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FOR NOISY COMMUNICATION CHANNELS 

A. D. CLARK 

ABSTRACT 

The rapid expansion in the field of information technology in 
recent years, has led to an increased awareness of the need for 
efficient, reliable communications systems. Although digital 
networks are being introduced, modems are widely used for 
transmitting digital information over the Public Switched Telephone 
Network (PSTN). This approach suffers from two drawbacks, limited 
bandwidth and transmission errors. The objectives of this research 
program were to investigate methods for compressing digital 
information and for correcting transmission errors, to enhance the 
performance of a voiceband modem. 

The application of source coding to a modem based 
communications system requires efficient compression and low 
implementation complexity. The type of data transmitted is 
unknown, hence the source encoder must adapt to the data during 
transmission. The design and performance of a number of robust 
source codes, in particular the problem of designing codes with 
constrained maximum length is discussed, and a number of solutions 
proposed. Adaptive variable length and string encoding techniques 
are compared. The Ziv-Lempel encoding algorithm is investigated, 
and a number of improvements suggested. 

The distribution of transmission errors is affected by the type 
of disturbance causing the errors, and the design of the modem. The 
characteristics of PSTN transmission errors are discussed, and the 
design of error control systems considered. A number of automatic 
repeat request (ARQ) and hybrid error control schemes are 
discussed, and their performance evaluated under a range of channel 
conditions. The quality of a telephone channel is variable, and the 
adaptive selection of frame length and code rate can result in a 
performance improvement. The design of an adaptive hybrid ARQ 
scheme is discussed, and its performance compared to conventional 
methods. 

A number of practical design considerations are given. The 
design of three source/channel coding systems is discussed, and 
their performance compared. 



Origipects of the Research Program 

The research program, although containing a substantial 

theoretical element, was essentially oriented towards a practical 

goal. A major part of the work comprised comparative performance 

analyses, and consideration of the practical implementation of 

coding algorithms. An element of the work not discussed in this 

thesis was the practical implementation of a communication system 

based on some of the ideas discussed below, involving both hardware 

and software design. This practical work is reflected throughout the 

thesis, with particular emphasis in Chapter 6 on system 

implementation and design. 

The elements of the work that are to the best of my 

knowledge original are: - 

" The quantitative discussion of the effects of concatenating 

run length and variable length encoding. (Section 2.6) 

" The extension to the work of Gilbert (1971) and Van Voorhis 

(1974) in the development of constrained variable length 

codes. (Section 3.2.2) 

" The extension to the work of Faller (1974) and Gilbert (1978) 

in the development of adaptive variable length codes, and 

consideration of the performance of the codes on 

non-stationary sources. (Section 3.3.1) 



" Two modifications to the Ziv-Lempel (1976) compression 

algorithm, space synchronization and an improved data structure/ 

dictionary maintenance technique. (Section 3.3.2) 

0 Consideration of the feasibility of compressing a synchronous 

data stream, in which the symbol size is unknown. (Section 3.3.3) 

" The qualitative discussion of the telephone channel error 

distribution, and the effects of modems on the error patterns. 

(Section 4.2,4.3) 

0 The comparative performance analysis of ARQ and hybrid ARQ 

error control schemes under a wide range of channel conditions. 

(Sections 5.4-5.6) 

0A specific adaptive hybrid ARQ scheme, and its performance 

on random and burst channel models. (Section 5.7) 

" The interaction of data compression and error control 

elements of a communications system. (Section 6.3) 

" The discussion of practical implications in the design of data 

compression and error control schemes. (Sections 2.7.3.4,4.2.2, 

5.4.5.5,5.8,5.9. Chapter 6). 
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Symbols and Abbreviations. 

Abbreviations 

ARQ Automatic Repeat Request 

BCH Bose, Chaudhuri, Hocquenghem error correcting code 

BER Bit Error Rate 

BISYNC Binary Synchronous Communications Protocol (IBM) 

BLER Block Error Rate 

BSC Binary Symmetric Channel 

CCITT Comite Consultatif Internationale de 
Telegraphique et Telephonique 

DMS Discrete Memoryless Channel 

EFS Error Free Seconds 

FEC Forward Error Correction 

GBN Go Back N (ARQ) 

GF Galois Field 

HDLC High-Level Data Link Control protocol (ISO) 

HF High Frequency (radio channel) 

iff if and only if 

ISO International Standards Organization 

LZ Lempel-Ziv compression algorithm 

OSI Open Systems Interconnection model 

pdf probability density function 

PSTN Public Switched Telephone Network 

SDLC Synchronous Data Link Control protocol (IBM) 

SR Selective Repeat ARQ 

STN Switched Telephone Network 

SW Stop and Wait ARQ 



VDU Visual Display Unit 

VL Variable length (code) 

wrt with respect to 

ZL Ziv-Lempel (see LZ) 

Symbols 

The following symbols are generally in accordance with those in 
common use in the field of information theory. Although this has 
occasionally resulted in two definitions of the same symbol, this 
causes no ambiguity when in context. 

nCr The number of combinations of r objects from a set of n 

D The radix of a code 

D End to end channel delay (in bits) 

d The distance of a codeword (e. g. Hamming distance) 

dmin The minimum distance of a code 

F(s) The s-th Fibonacci number 

G The generator matrix of a linear block code 

The parity check matrix of a linear block code 

H The entropy of a source 

Hjj The entropy of the first extension of a source 

Hi(j) The conditional entropy of a source 

h The size of header field in an ARQ frame 

Ii The information content of symbol si 

ii-i The information content of the symbol pair (si, sj) 

I1(j) The conditional information content of symbol sj 

k The number of information bits in an (n, k) codeword 

Lj The length of a source codeword 

L' The average length of a source code 



Icon The constrained maximum codeword length of a 
variable length source code 

Lmax The maximum codeword length of a variable length 

source code 

M The marginal information content of a symbol 

N The number of symbols in a source alphabet 

N The acknowldgement delay of an ARQ system 
(in frames) 

n The length of a linear block code codeword. 

Pt The transition probability of a binary symmetric 
channel 

P1(j) The conditional probability of event j, given event i 

P(>m, n) The probability that a block of length n contains 
more than m errors 

sj The i-th symbol from a source 

t The number of errors correctable by an (n, k, t) 
linear block code. 



1 INTRODUCTION 

1.1 Background to the Research Project 

During the past thirty years the importance of data 

communications to the business and scientific community has grown 

tremendously. Many businesses are now heavily dependent on their 

communications equipment to allow data to be transferred between 

computers or to provide remote access to common resources. It is 

therefore highly desirable that data transfer may be accomplished 

quickly, reliably, and at low cost. 

A common medium of transmission is the Public Switched 

Telephone Network, which provides voice grade communication 

channels between virtually any two points in the world. A modem is 

used to convert the digital signal to, or from, a form which is 

compatible with the requirements of the voice channel in terms of 

power level and spectrum (Figure 1. a). Unfortunately, as the 

telephone network was not designed as a carrier of data, the 

modulated signal is subject to distortion and additive noise which 

may result in errors in the reconstructed digital signal. 
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Figure l. a The use of modems for transmitting digital information 
over the Public Switched Telephone Network 
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The detection and correction of transmission errors is an 

essential part of a data communications system, hence methods for 

accomplishing this have been the subject of intensive research for 

many years. Error control techniques are based on the use of some 

part of the available bandwidth for the transmission of additional 

information, which means that the transmission time (and therefore 

cost) are increased. To provide both reliable and efficient 

communications requires careful design of the error control 

function. 

The efficiency of the communications system may be 

enhanced by compression of the data prior to transmission. This 

must be a reversible process in order that the data can be 

reconstructed without error by the receiver. Sometimes a low level 

of distortion of the reconstructed signal can be tolerated in for 

example, speech or image transmission. However, for the 

transmission of digital information, the compression process should 

be distortionless. 

Figure 1. b shows a general block diagram of a communications 

system incorporating error control and data compression. An 

additional component, which is called in the diagram an error 

control unit, is placed between the modem and the computer or 

terminal at each end of the link. This type of device is available from 

a number of different manufacturers. All use automatic repeat 

request (ARQ) ' error control, with `data compression to `compensate 

for the loss in channel capacity. 

3 
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Figure 1. b The use of error control units to provide error correction 
and data compression over a modem link. 
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Some commercial error control units offer an additional 

multiplexing facility. For example, the Timeplex Datamizer provides 

four multiplexed channels, using an adaptive Huffman code for data 

compression, and ARQ for error control. Products offering only a 

single channel capability are the DaCom Error Controller, Modular 

Technology Interblaster, and others, mostly intended for use with 

low speed modems. 

The project involved an investigation of the use of data 

compression and error control techniques for enhancing the 

performance of modem based communications, and consideration of 

the practical aspects of implementation. This was aimed at the 

eventual development of new products with improved performance, 

for an already competitive market. 

1.2 Aims and objectives 

The aims of the project were: - 

(i) Data compression 

To investigate the range of data compression techniques 

appropriate to the application, and propose new or improved 

methods. These techniques must be effective under realistic 

conditions, i. e. compression should be achieved with as little 

prior knowledge of the source data as possible. The complexity of 

5 



implementation was also very important, as the data compression 

component must operate in real time, with a restricted memory 

capacity. 

(ii) Error control 

To investigate the use of error control with high speed voice 

band modems. Although retransmission error control (ARQ) is 

widely used in this type of application, more powerful hybrid 

schemes incorporating forward error correction have been 

developed in recent years. As with data compression, complexity 

is an important consideration. 

(iii) System integration and design 

To place the data compression and error control components 

in context within a system, to investigate methods of 

implementation and examine any conflicting requirements. 

6 



1.3 Overview of the thesis 

The general structure of the thesis follows Section 1.2., 

discussing in turn data compression, error control, and system 

design. 

Data compression is discussed in Chapters 2 and 3, initially 

for the ideal case in which the characteristics of the data source are 

known, and then for the more realistic case of a partially known 

source. 

Huffman coding, adaptive Huffman coding, and some variants 

are examined, with emphasis on the problem of reducing the 

maximum length of the codes. The more recent compression 

algorithm of Ziv and Lempel is discussed and a number of 

improvements proposed. In addition, data for which the symbol size 

is unknown is shown to be compressible in some cases, using the 

Ziv-Lempel compression algorithm; this has particular significance 

in the compression of synchronous data. 

Chapter 4 discusses telephone channel characteristics, and 

error statistics and modelling. This is followed by a brief 

introduction to error correction and detection coding. 

In Chapter 5, a number of error control schemes based on 

automatic repeat request (ARQ) are compared under a range of 

channel conditions. These include hybrid ARQ, parity retransmission 

and adaptive schemes. The choice of forward error correcting code 

rate and frame length are discussed, and the reliability of the error 

7 



detection code considered. 

System design, encompassing a range of practical 

considerations, is discussed in Chapter 6. An ARQ protocol provides 

more than simple error control; the additional features include 

end-to-end signalling, flow control and signalling. Three alternative 

systems are proposed, each appropriate to a particular application, 

and their performance compared. 

Finally, Chapters 7 and 8 give the conclusion of the thesis, 

and some suggestions for further study. 

8 



2. SOURCE MODELS AND SOURCE CODING 

2.1 Introduction. 

The efficient use of channel capacity is of immediate interest 

to users of data communications networks. A large wide area 

network, for example. may incur line rental costs of over ten million 

pounds per annum; the use of data compression can provide 

improved throughput and hence a more cost effective service. 

Although source coding techniques date from early in the 

Nineteenth Century, recent developments in microprocessor 

technology, coupled with a demand for high speed low cost data 

transfer, have provided a new impetus to the development of 

powerful data compression systems. 

The theoretical foundations for source coding were laid by 

Hartley (1928), and Shannon (1948). Hartley's paper entitled 

"Transmission of Information" discussed a number of then current 

issues in telegraphy, including the statement that the number of 

code symbols (for example, bits) required to encode a source symbol 

was proportional to the logarithm of the number of source symbols. 

Although Morse and Vail (Bylanski 1980) had realized that an 

improvement in efficiency could be obtained by using a variable 

codeword size, and assigning short codewords to frequently 

occurring characters, the nature of information and the performance 

bounds for this type of coding were not known until the work of 
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Shannon in 1948. 

The source coding techniques addressed in this and the next 

chapter, are noiseless or distortionless, in that the encoding process 

is reversible without error. In general, there is some relationship 

between the instantaneous compression ratio or code rate, and the 

distortion introduced by the coding scheme. Rate-distortion coding 

attempts to achieve a constant code rate, allowing the distortion or 

error to vary. In noiseless coding systems however, the code rate is 

uncontrolled, which can lead to practical design problems such as 

buffer overflow (Humblet 1981). 

The design of the source code is based on knowledge of, or 

assumptions about, the frequencies and ordering of the source 

symbols constituting messages. This knowledge is represented in 

the form of a mathematical model of the source. A number of source 

models are used, some of which will be described in more detail in 

Sections 2.2 and 2.4. For example, the discrete memoryless source 

(DMS) model is based on the assumption that source symbols are 

independently selected from some alphabet, the model parameters 

are the occurrence probabilities of the symbols. 

In practice there are often local relationships between 

symbols within a message, for example "the" is a common group of 

symbols used in English text. These relationships can be used to 

advantage in a coding scheme, and several source models have been 

devised to represent them. 

The performance of the source encoder will obviously depend 

on the correct choice of source model, and knowledge of the 

parameters involved. If an inappropriate model is used, or if the 

10 



parameters are inaccurately known or unstable, the compression 

achieved may be poor, in the extreme even expansion may result. In 

this chapter an ideal situation will be assumed, i. e. a stable source for 

which the parameters are known, the next chapter will consider the 

more usual case, in which the source is inaccurately known and time 

varying. 

Although the following discussion is valid for codes based on 

non-binary code symbol sets ( for example ternary ), binary codes 

will be assumed. The term bits will therefore be used for binary 

digits and for the binary unit of information, and unless otherwise 

stated logarithms will be taken to base two. 

The results in the following sections and in Chapter 3 were 

obtained by computer simulation or implementation of the source 

coding techniques, with a number of different sources. A sample 

from each of the sources is given in Appendix B for reference. 

11 



2.2 The Discrete Memoryless Source. 

The Discrete Memoryless Source (DMS) is the simplest and 

most widely used model. It is assumed that the source emits symbols 

selected at random from an alphabet, each choice being made 

independently of any earlier selection. Associated with each source 

symbol sj is a probability pj which corresponds to the probability of 

selection for the symbol. 

It will be assumed for the moment that the probabilities (Po, 

P1 " P21 "" PN_1 ) corresponding to the N symbols in the source 

alphabet are known, and stationary. Hartley (1928) proposed a 

logarithmic measure of information content, and hence of the 

number of code symbols required to represent the source, but did 

not consider the effects of unequal source symbol probabilities. 

Shannon (1948) considered the case in which source symbols 

do have associated probabilities, and -defined the information 

content of a symbol, 1, , and the average information content of the 

source - the entropy H. 

For each source symbol sj , the information carried by the 

symbol is: - 

Ij . log( 1/ pj) bits 

12 



A measure of the average information per source symbol is the 

source entropy: - 

N-1 

H= 
Ipi 

ii 
J=O 

For any given message M, consisting of a sequence of k 

symbols independently selected from the source alphabet, the total 

information carried by the message is the sum of the information 

carried by the symbols in the message. Thus for message M: - 

M= (sa, Sb, sc, sd, ... sx). 

where a, b, c, d, .. x are in the range {0 .. N-1}, the probability that 

message M will be generated is: - 

P(M) = P(Sa). P(Sb). P(Sc). P(Sd) ... P(sx) 

and hence the information content of the message is: - 

I(M) = log( 1/P(M) ) bits 

= I( Sa )+I( Sb )+I( Sc )+... +I( S. ) bits 

The average information per symbol contained in M is 

13 



therefore given by: - 

I( average) = I(M) /k bits per symbol 

As k becomes large, then the average information per symbol 

will approach the source entropy (as k tends to infinity, the relative 

frequency of each symbol will by definition be given by the symbol 

probability), and may be regarded as an estimate of the entropy. The 

term sample entropy will be used to denote the estimate of the 

source entropy, obtained under the assumption that the occurrence 

frequencies of symbols within a message or sample are in direct 

proportion to the symbol probabilities. 

Table 2. a shows values for the sample entropy for a number of 

sources. Most text samples have values of 4 to 4.5 bits per symbol, 

whilst numeric data generally have a lower information content 

(requiring usually eleven or twelve symbols rather than the 27 or 

more needed for text). Executable computer program code usually 

has a high information content, as a large number of symbols are 

used with similar frequency. 

14 



Sample type 

English text 

English text 

Portuguese text 

FORTRAN 

ALGOL 

Executable 

code 

Sample Entropy 

4.03 bits per symbol 

4.16 bits per symbol 

3.92 bits per symbol 

5.29 bits per symbol 

5.58 bits per symbol 

5.80 bits per symbol 

Comment 

Shannon(1951) 

Measured 

Manfrino(1969) 

Measured 

Wells (1972) 

Measured 

Table 2. a Examples of sample entropy for various types of data. 

Digram encoding, in which pairs of characters are 

represented by codewords, is often used. Under the assumption that 

the source is memoryless, the probability of some pair (s1, sj) 

occurring is given by the product pj. pj, and thus the information 

content by: - 

Ii, j= It + Ii 

The entropy of the digram source is twice that of the original 

source, and the extended source alphabet contains N2 symbols. 

15 



2.3 Variable Length Codes. 

A source encoder accepts symbols or sequences of symbols 

from a source, and generates codewords. As no error can be allowed 

in this application, the encoding must preserve the information 

content of the message. For the discrete memoryless source, the 

information content of a message and the source entropy have been 

defined above. If the DMS model is assumed, then an ideal source 

encoder would encode the message in a number of bits 

corresponding to its information content (Shannon 1948). 

The encoding process may accept variable length sequences 

of symbols, outputting a fixed length codeword for each, or fixed 

length sequences of source symbols, outputting a variable length 

codeword for each symbol. The latter technique is usually termed 

variable length coding. 

A variable length encoder assigns a codeword of length Lj to 

each symbol sj contained in the message. In a long message, or 

series of messages, the source symbols s, would occur with a 

frequency corresponding to the associated probabilities pi . Thus the 

average encoded symbol length would be the weighted sum of the 

codeword lengths. This value is usually referred to as the average 

length, L' , of the code: - 

N-1 

Lý= I pi J=O 

16 



An ideal encoder would achieve an average length equivalent 

to the source entropy, thus ideally: - 

N-1 N-1 

L= 
J_opi 

I9 = 
j_o 

pi IJ 

to which a solution is I. ý = Ij. As the information content of a symbol 

may have non-integer values, this solution would require codewords 

with fractional length. Shannon showed that this could be 

circumvented by encoding groups of symbols, and hence that the 

average length of a code could be made arbitrarily close to the 

entropy. 

The efficiency of a variable length code represents the degree 

to which the average length of the code approaches the entropy: - 

Efficiency =H 
L' 

The redundancy of a code is also used to measure performance: - 

Redundancy =1- Efficiency 

The source code must be uniquely decodable, which means 

that an encoded message has a single unique possible interpretation. 

It is also desirable that the codewords are constructed so that any 

codeword may be decoded immediately it has been completely 
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received, i. e. instantaneously decodable. 

A necessary condition (Abramson 1963) for a variable length 

code to be instantaneously decodable is given by the Kraft 

inequality: - 

N-1 
I 

D-L; 51 
i=0 

where D is the radix of the code, and Li is the length of 

the i-th codeword. 

Instantaneously decodable codes (one class of uniquely 

decodable codes) within which lie prefix codes, suffix codes and 

others. Prefix codes are one of the most important classes of variable 

length code, and are defined by the prefix condition, which states 

that no codeword may be a prefix of any other codeword. 

The design of a variable length source code consists of finding 

some set of codewords that meet the above criteria for decodability 

and can achieve an average length close to the source entropy. There 

may be additional design criteria, some of which will be discussed in 

later sections. 

Shannon (1948) described a method for code generation in 

which a codeword is determined arithmetically using the following 

algorithm: - 

18 



(i) Arrange the symbols in order of decreasing probability, so 

that so has the highest and 5N_ 1 the lowest probability. 

(ii) Determine the cumulative probability P(5j) for each symbol 

sj, i. e. the sum of the probabilities Pk for values of k from 0 to j. 

(iii) The j-th codeword is given by the expansion as a binary 

number of P(? j), the expansion being carried out to Lj places, 

where ý is given by: - 

I(<_j) <_ Lj <1+ I(! q) 

An equivalent method is described by Fano (1949), hence the 

code is often referred to as the Shannon-Fano code. 

An optimal prefix coding method was given by Huffman 

(1952), which is simple to implement, and generally achieves an 

average length very close to the entropy. The algorithm is generally 

related to the construction of a code tree, in which each node has q 

or less dependants, for a q-ary code. The method of construction is 

as follows: - 

(i) Merge the q symbols or nodes having the lowest 

probabilities, to give a new node with a probability equal to 
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their sum. 

(ii) Repeat (i), until one node, the root, remains. 

(iii) Assign code symbols arbitrarily to the branches of the tree; 

codewords consist of the sequence of code symbols on the path 

between root and source symbol. 

The excellent performance of this source code is 

demonstrated in Table 2. b. For one non-text, and four text samples 

the symbol frequencies were measured, and a Huffman code 

generated using the method given above. In every case the average 

length of the Huffman code is very close to the sample entropy. 

Sample Sample Average Efficiency 

type entropy length 

(bits) (bits) 

Text 1 4.504 4.530 

4.641 4.670 

0.994 

Text 2 

Pascal 1 

Numeric 1 

Image 1 

0.994 

5.022 5.047 0.995 

3.988 4.049 0.985 

4.734 4.759 0.995 

Table 2. b Comparison of average length of Huffman code with sample 

entropy. 

20 



2.4 Sources with memory. 

Many real sources exhibit local dependence between message 

symbols. Various models have been used to represent this class of 

source, of which two will be considered. The first extends the 

principles used for the memoryless source, and is derived from the 

work of Shannon (1948,1951), whilst the second model is based on 

the more recent development by Lempel and Ziv (1976) of a 

complexity measure for finite sequences. 

The discrete memoryless source is defined in terms of the 

probabilities po .. pN_1 assigned to the symbols so .. sN_1. The model 

may be extended by considering the joint probabilities pi j and the 

conditional probabilities pi(j) i. e. the probability of sj occurring given 

that the preceding symbol was s1. The set of conditional probabilities 

are equivalent to the transition probabilities of a Markov chain 

(Bartlett 1978), and hence this model is often referred to as 

Markovian. 

The vector of symbol occurrence probabilities PO .. pN_ 1 will, 

for an ergodic source, be the stationary vector of the Markov chain. A 

measure of the information carried by sj given that si is the previous 

symbol is II(j) which is defined as: - 
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I, (j) = Ii, j - Ii 

since pi. j = pi . pi(j) 

and hence Ii, j = Ij + I1(j) 

The joint entropy Hi. j measures the, average information 

content of a digram source, whilst the conditional entropy Hi(j) 

measures the equivalent for a Markov source. These two entropies 

are related by the expression: - 

Hi. j = Hj + Hl(j) 

For the memoryless source, it is assumed that pj = pio). In 

general however, the conditional probability pi(j) is more than pj due 

to dependence between characters, and hence the conditional 

information content Ii(j) will be less than II . If the information 

content is reduced, the average code length may be shorter, hence 

it is generally advantageous to design source codes based on this 

type of model. The principal drawback is the larger number of 

parameters, N2 rather than N. 

Table 2. c shows the values obtained for information content 

and conditional information content from a sample of English text, 
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and illustrates the potential advantage of conditional encoding over 

that discussed in Sections 2.2 and 2.3. 

In the table, pi, j gives the probability (in fact the observed 

frequency) of the symbol pair (si, sj), Ij, the information carried by the 

second symbol sj if considered independently, and I1(j) the 

conditional information content of sj. The pair (t, h) for example, can 

be encoded ideally in 5.39 bits; the second symbol h would be 

encoded in 4.55 bits if the source were assumed memoryless, but in 

1.63 bits if the code were based on the conditional probability, a 

saving of 2.92 bits. 

Character pi, j Ij I1(j) 

pair (si. sj) (bits) (bits) 

(e, 0.0341 2.77 1.77 

( 
, t) 0.0264 3.76 2.48 

(t, h) 0.0239 4.55 1.63 

(h, e) 0.0223 3.11 0.94 

(s, ) 0.0197 2.77 1.57 

(r, e) 0.0154 3.11 1.60 

Table 2. c Comparison of independent and conditional information 

content of characters from English text. 
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Measured statistics have been published for a wide range of 

source types. Shannon (1951) gave first, second and third order 

conditional entropies for samples of English text. Barnard (1955) 

gave first order letter entropies for English, French, German and 

Spanish text. The entropy of Arabic was measured by Wanas (1976), 

of Portuguese by Manfrino (1969), and of Malay by Tan (1981). 

Equivalent statistics for a television image were published by 

Schreiber (1956). 

Table 2. d gives the first, second and third order entropies for 

Arabic, English, and the television image, from the sources given 

above. A point of interest is the obviously high correlation of adjacent 

points in the television image, which results in fairly small increases 

in entropy, with increasing order. 

Table 2. e compares the sample entropy, the entropy per 

symbol (the joint entropy represents two symbols), and the 

conditional entropy. It can be seen that the joint entropy per symbol 

is substantially less than the first order entropy, an average gain of 

'0.6 bits. The conditional sample entropy gains further, and achieves 

an average improvement of 1.21 bits over the first order entropy. 

The results indicate that an encoding scheme based on the 

conditional probability should be more efficient than one based on 

the symbol or digram probability. 
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Sample Sample entropy 

type. Ist 2nd 3rd order 

bits per (1) (2) (3) symbols 

Arabic 4.21 7.98 10.47 

English 4.03 7.35 10.45 

Television 4.39 6.30 7.80 

signal 

Table 2. d Sample entropy for source models based on pi, pi, j, and 

pi, 9, k 

Sample Sample entropy (per symbol) 

type. 1st order joint conditional 

H HHj/2 H10) 

Arabic 4.21 3.99 3.77 

English 4.03 3.67 3.32 

TV signal 4.39 3.15 1.91 

Average 4.21 3.61 3.00 

Table 2. e Comparison of conditional and joint sample, entropy. 
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The source model may be based on conditional or joint 

probabilities and, as shown above, it is generally advantageous to use 

a higher order model. In the case of text and many types of sampled 

analogue data, the context of a symbol is usually not of fixed size, as 

this model assumes. It would seem therefore that an alternative 

model, which allows a variable context size, would be more 

appropriate. 

Shannon (1951) discussed the use of a word based, rather 

than letter based encoding for text. Estimates of the word entropy 

for a sample of English text indicated that a word based source 

encoder should achieve an average length of 2.1 to 2.6 bits per 

letter. The encoding would map variable length sequences of source 

symbols (words) onto variable length codewords. 

One important class of source model which incorporates a 

variable symbol context size, is known as fragment encoding or 

variety generation (Cooper 1982, Yannakoudakis 1982). A fixed 

number of equiprobable strings of symbols are found; as these are 

equiprobable and hence have equal information content, they may be 

efficiently encoded using codewords of equal length. The number of 

fragments is generally selected to be some integer power of two, to 

avoid loss due to the need to round up fractional codeword lengths. 

For English text, typical fragments from a set of 256, are "in" 

"the", "that", "atio", "with", and "ght". They' consist of frequent 

sections of words, and common words or groups of words. The main 
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problem found with the model is the complexity of the process of 

building the fragment set. Cooper (ibid) discusses several 

approaches to set production, for example processing a large sample 

of text to determine the occurrence frequencies of characters, 

character pairs (digrams), triples (trigrams), up to some limit, and 

then selecting the set from amongst these. For a 64 character 

alphabet, there are 4,096 digrams, 262,144 trigrams, and 

16,777,216 tetragrams; the processing involved is obviously not 

trivial. 

An alternative approach to source modelling devolves from 

the approach to the measurement of sequence complexity suggested 

by Lempel and Ziv (1976). The complexity of the sequence of source 

symbols is evaluated with a simple learning machine, which scans 

the sequence once, matching strings of symbols to those stored in 

its memory, to which is appended any new string of symbols 

encountered en route. The size, and rate. of growth of the compiled 

vocabulary form the basis of the complexity measure. 

The initial vocabulary of the machine consists of the source 

alphabet: additional entries will be strings of two, three or more 

symbols. In its simplest form, the machine finds the longest match 

to the current subsequence of symbols, and then forms a new 

vocabulary entry by appending the next symbol in the sequence to 

the matched subsequence. This process has been termed 

incremental parsing, and provides an automatic context gathering 

method ideally suited to source modelling. 
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2.5 Coding schemes for sources with memory. 

Two classes of code, corresponding to the two types of source 

model, are commonly used. The first extends the principles of 

variable length coding, as described for the DMS, to the Markov 

model, whilst the second group of coding techniques are applied to 

fragment encoding. 

In the preceding section it was shown that the use of 

conditional and joint probabilities, rather than symbol probability, 

offers some advantage in an ideal encoding. This leads to the use of 

two alternative encoding methods: - 

(i) Digram encoding, in which variable length codewords are 

constructed (using Huffman's algorithm for example) using the 

joint symbol probabilities pi j. 

(ii) Conditional encoding, in which variable length codewords 

are constructed using the conditional symbol probabilities Pi(j). 

As the joint symbol probability pi j consists of the product 

pi. p, o), the first symbol is encoded using approximately Ii bits, the 

second with I, (j) bits. This is less efficient than the conditional 

encoding scheme, in which only the first symbol of the message is 

encoded inefficiently, all succeeding symbols being encoded with 
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li(j) bits (on average). Table 2. e showed that definite gains could be 

made through the use of conditional encoding on a range of data 

samples, and the same number of codewords are required to encode 

a message using either joint or conditional schemes, it would 

therefore seem preferable to use conditional encoding. 

Lavelle (1981) proposed an adaptive variable length coding 

scheme using conditional encoding. Results given for a text sample 

indicate that a Huffman code based on a DMS model achieved an 

average length of slightly below 5 bits per symbol, whereas the 

adaptive conditional coding scheme gave an average length of less 

than 3 bits per symbol. 

The second type of source code, used for fragment or string 

coding, aims to encode equiprobable sequences of symbols which, 

having equal information content, may be encoded with equal 

codeword length. In the discussion of this type of source model 

(Section 2.4), the problem of context gathering was mentioned, and 

the Lempel-Ziv complexity measure outlined. In fact, the complexity 

measure provides the basis for a powerful family of source codes. In 

Ziv and Lempel's 1977 paper "A Universal Algorithm for Sequential 

Data Compression", the method is given. 

The basic Ziv-Lempel encoder has a dictionary, in which each 

entry has an associated index number. Initially the dictionary 

contains only the basic alphabet of the source; during the encoding 

process new dictionary entries are formed by appending single 
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symbols to existing entries. 

Let E(i, n) be a string of source symbols exactly matching the 

dictionary entry with index i and length n, and let si be the next 

source symbol in the input sequence. Symbol si is read and 

appended to E(i, n), giving an extended string E(x, n+1). The 

dictionary is searched and, if E(x, n+1) is matched with some entry 

with index j, then with E(j, n+1) the next source symbol is read. If 

E(x, n+1) is not found, the pair (i, si) is transmitted and the string 

E(x, n+l) added to the dictionary. 

For each transmitted pair (i, si ), an average of n' symbols 

(where n' is the average encoded string length) will be read from 

the source, and the dictionary size increased by one. The 

compression obtained is therefore: - 

compression =T+s 
ratio no. s 

where T is the number of bits required to identify a dictionary 

entry, i. e. the logarithm of the dictionary size, and s is the number of 

bits required to identify an uncompressed symbol. 

Assuming fixed values for T and s, the rate of dictionary 

growth with number of input symbols is equal to the compression 

ratio. This algorithm will be discussed more fully in the next 

chapter. 
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2.6 Run Length Encoding. 

This is a very widely used method of data compression, which 

makes few assumptions about the nature of the source (Gottlieb 

1975). It is assumed that the sequence of source symbols contains 

runs of some symbols (i. e. subsequences containing only one type of 

symbol repeated several or many times). The encoder outputs a 

short, fixed length sequence of codewords corresponding to a 

variable length input run, but otherwise does not affect the message 

contents. 

Various models have been proposed, which attempt to model 

this type of source. For example, a Markov process having large 

probabilities on the major diagonal of its transition matrix will 

produce runs. As an alternative, a discrete distribution (for example 

geometric or Poisson) may be used to directly specify the 

probabilities of given run lengths occurring. 

The encoding process may be of three types: - 

(i) An explicit codeword for each run length. 

(ii) A codeword for certain run lengths. For simple encoding, 

the lengths could be integer powers of two, although more 

correctly the length distribution should be determined by the 

probability distribution. This would be suitable for a binary 

source which produces only runs of 0's and 1's. 

(iii) A single control character run, which is used to indicate 
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that the following codeword is to be interpreted as a numerical 

run length value. For example, " QC" could be encoded as 

("x", run, 7). This method is more appropriate to data containing 

occasional long runs, perhaps for the removal of trailing nulls or 

spaces on computer files. 

For short run lengths the first two methods are preferable, 

although the three element method (iii) performs better for longer 

sequences. 

Run length encoding may be concatenated with other coding 

schemes. For example the CCITT facsimile encoding standard T. 6 

specifies run length encoding followed by a modified (predefined) 

Huffman code. Codewords are allocated to run lengths from 0 to 64, 

and then in steps of 64 up to 1728. Any run length in the range 0 to 

1728 can be encoded with, at most, two codewords. 

Concatenation may increase the entropy of the message, both 

by reducing the frequency of the symbols encoded, and the 

introduction of the additional codewords needed. Table 2. f 

illustrates the effect of run length encoding on the number of 

symbols, sample entropy, and encoded message length for eight 

samples. The sample Numbers illustrates the effect described above 

particularly well, a large gain from run length encoding is offset by 

an increase in entropy, resulting in a lower degree of overall 

compression. 

In general however, run length encoding is a simple and 

practical compression method which may be concatenated with 

other coding techniques. 
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2.7 Discussion. 

The preceding sections have introduced source modelling 

and coding under certain assumptions. Firstly that the source is 

known and stationary. secondly that the transmission channel is 

error free, and thirdly that the complexity of the encoder/decoder 

is not important. The first of these complications will be dealt with 

in the next chapter, but the remaining issues are discussed below. 

Three basic types of source model have been introduced, the 

Discrete Memoryless Source, the Markov source, and the string 

producing source (with particular reference to the Lempel-Ziv 

complexity measure). Consideration of these different source models 

showed how a number of different coding schemes could be 

developed, and some idea of performance was given. 

The Discrete Memoryless Source is. based on the occurrence 

probabilities of the source symbols. Shannon (1948) shpwed that a 

good source encoder could be designed for this class of source, 

whilst Huffman (1952) developed an algorithm for generating an 

optimum code. 

Sources which exhibit dependence between symbols may' be 

modelled as Markov processes, which allows the design of more 

efficient encoders than those based on the DMS. Two alternative 

coding schemes based on the Markov model were examined, and it 

was shown that the conditional probability formed the best basis for 

code generation. 
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Although Markov models achieve good performance for 

sources with memory, the dependence between symbols in a 

message is usually over a variable number of symbols. For example in 

text, there is strong dependence between characters in words, the 

word size however is not fixed. Variable to fixed encoding schemes 

were discussed, and the Ziv-Lempel compression algorithm 

introduced. 

Another compression technique that is widely used is run 

length encoding, in which repeated occurrences of some symbol are 

replaced by a two or three codeword sequence. The method is 

suitable for concatenation with other source codes, but there is 

some degree of interaction. 

Several important points have been omitted from the 

discussion so far. 

(i)Transmission errors. 

Errors introduced between source encoder and 

decoder will cause corruption of one or more decoded symbols. 

For variable length encoders, if the transmitted and corrupted 

codewords are of the same length, then only one symbol will be 

affected. If however, the transmitted and corrupted codewords 

are of different lengths, the decoder will lose synchronization 

with the encoder, resulting in a series of incorrect output 

symbols. Careful design can produce codes which will 

resynchronize quickly, as discussed by Stiffler (1971) and 
Ferguson and Rabinowitz (1984). 
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Maxted and Robinson (1985) developed a finite state 

model for the analysis of synchronization recovery for a variable 

length code. They found that most codes do resynchronize 

quite quickly after an error; for two different Huffman codes 

generated for a 26 symbol English character source, recovery 

occurred within three to seven symbols of an error. It is stated 

that "one must work diligently to construct codes with a long 

recovery span", however an example of a poor code is given, 

which took up to 62 symbols to resynchronize. 

The conditional coding scheme proposed in Section 

2.4 is likely to result in greater error extension, as the 

decoding of each codeword is dependent on the correct 

decoding of its predecessor. This is similar to the problem of 

error propagation in predictive encoding systems, as discussed 

by Maxemchuk (1979). 

Variable to fixed length codes, such as the string 

encoding methods, are less susceptible to errors. Transmission 

errors will result in the, incorrect decoding of a single 

codeword and, although this will result in the corresponding 

string being corrupted, no loss of synchronization will occur. 

Loss of synchronization could however occur if a bit were 

inserted or deleted, due to timing instability in some part of 

the transmission path. This would extend almost indefinitely, 

whereas the variable length codes would resynchronize fairly 

quickly. 
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(ii) Complexity. 

Although the performance of some coding schemes 

may be excellent, the memory, hardware, or processing time 

requirement may be excessive. A variable length code, designed 

for a source with an N symbol alphabet, may require codewords 

from 1 to (N-1) bits in length. 

Software and hardware implementation of a variable 

length encoder/decoder is not simple, due to the bit oriented 

nature of the data. Wells (1972) discusses hardware 

implementation of a Huffman encoder and decoder, whilst 

Schwartz and Kallick (1964) give an algorithm for software 

implementation. 

For digram encoding, requiring N2 codewords, the 

possible codeword length range is from 1 to (N2-1) bits, and it 

becomes necessary to limit the maximum length of the code. 

Garten (1985), Humblet (1981), Lavelle (1981) and Van 

Voorhis (1974) discuss ways in which this can be 

accomplished; these techniques will be further discussed in the 

next chapter. 

Variable to fixed length codes have some advantage, as 

the processing tends to be character rather than bit oriented. 

Other problems are encountered however, such as the need for 

extensive memory capacity; for example, the scheme proposed 

by Cleary and Witten (1984) required up to 1.4 megabytes of 

storage. In addition, the encoder performs a string matching 

operation based on a dictionary search, which is generally 

complex. 
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A number of other codes exist, amongst which the most 

prominent are arithmetic codes (Langdon 1984). These treat 

codewords as binary fractional values, generated by successive 

subdivision of the interval (0,1) using the cumulative probabilities of 

the symbols. The performance of these codes is bounded, as with 

Huffman codes, by the entropy. 

This chapter has considered some of the basic source coding 

techniques and their background in information theory. Comparative 

results have been given, and some of the practical problems 

discussed. The next chapter will consider some of the more 

practical issues, in particular the encoding of non-stationary sources. 
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3. CODING PARTIALLY KNOWN SOURCES. 

3.1 Introduction. 

Many of the practical problems associated with source coding 

are related to the degree with which the source model matches the 

actual source; hence the design of coding schemes which are well 

behaved, for sources that are not, is of considerable importance. 

Several features of real sources must be considered: - 

(i) The source may not match any realizable model well enough 

for a practical encoder/decoder to be designed. 

(ii) The source model parameters are not known, and must be 

estimated from previous messages. 

(iii) The source may be non-stationary. 

(iv) The source may only exist for a finite period of time, i. e. 

produce a single output sequence. 

Some of these points have been considered by Gilbert (1971). 

who proposed a number of variable length coding techniques for 

inaccurately known sources. These and other techniques for 

designing codes that are not sensitive to source instability are 
discussed in Section 3.2. 
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Non-stationary sources cannot usually be effectively 

compressed using a static coding scheme. The use of an adaptive 

encoder, which continuously estimates the source parameters and 

hence maintains a near optimal code, is discussed in Section 3.3. 

Faller (1974), for example, suggested an adaptive variable length 

coding scheme, which is discussed together with the later method 

of Gallager (1978). 

The coding scheme of Ziv and Lempel (1977) is 

inherently adaptive and, although more complex than the adaptive 

variable length encoders, can usually achieve significantly better 

performance. Other adaptive string encoding schemes have been 

suggested (by Cleary and Witten, 1984 and others). 

The main theme of this chapter is the selection of 

practical source coding techniques for partially known sources, i. e. 

sources for which a model is known or assumed, but the model 

parameters are unknown or inaccurate. Considerations such as 

performance on non-stationary sources, memory requirements, and 

ease of implementation will be discussed. 

0 
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3.2 Designing robust variable length codes. 

If the symbol occurrence probabilities for the source are 

known, an optimal code can be generated using Huffman's algorithm 

(Section 2.3). If however, the probabilities are not precisely known, 

the optimality of a code becomes difficult to measure. Some of the 

characteristics of a robust code are low average length, small change 

in average length with deviations in source symbol probability, and 

an absence of transient effects which may cause buffer overflow. 

In Section 2.3 it was stated that the length of a codeword 

should ideally be close to the information content of the symbol 

represented. For the Shannon-Fano code, the following relation 

holds (by definition): - 

IX <_ L< Ix +1 

In the case of a symbol with small probability, the 

corresponding length will be large. A source of N symbols whose 

probability follows a negative exponential distribution would, if 

encoded using a Huffman code, result in a maximum codeword 

length of (N-1) bits. 

If the probabilities of the symbols are estimated from previous 

(finite length) messages, the smaller values, which will generate 

long codewords, will be less accurately known than the larger 

probabilities. Some symbols may not have occurred in the samples 

used for measurement, and will be represented as having zero 
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probability (and a theoretically infinite codeword length). 

Hamming (1980) discusses the effects of uncertainty in 

source probabilities on Huffman code performance. A source with 

known symbol probabilities pi. is used to generate a Huffman code 

with corresponding codewords of length Li. The actual source has 

symbol probabilities pi . The average symbol length obtained is: - 

L' =L+ AL = 

N-1 N-1 
I 

1ý. pi + L, J i. ei 

where L is the average length of the code for the original source, and 

ei = Pi. - Pi 

This is developed by Hamming to show that: - 

AL = 'variance of Li x variance of ei 

hence showing that a larger variance of the codeword length 

distribution will exacerbate the effects of errors in the estimates of 

symbol probabilities. 

A code may be made robust by limiting the maximum 
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codeword length. This assists in several respects; the worst case 

performance is limited by the predefined maximum length, the zero 

frequency problem is circumvented, and the maximum length can 

be selected to suit buffer or register widths (for example 16 bits), or 

other hardware considerations (Garten 1985). Unfortunately, it is 

fairly difficult to design codes with minimum average length subject 

to a maximum length constraint. The solution has been formulated 

as an integer programming problem by Karp (1961), although the 

approach is computationally complex. 

As an alternative, the maximum length may be reduced, but 

not constrained. This does not provide the same level of security as 

the former method, nor does it give a definite bound on buffer size, 

beyond the trivial case (of N-1 bits for an N symbol code ). The two 

classes of technique will be considered separately, and the 

compromise between average and maximum length examined. 

3.2.1 Generating variable length codes with reduced maximum 

length. 

Huffman's algorithm can produce a number of different codes 

for a given probability distribution, due to arbitrary decisions that are 

made at certain stages. An improved algorithm was given by 

Schwartz and Kallick (1964), which produces the Huffman code 

with the minimum longest codeword length. The original algorithm, 

given an ordered list of probabilities, repeatedly finds the lowest D 

probabilities (where D is the code radix), merges them, and places 
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the merged probability in order. Given a number of equal 

probabilities, Huffman's algorithm gives no rule for selecting the 

values to be merged. Schwartz and Kallick found that the minimum 

longest codeword resulted if the following rules were applied: - 

(i) Select probabilities from the bottom (low probability end) of 

an equiprobable set. 

(ii) Place merged probabilities above (at the higher probability 

end of) any existing probabilities of equal value. 

An alternative approach given by Gilbert (1971), is to modify 

the source probability distribution. This may be carried out in several 

ways, by merging two probability distributions, or by altering the 

estimated distribution. Gilbert suggests that the source is regarded 

as composite, and the overall distribution of symbol frequencies 

calculated from the proportion of time spent An each source state. 

For example, the source may spend five percent of the time with a 

uniform, and ninety five percent with a negative exponential 

distribution. 

The source may be modified without altering the entropy, by 

assigning infinitesimal probabilities to those symbols with zero 

frequency. As the product p. log(1 /p) tends to zero with decreasing 

p, the entropy will not be affected by the operation. 

Table 3. a shows two different sets of Huffman codes, for four 
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data samples. The first set of codes is generated using the basic 

source probability distribution, whilst the second set is based on 

modified distributions obtained using the method given above. The 

reduction in maximum length obtained by the modification is 

considerable, whilst no change in average length is observable. 

Sample Huffman code performance 

Using source PDF 

Average Maximum 

Using modified PDF 

Average Maximum 

length length length length 

Text l 4.53 61 4.53 21 

Text2 4.67 63 4.67 20 

Text3 4.48 73 4.48 21 

Image l 4.76 98 4.76 23 

Table 3. a Average and maximum codeword lengths for Huffman 

codes based on source and modified source probability distributions. 

If upper and lower bounds can be given for the symbol 

probabilities, a method given by Smith (1974) can be used to find a 

code that minimizes the largest average codeword length for all 

probability distributions within the bounds. 

The code is designed using Huffman's algorithm on a modified 

compromise probability distribution. The distribution is obtained 

from the upper and lower bounds p1U, p1L of the probability for each 
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symbol si: - 

Pi =z ifpiL<Z<p1U 

=piL if piLaZ 

=piU if piU 5Z 

where Z is determined from the condition that the pis must have a 

sum of 1. 

Humblet (1981) formulated an iterative algorithm to produce 

a prefix code that minimizes the moment generating function of the 

codeword length distribution. The algorithm of Huffman is modified 

slightly, by introducing a scaling operation applied after each merge 

step. 

3.2.2 Variable length codes with constrained length. 

If a length constraint, L, on, can be applied to a variable length 

code, the worst case performance is limited, the robustness 

improved, and hardware or software implementation made easier. 

Inevitably, the constraint can only be applied at the cost of increased 

average length. A loose upper bound for the performance of a code of 

this type is given by Gilbert (op cit), this is given as: - 
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Upper bound on average length 

LU SH+1+N 2(1-Lcon) (log(N) - H) 

The code may be generated in several ways, Karp's (ibid) 

integer programming solution is not attractive due to the inherent 

complexity of the algorithm, although an optimum solution will be 

found. Some alternative approaches are: - 

(i) modify the symbol probability distribution. 

(ii) use an iterative method such as dynamic programming. 

(iii) use a standard codeword length distribution, assigning 

codewords to symbols on the basis of symbol probability. 

3.2.2.1 An approach based on a modified source pdf. 

This method has been briefly examined in Section 3.2.1, 

where it was shown that the replacement of zero frequencies by very 

small values substantially reduced the maximum length of a Huffman 

code without significant effect on the average length. If the 

information content of the symbols with lowest probability is less 

than or equal to the maximum allowable length ( Leon ), it should be 

possible to generate a code with average length close to the entropy, 
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and maximum length equal to the constraint. 

If some number m of the least probable symbols are selected, 

such that the average information content of the m symbols is equal 

to, or less than the constrained length, these may be encoded in at 

most Lcon+l bits. The entropy of this source is therefore: - 

N-m-1 

Hm =I pilog(1) + m. P(av). log( 1) 
i=o Pi P(av) 

where the smallest m is selected such that 

N-1 

P(av) =I 
YP(i) 

m i=N-m 

and log( 1)S Lcon 
P(av) 

If a Shannon-Fano code is generated on the modified 

probability distribution, the maximum length obtained will be in the 

range Lcon to (Lcon +1), as the length of a codeword is within one 

bit of the information content. For a Huffman code, an upper bound 

to the maximum codeword length (for the symbol with the 

minimum probability Amin) is given by Katona and Nemetz (1976); 

the maximum length is bounded by s-1 where: - 

1: Pmin <1 
F(s+ 1) F(s) 

where F(s) denotes the s-th Fibonacci number, generated from the 
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relation F(1)=1, F(2)=1, F(s)=F(s-1)+F(s-2), (Hardy 1938). 

This method does not guarantee that the maximum codeword 

will be Lcon , although it does constrain the codeword length to 

within some known bound. Ideally however, a code is required that 

has no codeword longer than Lcon . An iterative approach may be 

used, in which the value of m is successively increased, and a code 

generated, until the value Lcon is not exceeded. Although the 

number of iterations is likely to be small, the repeated code 

generation will be computationally expensive. 

3.2.2.2 An iterative approach. 

Integer programming, as suggested by Karp (ibid), will 

produce an optimum code, i. e. a code with a minimal average length 

subject to a length constraint. However the complexity of integer 

programming, even with the branch and bound method of solution, 

is known to be high. An alternative approach, similar to the method 

suggested by Van Voorhis (1974), is to use dynamic programming 

(Cooper 1981). 

The code generation process may be Implemented in an 

iterative fashion, at each stage optimizing a single variable subject to 

the given constraints. The variable in this instance is the number of 

codewords of some given length, which are selected to give a 

minimum average code length, subject to the maximum length 

49 



constraint and the Kraft inequality (sect 2.3) 

The probabilities of the symbols Sk are arranged in decreasing 

order. The initial codeword length is set to one bit, and the 

following procedure used repeatedly until all symbols have been 

assigned codewords. 

(i) Select the number of codewords of length i bits, n1, to 

minimise the expected average length L", subject to (ii); given 

that the j symbols already assigned codewords are encoded 

using the allocated codeword lengths, the ni codewords are 

encoded in i bits, and unassigned symbols are encoded under 

the assumption that they are equiprobable. 

(ii) ni is constrained by two requirements, firstly that the Kraft 

inequality is satisfied, and secondly that the number of bits 

required to encode all remaining symbols must not be greater 

than the given maximum length Lon. 

(iii) Assign ni of the xi available codewords of length i bits, set j 

to j+ nj ,i to i+l bits, and repeat (i). 

The number of codewords available of length i bits is: - 

xi =2. (xi-i-n1i 
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If ni codewords, of the xi available, are assigned, it is possible 

to encode the (N -j- n1) remaining symbols with codewords of 

length i+r bits, where r is given by: - 

2r. (x1-ni)z(N-j-ni) 

this gives 

r', 2 log2( (N -- nj) ) 
(xi - ni) 

Provided that (i+r) is not greater than the required maximum 

length then the code will be able to satisfy the length constraint. 

The optimizing function is the expected average length L"i, given 

by: - 

j-i 
lPk*Lk 

k=0 

j-1 

Pk. Lk 
k=O 

j+ni-1 N-1 

+I pk, i+Ipk. (i+r) 
kj kj+ni 

N-1 N-1 

+I PO +I Pk. r 
k =j k j+ni 

As the minimization procedure will take significant 

processing time, a simple precondition may be added to check that Lop 
an optimal stage solution is likely. The test compares the marginal 

information content of the y-th symbol (defined below), with the 
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marginal information capacity of the xi available codewords. 

Marginal information 

content of y-th symbol 

where R}, is the sum 

MY = 1092( R /py) bits 

N-1 

,= 
IPk 

k=y 

The marginal information carrying capacity 

of an i bit codeword is: - 

Attempt optimisation if 

M}, ' = 1092( xi) bits 

m, <M; -a 

where d is determined experimentally. 

This method cannot be shown to provide an optimal solution 

unless the problem can be classified as separable (Cooper op cit), 

although it will be shown to provide reasonable performance. 

3.2.2.3 A simple code with a fixed codeword length distribution. 

An alternative technique, using a predetermined set of 

codeword lengths, is extremely simple to implement. For example, a 

code length set for a 128 symbol alphabet, satisfying the Kraft 
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inequality is: - 

length of codeword 4bits 8 bits 

number of codewords 8 120 

To generate a code, it is necessary only to allocate the eight 

most frequent symbols 4 bit codewords, and allow 8 bits for the 

remaining symbols. Encoding consists of searching a short table, 

each entry containing one of the eight most frequent characters,. If 

the current character is not found, it's binary equivalent (for 

example ASCII code) is prefixed by a '0' and sent. If the character is 

found in the table, the number of the entry prefixed by a '1' is 

transmitted. Decoding is even simpler, if the received codeword is 

prefixed by '0', the remainder of the codeword is the character 

code; if the codeword is prefixed by '1'. the remainder of the 

codeword forms an index to an equivalent table to that used by the 

transmitter. 

3.2.2.4 Performance comparison of the constrained VL codes. 

Table 3. b shows the average lengths of codes with a maximum 

length of 8 bits, generated using the three methods outlined above, 

the iterative technique, a Huffman code generated on a constrained 

source, and the simple 4/8 code. The average length obtained for 

the different samples do not show that one of the methods is 

markedly better than the others, however the iterative technique 
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provides a more consistent performance. Table 3. c shows the 

ranking of the three methods over all twelve samples, and supports 

this conclusion. 

Sample 

name. 

Sample 

entropy. 

Constr. 

source. 

Iterative 

method. 

4/8 bit 

code. 

Textl 4.504 5.680 5.355 5.507 

Text2 4.641 5.603 5.440 5.593 

Text3 4.456 5.664 5.324 5.526 

Text4 4.722 5.898 5.530 5.719 

Text5 4.019 5.375 5.283 5.202 

FORTRAM 5.281 6.122 6.074 6.415 

FORTRAN2 4.773 5.861 5.576 5.944 

Pascall 5.022 5.690 5.799 5.938 

Pascal2 4.420 5.344 5.471 5.602 

Prolog 4.747 5.822 5.640 5.818 

Numbers 3.988 5.355 5.142 5.246 

Image 4.734 6.008 6.000 6.149 

Table 3. b. Average length (bits) of three variable length codes with a 

constrained maximum length of 8 bits. 
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Number of occurrences of rank: 

Ranking Constrained Iterative 4/8 fixed 

source. method. structure. 

1 2 9 1 

2 3 3 6 

3 7 0 5 

Table 3. c. Summary of scores attained by coding schemes from Table 

3. b 

The performance of the iterative and fixed structure codes is 

compared with that of a Huffman code in Tables 3. d to 3. f., for four 

data samples of two different types. A code is generated on one 

sample of data from the four, and used to encode all four samples. 

This illustrates the tolerance of the code to minor (i. e. different 

sample of the same type of source), and major (i. e. sample from a 

different type of source) changes in source parameters. Table 3. g. 

combines the results from Tables 3. d. to 3. f., and generally supports 

the preceding discussion on robustness. The Huffman code achieves 

best performance for sources of the same type, but worst 

performance for sources of different types. The two robust coding 

schemes, both with a constrained maximum length of eight bits, are 

less efficient than the Huffman code for sources of the same type, 

but are more tolerant to larger changes. 

The performance difference between codes generated by the 
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iterative (dynamic programming) method, and the simple fixed 

structure code is not large, and the simplicity of code generation 

and ease of handling four and eight bit codewords render the latter 

attractive for small or fast systems. 
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Code applied to sample FORTRAN 

12 

Code generated 

on sample: 

FORTRAN 1 0.99 0.93 

FORTRAN 2 0.88 0.99 

Pascal 1 0.71 0.71 

Pascal 2 0.64 0.64 

Pascal 

12 

0.65 0.61 

0.44 0.42 

0.99 0.94 

0.90 0.99 

Table 3. d Efficiency of Huffman code when applied to sources other 

than that used for code generation. 

Code applied to sample FORTRAN Pascal 

1 2 1 2 

Code generated 

on sample: 

FORTRAN 1 0.87 0.79 0.72 0.64 

FORTRAN 2 0.87 0.86 0.73 0.67 

Pascal 1 0.69 0.64 0.87 0.77 

Pascal 2 0.69 0.65 0.82 0.81 

Table 3. e Efficiency of code generated using the iterative method, 

when applied to sources other than that used for code generation. 
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Code applied to sample FORTRAN 

12 

Code generated 

on sample: 

FORTRAN 1 0.82 0.75 

FORTRAN 2 0.79 0.80 

Pascal 1 0.69 0.64 

Pascal 2 0.69 0.64 

Pascal 

12 

0.74 0.69 

0.73 0.70 

0.85 0.76 

0.82 0.79 

Table 3. f Efficiency of the 4/8 bit fixed structure code when applied 

to sources other than that used for code generation. 

Efficiency for source: - 

Used to Same Different 

Code type: generate code type type 

Huffman 0.99 0.95 0.61 

Iterative method 0.85 0.83 0.68 

Fixed structure 0.81 0.80 0.69 

Table 3. g. Average value of efficiency of coding schemes for different 

classes of source (from previous Tables). 
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3.3 Adaptive Source Coding. 

Although a robust code will perform well for slight variations 

in source symbol probabilities, it will not provide acceptable 

performance for gross source changes. The use of adaptive source 

coding is practical for non-stationary sources, if the rate of change of 

source model parameters is low. 

In principle, adaptive coding is a logical extension of the 

static coding schemes already discussed. A source model is defined, 

and the parameters of the model estimated from observed data. A 

code is generated, based on the model parameters. The parameters 

are continually updated, and new codes generated at intervals. Thus 

the code is maintained near to the optimum for the source model. 

Many of the inherent problems of source coding are 

exacerbated by the use of adaptive encoders. For example, a code 

which is complex to construct may be practical for a static encoder, 

but the processing overhead in periodically regenerating it may be 

excessive, rendering the method impractical for an adaptive system. 

Two types of adaptive source code will be discussed, the 

adaptive variable length code, and the adaptive string (or variable to 

fixed) code. 
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3.3.1 Adaptive Variable length coding. 

An adaptive variable length encoder consists of the basic 

blocks shown below. Source symbols are read and encoded using a 

current code. As the symbols are read from the source, they are used 

to update a frequency table. In the case of a discrete memoryless 

source model, the symbol frequencies are used to estimate the 

symbol probabilities, whilst for a Markov model, the joint or 

conditional probabilities are estimated. 

I; iicodcd 
oilt})lI1 

Figure 3. h An adaptive source encoder 

A number of variations are possible but, complexity, 

performance, rate of change of source characteristics, and other 

practical design constraints need to be considered. Initially, two 

designs proposed by Gallager (1978) and Faller (1974) will be 

discussed, some alternative schemes will then be proposed, and the 
design considerations outlined. 
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Gallagers adaptive Huffman encoder employed a 
tree form of Huffman's algorithm. A node consists of the 6-tuple: - 

(i) pointer, to parent node, 

(ii) 0 or 1 bit element of a codeword, 

(iii) pointer to left dependent node, 

(iv) cumulative frequency for left node, 

(v) pointer to right dependent node, 

(vi) cumulative frequency for right node 

In addition, for each source symbol there is a pointer to the 

node in which the symbol is represented, and a bit to indicate 

whether the symbol is on the left or right hand branch. The total 

storage required for the data structure, for N source symbols is: - 

N. (1 word +1 bit) + (N-1). (5 words +2 bits) 

For a 128 symbol alphabet, the storage required for a 

reasonable representation of this structure (assuming 16 bit 

addresses) would be 1654 bytes. For digram or conditional encoding 

based on a 128 symbol alphabet, the memory requirement would be 

114,683 words (32 bit words would be needed, giving 459 kilobytes 

total requirement). 

As a symbol is read from the source, the pointer associated 

with the symbol is used to find the appropriate node, and the 

left/right-hand bit used to determine which pointer/ frequency pair 

to update. The frequency count is incremented. and then the 

pointer to the parent used to propagate the count increase up the 
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tree. The nodes are resorted into frequency order (the sum of left 

and right hand frequencies), and paired. By the sibling property 

(Gallager 1978), the resulting tree structure forms a Huffman tree, 

and can be used to represent the corresponding Huffman code. 

To prevent frequency counter overflow, and give a fairly fast 

response to source changes, a scaling operation is periodically 

applied to the measured frequencies. Gallager suggests that, every 

M symbols, the frequencies are multiplied by a factor J3, typically 0.5. 

The code in this case is updated once for every symbol 

encoded, which results in a non-trivial processing requirement. For 

a fairly stable source the code will change infrequently, and the 

re-sorting steps will take little time. 

Faller's (1974) encoding scheme is broadly similar to the later 

method described above. The scaling operation, division by two, is 

applied when the average length has increased on v occasions. 

Faller gives results for four data samples, and for three values of v. 

The average length, normalized to the static Huffman code 

performance, taken over the four samples was calculated by Faller to 

be 0.993, less than the average length of a static Huffman code on 

the same data. An adaptive code may perform better than a static 

code if a source sequence can be subdivided such that the average 

subsequence sample entropy (weighted by the subsequence length), 

is less than the entropy of the whole sample; or if the static code is 

not optimal for the source. 
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The fixed structure 4/8 code may also be used within an 

adaptive encoder. This requires a table of character frequencies as 

with the Huffman codes described above, however the accuracy of 

the frequencies has less effect on the code performance, hence one 

byte per character is sufficient. The total memory required for a 128 

symbol alphabet is 128 bytes for the frequency table, and eight bytes 

for the table of short codewords (described in Section 3.2.2). 

It was assumed by both Faller and Gallager that the receiver 

and transmitter independently track the source parameters and 

generate codes, however other approaches may be adopted: - 

(i) Independent transmitter and receiver code generation. 

This method, described above, has the advantage that the 

channel capacity is used only for transmitting encoded data. If 

transmission errors occur however, the receiver, which is relying 

on the decoded data for the information necessary to update its 

code, may lose synchronization. In addition, since both 

transmitter and receiver must maintain parameter estimation 

and code generation, the complexity is fairly high. 

(ii) Code generated at the transmitter and downloaded to the 

receiver. 

This method is fairly practical as long as the code download is 

infrequent, as it occupies useful channel capacity. For example, 

the transmitter may generate a code and download it to the 
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receiver. The average length of the code is monitored, and if the 

performance deteriorates beyond some threshold, a new code is 

generated. If the source is highly variable, the code download will 

become more frequent and the resulting loss in efficiency may be 

unacceptable, therefore this technique will not be considered 

further. 

(iii) Code generated at the transmitter and modifications sent to 

the receiver. 

Certain types of code can be explicitly modified, rather than 

regenerated. For example, the 4/8 prefix code can be modified 

by swapping code length allocations for pairs of codewords. This 

has the advantage over the method in (i) that the complexity is 

low, and the advantage over (ii) that only modifications rather 

than the whole code are transmitted. 

Coding schemes of types (i) and (ill) are compared in Table 

3. j. Three sets of data, type 1- upper case text, type 2- lower case 

text, and type 3- numeric data, were combined to form four 

composite samples. The pattern of occurrence of the data types 

within the samples, shown below, gives an increasing frequency of 

change. The test was intended to show the performance of the 

coding schemes on mixed sources, and the rate of degradation with 

increasing source instability. 

Sample A= (1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3) 

Sample B= (1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3) 
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Sample C= (1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3) 

Sample D= (1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3) 

The samples had an identical entropy of 5.383 bits per 

symbol, and a joint entropy of 7.679 bits per symbol pair. This gives 

a lower bound on the performance attainable using a static coding 

scheme designed for the source. 

The first result, for an adaptive Huffman code, shows an 

average length for samples A, B and C that is below the sample 

entropy. This may be compared with the lower bound obtained by 

calculating the weighted average of the entropies of the individual 

data samples 1,2 and 3, of 4.039 bits per symbol. The average 

length increases markedly with increasing frequency of source 

change, the average length for sample D is 20 percent greater than 

that for sample A. 

The second type (i) adaptive code is based on the 4/8 bit 

fixed structure code discussed in Section 3.2.2. This has several 

advantages over the adaptive Huffman code, principally the ease of 

code generation, and the constrained maximum length. The robust 

nature of the 'code is shown by the small (seven percent) 

degradation in performance from sample A to sample D. The average 

length is however significantly larger than that attained by the 

Huffman code, even in the worst case. If performance is a primary 

consideration, the adaptive Huffman code would seem preferable. 

The third result in Table 3. j shows the average length 

obtained for a code of type (iii). A 4/8 bit fixed structure code is 

maintained at the transmitter. A block of symbols are encoded (128 
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in this example). If the encoded block length would be reduced by 

modifying the code and incorporating information about the change 

in the block, the code modifications are transmitted before the 

block, and the block encoded using the modified code. This allows 

'look ahead' to be used to incorporate information from the block 

into the code before the block is encoded. 

The performance of this code is better than the type (i) 

adaptive 4/8 code. The most probable reason for this is the 

look-ahead feature which will give fast response to changes in the 

source characteristics. With increasing frequency of change 

however, the performance degrades more quickly than the type (i) 

4/8 code, the average length for sample D is nine percent greater 

than that for sample A. If the source changes very slowly, it is 

possible that the code would also perform poorly, as the criterionfor 

transmitting a swap command is that the current block of data 

would be more efficiently compressed. The overhead of transmitting 

the swap command places a form of threshold on the gain that must 

be realized as a result of the operation. 
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Sample Adaptive code: - 

Huffman 4/8 4/8 

type(i) type(i) type(iii) 

A 4.699 5.715 5.485 

B 5.098 5.804 5.534 

C 5.379 5.882 5.589 

D 5.634 6.128 5.993 

Sample entropy 5.383 bits " Joint entropy 7.679 bits 

Table 3. j. Average length (bits) of adaptive codes when applied 

to samples with identical content but increasing frequency of change 

of basic data type. 
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3.3.2 Adaptive String Encoding 

String based, or variable to fixed encoding has been regarded 

as complex to implement in adaptive form. Some implementations 

have required large amounts of memory and processor time, and 

have only been viable on mini- or mainframe computers; in addition, 

the learning times are often protracted. The techniques have not 

been suitable for real-time or on-line compression systems. 

An example is given by Cleary and Witten (1984), of an 

adaptive string matching system. Their method achieved high 

compression, a file of English text could be compressed to less than 

3 bits per symbol average length, but the processing and memory 

requirements were high. For a file of 44,871 English characters, an 

average encoded symbol length of 2.75 bits was achieved, but the 

memory required was 500 kilobytes. Cleary and Witten state that it 

should be possible to achieve better performance with 1.4 megabytes 

of storage, and give an expected encoding time of 120 microseconds 

per symbol. A maximum throughput of the order of 1000 symbols 

per second on a VAX 11/780 minicomputer is given as a realistic 

target. 

The Ziv-Lempel compression algorithm was briefly outlined in 

Section 2.5. The algorithm is basically a string learning system. It 

has a dictionary of known substrings of the input sequence: the 

longest known substring matching the input sequence is found and 
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its index output as the codeword for the substring. The next symbol 

in the input sequence is appended to the matched substring and the 

resulting extended substring added to the dictionary. The next 

symbol is output in uncompressed form. The receiver has an 

equivalent dictionary, finds the substring corresponding to the 

received index, and performs an equivalent dictionary update to the 

transmitter. 

For example, consider a source of symbols { a, b, c }, which 

emits an output sequence - a, b, c, a, a, b, c, a, b, c, b 

Initial dictionary - 1. a Appended - 4. ab 

2. b entries. 5. ca 

3. c 

Operations - 

6. abc 

7. abcb 

match "a" with dictionary - 1...... output "1" 

next symbol is "b" output "2" 

add "ab" to dictionary 

match "c" with dictionary - 3..... output "3" 

next symbol is "a" output "1" 

add "ca" to dictionary 

match "ab" with dictionary - 4.... output "4" 

next symbol is "c" output "3" 

add "abc" to dictionary 

match "abc" with dictionary - 6.. output "6" 

next symbol is "b" output "2" 

add "abcb" to dictionary 

resulting output sequence - {1,2,3,1,4,3,6,2} 
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Obviously for a long input sequence, the substrings learnt by 

the algorithm can be quite large, and are limited in size mainly by 

the rate of learning (data dependent), and the memory available. 

The preceding example showed how a sequence of input 

symbols may be parsed into substrings. A number of practical points 

need to be considered when implementing the algorithm. 

(i) Coding of index values. 

The output codewords must be expressed to some finite 

precision. The range of values will correspond to the maximum 

dictionary size, typically 12 bit codewords giving a dictionary size 

of 4096 entries. 

(ii) Data structure and memory requirement. 

The data structure needs careful design, as the encoding/ 

decoding speed and memory requirement depend on it. Early 

implementations used a simple array or tree structure, with each 

element providing storage for the maximum size of string. 

Quoted memory requirements have been in the range 200 

kilobytes to 1 Megabyte. 

(iii) Substring recognition 

An important part of the encoding process is the parsing of 

the input sequence with respect to the substrings contained in 

the dictionary. A linear search would obviously be very inefficient 

and some faster technique is necessary. 
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(iv) Dictionary purging. 

When the dictionary has been filled, some strategy is 

necessary to remove infrequently used strings, in order that the 

system continues to adapt to the input data. If the data is 

consistent however, it is not necessary to purge the dictionary. 

(v) Learning phase. 

When the dictionary contains few entries the efficiency of the 

algorithm is low, as each codeword represents only a short 

string. 

(vi) Uncoded symbols. 

The original Ziv-Lempel algorithm specifies that the output 

stream consists of codeword/next-character pairs. This reduces 

efficiency as part of the output stream consists of uncompressed 

data. 

(vii) Early string termination. 

If the stream of characters is halted, the encoder will wait for 

further characters without transmitting any further codewords. A 

control character may be added to the basic source alphabet. 

which causes termination of the string matching process. The 

transmitter sends the encoded string, followed by the control 

character; the receiver decodes the string but does not attempt 

to add it to its dictionary. This would typically be used at the end 

of a message, or when some given time has elapsed since the 
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receipt of the last character from the source. 

Miller and Wegman (1982) and Welch (1984) have suggested 

improvements to the Ziv-Lempel algorithm which render it both 

memory efficient and fast, solving problems (i) to (iii) above. 

Miller and Wegman describe a data structure that provides 

very efficient use of memory. The dictionary is held in the form of a 

tree, with each node containing a single character and a pointer to 

the parent node which represents the prefix string. A hash table 

(Knuth 1973) is used to determine, given a matched substring and 

the next input character, whether the extended substring is in the 

dictionary. 

The implementation difficulties of this method are discussed 

by Welch (op cit). The hash table requires a significant amount of 

memory ( Welch suggests 8 kilobytes for a 4096 entry dictionary ), 

in addition to that needed for storage of the basic tree structure 

used to encode the dictionary. Use and , maintenance of the hash 

table, if implemented in software, is slow, and Welch suggests that a 

hardware implementation or the use of associative memory would be 

much faster. 

An improved data structure with a modest memory 

requirement is shown below. This follows Miller and Wegman's tree 

structure, but rather than linking each node only to its predecessor, 

which necessitated the use of a hash table, a parent node is linked to 

a list of dependants. Thus a node contains a character, a down 

pointer to the list of nodes representing the dependent strings, and 
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a right pointer to an alphabetically ordered list of alternative strings 

having the parent string as a prefix. The nodes are held in an array, 

and the array index is used to represent the dictionary index of the 

string formed by the sequence of characters on the path from the 

root of the tree to the last matched node. A node is defined 

therefore as: - 

node =( character, down-pointer, right-pointer ) 

Figure 3. k illustrates the modified data structure, and shows 

the strings "q", "qu", "qua", and "qui" encoded using four nodes. To 

match the input sequence "quiet", the ordinal value of the first 

character "q" is used to find the initial node index (113 assuming 

ASCII encoding), and the down-pointer used to find the index of 

the next dictionary entry, the second input character, "u" is read 

and immediately matched with the character in the current 

dictionary entry. The down-pointer is again used to determine the 

index of the next dictionary entry, corresponding to the first three 

character string "qua". 

The next input character is "i", whilst the next dictionary 

entry currently contains character "a", these do not match and a 

search is instigated on the right list of the current node. There are 

three possible outcomes to this search, the character may be 

matched in which case the next input character is read, or the 

search may fail because the right-list ends, or a character of greater 

ordinal value is encountered. 
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Index Character Down Right 

pointer pointer 

113 1 q' 197 null 

197 'u' 692 null 

314 'i' null null 

692 'a' null 314 

Figure 3. k The data structure for the improved Ziv Lempel compression 

algorithm; the dictionary entries and associated tree for the strings 

fq! $, �quýý, "quaIf, "qui". 
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If the search/match procedure fails, then a string has been 

matched completely, and the index corresponding to the last entry 

is transmitted. The last (unmatched) character is used to create a 

new dictionary entry linked onto the last (matched) string. 

The string matching process consists essentially of following a 

simple progression of pointers, searching is only required amongst 

alternative known characters for a given position within a string. 

The memory requirement is reduced to the order of five to twenty 

kilobytes. 

The decoder has a similar data structure to the encoder for 

storage of the dictionary, but requires an additional pointer to allow 

backtracking up the code tree. Given some received index, the 

corresponding entry is immediately found, and the parent pointers 

followed until the string is completely decoded. This needs no 

searching at all, but produces the characters in reverse order. A last 

in first out (LIFO) stack is used to correct the character order, 

characters are pushed onto the stack during decoding and 

recovered afterwards. 

A further development suggested by Miller and Wegman, is 

termed character extension. This addresses (vi) above, which stated 

that the output of the encoder consists partially of uncoded 

characters. Miller and Wegman suggest that when a string has been 

matched, the index is transmitted as before, but the next character, 

instead of being sent, is used to start the next string matching 

operation. The decoder adds to its dictionary, a new entry consisting 
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of a received string with the first character of the next received 

string appended. The encoder has to delay its dictionary updates by 

one step, to allow the decoder to maintain synchronisation. 

Welch discussed a method by which initial performance may 

be improved, solving problem (v) above. Initially, the dictionary is 

almost empty and a small number of bits suffice to encode the index 

values. As the dictionary grows, the codeword size is increased up to 

some maximum. This improves performance during the first ten to 

twenty thousand symbols encoded, but at the cost of increased 

complexity. Figure 3. m. shows the improvement obtained from this 

technique. 
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File size (kilobytes) 

Figure 3. m Comparison of Average Length attainable by the Ziv-Lempel 
Algorithm, W ith and Without the Variable Length Enhancement., for 
file Text5. 
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A further modification which may have some benefits in text 

compression, is space synchronisation. If the string learning process 

is terminated when a space/character pair is found, the encoder will 

tend to learn words rather than arbitrary fragments of text. The 

drawback to this technique is that common fragments such as and 

the would be split into their component words. 

The choice of dictionary size has a major influence on 

performance, as demonstrated in Figure 3. n., for an encoder with 

and without space synchronization. The improvement in average 

length with increasing dictionary capacity is quite dramatic, a 

dictionary with as few as 512 entries achieves an average length of 

nearly three bits per symbol. 

The advantages of selecting integer multiples of two for the 

dictionary are also evident, as distinct steps occur after these values. 

Space synchronisation does make a small improvement, although 

the added complexity is significant. 
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Figure 3. n The Relationship between dictionary size (number of entries) 
and average encoded character size, for the Ziv Lempel algorithm. 

One area which may become complex is the dictionary 

reduction or purging that must be performed when there is no 

capacity for new entries. Welch (op cit), and Ziv and Lempel (op cit), 

do not discuss this problem, however Miller and Wegman suggest 

that a frequency count is associated with each dictionary entry, 

which is incremented, each time the associated substring is used. 

When the dictionary is full, the least frequently used entries are 

deleted. This method is however expensive in memory, and the 

process of finding the least used entries is complex. 

For example, the node structure shown below could be 
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used for a frequency count based system. Each node contains in 

addition to the basic components described above, a frequency 

count, and two pointers, which will require approximately 11 bytes 

of storage for the transmitter and 13 bytes for the receiver. The 

pointers are used to maintain the list of nodes in frequency order, in 

the form of a doubly linked list. 

Whenever a node is accessed, the frequency count is 

incremented, and if necessary the node is moved up the list. The 

least frequently used strings will move to the bottom of the 

frequency list, and may be found without searching. It would be 

necessary to periodically scale the frequency counts to prevent 

overflow. A drawback of the method is the need to perform a 

frequency count update for each encoded source symbol. 

node for frequency count variant: - 

character, down-pointer, right-pointer, 

parent-pointer (receiver only), 

frequency count, up-link, down-link) 

An alternative method is based on the premise that the most 

frequently used strings will grow quickly. When the dictionary is full, 

all strings that are not prefixes of other strings are reduced in 

length by one character. This means that commonly used strings will 

keep increasing in length, whilst disused strings are progressively 

shortened. This has the slight drawback that the strings which only 

increased by one character since the last purge will be returned to 

their earlier state. A boolean new variable can be added to the node 
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descriptor, which is set to true when a node is created. and to false 

when a purge is carried out. 

The method is a significant improvement on the frequency 

based method in terms of memory requirements, as it needs only 

one bit of additional information to be held with each node, and in 

terms of processing time as there is no need to update a count when 

each character is matched. The purge operation is comparable in 

complexity to the scaling operation needed for the frequency count 

method. 

The performance of the two methods is compared in Table 

3. p . The frequency count method achieves from 0.018 to 0.038 bits 

improvement over the string reduction method. 

File size Purge method: - 
k. bytes. frequency string 

count reduction 

5 4.422 4.422 

10 3.751 3.751 

15 3.440 3.458 

20 3.303 3.327 

30 3.094 3.132 

Table. 3. p. Effect of dictionary maintenance strategy on average 
length (bits) of Ziv Lempel encoding. (File Text5) 
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The improved Ziv-Lempel encoder, using the string reduction 

method of dictionary maintenance, the variable length improvement, 

and the compact data structure, is an efficient data compression 

technique for text files. The degree of compression attainable 

appears generally good, although obviously dependent on the 

characteristics of the encoded sample. 

Table 3. q. shows the compression obtained for the full range 

of samples. In practice, the space synchronization technique did not 

achieve a consistent improvement in performance, and - the 

algorithm used to obtain the results shown did not incorporate this 

modification. The results clearly indicate that the algorithm achieves 

a consistently better performance than the earlier variable length 

codes, whilst the memory requirements are lower and the encoding 

process simpler than that needed for joint or conditional encoder 

implementations. 

The worst performance is shown for the FORTRAN2 sample; 

however this is undoubtedly due to the size of the sample, less than 

2 kilobytes in length. 
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Average length for 

Sample a dictionary size (number of entries) of 

name. 512 1024 2048 4096 

Textl 4.48 4.06 3.79 3.60 

Text2 3.49 3.02 2.75 2.58 

Text3 4.54 4.11 3.86 3.80 

Text4 4.26 3.82 3.56 3.42 

Text5 » 3.75 3.36 3.14 3.01 

FORTHAN1 4.32 3.99 3.90 3.92 

FORTRAN2 4.69 4.57 4.57 4.54 

Pascal l 4.45 4.17 4.07 4.08 

Pascal2 3.38 3.08 2.95 2.96 

Prolog 3.73 3.47 3.45 3.45 

Number 3.62 3.45 3.44 3.44 

Image 4.49 4.13 3.96 3.86 

Table 3. q. Average length (bits) achieved by the improved Ziv Lempel 

encoder for a range of data samples. 
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3.3.3 Encoding sources with unknown character size. 

In designing source encoders, it is usually assumed that the 

input to the encoder consists of discrete symbols from the source 

alphabet, and hence that the symbol size is known. Many modern 

communication systems employ synchronous transmission, in which 

data is treated as a continuous bit stream rather than individual 

characters. 

When designing a source encoder for a synchronous source 

which outputs non-binary symbols in binary form, several approaches 

may be taken. If the symbol size is constant but unknown, the 

character length that results in optimum source code performance 

can be found by search. For example, a sample of data can be taken, 

the assumed character size stepped from one to some maximum 

number of bits, and the entropy estimated for each case; the ratio of 

entropy to character size should be minimal for the best 

compression ratio to be achieved. 

An alternative approach is possible if a string encoding is 

used. A symbol size is selected arbitrarily, the assumption being that 

frequent strings of source symbols will not lose their identity when 

parsed into bit strings of different lengths. There are obvious points 

to consider when selecting the segment size ( where a segment is 

an assumed symbol). 

For a segment of length C, as there is no synchronisation 
between the position in the source bit stream of segments and of 

symbols, any regular string of symbols may coincide with any of the C 

bit positions in the segment. This implies that, for any frequent 
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string of symbols, at least C variations of the string are possible, and 

hence short segments are likely to result in more economical use of 

the dictionary space. 

As the encoded binary string length is proportional to the 

segment size, but the codeword length is proportional to the 

logarithm of the number of known strings, short segments will make 

less efficient use of the dictionary space than long segments. This is 

particularly relevant to the Ziv-Lempel algorithm, in which a large 

proportion of the memory space is devoted to pointers rather than 

symbol storage. 

The two observations above imply that an optimum segment 

length may be found. Figure 3. r shows the normalized average length 

obtained for a sample of seven bit ASCII encoded text, for segment 

sizes from one to eight bits. Several features may be seen, a slight 

valley at 3-4 bits, and a minimum at 7 bits corresponding to the true 

character size. In addition, a low value occurs at a segment length of 

eight bits. 
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Figure 3. r The efficiency obtained on synchronous data of unknown 
character size, for assumed character (segment) sizes from 1 to 8 bits. 
Average encoded character size normalised wrt segment length. 

Table 3. s shows the normalized average length obtained using 

the Ziv-Lempel algorithm for six samples, for a segment size of four 

bits. The highest compression obtained was 32 percent, however for 

a dictionary size of 2048, the average compression was 13.2 percent. 

As one would expect, the use of a large dictionary provides more 

reliable compression. On the Pascal sample slight expansion was 

obtained with a dictionary size of 1024 entries. 
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Average length of ZL code for. 

Sample Entropy Dictionary size (number of entries) 

name. 1024 2048 4096 

Textl 0.994 0.970 0.898 0.841 

Text2 0.986 0.809 0.736 0.676 

Text3 0.994 0.973 0.915 0.881 

Text4 0.996 0.923 0.848 0.794 

Pascall 0.991 1.004 0.965 0.949 

Image l 0.993 0.911 0.841 0.791 

Table 3. s Normalized average length of ZL code on synchronous data 

samples, for an assumed character size of four bits. 
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It appears feasible to compress synchronous data with 

unknown character size, and compression of 10 to 20 percent may 

be obtained. There is room however for further development in 

several areas. 

(i) The effects of synchronous protocols on the data stream, for 

example the SDLC bit stuffing mechanism discussed in Section 

6.2.1 

(ii) Packet networks carry mixed format data, and it is not 

possible to predict from the evidence given, the likely 

performance. 

(iii) The choice of a four bit segment size is based on only one 

sample, and should be supported by further analysis. 

(iv) The use of variable rate encoding requires some means of 

regulating the flow of source data. This may be accomodated 

using a buffer, although there is a risk of buffer overflow (Humblet 

1981), or flow control (Section 6.2.2). These techniques are 

more suited to asynchronous than synchronous traffic. 

Synchronous data streams are almost always maintained using 

some form of link protocol capable of error control. In many 

cases the additional efficiency gained through compression of the 

synchronous stream may outweigh the loss in efficiency caused by 

errors due to buffer overflow. 
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3.4 Discussion 

This chapter has considered three approaches to the 

encoding of partially known sources. If the source is fairly stable, but 

the symbol probabilities are inaccurately known, a robust code may 

be used, for which a number of design methods have been discussed. 

In practice, a communications channel may carry a wide variety of 

data types, and a static coding scheme would not be expected to 

perform well. Under these conditions, an adaptive source code is 

more likely to achieve good performance. 

The choice of compression scheme is heavily reliant on the 

memory and processor constraints imposed by the communications 

subsystem. Although memory requirements can be accurately 

estimated, the processing requirements (time complexity) of most 

of the schemes discussed are very data dependent. 

Robust codes were discussed in Section 3.2 above. The 

tolerance of a code to changes in symbol frequencies may be 

improved by limiting the maximum codeword length. A number of 

methods for achieving this were outlined, but it was generally found 

that the average length of the code was increased as a result of the 

constraint. A simple fixed structure code, having only four and eight 

bit codewords was suggested. This differs from a Huffman code, as 

the number of codewords of each length is predetermined. Two 

other approaches were also described, one of which achieved a 

consistently better performance than the fixed structure code, 
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however the complexity of these two methods is considerably 

greater and hence the simpler method is more appropriate to the 

application. 

Adaptive codes are ideally suited to communications systems 

in which the source is non-stationary. In Section 3.3.1 several types 

of code were discussed, adaptive Huffman codes such as those 

described by Faller (1974) and Gallager (1978), and two types of 

adaptive fixed structure code. These were tested on a simulated 

non-stationary source, and the effects of rate of change of source 

type, observed. The robust fixed structure codes were more stable 

under these conditions, than the Huffman code, however the average 

length of the Huffman code was still significantly lower. 

In Section 3.3.2, adaptive string encoding was discussed. The 

Ziv-Lempel (1977) algorithm was shown to be capable of achieving 

good compression, but subject to a number of practical problems. An 

improved algorithm was then developed, depending partially on the 

work of Miller and Wegman (1982) and Welch (1984), that is simple 

to implement, and efficient in memory and processing 

requirements. The novel aspect of the algorithm is the use of string 

reduction, rather than a string frequency based approach to 

dictionary maintenance. 

Table 3. t. compares six of the adaptive source coding schemes 
discussed above, and shows the average length for the mixed data 

samples described in Section 3.3.1. and the estimated encoder and 
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decoder memory requirements. 

Adaptive Huffman coding provides reasonable performance for 

a slowly changing source. The degradation with increasing source 

variability is due to the large maximum codeword length and to the 

time delay in updating the code. 

The adaptive fixed structure codes provide moderate 

compression, but are extremely simple to implement. The second 

method, based on the transmission of changes to the code, is better 

than the first in terms of both complexity and performance. 

An estimate of the performance and memory requirement of 

an adaptive conditional encoding scheme is included for 

comparison. The estimated average length is based on the 

conditional sample entropy. 

The average length of the improved Ziv-Lempel algorithm, for 

dictionary sizes of 1024 and 2048 entries, is given. In both cases, 

the average length is almost half that obtained. from adaptive 

Huffman coding, whilst the memory requirement is quite acceptable 

for a small microprocessor system. 

If the source is supplying synchronous data, with unknown or 

mixed character sizes, as may be found within a public or private 

data network, variable length coding is unlikely to provide 

acceptable performance. Section 3.3.3 showed that compression of 

this type of data was possible, using the Ziv-Lempel algorithm. 

The effects of transmission errors on the operation of the 

source decoder, and the maintenance of synchronization between 
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encoder and decoder, were introduced in Sections 2.7 and 3.3.1 

Adaptive codes are particularly vulnerable to transmission errors, 

and may need resetting to the default code if an invalid codeword is 

received. Variable length codes may be constructed such that any 

binary sequence can be parsed into valid codewords. This means 

that the decoder could not detect errors, and hence some other 

mechanism must be added in order that synchronization is checked. 

The modified Ziv-Lempel encoder does however have some limited 

error detection capability. The dictionary is maintained partially full, 

as immediately it is full a purge operation is carried out. Thus, if a 

received codeword is found to correspond to an empty dictionary 

entry. it can be deduced that an error has occurred. This check 

would only indicate that some error had occurred, not whether the 

received codeword was incorrect or the dictionaries had lost 

synchronization. 

Any of the methods described above may be considered 

suitable for on-line compression within a communications system. 

The 4/8 fixed structure code is attractive for small systems, 

particularly if used in conjunction with run length encoding (Section 

2.6). For moderate or large systems, the high degree of compression 

attainable by the Ziv-Lempel encoder is well worth the additional 

memory and processing time. There are however circumstances in 

which the adaptive Huffman code may perform better than the 

Ziv-Lempel method, for example on a data set in which symbols have 

a well defined probability distribution, but have a high conditional 

entropy. 
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Sample Average length for coding scheme 

Huffman 4/8 4/8 Condit. 1 Improved 

Fixed struct. Huffman Ziv Lempel 

(est) 1024 2048 

A 4.70 5.71 5.48 2.7 2.47 2.46 

B 5.10 5.80 5.53 2.9 2.78 2.58 

C 5.38 5.88 5.59 3.1 2.77 2.60 

D 5.63 6.13 5.99 3.2 2.83 2.63 

Memory requirement (bytes) 

Encoder 1654 136 136 200k 5k 10k 

Decoder 1654 136 8 200k 7k 14k 

Adaption 

type 

(i) (i) (iii) (i) (i) (i) 

Table 3. t. Comparison of average length and memory requirements 

of adaptive coding methods. 
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4 TRANSMSSION ERRORS AND ERROR CONTROL. 

4.1 Introduction. 

The switched telephone network (STN) is subject to a wide 

variety of interference, of both man made and natural origin. As a 

result, when digital information is transmitted over the network, 

errors may occur in the form of corrupted, deleted or inserted 

message symbols. It is desirable to reduce the rate at which errors 

occur, however this involves some increase in message transmission 

cost due to the higher quality transmission medium that must be 

used or the overhead imposed by the error correction technique. 

The ideal error control system would achieve either a stated 

reduction in error rate, or some specified residual uncorrected 

error rate, with minimum increase in message transmission cost or 

time. 

Shannon (1948) introduced the concept of channel capacity 

as the maximum rate at which symbols may be transmitted over a 

channel with arbitrarily small probability of error. A mathematical 

model which represents the channel error process is used to 

calculate the channel capacity, and to provide a basis for the design 

of an error control system. This implies that a model must be 

matched to the known characteristics of the channel, either to the 

sources of interference or to the measured distribution of the 

observed errors. Although a number of telephone channel error 

models have been proposed, by for example Berger and Mandelbrot 

(1963) and Elliott (1965), practical experience over dialled 
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connections would support Burton and Sullivan (1972), who point 

out that, in their opinion, no one knows how to determine the 

capacity of a real telephone channel, warts and all. 

Burton and Sullivan were comparing various error control 

techniques for use over the the telephone channel. They conclude 

that, although Shannon showed that an optimum forward error 

correction code may be devised, block retransmission schemes 

(ARQ) provide a more practical solution for this application, and 

argue further that emphasis should be placed on the improvement 

of ARQ techniques rather than the development of forward error 

correction codes. -Recently the falling costs and increasing power of 

integrated circuits have allowed powerful error control techniques 

to be implemented, both forward error correction and improved 

block retransmission schemes. 

Effective error control is highly desirable to users of data 

communications systems. If data compression is used, error control 

becomes essential; the preceding chapter discussed the effects of 

errors on adaptive data compression, concluding that errors would 

cause loss of synchronization between source encoder and decoder. 

This would result in a (possibly long) series of symbol errors, and 

necessitate re-initializing the source encoder and decoder, with a 

consequent loss in efficiency. 

ARQ error control techniques are ideal for this application, in 

terms both of efficiency and uncorrected error rate. Retransmission 

of data only occurs when errors have been detected, therefore under 

error free conditions the efficiency of ARQ is high. Further, ARQ 
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schemes depend on the error detecting rather than the error 

correcting properties of the code used, which provides a low 

residual error rate. The emphasis will therefore be placed on ARQ 

and hybrid ARQ schemes. 

This, and the following chapter, aim to determine the most 

appropriate error control technique for use on the telephone 

channel, and to contribute to the understanding of ARCS error 

control techniques by making an objective comparison. 

This chapter provides essential background material for the 

following more detailed analysis of error control systems (in Chapter 

5). Initially the sources and characteristics of errors on the 

telephone channel are discussed; the objective is to identify 

properties relevant to the later discussion, and to establish a suitable 

channel error model for performance comparison. This is followed 

by a brief review of the relevant areas of classical coding theory; 

including the use ' of linear block codes for error detection and 

correction. 
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4.2 Characteristics of the telephone channel. 

The telephone channel, in common with most other 

transmission paths, introduces some distortion and noise into the 

signal carried. Modern modems are designed to transmit data at 

very high rates (up to 19200 bits per second) over a channel with a 

nominal bandwidth of 3 kilohertz, which is made possible through 

the use of complex signal processing techniques ( Lucky 1968, 

Watanabe 1978, Clark 1977, Brownlie 1984 ). The modulated signal 

transmitted over the telephone channel is subjected to distortion 

and additive noise, and the receiving modem attempts to 

reconstruct the original digital signal. With high levels of 

interference, some receiver decisions will inevitably result in 

differences between the reconstructed and original signal elements 

(source symbols), termed transmission errors. In this section, the 

relationship between signal path disturbance and transmission 

errors will be discussed, allowing subsequent sections to view the 

channel as purely digital. 

4.2.1 Channel impairments. 

A number of studies of channel impairments have been 

undertaken in recent years, on major telephone networks. The 

surveys reported by Williams (1966) of the British telephone 

network, Duffy and Thatcher (1971), Batorsky et al (1984) and Carey 

et al (1984) of the American Bell telephone network, form the basis 
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for the following discussion. 

The telephone channel suffers from a variety of impairments, 

due to transmission line effects and to the switching and 

multiplexing schemes employed. Whilst the types of impairment are 

well known, and the cause of the impairment usually known, only 

certain effects are predictable enough to allow modem design to 

compensate for them. 

(i) Frequency response. 

The telephone channel exhibits a characteristic amplitude 

and phase response (subject to variation between grades of line 

and national networks). The insertion loss is fairly flat between 

300 and 2600 Hertz, increasing rapidly beyond these limits. The 

phase response is less often given than envelope delay distortion, 

which is the derivative of phase with respect to frequency. 

(ii) Propagation delay. 

The overall propagation delay increases monotonically with 
distance at approximately 7 microseconds per mile; for typical 

terrestrial links this will lead to delays of 5 to 30 milliseconds, 

but satellite links introduce much greater end to end delays of 

the order of 350 milliseconds per hop. 

NO Echoes. 

Impedance irregularities on the channel (for example 

mismatched 2-4 wire conversion. hybrid transformers) cause 

some. part of the signal to be reflected. On telephone channels 
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with round trip delays exceeding about 20 milliseconds echo 

suppressors are introduced into the transmission path. These are 

disabled by the modem during transmission. 

(iv) Frequency shift or offset. 

The use of frequency division multiplexing schemes (high 

order multiplexing used on trunk lines) in which the carrier is 

generated locally and not transmitted with the signal, introduce a 

steady frequency offset due to the difference in frequency of the 

send and receive local carriers. 

(v) Amplitude and phase disturbances. 

Hits, rapid temporary changes of gain and phase with a 

duration of between 4 and 32 milliseconds are generally small in 

magnitude, and are often associated with impulsive noise (Carey 

1984). Permanent changes of phase or amplitude, known as 

jumps, may also occur. 

(vi) Amplitude and phase jitter. 

Jitter is usually repetitive in some systematic way, and may be 

due to power supply ripple voltages, or a number of other sources 

(Bell 1971). 

(vii) Interruptions. 

Short interruptions in the transmission channel, of widely 

varying duration may occur, these are often termed dropouts. In 

addition, the call may terminate prematurely. 
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(viii) Crosstalk. 

Unwanted coupling from other telephone links can introduce 

some component of voice or data signals. 

(ix) Noise. 

A large number of different noise sources may contribute to 

the overall received noise, depending on the path taken by the 

circuit. (Batorsky 1984). 

(x) Impulsive noise. 

Short, high amplitude impulses are a well known feature of 

the telephone channel (Enticknap 1961). They have generally 

been regarded as stemming from the mechanical noise 

associated with selectors and relays in the older type of 

telephone exchange although other explanations have been given 

(Fano 1977). Carey (1984) gave impulsive noise counts obtained 

from a number of different types of exchange, and showed that 

the level of impulsive noise was far lower on electronic 

exchanges than electro-mechanical ones, but was still present. 

(xi) Other sources. 

A number of other types of impairment are found, amongst 

which are intermodulation distortion due to non-linearities, and 

quantization noise which may result from part of the 

transmission path being routed through a digital PCM network. 
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4.2.2 The effects of impairments on demodulation. 

A modern high speed modem (over 1200 bits per second full 

duplex) incorporates several features (Clark 1977, Watanabe 1978, 

Proakis 1983) which affect the error performance (Figure 4. a). 

The binary data is initially fed through a scrambler, the 

function of which is to prevent the prolonged short periodicities in 

the transmitted signal which could starve the carrier recovery, 

timing recovery, and adaptive equalizer of the spectral components 

needed for correct operation. The scrambler is a simple shift 

register device with feedback, similar to a pseudorandom sequence 

generator. 

The scrambled binary data is then modulated, usually using 

differential phase shift (DPSK) or quadrature amplitude (QAM) 

modulation, and transmitted. For a two wire modem, as used on 

dial-up rather than leased lines, some form of signal combining will 

take place as the transmitted and received signals share the same 

pair of wires. The signal is then subject to the impairments 

described in the previous section. 
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The receiver performs a series of operations: - 

(i) Separation of received from transmitted signal, using either 

frequency separation (as in CCITT recommendation V22) or echo 

cancellation (as in V32). 

(ii) Bandpass filtering to limit out-of-band noise, and automatic 

gain control to adjust the input signal level. 

(iii) Analogue to digital conversion. 

(iv) Receiver signal processing, incorporating demodulation, 

timing recovery, equalization, and in some cases echo 

cancellation. 

(v) Sampling of the equalized signal. 

(vi) Descrambling, to recover the data. 

Recent trends in modem design have involved the use of high 

order QAM modulation schemes, maximum likelihood decoding, 

adaptive equalization and adaptive echo cancellation. The effects of 

thermal noise, amplitude and delay distortion are reduced by these 

methods, but other impairments can still introduce errors. 

Watanabe (1978) discussed the design and performance of a 
4800 bit per second V27 modem using 8-PSK and adaptive 

equalization. For phase hits of 90 degrees, from five to nine error 
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bits resulted, due to error propagation in the equalizer. 

The use of convolutional codes with Viterbi decoding in the 

modem receiver has resulted in good performance at data rates of 

over 9600 bits per second. This type of decoder makes use of soft 

decision information when mapping received symbols onto the QAM 

signal constellation. Under poor line conditions, the Viterbi decoder 

may result in considerable error extension (Lin 1983). 

Studies of high speed error performance by Balcovic et al 

(1971) and Carey et al (1984), show that errors tend to occur in 

groups of size and weight corresponding to the scrambler employed. 

A single error from the demodulator is passed through the 

descrambler resulting in error extension. As some modem standards 

specify long scramblers (23 bits for CCITT Recommendation V29), 

this represents one of the more serious effects introduced by the 

receiver. 

In summary, low speed modems would tend to introduce 

isolated errors, mainly due to impulsive noise, whilst high speed 

modems introduce burst errors generally of low weight, and with 

length dependent on the scrambler polynomial. Longer bursts of 

errors are likely to result from periods of heavy noise, incorrect 

equalization, or dropouts. 
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4.3 Transmission errors. 

The errors affecting the digital message may be characterized 

by relating their time distribution to some stochastic model, in a 

similar way to that used in source modelling (sections 2.2,2.4). This 

must be approached with some caution however, as the error 

distribution is very dependent on the design of the modem used, 

and on the properties of the individual telephone channel. For 

leased line applications, the line/modem pair remain unchanged for 

extended periods of time. If dial-up modems are used however, the 

channel characteristics will change with each call, and the resultant 

error processes will be subject to variation. 

Initially some of the results of telephone channel error 

measurements carried out on the American Bell, and German 

networks will be reviewed, followed by a discussion of a number of 

error models. The aim is not to find a unique model for the 

telephone channel for, as explained above, this is dependent on the 

modem, channel, and conditions of use; rather the objective is to 

discuss the suitability of the models to the evaluation of error control 

schemes and identify a number of representative models which 

cover a range of conditions. 

4.3.1 Telephone channel error statistics. 

A number of measures of channel error rate are used, which 
highlight different aspects of the error distribution. 
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(i) Bit error rate. 

This is used to measure the average rate at which bit 

errors occur, or the probability of a bit error occurring (more 

correctly the bit error probability). 

(ü) Block error rate. 

As transmission systems often send data in fixed or 

variable size blocks, the probability of a block of known length 

containing any errors is more meaningful than the bit error 

rate. The block error rate is the measured proportion of 

errored blocks, the block error probability the corresponding 

probability that a block will be received in error. 

(iii) Burst length and weight. 

As errors often occur in distinct bursts, particularly on 

the telephone channel, some method of characterizing bursts is 

necessary. A burst is defined as a group of two or more bit 

errors, the distance between any two consecutive errors being 

less than some limit (the guard space). The principal measures 

applied to the characterization of bursts are length, (the 

distance between the first and last error in the burst), and 

weight, (the number of errors contained within the burst). 

(iv) Gap length distribution. 

Another measure applied to channels characterized by 

burst errors is the frequency distribution of the length of gap 
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between errors. This is a useful measure for block oriented 

transmission systems, as it gives an idea of the error free 

intervals as well as the burstiness of the channel. 

(v) Error free or errored seconds. 

A channel performance measure specified by the 

CCITT, Recommendation G821 (defined for high speed digital 

transmission channels), includes three error parameters: - the 

percentage of periods of one second containing no errors, 

(%EFS), the percentage of periods of one second with bit error 

rate less than 0.001. , the percentage of periods of one minute 

with bit error rate less than 1E-6. 

Information on typical channel error conditions is available 

from the surveys carried out by the American Bell Telephone 

company at regular * intervals. Results are available from 1960 

(Alexander, Gryb and Nast, 1960), 1962 (Townsend and Watts, 

1964), 1969-70 (Fleming and Hutchinson, 1971; Balcovic et 

al, 1971) and 1982-83 ( Carey et al, 1984). 

Lewis and Cox (1966) included a set of measured gap lengths 

in a discussion of channel models. Figure 4. b(i) shows the gap length 

distribution, in which a strong component of approximately 120 bits 

is observable. This is attributed by Lewis and Cox to dial pulses, as 

120 bits corresponds to the interval between pulses of 100mS, at 

the transmission rate of 1200 bits per second used in the tests. This 

is confirmed by Figure 4. b(ii), which is a scatter diagram showing 
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Figure 4. b(i) Histogram of the Gap Lengths of the channel error data 
given in Lewis and Cox (1966) 
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Figure 4. b(ii) Scatter diagram showing the Gap(i) / Gap(i-1) correlation 
for the Lewis and Cox data. 
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the correlation between adjacent gaps (the x axis is the i-th, the y 

axis the (i-1)th gap); clusters are apparent around the points 

(0,120), (120,0) and (120,120). 

The effects on the error distribution of the modem receiver 

descrambling the received data, were simulated by convolving Lewis 

and Cox's data with a 23 bit descrambler polynomial. Figure 4. c(i) 

shows the gap length distribution for the descrambled data, which 

shows high occurrence rates for gaps of length five and fifteen '', 

corresponding to the tap weights on the descrambler. The number 

of errors (and hence gaps) has increased by a factor of three. 

Figure 4. c(ii) shows the multigap distribution for the 

descrambled data. There are strong structural components within 

the scatter diagram corresponding to the distance between the 

scrambler taps. 

Figures 4. d(i) and 4. d(ii) show scatter diagrams of burst 

length against burst weight,. for the unscrambled and descrambled 

data, for a guard space of 100 bits. Other than illustrating the 

predominance of single and double errors and low weight bursts, 

Figure 4. d(i) shows no strong trends. Figure 4. d(ii) shows that the 

error extension introduced by the descrambler results in error 

bursts with weights that are multiples of 3 (the number of taps). 

Some interaction between error and scrambler polynomials does 

occur, as shown by the occasional burst of weight 4 or 7. 
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Figure 4. c(i) Histogram of the Gap Lengths of the channel error data 
given by Lewis and Cox. after descrambling 
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Figure 4. c(ii) Scatter diagram showing the Gap(i) / Gap(i-1) correlation 
for the Lewis and Cox data., after descrambling 
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Figure 4. d(i) Scatter diagram of Burst Length against Burst Weight 
for the Lewis and Cox data. with a guard space of 100 bits 
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Figure 4. d(ii) Scatter diagram of Burst Length against Burst Weight 
for the Lewis and Cox data after descrambling. with a guard space 
of 100 bits 
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4.3.2 Channel error models. 

The simplest and most widely used channel model is the 

binary symmetric channel (BSC). In this model, each bit interval is 

considered independently of any other, and the state of the bit 

altered according to a simple probabilistic model. The transition 

probability pt gives the probability of a bit being incorrectly received 

as a result of channel noise. 

The error distribution resulting from the binary symmetric 

channel model is usually termed random, by which is meant typical 

of a channel in which bit error events are independent, and is 

characteristic of a channel subject to additive white Gaussian noise 

(AWGN). For a BSC with transition probability pt, the probability of m 

errors in a block of length n is: - 

P(m, n) _ nCm pm(1_pt)n-m 

for the case in which m=0: - 

P(O, n) = (1-pt )n 

P( >O, n) =1- (1-pt )n 

Although the binary symmetric channel does not model the 

telephone channel satisfactorily, it is a standard with which most 

error control systems are tested, and its properties are well 
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understood. 

A model which is more suited to burst channels such as the 

telephone channel, was proposed by Gilbert (1960). The Gilbert 

model is based on a two state Markov process, which makes each 

error event dependent on its predecessor. One state is assumed to 

represent error free channel conditions, whilst the other state is a 

binary symmetric channel with transition probability pt. At each bit 

interval, the process may change states, depending on the current 

state and state transition probabilities. Figure 4. e(i) provides an 

illustration of this model. 

The model produces error patterns with a geometric 

distribution of burst and gap lengths. The error characteristics 

produced by the model are: - 

Bit error rate = P1,2 " Pt 
(P1.2+P2.1) 

Mean burst length = P1.2 
P2.1 

Mean, gap length = E2,1 
P1.2 

Probability of a burst length of length m 

Pb(m) 
.= 

P1.2"p2.1 p2.2(m-1) 

A more realistic telephone channel model, which can produce 
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mixed random and burst errors, was suggested by Elliott (1963). 

The Gilbert model is extended by allowing the channel states to 

represent low and high error conditions (Figure 4. e(ii) ) rather than 

the original no error/ error states. 

If pt, and pt2 represent the transition probabilities for states 1 

and 2 respectively, the bit error rate is given by: - 

Bit error rate = E2,1 Ptl + P1,2 Pt2 
P1,2 P21 

1 

Cain and Simpson (1969) described a method for calculating 

the probability distribution of burst lengths within a block of defined 

length for the Elliott channel, and applied this to the performance 

analysis of burst error detecting codes. Others (for example Blank 

and Trafton 1973) have produced models based on Markov 

processes with more states. Complex models require the estimation 

of a number of parameters, and require considerable computation 

per bit if used for simulation. 
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Figure 4. e(i) Gilbert model of a burst channel. 
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Figure 4. e(ii) Elliott model of the telephone channel 
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An alternative approach to the Markovian model, which is 

rather more convenient for simulation work (Drajic 1984), relies on 

a stochastic process which models inter-error gaps. This method 

can model a burst error channel, and has the advantage that each 

calculation stage corresponds to a number of transmitted bits, whilst 

the Gilbert class of models produce only one bit per calculation 

stage. Both approaches are analytically tractable, and have been 

shown capable of closely approximating recorded error data. 

Mertz (1961a, 1961b) found that the inter-error gap lengths 

on the telephone channel could be approximated by a hyperbolic 

distribution. Mertz proposed a model of the form 

P(gap of length g) =h 
(g+h) 

This has no mean value but a mean can be calculated under 

the assumption that measurements are taken over a finite period. 

Mertz fitted curves to two sets of data and obtained a reasonable fit. 

A Pareto distribution of gap lengths was proposed by Berger 

and Mandelbrot (1963). The model is based on the assumptions that 

successive gaps are independent, and are produced by a renewal 

process (Cox 1962). The channel error data used for the study was 

obtained from joint IBM / Deutche Bundespost experiments in 

1961, using 1200 bit per second modems employing phase and 
frequency modulation. 
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This model was also studied by Sussman (1963), who derived 

expressions for the probability of m errors in n bits, allowing 

comparison with the results of Alexander et al (1960) and Fontaine 

and Gallager (1961). 

Lewis and Cox (ibid) however, tested Berger and Mandelbrot's 

model on further data samples from the IBM/ Deutche Bundespost 

experiments, and found that the hyperbolic/Pareto distribution does 

not hold for the whole range of gap lengths. In addition, a strong 

positive correlation between adjacent gaps was observed. 

A composite renewal process was suggested by Muntner and 

Wolf (1968), and applied to the performance analysis of error 

correction schemes. 

It is often sufficient to model one aspect of the error 

distribution rather than to produce a model which completely 

emulates the channel. Two particular properties of the channel are 

of interest in evaluating error control schemes, the local error 

distribution, which is described, by the pattern of errors, burst 

length and weight, whilst the global distribution relates more to the 

probability of errors within a block, and the gap length distribution. 

A block error model consists essentially of a function relating 
block length and probability of error for some given minimum error 

weight. Two models will be used in later sections, the first obtained 
from data given in Balcovic et al (1971), and the second based on 
the data given in Lewis and Cox (ibid). 
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The model based on results from the A. T. & T. 1969-70 

survey, is based on the measured probability of m or more errors in a 

block of length n at 1200 bits per second (Figure. 14 in Balcovic). 

From observation, the curves given for the logarithm of the 

probability against the logarithm of the block length for small values 

of m, appear straight with approximately equal steps between curves 

for increasing values of m, and hence can be reasonably 

approximated by a function of the form 

log(P) =k+a log(n) +b log(m) 

The parameters k, a and b, were estimated using the method 

of least squares on values of log(P) and log(n) obtained from clearly 

identifiable points on the graph of P(? m, n) for 1200 bits per second 

from Balcovic (ibid). The resulting function is: - 

P(Zm, n)= nambc 

where a=0.87, b =-1.66, c= 1/98700 for 1200 bits per second 

operation. This will be referred to as the Bell model. 

The channel error models discussed above offer a wide range 

of mathematical approaches for the simulation and analysis of error 

control schemes. The telephone channel has however been 

described as difficult to model with any degree of certainty, and the 

selection of a model on which to base the following analysis is not 

easy. One approach to the evaluation of error control schemes, is to 
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consider their performance on several different channels. A scheme 

that performs well on all the models could reasonably be expected to 

behave well on the telephone channel. 

The following models will be used in the following sections 

for performance comparison: - 

(i) The Binary Symmetric Channel, which has well known 

properties and permits comparison of the results obtained with 

many published results. Transition probabilities of 0.001 and 

0.0001 will be used, as these represent fairly poor telephone 

channel conditions. Higher error rates would result in loss of 

synchronization by the modem, and hence loss of the line or 

automatic fallback to a lower transmission rate. 

(ii) The Bell model based on the A. T. & T. 1969-70 survey results, 

which represent a -low error rate channel. 

(iii) Lewis and Cox (ibid) data, recorded gap length information 

which may be used directly. Although the data was obtained using 

an early modem, and would not be identical to the results 

obtained with a modern modem, it has the advantage of not being 

the result of a model. The effects of scrambling the transmitted 

data may be introduced by descrambling the error data, as 

described above in Section 4.3.1. 

Figure 4. f shows the relationship of block error probability to 
block length for the four models. The Bell model shows a very low 
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block error probability for the range of block lengths shown, whilst 

the high error rate binary symmetric channel model exceeds a block 

error probability of 0.5 at a block length of 693 bits. The difference 

between the high error rate BSC and the Lewis and Cox data is 

surprisingly large, as the bit error rates differ by only thirty percent. 
This is due to the burstiness of the latter. 
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Figure 4. f Relationship between block error probability and block 
length for the four channel models 

(1) binary symmetric channel.. pt = 0.001 
(ii) channel data from Lewis & Cox (1966) 
(iii) binary symmetric channel.. pt = 0.0001 
(ion model based on A. T. &T survey results 
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4.4 Channel capacity. 

Shannon (1948) derived an expression for the capacity of a 

transmission channel perturbed by a Markovian noise model. The 

maximum rate at which information may be transmitted with 

arbitrarily small probability of error, is given by: - 

R= H(x) - HX(y) 

where H(x) is the entropy of the source X, and HX(y) the conditional 

entropy of the received signal y. given x was transmitted. Shannon 

equates HX(y) to the capacity of a secondary channel through which 

additional information is transmitted to allow the correction of 

errors at the receiver. 

For a binary symmetric channel with transition probability pt, 

and a source emitting equiprobable binary symbols: - 

H(x) = -p(O) log( p(O) )- p(1) log( p(1)) =1 

HX(y) = Il (4) + Jo(0) 

= I1(1) + Io(1) 

= -pi(O) log( Pi(O)) - Po(0) log( po(O) ) 

= -pt log( pt) - (1-pt) log( 1-pt) 
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R= H(x) - Hx(y) 

=1+ Pt log( pt) + (1-pt) log( 1 -pt ) 

This function is plotted in Figure 4. g, for a range of transition 

probabilities from 0.00001 to 0.1. 
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Figure 4. g The Capacity of the Binary Symmetric Channel 
(as defined by Shannon (1948)) 

The term transmission efficiency will be used in the following 

discussion to mean the ratio between the measured or simulated 

system transmission speed and the capacity of the channel when no 

errors are present. This is perhaps slightly misleading in that the 
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efficiency should be measured with respect to the true channel 

capacity, as defined above. The justification is, however, contained in 

the comment of Burton and Sullivan (ibid) quoted in Section 4.1, 

namely that the capacity of the real telephone channel is not known. 
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4.5 Error control. 

The aim of error control is to minimize the effect of channel 

errors on transmitted data. Unfortunately, this is usually 

accomplished at the expense of reducing the transmission rate. The 

design of a good error control scheme requires knowledge of the 

channel conditions, typical error distribution and error rate, the 

reduction in error rate required, and the ratio between channel 

transmission and minimum tolerable source symbol speed (code 

rate). 

One error control scheme commonly used on the telephone 

network, is fallback switching. In general, the error rate obtained on 

a communications system is a function of the transmission speed. If 

the bit rate is reduced (typically halved), the error rate is markedly 

reduced. This method has several disadvantages, firstly that the 

transmission speed is not optimized for the required error rate, and 

secondly, that it is not readily apparent when the channel conditions 

have improved, hence the system will operate at low speed 

unnecessarily. 

Another method that is widely used, is forward error 

correction. Parity bits are added to the transmitted data in order 

that a limited number of errors may be detected and corrected. 

Usually the proportion of parity bits is fixed, and hence some loss of 

channel capacity occurs regardless of the channel condition. The 
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function used to generate the parity bits must be designed with 

knowledge of the channel error distribution. Often codes are 

designated random (i. e. suitable for the binary symmetric channel) 

or burst correcting (i. e. suited to a burst channel such as that 

approximated by the Gilbert model). 

The third method of error control, which is growing in 

importance, is feedback error correction, or automatic 

retransmission request (ARQ). Data is formed into frames to which 

are appended parity words for error detection. A frame is 

transmitted and, if corrupted, the receiver can detect the presence 

of errors and request the retransmission of the erroneous frame. 

This has two advantages, firstly that the transmission rate depends 

on channel conditions, and secondly that the residual error rate 

depends on the number of errors that can be detected with the 

additional parity bits, which is far greater than the number of errors 

that could be corrected with the same number of parity bits. 
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4.5.1 Linear block codes. 

In an (n, k) block code, the source output is divided into 

message blocks of length k bits. The encoder maps each of the 2k 

possible k bit blocks onto a unique n bit codeword. The decoder 

performs the reverse mapping from an n bit received binary vector 

to ak bit message. At error correcting code defines the message- 

codeword-message mapping so that the k bit message will be 

correctly recovered by the decoder if the codeword and received 

vector differ in no more than t bit positions. 

Several important classes of code exist, of which a large 

number belong to the general family of linear block codes. The cyclic 

codes are a subclass of linear codes, and are widely used as, firstly 

they are readily implemented in hardware using shift registers, and 

secondly, the underlying algebraic structure provides the means for 

developing decoding techniques. Examples of cyclic codes are the 

BCH codes, defined in the binary field, and Reed-Solomon codes 

defined for non-binary code symbols. 

The following definitions are needed for the ensuing 
discussion, and are widely known (e. g. Lin and Costello 1983). 

(i) A binary code is linear iff the modulo 2 sum of two codewords 
is also a codeword. 

(ii) A linear code is cyclic iff the cyclic shift of any codeword is 

also a codeword. 
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(ill) A code is systematic if the codeword consists of the k bit 

message with (n-k) parity bits appended. 

(iv) The rate of an (n. k) block code is k/n. 

(v) The Hamming distance between two binary codewords is the 

number of bit positions in which the codewords differ. 

(vi) The minimum distance of a code. dmin, Is the minimum of 

the distance between any two codewords, where the distance 

may be the Hamming distance. 

(vii) A block code can correct all errors of weight t or less if the 

minimum distance of the code is at least 2t+1. 

(viR) A block code can correct 2(n'ß error patterns. 

The encoding of k message bits to the n codeword bits of a 

linear block code may be represented as the multiplication of the 

k-tuple binary message vector by a (k, n) generator matrix Q. The 

multiplication and addition are carried out modulo 2, i. e. addition is 

an exclusive-OR, and multiplication an AND. 

C°M"ra 

where. Q is an n-tuple. M is a k-tuple, and .Q 
is (k. n). 
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In transmission, the codeword may be corrupted by an error 

vector gt (also an n-tuple). giving the received vector y. 

Decoding may be represented similarly as the matrix 

multiplication of the n-tuple received vector V, by the (k, n) parity 

check matrix H. The syndrome g, of the received vector is an 

(n-k)-tuple vector, defined as: -. 

V if 
=(Sc+E). 11T 
_M.. Q. I r +E. If 

K .. 
Ur 

as Q.. If =a 

The syndrome is capable of representing 2(n-k) error patterns, 

including the zero error vector. As there are in fact 2n possible error 

patterns, it is apparent that each syndrome vector corresponds to 2k 

error patterns which are indistinguishable to the decoder. For error 

detection this coincidence only matters when the error patterns 

correspond to the zero error vector. 

Error correction codes are usually constructed so that most 

probable error patterns each have a one to one correspondence with 

a unique syndrome vector; this obviously requires knowledge of the 

error pattern distribution, generally assumed to be random (BSC), 

burst (any pattern of errors with burst length less than some 

maximum, as defined in Section 4.3.1), or mixed burst and random. 

Cyclic codes may be described in the terms used above, as 
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linear block codes, however they are more usually represented in 

terms of polynomial operations within a finite field. The generator 

polynomial G(X) of a cyclic code, is a polynomial in the Galois Field 

GF(X) of degree (n-k). 

Encoding may be represented in several ways, the more 

widely used being the systematic encoder, in which the parity bits 

are appended to the message m(X) . The encoder multiplies the 

message by Xfn-k). then divides by G(X), giving a remainder b(X). 

When the remainder is added to the term m(X). Xtn"k), the resulting 

codeword is divisible by G(X). Hence, if the receiver also divides by 

G(X), and no errors are present, the remainder (the syndrome) 

should be zero. 

The transmitted codeword is c(X), where: - 

C(X) = b(X) + m(XJ , kin-k) 

and c(J) = a(X) G(X ) 

During transmission, the codeword is corrupted by error 

vector e(X), giving the received code vector r(X): - 

r(X) = c(X) + e(X). 

The decoder divides the received vector by the generator 

polynomial G(X) to obtain the syndrome s(X) :- 

rX=rM +g(X) 
G(X) G(X1 G1 
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= a(X + e'(X) +j 
GOX 

If s(X)=O the receiver assumes that no errors are present, 

however e'(, V, which represents any component of G(XJ in the error 

polynomial, will be non-zero. This corresponds to the error vector 

being a codeword, which according to condition (i) above will simply 

convert the transmitted codeword into another valid codeword. 

4.5.2 Convolutional codes. 

Convolutional codes differ from block codes in that the 

encoder contains memory, and the n bit encoder output depends 

not only on the k input bits but on m previous input blocks. - 

Decoding algorithms tend to be complex, but with the aid of soft 

decision information (the quantized output from the demodulator), 

considerable coding gains can be made. 

4.5.3 Random error correcting codes. 

The decoder of an error correcting code has to deduce from 

the syndrome of the received vector the error pattern that has 

modified the transmitted codeword. The design of a decoder is 

generally complex, hence codes are often selected on the basis of 

the simplicity of the decoder rather than on absolute performance. 
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A general bound on the performance of at random error 

correcting code is the Hamming (1950) bound: - 

t 

2 (n-k) 
I 

nCi i=0 

This is readily apparent from the observation that the number 

of correctable error patterns cannot be greater than the number of 

syndromes. 

The effectiveness of a, random error correcting code on the 

binary symmetric channel is measured by the probability of 

uncorrected error. For an (n, k, t) code: - 

t 
Probability of =1-I nC1. Pt'" (1-pc)(n-1) 

1=o 
uncorrected error 

The Hamming (ibid) codes are the earliest class of linear 

error correcting code. For any integer q>2, there exists a Hamming 

code such that: - 

codeword length 

number of message symbols 

number of parity check symbols 

minimum distance 

number of correctable errors 

n=2q- 1 

k=2q-q-1 

q=n-k 

dmin =3 

t=1 
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These codes are extremely simple to decode, and may be put 

into cyclic form. 

A class of cyclic codes capable of correcting multiple random 

errors are the BCH codes (Hocquenghem 1959, Bose 1960). For any 

integers q>2, and t there exists a BCH code such that: - 

codeword length 

number of parity check bits 

n=2q-1 

n-ksq. t 

minimum distance 

number of correctable errors t<2(q-1) 

BCH codes are more complex to decode than Hamming codes. 

Sinha (1983) describes a decoder for a (31,21,2) code, which uses a 
table look-up approach to determine error positions from the 

syndrome; this method is only suitable for small values of n and t. 

Blahut (1984) describes a more complex approach based on a 

universal decoder, capable of decoding BCH codes and the more 

general Reed-Solomon codes. 

There are many more random error correcting codes, both 

linear block code, cyclic code and important classes of non-block 

code such as the convolutional code. 

dmin Z 2t +1 
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4.5.4 Burst error correcting codes. 

The Reiger (1960) bound provides an upper bound on the 

burst error correcting *capability of an (n, k) linear code. The 

maximum correctable burst length bmax is bounded by: - 

borax S fn - k1 
2 

Although a number of burst error correcting codes have been 

found, two important types will be discussed, Fire codes and 

interleaved codes. 

Fire codes (Lin 1983) were the first class of cyclic burst 

error correcting code. The number of parity bits for a code capable 

of correcting all bursts of length bmax or less is given by: - 

n-k=q+2bmax- 1 

thus 

bma=(n-k-q+1) 
2 

If a number of consecutive codewords of some encoded 

message are stored and, rather than transmitting the codewords in 

sequence, one symbol from each codeword is transmitted in turn 

until every symbol from every codeword is sent, the code is said to 

be interleaved (Kitces 1963). If the basic code used to encode each 

word is at error correcting code, and J words are interleaved, 
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then the interleaved code can correct any burst of length J. t or less, 

any random error pattern of weight t or less, and many random 

error patterns of weight J. t or less. 

thus b =J. t 

4.5.5 Burst and random error correcting codes. 

If both random and burst errors are present on a channel, 

neither a random or burst error correcting code will perform 

effectively. Codes may however be designed to correct both types of 

error pattern. The interleaved coding technique described above is 

well suited to channels of this type. Lin (ibid) describes a number of 

other methods, such as product codes, concatenated codes and the 

Reed-Solomon codes. 

4.5.6 Error detection. 

The codes most commonly used for error- detection in 

communication systems are the simple (k+1, k) parity check, and 

various binary cyclic codes with 8,16 or 32 parity bits but variable k. 

The (k+l, k) code can detect only single errors, and is not suited for 

use with large k. For this purpose, cyclic codes are almost invariably 

used, although termed cyclic redundancy check (CRC), rather than 
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cyclic error detecting codes. The following discussion will relate to 

binary cyclic block codes of the form (k+p, k) where the number of 

message bits k, is not fixed. One widely used cyclic error detection 

code is that used in CCITT Recommendations V41 and X25: - 

G(M=Xi6+X12+X5+ 1 

For an (n, k) cyclic code, the probability of undetected error 

may be calculated. As shown in Section 4.4.1 the undetectable error 

patterns of a cyclic code correspond exactly to the set of 2k 

codewords (including the 0.. 00 codeword). There will therefore be 

2k-1 undetectable error patterns out of 2n possible patterns. Under 

the assumption that all error patterns are equiprobable: - 

Probability of 

undetected error 

= 2k-1 .1 Zn 2(n-k) 

If the weight distribution of the channel error patterns is 

known, the probability of undetected error can be more accurately 

calculated. On the binary symmetric channel, the probability of 

undetected error for an (n, k) code with minimum distance dmj� is: - 

dmin- 1 

Probability of =1-I nC1. pti. (1_pt)(n-i) 
1=0 

undetected error 

The error pattern may be subject to extension by, for 
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example, the descrambling process discussed in Section 4.2. This 

may be represented by the multiplication of the channel error 

polynomial e(X) by a polynomial u(X). For a transmitted codeword 

c(X), the received polynomial will be: - 

r(X) = c(X) + e(X). u(X) 

decoding the received polynomial, 

r(X) = c(XZ+ e(x). u(X) 
G('Q G(XJ GOO 

= a(X)+ +, sLM 
G(20 

The syndrome s(X) will be zero if either e(X) or u(X) are zero, 

or if either e(XJ or u(X) are multiples of G(X) (i. e. codewords). Thus 

it is essential that the scrambler polynomial and generator 

polynomial are mutually prime. 

4.5.7 Error correction using retransmission. 

Automatic repeat request (ARQ) error control systems offer an 

efficient and reliable alternative to forward error correction; the 

technique is generally attributed to Van Duuren (1951). 

A feedback path is provided between the decoder and 

encoder (either full or half duplex), and is used for the 

communication of control information. The message is segmented 

into blocks to which are appended parity bits for error detection. A 
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block is transmitted, and possibly corrupted by transmission errors. 

The decoder checks for the presence of errors in a received frame 

and sends an acknowledgement if no errors were detected, or a 

retransmission request if errors were present. The transmitter 

either transmits the next frame in sequence or retransmits an 

earlier frame. 

The effective code rate of the system depends on the 

prevailing channel conditions. Under poor conditions, the number of 

retransmissions will increase, lowering the effective rate. For a good 

channel however, no retransmission will be needed, and the 

transmission rate may be very high. In addition, the uncorrected 

error rate depends on the error detection rather than the error 

correction properties of the code used. 

The implementation complexity is fairly low in comparison 

with that of forward error correction, and hence the technique is 

extremely widely Lised. ARQ is ideally suited to software 

implementation, as the logic is extremely simple but the memory 

requirement significant. There is considerable support available for 

microprocessor implementations, in the form of interface integrated 

circuits which perform error detection code encoding and decoding 

as well as providing the serial interface. 
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4.6 Summary 

The nature and source of transmission errors on the 

telephone channel have been discussed. The reduction of error rate 

may be achieved through the use of error control techniques such as 

forward error correction, and automatic repeat request. The design 

of these error control systems requires some knowledge of the error 

distribution, which is generally represented in the form of a 

mathematical model of the channel error process. The difficulty 

with the telephone channel is- the wide variety of conditions that 

may exist, rendering the design of efficient error, control schemes 

problematic. 

The advantages of automatic repeat request over forward 

error correction have been discussed briefly. In the following 

chapter ARQ will be examined more fully, and a number of hybrid 

schemes discussed. 
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5 ARQ ERROR CONTROL 

5.1 Introduction 

The most widely used form of error correction is automatic 

repeat request (ARG, ). The message is formed into blocks or frames, 

to which are appended parity words for error detection. A frame is 

transmitted, the receiver checks the received frame for errors and 

either requests retransmission or confirms correct reception via a 

return path. Communication is therefore bidirectional, but may be 

half or full duplex. A typical frame is shown in Figure 5. a, which 

shows a control field, a data field and a set of parity bits for error 

detection. 

up to 2000 bim IN, 

4 24-48 bits -p 

Figure 5. a General frame format for an ARQ information 
frame and acknowledgement frame. 
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Since the earliest application of the automatic retransmission 

principle (Van Duuren 1951), a large number of improvements have 

been made. There are now three basic types of ARQ, Stop and Wait 

(SW) termed Idle RQ by Benice and Frey (1964), Go Back N (GBN), 

and Selective Repeat (SR). 

(i) Stop and Wait. 

The transmitter sends one frame, retaining a copy in case of a 

retransmission request, and then waits for an acknowledgement. 

If a positive acknowledgement is received, the transmitter sends 

the next frame. If a negative acknowledgement is received 

(indicating that the frame was received in error ), or no response 

observed within some predetermined interval (due to the 

transmitted frame or acknowledgement being heavily corrupted 

or lost) the transmitter resends the frame. This technique is 

simple to implement, but inefficient for channels with 

appreciable delay, as the forward channel is idle whilst the 

transmitter is awaiting an acknowledgement. 

(ii) Go Back N. 

The transmitter sends frames continuously, retaining copies 

of each until acknowledged, hence the frames need a control 

field containing the transmitted frame number. If a 

retransmission is requested, the transmitter resends the 

corrupted block, and all subsequent blocks. The transmitter thus 

needs storage sufficient to hold copies of frames until 

acknowledged. The number of outstanding frames will depend on 
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current channel conditions and round trip delay, and will be 

limited by the available storage capacity and the range of the 

frame numbering system (typically modulo 8,16 or 128). On 

channels with considerable delay, such as satellite channels, the 

efficiency of GBN ARQ drops due to the large number of frames 

that must be retransmitted each time a frame is rejected. 

(iii) Selective Repeat. 

The transmitter sends numbered frames continuously, as with 

Go Back N, but only retransmits those blocks which are 

negatively acknowledged. The receiver must therefore be able to 

store correct frames received after erroneous ones, in order that 

the correct data sequence is maintained. This approach is more 

efficient than either Stop and Wait or Go Back N ARCS, and has 

particular advantages on channels with long delay. The main 

drawback is the added complexity of the receiver due to the 

increased buffer requirement. 

Figure 5. b provides a comparison of the relative transmission 

efficiency (defined in Section 5.2 below) of the three ARQ types, for 

a binary symmetric channel with delay from 0 to 5000 bit intervals. 

The poor performance of Stop and Wait ARQ and the excellent 

performance of Selective Repeat ARQ, with increasing delay can be 

clearly observed. It should however be noted that the limited 

receiver storage capacity and the range of the frame numbering 

system would in practice reduce the performance of Selective 

Repeat ARQ for channels with extended delay. 
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Selective Repeat ARQ 
8.9 

0.7. ', 

9.6 ßo Back N ARS 

` 

e. 4 

Q 
0 0.3 % 

0.2 Stop and Wait ARQ 

0.1 
................................ 

12345 

Channel delay (kilobits) 

Figure 5. b Transmission Efficiency of Stop and Wait. Go Back N 
and Selective Repeat ARQ on the binary symmetric channel (with 
BER of 0.0001) for a range of channel propagation delays. 

On high error rate channels ARQ becomes inefficient as the 

proportion of frames needing retransmission increases, and an 

" additional stage of error control is often added. Between the ARQ 

transmitter and channel, a forward error correction (FEC) encoder 

is inserted, and a decoder placed before the corresponding receiver. 

The use of forward error correction effectively reduces the 

channel error rate, and hence the number of retransmissions 

requested by the ARC) receiver. However, the effective bandwidth of 

the channel is reduced by the rate of the code, and hence the use of 
hybrid ARQ/FEC systems must be carefully considered. 
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This chapter discusses the choice of ARQ technique. Initially a 

number of hybrid ARQ schemes are described, and their 

performance compared under a range of channel conditions. The 

criteria for selecting frame length are discussed, and a method given 

for selecting the optimum length. 

There are certain practical difficulties in the design of hybrid 

ARQ which are described, and an adaptive ARQ scheme proposed 

which overcomes these. 

The uncorrected error rate (residual error rate) of an ARQ 

scheme is generally low, as it depends on the error detecting ; 

rather than error correcting properties of a code. This aspect of ARQ 

system performance is discussed, and the effects of errors on ARQ 

frame synchronization considered. 

The chapter concludes with the selection of several ARQ 

schemes appropriate to use on the telephone channel. 
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5.2 Performance analysis of ARQ 

The main performance parameters used to compare ARQ 

systems are throughput efficiency and uncorrected error probability. 

These are both dependent on the frame length and channel error 

conditions (i. e. error rate and distribution, and delay). 

For a frame of length k, containing (k-h) data bits, and h header 

bits (including error detection bits) the efficiency is given by: - 

Efficiency = (k-h) 1 
kT 

where T, the average number of transmissions required to 

successfully send one frame, is dependent on the protocol used, and 

the channel delay. k is used for the frame length rather than n to 

ensure consistency with the equations that will be given for hybrid 

ARC, below. 

For the three basic types of ARQ, Stop and Wait (SW), Go Back 

N (GBN), and Selective Repeat (SR), the value of T is given below 

(these expressions are derived in Appendix C). 

Tsw =N 
(1-PE) 

where PE is the probability of errors being detected in the received 
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frame P(>O, k), and N is the round trip acknowledgement delay (in 

frame intervals). 

TGBN =+1 

(1-PE) 

where N is, in this instance, equivalent to the number of 

frames retransmitted as a result of a negative acknowledgement. It 

is sometimes assumed that N is integer, however this is more 

applicable to a half duplex system. In a full duplex system, the 

transmitter may, on receiving a retransmission request, immediately 

discontinue sending the current frame, which could lead to 

non-integer values of N. 

TSR =1 
(1-PE) 

The use of Go Back N ARQ will be assumed from this point 

onwards, as this is the most widely used method, being fairly simple 

to implement, and fairly efficient for channels with moderate delay. 

Selective Repeat does provide better performance with increasing 

delay, but at the cost of an extensive amount of buffer storage at the 

receiver. 

The assumptions made in the performance comparison are: - 

(i) The time taken to acknowledge -a frame is twice the channel 

H 
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delay plus a delay equivalent to one frame length (the receiver 

must completely receive a frame before it can detect errors). In 

the event of a retransmission. request being received, the 

transmitter immediately abandons the frame currently being 

transmitted and starts retransmission of the rejected frame. This 

has the effect of making the N (i. e. the number of frames to go 

back) equal to 1+2D/n, rather. than the integer part thereof as 

often assumed (correctly for a half duplex channel). 

(ii) The return channel is assumed error free. This is often 

justified by the assertion that the acknowledgement frames are 

short, and hence have a low probability of error. Often however, 

piggybacking is used (Lai 1982), in which the acknowledgements 

are carried within the header field of a data frame passing in the 

return direction, i. e. data is flowing both ways. In most cases the 

information flow, although bidirectional, is not symmetric (Fuchs 

1970). 

(iii) The error detection code is assumed to detect all errors. 

Hence the retransmission request probability for a frame is 

P(>O, k); the validity of this assumption is subject to the 

discussion in Sections 4.5.6, and 5.8. The effects of undetected 

errors and of errors in the return channel have been explored by 

a number of researchers, for example Benice and Frey (1964), 

Rocher and Pickholtz (1970), Field (1976), and Fujiwara et al 

(1978). 
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(iv) The frame sequence number range and transmitter memory 

capacity are assumed infinite. In practice the frame sequence 

numbering would be limited, and efficiency slightly reduced as a 

result. This effect will be further discussed in Chapter 6. 

(v) Error correction codes are assumed to be (n, k, t) linear block 

codes, capable of correcting all error patterns of weight equal to 

or less than t. It is further assumed that for some rate R and 

block length n, a code may be constructed that satisfies k=R. n. 

by for example shortening a BCH code. 

(vi) It is assumed that codes exist which satisfy the expression 

t= integer( (n-k) 1 
integer( 1092( n+1) 

This expression reasonably approximates the error correcting 

capability of a BCH code. 

(vii) A header (frame number and error detection parity bits) size 

of 48 bits is assumed; this is a fairly typical size for a protocol 

such as the IBM Synchronous Data Link Control protocol (Donnan 

1974). 

(viii) Data from the source and source encoder is always available, 

which is in practice only likely during bulk data transfers. The 

transmission efficiency is of interest primarily under these 

conditions, and hence the assumption is not unreasonable. The 

source would also need to be able to respond to flow control 
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(Section 6.2.2), due to the inherently variable transmission rate 

of ARQ systems. 

5.3 Hybrid ARQ 

A large number of modified ARQ schemes have been 

developed to suit particular types of channel. Generally, ARQ 

provides higher efficiency on burst than on random error channels, 

for a given bit error rate. Forward error correction may be applied 

within the ARQ to correct most of the random errors, leaving the 

ARQ system to cope with the remaining errors. Figure 5. c shows a 

simple hybrid system of this type. 

Reverse channel 

Figure 5. c A simple hybrid ARQ system 

The efficiency of ARQ is improved by the effective reduction 

in channel error rate and hence number of frame retransmissions, 

however the forward error correction code reduces the effective 

channel transmission rate by the rate of the code used. Thus the 

overall efficiency is :- 
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Efficiency= k k-h 1 
nkT 

where T is the mean number of transmissions required per frame, 

which is reduced by the use of the (n. k) error correcting code. 

The error correcting code used within the hybrid ARQ system 

may also be used for error detection, obviating the need for separate 

codes (and hence two decoders). Several examples of this type are 

described below. The minimum distance of a block code used for the 

correction of up to t errors and the detection of up to d errors 

(where d>t) (Lin 1983), is: - 

dmin>t+d 

More usually separate codes are used. Klove and Miller (1984) 

discuss the effects of the inner error correction code on the 

probability of undetected error for the outer code. 

Two basic types of hybrid ARQ system will be discussed, the 

Type I, as described above, and the Type II or parity retransmission 

scheme. 

5.3.1 Type I Hybrid ARQ Schemes. 

Various authors have described hybrid FEC/ARQ protocols 
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similar to that described above, Lin (1983) defines these as type I 

hybrid ARQ schemes. Figure 5.0) shows the general frame format of 

a Type I scheme. The principal characteristic of this class of hybrid 

ARQ scheme is that the additional parity bits needed for error 

correction are transmitted with the frame to which they relate. 

Brayer (1968) discusses the use of hybrid ARQ on HF channels, 

using a non-binary block code for error correction. The channel 

differed considerably from the telephone channel however, and the 

results are not comparable with those below. 

Rocher and Pickholtz (1970) described several hybrid ARQ 

schemes, and evaluated their performance on the binary symmetric 

channel. 

They relate their results to performance on a high data rate 

modem on a voice grade line, and comment that the forward error 

correcting code rate may be very high, as "only a few errors need to 

be corrected to reach a very high reliability while still retaining a 

reasonable throughput'. 
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e 

-brad frame 

Figure 5. d(i) Type I hybrid ARQ frame structure 

Basic ARQ frame 
transmitted initially 

Additional FEC parity bits sent if 
retransmission requested 

Figure 5. d(ii) Type II hybrid ARQ frame structure 
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Leung and Lam (1981) describe a hybrid Stop and Wait 

protocol, using rate 0.84 BCH codes with block lengths from 255 to 

2047 bits. They examined the performance of the scheme on both a 

random error channel (BSC) and a Rayleigh fading channel model 

characteristic of multipath effects on a radio channel. They assume 

that messages arrive at the transmitter according to a Poisson 

distribution, and have a geometric distribution of lengths. The mean 

wasted time per transmitted message is calculated for four different 

hybrid ARQ schemes, the results indicated that better performance 

was obtainable using the hybrid scheme than simple ARQ. 

Convolutional codes have been used in a number of hybrid ARG, 

schemes. The relative merits of block and convolutional codes are 

discussed by Drukarev and Costello (1982), who compare the 

efficiency of hybrid Stop and Wait, Go Back N and Selective Repeat 

ARQ using BCH and rate 1/2 convolutional codes for the binary 

symmetric channel. They found that convolutional codes were 

generally more effective than block codes for longer frame lengths 

or greater transmission delay. 

Generalized burst trapping (GBT) codes of rate 1/2,2/3, and 
3/4 were applied to a Go Back N hybrid ARQ scheme by Sastry and 

Kanal (1976), whilst more recently Drukarev and Costello (1983) 

discussed the relative merits of the time out and slope control 

convolutional code decoding algorithms within a hybrid ARQ system. 

The rate of the code used for error correction is fairly critical. 
If a low. rate code is used, most errors will be corrected without 
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using retransmission, but the transmission efficiency is reduced 

considerably by the code rate. If however a high rate code is used, a 

smaller proportion of errors will be corrected and thus 

retransmissions will be more frequent. The code should ideally be 

selected to maximize the efficiency of the system. 

5.3.2 Type II Hybrid ARQ Schemes - Parity Retransmission. 

A Type II (Lin 1983) hybrid ARQ protocol employs some form 

of parity retransmission. A frame is sent with only error detection 

parity bits added, as with normal ARQ. If however retransmission is 

requested, a set of additional parity bits are sent rather than a copy 

of the frame (Figure 5. d(ii) ). The receiver is now able to correct 

some errors, but if there are still uncorrected errors a further 

retransmission is requested. This has the advantage over Type I 

hybrid ARQ, that the efficiency is never less than that of simple ARQ. 

One of the earliest schemes of this type was described by 

Mandelbaum (1974), using incremental code redundancy. The 

message is encoded using an error correcting code, then the code is 

punctured by having some parity bits removed. The message is sent 

using the punctured code, and if a retransmission is requested, 

some of the removed parity bits are sent. The receiver is then able 

to correct some errors, but if necessary the process is continued 

until all the parity bits have been sent, or all the errors corrected. 
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Metzner (1979) suggested splitting the k message bits into 

small sub-blocks (say 4 bits), and using a half rate code to generate 

additional parity bits using for example an (8,4) Reed-Muller code. 

Initially the k message bits are sent, but in the event of a 

retransmission, the k parity bits are sent. The receiver may then 

attempt correction of the transmission errors using the (2k, k) code. 

A Type II hybrid ARQ scheme using a half rate code was also 

used by Lin and Yu (1981), who suggested encoding using a long 

block length BCH code, (1023,523) shortened to (1000,500), which 

can correct 5 errors and simultaneously detect 105 errors. In the 

event of a retransmission, the receiver has two chances of retrieving 

the message, firstly, the message is recoverable from the k parity 

bits if no errors occurred on the second transmission, and secondly 

by using the error correcting capabilities of the code. Wang and Lin 

(1983) also used a shortened (1000,500) BCH code but with a 

separate error detection code; the (1000,500) code can correct 55 

errors. 

The advantage of Type II ARQ over Type I is that the additional 
forward error correcting code parity bits are sent only when a 

retransmission is requested, hence at low error rates there is little 

overhead due to the code rate. At high error rates, Type II ARQ 

should again perform well, as the error correcting capability is very 
high. 

There will be a range of error rates for which Type I will 

perform well, as the disadvantage of Type II is that there has to be at 
least one retransmission before the receiver is able to perform any 
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error correction. A combination of Types I and II should prove 

effective under both high and low error conditions, as a high rate 

forward error correcting code can be used to correct a small 

number of errors and hence avoid the need for retransmission, but if 

channel conditions deteriorate parity retransmission may be used. 

5.3.3 Transmission efficiency of some hybrid ARQ schemes. 

Three hybrid ARQ schemes will be compared with the basic Go 

Back N ARQ protocol. These are: - 

(i) A simple Type I hybrid ARQ, employing a fixed rate linear 

block code. 

(ii) A simple Type II hybrid ARQ, using parity retransmission 

based on a half rate linear block code. 

(iii) A combination of Types I and II, using a high rate forward 

error correcting code in Type I mode, and a half rate code in 

Type II mode. 

The transmission efficiencies of the three schemes are given 

below, the equations are derived in Appendix C: - 

(i) Type I hybrid, using a fixed rate (n, k, t) linear block code, as 
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discussed above: - 

Efficiency =k (k-h) 1 
nkT 

T' depends on the uncorrected error probability for the 

(n, k, t) forward error correcting code, i. e. the probability of more 

than t errors occurring within a block of length n bits .. P(m>t, n) 

(Section 4.3.2). 

hence T= 1+N. P(m>t. n) 
(1 - P(m>t, n) 

(ii) Type II, with parity retransmission: - 

Efficiency = (k-hl 1 
kT 

T, the expected number of transmissions required to send a 

frame successfully, depends on two error probabilities. PE is the 

probability that the first transmission will be corrupted 

P(m>O, k), whilst P(m>t2,2k), the probability that subsequent 

transmissions will fail, is lower due to the error correcting 

capability of the (2k, k, t2) code. 

T'=1+ NPE 
(1 - P(m>t2,2k) 

155 



(iii) Combined Type I and II, with a high rate forward error 

correcting code, and parity retransmission: - 

Efficiency =k (k_h) 1 
nk T' 

The expression for T is as given in (ii) above, however the 

initial probability of error PE will be replaced by P(m>tl, n) due to 

the effects of the (n, k, tl) forward error correcting code element. 

T'= 1+P m> 1L}r 
(1 - P(m>t2,2n)) 

The choice of code rate should depend on the prevailing 

channel conditions. In practice however, knowledge 'of the bit error 

rate in the forward channel can only be determined by observing the 

number of retransmission requests, and hence acquired only after 

some significant delay. 

Figure 5. e shows the relationship between efficiency and bit 

error rate for Type I hybrid ARQ, for code rates of 0.98,0.9,0.8, and 

0.6. For comparison the theoretical channel capacity ( from Section 

4.4) is also shown. Clearly for low error rates the code rate should be 

as high as possible, however at high error rates some intermediate 

code rate will give optimum performance. 
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Figure 5. e Transmission Efficiency of Type I Hybrid ARQ for the 
binary symmetric channel. with a range of FEC code rates. 
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A rate 0.85 BCH code will be used for scheme (i), this 

corresponds for example, to the (1023,873,15) and (511,439,8) 

BCH codes. The performance of Type (i) hybrid ARQ for other code 

rates will be explored more fully in Sections 5.6 and 5.7. A higher 

code rate, 0.95, will be used for scheme (iii). 
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5.4 The Effects of Channel Error Distribution and Delay on 

Transmission Efficiency. 

In Section 4.3, three different channel models were proposed 

for the evaluation of error control schemes. These were the binary 

symmetric channel, the run length encoded data published in Lewis 

and Cox (1966) and a model for the block error rate derived from 

data from the Bell telephone network survey of 1969-70 given in 

Balcovic (1971). The models will be referred to as the BSC. Lewis 

and Cox, and Bell models. 

The performance of four ARQ schemes will be compared, Go 

Back N ARQ, and the three hybrid GBN ARQ schemes described in 

Section 5.3.3. The channel models used for comparison of the ARQ 

schemes outlined above are (from Section 4.3.2) :- 

(i) The binary symmetric channel. 

- BSC model 

m 
P(>m, n) =1- nCm psi (1_pt) (n-i) 

i=o 

(ii) Data given by Lewis and Cox (1966). (Bit error rate 0.0007) 

This recorded gap length data will be used to calculate 

P(>m, n) directly for each result required. 
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(iii) Model based on A. T. &. T. results from 1969/70 survey, 

reported by Balcovic et al (1971). (bit error rate - 10-6) 

- Bell model: - 

P(>m, n) = na. mb. c 

with calculated values of a=0.87, b=-1.66, c=1/98700 

Figures 5. f(i) and 5. f(ii) show the efficiency of the four ARQ 

schemes when applied to a binary symmetric channel, with bit error 

rate ranging from 0.00001 to 0.1. The frame length is 1000 bits, and 

the transmission delay zero in Figure 5. f(i), and 1000 bit intervals in 

Figure 5. f(ii). 

At low error rates, ARQ performs well, but efficiency falls 

rapidly with increasing error rate. Hybrid scheme (i) has an 

efficiency slightly less than the code rate, which remains constant to 

a high error rate, indicating that the error correcting code is 

correcting almost all errors at low to medium error rates, and hence 

avoiding the need for retransmission. 

Hybrid scheme (ii), parity retransmission, has a similar 

performance to ARQ at low error rates, but the half rate (2n, n) error 

correcting code provides reasonable throughput at very high error 

rates (up to a BER of 0.05). 

The combined Type I/II hybrid provides good performance at 

all error rates. At error rates up to 0.001, the throughput is 

approximately 90 percent, whilst the parity retransmission provides 

reasonable efficiency up to an error rate of 0.03. 
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There is a larger difference in efficiency between the Type II 

and combined Type I/II scheme than might be expected. At error 

rates higher than 0.001, the Type II scheme has an efficiency of 

approximately 0.47, whilst the Type I/II scheme has an efficiency of 

approximately 0.3, about 46 percent less than the Type II scheme. 

One would expect the difference to be only five percent, due to the 

rate of the additional code, however the effect is due to the 

additional encoding/decoding delay allowance of one block length. 

The effects of increasing the delay to 1000 bit intervals 

(shown in Figure 5.1(11)) is to reduce the efficiency of all schemes. At 

low error rates the simple ARC) and the Type II hybrid ARQ show 

greatest signs of degradation, due to the increased number of blocks 

that must be retransmitted. The Type I and combined Type I/II are 

less affected, as the forward error correction reduces the incidence 

of retransmission requests. At higher error rates, the Type I/II 

scheme shows reduced efficiency, however the Type I scheme is 

only slightly affected. 

160 



t 

d 
ro 
w 
a 0 .1 m 
8 

8.8 . ................... 'ý.; . ».. _.. ». _..... t-------- 

8.6 
11 ,ýi 

Iv 
l1 

ci) Ideal channel capacity 
"8.4 (ii) GBNARQ 

(UI) Type I hybrid 
(iv) Type II hybrid 8.2 
(v) Type I/11 hybrid 

8 
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 

Bit Elter Rate (LOg 1O Scale ) 

Figure 5. f(i) Transmission Efficiency of the four ARQ schemes, for the 
binary symmetric channel4 with zero delay. 

e. 1 

-1 

e. U 

ö 8. 

Figure 5.1(11) Transmission Efficiency of the four ARQ schemes, for the 
binary symmetric channel, with a 1000 bit channel delay. 

161 

-b -g. 5 -9 -3,5 -3 -Z. 5 -2 -1.5 _: 1 

Bit &ror Rate (ILog 10 Scale ) 



Figures 5. g(i)-(iv) and 5. h(i)-(iv) illustrate the effectiveness of 

the four ARQ schemes on four different channel models. The first 

set of graphs show the relationship between efficiency and channel 

delay for each ARQ scheme, whilst the second set of graphs compare 

the performance of the different ARQ schemes for each channel 

model. 

In Section 4.2.1, channel delay was briefly discussed, and 

typical values given. A PSTN channel typically has a delay of 5 to 30 

milliseconds, whilst a satellite channel may have a delay of 300 

milliseconds or more. In terms of bits, the expected end to end 

delays are: - 

(i) At 1200 bits per second, from 6 to 36 bits on the PSTN, 

and approximately 360 bits for a satellite channel. 

(ii) At 19200 bits per second, from 90 to 580 bits on the 

PSTN, and approximately 5800 bits for a satellite channel. 

A range of end to end delay of 0 to 5000 bits is used in 

Figures 5. g and 5. h., with an assumed frame length of 1000 bits. 

Go Back N ARQ performs fairly poorly on channels with 

extensive delay, as shown if Figure 5. g(i). The worst performance 

occurs on the high error rate binary symmetric channel. On the low 

error rate BSC, and Lewis and Cox channel, ARQ performs tolerably 

at delays of less than 2000 bits, whilst on the low error rate Bell 

model, very little degradation is noticeable. There is a significant 
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difference in performance between the high error rate BSC and the 

Lewis and Cox channel results, despite the similarity in bit error 

rate, 0.001 for the BSC and 0.0007 for the Lewis and Cox data. This 

is due to the clustering of errors on the recorded channel data, 

discussed in Section 4.3.2. 

Figure 5. g(ii) shows the relationship between efficiency and 

delay for the Type I hybrid scheme. This is relatively insensitive to 

delay; a slight degradation may be observed on the result for the 

Lewis and Cox channel data. This is again due to the clustering of 

errors, which results in the forward error correcting code failing to 

correct a small proportion of errored blocks. 

The Type II hybrid scheme does not perform markedly better 

than simple ARQ, with the exception of slightly improved 

performance on the high error rate BSC, as shown in Figure 5. g(iii). 

Figure 5. g(iv) shows the result for the combined Type I/II 

scheme, which shows some interesting features. The efficiency of 

the scheme is relatively insensitive to delay, with the exception of 

the result obtained for the Lewis and Cox data. This illustrates that 

the high rate error correcting code is able to cope well on the binary 

symmetric channels, but is unable to correct a fair proportion of 

errors on the recorded channel data. 
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On the high error rate BSC, the two schemes employing 

forward error correction are considerably more effective than those 

relying solely on retransmission, as shown in Figure 5. h(i). This is 

also apparent on the low error rate BSC, although only for large 

delays. Figure 5. h(ii) shows that under these conditions, the ARG, 

and Type II hybrid perform well for delays less than 1000 bits, but 

the Type I/II scheme performs best for all delays. 

A slightly different picture emerges when the results for the 

Lewis and Cox channel data are examined (Figure 5. h(iii)).. The 

performance of the Type I/II scheme drops markedly, but is still the 

most efficient for delays of less than 1000 bits. The Type I scheme is 

fairly efficient for the whole range of channel delay. 

The low error rate Bell model provides a good environment 

for simple ARQ and the Type II hybrid, whilst the loss in efficiency 

due to the overhead of the forward error correction code limits the 

performance attained by the Type I and Type I/II schemes. 
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5.5 The Relationship between Frame Length and Efficiency. 

The efficiency of an ARQ system depends heavily on the 

choice of frame length. Long frames are susceptible to errors, whilst 

short frames are inefficient due to the proportionally large header. 

For some given channel conditions, there exists an optimum frame 

length. It will be assumed initially that channel conditions are stable, 

and that the use of a fixed frame length is practical. 

The use of forward error correction should substantially alter 

the frame length/ efficiency relationship, as longer frames will be 

less affected by channel errors. In this section, the performance of 

the Go Back N, and Type I hybrid ARQ schemes is considered for a 

range of frame lengths of 100 to 2000 bits, on the four channel 

models used in the preceding section. This is followed by some 

discussion of the choice of optimum or maximum frame length. 

Figures 5. j and 5. k show the variation of efficiency with frame 

length for the two ARQ schemes and four channel models, for 

transmission delays of 0 and 1000 bits. 

Go Back N ARQ is fairly efficient for short block lengths, as 

shown on Figure 5. j(i). Distinct maxima are present for all channel 

types except the low error rate Bell model. For the high error rate 

BSC the maximum efficiency is 0.62, at a block length of 

approximately 250 bits. The Lewis and Cox model provides higher 

efficiency, 0.78 at a block length of 600 bits. 
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The effect of increasing the channel delay is shown in Figure 

5 j(ii). The performance of ARQ on the Lewis and Cox, and low error 

rate BSC is degraded by 10-20 percent, and the optimum block 

length increased noticeably. The efficiency of ARQ on the high error 

rate BSC has dropped considerably, to just over 0.2, whilst the 

optimum block length has increased slightly to 300 bits. 

Some slight irregularity may be observed on the curves for the 

Lewis and Cox model, as the model is based on recorded channel 

data rather than a mathematical model. 

In Figure 5. k(i) the efficiency of the Type I hybrid ARGS may be 

seen to increase monotonically for the range of block lengths 

considered. There is little difference in performance for any of the 

channel models. 

The effect of increasing the channel delay to 1000 bits is 

shown in Figure 5. k(ii). The results are very similar to Figure 5. k(i), 

which illustrates the high tolerance of the scheme to delay. Some 

slight degradation is noticeable on the curve for the Lewis and Cox 

model, the explanation for this was given in the preceding section. 
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Expressions for optimum frame length are derived in 

Appendix D for Stop and Wait, Selective Repeat, and Go Back N ARQ. 

The equation for the efficiency is differentiated, and the zero 

crossing point of the derivative (corresponding to the maxima) 

found. The conditions under which this approach is valid are 

discussed by Chu (1974) and Morris (1979). 

For Go Back N, the optimum frame length k satisfies: - 

(1-PE)(h + k. PE. (N-1)) - (k-h). k. N. PE =0 

where PE is the probability P(m>O, k), and PE is the derivative 

of PE with respect to k. Note particularly that PE, PE' and N are 

functions of k. 

In practice, the choice of frame length does not depend solely 

upon channel conditions. For example in a data network, packets of 

data maintain their identity, and are effectively encapsulated within 

an ARQ frame. Alternatively, a communications system carrying data 

between a VDU operator and computer should not have to accept 

sufficient characters typed from the keyboard to fill, an optimum 

frame before sending it. The optimum frame length should therefore 

be regarded as the maximum size for the given channel conditions. 

rather than a fixed value. 

Many studies of data communications traffic have been 
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published. For example Fuchs and Jackson (1970) discuss the 

terminal-computer data traffic characteristics of three time shared 

computer systems. They found that the traffic occurred in bursts, 

generally conforming to a Gamma distribution, with mean burst 

length of 11 characters for user terminal to computer traffic, 41 

characters for computer to terminal traffic. 

The channel conditions are not in practice known precisely, 

thus the optimum frame size can only be roughly estimated. An 

adaptive scheme could be used, for example, to reduce the frame 

length when a retransmission is requested and increase it when no 

frames have been rejected for a set period of time. 

This highlights one unfortunate aspect of ARQ, namely that 

once a frame has been transmitted its size is fixed. If during good 

conditions the frame size has increased to say 2000 bits, then the 

stored copies of the most recently transmitted frames are all 2000 

bits in length. If the channel then becomes noisier, with an error 

rate of say 0.005, the transmitter will then retransmit 2000 bit 

frames, which have a very low probability of successful transmission 

(0.000044 for a binary symmetric channel). The system will 

effectively be locked up until the error rate improves. 

II This may be prevented by using, for example, the Type 

hybrid ARQ scheme discussed above. Another possible solution, 

which does not involve the use of forward error correction involves 

a slight modification to the definition of ARQ. Instead of retaining 

the unacknowledged frames, the unframed data can be stored. If a 

retransmission is requested, the frames are reconstructed and may 
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be longer or shorter than the original ones. Thus the lockup 

situation described above would result in successively shorter frames 

being transmitted, the frame length would reduce until some 

throughput was obtained. This approach would be more suited to 

slowly time varying channels. 
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5.6 Selection of Code Rate for Type I Hybrid ARQ. 

The rate of the code used for forward error correction in a 

hybrid ARQ system has a considerable influence on performance. In 

Figure 5. e, the efficiency of a Type I hybrid ARQ scheme was shown 

to depend heavily on code rate, for the binary symmetric channel. 

This section considers the choice of optimum code rate for the four 

different channel models used in Sections 5.4 and 5.5. 

In Figure 5. m, the efficiency of a Type I hybrid ARQ scheme is 

shown for a range of code rates from 3/4 to 1. The codes are all 

known (1023, k, t) BCH codes, otherwise the assumptions are as 

defined in Sections 5.1-5.4, with zero delay. For the low error rate 

Bell model, the optimum rate is 1, i. e. no forward error correction; 

whilst for the worst case, the Lewis and Cox data, the optimum rate 

is 0.92. 

The comment of Rocher and Pickholtz mentioned in Section 

5.3.1 above, may be called into question as a result of the 

observations made on Figure 5. m. They state that, in the context of 

data transmission over voice grade telephone lines, only a few errors 

need to be corrected by the forward error correcting code within a 

hybrid ARQ system. This may well appear to be the case if the binary 

symmetric channel is used a basis for comparing codes, however the 

bursty nature of telephone channel errors leads to an increased 

proportion of error free frames, and an increased error density 

within errored frames. 
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In practice the channel error distribution is usually not 

known in advance, and may well be time varying. The code rate may 

be fixed, or could be made adaptive. If an adaptive scheme is to be 

effective however, the rate of change of error rate would need to be 

slow, due to the delay before the transmitter detects a change in 

channel conditions (from an increase in the number of 

retransmission requests). 
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5.7 Adaptive Selection of Code Rate. 

The distribution of errors with time for the Lewis and Cox 

data is shown in Figure 5. n. The graph shows the time sequence of 

the number of errors per 1000 bit block, and clearly shows the 

clustering effects discussed above. An adaptive code redundancy 

selection scheme seems likely to achieve some success, at least for 

low values of channel delay. 

I 

I 
18 
64 

1000 bit frame sequence 

Figure 5. n Number of errors per 1000 bit block. as a time series, from 
the Lewis and Cox channel error data. 

Variable redundancy codes have been investigated by Weng 

and Sollman (1967), and others. Their application to ARC) systems 
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was discussed by Farrell (1969). and Goodman and Farrell (1975). 

Farrell suggested that sets of optimum (i. e. maximum code rate for a 

given dmin) short block codes should be used, and the code selected 

from amongst these. The performance of this and a number of other 

error control coding schemes was given for a white noise and optical 

channel. 

Goodman and Farrell studied the performance (in terms of 

undetected error rate and efficiency) of variable redundancy ARQ 

schemes over HF radio channels. -A number of linear block codes 

with the same codeword length were used, the choice of code rate 

being made on fhe basis of the block error rate measured at the 

receiver. A PSTN line was used to provide information feedback to 

the transmitter. 

They conducted a number of tests, involving the use of sets of 

up to eight different code rates, and found that it was possible in 

many cases to achieve better performance with only two code rates. 

The use of a simple channel condition monitor is suggested, of the 

form "if two successive blocks with errors occur, change to the more 

powerful code". 
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5.7.1 An adaptive hybrid ARQ scheme. 

To investigate the effectiveness of adaptive schemes it is 

necessary to perform simulation rather than analysis. A simple Go 

Back N model may be constructed, and the Lewis and Cox data used 

to provide error information directly. The GBN model shown below 

includes two code rates (high and low rate); the transmitter 

switches to the low rate code whenever a reject or errored 

acknowledgement is received, and stays in that state for a period of 

time. The errored acknowledgement is needed to indicate that, 

although a retransmission is not being requested, errors are still 

present on the channel. The delay before switching back to the high 

rate code, the sustain factor, is considered below. 

The potential advantage of the technique is not that it 

improves the probability of the retransmitted block being accepted 

as with the scheme suggested by Mandelbaum (ibid), although it 

does this. Rather the advantage is that the retransmitted block and a 

number of following blocks are encoded using the lower rate code, 
hence the error correcting code is still in use after retransmission 
has been completed. Thus if the errors are grouped such that a 

number of successive blocks contain errors, the more powerful low 

rate code is in use for the duration of poor transmission conditions. 
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Transmitter: 
Begin 

If block(s) rejected 
then last block no. = next block no. 

next block no. =i 
retransmitting = true 

If retransmitting and next block no. = last block 
then retransmitting = false 

If block(i) rejected or errored 
then count =c (sustain factor} 

code state = low rate 
If count >0 then decrement count 
If count =0 then code state = high rate 
Encode block( next block no. ) 
Send block 
Increment next block no 

End. 

Receiver: 
{ Note that it is assumed that the receiver is able to deduce the code 
rate used to encode the received block } 
Begin 

Decode the received block(j) 
If j= next rev block no then 

if block(j) contains uncorrectable errors 
then return reject block(j) 

if blocko) contains a correctable errors 
then return errored(j) 

increment next rcv block no 
if block(j) contains no errors 

then return acknowledged(j) 
increment next rcv block no 

End. 
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5.7.2 Performance of the adaptive ARQ scheme on a burst error 

channel 

The codes selected for comparison in the simulation were the 

BCH codes (1023,923,10), (963,923,4), (933,923,1) and 

(923,923,0), with a frame header size of 48 bits (i. e. a data segment 

of 875 bits), and a sustain factor of 16 frames. The value of k, the 

message length was kept constant, but the block length n allowed to 

vary. Thus a block may initially be transmitted using a (933,923,1) 

code with 875 data bits, 48 header and error detection bits and 10 

error correction parity bits, but retransmitted using a 

(1023,923,10) code. The schemes compared were selected to be of 

roughly comparable complexity: - 

(i) Go Back N ARQ 

(ii) Selective Repeat ARC) 

(iii) Hybrid GBN ARQ with adaptive selection of code rate 

(iv) Hybrid GBN ARQ with fixed rate code 

Table 5. p shows the performance estimates obtained from 

simulation using the GBN ARQ model with channel errors obtained 

from the Lewis and Cox data. In addition, the channel error 

information was passed through a 23. bit descrambler, to examine 

the effects of error extension (cf Section 4.3.2) on the error control 
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schemes. For comparison the efficiency of the various techniques on 

an error free channel is shown. Ideally a hybrid scheme should have 

the same performance as ARQ on the error free channel, but 

substantially better performance on the errored channels. 

The results show clearly that the adaptive scheme is able to 

provide good performance on the sample of channel error data, and 

would be expected to perform well on channels with persistent 

bursts. The technique would not perform as well on a random error 

channel, or channel with short bursts, due to the delay before 

switching code rate. 

The best adaptive scheme is that using the (1023,923) and 

(963,923) codes, as the high rate code is near optimum for the 

channel, which may be verified by examining the performance of the 

fixed code rate hybrid schemes. 

To obtain some insight into the operation of the adaptive 

hybrid scheme, the number of correctable and uncorrectable blocks 

were counted for the (1023,923)/ (923,923) scheme for different 

channel delays. These are shown in Table 5. q. 

The effects of increasing delay are apparent in the increasing 

proportion of low rate blocks, and the increasing proportion of these 

low rate blocks that contain no errors. This is due to the slower 

response of the transmitter to changes in channel conditions. 
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ARQ Efficiency for : - 

Scheme No errors Lewis & Cox 

Raw Scrambled. 

GBNARQ 0.95 0.64 0.64 

GBN -Type II 0.95 0.74 0.74 

SRARQ 0.95 0.77 0.77 

Adaptive 

(963/923,923) 0.95 0.79 0.70 

(1023/923,923) 0.95 0.80 0.74 

(1023/933,923) 0.94 0.82 0.74 

(1023/963,923) 0.91 0.84 0.75 

Fixed rate 

(933,923) 0.94 0.74 0.63 

(963,923) 0.91 0.81 0.73 

(1023,923) 0.86 0.80 0.75 

Table 5. p Efficiency of ARQ schemes, obtained by simulation based 

on both scrambled and unscrambled channel error data (Lewis and 

Cox data). Channel delay is 1000 bits. 
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Value of N13 5 

(acknowledgement 

delay - frames) 

Efficiency 0.92 0.82 0.77 

Proportion of blocks 

sent using: - 
High rate code 92% 85% 81% 

Low rate code 8% 15% 19% 

Proportion of blocks encoded using the 

high rate code with: - 

no errors 85% 85% 84% 

correctable errors 6% 6% 6% 

uncorrectable 9% 8% 10% 

Proportion of blocks encoded using the 

low rate code with: - 

no errors 46% 62% 72% 

correctable errors 49% 33% 26% 

correctable by high 

rate code 13% 8% 9% 

uncorrectable 4% 4% 2% 

Table 5. q Some statistics obtained from the simulation of the 

(1023,923)/(923,923) adaptive ARQ scheme. 
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It may be possible to improve the efficiency of the adaptive 

schemes still further if the transmitter had earlier warning of 

degrading channel conditions. If forward and backward channel data 

streams share the same path, the transmitter could estimate the 

error rate in the forward direction by observing the number of 

errored blocks or acknowledgements received on the backward 

channel. 

5.7.3 Performance of the adaptive hybrid ARQ scheme on the binary 

symmetric channeL 

The efficiency of the adaptive hybrid ARQ scheme on the 

binary symmetric channel may be calculated using the expression 
(derived in Appendix C): - 

efficiency = (k - h) 
.1 (Pf. n + (1-PL. k) T 

where Pf is the probability of a frame being transmitted with forward 

error correction, and p the number of additional parity bits used. 
As the channel is an independent error channel. the 

probability Pf is simply the probability that the c previous frames 

were not errored (where c is the number of frames for which the 
FEC is maintained): - 
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Pf =1- (1 - P( m>O, k ))C 

The average number of retransmissions T is basically the 

same as that for Go Back N ARQ, although the frame error probability 

will depend on Pf, giving: - 

T=1+ N. 1-Pr) 
(1 - P(m>t, n)) 

where Pte. is the probability of the first transmission being 

successful: - 

Pnr = Pf"(1-P(m>t, n)) + (1-P? . (1-P(m>O, k)) 

Figures 5. r(i) and (ü) show the results for channel delays of 

1000 and 5000 bits. For comparison, Go Back N, Selective Repeat, 

and Types I and II hybrid ARQ schemes are also shown. The binary 

symmetric channel with large delay represents a fairly severe test of 

the various schemes. 

The adaptive hybrid ARQ scheme shows some interesting 

features. At low error rates, the efficiency is close to that of both Go 

Back N and Selective Repeat ARQ. As the error rate increases, 

efficiency drops, but not as much as that of GBN ARQ, due to the 

effect of the forward error correction, which is being invoked more 

often. At an error rate of approximately 0.0001, the efficiency rises, 

until it coincides with that of the Type I hybrid scheme. This is 
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because the high error rate results in the forward error correction 

element being continually invoked, and hence the adaptive scheme 

acts exactly as a Type I hybrid. 

The effect of increasing the delay to 5000 bits is shown in 

Figure 5. r(ii). The dip in the efficiency curve has deepened, however 

this is dependent on the sustain factor, the delay built into the 

adaptive algorithm, and increasing this value would increase 

efficiency in this area, at the cost of a slight reduction in efficiency 

under low error rate conditions. 

The performance of the adaptive scheme in comparison to 

the others shown, is generally good. The scheme has the benefits of 

the Type I hybrid at high error rates, and of simple ARQ at lower 

error rates. At high error rates the method outperforms Selective 

Repeat ARC), as the forward error correction element reduces the 

number of retransmission requests. 
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5.7.4 Selection of code rate and sustain factor. 

The preceding sections have shown that the adaptive hybrid 

ARQ scheme is effective for certain values of the sustain factor and 

code rate. The aim of this section is to discuss the choice of these 

parameters. 

On the binary symmetric channel, the adaptive scheme 

behaves as simple ARQ at low error rates, and as type I hybrid ARQ 

at high error rates. Ideally the sustain factor would be zero at low 

error rates to avoid any loss in performance, and infinitely large at 

high error rates to maintain the system in type I mode. The 

crossover occurs where the efficiency of the two ARQ schemes is the 

same: - 

1k h) 1= (k_h) 1 
k (1 +NP)n (1 +N P(m>t. n) ) 

(1-PE) (1 - P(m>t, n) 

At low to medium error rates, P(m>t, n) is very small, and hence the 

crossover between ARQ and type I mode should occur at: - 
PES r-k 

(n + 2. D) 

Figures 5. s(i) and (ii) show the efficiency of the adaptive 
scheme on the Lewis and Cox channel error data, for a range of 

values for the sustain factor of 1 to 16. Each graph gives the 

efficiency curve for a number of values of channel delay. 
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Figure 5. s(i) shows that the efficiency is relatively insensitive 

to the sustain factor for low channel delay, but the sustain factor 

needs to be substantial if the channel delay is increased. The value of 

16 selected in the preceding sections would appear to be a 

reasonable choice for this set of data, although the curve shown for 

zero delay indicates that this value is just over the optimum region. 

Figure 5. s(ii) shows the equivalent results for the scrambled 

Lewis and Cox data. The performance is markedly affected by the 

higher error rate, but the observations made above are still 

applicable. 

In Section 5.7.2, the use of a (1023,923,10) low rate code, 

and (923,923,0) high rate code (i. e. no forward error correction) 

was proposed on the grounds that high efficiency was desirable 

when low error rate conditions exist. A small number of alternative 

code rates were tried, and the results compared. 

Figure 5. t shows the efficiency of the adaptive scheme for a 

range of code rates. The optimum rate for the FEC element of the 

adaptive scheme for this channel is between 0.92 and 0.96, and 
depends on the channel delay. 
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To summarise, the choice of the sustain factor does not seem 

critical. On the binary symmetric channel an optimum only exists at 

some given error rate. From the results obtained on the Lewis and 

Cox channel error data, the earlier choice of 16 would seem 

reasonable, although a larger value would improve performance if the 

channel 'delay is substantial. The selection of code rate is still fairly 

important, which implies that the use of variable redundancy 

forward error correction may achieve more than Section 5.7.2 

intimated. 
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5.8 Residual error rate 

The uncorrected error rate, i. e. the probability of a bit error 

in the ARQ receiver output, depends on the error detecting 

capability of the error detection code used to construct the ARQ 

frame. For a hybrid ARQ scheme, there will be some interaction 

between the forward error correcting and the error detecting codes. 

Klove and Miller (ibid) found that, for certain linear block codes 

used on the binary symmetric channel, the reliability of the error 

detection code is increased if its minimum distance is less than half 

of the minimum distance of the inner error correcting code, i. e.: - 

dmin (FEC) >2 dmin (error detection code ) 

In order to make realistic estimates of the uncorrected error 

rate, the error pattern and code weight distributions must be 

known. If a sufficiently accurate model can be constructed, 

simulation may be used (Muntner and Wolf 1968). 

In Section 4.2, the error pattern distribution of high speed 

voiceband data communications systems was discussed. The errors 

typically occur in bursts with length and weight dependent on the 

modem design. The use of long scramblers would result in bursts of 

length 23 bits or more, as found by Balcovic et al. Provided that the 

scrambler polynomial and generator polynomial are mutually prime, 

and the unscrambled error patterns are less than (n-k) bits in 

length, even long error patterns can be detected, as discussed in 
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Section 4.5.6. 

Funk (1982) examined another source of error extension, 

synchronization failure. The SDLC protocol and its derivatives 

(HDLC, X25, .. ) use a bit oriented frame synchronization mechanism, 

described in Section 6.7, with a 16 bit cyclic error detection code of 

minimum distance four. The receiver relies on the detection of a 

unique bit pattern (01111110) within the received data stream for 

location of the end of a frame. 

In order to achieve data transparency (i. e. to allow the 

message to contain any bit pattern, including the synchronization 

sequence) a bit stuffing mechanism is used. After any sequence of 

five 1's (excluding the synchronization sequence) the transmitter 

inserts a zero; similarly, the receiver removes a zero if preceded by 

five 1's. 

A cyclic code should be capable of detecting all errors of 

weight three or less, however a single bit error is sufficient to cause 

loss of synchronization, with consequent large error extension. Funk 

discusses the following possible causes of undetected error: - 

(I) Spurious flags (synchronization characters) may be created 

within the frame. As the bit stuffing mechanism inserts a single 

zero after a series of five 1's ( 01111 1OXX ), a single error is 

sufficient to corrupt the inserted 0, and hence create a false 

synchronization character. The effect of this is the division of the 

frame into two parts. 
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(ii) The flag character ( 01111110) may be corrupted by a single 

error, causing the frame to merge with the following frame. 

(iii) An abort sequence is a series of eight consecutive l's, and 

may be caused by failure of the bit stuffing mechanism, as in (i). 

(iv) A bit may be lost if, in a sequence of the form 011101OXX a0 

is corrupted, causing an incorrect bit removal operation. 

(v) A bit may be gained if, in a sequence of the form 011111OXX a 

1 is corrupted., resulting in the bit removal not being carried out. 

The undetected error probability for case (i), is given as: - 

P(uncorrected error) - (n-32) . pt . 4.8x10'7 

due to false flags, where n is the block length, and pt is the 

transition probability for the assumed binary symmetric channel. For 

a bit error rate of 0.001, and a block length of 1023, the predicted 

residual error probability due to false flags would be 2x10'8. 

Reliability may be improved by the use of lower rate error 
detection codes; (n, n-32) is a common alternative to the (n, n-16) 

code used in most ARQ systems. The lower rate will of course result 
in a slight reduction in efficiency. Goodman and Farrell (ibid) 

describe an ARQ system for a high frequency radio channel, which 
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employed adaptive selection of an error detecting code to suit the 

prevailing channel conditions. The range of frame lengths and the 

type of channel used preclude comparison of their results, however 

it is interesting to note that they report that frame synchronization 

problems led to bursts of uncorrected errors. 

197 



5.9 Discussion 

This chapter discussed a number of ARQ and hybrid ARQ 

techniques, and considered the performance of four schemes under 

a range of channel conditions. The results showed consistent 

differences in performance between the error control schemes, 

providing some basis for the selection of an appropriate method for 

the test channels. In addition, an adaptive hybrid ARQ scheme was 

proposed, that showed good performance under simulated channel 

conditions. 

Ideally an error control scheme should provide high efficiency 

under zero error conditions, and low uncorrected error rate under 

poor channel conditions. The importance of the first criteria may be 

justified by Balcovic et al (1971) who found that between 20 and 50 

percent of calls in the A. T. & T. 1969-1970 network survey were 

error free. 

Two effects due to the channel error distribution were 

observed when comparing the performance of the ARCS schemes on 

the various channel models. The clustering of errors that occurred 

in the recorded data given by Lewis and Cox tended to give a larger 

number of error free blocks, and a higher density of errors within 

the errored frames than for the binary symmetric channel. This 

improved the performance of ARQ, and reduced the effectiveness of 

the forward error correction component of hybrid ARQ. 

The choice of code rate for a hybrid - ARQ scheme was 
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discussed in Section 5.6. For some known channel conditions it is 

possible to select an optimum code rate, however the channel 

conditions are generally not stable. The disadvantage of hybrid ARQ 

schemes employing fixed rate codes is the loss in efficiency during 

error free periods. 

An adaptive hybrid ARQ scheme was proposed in Section 5.7, 

which behaved well under a range of simulated test conditions. The 

scheme was compared to Go Back N ARQ, hybrid ARQ, ARQ with 

parity retransmission, and to Selective Repeat ARQ, and was found 

to give reasonable performance under both errored and error free 

conditions. On the random error (BSC) channel, the scheme 

performed very well, with an efficiency close to that of GBN ARQ at 

low error rates, and equal' to that of an equivalent Type I hybrid 

scheme at high error rates. 

The selection of code rate for the adaptive scheme still 

proved to be important, and should be investigated further. 

The choice of scheme depends on the degree to which the 

channel conditions are known, and on the allowable complexity. 

Simple Go Back N ARQ provides reasonable performance on burst 

error channels such as the telephone channel, as Burton and 

Sullivan (ibid) concluded, however substantial performance 

improvements may be made if an increase in complexity is 

acceptable. 

Selective Repeat ARQ provides better performance than Go 

Back N ARQ for channels with delay, and may be an acceptable 
technique given that the error rate is low. If the channel error rate 
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is substantial, with a bit error rate greater than 0.001 for example, 

hybrid Go Back N ARCS offers better performance. 

The adaptive hybrid ARQ scheme appears to give the promise 

of high efficiency under both low and high error conditions, and 

would be preferable to a scheme using a fixed rate forward error 

correcting code or parity retransmission. 

To summarize, the ARQ schemes that seem appropriate to the 

telephone channel are: - 

(i) Go Back N ARQ, when low complexity is a criteria. 

(ii) Selective Repeat, when channel delay is high, and the error 

rate is low or the errors occur in short bursts. 

(iii) Adaptive hybrid ARQ, when high efficiency is required under 

a range of error conditions. 
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6 SYSTEM DESIGN CONSIDERATIONS. 

6.1 Introduction. 

The objective of this study was to investigate the use of data 

compression and error control techniques in data communication 

systems for the telephone channel. The preceding chapters have 

examined these areas in some depth, and have suggested 

appropriate techniques. The aim of this chapter is to discuss some 

of the practical implementation considerations for a system 

employing both types of coding technique, and to provide some 

estimates of the system performance. 

The discussion of data compression schemes highlighted 

several problem areas, including the difficulty of designing a 

compression algorithm suitable for a source with unknown or time 

varying characteristics. Several adaptive codes were proposed in 

Chapter 3, with differing degrees of complexity and performance. 

In Chapters 4 and 5, error control techniques suitable for 

burst error channels such as the telephone channel were discussed. 

Three alternative automatic retransmission error control techniques 

were suggested, each more appropriate to some stated channel 

conditions. 

Figure 6. a may help to place the data compression and error 

control subsystems in context. A terminal provides a source of 

asynchronous characters, which are read into the error control/data 

compression system (the ECU), and are stripped of their 
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asynchronous framing elements and stored in a buffer. Characters 

are read from the buffer, compressed and passed into the ARQ stage. 

Frames from the ARQ transmitter are sent through the forward 

error correction code encoder (if applicable) and then to the 

modem transmit channel. The receive path follows the reverse 

order to the transmit channel, however an additional path is 

provided from the ARQ receiver to the ARQ transmitter for 

acknowledgements. 

More formally, the logical and procedural interface between 

two communicating systems is generally defined by a class of 

protocols. The protocols may include a number of elements or 

functions, including ARQ and data compression. For correct 

operation of the communications interface, both systems must 

interpret the information flow identically. However one of the 

principal problems in telecommunications has been the low degree 

to which interworking between communications equipment is 

possible. 

The International Standards Organisation (ISO) proposed a 

seven layer model, the Open Systems Interconnection (OSI) model, 

to introduce a framework for co-ordinating the development of data 

communications standards, and for placing existing standards in 

perspective, 

The OSI model has achieved general acceptance, and has 

been adopted by the CCITT as the X200 series recommendations. In 

addition most major companies involved in the development of data 

communications equipment have supported the introduction of the 

model. 
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The seven layers of the model are shown in Figure 6. b. Those 

of immediate interest to this study are layers one, two and six. Layer 

one, the physical level, is concerned with the electrical and 

mechanical aspects of transmission, and provides the means to 

transmit bits of data across a continuous communications path. Layer 

two, the data link layer, provides an error controlled path across a 

physical communications link, and may for example incorporate 

ARQ. Layer six, the presentation layer, incorporates more general 

data transformation functions, such as data compression and 

encryption. 

Figure 6. c illustrates how the error control and data 

compression system may be represented in terms of the OSI model. 
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Common functions, such as data 
compression and encryption 

User interface to network 

Ind to end transport of data 

Packet transmission and routing 

Provide error free data link 

Mechanical, electrical and 
procedural interface 

Figure 6. b The Open Systems Interconnection Model. 
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6.2 ARS Protocol Design. 

The ARQ techniques suggested in the last chapter were 

examined from the view of error control and transmission efficiency. 

In fact an ARQ protocol needs to provide more than simply error 

correction, as this section will show. 

When data first enters the communications system, it consists 

of discrete characters. These will be formed into a frame and 

transmitted, however some mechanism is necessary to delineate 

frame boundaries. 

The rate at which information is transmitted in an ARQ 

system is variable, and depends on the current error rate. Thus the 

source needs to be controlled in some way to avoid the loss of source 

symbols. This class of techniques is generally termed flow control. 

It is often necessary to accomodate some form of signalling 

between the two communicating systems. For example, end to end 

flow control, or exception signalling. An important application of 

inter-system signalling occurs during link establishment in which 

the two systems must agree on the protocols to be used. 

6.2.1 Frame Synchronization 

The function of frame synchronization is to delineate frame 

boundaries in order that each frame may be processed seperately. A 

specific bit pattern is included within the transmitted frame, which 

may be detected by the receiver. The pattern may be a short 
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sequence of bits, or may be distributed through the frame. 

One problem that occurs with this type of frame 

synchronization technique relates to the difficulty of preventing the 

synchronization pattern from occuring within the data field of the 

frame. This may of course be cured by not allowing the source to 

emit symbols which cause false synchronization, or by using a fixed 

length frame. It is however desirable to place few constraints on the 

manner in which the system is used. 

A common approach is byte oriented frame synchronization, 

as typified by the IBM BISYNC protocol. The frame is composed of a 

series of bytes or octets, the first two of which are synchronization 

characters. If a synchronization character appears within the 

information field of the frame, a defined control character DLE is 

inserted before it. The receiver may thus discriminate between true 

and false synchronization characters. 

The second common approach is bit oriented synchronization 

method used by IBM SDLC (Donnan ibid) and its derivatives, already 

mentioned in Section 5.8. This uses the bit sequence 01111110 as a 

synchronization pattern. If a sequence of five i's is detected in the 

frame prior to transmission, a0 is inserted. The receiver may detect 

the start of a frame by testing the input bit stream for the 

synchronization pattern, but also reverses the bit stuffing procedure 

by removing any 0 preceded by five 1's. 

The frame synchronization techniques work well in practice, 

as shown by the popularity of the protocols, but are susceptible to 

errors. In Section 5.8 the effects of errors on the SDLC approach 

was discussed. 
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6.2.2 Flow Control 

Flow control is necessary to provide a mechanism for 

regulating the transmission rate of various elements of a 

communications link to prevent congestion or loss of data (Ahuja 

1985). On the simple point to point link under consideration three 

flow control procedures are needed for each direction of 

transmission. 

(i) To control the flow of däta from the terminal into the error 

control system, to prevent data from the terminal being lost 

whilst the error control system is retransmitting frames. 

(ii) To control the flow of data from the error control system 

into the terminal. This would be applied by the terminal to 

prevent for example, loss of data whilst performing other tasks, 

or applied by the user of a terminal to prevent the screen 

contents from scrolling whilst it is read. 

(üi) To control the flow of data across the channel, to prevent 

the receiver from running out of buffer capacity whilst the far 

end terminal is applying flow control as in (ii). 

Flow control across the terminal / error control system 
interface is usually accomodated by one of two techniques RTS/CTS 

or X-ON/ X-OFF. The first technique makes use of the control lines 
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on the interface, RTS/CTS for the EIA RS232 definition of the 

interface, and circuits 105 and 106 within the CCITT V24 

recommendation. The second technique is an in-band method, 

which employs two ASCII control characters to turn on and turn off 

the data flow. 

Flow control across the channel is implemented in two ways, 

explicit control signals and the use of the frame number window. 

The first of these is simple, a control message is sent to 

indicate that no further data frames may be accepted, and a further 

control frame used to indicate that data flow may be resumed. In the 

SDLC protocol the two frames are termed RNR (receive not ready) 

and RR. 

Information frames are numbered to allow retransmission 

requests to be made. The number is a fixed width binary field, and 

hence is incremented modulo M, where M depends on the field 

width. Within this number range a window may be defined, and the 

transmitter programmed to send frames only whilst no 

unacknowledged frames exist with sequence numbers outside the 

window. For example modulo 8 numbering may be used, with a 

window of 4. The transmitter may send four frames, but cannot send 

any more until an acknowledgement is received for at least one of 

the transmitted frames. 
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6.2.3 In Band Signalling 

Some examples of in-band signalling have already been given, 

the RR and RNR flow control frames of the preceding section. Other 

control frames may be needed for exception signalling. The most 

obvious example of exception signalling is the break signal, which is 

often used in terminal applications to escape from some 

catastrophic situation. The CCITT recommendation X. 3 defines 

several alternative actions that could be taken as a result of receiving 

a break from a terminal, including sending an interrupt frame or a 

indication of break frame. The principal point is that the break key 

on a terminal does not produce an ASCII character, and hence would 

not normally result in an 'indication being transmitted across an 

ARQ link. 

6.2.4 Link Establishment and Clearing 

The link establishment phase of the communications cycle 

has two functions, firstly to allow both of the communicating systems 

to move from the disconnected to the information transfer state, 

and secondly to permit the negotiation of parameters such as 

window size, and maximum frame size. The clearing or disconnect 

phase permits both systems to establish that no further information 

is to be sent, and then to clear down the link. 

Within the HDLC protocol (Davies 1979), the SABM (set 

asynchronous balanced mode) control frame may be used to initiate 
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link establishment, UA (unnumbered acknowledgement) is used to 

confirm. Parameter negotiation may be accomodated with the XID 

(exchange identification) frame. 

6.2.5 Transmission Efficiency 

The system transmission efficiency will depend on a number 

of factors, of which only some were considered in the preceding two 

chapters. The finite frame sequence numbering, and the use of 

windowing for flow control will reduce the efficiency of the ARQ 

system. The effects will depend on channel delay and on frame 

length. If short frames are sent on a channel with moderate delay 

the transmitter will spend a considerable proportion of the time 

waiting for acknowedgements. 

The analysis of the transmission efficiency of ARQ protocols 

using queueing theory rather than the approach taken in Chapter 5. 

allows the effects of window size and random distributions of frame 

lengths to be accomodated. Reiser (1979), Konheim (1980), Bux et 

al (1980), Agnostou (1984) and Hayes (1985) have applied this 

approach to ARQ protocols. 

The ARQ system may be modelled by a set of queues (Figure 

6. d). The transmitter is represented as a queue with service time 

1/µl, which feeds M branches, where M is the window width. Each 

branch may hold only one frame at a time, and is made up of three 

service times, the round trip delay T, and the delay until an 

acknowledgement Js sent 1192, Labetoulle and Pujolle (1981) 
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compared analytic results obtained using this approach with a 

simulation of the HDLC protocol, and obtained reasonable 

correspondence. 

1/µ lJT 
Ilh/2ft/lt2I branch 1 

window 
width 

T u119 2 u1/µ 21 branch m 

Figure 6. d Modelling an ARQ system with queues, to 
allow the effects of window size to be incorporated. 
(Hayes 1984). 

The transmission efficiency of ARQ when used over a 

synchronous channel is enhanced by the gain made in reframing 

asynchronous characters. Typically an asynchronous character has 

seven data bits, one parity bit, one start bit and one or two stop bits. 

This format may be reconstructed at the receiver prior to onward 

transmission to the remote terminal. The effective gain is therefore 

forty to fifty percent, prior to transmission. The preceding chapter 

showed that transmission efficiencies of 0.6 to 0.95 were achievable 

under a wide variety of channel conditions, hence the likely overall 

transmission efficiency is between 0.8 and 1.4. The implication is 

that under good conditions the bit rate between terminal and error 

control system may be higher than the channel bit rate, even 

without data compression. 
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6.3 Integrating Data Compression into the Protocol 

6.3.1 Adaptive Data Compression Algorithms. 

Several alternative data compression schemes were proposed 

in Chapter 3, with varying degrees of complexity and coding gain. 

The choice of technique depends on the application, the memory 

and processing requirements, and the transmission speed. 

The simplest scheme suggested used a simplified Huffman 

code with codeword lengths of 4 and 8 bits. The average encoded 

symbol length for the sample data employed was between 5 and 6 

bits, although better performance may be obtained if the data is 

suitable for run length encoding. The encoder and decoder may be 

realised in software, without placing an undue burden on a standard 

microprocessor, and only require approximately two hundred bytes 

of memory each. 

The more powerful compression algorithm discussed was 

based on the Ziv-Lempel technique. This provides substantially 
better performance, the average length found in tests was between 

2.5 and 4 bits per encoded symbol. The additional performance was 

obtained at the expense of an increase in the memory capacity 

needed at both transmitter and receiver. 

An implementation of the algorithm was proposed that was 
economical in both memory and processing requirements compared 
to other known implementations. The encoder and decoder may be 
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simply realised in software, but require up to 20 kilobytes of 

memory for the encoder and 28 kilobytes for the decoder. Less 

memory may be used at the expense of some slight degradation in 

performance. 

6.3.2 Interaction with ARQ Protocol 

0 Two significant problems arise when implementing a 

combined data compression and error control scheme, firstly the 

risk of uncorrected errors causing loss of synchronization of the 

source coder and decoder, and secondly the processing overhead 

introduced by the data compression sub-system. 

The effects of uncorrected errors on adaptive data 

compression systems was discussed in Section 3.4. Errors will 

result in incorrect decoding of received codewords, and may 

possibly result in error extension. If the encoder and decoder are 

not in synchronism some mechanism is needed to prevent 
indefinite system misoperation. 

Variable length codes may be designed such that codeword 

synchronization will be recovered, although adaptive variable length 

codes would benefit only if the error did not result in a modification 

to the symbol frequency table. The Ziv-Lempel decoder has some 

limited error detection capability. At some given instant there will 

generally be some unused codewords, which if received by the 

decoder, may be regarded as indicating loss of dictionary integrity. 
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For either code, the corrective action would be the same, to 

reset both encoder and decoder to some starting condition. This 

leads to an interesting point; it is tempting to apply the 

compression algorithm to data prior to buffering in the transmitter, 

to save storage. If the source encoder is reset, the data held in 

encoded form in the buffer will be effectively lost. Hence it is 

desirable to hold data in uncompressed form. On the other hand, if 

the data is held in uncompressed form, the adaptive source encoder 

will have adapted to the latest transmitted data. If the ARQ system 

requires any retransmissions, it would be necessary to reconstruct 

the ARQ frames, which would require the source encoder to be reset 

to the state that it was in immediately after the last acknowledged 

frame was encoded. 

For example, an ARQ system sends frames 1... 16. Frame 5 is 

received in error, and a retransmission requested. Frame 13 is also 

corrupted but the errors not detected until frame 14 is decoded, 

hence the source decoder is assumed to have lost synchronization 

with the adaptive source encoder. 

(i) Data held in uncompressed form. 

When the retransmission request is received, frame 5 must be 

retransmitted. This requires the uncompressed data that was 

originally in frame 5 and subsequent frames to be re-encoded. 

However the source decoder has successfully decoded frame 4, 

and has adapted to the source statistics at the end of that frame. 

The source encoder will need to be reset to the equivalent state. 

When the request to reset the encoder, due to loss of 
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synchronization in frame 13 is received, the code table is set to 

the initial or default state, and the data re-encoded and 

transmitted. This may result in a small amount of corrupted data 

being sent to the remote terminal, however the recovery process 

is straightforward. 

(ii) Data held in compressed form. 

When the retransmission request is received, the encoded 

data is retransmitted, this presents no difficulty. When however 

the request to reset the encoder is received, the compressed 

data is effectively lost. 

One solution to the problem may be to store data in both 

compressed and uncompressed form, which would of course require 

more storage. The other alternative would be to assume that 

undetected errors are comparatively rare, and thus select option (ii). 

The framing imposed by the ARQ stage can be of some help. If 

a frame always contains an integral number of source code words, 

the source decoder has two additional safeguards. The first bit in a 

received ARQ frame is the first bit of a source code word, hence the 

decoder is realigned each frame. The last bit in a received frame is 

the last bit of a source code word, hence the source decoder can 

detect a proportion of the errors missed by the ARQ stage. If the 

source decoder does detect any residual errors, a reset message 

should be sent to the source encoder, to ensure that the encoder 

and decoder code tables are resynchrornized. 
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The data compression operations performed in the encoder 

and decoder fall into two classes, symbol related and housekeeping. 

The symbol related operations, such as encoding or decoding a 

symbol, occur regularly and may be designed to have little impact on 

the normal operation of the system. 

The housekeeping functions of an adaptive data compression 

system include dictionary or frequency table updating, purging or 

scaling, and are likely to impose an occasional but heavy burden on 

the processor. It is quite possible that the system may lose 

transmission efficiency because the processor is performing 

dictionary maintenance and is temporarily unable to handle normal 

traffic. 

6.4 Designing for Reliable Operation 

The potential problems with adaptive data compression 

systems due to errors causing loss of synchronization are the tip of a 

rather large iceberg. The general problem is that of two finite state 

machines communicating over a noisy link, each can never know the 

precise state of the other. To design a reliable system it is necessary 

to construct the finite state machines in such a manner that no 

disastrous system state is ever reached. The difficulty of this task 

may be illustrated by reference to Zafiropulo (1980) in which 

specific examples are given of communications protocols that were 

found to contain design errors after acceptance. 
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Modelling or formal description of protocols has been an area 

of active research for a number of years. The well known techniques 

are Petri nets ( Diaz 1982), and communicating finite state 

machines (Bochmann 1978, Milner 1980). 

The reliability of the protocol is as important as the reliability 

of the error detection mechanism. There is little point in providing 

an error correcting system that may itself introduce errors. If the 

protocol is designed in accordance with the OSI model, and formal 

verification techniques are applied to the mathematical model and 

the software implementation of the protocol, the reliability of the 

system can be improved. The present difficulty is that many of the 

necessary tools are still in an early stage of development. 
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6.5 System Realization. 

A number of options for the various system components have 

been given. This section will discuss the implementation of three 

systems 'A', 'B' and 'C', which represent realistic alternatives. The 'A' 

system is a low complexity moderate performance error control 

system, whilst the 'B' and 'C' systems offer higher performance at 

the expense of complexity. 

The terminal interface of the three systems is similar, and is 

shown in Figure 6. e. Data is read from the DTE port into a buffer. 

The buffer level is monitored, and if it exceeds a threshold level flow 

control is applied at the DTE port, to inhibit the flow of incoming 

data. An output buffer holds data received from the ARQ system, 

until ready for transmission. The buffer level is similarly monitored, 

but flow control is applied by requesting the ARQ stage to send 

in-band flow control messages to the remote system. 

The interface to the terminal must also handle break 

detection, although the ARQ stage would transmit an in-band control 

message to communicate the break to the remote terminal. 

The interface lines (EIA RS232 or CCITT V24) are used to 

indicate terminal and modem status, provide timing for synchronous 

data', and allow out-of-band flow control. 
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6.5.1 System A. 

The low complexity system uses simple Go Back N ARQ, with 

the 4/8 variable length adaptive source code described in Section 

3.3.1. (type (i)). The memory requirements are modest, and the 

processing within the capacity of an 8 bit microprocessor or 

microcontroller. 

Figure 6. c shows the general form of the system. Data is read 

from a terminal port (the DTE), through a source encoder into a 

buffer. The buffer level is monitored. and flow control applied to the 

DTE if the buffer level exceeds some given threshold. The data is 

stored in compressed form, hence the assumption is made that loss 

of source encoder/ decoder synchronization will not occur. 

When the ARQ transmitter has sent the current frame, it 

constructs the next frame as follows. The header is constructed. 

using a standard control field, into which is entered the next frame 

number and the number of the next expected received frame (i. e. 

the acknowledgement). The transmitter then reads data from the 

input buffer through the source encoder, and hence into a frame 

buffer. The amount of data read will be sufficient to fill the frame 

buffer to the current maximum frame length, or may be less if 

insufficient data is available in the input buffer. The frame is then 

transmitted. The transmitter maintains pointers to the buffer for 

each frame sent, indicating the start and end of the data field of the 

frame. 

The source code may be updated at the end of each frame, or 

after each character is encoded. The choice will depend on the 
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available processing time. 

The receiver accepts frames from the modem, delimited by 

the synchronization patterns and checks them for transmission 

errors. If errors are not-detected and the frame sequence number 

matches that expected, the receiver calculates the next expected 

received, and passes the frame contents through the source decoder 

to the output buffer. 
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6.5.2 System B. 

This more powerful example system uses the modified 

Ziv-Lempel compression technique described in Section 3.3.2., and 

the adaptive hybrid ARQ error control technique developed in 

Section 5.7.1. Figure 6. g shows the general form of system B, which 

is similar to system A in many respects. The memory requirement is 

substantially greater, typically 32 kilobytes of data storage, and the 

microprocessor would need to be a high performance 8/16 bit 

device. The forward error correction subsystem would ideally be an 

independent element, but could be implemented in either hardware 

or software (for example Sinha 1983). 

The data compression stage uses a dictionary with 2048 

entries, with a seperate dictionary for the transmit and receive 

channels. The dictionary used for encoding uses 5 bytes per entry, 

whilst that used for decoding uses 7 bytes per entry. The source 

alphabet may have characters of any size up to eight bits. 

The frame assembly process is similar to that in System A, but 

the dictionary will be updated for each string encoded. If the input 

buffer becomes empty during the encoding of a string, a timeout 

control character is appended to the string, and encoding 

terminated. 

The adaptive ARQ section contains an encoder and decoder, 

which may be switched in or out. The code used will depend heavily 

on the ease with which a decoder can be constructed, and on the 

225 



availability of suitable integrated circuit support. The code needs to 

be suitable for correcting the types of errors discussed in Section 

4.3.1., burst errors of the type produced by a modem modem. As the 

bursts will in general be sparse, a random error correcting code 

such as the BCH code used' for performance comparison in Chapter 

5 could be used. A number of integrated circuits suitable for 

decoding this type of code are being developed (Johnson 1983, Hsu 

1984). An interleaved single error correcting code could be used 

(Section 4.5.4), which would be simple to decode, in software or 

hardware, although would not achieve the same error correcting 

potential as the BCH code. 
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6.5.3 System C 

This system uses the modified Ziv-Lempel compression 

algorithm, as with system 'B', however the error control algorithm 

used is selective repeat ARQ. As discussed in Chapter 5, the 

selective repeat system requires more complex logic, and a 

substantial amount of memory at the receiver, but offers better 

performance on channels with low error rates and significant delay. 

The general system structure is shown in Figure 6. h . 

The main difference to' the preceding two systems is the 

addition of a set of receiver frame buffers. These are used to store 

frames received out of sequence, whilst waiting for rejected frames 

to be correctly received. 
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6.5.4- Expected Performance 

The performance of data compression depends heavily on the 

source characteristics, and that of ARQ on the channel error 

distribution. The performance estimates given below are based on a 

small subset of the range of source and channel conditions used in 

earlier chapters, and are intended to be illustrative rather than 

provide a definitive comparison. The system efficiency is based on 

the corresponding values calculated in sections 3 and 5 (tables 3. q 

and 5. p). 

The test conditions assumed are: - 

(i) Channel conditions 

(a) Error models 

-error free 

-Lewis and Cox data 

-Binary symmetric channel. 

(b) Channel delay 1000 or 5000 bits (end-end) 

(ii) Source, assumed 7 bit ASCII characters in 

10 bit asynchronous format. 

(a) Sample A from Section 3.3.1. 

(b) Sample FORTRAN2 from Section 3. 

(iii) Other assumptions. 

(a) Frame data field 875 bits 
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(b) Frame header 48 bits 

(c) No processing overhead 

(d) DTE continually supplies data. 

Table 6. j shows that for the sample conditions given, the 

performance of system B is substantially better than that of system A. 

The ratio of input data rate to channel data rate, a measure of the 

gain of the system, is between 30 and 180 percent higher for system 

B than for system A. System C, employing selective repeat ARQ is 

slightly less efficient than system B under error conditions, but 

would be more effective if the channel delay were larger. 

An example of the effective transmission speed for the three 

systems, when with a 2400 bit/s modem, is shown in Table 6. k. This 

essentially repeats the information in the preceding table. but 

illustrates the end result. 
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Source Channel Efficiency 

type type System A System B System C 

Delay 1000 bits: 

'A' no errors 1.66 3.86 3.86 

'F2' no errors 1.60 2.09 2.09 

'A' errored 1.34 3.25 3.13 

'F2' errored 1.08 1.76 1.69 

Delay 5000 bits: 

'A' no errors 1.66 3.86 3.86 

'F2' no errors 1.60 2.09 2.09 

'A' errored 0.79 2.84 3.13 

'F2' errored 0.76 1.54 1.70 

Table 6. j Ratio of input data rate to channel data rate, for complete 

error control/ data compression system. Error free and Lewis and 

Cox error distributions. 
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Source Channel Effective transmission speed (kilobits/sec) 

type type System A System B System C 

Delay 1000 bits: 

'A' no errors 4.0 9.3 9.3 

'F2' no errors 3.8 5.0 5.0 

'A' errored 3.2 7.8 7.5 

'F2' errored 2.6 4.2 4.0 

Delay 5000 bits: 

'A' no errors 4.0 9.3 9.3 

'F2' no errors 3.8 5.0 5.0 

'A' errored 1.9 6.8 7.5 

'F2' errored 1.8 3.7 4.1 

Table 6. k Effective transmission speed of the complete error control 

/data compression system, for a nominal channel (modem) bit rate 

of 2.4 kilobits/s. Error free and Lewis and Cox error distributions. 
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The expected system performance on the binary symmetric 

channel is shown in figures 6. m(i) and (ii) for source A. and figures 

6. n(1) and (ii) for source FORTRAN2. 

In Figure 6. m(i) the transmission rate for system A is 

approximately 4 kilobits per second at low error rates, falling below 

2400 bits per second at a bit error rate of approximately 0.0002. 

Systems B and C have a transmission rate of over 9 kilobits per 

second at low error rates. System B sustains a throughput of over 8 

kilobits for bit error rates of up to 0.01, whilst system C performs 

poorly at bit error rates in excess of 0.001. 

The effects of delay may be seen in Figure 6. m(ii), in which 

the channel delay has been increased to 5000 bits (approximately 

two seconds at 2400 bits/s). The performance of selective repeat 
(system C) is unaffected, whilst systems A and B show some loss in 

throughput. System B is still the most effective at high error rates, 

although the throughput in the valley at a bit error rate of 0.0001 has 

dropped to around 7 kilobits per second. 

The performance of systems A to C on the FORTRAN sample, 

shown in Figure 6. n(i) is not as impressive as the preceding 

example. Although systems B and C do achieve higher throughput 

than the simpler system A. at low error rates the improvement is 

only 25 percent. The results for a delay of 5000 bits shown in Figure 

6. n(ii) indicate, as before, a small loss in throughput for systems A 

and B. 
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In the examples given above, system 'B', with the modified 

Ziv-Lempel compression algorithm and adaptive hybrid ARQ 

scheme, performs well. The FORTRAN sample used as one of the 

data sources was selected on the basis that it resulted in poor 

performance of the Ziv-Lempel compression algorithm in the tests 

of Chapter 3. It is expected that the system throughput would be 

generally between the results of Figure 6. m and 6. n, and could well 

be higher. 
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6.6 Summary and Discussion 

This chapter has examined some of the issues involved in 

combining the data compression and error control techniques 

identified in Chapters 3 and. 5 to form a system. The Open Systems 

Interconnection concept was reviewed, and the error control 

system defined in terms of this established protocol model. This 

was followed by a discussion of frame synchronization, flow control, 

signalling, and link establishment. 

Section 6.3 considered the problems involved in 

incorporating adaptive data compression into the error control 

system: the possibility of loss of source decoder synchronization 

must be considered carefully. 

The need for verification of communications protocols was 

briefly discussed in Section 6.4. Whilst not within the scope of this 

study, this subject forms a vital part of the protocol design process. 

Three complete systems were described, and their 

performance compared. The most effective appears to be that 

employing the modified Ziv-Lempel compression algorithm and the 

adaptive hybrid ARQ error control scheme. The performance of this 

system under the test conditions indicates that the effective 

transmission rate of the terminal may be up to four times the 

modem transmission rate. The compression achieved by the 

Ziv-Lempel algorithm is not limited in the way that a Huffman code 

would be, and the effective system performance may well be far 

better than the results would indicate. 
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In addition to the transmission efficiency of the systems, 

there are other more subjective criteria by which they may be 

compared. If used in an interactive terminal application, the 

efficiency of the system would not be as noticeable to the user as the 

delay, or the irregularity in the data flow. For example, if text 

appears on the terminal screen at high speed but in a jerky fashion, 

this is likely to be more disturbing to the user than a slower but 

smoother flow of data. Barber and Lucas (1983) discuss the effects 

of system response time on terminal operators, but do not consider 

the effects described above. 

Within the present study, the effects of errors on the data 

flow have not been considered, the main performance parameter 

used was transmission efficiency. Hybrid ARQ may be less efficient 

than ARQ under conditions of low channel error rate, however this 

is due to the overhead imposed by the additional parity bits, not 

generally to retransmissions. The data flow produced by an ARQ 

system will be more irregular, as each retransmission may result in 

a temporary halt in output to the terminal. One possible measure of 

the irregularity of the data flow is the variance of the overall system 

delay. This could be calculated directly for properly defined channel 

models, but should be supported by both objective and subjective 

tests using real or simulated systems. 

239 



7. CONCLUSIONS. 

The objectives of the research project were to investigate the 

performance of data compression and error control techniques for 

use in an error control unit. The error control unit will be used to 

enhance the performance of a data communications link, established 

using high speed modems over the Public Switched Telephone 

Network. Throughout the research project, a 'realistic' approach 

was taken when considering performance and implementation 

issues. The data compression algorithms discussed were adaptive, 

and required little prior knowledge of the data source. The error 

control techniques were selected to give reasonable performance 

under a wide range of channel conditions. The practical problems of 

implementation were discussed at some length, for both the 

individual techniques and the overall system. 

Two data compression algorithms were given. one a very 

simple form of the Huffman code, and the other a modification of 

the Ziv-Lempel algorithm. The simple scheme offers reasonable 

compression, and is of low complexity, whilst the second algorithm 

provides very good performance but at the expense of complexity. 

The modification resulted in a reduction in the memory 

requirement of the Ziv-Lempel algorithm, with negligible effect on 

performance. 

The telephone channel is not sufficiently well known to 

enable one error control technique to be classed as optimum. A wide 

range of channel conditions were used to compare a number of 
different ARQ and hybrid ARQ error control schemes. Three 
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techniques were selected as candidates for the error control system 

of which two are existing ARQ protocols. The adaptive hybrid ARQ 

technique described in Chapter 5, gave excellent performance 

under both low and high error rate conditions. The choice of error 

control scheme will ultimately depend on the permissible 

complexity, however adaptive schemes seem particularly applicable 

to use on the telephone channel due to the non-stationary nature of 

the error distribution. 

System design considerations were discussed in Chapter 6, 

which was intended to place the data compression and error 

control schemes in context. Three system configurations were 

given, and their complexity and performance compared. That 

employing the modified Ziv-Lempel data compression algorithm and 

the adaptive hybrid ARQ scheme provided excellent performance, 

although Selective Repeat ARQ may be a better choice for channels 

with long delay. 

The project achieved the objectives; if, however, any one area 

of the work could have been extended further, the implementation 

of the forward error correcting code element of the adaptive hybrid 

ARQ scheme would have been considered in more. detail. 

Realistically, the encoder and decoder should be implemented in 

software, possibly with a little hardware support, which presents 

interesting problems when the transmission speed is considered. 
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S. Further Work. 

(i) Compression of synchronous data. 

Noiseless data compression schemes in general require that 

the data stream is split into identifiable symbols. On synchronous 

data streams however, the symbol boundaries are not defined, and in 

packet networks the symbol sizes may vary from packet to packet. In 

Section 3.3.3, it was shown that compression may still be achieved 

if arbitrary symbol sizes are assumed, although the assertion was not 

well supported by test data. There are many potential applications 

for data compression schemes which can operate under these 

conditions. 

(ii) Improvements to the Ziv Lempel algorithm. 

In Chapter 3 the Ziv Lempel compression algorithm was 

discussed, and a number of improvements proposed. The resulting 

modified algorithm used a relatively small amount of memory but 

achieved excellent compression. It was also shown that reasonable 

compression could be obtained with a small dictionary, of as little as 

512 entries. The improvement resulting from simple modifications 

to the basic algorithm suggests that further study of the algorithm 

should produce valuable results. Areas of particular interest are 

dictionary maintenance strategies, increasing the speed of adaption 

to a source, and improving tolerance to transmission errors. 

(iii) Integration of ARQ and data compression 

A fundamental problem with integrated ARC) / adaptive 
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data compression systems was discussed in Section 6.3.2., relating 

to the point at which the data compression is applied. If 

compression is applied immediately the data enters the system, loss 

of source encoder/decoder synchronization would result in the data 

being effectively lost. If compression is applied immediately prior to 

transmission, the source encoder may only be updated using 

information from acknowledged frames, which will slow the 

adaption process. Another alternative would be to store the data in 

compressed form, but to download the dictionary or code table to 

the decoder if synchronization is lost. This would take a 

considerable time for the Ziv Lempel source encoder, due to the size 

of the dictionary. This general problem needs further investigation, 

as it affects both the reliability and efficiency of the system. 

(iv) ARQ protocol reliability. 

In the immediate future, high speed modems will provide a 

valuable service for point-to-point links and gateways to packet 

networks. The SDLC/ HDLC/ X25/ X32 family of protocols is already 

widely used for public data networks and private wide area 

networks, despite some uncertainty concerning the reliability of the 

error detection methods used. A study of the error distribution 

produced by modern synchronous modems, for example those using 

V22, V26, V29, and V32/33, could form the basis of a detailed 

analysis of the error detection properties of the HDLC class of link 

level protocol, extending the work of Funk (1982) and others. 
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(v) Improvements to the adaptive hybrid ARQ scheme 

The adaptive hybrid ARQ scheme developed in Section 5.7 

has good performance under the test conditions applied. The 

method needs further development however, in several areas. The 

forward error correcting code used in the analysis of Section 5.7 was 

a shortened (1023,923) BCH code, however the comments made in 

Section (i) below, relating to decoder implementation, should be 

considered. A more extensive performance comparison should be 

made under a wider range of channel conditions, however this 

should be based on recorded channel error data if possible. 

(vi) Adaptive frame length allocation 

Section 5.5 briefly discussed the question of optimum frame 

length, and also a potential problem that may occur on channels 

with extended noisy periods (for example, either the telephone 

channel or a fading channel ). If during the error free period, the 

ARQ transmitter is sending long frames (which are more efficient 

under these conditions), and the channel then switches to a noisy 

state, the transmitter will retransmit the original frames. The long 

frames will have a low probability of successful transmission, and 

hence the ARQ system is effectively locked up until the errors cease. 

The. solution proposed was to retransmit the data rather than the 

frames, which implies that the retransmitted frames may be shorter 

than the original ones, and hence the probability of successful 

transmission improved. This is more likely to be useful on a fading 

channel than a simple burst error channel, due to the delays 

involved but is worthy of further consideration for the telephone 
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channel. 

(vii) Subjective measures of ARQ system performance 

In Section 6.6 a question was raised relating to the usefulness 

of transmission efficiency as a performance measure in interactive 

(terminal/computer) applications. The suggestion was made that 

the mean and the variance of the delay would be of more immediate 

relevance to the user, as these influence their perception of the 

operation of the system and could prove distracting. Hybrid ARQ 

schemes offer the promise of a reduced number of retransmissions 

and hence a more even data flow. This should be investigated 

further, but should be supported by experiments involving terminal 

users. 

(viii) Alternative hybrid ARQ systems. 

The assumption was made in Chapter 5 that the error 

correcting codeword consisted of the ARQ frame with additional 

parity bits. An alternative method would be to use an independent 

error correcting encoder/ decoder, i. e. one in which the codewords 

are not synchronized to the ARQ frames. This would simplify the 

design of the decoder but would render certain types of hybrid ARQ 

scheme difficult to implement (namely the adaptive scheme and the 

type II hybrid). The design of a variable rate encoder/ decoder able 

to support this type of operation would be an interesting area for 

development. 
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(ix) Software implementation of error correcting codes. 

One area of practical difficulty encountered in implementing 

the results of this study, centred on the software implementation of 

error control codes. Most of the established methods are ideally 

suited to hardware implementation, but do not lend themselves 

readily to the software approach. Whilst advances in programmable, 

semi- and full-custom integrated circuits are being made, several 

fundamental problems still exist, namely the price/volume ratio and 

the relatively high cost of memory in terms of gates per cell. For 

many medium volume applications, the use of single chip 

microcomputers or micro controllers is preferred, giving greater 

flexibility and moderate cost, and permitting processor to be shared 

between the error correction function and other control functions. 

For many data communications systems, the development of error 

detecting and correcting codes suited to software implementation 

would be of considerable advantage. Such codes do exist, but the 

number of hardware implementable techniques is far greater. 
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Appendix B 

Extracts from the samples of data used for comparison of source 

codes. 

In each case sufficient text is given to give a fair impression of 

the nature of the sample. 

Sample Text 3L Entropy 4.504 Length 40598 characters 

Description - Technical paper 

The first problem to be solved is that of finding a common 

point of interaction between the scientist and the machine. The 

reason is simple. There is no point in the scientist talking to the 

machine about one thing and the machine thinking that he is talking 

about something else, or vice versa. 
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Sample Text2 Entropy 4.641 Length 44685 

Description: Documentation for software package. 

: CAPTURE LIVE IMAGE OR READ FROM DISK? R: 

I 

: PLEASE INPUT NAME OF SAVED FILE E. G. DM1: IMDAT : 

S 

If the user inputs the wrong reply then the IPL will prompt 

the user to input again, with the legal prompts shown to them. 

Sample Text3 Entropy 4.456 Length 13873 

Description: Technical document 

In Artificial Intelligence (A. I) and related work, test rigs and 

other development tools are essential. The problem is that by its 

nature, the details of the research cannot be specified in advance 

and hence neither can the facilities which it requires. 
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Sample Text4 Entropy 4.722 Length 48753 

Description: Technical document 

The concept of template matching has found wide 

acceptance in segmentation applications mainly due to the 

simplicity of the method. The template is an array designed to 

detect some invariant regional characteristic. Many people have 

suggested various templates for detecting points, lines, arcs, etc 

[10,30-341. 

Sample Text5 Entropy 4.019 Length 27198 

Description: Technical document (containing a fair proportion of 

pseudo-Pascal program description. 

Although any real time operating system should supply these 

facilities, execution of operating system functions should, in 

general, occupy only a small proportion of the processor time. For 

embedded system software, tasks will usually be created at system 

initialization, remain resident until system reset, and often (but not 

always) require a fixed resource allocation. 

B- 3 



Sample FORTRAN I Entropy 5.281 Length 5387 

Description: FORTRAN source code. 

WRITE(CON, 600) 

BEAD(CON, 650)MARGIN 

IF(MARGIN. EQ. O)MARGIN=8 

WRITE(CON, 670) 

READ (CON, 570)IDTIM, IDTIMP 

WRITE(CON, 590)IDTIM 

Sample FORTRAN2 Entropy 4.773 Length 1971 

Description : FORTRAN source code 

C INITIALISE EOF FLAG, CHARACTER COUNT(S) 

IEOF=O 

CHAR=O 

DO 50 I=1,130 

50 COUNT(I)=O 

C 

C READ RECORDS UNTIL EOF 

C 
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Sample Pascall Entropy 5.022 Length 7097 

Description: Pascal source code 

BEGIN (* PROCEDURE Correct *) 

Goodness := Dot(Vector, Rules[Chosen]); 

FORJ :=1 TO Noutputs DO 

IF (DecisionUl >= Goodness) AND 0 <> Chosen) THEN 

Rules(j] := Vret[Diff(Rules[j], Vector)]; 

Rules[Chosen] := Vret[Sum(Rules[j]. Vector)]; 

END; (* PROCEDURE Correct I 

Sample Pascal2 Entropy 4.420 Length 8656 

Description: Pascal source code 

length: =length-1; 

UNTIL (length=0) OR (buflen=8); 

IF buflen=8 THEN buffull: =TRUE ELSE buffull: =FALSE; 

END; {of bitpak) 
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Sample Prolog Entropy 4.747 Length 7218 

Description: Prolog source code. 

add: -write('unknown feature... please check word list '), nl 

retractall(feature(J), retractall(featurelist(, ). 

current: -context(X), entry(X, L), nl, write(X), nl, write(L), showmenu. 

Sample Numbers Entropy 3.988 Length 2736 

Description: Tables of decimal numbers 

1 1.112 1.157 

2 1.148 1.111 

3 1.302 1.269 

4 1.157 1.135 

Mean length 1.176 

1.232 1.176 

1.188 1.134 

1.089 1.286 

1.203 1.118 

std. dev 0.066 

Sample Image Entropy 4.734 Length 65664 

Description: This was a grey level close-up image of the surface of a 

road. The sample was quantised to 7 bits. 
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Samples of text used for testing adaptive codes: 

Sample type 1 Upper case text. 

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG 

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG 

Sample type 2 Mixed upper and lower case text 

27 MORE THAN ONE RECORD 

An attempt was made to read or write more than a single 

record in an encode or decode statement. 

Sample type 3 Numeric data 

. 000 1.2468 19.531 . 5363 39.063 -1.8771 58.594 

78.125 -29.4091 97.656-6.2786 117.188 -1.2692 136.719 

156.250 1.4597 175.781 . 5815 195.313 -2.1197 214.844 

234.375 -18.6578 253.906 -4.5225 2363.281 -21.6124 
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Appendix C. Derivation of ARQ Efficiency Equations. 

C. 1 Introduction 

The derivations given below are generally well known, except 

perhaps for those in C. 5 to C. 7, but are included for completeness. 

The general approach to calculating ARQ efficiency is based on the 

expression: - 

Efficiency = k-h I 
kT 

where k is the length of the frame (and equal to n in non 

hybrid ARC) schemes), h the number of additional bits required to 

construct an ARQ frame, and T the expected number of 

transmissions required to send a frame. 

The major difference between the efficiency equations given 

below is in T, the expected number of transmissions per frame. 

An important element in the Stop and Wait, and Go Back N 

equations is N. the delay between the transmission and 

acknowledgement of a frame. This consists of the forward channel 

propagation delay, the backward channel propagation delay, and the 

time taken for the receiver to completely read the frame and check 

for errors. If piggybacking is used to transport the 

acknowledgements, the delay will be greater (see for example Lai 

1982). 

Acknowledgement delay N=1+2 D/n frames 

(round trip) 
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where D is the end to end propagation delay of the channel, 

and n the frame length (both D and n in are in bits). 

The major assumptions made below are: - 

(i) The forward and return channel have the same propagation 

delay. 

(ii) An acknowledgement takes a negligibly small period of time 

to encode and decode. 

NO The return channel is error free. 

The block error probability is given in the form P(m>t, n), 

where n is the block length, t is the number of correctable errors 

and m the random variable denoting the number of errors within the 

block or frame. The expression PE will be used to denote P(m>O, n). 
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C. 2 Stop and Wait ARQ 

In the Stop and Wait scheme, the transmitter will send a 

frame, wait N frame intervals, and then either retransmit the frame 

or send the next in sequence. The expected number of frame 

intervals required to send one frame successfully is thus: - 

T= (1-PE)N+PE (1-PE)2N+PE2(1-PE)3N+... 

00 

=N (1-PE ). PE 
i=1 

=N 
(1-PE ) 

the efficiency is therefore 

E= 1k-h 1-PE I 
kN 

C- 3 



C. 3 Selective Repeat ARQ 

In the Selective Repeat scheme, the transmitter sends 

continuously and only retransmits rejected frames. The average 

number of transmissions required to send one frame is: - 

T=(1-PE)+PE (1-PE). 2+PE2 (1-PE). 3+.... 

00 

1 
1(1-RE )" E(i-1) t-1 

=1 
(1-PE ) 

the efficiency is therefore 

E= (k-h) (1-PE ) 
k 
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C. 4 Go Back N ARQ 

The Go Back N scheme is slightly less efficient than Selective 

Repeat as the transmitter retransmits a sequence of N frames when 

a reject is received. 

T= (1-PE) + (1+N)PE (1-PE) + (1+2N)PE 2(1-PE) +... 

00 
1: 

_ (i. N+1). (1-PE ). PE' 
1=0 

(1-PE) ( N-A-PE + 

(1-PE )2 (1-PE ) 

= N. PPE+ 1 
(1-PE ) 

the efficiency is therefore 

E= k-h 1 
k(1 +N. PE) 

(1-PE ) 
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C. 5 Type I Hybrid GBN ARQ 

The type I hybrid ARQ scheme employs an (n. k. t) forward 

error correcting code. This reduces the effective error rate, but also 

reduces the efficiency by the rate of the code. 

The expression for T is basically the same as that given in 

section C. 4, however PE is replaced by P(m>t, n). 

T=N. P(m>t. n) +1 
(1-P(m>t, n)) 

the efficiency is therefore 

E=k (k-h) 1 
nk (1 + N. P(m>t. n)) 

(1-P(m>t, n)) 

= Ik-h1 1 
n (1 + N. P(m>t. nl) 

(1-P(m>t. n)) 

If desired, the value of N may be increased to allow for 

decoding delay. 
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C. 6 Type II Hybrid GBN ARQ 

The type II hybrid, or parity retransmission ARC) is based on 

the principal that error correcting code parity is sent in the 

retransmitted frame instead of data. This has the advantages that no 

additional parity is sent with the first transmission, which improves 

efficiency under error free conditions, but if errors are present the 

system effectively employs a half rate code which is capable of 

correcting a large number of errors. 

The forward error correcting code is effectively a (2k, k, t) 

code, of which k data bits are sent in the first transmission, and k 

parity bits in the second. The effective number of transmissions is 

thus: - 

T= (1-PE) + (1+N). PE. (1-P(m>t. n)) + 

(1+2N). PE. P(m>t, n). (1-P(m>t, n)) + 

(1+3N). PE. P(m>t, n)2. (1-P(m>t, n)) +... 

Note that n= 2k in this case, as the effective block length of 
the FEC code is 2k. 

C- 7 



00 

T= (1-PE) + (iN+1). PE. (1-P(m>t, n)). P(m>t, n)(1-1) 

_ (1-PE) + PE (1-P(m>t, n))( N+1 
(1-P(m>t, n))2 (1-P(m>t, n)) 

=1+, N 
(1-P(m>t, n)) 

the efficiency is therefore 

E= (k-h) 1 
k (1 + N. PE 

(1-P(m>t, 2k)) 
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C. 7 Adaptive Zrpe I Hybrid GBN ARQ 

The adaptive hybrid scheme has some similarity to the parity 

retransmission scheme discussed above, in that the retransmission 

probability for the second and subsequent frames is less than that of 

the first. This is because the forward error correction element of the 

system is switched in when a retransmission request is received. 

The probability of a block being rejected depends on whether 

the block was encoded using the FEC code or not. The probability of 

a block being encoded (assuming that block errors are independent) 

is equivalent to the probability that the preceding c blocks are error 

free, where c is the number of frames that must be sent before the 

FEC code is switched out (the sustain factot). 

Pf=1-(1-PE)c 

The first transmission thus has a probability of success 
(i. e. no retransmission) of: - 

Pnr = (Pf. (1-P(m>t, n)) + (1-Pd. (1-PE) ) 

Note that the block length is k for uncoded frames and n for 

encoded frames, therefore PE = P(m>O, k) 

C- 9 



The expected number of transmissions is thus: - 

T= Pn. + (1+N). (1-Pnr). (1-P(m>t, n)) + 

(1+2N). (1-Pnr). P(m>t, n). (1-P(m>t, n)) +... 

00 

= Pnr + (iN+1). (1-Pnr). (1-P(m>t, n)). P(m>t, n)(i"1) 
i=1 

the next step follows C. 6 to give: - 

T=1+ 1-P N 
(1-P(m>t, n)) 

The expected frame length will be between k and n, as the 

uncoded frame has length k, and the encoded length n. Under the 

assumption given above in calculating Pf, the expected frame. length 

will be: - 

n' = Pf. n + (1-P1). k 

the efficiency is therefore: - 

E (k-h) 1 
(Pf. n+(1-Pf). k) (1 + (1-Pnr1, N 

(1-P(m>t, n)) 
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If 

Appendix D. Derivation of Optimum Frame Length Equations for 

ARQ. 

D. 1 Introduction 

The basic approach to calculating the optimum frame length 

is given by Chu (1974) and Morris (1979), although they give 

expressions in terms of wasted time rather than efficiency. The 

efficiency equation is differentiated with respect to block length, 

and the derivative set to zero. The optimum block length will be a 

root of the equation. 

It should be noted that the conditions stated in Appendix C 

apply, and that both PE and N are functions of the block length k. As 

PE = P(m>O, n) the derivative of PE depends on the channel model, 

and will therefore be denoted merely as: - 

IIPE' PE 
dk 

The derivative of N, the acknowledgement delay is easily found from 

the expression given in Appendix C Section C. 1. 

dN = 11-N) 
dk k 
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D. 2 Stop and Wait ARQ 

E=(k-h) 11=2E ) 
kN 

dE =( E)si k- + ! maid (J-PE ) 
dk *N dk kk dk N 

= )3 ( E) - 1k_h) ( EE' + (1-PE ). 1-N ) 
k2 NkNk. N2 

when the derivative is set to zero, 

k2 - k. (IN-11. (1-PZ 1+ h) - h. l --PE) =0 
N. PE' N. PE 

The optimum frame length for Stop and Wait ARQ is a root of 

this equation. For example, the optimum frame length for a binary 

symmetric channel, with the parameters PT=0.001, D=1000 bits, 

and a header length of 48 bits, may be determined from the above as 

783 bits. 
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D. 3 Selective Repeat ARQ 

E=(k-h) (1-PE) 
k 

dE _ (1-PE ). d 1k-h) + (k-h) j(1-PE ) 
dk dk kk dk 

JL(1-PE) + (k-hl PE' 
k2 k 

when the derivative is set to zero, 

k2 - k. h - h. (1-PZ) =0 
PE 

The optimum frame length for Selective Repeat ARQ is a root 

of this equation. Under the conditions given in D. 2, the optimum 

frame length would be 244 bits. 
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D, 4 Go Back N ARQ 

E= k-h 1 
k(1+, , PE ) 

(1-PE ) 

= k-h 1-PE-1 
k (1 + PE. (N-1) ) 

d= 1-PE 1 Sl Lk-h) + (k-h). d ( E_l. _ dk (1+PE. (N-1)) dk kk dk (1+PE. (N-1)) 

= 1-P_). fh + k. Pr . (N-1)) - (k-h1. k. N. PE 
k. (1 + PE. (N-1) )2 

when the derivative is set to zero, 

(1-PE )(h + k. PE. (N-1)) - (k-h). k. N. PE =0 

k2 - k( F£J1 )+ h) - h. 1-PE) =0 
N. PE' N. PE' 

The optimum frame length for Go Back N ARC) is a root of this 

expression. Under the conditions given in D. 2 the optimum frame 

length would be 287 bits. 
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