376 research outputs found

    Two classes of reducible cyclic codes with large minimum symbol-pair distances

    Full text link
    The high-density data storage technology aims to design high-capacity storage at a relatively low cost. In order to achieve this goal, symbol-pair codes were proposed by Cassuto and Blaum \cite{CB10,CB11} to handle channels that output pairs of overlapping symbols. Such a channel is called symbol-pair read channel, which introduce new concept called symbol-pair weight and minimum symbol-pair distance. In this paper, we consider the parameters of two classes of reducible cyclic codes under the symbol-pair metric. Based on the theory of cyclotomic numbers and Gaussian period over finite fields, we show the possible symbol-pair weights of these codes. Their minimum symbol-pair distances are twice the minimum Hamming distances under some conditions. Moreover, we obtain some three symbol-pair weight codes and determine their symbol-pair weight distribution. A class of MDS symbol-pair codes is also established. Among other results, we determine the values of some generalized cyclotomic numbers

    PARALLEL SUBSPACE SUBCODES OF REED-SOLOMON CODES FOR MAGNETIC RECORDING CHANNELS

    Get PDF
    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code lower the error-floor at high signal-to-noise ratio (SNR) at the price of a reduced coding gain and a less sharp waterfall region at lower SNR. This architecture fails to deal with the error floor problem when the number of errors caused by multiple dominant trapping sets is beyond the error correction capability of the outer RS code. The ultimate goal of a sharper waterfall at the low SNR region and a lower error floor at high SNR can be approached by introducing a parallel subspace subcode RS (SSRS) code (PSSRS) to replace the conventional RS code. In this new LDPC+PSSRS system, the PSSRS code can help localize and partially destroy the most dominant trapping sets. With the proposed iterative parallel local decoding algorithm, the LDPC decoder can correct the remaining errors by itself. The contributions of this work are: 1) We propose a PSSRS code with parallel local SSRS structure and a three-level decoding architecture, which enables a trade off between performance and complexity; 2) We propose a new LDPC+PSSRS system with a new iterative parallel local decoding algorithm with a 0.5dB+ gain over the conventional two-level system. Its performance for 4K-byte sectors is close to the multiple LDPC-only architectures for perpendicular magneticxviiirecording channels; 3) We develop a new decoding concept that changes the major role of the RS code from error correcting to a "partial" trapping set destroyer

    On Lowering the Error Floor of Short-to-Medium Block Length Irregular Low Density Parity Check Codes

    Get PDF
    Edited version embargoed until 22.03.2019 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 22.03.2018 by SE, Doctoral CollegeGallager proposed and developed low density parity check (LDPC) codes in the early 1960s. LDPC codes were rediscovered in the early 1990s and shown to be capacity approaching over the additive white Gaussian noise (AWGN) channel. Subsequently, density evolution (DE) optimized symbol node degree distributions were used to significantly improve the decoding performance of short to medium length irregular LDPC codes. Currently, the short to medium length LDPC codes with the lowest error floor are DE optimized irregular LDPC codes constructed using progressive edge growth (PEG) algorithm modifications which are designed to increase the approximate cycle extrinsic message degrees (ACE) in the LDPC code graphs constructed. The aim of the present work is to find efficient means to improve on the error floor performance published for short to medium length irregular LDPC codes over AWGN channels in the literature. An efficient algorithm for determining the girth and ACE distributions in short to medium length LDPC code Tanner graphs has been proposed. A cyclic PEG (CPEG) algorithm which uses an edge connections sequence that results in LDPC codes with improved girth and ACE distributions is presented. LDPC codes with DE optimized/’good’ degree distributions which have larger minimum distances and stopping distances than previously published for LDPC codes of similar length and rate have been found. It is shown that increasing the minimum distance of LDPC codes lowers their error floor performance over AWGN channels; however, there are threshold minimum distances values above which there is no further lowering of the error floor performance. A minimum local girth (edge skipping) (MLG (ES)) PEG algorithm is presented; the algorithm controls the minimum local girth (global girth) connected in the Tanner graphs of LDPC codes constructed by forfeiting some edge connections. A technique for constructing optimal low correlated edge density (OED) LDPC codes based on modified DE optimized symbol node degree distributions and the MLG (ES) PEG algorithm modification is presented. OED rate-½ (n, k)=(512, 256) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. Similarly, consequent to an improved symbol node degree distribution, rate ½ (n, k)=(1024, 512) LDPC codes have been shown to have lower error floor over the AWGN channel than previously published for LDPC codes of similar length and rate. An improved BP/SPA (IBP/SPA) decoder, obtained by making two simple modifications to the standard BP/SPA decoder, has been shown to result in an unprecedented generalized improvement in the performance of short to medium length irregular LDPC codes under iterative message passing decoding. The superiority of the Slepian Wolf distributed source coding model over other distributed source coding models based on LDPC codes has been shown

    Algoritmos eficientes de búsqueda de códigos cíclicos y cíclicos acortados correctores de ráfagas de errores

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 30/01/2013Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEUniversidad Complutense de MadridAgencia Española de Cooperación Internacional para el Desarrollo (AECID)unpu

    Introduction to Forward-Error-Correcting Coding

    Get PDF
    This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Variable Redundancy Coding for Adaptive Error Control

    Get PDF
    This thesis is concerned with variable redundancy(VR) error control coding. VR coding is proposed as one method of providing efficient adaptive error control for time-varying digital data transmission links. The VR technique involves using a set of short, easy to implement, block codes; rather than the one code of a fixed redundancy system which is usually inefficient, and complex to decode. With a VR system, efficient data-rate low-power codes are used when channel conditions are good, and very high-power inefficient codes are used when the channel is noisy. The decoder decides which code is required to cope with current conditions, and communicates this decision to the encoder by means of a feedback link. This thesis presents a theoretical and practical investigation of the VR technique, and aims to show that when compared with a fixed redundancy system one or more of the advantages of increased average data throughput, decreased maximum probability of erroneous decoding, and decreased complexity can be realised. This is confirmed by the practical results presented in the thesis, which were obtained from field trials of an experimental VR system operating over the HE’ radio channel, and from computer simulations. One consequence of the research has been the inception of a study of codes with disjoint code books and mutual Hamming distance (initially considered for combatting feedback errors), and this topic is introduced in the thesis
    • …
    corecore