32 6 6
267 103812 2 299 32 4 5
268 105780 1 200 38 6 6
269 105999 1 117 425 82 86
270 108062 1 133 185 33 42
271 108359 1 100 54 8 8+9
272 108452 1 333 179 31 39
273 108796 1 133 295 54 62
274 109077 1 200 51 8 8+9
275 109452 1 117 58 9 12



3 Process Units

3.1 Production units

Production units (PUs) are sequences of coherent typing activity (cf. Carl and Kay, 2011). A production unit boundary is 
defined as a delay of 1000ms or more without keyboard activity. It is assumed that coherent typing is interrupted 
beyond this delay of time, with a likely shift of attention towards another text segment. As a coherent temporal/textual 
segment PUs have a temporal beginning (Time) and a duration (Dur), and as they cover one or more insertion or 
deletion keystrokes (Edit operations) which contribute to build up one or more target text tokens (TTid). In the example 
in Table 3, the sequence:

 El_enfere[e]mero_asesiono_re[er_ono]no_recibe 

was typed within 7250ms, starting at time 92016 with no inter-key delay of more than 1000ms. A delay (Pause) of 
1140ms follows this typing sequence before the next PU starts at Time 100406ms. The table 3 also indicates the number 
of insertions and deletions of the PUs. PU0 contains 34 insertions and 7 deletions. The latter are within square brackets 
and must be read in the reverse direction. Thus, the substring “[er_ono]” is actually the deletion “ono_re” which reflects 
the correction of:

asesiono_re --> asesino_recibe 

Note that PU1 “_cuatro_” accounts for two target words (TT4+5), as the blank, represented by an underscore “_” already 
counts as part of the next word. Table 3 also indicates where and how long the translator looked at the screen while 
typing the translation. The feature ParalS and ParalT give the amount of time the translator was looking at the source 
and the target window respectively while producing the translation. That is, during the 7250ms that it took to produce 
PU0, the translator looked almost 1sec (900ms) at the source text window, but did not look at the target window. 

3.2 Fixation Units

Similar to PUs, Fixation Units (FUs) indicate 
sequences of coherent reading behavior. 
Based on experimental evidence (Carl and 
Kay, 2011) we define a boundary between two 
successive FUs if a gazing pause is longer 
than 400ms. That is, if the stream of gaze 
samples indicates the gaze directs away from 

the screen for more than 400ms, thus interrupting coherent reading 
activity, we assume a boundary of a fixation unit and the beginning of the 
next fixation. This may happen, for instance, when the gaze is shifts away 
from the screen to the keyboard, or to some other places. 

Table 4 shows four FUs 
(FU11 to FU14). As with 
the PUs, the Time 
indicates the beginning of 
the FU while the duration 
(Dur) indicates its length. 
The fixation path is a sequence of fixations on the source window (1) or 
the target window (2) and the word ID looked at. The path consists of one 
or more fixations indicated by a tuple ”Window:WordID” where 
successive fixations are separated by a “+”. The first FU in Table 4 
(FU11) shows a sequence of six fixations, first on the second word in the 
target window “enfermo” (2:2), followed by a number of fixations on 
fourth source word “four” (1:4). On the way from the target text word 
“enfermo” to the source text word “four”, a fixation on word 10 “Colin” 

Table 4: Four fixation units

FUid Time Dur Pause ParalK Path
11 93921 1340 410 1340 2:2+2:2+1:10+1:4+1:4+1:4+
12 95671 903 2191 903 2:3+1:152+2:3+
13 98765 2029 768 888 1:4+1:6+1:4+1:3+1:3+1:4+
14 108062 1507 665 0 1:33+1:8+1:31+1:54+1:8+1:9+

Figure 1: Screen shot of replay situation FU12

Figure 2: Screen shot of replay situation FU13

Table 3: Production units

PUid Time Dur Pause ParalS ParalT Ins Del STid TTid Edit
0 92016 7250 1140 900 0.00 34 7 1+2+3 1+2+3+4 El_enfere[e]mero_asesiono_

re[er_ono]no_recibe
1 100406 1313 1875 562 0.00 8 0 3+4 4+5 _cuatro_
2 103594 4187 13735 299 0.00 23 3 4+5 5+7 sentencias_de_vida.__[__.]__



was recorded, which is just one line below the “four”. Figure 1 shows the a screen shot of the Translog-II replay at time 
98573, just before the start of the third FU. FU12 comprises of three fixations (marked by a blue circle), two of which 
are on word 3 “asesino” in the target text, while one fixation is at the end of the source text on word 152. While this 
accounts for the measured gaze data, it is more likely that a slight drift causes the second fixation is mapped into the ST 
window, while the translator was actually looking at the ST word. 
The third fixation unit in Table 4, FU13 is plotted in Figure 2 and represents a reading sequence of the title (Killer nurse 
receives four life sentences). It shows how the eyes go back and forth between word 6 (“sentences”), 4 (“four”) and 3 
(“receives”). As it is not particularly difficult to understand the meaning of the sequence of words, the long reading time 
of more than 2 seconds (2029ms) suggests that a process of pre-translation takes place during ST reading, in which the 
translator reflects on how the translation should be rendered. 
Note that the sum of all FU durations may be longer than the sum of all fixation durations, since FUs include inter 
fixation delays shorter than 400ms which may not be part of any fixation. 

3.3 Parallel and alternating reading and writing

Similar to the ParalS and ParalT features in the PU tables, the ParalK feature in the FU table indicates the amount of 
parallel keyboard activity. This FU11 and FU12 take place while the translator is at the same time writing, while no 
keyboard activity was obserbed during FU14. 

Figure 3 illustrates the overlap of reading and writing activity. It puts into relation the source text (vertical axis) and the 
translation time (horizontal axis). Insertions are represented in black letters, deletions are red. The progression graph in 
Figure 3 plots the keystroke data of Table 1, the fixation data from Table 2, as well as the three production units of Table 
4 and four fixation units from Table 3. The first part in Figure 3 (approx. Time 92000ms to 94000ms) reproduces the 
production of words 1 and 2 (“El enfermero”) as plotted in Table 1. The linked blue x-es represent the fixations (Table 
2). The red horizontally striped boxes indicate PUs while the green boxes represent FUs.  

Reading and writing activity can go on concurrently in parallel. For instance, the FU11 between Time 93921-95260 and 
FU12 between 95671 -- 96574 take place while the translator performs a coherent typing activity at the same time 
generating PU0. While FU11 and FU12 overlap 100% with PU0, FU13 between Time 93921-95260 only partially 
overlaps with two adjacent PU0 and PU1. While there is 43.81% overlap with production activity of FU13, FU14 has no 
overlap at all. Progression graphs, as in Figure 1 may thus illustrate in a graphical manner the relation between reading 
and writing activities. 

4 Product Units 

Besides fixation and production units, there are three more units in the TPD-DB tables: Source Token (ST), Target 
Token (TT) and Alignment Units (AU). 

4.1 Alignment Units, Source and Target Tokens 

Source and target tokens correspond 
to sequences of characters, usually 
separated by a blank, while AUs 
refer to m-to-n source-to-target token 
correspondences. The tables provide 

similar kind of information for these three different kinds of units. These tables contain various information concerning 
the source/target correspondances, who and how the translation was produced, and information concerning the session. 

Table 5 shows three English --> Spanish AUs: the column AUtarget contains the TL 
string, while AUsource has the corresponding SL string. The column “Study” gives 
the name of the study, “Person” indicates the study unique identification of the 
translator, the “Text” column indicates which text was translated, and “Task” gives 
the kind of text production (T: translation, P: post-editing, E: editing). 

Table 6, 7 and 8 are continuations of the AU information. Table 6 gives session information, Table 7 (macro unit) 
production information and Table 8 decomposes the macro unit in Table 7 into various micro units. 
In Table 6, the column “Session” indicates the duration to the translation/post-editing/editing session, “Draft” shows the 

Figure 3: The progression graph shows information from Tables 1 to 4

Table 5: Alignment unit 

AUid AUtarget AUsource SL TL Study Person Text Task
44 de of en es BML12 P01 1 T
45 tranquilizantes sleeping_medicine en es BML12 P01 1 T

Table 6: Session information

AUid Session Draft Revise
44 757281 92016 290391
45 757281 92016 290391



lapse of time before the first keystroke was typed, i.e. the end of the orientation phase and beginning of the drafting 
phase, while “Revise” indicates the time when the drafting phase ended and the revision phase started. This is defined 
as the end of the first micro unit in which the last token of the text was translated (cf Jakobsen, 2002).

4.2 Typing Inefficiency

While Table 5 indicates for AU44 and AU45 that the final translation was “de” and “tranquilizantes” respectively, table 7 
shows in the “Edit” column that first “de medicinas para dormir” was typed and later “medicinas para dormir” was 
again deleted. The table shows the overall number of keystrokes produced: there were 24 insertions, of which 21 
characters (the string in square brackets) were later deleted. Even though “medicinas para dormir” and “tranquilizantes” 
are paraphrases, the former is part of AU44, since deletions are attributed to the preceding word. The time needed to 
type the translation is given by the duration feature (Dur). 

The editing inefficiency measure (InEff) is the ratio of the number of produced characters divided by the length of the 
final translation. This is equivalent to the number of insertions and deletions divided by their difference: 

InEff = Insertions + Deletions / Insertions – Deletions +1, where Insertions ≥ Deletions ≥ 0. 

In  most of the cases, the length of the final string in the translation product is equal the number of insertions – deletions 
+ 1. We add 1 since the white space following the word is counted as being part of it. However, in some cases, no white 
space follows a words, in which case the InEff value can be smaller than 1.Thus, for AU44 in table 7 the number of the 
insertion and deletion keystrokes amounts to 45 which, divided by the length 3 of the final word “of ” (including the 
following white space charater), results in an editing inefficiency of 15, while the number of keystroke string to produce 
“tranquilizantes” in AU45 amounts to the length of the final translation, and thus the editing effort is 0.94. Note that for 
post-editing the InEff can be 0 if a MT proposal was accepted without any modifications, while it would be 2 it the 
word was deleted and another word of identical length was retyped.
GazeT and GazeS indicate the total amount of gaze time on the source unit and the target unit respectively. In contrast 
to the “Paral” feature in Tables 3 and 8 this is not necessarily during translation production. 

4.3 Micro units

Source and Target tokens, as well as AUs may be characterized by the number and type of micro units by which the  
translations are constructed. Alves and Vale (2012) refers to recurring editing activities of the same word translations as  
micro units. For them, “a micro TU is defined as the flow of continuous TT production ...  separated by pauses during 
the  translation  process”.   A macro  unit,  then  is  a  collection  of  micro  units “that  comprises  all  the  interim  text 
productions that correspond to the translator’s focus on the same ST segment”. The TPR-DB computes a micro unit as a 
coherent typing activity which contributes to the translation of the source or target token, or a AU. While there can be, 

in  principle,  any  number  of 
micro  units  (a  translator  can 
revise  a  piece  of  text  very 
often),  only information of the 
first  two  micro  units  is 
explicitly listed. Tables 8 shows 
the  micro  unit  information  for 
AU44 and  AU45,  while  their 
macro unit information is given 

in table 7. The micro unit is characterised by the actual typing activity (Edit), the starting Time and duration (Dur) of the 
typing activity, the pause preceding that typing activity, and the amount of parallel reading and writing activity (Paral).  
Table 8 decomposes the production activity in Table 7 into two micro units: at Time 225703 the translator first types “de  
medicinas para dormir” in AU44. During a revision more than 4 minutes later, at time 569781 in micro unit2, the string  
“medicinas para dormir” is deleted and replaced by “tranquilizantes” at Time 570250 which is part of AU45, micro 
unit1. The duration of those activities is indicated, together with the pause following it and the parallel activity as 
described in section 4. Given the information in Table 6, we know that revision phase started in this translation session 
at time 290391, we see that micro unit 1 in AU44 takes place during translation drafting, while micro unit2 of AU44 and 
AU45 micro unit 1 are both revision events.

Table 7: AU production information 

AUid Ins Del Dur Cross GazeT GazeS InEff Edit
44 24 21 11407 1 549 200 15 de_medicinas_para_dormir[rimrod_arap_sanicidem]
45 15 0 1610 2 566 1963 0.94 tranquilizantes

Table 8: Micro unit1 and micro unit2  

AUid Edit1 Time1 Dur1 Pause1 ParalS1 ParalT1
44 de_medicinas_para_dormir 225703 11110 187 965 149
45 tranquilizantes 570250 1610 172 0 669

Edit2 Time2 Dur2 Pause2 ParalS2 ParalT2
44 [rimrod_arap_sanicidem] 569781 297 22937 0 281
45 --- 0 0 0 0 0



4.4 Cross value

The Cross feature represents alignment information in a procedural manner. It indicates how many words need to be 
consumed in the source text  to produce the next word in the translation output. The assumption is that the source text is 
processed word by word from left to right (or from right to left) thereby emitting target words in the order they appear 
in the target text, following the ST-TT alignment links. The minimum number of words moved in the ST to produce the 
TT represents the cross value. Figure 9 gives an example from an English → Spanish translation: in order to produce 
the first Spanish TT word (El), two English words (Killer nurse) have to be consumed, which results in a cross value of  

2 for ”El”.  The second source word (nurse)  emits two adjacent TT 
words.  No  further  ST word  has,  thus,  to  be  consumed  to  produce 
”enfermo”, which results in a cross value is 0. To produce the third 
Spanish word, ”assesino”, one ST word to the left of ”nurse” has to be 
processed together with a cross value of -1. Spanish ”recibe” is the 
translation of two ST words to the right, ”cuatro” one ST word ahead 

etc.  and the respective cross values of 2 and 1 are emitted. The more syntactic reordering between source and target  
text take place the higher the average cross value will be. In case of a monotoneous translation, all cross values are 1.

5 Conclusion

The paper describes several units and their feature characteristics in the CRITT TPR-DB.  We hope that this can be a  
solid basis for future translation process research.
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