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ABSTRACT

The rapid expansion in the field of information technology in
recent years, has led to an increased awareness of the need for

efficient, reliable communications systems. Although digital
networks are being introduced, modems are widely used for
transmitting digital information over the Public Switched Telephone
Network (PSTN). This approach suffers from two drawbacks, limited
bandwidth and transmission errors. The objectives of this research
program were to investigate methods for compressing digital

information and for correcting transmission errors, to enhance the
performance of a voiceband modem.

The application of source coding to a modem based
communications system requires efficient compression and low
implementation complexity. The type of data transmitted is
unknown, hence the source encoder must adapt to the data during
transmission. The design and performance of a number of robust
source codes, in particular the problem of designing codes with
constrained maximum length is discussed, and a number of solutions
proposed. Adaptive variable length and string encoding techniques
are compared. The Ziv-Lempel encoding algorithm is investigated,
and a number of improvements suggested.

The distribution of transmission errors is affected by the type
of disturbance causing the errors, and the design of the modem. The
characteristics of PSTN transmission errors are discussed, and the
design of error control systems considered. A number of automatic
repeat request (ARQ) and hybrid error control schemes are
discussed, and their performance evaluated under a range of channel
conditions. The quality of a telephone channel is variable, and the

adaptive selection of frame length and code rate can result in a
performance improvement. The design of an adaptive hybrid ARQ
sch&m(ei Is discussed, and its performance compared to conventional
methods.

A number of practical design considerations are given. The

design of three source/channel coding systems is discussed, and
their performance compared.



Driginal Aspe ts of the Research Program

The research program, although containing a substantial

theoretical element, was essentially oriented towards a practical

goal. A major part of the work comprised comparative performance
analyses, and consideration of the practical implementation of

coding algorithms. An element of the work not discussed in this

thesis was the practical implementation of a communication system |
based on some of the ideas discussed below, involving both hardware
and software design. This practical work is reflected throughout the

thesis, with particular emphasis in Chapter 6 on system

implementation and design.
The elements of the work that are to the best of my
knowledge original are:-

. The quantitative discussion of the effects of concatenating

run length and variable length encoding. (Section 2.6)

. The extension to the work of Gilbert (1971) and Van Voorhis
(1974) in the development of constrained variable length
codes. (Section 3.2.2)

. The extension to the work of Faller (1974) and Gilbert (1978)

in the development of adaptive variable length codes, and

consideration of the performance of the codes on

non-stationary sources. (Section 3.3.1)




. Two modifications to the Ziv-Lempel (1976) compression
algorithm, space synchronization and an improved data structure/

dictionary maintenance technique. (Section 3.3.2)

. Consideration of the feasibility of compressing a synchronous

data stream, in which the symbol size is unknown. (Section 3.3.3)

- The qualitative discussion of the telephone channel error

distribution, and the effects of modems on the error patterns.

(Section 4.2, 4.3)

. The comparative performance analysis of ARQ and hybrid ARQ

error control schemes under a wide range of channel conditions.

(Sections 5.4-5.6)

. A specific adaptive hybrid ARQ scheme, and its performance

on random and burst channel models. (Section 5.7)

. The interaction of data compression and error control

elements of a communications system. (Section 6.3)

. The discussion of practical implications in the design of data
compression and error control schemes. (Sections 2.7, 3.4, 4.2.2,

5.4, 5.5, 5.8, 5.9, Chapter 6).
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Symbols and Abbreviations

Abbreviations

ARQ Automatic Repeat Request

BCH Bose, Chaudhuri, Hocquenghem error correcting code

BER Bit Error Rate

BISYNC Binary Synchronous Communications Protocol (IBM)

BLER Block Error Rate

BSC Binary Symmetric Channel

CCITT Comite Consultatif Internationale de
Telegraphique et Telephonique

DMS Discrete Memoryless Channel

EFS Error Free Seconds

FEC Forward Error Correction

GBN Go Back N (ARQ)

GF Galois Field

HDLC High-Level Data Link Control protocol (ISO)

HF High Frequency (radio channel)

\ff if and only if |

SO International Standards Organization

LZ Lempel-Ziv compression algorithm

OSI Open Systems Interconnection model

pdf probability density function

PSTN Public Switched Telephone Network

SDLC Synchronous Data Link Control protocol (IBML)

SR Selective Repeat ARQ b .

STN Switched Telephone Network

SW

Stop and Wait ARQ




VDU Visual Display Unit

VL Variable length (code)
wrt with respect to

ZL Ziv-Lempel (see LZ)
Symbols

The following symbols are generally in accordance with those in
common use in the field of information theory. Although this has

occasionally resulted in two definitions of the same symbol, this
causes no ambiguity when in context.

nC, The number of combinations of r objects from a set of n
D The radix of a code

D End to end channel delay (in bits)

d The distance of a codeword (e.g. Hamming distance)
d .. The minimum distance of a code

F(s) The s-th Fibonacci number

G The generator matrix of a linear block code

H The parity check matrix of a linear block code

H The entropy of a source

H, The entropy of the first extension of a source

H,(j) The conditional entropy of a source

h The size of header field in an ARQ frame

I The information content of symbol s,

I The information content of the symbol pair (s1.8)

I,() The conditional information content of symbol s,

k The number of information bits in an (n,k) codeword
L, The length of a source codeword

L The average length of a source code



con

Inax

The constrained maximum codeword length of a
variable length source code

The maximum codeword length of a variable length
source code

The marginal information content of a symbol
The number of symbols in a source alphabet

The acknowldgement delay of an ARQ system
(in frames)

The length of a linear block code codeword.

The transition probability of a binary symmetric
channel

The conditional probability of event j, given event i

The probability that a block of length n contains
more than m errors

The i-th symbol from a source

The number of errors correctable by an (n,k,t)
linear block code.



1 INTRODUCTION

1.1 Background to the Research Project

During the past thirty years the importance of data

communications to the business and scientific community has grown
tremendously. Many businesses are now heavily dependent on their
communications equipment to allow data to be transferred between
computers or to provide remote access to common resources. It is

theretfore highly desirable that data transfer may be accomplished

quickly, reliably, and at low cost.

A common medium of transmission is the Public Switched
Telephone Network, which provides voice grade communication
channels between virtually any two points in the world. A modem is
used to convert the digital signal to, or from, a fofm which is
compatible with the requirements of the voice channel in terms of
power level and spectrum (Figure 1l.a). Unfortunately, as the
telephone network was not designed as a carrier of data, the

modulated signal is subject to distortion and additive noise which

may result in errors in the reconstructed digital signal.
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Figure 1.a The use of modems for transmitting digital information

over the Public Switched Telephone Network



The detection and correction of transmission errors is an

essential part of a data communications system, hence methods for
accomplishing this have been the subject of intensive research for
many years. Error control techniques are based on the use of some
part of the available bandwidth for the transmission of additional
information, which means that the transmission time (and therefore

cost) are increased. To provide both reliable and efficient

communications requires careful design of the error control

function.

The efficiency of the communications system may be
enhanced by compression of the data prior to transmission. This
Iﬁust be a reversible process in order that the data can be
reconstructed without error by the receiver. Sometimes a low level
of distortion of the reconstructed signal can be tolerated in for
example, speech or image transmission. However, for the

transmission of digital information, the compression process should

be distortionless.

Figure 1.b shows a general block diagram of a communications
system incorporating error control and data compression. An
additional component, which is called in the diagram an error
control unit, is placed between the modem and rth’e computer or
terminal at each end of the link. This type of devicé 1Lsﬂavailable from
a number of different manufacturers. All use automatic repeat
request (ARQ)'erqr control, with ‘data compression to compensate

for the loss in channel capacity.
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Some commercial error control units offer an additional
multiplexing facility. For example, the Timeplex Datamizer provides
four multiplexed channels, using an adaptive Huffman code for data
compression, and ARQ for error control. Products offering only a
single channel capability are the DaCom Error Controller, Modular

Technology Interblaster, and others, mostly intended for use with

low speed modems.

The project involved an investigation of the use of data
compression and error control techniques for enhancing the

performance of modem based communications, and consideration of
the practical aspects of implementation. This was aimed at the

eventual development of new products with improved performance,

for an already competitive market.

1.2 Aims and objectives

The aims of the project were:-

(i) Data compression

To investigate the range of data compression techniques
appropriate to the application, and propose new or improved
methods. These techniques must be effective under realistic
conditions, i.e. compression should be achieved with as little

prior knowledge of the source data as possible. The complexity of



implementation was also very important, as the data compression
component must operate in real time, with a restricted memory

capacity.

(i) Error control
To investigate the use of error control with high speed voice

band modems. Although retransmission error control (ARQ) is
widely used in this type of application, more powerful hybrid
schemes incorporating forward error correction have been
developed in recent years. As with data compression, complexity

is an important consideration.

(iii) System integration and design
To place the data compression and error control components
in context within a system, to investigate methods of

implementation and examine any conflicting requirements.



1.3 Overview of the thesis

The general structure of the thesis follows Section 1.2,

discussing in turn data compression, error control, and system

design.

Data compression is discussed in Chapters 2 and 3, initially

for the ideal case in which the characteristics of the data source are

known, and then for the more realistic case of a partially known

sSource.

Hufiman coding, adaptive Huffman coding. and some variants
are examined, with emphasis on the problem of reducing the
maximum length of the codes. The more recent compression
algorithm of Ziv and Lempel is discussed and a number of
improvements proposed. In addition, data for which the symbol size
is unknown is shown to be compressible in some cases, using the

Ziv-Lempel compression algorithm; this has particular significance

in the compression of synchronous data.

Chapter 4 discusses telephone channel characteristics, and
error statistics and modelling. This is followed by a brief
introduction to error correction and detection coding.

In Chapter 5, a number of error control schemes based on
automatic repeat request (ARQ) are compared under a range of
channel conditions. These include hybrid ARQ, parity retransmission

and adaptive schemes. The choice of forward error correcting code

rate and frame length are discussed, and the reliability of the error



detection code considered.

System design, encompassing a range of practical
considerations, is discussed in Chapter 6. An ARQ protocol provides
more than simple error control; the additional features include
end-to-end signalling, flow control and signalling. Three alternative
systems are proposed, each appropriate to a particular application,

and their performance compared.

Finally, Chapters 7 and 8 give the conclusion of the thesis,

and some suggestions for further study.



2. SOURCE MODELS AND SOURCE CODING

2.1 Introduction.

The efficient use of channel capacity is of immediate interest

to users of data communications networks. A large wide area
network, for example, may incur line rental costs of over ten million
pounds per annum; the use of data compression can provide

improved throughput and hence a more cost effective service.

Although source coding techniques date from early in the
Nineteenth Century, recent developments in microprocessor
technology, coupled with a demand for high speed low cost data

transfer, have provided a new impetus to the development of

powerful data compression systems.

The theoretical foundations for source coding were laid by
Hartley (1928), and Shannon (1948). Hartley's paper entitled
"Transmission of Information" discussed a number of then current
issues in telegraphy, including the statement that the number of
code symbols (for example, bits) required to encode a source symbol
was proportional to the logarithm of the number of source symbols.
Although Morse and Vail (Bylanski 1980) had realized that an
improvement in efficiency could be obtained by using a variable
codeword size, and assigning short codewords to frequently

occurring characters, the nature of information and the performance

bounds for this type of coding were not known until the work of



Shannon in 1948.

The source coding techniques addressed in this and the next

chapter, are noiseless or distortionless, in that the encoding process
is reversible without error. In general, there is some relationship
between the instantaneous compression ratio or code rate, and the

distortion introduced by the coding scheme. Rate-distortion coding

attempts to achieve a constant code rate, allowing the distortion or
error to vary. In noiseless coding systems however, the code rate is

uncontrolled, which can lead to practical design problems such as

buffer overflow (Humblet 1981).

The design of the source code is based on knowledge of, or
assumptions about, the frequencies and ordering of the source
symbols constituting messages. This knowledge is represented in
the form of a mathematical model of the source. A number of source
models are used, some of which will be described in more detail in
Sections 2.2 and 2.4. For example, the discrete memoryless source
(DMS) model is based on the assumption that source symbols are
independently selected from some alphabet, the model parameters

are the occurrence probabilities of the symbols.

In practice there are often local relationships between
symbols within a message, for example "the" is a common group of
symbols used in English text. These relationships can be used to

advantage in a coding scheme, and several source models have been

devised to represent them.

The performance of the source encoder will obviously depend

on the correct choice of source model, and knowledge of the

parameters involved. If an inappropriate model is used, or if the

10



parameters are inaccurately known or unstable, the compression

achieved may be poor, in the extreme even expansion may result. In
this chapter an ideal situation will be assumed, i.e. a stable source for
which the parameters are known, the next chapter will consider the
more usual case, in which the source is inaccurately known and time

varying.

Although the following discussion is valid for codes based on

non-binary code symbol sets ( for example ternary ), binary codes
will be assumed. The term bits will therefore be used for binary

digits and for the binary unit of information, and unless otherwise

stated logarithms will be taken to base two.

The results in the following sections and in Chapter 3 were
obtained by computer simulation or implementation of the source
coding techniques, with a number of different sources. A sample

from each of the sources is given in Appendix B for reference.

11




2.2 The Discrete Memoryless Source.

The Discrete Memoryless Source (DMS) is the simplest and
most widely used model. It is assumed that the source emits symbols
selected at random from an alphabet, each choice being made

independently of any earlier selection. Associated with each source

symbol s is a probability P, which corresponds to the probability of

selection for the symbol.

It will be assumed for the moment that the probabilities {pg

Py, Py, - Py.; ) corresponding to the N symbols in the source

alphabet are known, and stationary. Hartley (1928) proposed a
logarithmic measure of information content, and hence of the

number of code symbols required to represent the source, but did

not consider the effects of unequal source symbol probabilities.
Shannon (1948) considered the case in which source symbols

do have associated probabilities, and . defined the information

content of a symbol, [;, and the average information content of the

source - the entropy H.

For each source symbol s,, the information carried by the

symbol is:-

I, =log( 1/ p; ) Dits

12




A measure of the average information per source symbol is the

source entropy:-

N-1
H= Z‘pJIJ

{=0

For any given message M, consisting of a sequence of k

symbols independently selected from the source alphabet, the total
information carried by the message is the sum of the information

carried by the symbols in the message. Thus for message M:-
M= (S, S, Scr Sgs e+ Syl

X

where a, b, ¢, d, .. x are in the range {0 .. N-1}, the probability that

message M will be generated is:-
P(M) = P(s,).P(sy).P(s).P(sy) ... P(s,)

and hence the information content of the message is:-

Il M) =log( 1/P(M) ) bits
= I( s, )+I( s, )+I( S. )+...+1( s ) bits

The average information per symbol contained in M is

13




therefore given by:-
I{ average ) = I( M) / k  bits per symbol

As k becomes large, then the average information per symbol
will approach the source entropy (as k tends to infinity, the relative

frequency of each symbol will by definition be given by the symbol
probability), and may be regarded as an estimate of the entropy. The
term sample entropy will be used to denote the estimate of the
source entropy, obtained under the assumption that the occurrence
frequencies of symbols within a message or sample are in direct

proportion to the symbol probabilities.

Table 2.a shows values for the sample entropy for a number of
sources. Most text samples have values of 4 to 4.5 bits per symbol,
whilst numeric data generally have a lower information content
(requiring usually eleven or twelve symbols rather than the 27 or
more needed for text). Executable computer program code usually

has a high information content, as a large number of symbols are

used with similar frequency.

14



Sample type Sample Entropy Comment
English text 4.03 bits per symbol Shannon(1951)
English text 4.16 bits per symbol Measured
Portuguese text 3.92 bits per symbol Manfrino(1969)

FORTRAN 5.29 bits per symbol Measured
ALGOL 5.58 bits per symbol Wells(1972)
Executable 5.80 bits per symbol Measured
code

Table 2.a Examples of sample entropy for various types of data.

Digram encoding, in which pairs of characters are

represented by codewords, is often used. Under the assumption that

the source is memoryless, the probability of some pair (s; s

occurring is given by the product Pi-Pj » and thus the information

content by:-

QJ=Q+§

The entropy of the digram source is twice that of the original

source, and the extended source alphabet contains N2 symbols.

15



2.3 Variable Length Codes.

A source encoder accepts symbols or sequences of symbols

from a source, and generates codewords. As no error can be allowed

in this application, the encoding must preserve the information
content of the message. For the discrete memoryless source, the

information content of a message and the source entropy have been
defined above. If the DMS model is assumed, then an ideal source
encoder would encode the message in a number of bits

corresponding to its information content (Shannon 1948].

The encoding process may accept variable length sequences

of symbols, outputting a fixed length codeword for each, or fixed
length sequences of source symbols, outputting a variable length

codeword for each symbol. The latter technique is usually termed

variable length coding.

A variable length encoder assigns a codeword of length Lj to

each symbol S, contained in the messaée. In a long ﬁlessage. or

series of messages, the source symbols s, would occur with a

frequency corresponding to the associated probabilities D - Thus the

average encoded symbol length would be the weighted sum of the

codeword lengths. This value is usually referred to as the average

length, L', of the code:-

N-1
L= ;pjlj

16



An ideal encoder would achieve an average length equivalent

to the source entropy, thus ideally:-

N-1 N-1
ve plh H,ijfj

to which a solution is Lj = IJ . As the information content of a symbol

may have non-integer values, this solution would require codewords

with fractional length. Shannon showed that this could be

circumvented by encoding groups of symbols, and hence that the

average length of a code could be made arbitrarily close to the

entropy.

The efficiency of a variable length code represents the degree

to which the average length of the code approaches the entropy:-

Efficiency = H
L!

The redundancy of a code is also used to measure performance:-

Redundancy = 1 - Efficiency

The source code must be uniquely decodable, which means
that an encoded message has a single unique possible interpretation.

It is also desirable that the codewords are constructed so that any

codeword may be decoded immediately it has been completely

17



received, i.e. instantaneously decodable.

A necessary condition (Abramson 1963) for a variable length

code to be instantaneously decodable is given by the Kraft
inequality:-

where D is the radix of the code, and L, is the length of

the i-th codeword.

Instantaneously decodable codes (w’one class of uniquely
decodable codes) within which lie prefix codes, suffix codes and
others. Prefix codes are one of tﬁe most important classes of variable
length code, and are defined by the prefix condition, which states

that no codeword may be a prefix of any other codeword.

The design of a variable length source code consists of finding
some set of codewords that meet the above criteria for decodability

and can achieve an average length close to the source entropy. There

may be additional design criteria, some of which will be discussed in

later sections.

Shannon (1948) described a method for code generation in

which a codeword is determined arithmetically using the following

algorithm:-

18



(i) Arrange the symbols in order of decreasing probability, so

that s, has the highest and sy_, the lowest probability.

(ii) Determine the cumulative probability P(<j) for each symbol

s,. 1.e. the sum of the probabilities p, for values of k from O to j.

(iii) The j-th codeword is given by the expansion as a binary

number of P(2j), the expansion being carried out to L places,

where L] is given by:-

I[<€§) < L, <1+ I(<j)

An equivalent method is described by Fano (1949), hence the

code is often referred to as the Shannon-Fano code.

An optimal prefix coding mﬁetﬂhod was given by Huffman
(1952), which is simple to implement, and generally achieves an
average leng£h very close to the entropy. The algorithm is generally
related to the construction of a code tree, in which each node has q

or less dependants, for a q-ary code. The method of construction is

as follows:-

(i) Merge the q symbols or nodes having the lowest

probabilities, to give a new node with a probability equal to

19



their sum.

(i) Repeat (i), until one node, the root, remains.

(iii) Assign code symbols arbitrarily to the branches of the tree;

codewords consist of the sequence of code symbols on the path

between root and source symbol.

The excellent performance of this source code is
demonstrated in Table 2.b. For one non-text, and four text samples
the symbol frequencies were measured, and a Huffman code
generated using the method given above. In every case the average

length of the Huffman code is very close to the sample entropy.

Sample Sample Average Efficiency

type entropy length
(bits) (bits)

Text 1 4.504 4.530 0.994
Text 2 4.641 4.670 0.994
Pascal 1 5.022 5.047 0.995

Numeric 1 3.988 4.049 0.985

Image 1 4.734 4.759 0.995

Table 2.b Comparison of average length of Huffman code with sample
entropy.
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2.4 Sources with memory.

Many real sources exhibit local dependence between message
symbols. Various models have been used to represent this class of
source, of which two will be considered. The first extends the
principles used for the memoryless source, and is derived from the

work of Shannon (1948, 1951), whilst the second model is based on

the more recent development by Lempel and Ziv (1976} of a

complexity measure for finite sequences.

The discrete memoryless source is defined in terms of the

probabilities p, .. py.; assigned to the symbols s, .. sy_;. The model
may be extended by considering the joint probabilities p,, and the
conditional probabilities p,(j) i.e. the probability of s; occurring given

that the preceding symbol was s;. The set of conditional probabilities

are equivalent to the transition probabilities of a Markov chain

(Bartlett 1978), and hence this model is often referred to as

Markovian.

The vector of symbol occurrence probabilities p, .. py.; Will,
for an ergodic source, be the stationary vector of the Markov chain. A

measure of the information carried by s, given that s, is the previous

symbol is I(j) which is defined as:-
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W) =1y - 4

since pLJ = pl . pl(])

and hence I, = I + Ij)

The joint entropy H,, measures the  average information

content of a digram source, whilst the conditional entropy H,(j)

measures the equivalent for a Markov source. These two entropies

are related by the expression:-

Hi;= H + H.(j)

For the memoryless source, it is assumed that py = p,(j). In

general however, the conditional probability p,(j) s more than P, due

to dependence between characters, and hence the conditional

information content I(j) will be less than I . If the information

content is reduced, the average code length may be shorter, hence

it is generally advantageous to design source codes based on this

type of model. The principal drawback is the larger number of

parameters, N2 rather than N.

Table 2.c shows the values obtained for information content

and conditional information content from a sample of English text,
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and illustrates the potential advantage of conditional encoding over

that discussed in Sections 2.2 and 2.3.

In the table, p;, gives the probability (in fact the observed
frequency) of the symbol pair (sl,sj). I, the information carried by the
second symbol s, if considered independently, and I(j) the

conditional information content of S;. The pair (t,h) for example, can

be encoded ideally in 5.39 bits; the second symbol h would be

encoded in 4.55 bits if the source were assumed memoryless, but in

1.63 bits if the code were based on the conditional probability, a
saving of 2.92 bits.

CharaCter pl,j Ij IiG)

pair (sl.sj) (bits) (bits)
(e, ) 0.0341 2.77 1.77
(,t) 0.0264 3.76 2.48
(t,h) 0.0239 4.55 1.63
(h,e) 0.0223 3.11 0.94
(s, ) 0.0197 2.77 1.57
(r,e) 0.0154 3.11 1.60

Table 2.c Comparison of independent and conditional information

content of characters from English text.
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Measured statistics have been published for a wide range of

source types. Shannon (1951) gave first, second and third order
conditional entropies for samples of English text. Barnard (1955)
gave first order letter entropies for English, French, German and

Spanish text. The entropy of Arabic was measured by Wanas (1976),
of Portuguese by Manfrino (1969), and of Malay by Tan (1981).

Equivalent statistics for a television image were published by

Schreiber (195606).

Table 2.d gives the first, second and third order entropies for
Arabic, English, and the television image, from the sources given

above. A point of interest is the obviously high correlation of adjacent

points in the television image, which results in fairly small increases
in entropy, with increasing order.

Table 2.e compares the sample entropy, the entropy per
symbol (the joint entropy represents two symbols), and the
conditional entropy. It can be seen that the joint entropy per symbol
is substantially less than the first order entropy, an average gain of
0.6 bits. The conditional sample entropy gains further, and achieves
an average improvement of 1.21 bits over the first order entropy.
The results indicate that an encoding scheme based on the

conditional probability should be more efficient than one based on

the symbol or digram probability.
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Sample entropy

1st 2nd 3rd order
bits per (1) (2) (3) symbols
Arabic 4.21 7.98 10.47
English 4.03 7.35 10.45
Television 4.39 6.30 7.80

signal

Table 2.d Sample entropy for source models based on py, Py i and

Pij k
Sample Sample entropy (per symbol)
1st order joint conditional
H Hi,j/ 2 H,(j)
Arabic 4.21 3.99 3.77
English 4.03 3.67 3.32
TV signal 4.39 3.15 1.91
Average 4.21 3.61 3.00

Table 2.e Comparison of conditional and joint sample entropy. -
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The source model may be based on conditional or joint
probabilities and, as shown above, it is generally advantageous to use
a higher order model. In the case of text and many types of sampled
analogue data, the context of a symbol is usually not of fixed size, as
this model assumes. It would seem therefore that an alternative

model, which allows a variable context size, would be more
appropriate.
Shannon (1951) discussed the use of a word based, rather

than letter based encoding for text. Estimates of the word entropy
for a sample of English text indicated that a word based source

encoder should achieve an average length of 2.1 to 2.6 bits per

letter. The encoding would map variable length sequences of source

symbols (words) onto variable length codewords.

One important class of source model which incorporates a
variable symbol context size, is known as fragment encoding or

variety generation (Cooper 1982, Yannakoudakis 1982). A fixed

number of equiprobable strings of symbols are found; as these are

equiprobable and hence have equal information content, they may be
efficiently encoded using codewords of equal length. The number of

fragments is generally selected to be some integer power of two, to

avoid loss due to the need to round up fractional codeword lengths.

For English text, typical fragments from a set of 256, are "in"

“the", "that", "atio", "with", and "ght". They consist of frequent

sections of words, and common words or groups of words. The main
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problem found with the model is the complexity of the process of

building the fragment set. Cooper (ibid) discusses several
approaches to set production, for example processing a large sample

of text to determine the occurrence frequencies of characters,

character pairs (digrams), triples (trigrams), up to some limit, and
then selecting the set from amongst these. For a 64 character

alphabet, there are 4,096 digrams, 262,144 trigrams, and

16,777,216 tetragrams; the processing involved is obviously not
trivial.

An alternative approach to source modelling devolves from
the approach to the measurement of sequence complexity suggested
by Lempel and Ziv (1976). The complexity of the sequence of source
symbols is evaluated with a simple learning machine, which scans
the sequence once, matching strings of symbols to those stored in
its memory, to which is appended any new string of symbols
encountered en route. The size, and rate.of growth of the compiled

vocabulary form the basis of the complexity measure.

The initial vocabulary of the machine consists of the source
alphabet; additional entries will be strings of two, three or more
symbols. In its simplest form, the machine finds the longest match

to the current subsequence of symbols, and then forms a new

vocabulary entry by appending the next symbol in the sequence to

the matched subsequence. This process has been termed

incremental parsing, and provides an automatic context gathering

method ideally suited to source modelling.
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2.5 Coding schemes for sources with memory.

Two classes of code, corresponding to the two types of source
model, are commonly used. The first extends the principles of
variable length coding, as described for the DMS, to the Markov

model, whilst the second group of coding techniques are applied to
fragment encoding.

In the preceding section it was shown that the use of
conditional and joint probabilities, rather than symbol probability,
offers some advantage in an ideal encoding. This leads to the use of

two alternative encoding methods:-

() Digram encoding, in which variable length codewords are

constructed (using Huffman's algorithm for example) using the

joint symbol probabilities Py -

(ii) Conditional encoding, in which variable length codewords

are constructed using the conditional symbol probabilities P(j).

As the joint symbol probability p;y consists of the product
P;-Py(i). the first symbol is encoded using approximately I bits, the

second with I(j) bits. This is less efficient than the conditional

encoding scheme, in which only the first symbol of the message is

encoded inefficiently, all succeeding symbols being encoded with
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I(j) bits (on average). Table 2.e showed that definite gains could be

made through the use of conditional encoding on a range of data
samples, and the same number of codewords are required to encode

a message using either joint or conditional schemes, it would

therefore seem preferable to use conditional encoding.

Lavelle (1981) proposed an adaptive variable length coding
scheme using conditional encoding. Results given for a text sample

indicate that a Huffman code based on a DMS model achieved an

average length of slightly below 5 bits per symbol, whereas the

adaptive conditional coding scheme gave an average length of less

than 3 bits per symbol.

The second type of source code, used for fragment or string
coding, aims to encode equiprobable sequences of symbols which,

having equal information content, may be encoded with equal
codeword length. In the discussion of this type of source model
(Section 2.4), the problem of context gathering was mentioned, and
the Lempel-Ziv complexity measure outlined. In fact, the complexity

measure provides the basis for a powerful family of source codes. In

Ziv and Lempel's 1977 paper "A Universal Algorithm for Sequential

Data Compression", the method is given.

The basic Ziv-Lempel encoder has a dictionary, in which each
entry has an associated index number. Initially the dictionary

contains only the basic alphabet of the source; during the encoding

process new dictionary entries are formed by appending single
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symbols to existing entries.
Let E(i,n) be a string of source symbols exactly matching the

dictionary entry with index i and length n, and let s; be the next

source symbol in the input sequence. Symbol s; is read and

appended to E(i,n), giving an extended string E(x,n+1). The

dictionary is searched and, if E(x,n+1) is matched with some entry

with index j, then with E(j,n+1) the next source symbol is read. It
E(x,n+1) is not found, the pair (i, s) is transmitted and the string
E(x,n+1) added to the dictionary.

For each transmitted pair (i, s, ), an average of n' symbols

(where n' is the average encoded string length) will be read from
the source, and the dictionary size increased by one. The

compression obtained is therefore:-

compression T+S
ratio n.s

where T is the number of bits required to identify a dictionary
entry, i.e. the logarithm of the dictionary size, and s is the number of
bits required to identify an uncompressed symbol.

Assuming fixed values for T and s, the rate of dictionary
growth with number of input symbols is equal to the compression

ratio. This algorithm will be discussed more fully in the next

chapter.
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2.6 Run Length Encoding.

This is a very widely used method of data compression, which
makes few assumptions about the nature of the source (Gottlieb
1975). It is assumed that the sequence of source symbols contains
runs of some symbols (i.e. subsequences containing only one type of

symbol repeated several or many times). The encoder outputs a
short, fixed length sequence of codewords corresponding to a

variable length input run, but otherwise does not affect the message

contents.

Various models have been proposed, which attempt to model
this type of source. For example, a Markov process having large

probabilities on the major diagonal of its transition matrix will
produce runs. As an alternative, a discrete distribution (for example

geometric or Poisson) may be used to directly specify the

probabilities of given run lengths occurring.

The encoding process may be of three types:-

(i) An explicit codeword for each run length.

(if) A codeword for certain run lengths. For simple encoding,

the lengths could be integer powers of two, although more
correctly the length distribution should be determined by the
probability distribution. This would be suitable for a binary

source which produces only runs of 0's and 1's.

(i) A single control character run, which is used to indicate
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that the following codeword is to be interpreted as a numerical

run length value. For example, "xxxoooax”" could be encoded as
("x",run,7). This method is more appropriate to data containing

occasional long runs, perhaps for the removal of trailing nulls or

spaces on computer files.

For short run lengths the first two methods are preferable,

although the three element method (iii) performs better for longer

sequences.

Run length encoding may be concatenated with other coding

schemes. For example the CCITT facsimile encoding standard T.6

specifies run length encoding followed by a modified (predefined)

Huffman code. Codewords are allocated to run lengths from O to 64,
and then in steps of 64 up to 1728. Any run length in the range O to
1728 can be encoded with, at most, two codewords.

Concatenation may increase the entropy of the message, both
by reducing the frequency of the symbols encoded, and the
introduction of the additional codewords needed. Table 2.f
illustrates the effect of run length encoding on the number of
symbols, sample entropy, and encoded message length for eight

samples. The sample Numbers illustrates the effect described above
particularly well, a large gain from run length encoding is offset by

an increase in entropy, resulting in a lower degree of overall

compression.

In general however, run length encoding is a simple and

practical compression method which may be concatenated with

other coding techniques.
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2.7 Discussion.

The preceding sections have introduced source modelling
and coding under certain assumptions. Firstly that the source is
known and stationary, secondly that the transmission channel is
error free, and thirdly that the complexity of the encoder/decoder
is not important. The first of these complications will be dealt with

in the next chapter, but the remaining issues are discussed below.

Three basic types of source model have been introduced, the

Discrete Memoryless Source, the Markov source, and the string
producing source (with particular reference to the Lempel-Ziv
complexity measure). Consideration of these different source models

showed how a number of different coding schemes could be

developed, and some idea of performance was given.

The Discrete Memoryless Source is. based on the occurrence
probabilities of the source symbols. Shannon (1948) showed that a
good source encoder could be designed for this class of source,

whilst Huffman (1952) developed an algorithm for generating an

optimum code.

Sources which exhibit dependence between symbols may be
modelled as Markov processes, which allows the design of more

efficient encoders than those based on the DMS. Two alternative
coding schemes based on the Markov model were examined, and it

was shown that the conditional probability formed the best basis for

code generation.
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Although Markov models achieve good performance for
sources with memory, ‘ the dependence between symbols in a
message is usually over a variable number of symbols. For example in
text, there is strong dependence between characters in words, the
word size however is not fixed. Variable to fixed encoding schemes

were discussed, and the Ziv-Lempel compression algorithm

introduced.

Another compression technique that is widely used is run
length encoding, in which repeated occurrences of some symbol are
replaced by a two or three codeword sequence. The method is

suitable for concatenation with other source codes, but there is

some degree of interaction.

Several important points have been omitted from the

discussion so far.

(i)Transmission errors.

Errors introduced between source encoder and

decoder will cause corruption of one or more decoded symbols.

For variable length encoders, if the transmitted and corrupted
codewords are of the same length, then only one symbol will be
affected. If however, the transmitted and corrupted codewords

are of different lengths, the decoder will lose synchronization

with the encoder, resulting in a series of incorrect output
symbols. Careful design can produce codes which will

resynchronize quickly, as discussed by Stiffler (1971) and
Ferguson and Rabinowitz (1984).
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Maxted and Robinson (1985) developed a finite state

model for the analysis of synchronization recovery for a variable

length code. They found that most codes do resynchronize
quite quickly after an error; for two different Huffman codes

generated for a 26 symbol English character source, recovery

occurred within three to seven symbols of an error. It is stated
that "one must work diligently to construct codes with a long
recovery span”, however an example of a poor code is given,

which took up to 62 symbols to resynchronize.

The conditional coding scheme proposed in Section
2.4 is likely to result in greater error extension, as the
decoding of each codeword is dependent on the correct
decoding of its predecessor. This is similar to the problem of
error propagation in pfedictive encoding systems, as discussed

by Maxemchuk (1979]).

Variable to fixed length codes, such as the string

encoding methods, are less susceptible to errors. Transmission
errors will result in the incorrect decoding of a single
codeword and, although this will result in the corresponding
string being corrupted, no loss of synchronization will occur.

Loss of synchronization could however occur if a bit were

inserted or deleted, due to timing instability in some part of

the transmission path. This would extend almost indefinitely,

whereas the variable length codes would resynchronize fairly

quickly.
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(ii) Complexity.

Although the performance of some coding schemes
may be excellent, the memory, hardware, or processing time
requirement may be excessive. A variable length code, designed

for a source with an N symbol alphabet, may require codewords

from 1 to (N-1) bits in length.

Software and hardware implementation of a variable

length encoder/decoder is not simple, due to the bit oriented

nature of the data. Wells (1972) discusses hardware

implementation of a Huffman encoder and decoder, whilst

Schwartz and Kallick (1964) give an algorithm for software

implementation.

For digram encoding, requiring N2 codewords, the

possible codeword length range is from 1 to (N%-1) bits, and it
becomes necessary to limit the maximum length of the code.
Garten (1985), Humblet (1981), Lavelle (1981) and Van
Voorhis (1974) discuss ways in which this can be
accomplished; these techniques will be further discussed in the
next chapter.

Variable to fixed length codes have some advantage, as
the processing tends to be character rather than bit oriented.
Other problems are encountered however, such as the need for
extensive memory capacity; for example, the scheme proposed

by Cleary and Witten (1984) required up to 1.4 megabytes of
‘ storage. In addition, the encoder performs a string matching

operation based on a dictionary search, which is generally

complex.
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A number of other codes exist, amongst which the most
prominent are arithmetic codes (Langdon 1984). These treat
codewords as binary fractional values, generated by successive
subdivision of the interval (0,1) using the cumulative probabilities of

the symbols. The perfofmance of these codes is bounded, as with

Huffman codes, by the entropy.

This chapter has considered some of the basic source coding
techniques and their background in information theory. Comparative

results have been given, and some of the practical problems

discussed. The next chapter will consider some of the more

practical issues, in particular the encoding of non-stationary sources.

38



3. CODING PARTIALLY KNOWN SOURCES.

3.1 Introduction.

Many of the practical problems associated with source coding

are related to the degree with which the source model matches the
actual source; hence the design of coding schemes which are well
behaved, for sources that are not, is of considerable importance.

Several features of real sources must be considered:-

(i) The source may not match any realizable model well enough

for a practical encoder/decoder to be designed.

(ii) The source model parameters are not known, and must be

estimated from previous messages.

(iii) The source may be non-stationary.

(iv) The source may only exist for a finite period of time, i.e.

produce a single output sequence.

Some of these points have been considered by Gilbert (1971),
who proposed a number of variable length coding techniques for
Inaccurately known sources. These and other techniques for

designing codes that are not sensitive to source instability are

discussed in Section 3.2.
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Non-stationary sources cannot usually be effectively

compressed using a static coding scheme. The use of an adaptive
encoder, which continuously estimates the source parameters and

hence maintains a near optimal code, is discussed in Section 3.3.

Faller (1974), for example, suggested an adaptive variable length

coding scheme, which is discussed together with the later method
of Gallager (1978).

The coding scheme of Ziv and Lempel (1977) is
inherently adaptive and, although more complex than the adaptive
variable length encoders, can usually achieve significantly better
performance. Other adaptive string encoding schemes have been

suggested (by Cleary and Witten, 1984 and others).

The main theme of this chapter is the selection of
practical sourcé coding techniques for partially known sources, i.e.
sources for which a model is known or assumed, but the model

parameters are unknown or inaccurate. Considerations such as

performance on non-stationary sources, memory requirements, and

ease of implementation will be discussed.
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3.2 Designing robust variable length codes.

If the symbol occurrence probabilities for the source are
known, an optimal code can be generated using Huffman's algorithm

(Section 2.3). If however, the probabilities are not precisely known,
the optimality of a code becomes difficult to measure. Some of the

characteristics of a robust code are low average length, small change
in average length with deviations in source symbol probability, and

an absence of transient effects which may cause buffer overflow.
In Section 2.3 it was stated that the length of a codeword
should ideally be close to the information content of the symbol

represented. For the Shannon-Fano code, the following relation

holds (by definition):-

Ix < Lx < Ix+1

In the case of a symbol with small probability, the
corresponding length will be large. A source of N symbols whose
probability follows a negative exponential distribution would, if
encoded using a Huffman code, result in a maximum codeword
length of (N-1) bits.

If the probabilities of the symbols are estimated from previous
(finite length) messages, the smaller values, which will generate
long codewords, will be less accurately known than the larger
probabilities. Some symbols may not have occurred in the samples

used for measurement, and will be represented as having zero
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probability (and a theoretically infinite codeword length).

Hamming (1980) discusses the effects of uncertainty in

source probabilities on Huffman code performance. A source with

known symbol probabilities p,, is used to generate a Huffman code

with corresponding codewords of length L,. The actual source has

symbol probabilities p,' . The average symbol length obtained is:-

N-1 N-1
L'=L +AL = ZLl.pl+ 2‘,14,.6l
=0 =0

where L is the average length of the code for the original source, and

€i=DPyr - Py

This is developed by Hamming to show that:-

AL = \lvariance of L, x variance of e,

hence showing that a larger variance of the codeword length

distribution will exacerbate the effects of errors in the estimates of

symbol probabilities.

A code may be made robust by limiting the maximum
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codeword length. This assists in several respects: the worst case
performance is limited by the predefined maximum length, the zero
frequency problem is circumvented, and the maximum length can
be selected to suit buffer or register widths (for example 16 bits), or
other hardware considerations (Garten 1985). Unfortunately, it is
fairly difficult to design codes with minimum average length subject

to a maximum length constraint. The solution has been formulated
as an integer programming problem by Karp (1961), although the
approach is computationally complex.

As an alternative, the maximum length may be reduced, but
not constrained. This does not provide the same level of security as
the former method, nor does it give a definite bound on buffer size,
beyond the trivial case ( of N-1 bits for an N symbol code ). The two
classes of technique will be considered separately, and the

compromise between average and maximum length examined.

3.2.1 Generating variable length codes with reduced maximum

length.

Huffman's algorithm can produce a number of different codes

for a given probability distribution, due to arbitrary decisions that are
made at certain stages. An improved algorithm was given by

Schwartz and Kallick (1964), which produces the Huffman code

with the minimum longest codeword length. The original algorithm,
given an ordered list of probabilities, repeatedly finds the lowest D

probabilities (where D is the code radix), merges them, and places
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the merged probability in order. Given a number of equal

probabilities, Huffman's algorithm gives no rule for selecting the
values to be merged. Schwartz and Kallick found that the minimum

longest codeword resulted if the following rules were applied:-

(i) Select probabilities from the bottom (low probability end) of

an equiprobable set.

(ii) Place merged probabilities above (at the higher probability

end of) any existing probabilities of equal value.

An alternative approach given by Gilbert (1971), is to modify
the source probability distribution. This may be carried out in several
ways, by merging two probability distributions, or by altering the
estimated distribution. Gilbert suggests that the source is regarded
as composite, and the overall distribution of symbol frequencies
calculated from the proportion of time spent .in each source state.
For example, the source may spend five percent of the time with a

uniform, and ninety five percent with a negative exponential

distribution.

The source may be modified without altering the entropy, by

assigning infinitesimal probabilities to those symbols with zero

frequency. As the product p.log(1/p) tends to zero with decreasing

P. the entropy will not be affected by the operation.

Table 3.a shows two different sets of Huffman codes, for four
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data samples. The first set of codes is generated using the basic
source probability distribution, whilst the second set is based on
modified distributions obtained using the method given above. The

reduction in maximum length obtained by the modification is

considerable, whilst no change in average length is observable.

Sample Huffman code performance
Using source PDF Using modified PDF
Average Maximum Average Maximum
length length length length
Text1l 4.53 61 4.53 21
Text2 4.67 63 4.67 20
Text3 4.48 73 4.48 21
Imagel 4,76 98 4.76 23

Table 3.a Average and maximum codeword lengths for Huffman

codes based on source and modified source probability distributions.

If upper and lower bounds can be given for the symbol
probabilities, a method given by Smith (1974) can be used to find a

code that minimizes the largest average codeword length for all
probability distributions within the bounds.
The code is designed using Huffman's algorithm on a modified

compromise probability distribution. The distribution is obtained

from the upper and lower bounds pY, p of the probability for each
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symbol s;:-

p, = Z if pk <Z < pY
— piL if plL 2> 7
— plU 1f plU < Z

where Z is determined from the condition that the p,'s must have a

sum of 1.

Humblet (1981) formulated an iterative algorithm to produce
a prefix code that minimizes the moment generating function of the

codeword length distribution. The algorithm of Huffman is modified

slightly, by introducing a scaling operation applied after each merge
step.

3.2.2 Variable length codes with constrained length.

If a length constraint, L, , can be applied to a variable length

code, the worst case performance is limited, the robustness

improved, and hardware or software implementation made easier.
Inevitably, the constraint can only be applied at the cost of increased

average length. A loose upper bound for the performance of a code of

this type is given by Gilbert (op cit), this is given as:-
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Upper bound on average length

LY <H + 1 + N 2(1-Leon)  (jog(N) - H)

The code may be generated in several ways, Karp's (ibid)
integer programming solution is not attractive due to the inherent

complexity of the algorithm, although an optimum solution will be

found. Some alternative approaches are:-

(i) modify the symbol probability distribution.

(i) use an iterative method such as dynamic programming.

(iii) use a standard codeword length distribution, assigning

codewords to symbols on the basis of symbol propability.

3.2.2.1 An approach based on a modified source pdf.

This method has been briefly examined in Section 3.2.1,
where it was shown that the replacement of zero frequencies by very
small values substantially reduced the maximum length of a Huffman
code without significant effect on the average length. If the

information content of the symbols with lowest probability is less
than or equal to the maximum allowable length ( L., ). it should be

possible to generate a code with average length close to the entropy,
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and maximum length equal to the constraint.

If some number m of the least probable symbols are selected,
such that the average information content of the m symbols is equal

to, or less than the constrained length, these may be encoded in at

most L. +1 bits. The entropy of this source is therefore:-

N-m-1

Hpy= z plog( 1) + m.P(av).log( 1_ ) .
=0 Pj P(av)

where the smallest m is selected such that

N-1
Plav) = 1 P(i}
m i=N-m
and log( 1 ) < L,
P(av)

If a Shannon-Fano code is generated on the modified

probability distribution, the maximum length obtained will be in the

range L., to (L +1), as the length of a codeword is within one

n con

bit of the information content. For a Huffman code, an upper bound

to the maximum codeword length (for the symbol with the

minimum probability p_,,, ) is given by Katona and Nemetz (1976);

the maximum length is bounded by s-1 where:-

1 S Pmin < L
F(s+1) F(s)

where F(s) denotes the s-th Fibonacci number, generated from the
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relation F(1)=1, F(2)=1, F(s)=F(s-1)+F(s-2), (Hardy 1938).

This method does not guarantee that the maximum codeword

will be L although it does constrain the codeword length to

con °*

within some known bound. Ideally however, a code is required that
has no codeword longer than L. .. . An iterative approach may be

used, in which the value of m is successively increased, and a code
generated, until the value L_ , is not exceeded. Although the

number of iterations is likely to be small, the repeated code

generation will be computationally expensive.

3.2.2.2 An iterative approach.

Integer programming, as suggested by Karp (ibid), will
produce an optimum code, i.e. a code with a minimal average length
subject to a length constraint. However the complexity of integer
programming, even with the branch and bound method of solution,
is known to be high. An alternative approach, similar to the method
suggested by Van Voorhis (1974), is to use dynamic programming

(Cooper 1981).

The code generation process may be implemented in an
iterative fashion, at each stage optimizing a single variable subject to

the given constraints. The variable in this instance is the number of
codewords of some given length, which are selected to give a

minimum average code length, subject to the maximum length
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constraint and the Kraft inequality (sect 2.3)

‘The probabilities of the symbols s, are arranged in decreasing

order. The initial codeword length is set to one bit, and the
following procedure used repeatedly until all symbols have been

assigned codewords.

() Select the number of codewords of length i bits, n;, to

minimise the expected average length L”, subject to (ii); given

that the j symbols already assigned codewords are encoded
using the allocated codeword lengths, the n, codewords are

encoded in i bits, and unassigned symbols are encoded under

the assumption that they are equiprobable.

(ii) n; is constrained by two requirements, firstly that the Kraft

inequality is satisfied, and secondly that the number of bits

required to encode all remaining symbols must not be greater

than the given maximum length L__ .

(iii) Assign n, of the x; available codewords of length i bits, sct ]

to j+ n;, i to i+1 bits, and repeat (i).

The number of codewords available of length i bits is:-
X =2.(x, -0, )
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If n, codewords, of the x, available, are assigned, it is possible

to encode the (N - j - n) remaining symbols with codewords of

length i+r bits, where r is given by:-

2t . (xx-n)2(N-j-n)

this gives

r2log,( N-j-nj)
(%, - n)

Provided that (i+r) is not greater than the required maximum

length then the code will be able to satisfy the length constraint.

The optimizing function is the expected average length L". given

by:-
j+l’ll |
2 Pl + Z Py.(i+1)
k—-j k—j+ni
N-1 N-1
2 Pr-lye 2 Pl + Z Pi-T
k=j k=_|+n1

As the minimization procedure will take significant
processing time, a simple precondition may be added to check that
an optimal stage solution is likely. The test compares the marginal

information content of the y-th symbol (defined below), with the
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marginal information capacity of the x, available codewords.

Marginal information My = log,( Ry/ py) bits

content of y-th symbol

N-1
where Pg, is the sum fg, = 2 Pk
k=y

The marginal information carrying capacity

of an i bit codeword is:- M, = log,( x, ) bits

Attempt optimisation if M, < My' - 0

where ¢ is determined experimentally.
This method cannot be shown to provide an optimal solution
unless the problem can be classified as separable (Cooper op cit),

although it will be shown to provide reasonable performance.

3.2.2.3 A simple code with a fixed codeword length distribution.

An alternative technique, using a predetermined set of
codeword lengths, is extremely simple to implement. For example, a

code length set for a 128 symbol alphabet, satisfying the Kraft
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inequality is:-

length of codeword 4bits 8 bits

number of codewords 8 [ 120

To generate a code, it is necessary only to allocate the eight

most frequent symbols 4 bit codewords, and allow 8 bits for the
remaining symbols. Encoding consists of searching a short table,
each entry containing one of the eight most frequent characters, If
the current character is not found, it's binary equivalent (for
example ASCII code) is prefixed by a '0' and sent. If the character is
found in the table, the number of the entry prefixed by a 'l' is
transmitted. Decoding is even simpler, if the received codeword is
prefixed by 'O, the remainder of the codeword is the character
code; if the codeword is prefixed by 'l', the remainder of the

codeword forms an index to an equivalent table to that used by the

transmifter.

3.2.2.4 Performance comparison of the constrained VL codes.

Table 3.b shows the average lengths of codes with a maximum
length of 8 bits, generated using the three methods outlined above,
the iterative technique, a Huffman code generated on a constrained
source, and the simple 4/8 code. The average length obtained for
the different samples do not show that one of the methods is

markedly better than the others, however the iterative technique
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provides a more consistent performance. Table 3.c shows the

ranking of the three methods over all twelve samples, and supports

this conclusion.

Sample

Sample Constr. Iterative 4/8 bit
name. entropy. source. method. code.
Textl 4.504 5.680 5.3556 5.507
Text2 4.641 5.603 5.440 5.593
Text3 4.456 5.664 5.324 5.526
Text4 4,722 0.898 5.530 5.719
Textd 4.019 5.375 0.283 5.202
FORTRAN1 5.281 6.122 6.415
FORTRAN2 4.773 5.861 5.576 5.944
Pascall 5.022 5.690 5.799 0.938
Pascal2 4.420 5.344 0.471 5.602
Prolog 4,747 5.822 0.640 0.818
Numbers 3.988 5.355 5.142 5.246
Image 4.734 6.008 6.000 6.149

Table 3.b. Average length (bits) of three variable length codes with a
constrained maximum length of 8 bits.
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Number of occurrences of rank:

Ranking Constrained Iterative 4/8 fixed

source. method. structure.
1 2 9 1
2 3 3 6
3 7 O 5

Table 3.c. Summary of scores attained by coding schemes from Table

3.b

The performance of the iterative and fixed structure codes is
compared with that of a Huffman code in Tables 3.d to 3.f., for four
data samples of two different types. A code is generated on one
sample of data from the four, and used to encode all four samples.
This illustrates the tolerance of the code to minor (i.e. different
sample of the same type of source), and major (i.e. sample from a
different type of source) changes in source parameters. Table 3.g.
combines the results from Tables 3.d. to 3.f., and generally supports
the preceding discussion on robustness. The Huffman code achicves
best performance for sources of the same type, but worst
performance for sources of different types. The two robust coding
schemes, both with a constrained maximum length of eight bits, are
less efficient than the Huffman code for sources of the same type,

but are more tolerant to larger changes.

The performance difference between codes generated by the
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iterative (dynamic programming) method, and the simple fixed

structure code is not large, and the simplicity of code generation

and ease of handling four and eight bit codewords render the latter

attractive for small or fast systems.
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Pascal

FORTRAN

Code applied to sample
1 2 1 2

Code generated

on sample:

FORTRAN 1 0.65 0.61
FORTRAN 2 0.88 0.99 0.44 0.42
Pascal 1 0.71 0.71 0.99 0.94
Pascal 2 0.64 0.64 0.90 0.99

Table 3.d Efficiency of Huffman code when applied to sources other

than that used for code generation.

Code applied to sample FORTRAN

1 2 1 2
Code generated
on sample:
FORTRAN 1 0.87 0.79 0.72 0.64
FORTRAN 2 0.87 0.86 0.73 0.67
Pascal 1 0.69 0.64 0.87 0.77
Pascal 2 0.69 0.65 0.82 0.81

Table 3.e Efficiency of code generated using the iterative method,

when applied to sources other than that used for code generation.
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Code applied to sample FORTRAN Pascal

1 2 1
Code generated
on sample:
FORTRAN 1 0.82 0.75 0.74 0.69
FORTRAN 2 0.79 0.80 0.73 0.70
Pascal 1 0.69 0.64 0.85 0.76
Pascal 2 0.69 0.64 0.82 0.79

Table 3.f Efficiency of the 4/8 bit fixed structure code when applied

to sources other than that used for code generation.

Efficiency for source:-

Used to Same Different
Code type: generate code type type
Huffman 0.99 0.95 0.01
[terative method 0.85 0.83 0.68
Fixed structure 0.81 0.80 0.69

Table 3.g. Average value of efficiency of coding schemes for different

classes of source (from previous Tables).
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3.3 Adaptive Source Coding.

Although a robust code will perform well for slight variations
in source symbol probabilities, it will not provide acceptable
performance for gross source changes. The use of adaptive source

coding is practical for non-stationary sources, if the rate of change of

source model parameters is low.

In principle, adaptive coding is a logical extension of the
static coding schemes already discussed. A source model is defined,
and the parameters of the model estimated from observed data. A
code is generated, based on the model parameters. The parameters

are continually updated, and new codes generated at intervals. Thus

the code is maintained near to the optimum for the source model.

Many of the inherent problems of source coding are
exacerbated by the use of adaptive encoders. For example, a code
which is complex to construct may be practical for a static encoder,

but the processing overhead in periodically regenerating it may be

excessive, rendering the method impractical for an adaptive system.

Two types of adaptive source code will be discussed, the

adaptive variable length code, and the adaptive string (or variable to

fixed) code.
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3.3.1 Adaptive Variable length coding.

An adaptive variable length encoder consists of the basic

blocks shown below. Source symbols are read and encoded using a
current code. As the symbols are read from the source, they are used
to update a frequency table. In the case of a discrete memoryless

source model, the symbol frequencies are used to estimate the

symbol probabilities, whilst for a Markov model, the joint or

conditional probabilities are estimated.

Encoded
output
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Figure 3.h An adaptive source encoder

A number of variations are possible but complexity.
performance, rate of change of source characteristics, and other
practical design constraints need to be considered. Initially, two
designs proposed by Gallager (1978) and Faller (1974) will be

discussed, some alternative schemes will then be proposed, and the

design considerations outlined.
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k.

etz T

Gallagers adaptive Huffman encoder employed a

treeform of Huffman's algorithm. A node consists of the 6-tuple:-

= e e -
L

el P WP

e gl e—— ——

(i) pointer to parent node,

(i) O or 1 bit element of a codeword,
(iii) pointer to left dependent node,

(iv] cumulative frequency for left node,
(v) pointer to right dependent node,

(vi) cumulative frequency for right node

In addition, for each source symbol there is a pointer to the
node in which the symbol is represented, and a bit to indicate
whether the symbol is on the left or right hand branch. The total

storage required for the data structure, for N source symbols is:-

N.(1 word + 1 bit) + (N-1).(5 words + 2 bits)

For a 128 symbol alphabet, the storage required for a

reasonable representation of this structure (assuming 16 bit

addresses) would be 1654 bytes. For digram or conditional encoding

based on a 128 symbol alphabet, the memory requirement would be
114,683 words ( 32 bit words would be needed, giving 459 kilobytes

total requirement).

As a symbol is read from the source, the pointer associated

with the symbol is used to find the appropriate node, and the
left/right-hand bit used to determine which pointer/ frequency pair

to update. The frequency count is incremented, and then the

pointer to the parent used to propagate the count increase up the
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tree. The nodes are resorted into frequency order (the sum of left

and right hand frequencies), and paired. By the sibling property
(Gallager 1978), the resulting tree structure forms a Huffman tree,

and can be used to represent the corresponding Huffman code.

To prevent frequency counter overflow, and give a fairly fast
response to source changes, a scaling operation is periodically

applied to the measured frequencies. Gallager suggests that, every

M symbols, the frequencies are multiplied by a factor £, typically O.5.

The code in this case is updated once for every symbol

encoded, which results in a non-trivial processing requirement. For
a fairly stable source the code will change infrequently, and the

re-sorting steps will take little time.

Faller's (1974) encoding scheme is broadly similar to the later

method described above. The scaling operation, division by two, is
applied when the average length has increased on v occasions.
Faller gives results for four data samples, and for three values of v.
The average length, normalized to the static Huffman code
performance, taken over the four samples was calculated by Faller to
be 0.993, less than the average length of a static Huffman code on
the same data. An adaptive code may perform better than a static
code if a source sequence can be subdivided such that the average

subsequence sample entropy (weighted by the subsequence length),

is less than the entropy of the whole sample; or if the static code is

not optimal for the source.
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The fixed structure 4/8 code may also be used within an
adaptive encoder. This requires a table of character frequencies as

with the Huffman codes described above, however the accuracy of

the frequencies has less effect on the code performance, hence one

byte per character is sufficient. The total memory required for a 128
symbol alphabet is 128 bytes for the frequency table, and eight bytes
for the table of short codewords (described in Section 3.2.2).

It was assumed by both Faller and Gallager that the receiver
and transmitter independently track the source parameters and

generate codes, however other approaches may be adopted:-

(i) Independent transmitter and receiver code generation.
This method, described above, has the advantage that the

channel capacity is used only for transmitting encoded data. If

transmission errors occur however, the receiver, which is relying
on the decoded data for the information necessary to update its
code, may lose synchronization. In addition, since both
transmitter and receiver must maintain parameter estimation

and code generation, the complexity is fairly high.

(i) Code generated at the transmitter and downloaded to the

recejver.

This method is fairly practical as long as the code download is
infrequent, as it occupies useful channel capacity. For example,

the transmitter may generate a code and download it to the
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receiver. The average length of the code is monitored, and if the
performance deteriorates beyond some threshold, a new code is
generated. If the source is highly variable, the code download will
become more frequent and the resulting loss in efficiency may be

unacceptable, therefore this technique will not be considered

further.

(iii) Code generated at the transmitter and modifications sent to

the receiver.

Certain types of code can be explicitly modified, rather than
regenerated. For example, the 4/8 prefix code can be modified
by swapping code length allocations for pairs of codewords. This
has the advantage over the method in (i) that the complexity is

low, and the advantage over (ii) that only modifications rather

than the whole code are transmitted.

Coding schemes of types (i) and (iii) are compared in Table
3.j. Three sets of d.ata. type 1 - upper case text, type 2 - lower case
text, and type 3 - numeric data, were combined to form four
composite samples. The pattern of occurrence of the data typcs
within the samples, shown below, gives an increasing frequency of
change. The test was intended to show the performance of the

coding schemes on mixed sources, and the rate of degradation with

increasing source instability.

Sample A = (1,1,1,1,1,1,2,2,2,2,2,2.3,3.3,3,3.3)
Sample B =(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)
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Sample C = (1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3)
Sample D = (1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3)

The samples had an identical entropy of 5.383 bits per

symbol, and a joint entropy of 7.679 bits per symbol pair. This gives
a lower bound on the performance attainable using a static coding

scheme designed for the source.

The first result, fér an adaptive Huffman code, shows an
average length for samples A, B and C that is below the sample
entropy. This may be compared with the lower bound obtained by
calculating the weighted average of the entropies of the individual
~data samples 1, 2 and 3, of 4.039 bits per symbol. The average
length increases markedly with increasing frequency of source
change, the average length for sample D is 20 percent greater than
that for sample A.

The second type (i) adaptive code is based on the 4/8 bit
fixed structure code discussed in Section 3.2.2. This has several
advantages over the adaptive Huffman code, principally the ease of
code generation, and the constrained maximum length. The robust
nature of the code is shown by the small (seven percent)
degradation in performance from sample A to sample D. The average
length is however significantly larger than that attained by the
Huffman code, even in the worst case. If performance is a primary
consideration, the adaptive Huffman code would seem preferable.

The third result in Table 3.j shows the average length
obtained for a code of type (iii). A 4/8 bit fixed structure code is

maintained at the transmitter. A block of symbols are encoded (128
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in this example). If the encoded block length would be reduced by

modifying the code and incorporating information about the change
in the block, the code modifications are transmitted before the

block, and the block encoded using the modified code. This allows

'look ahead' to be used to incorporate information from the block

into the code before the block is encoded.

The performance of this code is better than the type (i)
adaptive 4/8 code. The most probable reason for this is the
look-ahead feature which will give fast response to changes in the
source characteristics. With increasing frequency of change
however, the performance degrades more quickly than the type (i)
4/8 code, the ave}age length for sample D is nine percent greater
than that for sample A. If the source changes very slowly, it is
possible that the code would also perform poorly, as the criterionfor
transmitting a swap command is that the current block of data
would be more efficiently compressed. The overhead of transmitting

the swap command places a form of threshold on the gain that must

be realized as a result of the operation.
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Sample Adaptive code:-

Huffman 4/8 1/8

type(i) type(i) ‘type(iii)

A 5.715 5.485

B 5.098 5.804 5.534

C 5.379 5.882 5.589

D 5.634 6.128 5.993
Sample entropy 5.383 bits Joint entropy 7.679 bits

Table 3.j. Average length (bits) of adaptive codes when applied

to samples with identical content but increasing frequency of change
of basic data type.
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3.3.2 Adaptive String Encoding

String based, or variable to fixed encoding has been regarded
as complex to implement in adaptive form. Some implementations
have required large amounts of memory and processor time, and

have only been viable on mini- or mainframe computers; in addition,

the learning times are often protracted. The techniques have not

been suitable for real-time or on-line compression systems.

An example is given by Cleary and Witten (1984), of an

adaptive string matching system. Their method achieved high

compression, a file of English text could be compressed to less than
3 bits per symbol average length, but the processing and memory
requirements were high. For a file of 44,871 English characters, an
average encoded symbol length of 2.75 bits was achieved, but the
memory required was 500 kilobytes. Cleary and Witten state that it
should be possible to achieve better performance with 1.4 megabytes
of storage, and give an expected encoding time of 120 microseconds
per symbol. A maximum throughput of the order of 1000 symbols

per second on a VAX 11/780 minicomputer is given as a realistic

target.

The Ziv-Lempel compression algorithm was briefly outlined in
Section 2.5. The algorithm is basically a string learning system. It
has a dictionary of known substrings of the input sequence; the

longest known substring matching the input sequence is found and
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its index output as the codeword for the substring. The next symbol
in the input sequence is appended to the matched substring and the
resulting extended substring added to the dictionary. The next
symbol is output in uncompressed form. The receiver has an
equivalent dictionary, finds the substring corresponding to the
received index, and performs an equivalent dictionary update to the

transmitter.

For example, consider a source of symbols { a,b,c }, which

emits an output sequence - a,b,c,a,a,b,c,a,b,c,b

Initial dictionary - 1. a Appended - 4. ab
2.b entries. 5. ca
3. C 6. abc
7. abcb
Operations -

match "a" with dictionary - 1...... output "1"
next symbol is "b" output "2"
add "ab" to dictionary

match "c¢" with dictionary - 3..... output "3"
next symbol is "a" output "1"
add "ca" to dictionary

match "ab" with dictionary - 4.... output "4"

next symbol is "c" output "3"

add "abc" to dictionary

match "abc” with dictionary - 6.. output "6"

next symbol is "b" output "2"
add "abcb" to dictionary

resulting output sequence - {1,2,3,1,4,3,6,2)
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Obviously for a long input sequence, the substrings learnt by
the algorithm can be quite large, and are limited in size mainly by

the rate of learning (data dependent), and the memory available.

The preceding example showed how a sequence of input

symbols may be parsed into substrings. A number of practical points

need to be considered when implementing the algorithm.

(i) Coding of index values.
The output codewords must be expressed to some finite
precision. The range of values will correspond to the maximum

dictionary size, typically 12 bit codewords giving a dictionary size
of 4096 entries.

(ii) Data structure and memory requirement.

The data structure needs careful design, as the encoding/
decoding speed and memory requirement depend on it. Early
implementations used a simple array or tree structure, with each

element providing storage for the maximum size of string.

Quoted memory requirements have been in the range 200

kilobytes to 1 Megabyte.

(iii) Substring recognition

An important part of the encoding process is the parsing of
the input sequence with respect to the substrings contained in

the dictionary. A linear search would obviously be very inefficient

and some faster technique is necessary.
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(iv) Dictionary purging.

When the dictionary has been filled, some strategy is
necessary to remove infrequently used strings, in order that the
system continues to adapt to the input data. If the data is

consistent however, it is not necessary to purge the dictionary.

(v) Learning phase.

When the dictionary contains few entries the efficiency of the

algorithm is low, as each codeword represents only a short

string.

(vi) Uncoded symbols.

The original Ziv-Lempel algorithm specifies that the output
stream consists of codeword/next-character pairs. This reduces

efficiency as part of the output stream consists of uncompressed

data.

(vii) Early string termination.

If the stream of characters is halted, the encoder will wait for
further characters without transmitting any further codewords. A
control character may be added to the basic source alphabet,
which causes termination of the string matching process. The
transmitter sends the encoded string, followed by the control
character; the receiver decodes the string but does not attempt

to add it to its dictionary. This would typically be used at the end

of a message, or when some given time has elapsed since the
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receipt of the last character from the source.

Miller and Wegman (1982) and Welch (1984) have suggested
improvements to the Ziv-Lempel algorithm which render it both

memory efficient and fast, solving problems (i) to (iii) above.

Miller and Wegman describe a data structure that provides

very efficient use of memory. The dictionary is held in the form of a

tree, with each node containing a single character and a pointer to
the parent node which represents the prefix string. A hash table
(Knuth 1973) is used to determine, given a matched substring and
the next input character, whether the extended substring is in the
dictionary.

The implementation difficulties of this m'eﬂthod are discussed
by Welch (op cit). The hash table requires a significant amount of
£nemory ( Welch suggests 8 kilobytes for a 4096 entry dictionary ),
in addition to that needed for storage of the basic tree structure
used to encode the dictionary. Use and maintenance of the hash

table, if implemented in software, is slow, and Welch suggests that a

hardware implementation or the use of associative memory would be

much faster.

An improved data structure with a modest memory
requirement is shown below. This follows Miller and Wegman's tree
structure, but rather than linking each node only to its predecessor,
which necessitated the use of a hash table, a parent node is linked to
a list of dependants. Thus a node contains a character, a down

pointer to the list of nodes representing the dependent strings, and
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a right pointer to an alphabetically ordered list of alternative strings
having the parent string as a prefix. The nodes are held in an array,
and the array index is used to represent the dictionary index of the
string formed by the sequence of characters on the path from the

root of the tree to the last matched node. A node is defined

therefore as:-
node = ( character, down-pointer, right-pointer )

Figure 3.k illustrates the modified data structure, and shows

the strings "q", "qu", "qua”, and "qui" encoded using four nodes. To
match the input sequence "quiet", the ordinal value of the first

character "q" is used to find the initial node index (113 assuming
ASCII encoding), and the down-pointer used to find the index of

the next dictionary entry, the second input character, "u" is read

and immediately matched with the character in the current

dictionary entry. The down-pointer is again used to determine the

index of the next dictionary entry, corresponding to the first three
character string "qua".

The next input character is "i", whilst the next dictionary
entry currently contains character "a", these do not match and a
search is instigated on the right list of the current node. There are
three possible outcomes to this search, the character may be

matched in which case the next input character is read, or the

search may fail because the right-list ends, or a character of greater

ordinal value is encountered.
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Figure 3.k The data structure for the improved Ziv Lempel compression

algorithm; the dictionary entries and associated tree for the strings

l‘lq"' Hqu“. llquall' "qlﬂ".
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If the search/match procedure fails, then a string has been

matched completely, and the index corresponding to the last entry

is transmitted. The last (unmatched) character is used to create a

new dictionary entry linked onto the last (matched) string.

The string matching process consists essentially of following a
simple progression of pointers, searching is only required amongst

alternative known characters for a given position within a string.
The memory requirement is reduced to the order of five to twenty

kilobytes.

The decoder has a similar data structure to the encoder for
