
ANALYSIS AND DESIGN OF SOURCE / CHANNEL

CODES FOR NOISY COMMUNICATION CHANNELS

A Thesis submitted by

Alan Douglas Clark

in partial fulfillment of the requirements for the

DEGREE OF DOCTOR OF PHILOSOPHY

of the

COUNCIL FOR NATIONAL ACADENHC AWARDS

submitted in June 1987

School of Electronic and Electrical Engineering

LEICESTER POLYTECHNIC

Collaborating Establishment:

BRITISH TELECOM PLC

Acknowledgements

I would like to acknowledge the assistance and support
provided by my supervisors, Dr A. A. Hashim of Leicester
Polytechnic, and Dr A. G. Constantinides of Imperial College, and my
advisors Mike Morse and Nick Frydas throughout the research

programme.
The project was sponsored by the Datacomms Unit of British

Telecom PLC, International Products Division under contract
589360. In addition, considerable technical advice was received for

which I am grateful. Thanks are due to Mike Buckley, Gerry Comber,

John Holdsworth, John Magill, Yannis Chirides, Dave Trouse, Rita

Shah and Graham Steele, of BT Datacomms, and to John Brownlie,
Peter May, and David Bond of BT Research Laboratories.

Advice and assistance from, and discussion with, one's
colleagues are invaluable, and I would like to thank Said Amir,
Swapan Parui, and other members of the former Digital Signal
Processing Research Group at Leicester Polytechnic.

And finally, I would like to particularly thank my long

suffering wife Glenis, and our children Adam and Elizabeth, who
have been remarkably patient and tolerant of "Dad finishing his

thesis".

FOR NOISY COMMUNICATION CHANNELS

A. D. CLARK

ABSTRACT

The rapid expansion in the field of information technology in
recent years, has led to an increased awareness of the need for
efficient, reliable communications systems. Although digital
networks are being introduced, modems are widely used for
transmitting digital information over the Public Switched Telephone
Network (PSTN). This approach suffers from two drawbacks, limited
bandwidth and transmission errors. The objectives of this research
program were to investigate methods for compressing digital
information and for correcting transmission errors, to enhance the
performance of a voiceband modem.

The application of source coding to a modem based
communications system requires efficient compression and low
implementation complexity. The type of data transmitted is
unknown, hence the source encoder must adapt to the data during
transmission. The design and performance of a number of robust
source codes, in particular the problem of designing codes with
constrained maximum length is discussed, and a number of solutions
proposed. Adaptive variable length and string encoding techniques
are compared. The Ziv-Lempel encoding algorithm is investigated,
and a number of improvements suggested.

The distribution of transmission errors is affected by the type
of disturbance causing the errors, and the design of the modem. The
characteristics of PSTN transmission errors are discussed, and the
design of error control systems considered. A number of automatic
repeat request (ARQ) and hybrid error control schemes are
discussed, and their performance evaluated under a range of channel
conditions. The quality of a telephone channel is variable, and the
adaptive selection of frame length and code rate can result in a
performance improvement. The design of an adaptive hybrid ARQ
scheme is discussed, and its performance compared to conventional
methods.

A number of practical design considerations are given. The
design of three source/channel coding systems is discussed, and
their performance compared.

Origipects of the Research Program

The research program, although containing a substantial

theoretical element, was essentially oriented towards a practical

goal. A major part of the work comprised comparative performance

analyses, and consideration of the practical implementation of

coding algorithms. An element of the work not discussed in this

thesis was the practical implementation of a communication system

based on some of the ideas discussed below, involving both hardware

and software design. This practical work is reflected throughout the

thesis, with particular emphasis in Chapter 6 on system

implementation and design.

The elements of the work that are to the best of my

knowledge original are: -

" The quantitative discussion of the effects of concatenating

run length and variable length encoding. (Section 2.6)

" The extension to the work of Gilbert (1971) and Van Voorhis

(1974) in the development of constrained variable length

codes. (Section 3.2.2)

" The extension to the work of Faller (1974) and Gilbert (1978)

in the development of adaptive variable length codes, and

consideration of the performance of the codes on

non-stationary sources. (Section 3.3.1)

" Two modifications to the Ziv-Lempel (1976) compression

algorithm, space synchronization and an improved data structure/

dictionary maintenance technique. (Section 3.3.2)

0 Consideration of the feasibility of compressing a synchronous

data stream, in which the symbol size is unknown. (Section 3.3.3)

" The qualitative discussion of the telephone channel error

distribution, and the effects of modems on the error patterns.

(Section 4.2,4.3)

0 The comparative performance analysis of ARQ and hybrid ARQ

error control schemes under a wide range of channel conditions.

(Sections 5.4-5.6)

0A specific adaptive hybrid ARQ scheme, and its performance

on random and burst channel models. (Section 5.7)

" The interaction of data compression and error control

elements of a communications system. (Section 6.3)

" The discussion of practical implications in the design of data

compression and error control schemes. (Sections 2.7.3.4,4.2.2,

5.4.5.5,5.8,5.9. Chapter 6).

CONTENTS

page
1. Introduction

1.1 Background to the research project 1

1.2 Aims and objectives 5

1.3 Overview of the thesis 7

2. ' Source models and source coding

2.1 Introduction 9

2.2 The discrete memoryless source 12

2.3 Variable length codes 16

2.4 Sources with memory 21

2.5 Coding schemes for sources with memory 28

2.6 Run length coding 31

2.7 Discussion 34

3. Coding partially known sources

3.1 Introduction 39

3.2 Designing robust variable length codes 41

3.2.1 Generating variable length codes with 43
reduced maximum length

3.2.2 Variable length codes with constrained 46
maximum length

3.2.2.1 An approach based on a modified 47
source pdf.

3.2.2.2 An iterative approach 49

3.2.2.3 A simple code with a fixed codeword 52
length distribution

3.2.2.4 Performance comparison of the 53
constrained VL codes

.t

3.3 Adaptive source coding

3.3.1 Adaptive variable length coding

3.3.2 Adaptive string encoding

3.3.3 Encoding sources with unknown
character size

3.4

4.

4.1

4.2

4.2.1

4.2.2

Discussion

Transmission errors and error control

Introduction

Characteristics of the telephone channel

Channel impairments

The effects of impairments on
demodulation

4.3

4.3.1

4.3.2

4.4

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

4.5.7

4.6

Transmission errors

Telephone channel error statistics

Channel error models

Channel Capacity

Fundamentals of error control

Linear block codes

Convolutional codes

Random error correcting codes

Burst error correcting codes

Burst and random error correcting codes

Error detection

Error correction using retransmission

Summary

59

60

68

83

88

93

96

96

100

104

104

111

120

123

125

129

129

132

133

133

135

137

5. ARQ error control

5.1 Introduction 138

5.2 Performance analysis of ARQ 143

5.3 Hybrid ARQ 147

5.3.1 Type I hybrid ARQ schemes 148

5.3.2 Type II hybrid ARQ schemes 152
- parity retransmission

5.3.3 Transmission efficiency of some hybrid 154
ARQ schemes

5.4 The effects of channel error distribution and 158
delay on transmission efficiency

5.5 The relationship between frame length 169
and efficiency

5.6 Selection of code rate for type I hybrid ARQ 176

5.7 Adaptive selection of code rate 178

5.7.1 An adaptive hybrid ARQ scheme 180

5.7.2 Performance of the adaptive ARQ scheme 182
on a burst error channel

5.7.3 Performance of the adaptive ARQ scheme 186
on the binary symmetric channel

5.7.4 Selection of code rate and sustain factor 190

5.8 Residual error rate 194

5.9 Discussion 198

6. System design considerations

6.1 Introduction 201

6.2 ARQ protocol design 207

6.2.1 Frame synchronization 207

6.2.2 Flow control 209

6.2.3 In band signalling 211

6.2.4 Link establishment and disconnection 211

6.2.5 Transmission efficiency 212

6.3 Integrating data compression into the 214
protocol

6.3.1 Adaptive data compression- algorithms 214

6.3.2 Interaction with the ARQ protocol 215

6.4 Designing for reliable operation 218

6.5 System realization 220

6.5.1 System 'A' 222

6.5.2 System 'B' 225

6.5.3 System 'C' 228

6.5.4 Expected performance 230

6.6 Summary and discussion 238

7. Conclusions 240

8. Further work 242'

Appendices:

A References

B Samples of text used for compression tests

C Derivation of ARQ efficiency equations

D Derivation of optimum frame length equations

Symbols and Abbreviations.

Abbreviations

ARQ Automatic Repeat Request

BCH Bose, Chaudhuri, Hocquenghem error correcting code

BER Bit Error Rate

BISYNC Binary Synchronous Communications Protocol (IBM)

BLER Block Error Rate

BSC Binary Symmetric Channel

CCITT Comite Consultatif Internationale de
Telegraphique et Telephonique

DMS Discrete Memoryless Channel

EFS Error Free Seconds

FEC Forward Error Correction

GBN Go Back N (ARQ)

GF Galois Field

HDLC High-Level Data Link Control protocol (ISO)

HF High Frequency (radio channel)

iff if and only if

ISO International Standards Organization

LZ Lempel-Ziv compression algorithm

OSI Open Systems Interconnection model

pdf probability density function

PSTN Public Switched Telephone Network

SDLC Synchronous Data Link Control protocol (IBM)

SR Selective Repeat ARQ

STN Switched Telephone Network

SW Stop and Wait ARQ

VDU Visual Display Unit

VL Variable length (code)

wrt with respect to

ZL Ziv-Lempel (see LZ)

Symbols

The following symbols are generally in accordance with those in
common use in the field of information theory. Although this has
occasionally resulted in two definitions of the same symbol, this
causes no ambiguity when in context.

nCr The number of combinations of r objects from a set of n

D The radix of a code

D End to end channel delay (in bits)

d The distance of a codeword (e. g. Hamming distance)

dmin The minimum distance of a code

F(s) The s-th Fibonacci number

G The generator matrix of a linear block code

The parity check matrix of a linear block code

H The entropy of a source

Hjj The entropy of the first extension of a source

Hi(j) The conditional entropy of a source

h The size of header field in an ARQ frame

Ii The information content of symbol si

ii-i The information content of the symbol pair (si, sj)

I1(j) The conditional information content of symbol sj

k The number of information bits in an (n, k) codeword

Lj The length of a source codeword

L' The average length of a source code

Icon The constrained maximum codeword length of a
variable length source code

Lmax The maximum codeword length of a variable length

source code

M The marginal information content of a symbol

N The number of symbols in a source alphabet

N The acknowldgement delay of an ARQ system
(in frames)

n The length of a linear block code codeword.

Pt The transition probability of a binary symmetric
channel

P1(j) The conditional probability of event j, given event i

P(>m, n) The probability that a block of length n contains
more than m errors

sj The i-th symbol from a source

t The number of errors correctable by an (n, k, t)
linear block code.

1 INTRODUCTION

1.1 Background to the Research Project

During the past thirty years the importance of data

communications to the business and scientific community has grown

tremendously. Many businesses are now heavily dependent on their

communications equipment to allow data to be transferred between

computers or to provide remote access to common resources. It is

therefore highly desirable that data transfer may be accomplished

quickly, reliably, and at low cost.

A common medium of transmission is the Public Switched

Telephone Network, which provides voice grade communication

channels between virtually any two points in the world. A modem is

used to convert the digital signal to, or from, a form which is

compatible with the requirements of the voice channel in terms of

power level and spectrum (Figure 1. a). Unfortunately, as the

telephone network was not designed as a carrier of data, the

modulated signal is subject to distortion and additive noise which

may result in errors in the reconstructed digital signal.

1

Figure l. a The use of modems for transmitting digital information
over the Public Switched Telephone Network

2

The detection and correction of transmission errors is an

essential part of a data communications system, hence methods for

accomplishing this have been the subject of intensive research for

many years. Error control techniques are based on the use of some

part of the available bandwidth for the transmission of additional

information, which means that the transmission time (and therefore

cost) are increased. To provide both reliable and efficient

communications requires careful design of the error control

function.

The efficiency of the communications system may be

enhanced by compression of the data prior to transmission. This

must be a reversible process in order that the data can be

reconstructed without error by the receiver. Sometimes a low level

of distortion of the reconstructed signal can be tolerated in for

example, speech or image transmission. However, for the

transmission of digital information, the compression process should

be distortionless.

Figure 1. b shows a general block diagram of a communications

system incorporating error control and data compression. An

additional component, which is called in the diagram an error

control unit, is placed between the modem and the computer or

terminal at each end of the link. This type of device is available from

a number of different manufacturers. All use automatic repeat

request (ARQ) ' error control, with `data compression to `compensate

for the loss in channel capacity.

3
F

im Terminal

Error Control
Unit

Data compression

Error control

Transmission
errors

Modem

Modem

Unit
Control

Data compression

Error control

a

15

Terminal

Figure 1. b The use of error control units to provide error correction
and data compression over a modem link.

4

Some commercial error control units offer an additional

multiplexing facility. For example, the Timeplex Datamizer provides

four multiplexed channels, using an adaptive Huffman code for data

compression, and ARQ for error control. Products offering only a

single channel capability are the DaCom Error Controller, Modular

Technology Interblaster, and others, mostly intended for use with

low speed modems.

The project involved an investigation of the use of data

compression and error control techniques for enhancing the

performance of modem based communications, and consideration of

the practical aspects of implementation. This was aimed at the

eventual development of new products with improved performance,

for an already competitive market.

1.2 Aims and objectives

The aims of the project were: -

(i) Data compression

To investigate the range of data compression techniques

appropriate to the application, and propose new or improved

methods. These techniques must be effective under realistic

conditions, i. e. compression should be achieved with as little

prior knowledge of the source data as possible. The complexity of

5

implementation was also very important, as the data compression

component must operate in real time, with a restricted memory

capacity.

(ii) Error control

To investigate the use of error control with high speed voice

band modems. Although retransmission error control (ARQ) is

widely used in this type of application, more powerful hybrid

schemes incorporating forward error correction have been

developed in recent years. As with data compression, complexity

is an important consideration.

(iii) System integration and design

To place the data compression and error control components

in context within a system, to investigate methods of

implementation and examine any conflicting requirements.

6

1.3 Overview of the thesis

The general structure of the thesis follows Section 1.2.,

discussing in turn data compression, error control, and system

design.

Data compression is discussed in Chapters 2 and 3, initially

for the ideal case in which the characteristics of the data source are

known, and then for the more realistic case of a partially known

source.

Huffman coding, adaptive Huffman coding, and some variants

are examined, with emphasis on the problem of reducing the

maximum length of the codes. The more recent compression

algorithm of Ziv and Lempel is discussed and a number of

improvements proposed. In addition, data for which the symbol size

is unknown is shown to be compressible in some cases, using the

Ziv-Lempel compression algorithm; this has particular significance

in the compression of synchronous data.

Chapter 4 discusses telephone channel characteristics, and

error statistics and modelling. This is followed by a brief

introduction to error correction and detection coding.

In Chapter 5, a number of error control schemes based on

automatic repeat request (ARQ) are compared under a range of

channel conditions. These include hybrid ARQ, parity retransmission

and adaptive schemes. The choice of forward error correcting code

rate and frame length are discussed, and the reliability of the error

7

detection code considered.

System design, encompassing a range of practical

considerations, is discussed in Chapter 6. An ARQ protocol provides

more than simple error control; the additional features include

end-to-end signalling, flow control and signalling. Three alternative

systems are proposed, each appropriate to a particular application,

and their performance compared.

Finally, Chapters 7 and 8 give the conclusion of the thesis,

and some suggestions for further study.

8

2. SOURCE MODELS AND SOURCE CODING

2.1 Introduction.

The efficient use of channel capacity is of immediate interest

to users of data communications networks. A large wide area

network, for example. may incur line rental costs of over ten million

pounds per annum; the use of data compression can provide

improved throughput and hence a more cost effective service.

Although source coding techniques date from early in the

Nineteenth Century, recent developments in microprocessor

technology, coupled with a demand for high speed low cost data

transfer, have provided a new impetus to the development of

powerful data compression systems.

The theoretical foundations for source coding were laid by

Hartley (1928), and Shannon (1948). Hartley's paper entitled

"Transmission of Information" discussed a number of then current

issues in telegraphy, including the statement that the number of

code symbols (for example, bits) required to encode a source symbol

was proportional to the logarithm of the number of source symbols.

Although Morse and Vail (Bylanski 1980) had realized that an

improvement in efficiency could be obtained by using a variable

codeword size, and assigning short codewords to frequently

occurring characters, the nature of information and the performance

bounds for this type of coding were not known until the work of

9

Shannon in 1948.

The source coding techniques addressed in this and the next

chapter, are noiseless or distortionless, in that the encoding process

is reversible without error. In general, there is some relationship

between the instantaneous compression ratio or code rate, and the

distortion introduced by the coding scheme. Rate-distortion coding

attempts to achieve a constant code rate, allowing the distortion or

error to vary. In noiseless coding systems however, the code rate is

uncontrolled, which can lead to practical design problems such as

buffer overflow (Humblet 1981).

The design of the source code is based on knowledge of, or

assumptions about, the frequencies and ordering of the source

symbols constituting messages. This knowledge is represented in

the form of a mathematical model of the source. A number of source

models are used, some of which will be described in more detail in

Sections 2.2 and 2.4. For example, the discrete memoryless source

(DMS) model is based on the assumption that source symbols are

independently selected from some alphabet, the model parameters

are the occurrence probabilities of the symbols.

In practice there are often local relationships between

symbols within a message, for example "the" is a common group of

symbols used in English text. These relationships can be used to

advantage in a coding scheme, and several source models have been

devised to represent them.

The performance of the source encoder will obviously depend

on the correct choice of source model, and knowledge of the

parameters involved. If an inappropriate model is used, or if the

10

parameters are inaccurately known or unstable, the compression

achieved may be poor, in the extreme even expansion may result. In

this chapter an ideal situation will be assumed, i. e. a stable source for

which the parameters are known, the next chapter will consider the

more usual case, in which the source is inaccurately known and time

varying.

Although the following discussion is valid for codes based on

non-binary code symbol sets (for example ternary), binary codes

will be assumed. The term bits will therefore be used for binary

digits and for the binary unit of information, and unless otherwise

stated logarithms will be taken to base two.

The results in the following sections and in Chapter 3 were

obtained by computer simulation or implementation of the source

coding techniques, with a number of different sources. A sample

from each of the sources is given in Appendix B for reference.

11

2.2 The Discrete Memoryless Source.

The Discrete Memoryless Source (DMS) is the simplest and

most widely used model. It is assumed that the source emits symbols

selected at random from an alphabet, each choice being made

independently of any earlier selection. Associated with each source

symbol sj is a probability pj which corresponds to the probability of

selection for the symbol.

It will be assumed for the moment that the probabilities (Po,

P1 " P21 "" PN_1) corresponding to the N symbols in the source

alphabet are known, and stationary. Hartley (1928) proposed a

logarithmic measure of information content, and hence of the

number of code symbols required to represent the source, but did

not consider the effects of unequal source symbol probabilities.

Shannon (1948) considered the case in which source symbols

do have associated probabilities, and -defined the information

content of a symbol, 1, , and the average information content of the

source - the entropy H.

For each source symbol sj , the information carried by the

symbol is: -

Ij . log(1/ pj) bits

12

A measure of the average information per source symbol is the

source entropy: -

N-1

H=
Ipi

ii
J=O

For any given message M, consisting of a sequence of k

symbols independently selected from the source alphabet, the total

information carried by the message is the sum of the information

carried by the symbols in the message. Thus for message M: -

M= (sa, Sb, sc, sd, ... sx).

where a, b, c, d, .. x are in the range {0 .. N-1}, the probability that

message M will be generated is: -

P(M) = P(Sa). P(Sb). P(Sc). P(Sd) ... P(sx)

and hence the information content of the message is: -

I(M) = log(1/P(M)) bits

= I(Sa)+I(Sb)+I(Sc)+... +I(S.) bits

The average information per symbol contained in M is

13

therefore given by: -

I(average) = I(M) /k bits per symbol

As k becomes large, then the average information per symbol

will approach the source entropy (as k tends to infinity, the relative

frequency of each symbol will by definition be given by the symbol

probability), and may be regarded as an estimate of the entropy. The

term sample entropy will be used to denote the estimate of the

source entropy, obtained under the assumption that the occurrence

frequencies of symbols within a message or sample are in direct

proportion to the symbol probabilities.

Table 2. a shows values for the sample entropy for a number of

sources. Most text samples have values of 4 to 4.5 bits per symbol,

whilst numeric data generally have a lower information content

(requiring usually eleven or twelve symbols rather than the 27 or

more needed for text). Executable computer program code usually

has a high information content, as a large number of symbols are

used with similar frequency.

14

Sample type

English text

English text

Portuguese text

FORTRAN

ALGOL

Executable

code

Sample Entropy

4.03 bits per symbol

4.16 bits per symbol

3.92 bits per symbol

5.29 bits per symbol

5.58 bits per symbol

5.80 bits per symbol

Comment

Shannon(1951)

Measured

Manfrino(1969)

Measured

Wells (1972)

Measured

Table 2. a Examples of sample entropy for various types of data.

Digram encoding, in which pairs of characters are

represented by codewords, is often used. Under the assumption that

the source is memoryless, the probability of some pair (s1, sj)

occurring is given by the product pj. pj, and thus the information

content by: -

Ii, j= It + Ii

The entropy of the digram source is twice that of the original

source, and the extended source alphabet contains N2 symbols.

15

2.3 Variable Length Codes.

A source encoder accepts symbols or sequences of symbols

from a source, and generates codewords. As no error can be allowed

in this application, the encoding must preserve the information

content of the message. For the discrete memoryless source, the

information content of a message and the source entropy have been

defined above. If the DMS model is assumed, then an ideal source

encoder would encode the message in a number of bits

corresponding to its information content (Shannon 1948).

The encoding process may accept variable length sequences

of symbols, outputting a fixed length codeword for each, or fixed

length sequences of source symbols, outputting a variable length

codeword for each symbol. The latter technique is usually termed

variable length coding.

A variable length encoder assigns a codeword of length Lj to

each symbol sj contained in the message. In a long message, or

series of messages, the source symbols s, would occur with a

frequency corresponding to the associated probabilities pi . Thus the

average encoded symbol length would be the weighted sum of the

codeword lengths. This value is usually referred to as the average

length, L' , of the code: -

N-1

Lý= I pi J=O

16

An ideal encoder would achieve an average length equivalent

to the source entropy, thus ideally: -

N-1 N-1

L=
J_opi

I9 =
j_o

pi IJ

to which a solution is I. ý = Ij. As the information content of a symbol

may have non-integer values, this solution would require codewords

with fractional length. Shannon showed that this could be

circumvented by encoding groups of symbols, and hence that the

average length of a code could be made arbitrarily close to the

entropy.

The efficiency of a variable length code represents the degree

to which the average length of the code approaches the entropy: -

Efficiency =H
L'

The redundancy of a code is also used to measure performance: -

Redundancy =1- Efficiency

The source code must be uniquely decodable, which means

that an encoded message has a single unique possible interpretation.

It is also desirable that the codewords are constructed so that any

codeword may be decoded immediately it has been completely

17

received, i. e. instantaneously decodable.

A necessary condition (Abramson 1963) for a variable length

code to be instantaneously decodable is given by the Kraft

inequality: -

N-1
I

D-L; 51
i=0

where D is the radix of the code, and Li is the length of

the i-th codeword.

Instantaneously decodable codes (one class of uniquely

decodable codes) within which lie prefix codes, suffix codes and

others. Prefix codes are one of the most important classes of variable

length code, and are defined by the prefix condition, which states

that no codeword may be a prefix of any other codeword.

The design of a variable length source code consists of finding

some set of codewords that meet the above criteria for decodability

and can achieve an average length close to the source entropy. There

may be additional design criteria, some of which will be discussed in

later sections.

Shannon (1948) described a method for code generation in

which a codeword is determined arithmetically using the following

algorithm: -

18

(i) Arrange the symbols in order of decreasing probability, so

that so has the highest and 5N_ 1 the lowest probability.

(ii) Determine the cumulative probability P(5j) for each symbol

sj, i. e. the sum of the probabilities Pk for values of k from 0 to j.

(iii) The j-th codeword is given by the expansion as a binary

number of P(? j), the expansion being carried out to Lj places,

where ý is given by: -

I(<_j) <_ Lj <1+ I(! q)

An equivalent method is described by Fano (1949), hence the

code is often referred to as the Shannon-Fano code.

An optimal prefix coding method was given by Huffman

(1952), which is simple to implement, and generally achieves an

average length very close to the entropy. The algorithm is generally

related to the construction of a code tree, in which each node has q

or less dependants, for a q-ary code. The method of construction is

as follows: -

(i) Merge the q symbols or nodes having the lowest

probabilities, to give a new node with a probability equal to

19

their sum.

(ii) Repeat (i), until one node, the root, remains.

(iii) Assign code symbols arbitrarily to the branches of the tree;

codewords consist of the sequence of code symbols on the path

between root and source symbol.

The excellent performance of this source code is

demonstrated in Table 2. b. For one non-text, and four text samples

the symbol frequencies were measured, and a Huffman code

generated using the method given above. In every case the average

length of the Huffman code is very close to the sample entropy.

Sample Sample Average Efficiency

type entropy length

(bits) (bits)

Text 1 4.504 4.530

4.641 4.670

0.994

Text 2

Pascal 1

Numeric 1

Image 1

0.994

5.022 5.047 0.995

3.988 4.049 0.985

4.734 4.759 0.995

Table 2. b Comparison of average length of Huffman code with sample

entropy.

20

2.4 Sources with memory.

Many real sources exhibit local dependence between message

symbols. Various models have been used to represent this class of

source, of which two will be considered. The first extends the

principles used for the memoryless source, and is derived from the

work of Shannon (1948,1951), whilst the second model is based on

the more recent development by Lempel and Ziv (1976) of a

complexity measure for finite sequences.

The discrete memoryless source is defined in terms of the

probabilities po .. pN_1 assigned to the symbols so .. sN_1. The model

may be extended by considering the joint probabilities pi j and the

conditional probabilities pi(j) i. e. the probability of sj occurring given

that the preceding symbol was s1. The set of conditional probabilities

are equivalent to the transition probabilities of a Markov chain

(Bartlett 1978), and hence this model is often referred to as

Markovian.

The vector of symbol occurrence probabilities PO .. pN_ 1 will,

for an ergodic source, be the stationary vector of the Markov chain. A

measure of the information carried by sj given that si is the previous

symbol is II(j) which is defined as: -

21ý.
.

I, (j) = Ii, j - Ii

since pi. j = pi . pi(j)

and hence Ii, j = Ij + I1(j)

The joint entropy Hi. j measures the, average information

content of a digram source, whilst the conditional entropy Hi(j)

measures the equivalent for a Markov source. These two entropies

are related by the expression: -

Hi. j = Hj + Hl(j)

For the memoryless source, it is assumed that pj = pio). In

general however, the conditional probability pi(j) is more than pj due

to dependence between characters, and hence the conditional

information content Ii(j) will be less than II . If the information

content is reduced, the average code length may be shorter, hence

it is generally advantageous to design source codes based on this

type of model. The principal drawback is the larger number of

parameters, N2 rather than N.

Table 2. c shows the values obtained for information content

and conditional information content from a sample of English text,

22

and illustrates the potential advantage of conditional encoding over

that discussed in Sections 2.2 and 2.3.

In the table, pi, j gives the probability (in fact the observed

frequency) of the symbol pair (si, sj), Ij, the information carried by the

second symbol sj if considered independently, and I1(j) the

conditional information content of sj. The pair (t, h) for example, can

be encoded ideally in 5.39 bits; the second symbol h would be

encoded in 4.55 bits if the source were assumed memoryless, but in

1.63 bits if the code were based on the conditional probability, a

saving of 2.92 bits.

Character pi, j Ij I1(j)

pair (si. sj) (bits) (bits)

(e, 0.0341 2.77 1.77

(
, t) 0.0264 3.76 2.48

(t, h) 0.0239 4.55 1.63

(h, e) 0.0223 3.11 0.94

(s,) 0.0197 2.77 1.57

(r, e) 0.0154 3.11 1.60

Table 2. c Comparison of independent and conditional information

content of characters from English text.

23

Measured statistics have been published for a wide range of

source types. Shannon (1951) gave first, second and third order

conditional entropies for samples of English text. Barnard (1955)

gave first order letter entropies for English, French, German and

Spanish text. The entropy of Arabic was measured by Wanas (1976),

of Portuguese by Manfrino (1969), and of Malay by Tan (1981).

Equivalent statistics for a television image were published by

Schreiber (1956).

Table 2. d gives the first, second and third order entropies for

Arabic, English, and the television image, from the sources given

above. A point of interest is the obviously high correlation of adjacent

points in the television image, which results in fairly small increases

in entropy, with increasing order.

Table 2. e compares the sample entropy, the entropy per

symbol (the joint entropy represents two symbols), and the

conditional entropy. It can be seen that the joint entropy per symbol

is substantially less than the first order entropy, an average gain of

'0.6 bits. The conditional sample entropy gains further, and achieves

an average improvement of 1.21 bits over the first order entropy.

The results indicate that an encoding scheme based on the

conditional probability should be more efficient than one based on

the symbol or digram probability.

24

Sample Sample entropy

type. Ist 2nd 3rd order

bits per (1) (2) (3) symbols

Arabic 4.21 7.98 10.47

English 4.03 7.35 10.45

Television 4.39 6.30 7.80

signal

Table 2. d Sample entropy for source models based on pi, pi, j, and

pi, 9, k

Sample Sample entropy (per symbol)

type. 1st order joint conditional

H HHj/2 H10)

Arabic 4.21 3.99 3.77

English 4.03 3.67 3.32

TV signal 4.39 3.15 1.91

Average 4.21 3.61 3.00

Table 2. e Comparison of conditional and joint sample, entropy.

25

The source model may be based on conditional or joint

probabilities and, as shown above, it is generally advantageous to use

a higher order model. In the case of text and many types of sampled

analogue data, the context of a symbol is usually not of fixed size, as

this model assumes. It would seem therefore that an alternative

model, which allows a variable context size, would be more

appropriate.

Shannon (1951) discussed the use of a word based, rather

than letter based encoding for text. Estimates of the word entropy

for a sample of English text indicated that a word based source

encoder should achieve an average length of 2.1 to 2.6 bits per

letter. The encoding would map variable length sequences of source

symbols (words) onto variable length codewords.

One important class of source model which incorporates a

variable symbol context size, is known as fragment encoding or

variety generation (Cooper 1982, Yannakoudakis 1982). A fixed

number of equiprobable strings of symbols are found; as these are

equiprobable and hence have equal information content, they may be

efficiently encoded using codewords of equal length. The number of

fragments is generally selected to be some integer power of two, to

avoid loss due to the need to round up fractional codeword lengths.

For English text, typical fragments from a set of 256, are "in"

"the", "that", "atio", "with", and "ght". They' consist of frequent

sections of words, and common words or groups of words. The main

26

problem found with the model is the complexity of the process of

building the fragment set. Cooper (ibid) discusses several

approaches to set production, for example processing a large sample

of text to determine the occurrence frequencies of characters,

character pairs (digrams), triples (trigrams), up to some limit, and

then selecting the set from amongst these. For a 64 character

alphabet, there are 4,096 digrams, 262,144 trigrams, and

16,777,216 tetragrams; the processing involved is obviously not

trivial.

An alternative approach to source modelling devolves from

the approach to the measurement of sequence complexity suggested

by Lempel and Ziv (1976). The complexity of the sequence of source

symbols is evaluated with a simple learning machine, which scans

the sequence once, matching strings of symbols to those stored in

its memory, to which is appended any new string of symbols

encountered en route. The size, and rate. of growth of the compiled

vocabulary form the basis of the complexity measure.

The initial vocabulary of the machine consists of the source

alphabet: additional entries will be strings of two, three or more

symbols. In its simplest form, the machine finds the longest match

to the current subsequence of symbols, and then forms a new

vocabulary entry by appending the next symbol in the sequence to

the matched subsequence. This process has been termed

incremental parsing, and provides an automatic context gathering

method ideally suited to source modelling.

27

2.5 Coding schemes for sources with memory.

Two classes of code, corresponding to the two types of source

model, are commonly used. The first extends the principles of

variable length coding, as described for the DMS, to the Markov

model, whilst the second group of coding techniques are applied to

fragment encoding.

In the preceding section it was shown that the use of

conditional and joint probabilities, rather than symbol probability,

offers some advantage in an ideal encoding. This leads to the use of

two alternative encoding methods: -

(i) Digram encoding, in which variable length codewords are

constructed (using Huffman's algorithm for example) using the

joint symbol probabilities pi j.

(ii) Conditional encoding, in which variable length codewords

are constructed using the conditional symbol probabilities Pi(j).

As the joint symbol probability pi j consists of the product

pi. p, o), the first symbol is encoded using approximately Ii bits, the

second with I, (j) bits. This is less efficient than the conditional

encoding scheme, in which only the first symbol of the message is

encoded inefficiently, all succeeding symbols being encoded with

28

li(j) bits (on average). Table 2. e showed that definite gains could be

made through the use of conditional encoding on a range of data

samples, and the same number of codewords are required to encode

a message using either joint or conditional schemes, it would

therefore seem preferable to use conditional encoding.

Lavelle (1981) proposed an adaptive variable length coding

scheme using conditional encoding. Results given for a text sample

indicate that a Huffman code based on a DMS model achieved an

average length of slightly below 5 bits per symbol, whereas the

adaptive conditional coding scheme gave an average length of less

than 3 bits per symbol.

The second type of source code, used for fragment or string

coding, aims to encode equiprobable sequences of symbols which,

having equal information content, may be encoded with equal

codeword length. In the discussion of this type of source model

(Section 2.4), the problem of context gathering was mentioned, and

the Lempel-Ziv complexity measure outlined. In fact, the complexity

measure provides the basis for a powerful family of source codes. In

Ziv and Lempel's 1977 paper "A Universal Algorithm for Sequential

Data Compression", the method is given.

The basic Ziv-Lempel encoder has a dictionary, in which each

entry has an associated index number. Initially the dictionary

contains only the basic alphabet of the source; during the encoding

process new dictionary entries are formed by appending single

29

symbols to existing entries.

Let E(i, n) be a string of source symbols exactly matching the

dictionary entry with index i and length n, and let si be the next

source symbol in the input sequence. Symbol si is read and

appended to E(i, n), giving an extended string E(x, n+1). The

dictionary is searched and, if E(x, n+1) is matched with some entry

with index j, then with E(j, n+1) the next source symbol is read. If

E(x, n+1) is not found, the pair (i, si) is transmitted and the string

E(x, n+l) added to the dictionary.

For each transmitted pair (i, si), an average of n' symbols

(where n' is the average encoded string length) will be read from

the source, and the dictionary size increased by one. The

compression obtained is therefore: -

compression =T+s
ratio no. s

where T is the number of bits required to identify a dictionary

entry, i. e. the logarithm of the dictionary size, and s is the number of

bits required to identify an uncompressed symbol.

Assuming fixed values for T and s, the rate of dictionary

growth with number of input symbols is equal to the compression

ratio. This algorithm will be discussed more fully in the next

chapter.

30

2.6 Run Length Encoding.

This is a very widely used method of data compression, which

makes few assumptions about the nature of the source (Gottlieb

1975). It is assumed that the sequence of source symbols contains

runs of some symbols (i. e. subsequences containing only one type of

symbol repeated several or many times). The encoder outputs a

short, fixed length sequence of codewords corresponding to a

variable length input run, but otherwise does not affect the message

contents.

Various models have been proposed, which attempt to model

this type of source. For example, a Markov process having large

probabilities on the major diagonal of its transition matrix will

produce runs. As an alternative, a discrete distribution (for example

geometric or Poisson) may be used to directly specify the

probabilities of given run lengths occurring.

The encoding process may be of three types: -

(i) An explicit codeword for each run length.

(ii) A codeword for certain run lengths. For simple encoding,

the lengths could be integer powers of two, although more

correctly the length distribution should be determined by the

probability distribution. This would be suitable for a binary

source which produces only runs of 0's and 1's.

(iii) A single control character run, which is used to indicate

31

that the following codeword is to be interpreted as a numerical

run length value. For example, " QC" could be encoded as

("x", run, 7). This method is more appropriate to data containing

occasional long runs, perhaps for the removal of trailing nulls or

spaces on computer files.

For short run lengths the first two methods are preferable,

although the three element method (iii) performs better for longer

sequences.

Run length encoding may be concatenated with other coding

schemes. For example the CCITT facsimile encoding standard T. 6

specifies run length encoding followed by a modified (predefined)

Huffman code. Codewords are allocated to run lengths from 0 to 64,

and then in steps of 64 up to 1728. Any run length in the range 0 to

1728 can be encoded with, at most, two codewords.

Concatenation may increase the entropy of the message, both

by reducing the frequency of the symbols encoded, and the

introduction of the additional codewords needed. Table 2. f

illustrates the effect of run length encoding on the number of

symbols, sample entropy, and encoded message length for eight

samples. The sample Numbers illustrates the effect described above

particularly well, a large gain from run length encoding is offset by

an increase in entropy, resulting in a lower degree of overall

compression.

In general however, run length encoding is a simple and

practical compression method which may be concatenated with

other coding techniques.

32

'd
im 4)

V v. ööööööö

C"r O rý LO [ý Ce) Oý r-+ in 6)

1. -4 14 14

V~O

-3M- 5 w1-50
ß4 09N

C')
-0mr cc

Qi
wo mot' 00 N 00 0 00

w bi

9-4 O Ici

2800e in N oco ti a°o c'
a

C)
cl ci

U) cc mot' t- Nt- C) t.
V) ai ßi w d' d' d' d' vi d' cý e;

O
ä

00 rn
cc
1001 cc m cc 101-2 c: i !5 c

'd ýýo0ö cý o cri
cnýOi.

ý: y NN
4.4
O
4r
O
Aa .d (0

00
dam' cc 00 0 cc

° (0
ono

o

++ oM
CD

U Co (M
0 d' M- d+
0 ý ýxW

C) N

11 00 ,^ CO CO

p' Öö in C(0 cc
in M rn Co

q0ec Co i Cl to
WLeiW r--4 qe

O
cli (Y3 le (Z

-6-1 41 -4-1 «4.1 b9 -0 U E
U) HHHEww z-

O
"Oý

N
4.4
O
w vi
OO

ýa

tý o

oý v
W "d

C)
wo ö

4.4ý o ß,
+1 W
Oý O
O C)

H fII7

Wy

Oý

.pý
HO

33

2.7 Discussion.

The preceding sections have introduced source modelling

and coding under certain assumptions. Firstly that the source is

known and stationary. secondly that the transmission channel is

error free, and thirdly that the complexity of the encoder/decoder

is not important. The first of these complications will be dealt with

in the next chapter, but the remaining issues are discussed below.

Three basic types of source model have been introduced, the

Discrete Memoryless Source, the Markov source, and the string

producing source (with particular reference to the Lempel-Ziv

complexity measure). Consideration of these different source models

showed how a number of different coding schemes could be

developed, and some idea of performance was given.

The Discrete Memoryless Source is. based on the occurrence

probabilities of the source symbols. Shannon (1948) shpwed that a

good source encoder could be designed for this class of source,

whilst Huffman (1952) developed an algorithm for generating an

optimum code.

Sources which exhibit dependence between symbols may' be

modelled as Markov processes, which allows the design of more

efficient encoders than those based on the DMS. Two alternative

coding schemes based on the Markov model were examined, and it

was shown that the conditional probability formed the best basis for

code generation.

34

Although Markov models achieve good performance for

sources with memory, the dependence between symbols in a

message is usually over a variable number of symbols. For example in

text, there is strong dependence between characters in words, the

word size however is not fixed. Variable to fixed encoding schemes

were discussed, and the Ziv-Lempel compression algorithm

introduced.

Another compression technique that is widely used is run

length encoding, in which repeated occurrences of some symbol are

replaced by a two or three codeword sequence. The method is

suitable for concatenation with other source codes, but there is

some degree of interaction.

Several important points have been omitted from the

discussion so far.

(i)Transmission errors.

Errors introduced between source encoder and

decoder will cause corruption of one or more decoded symbols.

For variable length encoders, if the transmitted and corrupted

codewords are of the same length, then only one symbol will be

affected. If however, the transmitted and corrupted codewords

are of different lengths, the decoder will lose synchronization

with the encoder, resulting in a series of incorrect output

symbols. Careful design can produce codes which will

resynchronize quickly, as discussed by Stiffler (1971) and
Ferguson and Rabinowitz (1984).

35

Maxted and Robinson (1985) developed a finite state

model for the analysis of synchronization recovery for a variable

length code. They found that most codes do resynchronize

quite quickly after an error; for two different Huffman codes

generated for a 26 symbol English character source, recovery

occurred within three to seven symbols of an error. It is stated

that "one must work diligently to construct codes with a long

recovery span", however an example of a poor code is given,

which took up to 62 symbols to resynchronize.

The conditional coding scheme proposed in Section

2.4 is likely to result in greater error extension, as the

decoding of each codeword is dependent on the correct

decoding of its predecessor. This is similar to the problem of

error propagation in predictive encoding systems, as discussed

by Maxemchuk (1979).

Variable to fixed length codes, such as the string

encoding methods, are less susceptible to errors. Transmission

errors will result in the, incorrect decoding of a single

codeword and, although this will result in the corresponding

string being corrupted, no loss of synchronization will occur.

Loss of synchronization could however occur if a bit were

inserted or deleted, due to timing instability in some part of

the transmission path. This would extend almost indefinitely,

whereas the variable length codes would resynchronize fairly

quickly.

36

(ii) Complexity.

Although the performance of some coding schemes

may be excellent, the memory, hardware, or processing time

requirement may be excessive. A variable length code, designed

for a source with an N symbol alphabet, may require codewords

from 1 to (N-1) bits in length.

Software and hardware implementation of a variable

length encoder/decoder is not simple, due to the bit oriented

nature of the data. Wells (1972) discusses hardware

implementation of a Huffman encoder and decoder, whilst

Schwartz and Kallick (1964) give an algorithm for software

implementation.

For digram encoding, requiring N2 codewords, the

possible codeword length range is from 1 to (N2-1) bits, and it

becomes necessary to limit the maximum length of the code.

Garten (1985), Humblet (1981), Lavelle (1981) and Van

Voorhis (1974) discuss ways in which this can be

accomplished; these techniques will be further discussed in the

next chapter.

Variable to fixed length codes have some advantage, as

the processing tends to be character rather than bit oriented.

Other problems are encountered however, such as the need for

extensive memory capacity; for example, the scheme proposed

by Cleary and Witten (1984) required up to 1.4 megabytes of

storage. In addition, the encoder performs a string matching

operation based on a dictionary search, which is generally

complex.

37

A number of other codes exist, amongst which the most

prominent are arithmetic codes (Langdon 1984). These treat

codewords as binary fractional values, generated by successive

subdivision of the interval (0,1) using the cumulative probabilities of

the symbols. The performance of these codes is bounded, as with

Huffman codes, by the entropy.

This chapter has considered some of the basic source coding

techniques and their background in information theory. Comparative

results have been given, and some of the practical problems

discussed. The next chapter will consider some of the more

practical issues, in particular the encoding of non-stationary sources.

38

3. CODING PARTIALLY KNOWN SOURCES.

3.1 Introduction.

Many of the practical problems associated with source coding

are related to the degree with which the source model matches the

actual source; hence the design of coding schemes which are well

behaved, for sources that are not, is of considerable importance.

Several features of real sources must be considered: -

(i) The source may not match any realizable model well enough

for a practical encoder/decoder to be designed.

(ii) The source model parameters are not known, and must be

estimated from previous messages.

(iii) The source may be non-stationary.

(iv) The source may only exist for a finite period of time, i. e.

produce a single output sequence.

Some of these points have been considered by Gilbert (1971).

who proposed a number of variable length coding techniques for

inaccurately known sources. These and other techniques for

designing codes that are not sensitive to source instability are
discussed in Section 3.2.

39

Non-stationary sources cannot usually be effectively

compressed using a static coding scheme. The use of an adaptive

encoder, which continuously estimates the source parameters and

hence maintains a near optimal code, is discussed in Section 3.3.

Faller (1974), for example, suggested an adaptive variable length

coding scheme, which is discussed together with the later method

of Gallager (1978).

The coding scheme of Ziv and Lempel (1977) is

inherently adaptive and, although more complex than the adaptive

variable length encoders, can usually achieve significantly better

performance. Other adaptive string encoding schemes have been

suggested (by Cleary and Witten, 1984 and others).

The main theme of this chapter is the selection of

practical source coding techniques for partially known sources, i. e.

sources for which a model is known or assumed, but the model

parameters are unknown or inaccurate. Considerations such as

performance on non-stationary sources, memory requirements, and

ease of implementation will be discussed.

0

40

3.2 Designing robust variable length codes.

If the symbol occurrence probabilities for the source are

known, an optimal code can be generated using Huffman's algorithm

(Section 2.3). If however, the probabilities are not precisely known,

the optimality of a code becomes difficult to measure. Some of the

characteristics of a robust code are low average length, small change

in average length with deviations in source symbol probability, and

an absence of transient effects which may cause buffer overflow.

In Section 2.3 it was stated that the length of a codeword

should ideally be close to the information content of the symbol

represented. For the Shannon-Fano code, the following relation

holds (by definition): -

IX <_ L< Ix +1

In the case of a symbol with small probability, the

corresponding length will be large. A source of N symbols whose

probability follows a negative exponential distribution would, if

encoded using a Huffman code, result in a maximum codeword

length of (N-1) bits.

If the probabilities of the symbols are estimated from previous

(finite length) messages, the smaller values, which will generate

long codewords, will be less accurately known than the larger

probabilities. Some symbols may not have occurred in the samples

used for measurement, and will be represented as having zero

41

probability (and a theoretically infinite codeword length).

Hamming (1980) discusses the effects of uncertainty in

source probabilities on Huffman code performance. A source with

known symbol probabilities pi. is used to generate a Huffman code

with corresponding codewords of length Li. The actual source has

symbol probabilities pi . The average symbol length obtained is: -

L' =L+ AL =

N-1 N-1
I

1ý. pi + L, J i. ei

where L is the average length of the code for the original source, and

ei = Pi. - Pi

This is developed by Hamming to show that: -

AL = 'variance of Li x variance of ei

hence showing that a larger variance of the codeword length

distribution will exacerbate the effects of errors in the estimates of

symbol probabilities.

A code may be made robust by limiting the maximum

42

codeword length. This assists in several respects; the worst case

performance is limited by the predefined maximum length, the zero

frequency problem is circumvented, and the maximum length can

be selected to suit buffer or register widths (for example 16 bits), or

other hardware considerations (Garten 1985). Unfortunately, it is

fairly difficult to design codes with minimum average length subject

to a maximum length constraint. The solution has been formulated

as an integer programming problem by Karp (1961), although the

approach is computationally complex.

As an alternative, the maximum length may be reduced, but

not constrained. This does not provide the same level of security as

the former method, nor does it give a definite bound on buffer size,

beyond the trivial case (of N-1 bits for an N symbol code). The two

classes of technique will be considered separately, and the

compromise between average and maximum length examined.

3.2.1 Generating variable length codes with reduced maximum

length.

Huffman's algorithm can produce a number of different codes

for a given probability distribution, due to arbitrary decisions that are

made at certain stages. An improved algorithm was given by

Schwartz and Kallick (1964), which produces the Huffman code

with the minimum longest codeword length. The original algorithm,

given an ordered list of probabilities, repeatedly finds the lowest D

probabilities (where D is the code radix), merges them, and places

43

the merged probability in order. Given a number of equal

probabilities, Huffman's algorithm gives no rule for selecting the

values to be merged. Schwartz and Kallick found that the minimum

longest codeword resulted if the following rules were applied: -

(i) Select probabilities from the bottom (low probability end) of

an equiprobable set.

(ii) Place merged probabilities above (at the higher probability

end of) any existing probabilities of equal value.

An alternative approach given by Gilbert (1971), is to modify

the source probability distribution. This may be carried out in several

ways, by merging two probability distributions, or by altering the

estimated distribution. Gilbert suggests that the source is regarded

as composite, and the overall distribution of symbol frequencies

calculated from the proportion of time spent An each source state.

For example, the source may spend five percent of the time with a

uniform, and ninety five percent with a negative exponential

distribution.

The source may be modified without altering the entropy, by

assigning infinitesimal probabilities to those symbols with zero

frequency. As the product p. log(1 /p) tends to zero with decreasing

p, the entropy will not be affected by the operation.

Table 3. a shows two different sets of Huffman codes, for four

44

data samples. The first set of codes is generated using the basic

source probability distribution, whilst the second set is based on

modified distributions obtained using the method given above. The

reduction in maximum length obtained by the modification is

considerable, whilst no change in average length is observable.

Sample Huffman code performance

Using source PDF

Average Maximum

Using modified PDF

Average Maximum

length length length length

Text l 4.53 61 4.53 21

Text2 4.67 63 4.67 20

Text3 4.48 73 4.48 21

Image l 4.76 98 4.76 23

Table 3. a Average and maximum codeword lengths for Huffman

codes based on source and modified source probability distributions.

If upper and lower bounds can be given for the symbol

probabilities, a method given by Smith (1974) can be used to find a

code that minimizes the largest average codeword length for all

probability distributions within the bounds.

The code is designed using Huffman's algorithm on a modified

compromise probability distribution. The distribution is obtained

from the upper and lower bounds p1U, p1L of the probability for each

45

symbol si: -

Pi =z ifpiL<Z<p1U

=piL if piLaZ

=piU if piU 5Z

where Z is determined from the condition that the pis must have a

sum of 1.

Humblet (1981) formulated an iterative algorithm to produce

a prefix code that minimizes the moment generating function of the

codeword length distribution. The algorithm of Huffman is modified

slightly, by introducing a scaling operation applied after each merge

step.

3.2.2 Variable length codes with constrained length.

If a length constraint, L, on, can be applied to a variable length

code, the worst case performance is limited, the robustness

improved, and hardware or software implementation made easier.

Inevitably, the constraint can only be applied at the cost of increased

average length. A loose upper bound for the performance of a code of

this type is given by Gilbert (op cit), this is given as: -

46

Upper bound on average length

LU SH+1+N 2(1-Lcon) (log(N) - H)

The code may be generated in several ways, Karp's (ibid)

integer programming solution is not attractive due to the inherent

complexity of the algorithm, although an optimum solution will be

found. Some alternative approaches are: -

(i) modify the symbol probability distribution.

(ii) use an iterative method such as dynamic programming.

(iii) use a standard codeword length distribution, assigning

codewords to symbols on the basis of symbol probability.

3.2.2.1 An approach based on a modified source pdf.

This method has been briefly examined in Section 3.2.1,

where it was shown that the replacement of zero frequencies by very

small values substantially reduced the maximum length of a Huffman

code without significant effect on the average length. If the

information content of the symbols with lowest probability is less

than or equal to the maximum allowable length (Leon), it should be

possible to generate a code with average length close to the entropy,

47

and maximum length equal to the constraint.

If some number m of the least probable symbols are selected,

such that the average information content of the m symbols is equal

to, or less than the constrained length, these may be encoded in at

most Lcon+l bits. The entropy of this source is therefore: -

N-m-1

Hm =I pilog(1) + m. P(av). log(1)
i=o Pi P(av)

where the smallest m is selected such that

N-1

P(av) =I
YP(i)

m i=N-m

and log(1)S Lcon
P(av)

If a Shannon-Fano code is generated on the modified

probability distribution, the maximum length obtained will be in the

range Lcon to (Lcon +1), as the length of a codeword is within one

bit of the information content. For a Huffman code, an upper bound

to the maximum codeword length (for the symbol with the

minimum probability Amin) is given by Katona and Nemetz (1976);

the maximum length is bounded by s-1 where: -

1: Pmin <1
F(s+ 1) F(s)

where F(s) denotes the s-th Fibonacci number, generated from the

48

relation F(1)=1, F(2)=1, F(s)=F(s-1)+F(s-2), (Hardy 1938).

This method does not guarantee that the maximum codeword

will be Lcon , although it does constrain the codeword length to

within some known bound. Ideally however, a code is required that

has no codeword longer than Lcon . An iterative approach may be

used, in which the value of m is successively increased, and a code

generated, until the value Lcon is not exceeded. Although the

number of iterations is likely to be small, the repeated code

generation will be computationally expensive.

3.2.2.2 An iterative approach.

Integer programming, as suggested by Karp (ibid), will

produce an optimum code, i. e. a code with a minimal average length

subject to a length constraint. However the complexity of integer

programming, even with the branch and bound method of solution,

is known to be high. An alternative approach, similar to the method

suggested by Van Voorhis (1974), is to use dynamic programming

(Cooper 1981).

The code generation process may be Implemented in an

iterative fashion, at each stage optimizing a single variable subject to

the given constraints. The variable in this instance is the number of

codewords of some given length, which are selected to give a

minimum average code length, subject to the maximum length

49

constraint and the Kraft inequality (sect 2.3)

The probabilities of the symbols Sk are arranged in decreasing

order. The initial codeword length is set to one bit, and the

following procedure used repeatedly until all symbols have been

assigned codewords.

(i) Select the number of codewords of length i bits, n1, to

minimise the expected average length L", subject to (ii); given

that the j symbols already assigned codewords are encoded

using the allocated codeword lengths, the ni codewords are

encoded in i bits, and unassigned symbols are encoded under

the assumption that they are equiprobable.

(ii) ni is constrained by two requirements, firstly that the Kraft

inequality is satisfied, and secondly that the number of bits

required to encode all remaining symbols must not be greater

than the given maximum length Lon.

(iii) Assign ni of the xi available codewords of length i bits, set j

to j+ nj ,i to i+l bits, and repeat (i).

The number of codewords available of length i bits is: -

xi =2. (xi-i-n1i

50

If ni codewords, of the xi available, are assigned, it is possible

to encode the (N -j- n1) remaining symbols with codewords of

length i+r bits, where r is given by: -

2r. (x1-ni)z(N-j-ni)

this gives

r', 2 log2((N -- nj))
(xi - ni)

Provided that (i+r) is not greater than the required maximum

length then the code will be able to satisfy the length constraint.

The optimizing function is the expected average length L"i, given

by: -

j-i
lPk*Lk

k=0

j-1

Pk. Lk
k=O

j+ni-1 N-1

+I pk, i+Ipk. (i+r)
kj kj+ni

N-1 N-1

+I PO +I Pk. r
k =j k j+ni

As the minimization procedure will take significant

processing time, a simple precondition may be added to check that Lop
an optimal stage solution is likely. The test compares the marginal

information content of the y-th symbol (defined below), with the

51

marginal information capacity of the xi available codewords.

Marginal information

content of y-th symbol

where R}, is the sum

MY = 1092(R /py) bits

N-1

,=
IPk

k=y

The marginal information carrying capacity

of an i bit codeword is: -

Attempt optimisation if

M}, ' = 1092(xi) bits

m, <M; -a

where d is determined experimentally.

This method cannot be shown to provide an optimal solution

unless the problem can be classified as separable (Cooper op cit),

although it will be shown to provide reasonable performance.

3.2.2.3 A simple code with a fixed codeword length distribution.

An alternative technique, using a predetermined set of

codeword lengths, is extremely simple to implement. For example, a

code length set for a 128 symbol alphabet, satisfying the Kraft

52

inequality is: -

length of codeword 4bits 8 bits

number of codewords 8 120

To generate a code, it is necessary only to allocate the eight

most frequent symbols 4 bit codewords, and allow 8 bits for the

remaining symbols. Encoding consists of searching a short table,

each entry containing one of the eight most frequent characters,. If

the current character is not found, it's binary equivalent (for

example ASCII code) is prefixed by a '0' and sent. If the character is

found in the table, the number of the entry prefixed by a '1' is

transmitted. Decoding is even simpler, if the received codeword is

prefixed by '0', the remainder of the codeword is the character

code; if the codeword is prefixed by '1'. the remainder of the

codeword forms an index to an equivalent table to that used by the

transmitter.

3.2.2.4 Performance comparison of the constrained VL codes.

Table 3. b shows the average lengths of codes with a maximum

length of 8 bits, generated using the three methods outlined above,

the iterative technique, a Huffman code generated on a constrained

source, and the simple 4/8 code. The average length obtained for

the different samples do not show that one of the methods is

markedly better than the others, however the iterative technique

53

provides a more consistent performance. Table 3. c shows the

ranking of the three methods over all twelve samples, and supports

this conclusion.

Sample

name.

Sample

entropy.

Constr.

source.

Iterative

method.

4/8 bit

code.

Textl 4.504 5.680 5.355 5.507

Text2 4.641 5.603 5.440 5.593

Text3 4.456 5.664 5.324 5.526

Text4 4.722 5.898 5.530 5.719

Text5 4.019 5.375 5.283 5.202

FORTRAM 5.281 6.122 6.074 6.415

FORTRAN2 4.773 5.861 5.576 5.944

Pascall 5.022 5.690 5.799 5.938

Pascal2 4.420 5.344 5.471 5.602

Prolog 4.747 5.822 5.640 5.818

Numbers 3.988 5.355 5.142 5.246

Image 4.734 6.008 6.000 6.149

Table 3. b. Average length (bits) of three variable length codes with a

constrained maximum length of 8 bits.

54

Number of occurrences of rank:

Ranking Constrained Iterative 4/8 fixed

source. method. structure.

1 2 9 1

2 3 3 6

3 7 0 5

Table 3. c. Summary of scores attained by coding schemes from Table

3. b

The performance of the iterative and fixed structure codes is

compared with that of a Huffman code in Tables 3. d to 3. f., for four

data samples of two different types. A code is generated on one

sample of data from the four, and used to encode all four samples.

This illustrates the tolerance of the code to minor (i. e. different

sample of the same type of source), and major (i. e. sample from a

different type of source) changes in source parameters. Table 3. g.

combines the results from Tables 3. d. to 3. f., and generally supports

the preceding discussion on robustness. The Huffman code achieves

best performance for sources of the same type, but worst

performance for sources of different types. The two robust coding

schemes, both with a constrained maximum length of eight bits, are

less efficient than the Huffman code for sources of the same type,

but are more tolerant to larger changes.

The performance difference between codes generated by the

55

iterative (dynamic programming) method, and the simple fixed

structure code is not large, and the simplicity of code generation

and ease of handling four and eight bit codewords render the latter

attractive for small or fast systems.

56

Code applied to sample FORTRAN

12

Code generated

on sample:

FORTRAN 1 0.99 0.93

FORTRAN 2 0.88 0.99

Pascal 1 0.71 0.71

Pascal 2 0.64 0.64

Pascal

12

0.65 0.61

0.44 0.42

0.99 0.94

0.90 0.99

Table 3. d Efficiency of Huffman code when applied to sources other

than that used for code generation.

Code applied to sample FORTRAN Pascal

1 2 1 2

Code generated

on sample:

FORTRAN 1 0.87 0.79 0.72 0.64

FORTRAN 2 0.87 0.86 0.73 0.67

Pascal 1 0.69 0.64 0.87 0.77

Pascal 2 0.69 0.65 0.82 0.81

Table 3. e Efficiency of code generated using the iterative method,

when applied to sources other than that used for code generation.

57

Code applied to sample FORTRAN

12

Code generated

on sample:

FORTRAN 1 0.82 0.75

FORTRAN 2 0.79 0.80

Pascal 1 0.69 0.64

Pascal 2 0.69 0.64

Pascal

12

0.74 0.69

0.73 0.70

0.85 0.76

0.82 0.79

Table 3. f Efficiency of the 4/8 bit fixed structure code when applied

to sources other than that used for code generation.

Efficiency for source: -

Used to Same Different

Code type: generate code type type

Huffman 0.99 0.95 0.61

Iterative method 0.85 0.83 0.68

Fixed structure 0.81 0.80 0.69

Table 3. g. Average value of efficiency of coding schemes for different

classes of source (from previous Tables).

58

3.3 Adaptive Source Coding.

Although a robust code will perform well for slight variations

in source symbol probabilities, it will not provide acceptable

performance for gross source changes. The use of adaptive source

coding is practical for non-stationary sources, if the rate of change of

source model parameters is low.

In principle, adaptive coding is a logical extension of the

static coding schemes already discussed. A source model is defined,

and the parameters of the model estimated from observed data. A

code is generated, based on the model parameters. The parameters

are continually updated, and new codes generated at intervals. Thus

the code is maintained near to the optimum for the source model.

Many of the inherent problems of source coding are

exacerbated by the use of adaptive encoders. For example, a code

which is complex to construct may be practical for a static encoder,

but the processing overhead in periodically regenerating it may be

excessive, rendering the method impractical for an adaptive system.

Two types of adaptive source code will be discussed, the

adaptive variable length code, and the adaptive string (or variable to

fixed) code.

59

3.3.1 Adaptive Variable length coding.

An adaptive variable length encoder consists of the basic

blocks shown below. Source symbols are read and encoded using a

current code. As the symbols are read from the source, they are used

to update a frequency table. In the case of a discrete memoryless

source model, the symbol frequencies are used to estimate the

symbol probabilities, whilst for a Markov model, the joint or

conditional probabilities are estimated.

I; iicodcd
oilt})lI1

Figure 3. h An adaptive source encoder

A number of variations are possible but, complexity,

performance, rate of change of source characteristics, and other

practical design constraints need to be considered. Initially, two

designs proposed by Gallager (1978) and Faller (1974) will be

discussed, some alternative schemes will then be proposed, and the
design considerations outlined.

60

Gallagers adaptive Huffman encoder employed a
tree form of Huffman's algorithm. A node consists of the 6-tuple: -

(i) pointer, to parent node,

(ii) 0 or 1 bit element of a codeword,

(iii) pointer to left dependent node,

(iv) cumulative frequency for left node,

(v) pointer to right dependent node,

(vi) cumulative frequency for right node

In addition, for each source symbol there is a pointer to the

node in which the symbol is represented, and a bit to indicate

whether the symbol is on the left or right hand branch. The total

storage required for the data structure, for N source symbols is: -

N. (1 word +1 bit) + (N-1). (5 words +2 bits)

For a 128 symbol alphabet, the storage required for a

reasonable representation of this structure (assuming 16 bit

addresses) would be 1654 bytes. For digram or conditional encoding

based on a 128 symbol alphabet, the memory requirement would be

114,683 words (32 bit words would be needed, giving 459 kilobytes

total requirement).

As a symbol is read from the source, the pointer associated

with the symbol is used to find the appropriate node, and the

left/right-hand bit used to determine which pointer/ frequency pair

to update. The frequency count is incremented. and then the

pointer to the parent used to propagate the count increase up the

61

tree. The nodes are resorted into frequency order (the sum of left

and right hand frequencies), and paired. By the sibling property

(Gallager 1978), the resulting tree structure forms a Huffman tree,

and can be used to represent the corresponding Huffman code.

To prevent frequency counter overflow, and give a fairly fast

response to source changes, a scaling operation is periodically

applied to the measured frequencies. Gallager suggests that, every

M symbols, the frequencies are multiplied by a factor J3, typically 0.5.

The code in this case is updated once for every symbol

encoded, which results in a non-trivial processing requirement. For

a fairly stable source the code will change infrequently, and the

re-sorting steps will take little time.

Faller's (1974) encoding scheme is broadly similar to the later

method described above. The scaling operation, division by two, is

applied when the average length has increased on v occasions.

Faller gives results for four data samples, and for three values of v.

The average length, normalized to the static Huffman code

performance, taken over the four samples was calculated by Faller to

be 0.993, less than the average length of a static Huffman code on

the same data. An adaptive code may perform better than a static

code if a source sequence can be subdivided such that the average

subsequence sample entropy (weighted by the subsequence length),

is less than the entropy of the whole sample; or if the static code is

not optimal for the source.

62

The fixed structure 4/8 code may also be used within an

adaptive encoder. This requires a table of character frequencies as

with the Huffman codes described above, however the accuracy of

the frequencies has less effect on the code performance, hence one

byte per character is sufficient. The total memory required for a 128

symbol alphabet is 128 bytes for the frequency table, and eight bytes

for the table of short codewords (described in Section 3.2.2).

It was assumed by both Faller and Gallager that the receiver

and transmitter independently track the source parameters and

generate codes, however other approaches may be adopted: -

(i) Independent transmitter and receiver code generation.

This method, described above, has the advantage that the

channel capacity is used only for transmitting encoded data. If

transmission errors occur however, the receiver, which is relying

on the decoded data for the information necessary to update its

code, may lose synchronization. In addition, since both

transmitter and receiver must maintain parameter estimation

and code generation, the complexity is fairly high.

(ii) Code generated at the transmitter and downloaded to the

receiver.

This method is fairly practical as long as the code download is

infrequent, as it occupies useful channel capacity. For example,

the transmitter may generate a code and download it to the

63

receiver. The average length of the code is monitored, and if the

performance deteriorates beyond some threshold, a new code is

generated. If the source is highly variable, the code download will

become more frequent and the resulting loss in efficiency may be

unacceptable, therefore this technique will not be considered

further.

(iii) Code generated at the transmitter and modifications sent to

the receiver.

Certain types of code can be explicitly modified, rather than

regenerated. For example, the 4/8 prefix code can be modified

by swapping code length allocations for pairs of codewords. This

has the advantage over the method in (i) that the complexity is

low, and the advantage over (ii) that only modifications rather

than the whole code are transmitted.

Coding schemes of types (i) and (ill) are compared in Table

3. j. Three sets of data, type 1- upper case text, type 2- lower case

text, and type 3- numeric data, were combined to form four

composite samples. The pattern of occurrence of the data types

within the samples, shown below, gives an increasing frequency of

change. The test was intended to show the performance of the

coding schemes on mixed sources, and the rate of degradation with

increasing source instability.

Sample A= (1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3)

Sample B= (1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)

64

Sample C= (1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3)

Sample D= (1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3)

The samples had an identical entropy of 5.383 bits per

symbol, and a joint entropy of 7.679 bits per symbol pair. This gives

a lower bound on the performance attainable using a static coding

scheme designed for the source.

The first result, for an adaptive Huffman code, shows an

average length for samples A, B and C that is below the sample

entropy. This may be compared with the lower bound obtained by

calculating the weighted average of the entropies of the individual

data samples 1,2 and 3, of 4.039 bits per symbol. The average

length increases markedly with increasing frequency of source

change, the average length for sample D is 20 percent greater than

that for sample A.

The second type (i) adaptive code is based on the 4/8 bit

fixed structure code discussed in Section 3.2.2. This has several

advantages over the adaptive Huffman code, principally the ease of

code generation, and the constrained maximum length. The robust

nature of the 'code is shown by the small (seven percent)

degradation in performance from sample A to sample D. The average

length is however significantly larger than that attained by the

Huffman code, even in the worst case. If performance is a primary

consideration, the adaptive Huffman code would seem preferable.

The third result in Table 3. j shows the average length

obtained for a code of type (iii). A 4/8 bit fixed structure code is

maintained at the transmitter. A block of symbols are encoded (128

65

in this example). If the encoded block length would be reduced by

modifying the code and incorporating information about the change

in the block, the code modifications are transmitted before the

block, and the block encoded using the modified code. This allows

'look ahead' to be used to incorporate information from the block

into the code before the block is encoded.

The performance of this code is better than the type (i)

adaptive 4/8 code. The most probable reason for this is the

look-ahead feature which will give fast response to changes in the

source characteristics. With increasing frequency of change

however, the performance degrades more quickly than the type (i)

4/8 code, the average length for sample D is nine percent greater

than that for sample A. If the source changes very slowly, it is

possible that the code would also perform poorly, as the criterionfor

transmitting a swap command is that the current block of data

would be more efficiently compressed. The overhead of transmitting

the swap command places a form of threshold on the gain that must

be realized as a result of the operation.

66

Sample Adaptive code: -

Huffman 4/8 4/8

type(i) type(i) type(iii)

A 4.699 5.715 5.485

B 5.098 5.804 5.534

C 5.379 5.882 5.589

D 5.634 6.128 5.993

Sample entropy 5.383 bits " Joint entropy 7.679 bits

Table 3. j. Average length (bits) of adaptive codes when applied

to samples with identical content but increasing frequency of change

of basic data type.

67

3.3.2 Adaptive String Encoding

String based, or variable to fixed encoding has been regarded

as complex to implement in adaptive form. Some implementations

have required large amounts of memory and processor time, and

have only been viable on mini- or mainframe computers; in addition,

the learning times are often protracted. The techniques have not

been suitable for real-time or on-line compression systems.

An example is given by Cleary and Witten (1984), of an

adaptive string matching system. Their method achieved high

compression, a file of English text could be compressed to less than

3 bits per symbol average length, but the processing and memory

requirements were high. For a file of 44,871 English characters, an

average encoded symbol length of 2.75 bits was achieved, but the

memory required was 500 kilobytes. Cleary and Witten state that it

should be possible to achieve better performance with 1.4 megabytes

of storage, and give an expected encoding time of 120 microseconds

per symbol. A maximum throughput of the order of 1000 symbols

per second on a VAX 11/780 minicomputer is given as a realistic

target.

The Ziv-Lempel compression algorithm was briefly outlined in

Section 2.5. The algorithm is basically a string learning system. It

has a dictionary of known substrings of the input sequence: the

longest known substring matching the input sequence is found and

68

its index output as the codeword for the substring. The next symbol

in the input sequence is appended to the matched substring and the

resulting extended substring added to the dictionary. The next

symbol is output in uncompressed form. The receiver has an

equivalent dictionary, finds the substring corresponding to the

received index, and performs an equivalent dictionary update to the

transmitter.

For example, consider a source of symbols { a, b, c }, which

emits an output sequence - a, b, c, a, a, b, c, a, b, c, b

Initial dictionary - 1. a Appended - 4. ab

2. b entries. 5. ca

3. c

Operations -

6. abc

7. abcb

match "a" with dictionary - 1...... output "1"

next symbol is "b" output "2"

add "ab" to dictionary

match "c" with dictionary - 3..... output "3"

next symbol is "a" output "1"

add "ca" to dictionary

match "ab" with dictionary - 4.... output "4"

next symbol is "c" output "3"

add "abc" to dictionary

match "abc" with dictionary - 6.. output "6"

next symbol is "b" output "2"

add "abcb" to dictionary

resulting output sequence - {1,2,3,1,4,3,6,2}

69

Obviously for a long input sequence, the substrings learnt by

the algorithm can be quite large, and are limited in size mainly by

the rate of learning (data dependent), and the memory available.

The preceding example showed how a sequence of input

symbols may be parsed into substrings. A number of practical points

need to be considered when implementing the algorithm.

(i) Coding of index values.

The output codewords must be expressed to some finite

precision. The range of values will correspond to the maximum

dictionary size, typically 12 bit codewords giving a dictionary size

of 4096 entries.

(ii) Data structure and memory requirement.

The data structure needs careful design, as the encoding/

decoding speed and memory requirement depend on it. Early

implementations used a simple array or tree structure, with each

element providing storage for the maximum size of string.

Quoted memory requirements have been in the range 200

kilobytes to 1 Megabyte.

(iii) Substring recognition

An important part of the encoding process is the parsing of

the input sequence with respect to the substrings contained in

the dictionary. A linear search would obviously be very inefficient

and some faster technique is necessary.

70

(iv) Dictionary purging.

When the dictionary has been filled, some strategy is

necessary to remove infrequently used strings, in order that the

system continues to adapt to the input data. If the data is

consistent however, it is not necessary to purge the dictionary.

(v) Learning phase.

When the dictionary contains few entries the efficiency of the

algorithm is low, as each codeword represents only a short

string.

(vi) Uncoded symbols.

The original Ziv-Lempel algorithm specifies that the output

stream consists of codeword/next-character pairs. This reduces

efficiency as part of the output stream consists of uncompressed

data.

(vii) Early string termination.

If the stream of characters is halted, the encoder will wait for

further characters without transmitting any further codewords. A

control character may be added to the basic source alphabet.

which causes termination of the string matching process. The

transmitter sends the encoded string, followed by the control

character; the receiver decodes the string but does not attempt

to add it to its dictionary. This would typically be used at the end

of a message, or when some given time has elapsed since the

71

receipt of the last character from the source.

Miller and Wegman (1982) and Welch (1984) have suggested

improvements to the Ziv-Lempel algorithm which render it both

memory efficient and fast, solving problems (i) to (iii) above.

Miller and Wegman describe a data structure that provides

very efficient use of memory. The dictionary is held in the form of a

tree, with each node containing a single character and a pointer to

the parent node which represents the prefix string. A hash table

(Knuth 1973) is used to determine, given a matched substring and

the next input character, whether the extended substring is in the

dictionary.

The implementation difficulties of this method are discussed

by Welch (op cit). The hash table requires a significant amount of

memory (Welch suggests 8 kilobytes for a 4096 entry dictionary),

in addition to that needed for storage of the basic tree structure

used to encode the dictionary. Use and , maintenance of the hash

table, if implemented in software, is slow, and Welch suggests that a

hardware implementation or the use of associative memory would be

much faster.

An improved data structure with a modest memory

requirement is shown below. This follows Miller and Wegman's tree

structure, but rather than linking each node only to its predecessor,

which necessitated the use of a hash table, a parent node is linked to

a list of dependants. Thus a node contains a character, a down

pointer to the list of nodes representing the dependent strings, and

72

a right pointer to an alphabetically ordered list of alternative strings

having the parent string as a prefix. The nodes are held in an array,

and the array index is used to represent the dictionary index of the

string formed by the sequence of characters on the path from the

root of the tree to the last matched node. A node is defined

therefore as: -

node =(character, down-pointer, right-pointer)

Figure 3. k illustrates the modified data structure, and shows

the strings "q", "qu", "qua", and "qui" encoded using four nodes. To

match the input sequence "quiet", the ordinal value of the first

character "q" is used to find the initial node index (113 assuming

ASCII encoding), and the down-pointer used to find the index of

the next dictionary entry, the second input character, "u" is read

and immediately matched with the character in the current

dictionary entry. The down-pointer is again used to determine the

index of the next dictionary entry, corresponding to the first three

character string "qua".

The next input character is "i", whilst the next dictionary

entry currently contains character "a", these do not match and a

search is instigated on the right list of the current node. There are

three possible outcomes to this search, the character may be

matched in which case the next input character is read, or the

search may fail because the right-list ends, or a character of greater

ordinal value is encountered.

73

Index Character Down Right

pointer pointer

113 1 q' 197 null

197 'u' 692 null

314 'i' null null

692 'a' null 314

Figure 3. k The data structure for the improved Ziv Lempel compression

algorithm; the dictionary entries and associated tree for the strings

fq! $, �quýý, "quaIf, "qui".

74

If the search/match procedure fails, then a string has been

matched completely, and the index corresponding to the last entry

is transmitted. The last (unmatched) character is used to create a

new dictionary entry linked onto the last (matched) string.

The string matching process consists essentially of following a

simple progression of pointers, searching is only required amongst

alternative known characters for a given position within a string.

The memory requirement is reduced to the order of five to twenty

kilobytes.

The decoder has a similar data structure to the encoder for

storage of the dictionary, but requires an additional pointer to allow

backtracking up the code tree. Given some received index, the

corresponding entry is immediately found, and the parent pointers

followed until the string is completely decoded. This needs no

searching at all, but produces the characters in reverse order. A last

in first out (LIFO) stack is used to correct the character order,

characters are pushed onto the stack during decoding and

recovered afterwards.

A further development suggested by Miller and Wegman, is

termed character extension. This addresses (vi) above, which stated

that the output of the encoder consists partially of uncoded

characters. Miller and Wegman suggest that when a string has been

matched, the index is transmitted as before, but the next character,

instead of being sent, is used to start the next string matching

operation. The decoder adds to its dictionary, a new entry consisting

75

of a received string with the first character of the next received

string appended. The encoder has to delay its dictionary updates by

one step, to allow the decoder to maintain synchronisation.

Welch discussed a method by which initial performance may

be improved, solving problem (v) above. Initially, the dictionary is

almost empty and a small number of bits suffice to encode the index

values. As the dictionary grows, the codeword size is increased up to

some maximum. This improves performance during the first ten to

twenty thousand symbols encoded, but at the cost of increased

complexity. Figure 3. m. shows the improvement obtained from this

technique.

8

2
ýs
b° 5

3
d2

1

File size (kilobytes)

Figure 3. m Comparison of Average Length attainable by the Ziv-Lempel
Algorithm, W ith and Without the Variable Length Enhancement., for
file Text5.

it

76

05 10 15 20 25 30

A further modification which may have some benefits in text

compression, is space synchronisation. If the string learning process

is terminated when a space/character pair is found, the encoder will

tend to learn words rather than arbitrary fragments of text. The

drawback to this technique is that common fragments such as and

the would be split into their component words.

The choice of dictionary size has a major influence on

performance, as demonstrated in Figure 3. n., for an encoder with

and without space synchronization. The improvement in average

length with increasing dictionary capacity is quite dramatic, a

dictionary with as few as 512 entries achieves an average length of

nearly three bits per symbol.

The advantages of selecting integer multiples of two for the

dictionary are also evident, as distinct steps occur after these values.

Space synchronisation does make a small improvement, although

the added complexity is significant.

77

I

8

ý6

5

4

3

ü
2

q
v

1

cý

in

with space synchronization

2468 1e 12 14 16 18 20
X, 2222 2

Dictionary size (number of entries)

Figure 3. n The Relationship between dictionary size (number of entries)
and average encoded character size, for the Ziv Lempel algorithm.

One area which may become complex is the dictionary

reduction or purging that must be performed when there is no

capacity for new entries. Welch (op cit), and Ziv and Lempel (op cit),

do not discuss this problem, however Miller and Wegman suggest

that a frequency count is associated with each dictionary entry,

which is incremented, each time the associated substring is used.

When the dictionary is full, the least frequently used entries are

deleted. This method is however expensive in memory, and the

process of finding the least used entries is complex.

For example, the node structure shown below could be

78

used for a frequency count based system. Each node contains in

addition to the basic components described above, a frequency

count, and two pointers, which will require approximately 11 bytes

of storage for the transmitter and 13 bytes for the receiver. The

pointers are used to maintain the list of nodes in frequency order, in

the form of a doubly linked list.

Whenever a node is accessed, the frequency count is

incremented, and if necessary the node is moved up the list. The

least frequently used strings will move to the bottom of the

frequency list, and may be found without searching. It would be

necessary to periodically scale the frequency counts to prevent

overflow. A drawback of the method is the need to perform a

frequency count update for each encoded source symbol.

node for frequency count variant: -

character, down-pointer, right-pointer,

parent-pointer (receiver only),

frequency count, up-link, down-link)

An alternative method is based on the premise that the most

frequently used strings will grow quickly. When the dictionary is full,

all strings that are not prefixes of other strings are reduced in

length by one character. This means that commonly used strings will

keep increasing in length, whilst disused strings are progressively

shortened. This has the slight drawback that the strings which only

increased by one character since the last purge will be returned to

their earlier state. A boolean new variable can be added to the node

79

descriptor, which is set to true when a node is created. and to false

when a purge is carried out.

The method is a significant improvement on the frequency

based method in terms of memory requirements, as it needs only

one bit of additional information to be held with each node, and in

terms of processing time as there is no need to update a count when

each character is matched. The purge operation is comparable in

complexity to the scaling operation needed for the frequency count

method.

The performance of the two methods is compared in Table

3. p . The frequency count method achieves from 0.018 to 0.038 bits

improvement over the string reduction method.

File size Purge method: -
k. bytes. frequency string

count reduction

5 4.422 4.422

10 3.751 3.751

15 3.440 3.458

20 3.303 3.327

30 3.094 3.132

Table. 3. p. Effect of dictionary maintenance strategy on average
length (bits) of Ziv Lempel encoding. (File Text5)

80

The improved Ziv-Lempel encoder, using the string reduction

method of dictionary maintenance, the variable length improvement,

and the compact data structure, is an efficient data compression

technique for text files. The degree of compression attainable

appears generally good, although obviously dependent on the

characteristics of the encoded sample.

Table 3. q. shows the compression obtained for the full range

of samples. In practice, the space synchronization technique did not

achieve a consistent improvement in performance, and - the

algorithm used to obtain the results shown did not incorporate this

modification. The results clearly indicate that the algorithm achieves

a consistently better performance than the earlier variable length

codes, whilst the memory requirements are lower and the encoding

process simpler than that needed for joint or conditional encoder

implementations.

The worst performance is shown for the FORTRAN2 sample;

however this is undoubtedly due to the size of the sample, less than

2 kilobytes in length.

81

Average length for

Sample a dictionary size (number of entries) of

name. 512 1024 2048 4096

Textl 4.48 4.06 3.79 3.60

Text2 3.49 3.02 2.75 2.58

Text3 4.54 4.11 3.86 3.80

Text4 4.26 3.82 3.56 3.42

Text5 » 3.75 3.36 3.14 3.01

FORTHAN1 4.32 3.99 3.90 3.92

FORTRAN2 4.69 4.57 4.57 4.54

Pascal l 4.45 4.17 4.07 4.08

Pascal2 3.38 3.08 2.95 2.96

Prolog 3.73 3.47 3.45 3.45

Number 3.62 3.45 3.44 3.44

Image 4.49 4.13 3.96 3.86

Table 3. q. Average length (bits) achieved by the improved Ziv Lempel

encoder for a range of data samples.

82

3.3.3 Encoding sources with unknown character size.

In designing source encoders, it is usually assumed that the

input to the encoder consists of discrete symbols from the source

alphabet, and hence that the symbol size is known. Many modern

communication systems employ synchronous transmission, in which

data is treated as a continuous bit stream rather than individual

characters.

When designing a source encoder for a synchronous source

which outputs non-binary symbols in binary form, several approaches

may be taken. If the symbol size is constant but unknown, the

character length that results in optimum source code performance

can be found by search. For example, a sample of data can be taken,

the assumed character size stepped from one to some maximum

number of bits, and the entropy estimated for each case; the ratio of

entropy to character size should be minimal for the best

compression ratio to be achieved.

An alternative approach is possible if a string encoding is

used. A symbol size is selected arbitrarily, the assumption being that

frequent strings of source symbols will not lose their identity when

parsed into bit strings of different lengths. There are obvious points

to consider when selecting the segment size (where a segment is

an assumed symbol).

For a segment of length C, as there is no synchronisation
between the position in the source bit stream of segments and of

symbols, any regular string of symbols may coincide with any of the C

bit positions in the segment. This implies that, for any frequent

83

string of symbols, at least C variations of the string are possible, and

hence short segments are likely to result in more economical use of

the dictionary space.

As the encoded binary string length is proportional to the

segment size, but the codeword length is proportional to the

logarithm of the number of known strings, short segments will make

less efficient use of the dictionary space than long segments. This is

particularly relevant to the Ziv-Lempel algorithm, in which a large

proportion of the memory space is devoted to pointers rather than

symbol storage.

The two observations above imply that an optimum segment

length may be found. Figure 3. r shows the normalized average length

obtained for a sample of seven bit ASCII encoded text, for segment

sizes from one to eight bits. Several features may be seen, a slight

valley at 3-4 bits, and a minimum at 7 bits corresponding to the true

character size. In addition, a low value occurs at a segment length of

eight bits.

84

r7" -2- - ----I --'A-

1.

.b

a .8
NO
d

.4 b

Z

Figure 3. r The efficiency obtained on synchronous data of unknown
character size, for assumed character (segment) sizes from 1 to 8 bits.
Average encoded character size normalised wrt segment length.

Table 3. s shows the normalized average length obtained using

the Ziv-Lempel algorithm for six samples, for a segment size of four

bits. The highest compression obtained was 32 percent, however for

a dictionary size of 2048, the average compression was 13.2 percent.

As one would expect, the use of a large dictionary provides more

reliable compression. On the Pascal sample slight expansion was

obtained with a dictionary size of 1024 entries.

85

12345 6- 78

Segment Length (bits)

Average length of ZL code for.

Sample Entropy Dictionary size (number of entries)

name. 1024 2048 4096

Textl 0.994 0.970 0.898 0.841

Text2 0.986 0.809 0.736 0.676

Text3 0.994 0.973 0.915 0.881

Text4 0.996 0.923 0.848 0.794

Pascall 0.991 1.004 0.965 0.949

Image l 0.993 0.911 0.841 0.791

Table 3. s Normalized average length of ZL code on synchronous data

samples, for an assumed character size of four bits.

86

It appears feasible to compress synchronous data with

unknown character size, and compression of 10 to 20 percent may

be obtained. There is room however for further development in

several areas.

(i) The effects of synchronous protocols on the data stream, for

example the SDLC bit stuffing mechanism discussed in Section

6.2.1

(ii) Packet networks carry mixed format data, and it is not

possible to predict from the evidence given, the likely

performance.

(iii) The choice of a four bit segment size is based on only one

sample, and should be supported by further analysis.

(iv) The use of variable rate encoding requires some means of

regulating the flow of source data. This may be accomodated

using a buffer, although there is a risk of buffer overflow (Humblet

1981), or flow control (Section 6.2.2). These techniques are

more suited to asynchronous than synchronous traffic.

Synchronous data streams are almost always maintained using

some form of link protocol capable of error control. In many

cases the additional efficiency gained through compression of the

synchronous stream may outweigh the loss in efficiency caused by

errors due to buffer overflow.

87

3.4 Discussion

This chapter has considered three approaches to the

encoding of partially known sources. If the source is fairly stable, but

the symbol probabilities are inaccurately known, a robust code may

be used, for which a number of design methods have been discussed.

In practice, a communications channel may carry a wide variety of

data types, and a static coding scheme would not be expected to

perform well. Under these conditions, an adaptive source code is

more likely to achieve good performance.

The choice of compression scheme is heavily reliant on the

memory and processor constraints imposed by the communications

subsystem. Although memory requirements can be accurately

estimated, the processing requirements (time complexity) of most

of the schemes discussed are very data dependent.

Robust codes were discussed in Section 3.2 above. The

tolerance of a code to changes in symbol frequencies may be

improved by limiting the maximum codeword length. A number of

methods for achieving this were outlined, but it was generally found

that the average length of the code was increased as a result of the

constraint. A simple fixed structure code, having only four and eight

bit codewords was suggested. This differs from a Huffman code, as

the number of codewords of each length is predetermined. Two

other approaches were also described, one of which achieved a

consistently better performance than the fixed structure code,

88

however the complexity of these two methods is considerably

greater and hence the simpler method is more appropriate to the

application.

Adaptive codes are ideally suited to communications systems

in which the source is non-stationary. In Section 3.3.1 several types

of code were discussed, adaptive Huffman codes such as those

described by Faller (1974) and Gallager (1978), and two types of

adaptive fixed structure code. These were tested on a simulated

non-stationary source, and the effects of rate of change of source

type, observed. The robust fixed structure codes were more stable

under these conditions, than the Huffman code, however the average

length of the Huffman code was still significantly lower.

In Section 3.3.2, adaptive string encoding was discussed. The

Ziv-Lempel (1977) algorithm was shown to be capable of achieving

good compression, but subject to a number of practical problems. An

improved algorithm was then developed, depending partially on the

work of Miller and Wegman (1982) and Welch (1984), that is simple

to implement, and efficient in memory and processing

requirements. The novel aspect of the algorithm is the use of string

reduction, rather than a string frequency based approach to

dictionary maintenance.

Table 3. t. compares six of the adaptive source coding schemes
discussed above, and shows the average length for the mixed data

samples described in Section 3.3.1. and the estimated encoder and

89

decoder memory requirements.

Adaptive Huffman coding provides reasonable performance for

a slowly changing source. The degradation with increasing source

variability is due to the large maximum codeword length and to the

time delay in updating the code.

The adaptive fixed structure codes provide moderate

compression, but are extremely simple to implement. The second

method, based on the transmission of changes to the code, is better

than the first in terms of both complexity and performance.

An estimate of the performance and memory requirement of

an adaptive conditional encoding scheme is included for

comparison. The estimated average length is based on the

conditional sample entropy.

The average length of the improved Ziv-Lempel algorithm, for

dictionary sizes of 1024 and 2048 entries, is given. In both cases,

the average length is almost half that obtained. from adaptive

Huffman coding, whilst the memory requirement is quite acceptable

for a small microprocessor system.

If the source is supplying synchronous data, with unknown or

mixed character sizes, as may be found within a public or private

data network, variable length coding is unlikely to provide

acceptable performance. Section 3.3.3 showed that compression of

this type of data was possible, using the Ziv-Lempel algorithm.

The effects of transmission errors on the operation of the

source decoder, and the maintenance of synchronization between

90

encoder and decoder, were introduced in Sections 2.7 and 3.3.1

Adaptive codes are particularly vulnerable to transmission errors,

and may need resetting to the default code if an invalid codeword is

received. Variable length codes may be constructed such that any

binary sequence can be parsed into valid codewords. This means

that the decoder could not detect errors, and hence some other

mechanism must be added in order that synchronization is checked.

The modified Ziv-Lempel encoder does however have some limited

error detection capability. The dictionary is maintained partially full,

as immediately it is full a purge operation is carried out. Thus, if a

received codeword is found to correspond to an empty dictionary

entry. it can be deduced that an error has occurred. This check

would only indicate that some error had occurred, not whether the

received codeword was incorrect or the dictionaries had lost

synchronization.

Any of the methods described above may be considered

suitable for on-line compression within a communications system.

The 4/8 fixed structure code is attractive for small systems,

particularly if used in conjunction with run length encoding (Section

2.6). For moderate or large systems, the high degree of compression

attainable by the Ziv-Lempel encoder is well worth the additional

memory and processing time. There are however circumstances in

which the adaptive Huffman code may perform better than the

Ziv-Lempel method, for example on a data set in which symbols have

a well defined probability distribution, but have a high conditional

entropy.

91

Sample Average length for coding scheme

Huffman 4/8 4/8 Condit. 1 Improved

Fixed struct. Huffman Ziv Lempel

(est) 1024 2048

A 4.70 5.71 5.48 2.7 2.47 2.46

B 5.10 5.80 5.53 2.9 2.78 2.58

C 5.38 5.88 5.59 3.1 2.77 2.60

D 5.63 6.13 5.99 3.2 2.83 2.63

Memory requirement (bytes)

Encoder 1654 136 136 200k 5k 10k

Decoder 1654 136 8 200k 7k 14k

Adaption

type

(i) (i) (iii) (i) (i) (i)

Table 3. t. Comparison of average length and memory requirements

of adaptive coding methods.

92

4 TRANSMSSION ERRORS AND ERROR CONTROL.

4.1 Introduction.

The switched telephone network (STN) is subject to a wide

variety of interference, of both man made and natural origin. As a

result, when digital information is transmitted over the network,

errors may occur in the form of corrupted, deleted or inserted

message symbols. It is desirable to reduce the rate at which errors

occur, however this involves some increase in message transmission

cost due to the higher quality transmission medium that must be

used or the overhead imposed by the error correction technique.

The ideal error control system would achieve either a stated

reduction in error rate, or some specified residual uncorrected

error rate, with minimum increase in message transmission cost or

time.

Shannon (1948) introduced the concept of channel capacity

as the maximum rate at which symbols may be transmitted over a

channel with arbitrarily small probability of error. A mathematical

model which represents the channel error process is used to

calculate the channel capacity, and to provide a basis for the design

of an error control system. This implies that a model must be

matched to the known characteristics of the channel, either to the

sources of interference or to the measured distribution of the

observed errors. Although a number of telephone channel error

models have been proposed, by for example Berger and Mandelbrot

(1963) and Elliott (1965), practical experience over dialled

93

connections would support Burton and Sullivan (1972), who point

out that, in their opinion, no one knows how to determine the

capacity of a real telephone channel, warts and all.

Burton and Sullivan were comparing various error control

techniques for use over the the telephone channel. They conclude

that, although Shannon showed that an optimum forward error

correction code may be devised, block retransmission schemes

(ARQ) provide a more practical solution for this application, and

argue further that emphasis should be placed on the improvement

of ARQ techniques rather than the development of forward error

correction codes. -Recently the falling costs and increasing power of

integrated circuits have allowed powerful error control techniques

to be implemented, both forward error correction and improved

block retransmission schemes.

Effective error control is highly desirable to users of data

communications systems. If data compression is used, error control

becomes essential; the preceding chapter discussed the effects of

errors on adaptive data compression, concluding that errors would

cause loss of synchronization between source encoder and decoder.

This would result in a (possibly long) series of symbol errors, and

necessitate re-initializing the source encoder and decoder, with a

consequent loss in efficiency.

ARQ error control techniques are ideal for this application, in

terms both of efficiency and uncorrected error rate. Retransmission

of data only occurs when errors have been detected, therefore under

error free conditions the efficiency of ARQ is high. Further, ARQ

94

schemes depend on the error detecting rather than the error

correcting properties of the code used, which provides a low

residual error rate. The emphasis will therefore be placed on ARQ

and hybrid ARQ schemes.

This, and the following chapter, aim to determine the most

appropriate error control technique for use on the telephone

channel, and to contribute to the understanding of ARCS error

control techniques by making an objective comparison.

This chapter provides essential background material for the

following more detailed analysis of error control systems (in Chapter

5). Initially the sources and characteristics of errors on the

telephone channel are discussed; the objective is to identify

properties relevant to the later discussion, and to establish a suitable

channel error model for performance comparison. This is followed

by a brief review of the relevant areas of classical coding theory;

including the use ' of linear block codes for error detection and

correction.

95

4.2 Characteristics of the telephone channel.

The telephone channel, in common with most other

transmission paths, introduces some distortion and noise into the

signal carried. Modern modems are designed to transmit data at

very high rates (up to 19200 bits per second) over a channel with a

nominal bandwidth of 3 kilohertz, which is made possible through

the use of complex signal processing techniques (Lucky 1968,

Watanabe 1978, Clark 1977, Brownlie 1984). The modulated signal

transmitted over the telephone channel is subjected to distortion

and additive noise, and the receiving modem attempts to

reconstruct the original digital signal. With high levels of

interference, some receiver decisions will inevitably result in

differences between the reconstructed and original signal elements

(source symbols), termed transmission errors. In this section, the

relationship between signal path disturbance and transmission

errors will be discussed, allowing subsequent sections to view the

channel as purely digital.

4.2.1 Channel impairments.

A number of studies of channel impairments have been

undertaken in recent years, on major telephone networks. The

surveys reported by Williams (1966) of the British telephone

network, Duffy and Thatcher (1971), Batorsky et al (1984) and Carey

et al (1984) of the American Bell telephone network, form the basis

96

for the following discussion.

The telephone channel suffers from a variety of impairments,

due to transmission line effects and to the switching and

multiplexing schemes employed. Whilst the types of impairment are

well known, and the cause of the impairment usually known, only

certain effects are predictable enough to allow modem design to

compensate for them.

(i) Frequency response.

The telephone channel exhibits a characteristic amplitude

and phase response (subject to variation between grades of line

and national networks). The insertion loss is fairly flat between

300 and 2600 Hertz, increasing rapidly beyond these limits. The

phase response is less often given than envelope delay distortion,

which is the derivative of phase with respect to frequency.

(ii) Propagation delay.

The overall propagation delay increases monotonically with
distance at approximately 7 microseconds per mile; for typical

terrestrial links this will lead to delays of 5 to 30 milliseconds,

but satellite links introduce much greater end to end delays of

the order of 350 milliseconds per hop.

NO Echoes.

Impedance irregularities on the channel (for example

mismatched 2-4 wire conversion. hybrid transformers) cause

some. part of the signal to be reflected. On telephone channels

97

with round trip delays exceeding about 20 milliseconds echo

suppressors are introduced into the transmission path. These are

disabled by the modem during transmission.

(iv) Frequency shift or offset.

The use of frequency division multiplexing schemes (high

order multiplexing used on trunk lines) in which the carrier is

generated locally and not transmitted with the signal, introduce a

steady frequency offset due to the difference in frequency of the

send and receive local carriers.

(v) Amplitude and phase disturbances.

Hits, rapid temporary changes of gain and phase with a

duration of between 4 and 32 milliseconds are generally small in

magnitude, and are often associated with impulsive noise (Carey

1984). Permanent changes of phase or amplitude, known as

jumps, may also occur.

(vi) Amplitude and phase jitter.

Jitter is usually repetitive in some systematic way, and may be

due to power supply ripple voltages, or a number of other sources

(Bell 1971).

(vii) Interruptions.

Short interruptions in the transmission channel, of widely

varying duration may occur, these are often termed dropouts. In

addition, the call may terminate prematurely.

98

(viii) Crosstalk.

Unwanted coupling from other telephone links can introduce

some component of voice or data signals.

(ix) Noise.

A large number of different noise sources may contribute to

the overall received noise, depending on the path taken by the

circuit. (Batorsky 1984).

(x) Impulsive noise.

Short, high amplitude impulses are a well known feature of

the telephone channel (Enticknap 1961). They have generally

been regarded as stemming from the mechanical noise

associated with selectors and relays in the older type of

telephone exchange although other explanations have been given

(Fano 1977). Carey (1984) gave impulsive noise counts obtained

from a number of different types of exchange, and showed that

the level of impulsive noise was far lower on electronic

exchanges than electro-mechanical ones, but was still present.

(xi) Other sources.

A number of other types of impairment are found, amongst

which are intermodulation distortion due to non-linearities, and

quantization noise which may result from part of the

transmission path being routed through a digital PCM network.

99

4.2.2 The effects of impairments on demodulation.

A modern high speed modem (over 1200 bits per second full

duplex) incorporates several features (Clark 1977, Watanabe 1978,

Proakis 1983) which affect the error performance (Figure 4. a).

The binary data is initially fed through a scrambler, the

function of which is to prevent the prolonged short periodicities in

the transmitted signal which could starve the carrier recovery,

timing recovery, and adaptive equalizer of the spectral components

needed for correct operation. The scrambler is a simple shift

register device with feedback, similar to a pseudorandom sequence

generator.

The scrambled binary data is then modulated, usually using

differential phase shift (DPSK) or quadrature amplitude (QAM)

modulation, and transmitted. For a two wire modem, as used on

dial-up rather than leased lines, some form of signal combining will

take place as the transmitted and received signals share the same

pair of wires. The signal is then subject to the impairments

described in the previous section.

100

I)
. a

2

5
4)
O

'd

a

Cd

A
a4
v
0

1.
14

u v

.ý

101

4)

The receiver performs a series of operations: -

(i) Separation of received from transmitted signal, using either

frequency separation (as in CCITT recommendation V22) or echo

cancellation (as in V32).

(ii) Bandpass filtering to limit out-of-band noise, and automatic

gain control to adjust the input signal level.

(iii) Analogue to digital conversion.

(iv) Receiver signal processing, incorporating demodulation,

timing recovery, equalization, and in some cases echo

cancellation.

(v) Sampling of the equalized signal.

(vi) Descrambling, to recover the data.

Recent trends in modem design have involved the use of high

order QAM modulation schemes, maximum likelihood decoding,

adaptive equalization and adaptive echo cancellation. The effects of

thermal noise, amplitude and delay distortion are reduced by these

methods, but other impairments can still introduce errors.

Watanabe (1978) discussed the design and performance of a
4800 bit per second V27 modem using 8-PSK and adaptive

equalization. For phase hits of 90 degrees, from five to nine error

102

bits resulted, due to error propagation in the equalizer.

The use of convolutional codes with Viterbi decoding in the

modem receiver has resulted in good performance at data rates of

over 9600 bits per second. This type of decoder makes use of soft

decision information when mapping received symbols onto the QAM

signal constellation. Under poor line conditions, the Viterbi decoder

may result in considerable error extension (Lin 1983).

Studies of high speed error performance by Balcovic et al

(1971) and Carey et al (1984), show that errors tend to occur in

groups of size and weight corresponding to the scrambler employed.

A single error from the demodulator is passed through the

descrambler resulting in error extension. As some modem standards

specify long scramblers (23 bits for CCITT Recommendation V29),

this represents one of the more serious effects introduced by the

receiver.

In summary, low speed modems would tend to introduce

isolated errors, mainly due to impulsive noise, whilst high speed

modems introduce burst errors generally of low weight, and with

length dependent on the scrambler polynomial. Longer bursts of

errors are likely to result from periods of heavy noise, incorrect

equalization, or dropouts.

103

4.3 Transmission errors.

The errors affecting the digital message may be characterized

by relating their time distribution to some stochastic model, in a

similar way to that used in source modelling (sections 2.2,2.4). This

must be approached with some caution however, as the error

distribution is very dependent on the design of the modem used,

and on the properties of the individual telephone channel. For

leased line applications, the line/modem pair remain unchanged for

extended periods of time. If dial-up modems are used however, the

channel characteristics will change with each call, and the resultant

error processes will be subject to variation.

Initially some of the results of telephone channel error

measurements carried out on the American Bell, and German

networks will be reviewed, followed by a discussion of a number of

error models. The aim is not to find a unique model for the

telephone channel for, as explained above, this is dependent on the

modem, channel, and conditions of use; rather the objective is to

discuss the suitability of the models to the evaluation of error control

schemes and identify a number of representative models which

cover a range of conditions.

4.3.1 Telephone channel error statistics.

A number of measures of channel error rate are used, which
highlight different aspects of the error distribution.

104

(i) Bit error rate.

This is used to measure the average rate at which bit

errors occur, or the probability of a bit error occurring (more

correctly the bit error probability).

(ü) Block error rate.

As transmission systems often send data in fixed or

variable size blocks, the probability of a block of known length

containing any errors is more meaningful than the bit error

rate. The block error rate is the measured proportion of

errored blocks, the block error probability the corresponding

probability that a block will be received in error.

(iii) Burst length and weight.

As errors often occur in distinct bursts, particularly on

the telephone channel, some method of characterizing bursts is

necessary. A burst is defined as a group of two or more bit

errors, the distance between any two consecutive errors being

less than some limit (the guard space). The principal measures

applied to the characterization of bursts are length, (the

distance between the first and last error in the burst), and

weight, (the number of errors contained within the burst).

(iv) Gap length distribution.

Another measure applied to channels characterized by

burst errors is the frequency distribution of the length of gap

105

between errors. This is a useful measure for block oriented

transmission systems, as it gives an idea of the error free

intervals as well as the burstiness of the channel.

(v) Error free or errored seconds.

A channel performance measure specified by the

CCITT, Recommendation G821 (defined for high speed digital

transmission channels), includes three error parameters: - the

percentage of periods of one second containing no errors,

(%EFS), the percentage of periods of one second with bit error

rate less than 0.001. , the percentage of periods of one minute

with bit error rate less than 1E-6.

Information on typical channel error conditions is available

from the surveys carried out by the American Bell Telephone

company at regular * intervals. Results are available from 1960

(Alexander, Gryb and Nast, 1960), 1962 (Townsend and Watts,

1964), 1969-70 (Fleming and Hutchinson, 1971; Balcovic et

al, 1971) and 1982-83 (Carey et al, 1984).

Lewis and Cox (1966) included a set of measured gap lengths

in a discussion of channel models. Figure 4. b(i) shows the gap length

distribution, in which a strong component of approximately 120 bits

is observable. This is attributed by Lewis and Cox to dial pulses, as

120 bits corresponds to the interval between pulses of 100mS, at

the transmission rate of 1200 bits per second used in the tests. This

is confirmed by Figure 4. b(ii), which is a scatter diagram showing

106

v q

try V

it

Gap Length (bits)

Figure 4. b(i) Histogram of the Gap Lengths of the channel error data
given in Lewis and Cox (1966)

10000 ...
... '

lege :... ;. '

100 Al

e iee 1000 10080
Length of Gap(i) (bits)

Figure 4. b(ii) Scatter diagram showing the Gap(i) / Gap(i-1) correlation
for the Lewis and Cox data.

107

the correlation between adjacent gaps (the x axis is the i-th, the y

axis the (i-1)th gap); clusters are apparent around the points

(0,120), (120,0) and (120,120).

The effects on the error distribution of the modem receiver

descrambling the received data, were simulated by convolving Lewis

and Cox's data with a 23 bit descrambler polynomial. Figure 4. c(i)

shows the gap length distribution for the descrambled data, which

shows high occurrence rates for gaps of length five and fifteen '',

corresponding to the tap weights on the descrambler. The number

of errors (and hence gaps) has increased by a factor of three.

Figure 4. c(ii) shows the multigap distribution for the

descrambled data. There are strong structural components within

the scatter diagram corresponding to the distance between the

scrambler taps.

Figures 4. d(i) and 4. d(ii) show scatter diagrams of burst

length against burst weight,. for the unscrambled and descrambled

data, for a guard space of 100 bits. Other than illustrating the

predominance of single and double errors and low weight bursts,

Figure 4. d(i) shows no strong trends. Figure 4. d(ii) shows that the

error extension introduced by the descrambler results in error

bursts with weights that are multiples of 3 (the number of taps).

Some interaction between error and scrambler polynomials does

occur, as shown by the occasional burst of weight 4 or 7.

108,

600
v
a u p

400

200

B

Figure 4. c(i) Histogram of the Gap Lengths of the channel error data
given by Lewis and Cox. after descrambling

18000 Y " '

1000

" ' .ý " lee
a r: tf
Ö

ie +! fA .'P i'
. r':

jý:.., "
. ý.. ,. . "i'"J? . '" i4" ý. ý.., 1`».. L. " "": týnr..: ' 1'ßa� .

"

IN iX rw'ý As 4 ". .
h. iN

"r1i ".. ti" "ý' "4

e
0 1 18 lee 1000 ieeee

Length of Gap(i) (bits)

Figure 4. c(ii) Scatter diagram showing the Gap(i) / Gap(i-1) correlation
for the Lewis and Cox data., after descrambling

109

Gap Length (bits)

10

2

4.6

04

0

Figure 4. d(i) Scatter diagram of Burst Length against Burst Weight
for the Lewis and Cox data. with a guard space of 100 bits

25

28

c° 15

.a
18

5

B

Figure 4. d(ii) Scatter diagram of Burst Length against Burst Weight
for the Lewis and Cox data after descrambling. with a guard space
of 100 bits

110

i ie 100
Burst Length (bits)

i 18 188
Burst Length (bits)

4.3.2 Channel error models.

The simplest and most widely used channel model is the

binary symmetric channel (BSC). In this model, each bit interval is

considered independently of any other, and the state of the bit

altered according to a simple probabilistic model. The transition

probability pt gives the probability of a bit being incorrectly received

as a result of channel noise.

The error distribution resulting from the binary symmetric

channel model is usually termed random, by which is meant typical

of a channel in which bit error events are independent, and is

characteristic of a channel subject to additive white Gaussian noise

(AWGN). For a BSC with transition probability pt, the probability of m

errors in a block of length n is: -

P(m, n) _ nCm pm(1_pt)n-m

for the case in which m=0: -

P(O, n) = (1-pt)n

P(>O, n) =1- (1-pt)n

Although the binary symmetric channel does not model the

telephone channel satisfactorily, it is a standard with which most

error control systems are tested, and its properties are well

111

understood.

A model which is more suited to burst channels such as the

telephone channel, was proposed by Gilbert (1960). The Gilbert

model is based on a two state Markov process, which makes each

error event dependent on its predecessor. One state is assumed to

represent error free channel conditions, whilst the other state is a

binary symmetric channel with transition probability pt. At each bit

interval, the process may change states, depending on the current

state and state transition probabilities. Figure 4. e(i) provides an

illustration of this model.

The model produces error patterns with a geometric

distribution of burst and gap lengths. The error characteristics

produced by the model are: -

Bit error rate = P1,2 " Pt
(P1.2+P2.1)

Mean burst length = P1.2
P2.1

Mean, gap length = E2,1
P1.2

Probability of a burst length of length m

Pb(m)
.=

P1.2"p2.1 p2.2(m-1)

A more realistic telephone channel model, which can produce

112

mixed random and burst errors, was suggested by Elliott (1963).

The Gilbert model is extended by allowing the channel states to

represent low and high error conditions (Figure 4. e(ii)) rather than

the original no error/ error states.

If pt, and pt2 represent the transition probabilities for states 1

and 2 respectively, the bit error rate is given by: -

Bit error rate = E2,1 Ptl + P1,2 Pt2
P1,2 P21

1

Cain and Simpson (1969) described a method for calculating

the probability distribution of burst lengths within a block of defined

length for the Elliott channel, and applied this to the performance

analysis of burst error detecting codes. Others (for example Blank

and Trafton 1973) have produced models based on Markov

processes with more states. Complex models require the estimation

of a number of parameters, and require considerable computation

per bit if used for simulation.

113

P11

Error free channel state

P12t t21

Binary symmetric channel
with transition probability Pt

p22

Figure 4. e(i) Gilbert model of a burst channel.

Pi1

"Good" binary symmetric channel
with transition probability Pt,

P12 17 P21

"Poor" binary symmetric channel
with transition probability Pt2

P22

Figure 4. e(ii) Elliott model of the telephone channel

114

An alternative approach to the Markovian model, which is

rather more convenient for simulation work (Drajic 1984), relies on

a stochastic process which models inter-error gaps. This method

can model a burst error channel, and has the advantage that each

calculation stage corresponds to a number of transmitted bits, whilst

the Gilbert class of models produce only one bit per calculation

stage. Both approaches are analytically tractable, and have been

shown capable of closely approximating recorded error data.

Mertz (1961a, 1961b) found that the inter-error gap lengths

on the telephone channel could be approximated by a hyperbolic

distribution. Mertz proposed a model of the form

P(gap of length g) =h
(g+h)

This has no mean value but a mean can be calculated under

the assumption that measurements are taken over a finite period.

Mertz fitted curves to two sets of data and obtained a reasonable fit.

A Pareto distribution of gap lengths was proposed by Berger

and Mandelbrot (1963). The model is based on the assumptions that

successive gaps are independent, and are produced by a renewal

process (Cox 1962). The channel error data used for the study was

obtained from joint IBM / Deutche Bundespost experiments in

1961, using 1200 bit per second modems employing phase and
frequency modulation.

115

This model was also studied by Sussman (1963), who derived

expressions for the probability of m errors in n bits, allowing

comparison with the results of Alexander et al (1960) and Fontaine

and Gallager (1961).

Lewis and Cox (ibid) however, tested Berger and Mandelbrot's

model on further data samples from the IBM/ Deutche Bundespost

experiments, and found that the hyperbolic/Pareto distribution does

not hold for the whole range of gap lengths. In addition, a strong

positive correlation between adjacent gaps was observed.

A composite renewal process was suggested by Muntner and

Wolf (1968), and applied to the performance analysis of error

correction schemes.

It is often sufficient to model one aspect of the error

distribution rather than to produce a model which completely

emulates the channel. Two particular properties of the channel are

of interest in evaluating error control schemes, the local error

distribution, which is described, by the pattern of errors, burst

length and weight, whilst the global distribution relates more to the

probability of errors within a block, and the gap length distribution.

A block error model consists essentially of a function relating
block length and probability of error for some given minimum error

weight. Two models will be used in later sections, the first obtained
from data given in Balcovic et al (1971), and the second based on
the data given in Lewis and Cox (ibid).

116

The model based on results from the A. T. & T. 1969-70

survey, is based on the measured probability of m or more errors in a

block of length n at 1200 bits per second (Figure. 14 in Balcovic).

From observation, the curves given for the logarithm of the

probability against the logarithm of the block length for small values

of m, appear straight with approximately equal steps between curves

for increasing values of m, and hence can be reasonably

approximated by a function of the form

log(P) =k+a log(n) +b log(m)

The parameters k, a and b, were estimated using the method

of least squares on values of log(P) and log(n) obtained from clearly

identifiable points on the graph of P(? m, n) for 1200 bits per second

from Balcovic (ibid). The resulting function is: -

P(Zm, n)= nambc

where a=0.87, b =-1.66, c= 1/98700 for 1200 bits per second

operation. This will be referred to as the Bell model.

The channel error models discussed above offer a wide range

of mathematical approaches for the simulation and analysis of error

control schemes. The telephone channel has however been

described as difficult to model with any degree of certainty, and the

selection of a model on which to base the following analysis is not

easy. One approach to the evaluation of error control schemes, is to

117

consider their performance on several different channels. A scheme

that performs well on all the models could reasonably be expected to

behave well on the telephone channel.

The following models will be used in the following sections

for performance comparison: -

(i) The Binary Symmetric Channel, which has well known

properties and permits comparison of the results obtained with

many published results. Transition probabilities of 0.001 and

0.0001 will be used, as these represent fairly poor telephone

channel conditions. Higher error rates would result in loss of

synchronization by the modem, and hence loss of the line or

automatic fallback to a lower transmission rate.

(ii) The Bell model based on the A. T. & T. 1969-70 survey results,

which represent a -low error rate channel.

(iii) Lewis and Cox (ibid) data, recorded gap length information

which may be used directly. Although the data was obtained using

an early modem, and would not be identical to the results

obtained with a modern modem, it has the advantage of not being

the result of a model. The effects of scrambling the transmitted

data may be introduced by descrambling the error data, as

described above in Section 4.3.1.

Figure 4. f shows the relationship of block error probability to
block length for the four models. The Bell model shows a very low

118

block error probability for the range of block lengths shown, whilst

the high error rate binary symmetric channel model exceeds a block

error probability of 0.5 at a block length of 693 bits. The difference

between the high error rate BSC and the Lewis and Cox data is

surprisingly large, as the bit error rates differ by only thirty percent.
This is due to the burstiness of the latter.

0.9 1

0.8 _. -

0.7 """

0.6

0. s ""
0.4 '

" II a 8.3 '

0.2
............. ",

~2 ~~ +4
68 10 12 14 16 18

Block length (bits x 100)

Figure 4. f Relationship between block error probability and block
length for the four channel models

(1) binary symmetric channel.. pt = 0.001
(ii) channel data from Lewis & Cox (1966)
(iii) binary symmetric channel.. pt = 0.0001
(ion model based on A. T. &T survey results

28
n *IEZ

119

4.4 Channel capacity.

Shannon (1948) derived an expression for the capacity of a

transmission channel perturbed by a Markovian noise model. The

maximum rate at which information may be transmitted with

arbitrarily small probability of error, is given by: -

R= H(x) - HX(y)

where H(x) is the entropy of the source X, and HX(y) the conditional

entropy of the received signal y. given x was transmitted. Shannon

equates HX(y) to the capacity of a secondary channel through which

additional information is transmitted to allow the correction of

errors at the receiver.

For a binary symmetric channel with transition probability pt,

and a source emitting equiprobable binary symbols: -

H(x) = -p(O) log(p(O))- p(1) log(p(1)) =1

HX(y) = Il (4) + Jo(0)

= I1(1) + Io(1)

= -pi(O) log(Pi(O)) - Po(0) log(po(O))

= -pt log(pt) - (1-pt) log(1-pt)

120

R= H(x) - Hx(y)

=1+ Pt log(pt) + (1-pt) log(1 -pt)

This function is plotted in Figure 4. g, for a range of transition

probabilities from 0.00001 to 0.1.

B.

8.
v
qa

v

a 0

8.

Figure 4. g The Capacity of the Binary Symmetric Channel
(as defined by Shannon (1948))

The term transmission efficiency will be used in the following

discussion to mean the ratio between the measured or simulated

system transmission speed and the capacity of the channel when no

errors are present. This is perhaps slightly misleading in that the

121

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

Bit error Probability (log
10 scale)

efficiency should be measured with respect to the true channel

capacity, as defined above. The justification is, however, contained in

the comment of Burton and Sullivan (ibid) quoted in Section 4.1,

namely that the capacity of the real telephone channel is not known.

122

4.5 Error control.

The aim of error control is to minimize the effect of channel

errors on transmitted data. Unfortunately, this is usually

accomplished at the expense of reducing the transmission rate. The

design of a good error control scheme requires knowledge of the

channel conditions, typical error distribution and error rate, the

reduction in error rate required, and the ratio between channel

transmission and minimum tolerable source symbol speed (code

rate).

One error control scheme commonly used on the telephone

network, is fallback switching. In general, the error rate obtained on

a communications system is a function of the transmission speed. If

the bit rate is reduced (typically halved), the error rate is markedly

reduced. This method has several disadvantages, firstly that the

transmission speed is not optimized for the required error rate, and

secondly, that it is not readily apparent when the channel conditions

have improved, hence the system will operate at low speed

unnecessarily.

Another method that is widely used, is forward error

correction. Parity bits are added to the transmitted data in order

that a limited number of errors may be detected and corrected.

Usually the proportion of parity bits is fixed, and hence some loss of

channel capacity occurs regardless of the channel condition. The

123

function used to generate the parity bits must be designed with

knowledge of the channel error distribution. Often codes are

designated random (i. e. suitable for the binary symmetric channel)

or burst correcting (i. e. suited to a burst channel such as that

approximated by the Gilbert model).

The third method of error control, which is growing in

importance, is feedback error correction, or automatic

retransmission request (ARQ). Data is formed into frames to which

are appended parity words for error detection. A frame is

transmitted and, if corrupted, the receiver can detect the presence

of errors and request the retransmission of the erroneous frame.

This has two advantages, firstly that the transmission rate depends

on channel conditions, and secondly that the residual error rate

depends on the number of errors that can be detected with the

additional parity bits, which is far greater than the number of errors

that could be corrected with the same number of parity bits.

124

4.5.1 Linear block codes.

In an (n, k) block code, the source output is divided into

message blocks of length k bits. The encoder maps each of the 2k

possible k bit blocks onto a unique n bit codeword. The decoder

performs the reverse mapping from an n bit received binary vector

to ak bit message. At error correcting code defines the message-

codeword-message mapping so that the k bit message will be

correctly recovered by the decoder if the codeword and received

vector differ in no more than t bit positions.

Several important classes of code exist, of which a large

number belong to the general family of linear block codes. The cyclic

codes are a subclass of linear codes, and are widely used as, firstly

they are readily implemented in hardware using shift registers, and

secondly, the underlying algebraic structure provides the means for

developing decoding techniques. Examples of cyclic codes are the

BCH codes, defined in the binary field, and Reed-Solomon codes

defined for non-binary code symbols.

The following definitions are needed for the ensuing
discussion, and are widely known (e. g. Lin and Costello 1983).

(i) A binary code is linear iff the modulo 2 sum of two codewords
is also a codeword.

(ii) A linear code is cyclic iff the cyclic shift of any codeword is

also a codeword.

125

(ill) A code is systematic if the codeword consists of the k bit

message with (n-k) parity bits appended.

(iv) The rate of an (n. k) block code is k/n.

(v) The Hamming distance between two binary codewords is the

number of bit positions in which the codewords differ.

(vi) The minimum distance of a code. dmin, Is the minimum of

the distance between any two codewords, where the distance

may be the Hamming distance.

(vii) A block code can correct all errors of weight t or less if the

minimum distance of the code is at least 2t+1.

(viR) A block code can correct 2(n'ß error patterns.

The encoding of k message bits to the n codeword bits of a

linear block code may be represented as the multiplication of the

k-tuple binary message vector by a (k, n) generator matrix Q. The

multiplication and addition are carried out modulo 2, i. e. addition is

an exclusive-OR, and multiplication an AND.

C°M"ra

where. Q is an n-tuple. M is a k-tuple, and .Q
is (k. n).

126

In transmission, the codeword may be corrupted by an error

vector gt (also an n-tuple). giving the received vector y.

Decoding may be represented similarly as the matrix

multiplication of the n-tuple received vector V, by the (k, n) parity

check matrix H. The syndrome g, of the received vector is an

(n-k)-tuple vector, defined as: -.

V if
=(Sc+E). 11T
_M.. Q. I r +E. If

K ..
Ur

as Q.. If =a

The syndrome is capable of representing 2(n-k) error patterns,

including the zero error vector. As there are in fact 2n possible error

patterns, it is apparent that each syndrome vector corresponds to 2k

error patterns which are indistinguishable to the decoder. For error

detection this coincidence only matters when the error patterns

correspond to the zero error vector.

Error correction codes are usually constructed so that most

probable error patterns each have a one to one correspondence with

a unique syndrome vector; this obviously requires knowledge of the

error pattern distribution, generally assumed to be random (BSC),

burst (any pattern of errors with burst length less than some

maximum, as defined in Section 4.3.1), or mixed burst and random.

Cyclic codes may be described in the terms used above, as

127

linear block codes, however they are more usually represented in

terms of polynomial operations within a finite field. The generator

polynomial G(X) of a cyclic code, is a polynomial in the Galois Field

GF(X) of degree (n-k).

Encoding may be represented in several ways, the more

widely used being the systematic encoder, in which the parity bits

are appended to the message m(X) . The encoder multiplies the

message by Xfn-k). then divides by G(X), giving a remainder b(X).

When the remainder is added to the term m(X). Xtn"k), the resulting

codeword is divisible by G(X). Hence, if the receiver also divides by

G(X), and no errors are present, the remainder (the syndrome)

should be zero.

The transmitted codeword is c(X), where: -

C(X) = b(X) + m(XJ , kin-k)

and c(J) = a(X) G(X)

During transmission, the codeword is corrupted by error

vector e(X), giving the received code vector r(X): -

r(X) = c(X) + e(X).

The decoder divides the received vector by the generator

polynomial G(X) to obtain the syndrome s(X) :-

rX=rM +g(X)
G(X) G(X1 G1

128

= a(X + e'(X) +j
GOX

If s(X)=O the receiver assumes that no errors are present,

however e'(, V, which represents any component of G(XJ in the error

polynomial, will be non-zero. This corresponds to the error vector

being a codeword, which according to condition (i) above will simply

convert the transmitted codeword into another valid codeword.

4.5.2 Convolutional codes.

Convolutional codes differ from block codes in that the

encoder contains memory, and the n bit encoder output depends

not only on the k input bits but on m previous input blocks. -

Decoding algorithms tend to be complex, but with the aid of soft

decision information (the quantized output from the demodulator),

considerable coding gains can be made.

4.5.3 Random error correcting codes.

The decoder of an error correcting code has to deduce from

the syndrome of the received vector the error pattern that has

modified the transmitted codeword. The design of a decoder is

generally complex, hence codes are often selected on the basis of

the simplicity of the decoder rather than on absolute performance.

129

A general bound on the performance of at random error

correcting code is the Hamming (1950) bound: -

t

2 (n-k)
I

nCi i=0

This is readily apparent from the observation that the number

of correctable error patterns cannot be greater than the number of

syndromes.

The effectiveness of a, random error correcting code on the

binary symmetric channel is measured by the probability of

uncorrected error. For an (n, k, t) code: -

t
Probability of =1-I nC1. Pt'" (1-pc)(n-1)

1=o
uncorrected error

The Hamming (ibid) codes are the earliest class of linear

error correcting code. For any integer q>2, there exists a Hamming

code such that: -

codeword length

number of message symbols

number of parity check symbols

minimum distance

number of correctable errors

n=2q- 1

k=2q-q-1

q=n-k

dmin =3

t=1

130

These codes are extremely simple to decode, and may be put

into cyclic form.

A class of cyclic codes capable of correcting multiple random

errors are the BCH codes (Hocquenghem 1959, Bose 1960). For any

integers q>2, and t there exists a BCH code such that: -

codeword length

number of parity check bits

n=2q-1

n-ksq. t

minimum distance

number of correctable errors t<2(q-1)

BCH codes are more complex to decode than Hamming codes.

Sinha (1983) describes a decoder for a (31,21,2) code, which uses a
table look-up approach to determine error positions from the

syndrome; this method is only suitable for small values of n and t.

Blahut (1984) describes a more complex approach based on a

universal decoder, capable of decoding BCH codes and the more

general Reed-Solomon codes.

There are many more random error correcting codes, both

linear block code, cyclic code and important classes of non-block

code such as the convolutional code.

dmin Z 2t +1

131

4.5.4 Burst error correcting codes.

The Reiger (1960) bound provides an upper bound on the

burst error correcting *capability of an (n, k) linear code. The

maximum correctable burst length bmax is bounded by: -

borax S fn - k1
2

Although a number of burst error correcting codes have been

found, two important types will be discussed, Fire codes and

interleaved codes.

Fire codes (Lin 1983) were the first class of cyclic burst

error correcting code. The number of parity bits for a code capable

of correcting all bursts of length bmax or less is given by: -

n-k=q+2bmax- 1

thus

bma=(n-k-q+1)
2

If a number of consecutive codewords of some encoded

message are stored and, rather than transmitting the codewords in

sequence, one symbol from each codeword is transmitted in turn

until every symbol from every codeword is sent, the code is said to

be interleaved (Kitces 1963). If the basic code used to encode each

word is at error correcting code, and J words are interleaved,

132

then the interleaved code can correct any burst of length J. t or less,

any random error pattern of weight t or less, and many random

error patterns of weight J. t or less.

thus b =J. t

4.5.5 Burst and random error correcting codes.

If both random and burst errors are present on a channel,

neither a random or burst error correcting code will perform

effectively. Codes may however be designed to correct both types of

error pattern. The interleaved coding technique described above is

well suited to channels of this type. Lin (ibid) describes a number of

other methods, such as product codes, concatenated codes and the

Reed-Solomon codes.

4.5.6 Error detection.

The codes most commonly used for error- detection in

communication systems are the simple (k+1, k) parity check, and

various binary cyclic codes with 8,16 or 32 parity bits but variable k.

The (k+l, k) code can detect only single errors, and is not suited for

use with large k. For this purpose, cyclic codes are almost invariably

used, although termed cyclic redundancy check (CRC), rather than

133

cyclic error detecting codes. The following discussion will relate to

binary cyclic block codes of the form (k+p, k) where the number of

message bits k, is not fixed. One widely used cyclic error detection

code is that used in CCITT Recommendations V41 and X25: -

G(M=Xi6+X12+X5+ 1

For an (n, k) cyclic code, the probability of undetected error

may be calculated. As shown in Section 4.4.1 the undetectable error

patterns of a cyclic code correspond exactly to the set of 2k

codewords (including the 0.. 00 codeword). There will therefore be

2k-1 undetectable error patterns out of 2n possible patterns. Under

the assumption that all error patterns are equiprobable: -

Probability of

undetected error

= 2k-1 .1 Zn 2(n-k)

If the weight distribution of the channel error patterns is

known, the probability of undetected error can be more accurately

calculated. On the binary symmetric channel, the probability of

undetected error for an (n, k) code with minimum distance dmj� is: -

dmin- 1

Probability of =1-I nC1. pti. (1_pt)(n-i)
1=0

undetected error

The error pattern may be subject to extension by, for

134

example, the descrambling process discussed in Section 4.2. This

may be represented by the multiplication of the channel error

polynomial e(X) by a polynomial u(X). For a transmitted codeword

c(X), the received polynomial will be: -

r(X) = c(X) + e(X). u(X)

decoding the received polynomial,

r(X) = c(XZ+ e(x). u(X)
G('Q G(XJ GOO

= a(X)+ +, sLM
G(20

The syndrome s(X) will be zero if either e(X) or u(X) are zero,

or if either e(XJ or u(X) are multiples of G(X) (i. e. codewords). Thus

it is essential that the scrambler polynomial and generator

polynomial are mutually prime.

4.5.7 Error correction using retransmission.

Automatic repeat request (ARQ) error control systems offer an

efficient and reliable alternative to forward error correction; the

technique is generally attributed to Van Duuren (1951).

A feedback path is provided between the decoder and

encoder (either full or half duplex), and is used for the

communication of control information. The message is segmented

into blocks to which are appended parity bits for error detection. A

135

block is transmitted, and possibly corrupted by transmission errors.

The decoder checks for the presence of errors in a received frame

and sends an acknowledgement if no errors were detected, or a

retransmission request if errors were present. The transmitter

either transmits the next frame in sequence or retransmits an

earlier frame.

The effective code rate of the system depends on the

prevailing channel conditions. Under poor conditions, the number of

retransmissions will increase, lowering the effective rate. For a good

channel however, no retransmission will be needed, and the

transmission rate may be very high. In addition, the uncorrected

error rate depends on the error detection rather than the error

correction properties of the code used.

The implementation complexity is fairly low in comparison

with that of forward error correction, and hence the technique is

extremely widely Lised. ARQ is ideally suited to software

implementation, as the logic is extremely simple but the memory

requirement significant. There is considerable support available for

microprocessor implementations, in the form of interface integrated

circuits which perform error detection code encoding and decoding

as well as providing the serial interface.

136

4.6 Summary

The nature and source of transmission errors on the

telephone channel have been discussed. The reduction of error rate

may be achieved through the use of error control techniques such as

forward error correction, and automatic repeat request. The design

of these error control systems requires some knowledge of the error

distribution, which is generally represented in the form of a

mathematical model of the channel error process. The difficulty

with the telephone channel is- the wide variety of conditions that

may exist, rendering the design of efficient error, control schemes

problematic.

The advantages of automatic repeat request over forward

error correction have been discussed briefly. In the following

chapter ARQ will be examined more fully, and a number of hybrid

schemes discussed.

137

5 ARQ ERROR CONTROL

5.1 Introduction

The most widely used form of error correction is automatic

repeat request (ARG,). The message is formed into blocks or frames,

to which are appended parity words for error detection. A frame is

transmitted, the receiver checks the received frame for errors and

either requests retransmission or confirms correct reception via a

return path. Communication is therefore bidirectional, but may be

half or full duplex. A typical frame is shown in Figure 5. a, which

shows a control field, a data field and a set of parity bits for error

detection.

up to 2000 bim IN,

4 24-48 bits -p

Figure 5. a General frame format for an ARQ information
frame and acknowledgement frame.

138

Since the earliest application of the automatic retransmission

principle (Van Duuren 1951), a large number of improvements have

been made. There are now three basic types of ARQ, Stop and Wait

(SW) termed Idle RQ by Benice and Frey (1964), Go Back N (GBN),

and Selective Repeat (SR).

(i) Stop and Wait.

The transmitter sends one frame, retaining a copy in case of a

retransmission request, and then waits for an acknowledgement.

If a positive acknowledgement is received, the transmitter sends

the next frame. If a negative acknowledgement is received

(indicating that the frame was received in error), or no response

observed within some predetermined interval (due to the

transmitted frame or acknowledgement being heavily corrupted

or lost) the transmitter resends the frame. This technique is

simple to implement, but inefficient for channels with

appreciable delay, as the forward channel is idle whilst the

transmitter is awaiting an acknowledgement.

(ii) Go Back N.

The transmitter sends frames continuously, retaining copies

of each until acknowledged, hence the frames need a control

field containing the transmitted frame number. If a

retransmission is requested, the transmitter resends the

corrupted block, and all subsequent blocks. The transmitter thus

needs storage sufficient to hold copies of frames until

acknowledged. The number of outstanding frames will depend on

139

current channel conditions and round trip delay, and will be

limited by the available storage capacity and the range of the

frame numbering system (typically modulo 8,16 or 128). On

channels with considerable delay, such as satellite channels, the

efficiency of GBN ARQ drops due to the large number of frames

that must be retransmitted each time a frame is rejected.

(iii) Selective Repeat.

The transmitter sends numbered frames continuously, as with

Go Back N, but only retransmits those blocks which are

negatively acknowledged. The receiver must therefore be able to

store correct frames received after erroneous ones, in order that

the correct data sequence is maintained. This approach is more

efficient than either Stop and Wait or Go Back N ARCS, and has

particular advantages on channels with long delay. The main

drawback is the added complexity of the receiver due to the

increased buffer requirement.

Figure 5. b provides a comparison of the relative transmission

efficiency (defined in Section 5.2 below) of the three ARQ types, for

a binary symmetric channel with delay from 0 to 5000 bit intervals.

The poor performance of Stop and Wait ARQ and the excellent

performance of Selective Repeat ARQ, with increasing delay can be

clearly observed. It should however be noted that the limited

receiver storage capacity and the range of the frame numbering

system would in practice reduce the performance of Selective

Repeat ARQ for channels with extended delay.

140

Selective Repeat ARQ
8.9

0.7. ',

9.6 ßo Back N ARS

`

e. 4

Q
0 0.3 %

0.2 Stop and Wait ARQ

0.1
................................

12345

Channel delay (kilobits)

Figure 5. b Transmission Efficiency of Stop and Wait. Go Back N
and Selective Repeat ARQ on the binary symmetric channel (with
BER of 0.0001) for a range of channel propagation delays.

On high error rate channels ARQ becomes inefficient as the

proportion of frames needing retransmission increases, and an

" additional stage of error control is often added. Between the ARQ

transmitter and channel, a forward error correction (FEC) encoder

is inserted, and a decoder placed before the corresponding receiver.

The use of forward error correction effectively reduces the

channel error rate, and hence the number of retransmissions

requested by the ARC) receiver. However, the effective bandwidth of

the channel is reduced by the rate of the code, and hence the use of
hybrid ARQ/FEC systems must be carefully considered.

141

This chapter discusses the choice of ARQ technique. Initially a

number of hybrid ARQ schemes are described, and their

performance compared under a range of channel conditions. The

criteria for selecting frame length are discussed, and a method given

for selecting the optimum length.

There are certain practical difficulties in the design of hybrid

ARQ which are described, and an adaptive ARQ scheme proposed

which overcomes these.

The uncorrected error rate (residual error rate) of an ARQ

scheme is generally low, as it depends on the error detecting ;

rather than error correcting properties of a code. This aspect of ARQ

system performance is discussed, and the effects of errors on ARQ

frame synchronization considered.

The chapter concludes with the selection of several ARQ

schemes appropriate to use on the telephone channel.

142

5.2 Performance analysis of ARQ

The main performance parameters used to compare ARQ

systems are throughput efficiency and uncorrected error probability.

These are both dependent on the frame length and channel error

conditions (i. e. error rate and distribution, and delay).

For a frame of length k, containing (k-h) data bits, and h header

bits (including error detection bits) the efficiency is given by: -

Efficiency = (k-h) 1
kT

where T, the average number of transmissions required to

successfully send one frame, is dependent on the protocol used, and

the channel delay. k is used for the frame length rather than n to

ensure consistency with the equations that will be given for hybrid

ARC, below.

For the three basic types of ARQ, Stop and Wait (SW), Go Back

N (GBN), and Selective Repeat (SR), the value of T is given below

(these expressions are derived in Appendix C).

Tsw =N
(1-PE)

where PE is the probability of errors being detected in the received

143

frame P(>O, k), and N is the round trip acknowledgement delay (in

frame intervals).

TGBN =+1

(1-PE)

where N is, in this instance, equivalent to the number of

frames retransmitted as a result of a negative acknowledgement. It

is sometimes assumed that N is integer, however this is more

applicable to a half duplex system. In a full duplex system, the

transmitter may, on receiving a retransmission request, immediately

discontinue sending the current frame, which could lead to

non-integer values of N.

TSR =1
(1-PE)

The use of Go Back N ARQ will be assumed from this point

onwards, as this is the most widely used method, being fairly simple

to implement, and fairly efficient for channels with moderate delay.

Selective Repeat does provide better performance with increasing

delay, but at the cost of an extensive amount of buffer storage at the

receiver.

The assumptions made in the performance comparison are: -

(i) The time taken to acknowledge -a frame is twice the channel

H

144

delay plus a delay equivalent to one frame length (the receiver

must completely receive a frame before it can detect errors). In

the event of a retransmission. request being received, the

transmitter immediately abandons the frame currently being

transmitted and starts retransmission of the rejected frame. This

has the effect of making the N (i. e. the number of frames to go

back) equal to 1+2D/n, rather. than the integer part thereof as

often assumed (correctly for a half duplex channel).

(ii) The return channel is assumed error free. This is often

justified by the assertion that the acknowledgement frames are

short, and hence have a low probability of error. Often however,

piggybacking is used (Lai 1982), in which the acknowledgements

are carried within the header field of a data frame passing in the

return direction, i. e. data is flowing both ways. In most cases the

information flow, although bidirectional, is not symmetric (Fuchs

1970).

(iii) The error detection code is assumed to detect all errors.

Hence the retransmission request probability for a frame is

P(>O, k); the validity of this assumption is subject to the

discussion in Sections 4.5.6, and 5.8. The effects of undetected

errors and of errors in the return channel have been explored by

a number of researchers, for example Benice and Frey (1964),

Rocher and Pickholtz (1970), Field (1976), and Fujiwara et al

(1978).

145

(iv) The frame sequence number range and transmitter memory

capacity are assumed infinite. In practice the frame sequence

numbering would be limited, and efficiency slightly reduced as a

result. This effect will be further discussed in Chapter 6.

(v) Error correction codes are assumed to be (n, k, t) linear block

codes, capable of correcting all error patterns of weight equal to

or less than t. It is further assumed that for some rate R and

block length n, a code may be constructed that satisfies k=R. n.

by for example shortening a BCH code.

(vi) It is assumed that codes exist which satisfy the expression

t= integer((n-k) 1
integer(1092(n+1)

This expression reasonably approximates the error correcting

capability of a BCH code.

(vii) A header (frame number and error detection parity bits) size

of 48 bits is assumed; this is a fairly typical size for a protocol

such as the IBM Synchronous Data Link Control protocol (Donnan

1974).

(viii) Data from the source and source encoder is always available,

which is in practice only likely during bulk data transfers. The

transmission efficiency is of interest primarily under these

conditions, and hence the assumption is not unreasonable. The

source would also need to be able to respond to flow control

146

(Section 6.2.2), due to the inherently variable transmission rate

of ARQ systems.

5.3 Hybrid ARQ

A large number of modified ARQ schemes have been

developed to suit particular types of channel. Generally, ARQ

provides higher efficiency on burst than on random error channels,

for a given bit error rate. Forward error correction may be applied

within the ARQ to correct most of the random errors, leaving the

ARQ system to cope with the remaining errors. Figure 5. c shows a

simple hybrid system of this type.

Reverse channel

Figure 5. c A simple hybrid ARQ system

The efficiency of ARQ is improved by the effective reduction

in channel error rate and hence number of frame retransmissions,

however the forward error correction code reduces the effective

channel transmission rate by the rate of the code used. Thus the

overall efficiency is :-

147

Efficiency= k k-h 1
nkT

where T is the mean number of transmissions required per frame,

which is reduced by the use of the (n. k) error correcting code.

The error correcting code used within the hybrid ARQ system

may also be used for error detection, obviating the need for separate

codes (and hence two decoders). Several examples of this type are

described below. The minimum distance of a block code used for the

correction of up to t errors and the detection of up to d errors

(where d>t) (Lin 1983), is: -

dmin>t+d

More usually separate codes are used. Klove and Miller (1984)

discuss the effects of the inner error correction code on the

probability of undetected error for the outer code.

Two basic types of hybrid ARQ system will be discussed, the

Type I, as described above, and the Type II or parity retransmission

scheme.

5.3.1 Type I Hybrid ARQ Schemes.

Various authors have described hybrid FEC/ARQ protocols

148

similar to that described above, Lin (1983) defines these as type I

hybrid ARQ schemes. Figure 5.0) shows the general frame format of

a Type I scheme. The principal characteristic of this class of hybrid

ARQ scheme is that the additional parity bits needed for error

correction are transmitted with the frame to which they relate.

Brayer (1968) discusses the use of hybrid ARQ on HF channels,

using a non-binary block code for error correction. The channel

differed considerably from the telephone channel however, and the

results are not comparable with those below.

Rocher and Pickholtz (1970) described several hybrid ARQ

schemes, and evaluated their performance on the binary symmetric

channel.

They relate their results to performance on a high data rate

modem on a voice grade line, and comment that the forward error

correcting code rate may be very high, as "only a few errors need to

be corrected to reach a very high reliability while still retaining a

reasonable throughput'.

149

e

-brad frame

Figure 5. d(i) Type I hybrid ARQ frame structure

Basic ARQ frame
transmitted initially

Additional FEC parity bits sent if
retransmission requested

Figure 5. d(ii) Type II hybrid ARQ frame structure

150

Leung and Lam (1981) describe a hybrid Stop and Wait

protocol, using rate 0.84 BCH codes with block lengths from 255 to

2047 bits. They examined the performance of the scheme on both a

random error channel (BSC) and a Rayleigh fading channel model

characteristic of multipath effects on a radio channel. They assume

that messages arrive at the transmitter according to a Poisson

distribution, and have a geometric distribution of lengths. The mean

wasted time per transmitted message is calculated for four different

hybrid ARQ schemes, the results indicated that better performance

was obtainable using the hybrid scheme than simple ARQ.

Convolutional codes have been used in a number of hybrid ARG,

schemes. The relative merits of block and convolutional codes are

discussed by Drukarev and Costello (1982), who compare the

efficiency of hybrid Stop and Wait, Go Back N and Selective Repeat

ARQ using BCH and rate 1/2 convolutional codes for the binary

symmetric channel. They found that convolutional codes were

generally more effective than block codes for longer frame lengths

or greater transmission delay.

Generalized burst trapping (GBT) codes of rate 1/2,2/3, and
3/4 were applied to a Go Back N hybrid ARQ scheme by Sastry and

Kanal (1976), whilst more recently Drukarev and Costello (1983)

discussed the relative merits of the time out and slope control

convolutional code decoding algorithms within a hybrid ARQ system.

The rate of the code used for error correction is fairly critical.
If a low. rate code is used, most errors will be corrected without

151

using retransmission, but the transmission efficiency is reduced

considerably by the code rate. If however a high rate code is used, a

smaller proportion of errors will be corrected and thus

retransmissions will be more frequent. The code should ideally be

selected to maximize the efficiency of the system.

5.3.2 Type II Hybrid ARQ Schemes - Parity Retransmission.

A Type II (Lin 1983) hybrid ARQ protocol employs some form

of parity retransmission. A frame is sent with only error detection

parity bits added, as with normal ARQ. If however retransmission is

requested, a set of additional parity bits are sent rather than a copy

of the frame (Figure 5. d(ii)). The receiver is now able to correct

some errors, but if there are still uncorrected errors a further

retransmission is requested. This has the advantage over Type I

hybrid ARQ, that the efficiency is never less than that of simple ARQ.

One of the earliest schemes of this type was described by

Mandelbaum (1974), using incremental code redundancy. The

message is encoded using an error correcting code, then the code is

punctured by having some parity bits removed. The message is sent

using the punctured code, and if a retransmission is requested,

some of the removed parity bits are sent. The receiver is then able

to correct some errors, but if necessary the process is continued

until all the parity bits have been sent, or all the errors corrected.

152

Metzner (1979) suggested splitting the k message bits into

small sub-blocks (say 4 bits), and using a half rate code to generate

additional parity bits using for example an (8,4) Reed-Muller code.

Initially the k message bits are sent, but in the event of a

retransmission, the k parity bits are sent. The receiver may then

attempt correction of the transmission errors using the (2k, k) code.

A Type II hybrid ARQ scheme using a half rate code was also

used by Lin and Yu (1981), who suggested encoding using a long

block length BCH code, (1023,523) shortened to (1000,500), which

can correct 5 errors and simultaneously detect 105 errors. In the

event of a retransmission, the receiver has two chances of retrieving

the message, firstly, the message is recoverable from the k parity

bits if no errors occurred on the second transmission, and secondly

by using the error correcting capabilities of the code. Wang and Lin

(1983) also used a shortened (1000,500) BCH code but with a

separate error detection code; the (1000,500) code can correct 55

errors.

The advantage of Type II ARQ over Type I is that the additional
forward error correcting code parity bits are sent only when a

retransmission is requested, hence at low error rates there is little

overhead due to the code rate. At high error rates, Type II ARQ

should again perform well, as the error correcting capability is very
high.

There will be a range of error rates for which Type I will

perform well, as the disadvantage of Type II is that there has to be at
least one retransmission before the receiver is able to perform any

153

error correction. A combination of Types I and II should prove

effective under both high and low error conditions, as a high rate

forward error correcting code can be used to correct a small

number of errors and hence avoid the need for retransmission, but if

channel conditions deteriorate parity retransmission may be used.

5.3.3 Transmission efficiency of some hybrid ARQ schemes.

Three hybrid ARQ schemes will be compared with the basic Go

Back N ARQ protocol. These are: -

(i) A simple Type I hybrid ARQ, employing a fixed rate linear

block code.

(ii) A simple Type II hybrid ARQ, using parity retransmission

based on a half rate linear block code.

(iii) A combination of Types I and II, using a high rate forward

error correcting code in Type I mode, and a half rate code in

Type II mode.

The transmission efficiencies of the three schemes are given

below, the equations are derived in Appendix C: -

(i) Type I hybrid, using a fixed rate (n, k, t) linear block code, as

154

discussed above: -

Efficiency =k (k-h) 1
nkT

T' depends on the uncorrected error probability for the

(n, k, t) forward error correcting code, i. e. the probability of more

than t errors occurring within a block of length n bits .. P(m>t, n)

(Section 4.3.2).

hence T= 1+N. P(m>t. n)
(1 - P(m>t, n)

(ii) Type II, with parity retransmission: -

Efficiency = (k-hl 1
kT

T, the expected number of transmissions required to send a

frame successfully, depends on two error probabilities. PE is the

probability that the first transmission will be corrupted

P(m>O, k), whilst P(m>t2,2k), the probability that subsequent

transmissions will fail, is lower due to the error correcting

capability of the (2k, k, t2) code.

T'=1+ NPE
(1 - P(m>t2,2k)

155

(iii) Combined Type I and II, with a high rate forward error

correcting code, and parity retransmission: -

Efficiency =k (k_h) 1
nk T'

The expression for T is as given in (ii) above, however the

initial probability of error PE will be replaced by P(m>tl, n) due to

the effects of the (n, k, tl) forward error correcting code element.

T'= 1+P m> 1L}r
(1 - P(m>t2,2n))

The choice of code rate should depend on the prevailing

channel conditions. In practice however, knowledge 'of the bit error

rate in the forward channel can only be determined by observing the

number of retransmission requests, and hence acquired only after

some significant delay.

Figure 5. e shows the relationship between efficiency and bit

error rate for Type I hybrid ARQ, for code rates of 0.98,0.9,0.8, and

0.6. For comparison the theoretical channel capacity (from Section

4.4) is also shown. Clearly for low error rates the code rate should be

as high as possible, however at high error rates some intermediate

code rate will give optimum performance.

156

8.1
t

0

la. ý
-4.5 -4 -3.5 -3

Bit &ror Rate (I. og 10 scale)

-2.5

1\
.y
t ''t

ci
ä ti
it 1

i

I4

ti 1
t% 1

-2
_1.5

Figure 5. e Transmission Efficiency of Type I Hybrid ARQ for the
binary symmetric channel. with a range of FEC code rates.

0 . 98 "--------------------

-1

A rate 0.85 BCH code will be used for scheme (i), this

corresponds for example, to the (1023,873,15) and (511,439,8)

BCH codes. The performance of Type (i) hybrid ARQ for other code

rates will be explored more fully in Sections 5.6 and 5.7. A higher

code rate, 0.95, will be used for scheme (iii).

157

5.4 The Effects of Channel Error Distribution and Delay on

Transmission Efficiency.

In Section 4.3, three different channel models were proposed

for the evaluation of error control schemes. These were the binary

symmetric channel, the run length encoded data published in Lewis

and Cox (1966) and a model for the block error rate derived from

data from the Bell telephone network survey of 1969-70 given in

Balcovic (1971). The models will be referred to as the BSC. Lewis

and Cox, and Bell models.

The performance of four ARQ schemes will be compared, Go

Back N ARQ, and the three hybrid GBN ARQ schemes described in

Section 5.3.3. The channel models used for comparison of the ARQ

schemes outlined above are (from Section 4.3.2) :-

(i) The binary symmetric channel.

- BSC model

m
P(>m, n) =1- nCm psi (1_pt) (n-i)

i=o

(ii) Data given by Lewis and Cox (1966). (Bit error rate 0.0007)

This recorded gap length data will be used to calculate

P(>m, n) directly for each result required.

158

(iii) Model based on A. T. &. T. results from 1969/70 survey,

reported by Balcovic et al (1971). (bit error rate - 10-6)

- Bell model: -

P(>m, n) = na. mb. c

with calculated values of a=0.87, b=-1.66, c=1/98700

Figures 5. f(i) and 5. f(ii) show the efficiency of the four ARQ

schemes when applied to a binary symmetric channel, with bit error

rate ranging from 0.00001 to 0.1. The frame length is 1000 bits, and

the transmission delay zero in Figure 5. f(i), and 1000 bit intervals in

Figure 5. f(ii).

At low error rates, ARQ performs well, but efficiency falls

rapidly with increasing error rate. Hybrid scheme (i) has an

efficiency slightly less than the code rate, which remains constant to

a high error rate, indicating that the error correcting code is

correcting almost all errors at low to medium error rates, and hence

avoiding the need for retransmission.

Hybrid scheme (ii), parity retransmission, has a similar

performance to ARQ at low error rates, but the half rate (2n, n) error

correcting code provides reasonable throughput at very high error

rates (up to a BER of 0.05).

The combined Type I/II hybrid provides good performance at

all error rates. At error rates up to 0.001, the throughput is

approximately 90 percent, whilst the parity retransmission provides

reasonable efficiency up to an error rate of 0.03.

159

There is a larger difference in efficiency between the Type II

and combined Type I/II scheme than might be expected. At error

rates higher than 0.001, the Type II scheme has an efficiency of

approximately 0.47, whilst the Type I/II scheme has an efficiency of

approximately 0.3, about 46 percent less than the Type II scheme.

One would expect the difference to be only five percent, due to the

rate of the additional code, however the effect is due to the

additional encoding/decoding delay allowance of one block length.

The effects of increasing the delay to 1000 bit intervals

(shown in Figure 5.1(11)) is to reduce the efficiency of all schemes. At

low error rates the simple ARC) and the Type II hybrid ARQ show

greatest signs of degradation, due to the increased number of blocks

that must be retransmitted. The Type I and combined Type I/II are

less affected, as the forward error correction reduces the incidence

of retransmission requests. At higher error rates, the Type I/II

scheme shows reduced efficiency, however the Type I scheme is

only slightly affected.

160

t

d
ro
w
a 0 .1 m
8

8.8 'ý.; . ».. _.. ». _..... t--------

8.6
11 ,ýi

Iv
l1

ci) Ideal channel capacity
"8.4 (ii) GBNARQ

(UI) Type I hybrid
(iv) Type II hybrid 8.2
(v) Type I/11 hybrid

8
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

Bit Elter Rate (LOg 1O Scale)

Figure 5. f(i) Transmission Efficiency of the four ARQ schemes, for the
binary symmetric channel4 with zero delay.

e. 1

-1

e. U

ö 8.

Figure 5.1(11) Transmission Efficiency of the four ARQ schemes, for the
binary symmetric channel, with a 1000 bit channel delay.

161

-b -g. 5 -9 -3,5 -3 -Z. 5 -2 -1.5 _: 1

Bit &ror Rate (ILog 10 Scale)

Figures 5. g(i)-(iv) and 5. h(i)-(iv) illustrate the effectiveness of

the four ARQ schemes on four different channel models. The first

set of graphs show the relationship between efficiency and channel

delay for each ARQ scheme, whilst the second set of graphs compare

the performance of the different ARQ schemes for each channel

model.

In Section 4.2.1, channel delay was briefly discussed, and

typical values given. A PSTN channel typically has a delay of 5 to 30

milliseconds, whilst a satellite channel may have a delay of 300

milliseconds or more. In terms of bits, the expected end to end

delays are: -

(i) At 1200 bits per second, from 6 to 36 bits on the PSTN,

and approximately 360 bits for a satellite channel.

(ii) At 19200 bits per second, from 90 to 580 bits on the

PSTN, and approximately 5800 bits for a satellite channel.

A range of end to end delay of 0 to 5000 bits is used in

Figures 5. g and 5. h., with an assumed frame length of 1000 bits.

Go Back N ARQ performs fairly poorly on channels with

extensive delay, as shown if Figure 5. g(i). The worst performance

occurs on the high error rate binary symmetric channel. On the low

error rate BSC, and Lewis and Cox channel, ARQ performs tolerably

at delays of less than 2000 bits, whilst on the low error rate Bell

model, very little degradation is noticeable. There is a significant

162

difference in performance between the high error rate BSC and the

Lewis and Cox channel results, despite the similarity in bit error

rate, 0.001 for the BSC and 0.0007 for the Lewis and Cox data. This

is due to the clustering of errors on the recorded channel data,

discussed in Section 4.3.2.

Figure 5. g(ii) shows the relationship between efficiency and

delay for the Type I hybrid scheme. This is relatively insensitive to

delay; a slight degradation may be observed on the result for the

Lewis and Cox channel data. This is again due to the clustering of

errors, which results in the forward error correcting code failing to

correct a small proportion of errored blocks.

The Type II hybrid scheme does not perform markedly better

than simple ARQ, with the exception of slightly improved

performance on the high error rate BSC, as shown in Figure 5. g(iii).

Figure 5. g(iv) shows the result for the combined Type I/II

scheme, which shows some interesting features. The efficiency of

the scheme is relatively insensitive to delay, with the exception of

the result obtained for the Lewis and Cox data. This illustrates that

the high rate error correcting code is able to cope well on the binary

symmetric channels, but is unable to correct a fair proportion of

errors on the recorded channel data.

163

8.

v

6.

I je.

Figure 6. g(i) The Relationship between Transmission Efficiency and
Channel Delay for Go Back N ARQ, with four different channels.

1

t

8. 11, Iv

III

u
8. b

ö
I 0.4

8.2

123
Channel delay (kilobits)

(i) Bell channel model
(ii) BSC « pt a aooo1

(iii) Lewis & cos data

(iv) ESC.. pt : 0.001

45

Figure 5. g(ii) The Relationship between Transmission Efficiency and Channel Delay for Type I Hybrid ARg, with four different channels

164

--av

Channel delay (kilobits)

0

IL

e.

e.

t e.
u
*0 8.

1
8.

ý
e.

J e.

e.

Figure 5. g(iü) The Relationship between Transmission Efficiency and
Channel Delay for Type II Hybrid AR9, with four different channels.

1
1,11,1v

8.

t

u
0.6

W
a 0

8.4
E

0.2

U) Bell channel model
(ii) BSC .. pt: Q0001
(ý) Lewis & Cow data

(Iv) BSC .. pt : 0.001

123
.4S Channel delay (kilobits)

Figure 5. g(iv) The Relationship between Transmission Efficiency and
Channel Delay for the Mixed Type I/II Hybrid ARQ Scheme

165

91234S

Channel delay (kilobits)

On the high error rate BSC, the two schemes employing

forward error correction are considerably more effective than those

relying solely on retransmission, as shown in Figure 5. h(i). This is

also apparent on the low error rate BSC, although only for large

delays. Figure 5. h(ii) shows that under these conditions, the ARG,

and Type II hybrid perform well for delays less than 1000 bits, but

the Type I/II scheme performs best for all delays.

A slightly different picture emerges when the results for the

Lewis and Cox channel data are examined (Figure 5. h(iii)).. The

performance of the Type I/II scheme drops markedly, but is still the

most efficient for delays of less than 1000 bits. The Type I scheme is

fairly efficient for the whole range of channel delay.

The low error rate Bell model provides a good environment

for simple ARQ and the Type II hybrid, whilst the loss in efficiency

due to the overhead of the forward error correction code limits the

performance attained by the Type I and Type I/II schemes.

166

e. 9ý--ý-ý-ý-. __. _. ý. _. _-. --. --. -. -. _. __. ___. __.! _. _. _.. __. _. _. _

.............................. e. sý---11
8.

e. 6

a e. 5 (!) Type I/R hybrid
(ii) Type I hybrid

e. 4 (! ii) Type U hybrid

(IV) GBNARQ
e

8

e. 1 Ir

ýý
12345

Channel delay (kilobits)

Figure 5. h(i) The Relationship between Transmission Efficiency and
Channel Delay for the four ARQ schemes on the binary symmetric
channel with BER 0.001.

e. 4

8.
t

u
0 8.

0

B

8.41 '
91234

Channel delay (kilobits)

Figure 5. h(ii) The Relationship between Transmission Efficiency and Channel Delay for the four ARQ schemes on the binary symmetric
channel with BER 0.0001.

0

167

8.

8.

t, 8.

1 e.
g
ý e,

F 8.

Figure 5. h(iii) The Relationship between Transmission Efficiency and
Channel Delay for the four ARQ schemes on the Lewis and Cox error
data.

I

Olt
U

6.6

6.4

8.2

Ili, IV

8.8

(i) Type I/II hybrid
(ii) Type I hybrid
(UI) Type II hybrid
(lv) GBNARQ

234
Channel delay (kilobits)

Figure 5. h(iv) The Relationship between Transmission Efficiency and
Channel Delay for the four ARQ schemes on the Bell channel model.

168

812345

Channel delay (kilobits)

5.5 The Relationship between Frame Length and Efficiency.

The efficiency of an ARQ system depends heavily on the

choice of frame length. Long frames are susceptible to errors, whilst

short frames are inefficient due to the proportionally large header.

For some given channel conditions, there exists an optimum frame

length. It will be assumed initially that channel conditions are stable,

and that the use of a fixed frame length is practical.

The use of forward error correction should substantially alter

the frame length/ efficiency relationship, as longer frames will be

less affected by channel errors. In this section, the performance of

the Go Back N, and Type I hybrid ARQ schemes is considered for a

range of frame lengths of 100 to 2000 bits, on the four channel

models used in the preceding section. This is followed by some

discussion of the choice of optimum or maximum frame length.

Figures 5. j and 5. k show the variation of efficiency with frame

length for the two ARQ schemes and four channel models, for

transmission delays of 0 and 1000 bits.

Go Back N ARQ is fairly efficient for short block lengths, as

shown on Figure 5. j(i). Distinct maxima are present for all channel

types except the low error rate Bell model. For the high error rate

BSC the maximum efficiency is 0.62, at a block length of

approximately 250 bits. The Lewis and Cox model provides higher

efficiency, 0.78 at a block length of 600 bits.

169

1t

.. � 0.7

v
91 e. b

13 Bell channel model
0.5 iv (ii) BBC » pt s 0.0001

8.4 (ill) Lewis & Cox data

(iv) HSC » pt = 0.001
8.3

8.2

8.1

02- 468 18 12 14 16 18 28

Frame Length (z 100 bits)

Figure 5. j(i) The Relationship between Transmission Efficiency and
Frame Length for Go Back N ARQ , for zero end to end delay.

11

8.8

..... -S
ii

....

W »J

. "x4w w" w"""

Vt

0.4

0. z
Iv

2468 18 12 14 16 18 20

Frame Length (x 100 bits)

Figure 5. j(ii) The Relationship between Transmission Efficiency and Frame Length for Go Back N ARQ ' with an end to end delay of 1000 bits.

170

The effect of increasing the channel delay is shown in Figure

5 j(ii). The performance of ARQ on the Lewis and Cox, and low error

rate BSC is degraded by 10-20 percent, and the optimum block

length increased noticeably. The efficiency of ARQ on the high error

rate BSC has dropped considerably, to just over 0.2, whilst the

optimum block length has increased slightly to 300 bits.

Some slight irregularity may be observed on the curves for the

Lewis and Cox model, as the model is based on recorded channel

data rather than a mathematical model.

In Figure 5. k(i) the efficiency of the Type I hybrid ARGS may be

seen to increase monotonically for the range of block lengths

considered. There is little difference in performance for any of the

channel models.

The effect of increasing the channel delay to 1000 bits is

shown in Figure 5. k(ii). The results are very similar to Figure 5. k(i),

which illustrates the high tolerance of the scheme to delay. Some

slight degradation is noticeable on the curve for the Lewis and Cox

model, the explanation for this was given in the preceding section.

171

*1E-2
85

1,0,1v

76

Q 68
u
i3
19 55

58

45

4@

p) Bell channel model
(ii) BSC » pt s Q0001

(Hi) Lewis & Cox data

(iv) BSC » pt = 0.001

02468 18 12 14 16 18

Frame Length (z 100 bits)

Figure 5. k(i) The Relationship between Transmission Efficiency and
Frame Length for Type I hybrid ARQ, with zero channel delay.

e.

B.
t

.ge,

98

8

Ii.

6.

20

oIb8 19 12 14 16 18 28
Frame Length (z 100 bits)

Figure 5. k(ii) The Relationship between Transmission Efficiency and
Frame Length for Type I hybrid ARQ, with a 1000 bit end to end delay .

172

Expressions for optimum frame length are derived in

Appendix D for Stop and Wait, Selective Repeat, and Go Back N ARQ.

The equation for the efficiency is differentiated, and the zero

crossing point of the derivative (corresponding to the maxima)

found. The conditions under which this approach is valid are

discussed by Chu (1974) and Morris (1979).

For Go Back N, the optimum frame length k satisfies: -

(1-PE)(h + k. PE. (N-1)) - (k-h). k. N. PE =0

where PE is the probability P(m>O, k), and PE is the derivative

of PE with respect to k. Note particularly that PE, PE' and N are

functions of k.

In practice, the choice of frame length does not depend solely

upon channel conditions. For example in a data network, packets of

data maintain their identity, and are effectively encapsulated within

an ARQ frame. Alternatively, a communications system carrying data

between a VDU operator and computer should not have to accept

sufficient characters typed from the keyboard to fill, an optimum

frame before sending it. The optimum frame length should therefore

be regarded as the maximum size for the given channel conditions.

rather than a fixed value.

Many studies of data communications traffic have been

173

published. For example Fuchs and Jackson (1970) discuss the

terminal-computer data traffic characteristics of three time shared

computer systems. They found that the traffic occurred in bursts,

generally conforming to a Gamma distribution, with mean burst

length of 11 characters for user terminal to computer traffic, 41

characters for computer to terminal traffic.

The channel conditions are not in practice known precisely,

thus the optimum frame size can only be roughly estimated. An

adaptive scheme could be used, for example, to reduce the frame

length when a retransmission is requested and increase it when no

frames have been rejected for a set period of time.

This highlights one unfortunate aspect of ARQ, namely that

once a frame has been transmitted its size is fixed. If during good

conditions the frame size has increased to say 2000 bits, then the

stored copies of the most recently transmitted frames are all 2000

bits in length. If the channel then becomes noisier, with an error

rate of say 0.005, the transmitter will then retransmit 2000 bit

frames, which have a very low probability of successful transmission

(0.000044 for a binary symmetric channel). The system will

effectively be locked up until the error rate improves.

II This may be prevented by using, for example, the Type

hybrid ARQ scheme discussed above. Another possible solution,

which does not involve the use of forward error correction involves

a slight modification to the definition of ARQ. Instead of retaining

the unacknowledged frames, the unframed data can be stored. If a

retransmission is requested, the frames are reconstructed and may

174

be longer or shorter than the original ones. Thus the lockup

situation described above would result in successively shorter frames

being transmitted, the frame length would reduce until some

throughput was obtained. This approach would be more suited to

slowly time varying channels.

175

5.6 Selection of Code Rate for Type I Hybrid ARQ.

The rate of the code used for forward error correction in a

hybrid ARQ system has a considerable influence on performance. In

Figure 5. e, the efficiency of a Type I hybrid ARQ scheme was shown

to depend heavily on code rate, for the binary symmetric channel.

This section considers the choice of optimum code rate for the four

different channel models used in Sections 5.4 and 5.5.

In Figure 5. m, the efficiency of a Type I hybrid ARQ scheme is

shown for a range of code rates from 3/4 to 1. The codes are all

known (1023, k, t) BCH codes, otherwise the assumptions are as

defined in Sections 5.1-5.4, with zero delay. For the low error rate

Bell model, the optimum rate is 1, i. e. no forward error correction;

whilst for the worst case, the Lewis and Cox data, the optimum rate

is 0.92.

The comment of Rocher and Pickholtz mentioned in Section

5.3.1 above, may be called into question as a result of the

observations made on Figure 5. m. They state that, in the context of

data transmission over voice grade telephone lines, only a few errors

need to be corrected by the forward error correcting code within a

hybrid ARQ system. This may well appear to be the case if the binary

symmetric channel is used a basis for comparing codes, however the

bursty nature of telephone channel errors leads to an increased

proportion of error free frames, and an increased error density

within errored frames.

176

8.9

8.

8.

t e. 6
a
V

8.5

8.4

0.3

8.2

lii `

CO Bell channel model
(ii) BSC » pt = 0.0001

(iii) Lewis & Cox data

(iv) BSC » pt s 0.001

75 Be 85

Iv

98 95 100
*IE-2

Forward error correcting code rate.

Figure 5. m The Transmission Efficiency of Type I Hybrid AR& for
FEC code rates from 0.75 to 1.00, for the four different channel models .

In practice the channel error distribution is usually not

known in advance, and may well be time varying. The code rate may

be fixed, or could be made adaptive. If an adaptive scheme is to be

effective however, the rate of change of error rate would need to be

slow, due to the delay before the transmitter detects a change in

channel conditions (from an increase in the number of

retransmission requests).

177

5.7 Adaptive Selection of Code Rate.

The distribution of errors with time for the Lewis and Cox

data is shown in Figure 5. n. The graph shows the time sequence of

the number of errors per 1000 bit block, and clearly shows the

clustering effects discussed above. An adaptive code redundancy

selection scheme seems likely to achieve some success, at least for

low values of channel delay.

I

I
18
64

1000 bit frame sequence

Figure 5. n Number of errors per 1000 bit block. as a time series, from
the Lewis and Cox channel error data.

Variable redundancy codes have been investigated by Weng

and Sollman (1967), and others. Their application to ARC) systems

178

was discussed by Farrell (1969). and Goodman and Farrell (1975).

Farrell suggested that sets of optimum (i. e. maximum code rate for a

given dmin) short block codes should be used, and the code selected

from amongst these. The performance of this and a number of other

error control coding schemes was given for a white noise and optical

channel.

Goodman and Farrell studied the performance (in terms of

undetected error rate and efficiency) of variable redundancy ARQ

schemes over HF radio channels. -A number of linear block codes

with the same codeword length were used, the choice of code rate

being made on fhe basis of the block error rate measured at the

receiver. A PSTN line was used to provide information feedback to

the transmitter.

They conducted a number of tests, involving the use of sets of

up to eight different code rates, and found that it was possible in

many cases to achieve better performance with only two code rates.

The use of a simple channel condition monitor is suggested, of the

form "if two successive blocks with errors occur, change to the more

powerful code".

179

5.7.1 An adaptive hybrid ARQ scheme.

To investigate the effectiveness of adaptive schemes it is

necessary to perform simulation rather than analysis. A simple Go

Back N model may be constructed, and the Lewis and Cox data used

to provide error information directly. The GBN model shown below

includes two code rates (high and low rate); the transmitter

switches to the low rate code whenever a reject or errored

acknowledgement is received, and stays in that state for a period of

time. The errored acknowledgement is needed to indicate that,

although a retransmission is not being requested, errors are still

present on the channel. The delay before switching back to the high

rate code, the sustain factor, is considered below.

The potential advantage of the technique is not that it

improves the probability of the retransmitted block being accepted

as with the scheme suggested by Mandelbaum (ibid), although it

does this. Rather the advantage is that the retransmitted block and a

number of following blocks are encoded using the lower rate code,
hence the error correcting code is still in use after retransmission
has been completed. Thus if the errors are grouped such that a

number of successive blocks contain errors, the more powerful low

rate code is in use for the duration of poor transmission conditions.

180

Transmitter:
Begin

If block(s) rejected
then last block no. = next block no.

next block no. =i
retransmitting = true

If retransmitting and next block no. = last block
then retransmitting = false

If block(i) rejected or errored
then count =c (sustain factor}

code state = low rate
If count >0 then decrement count
If count =0 then code state = high rate
Encode block(next block no.)
Send block
Increment next block no

End.

Receiver:
{ Note that it is assumed that the receiver is able to deduce the code
rate used to encode the received block }
Begin

Decode the received block(j)
If j= next rev block no then

if block(j) contains uncorrectable errors
then return reject block(j)

if blocko) contains a correctable errors
then return errored(j)

increment next rcv block no
if block(j) contains no errors

then return acknowledged(j)
increment next rcv block no

End.

181

5.7.2 Performance of the adaptive ARQ scheme on a burst error

channel

The codes selected for comparison in the simulation were the

BCH codes (1023,923,10), (963,923,4), (933,923,1) and

(923,923,0), with a frame header size of 48 bits (i. e. a data segment

of 875 bits), and a sustain factor of 16 frames. The value of k, the

message length was kept constant, but the block length n allowed to

vary. Thus a block may initially be transmitted using a (933,923,1)

code with 875 data bits, 48 header and error detection bits and 10

error correction parity bits, but retransmitted using a

(1023,923,10) code. The schemes compared were selected to be of

roughly comparable complexity: -

(i) Go Back N ARQ

(ii) Selective Repeat ARC)

(iii) Hybrid GBN ARQ with adaptive selection of code rate

(iv) Hybrid GBN ARQ with fixed rate code

Table 5. p shows the performance estimates obtained from

simulation using the GBN ARQ model with channel errors obtained

from the Lewis and Cox data. In addition, the channel error

information was passed through a 23. bit descrambler, to examine

the effects of error extension (cf Section 4.3.2) on the error control

182

schemes. For comparison the efficiency of the various techniques on

an error free channel is shown. Ideally a hybrid scheme should have

the same performance as ARQ on the error free channel, but

substantially better performance on the errored channels.

The results show clearly that the adaptive scheme is able to

provide good performance on the sample of channel error data, and

would be expected to perform well on channels with persistent

bursts. The technique would not perform as well on a random error

channel, or channel with short bursts, due to the delay before

switching code rate.

The best adaptive scheme is that using the (1023,923) and

(963,923) codes, as the high rate code is near optimum for the

channel, which may be verified by examining the performance of the

fixed code rate hybrid schemes.

To obtain some insight into the operation of the adaptive

hybrid scheme, the number of correctable and uncorrectable blocks

were counted for the (1023,923)/ (923,923) scheme for different

channel delays. These are shown in Table 5. q.

The effects of increasing delay are apparent in the increasing

proportion of low rate blocks, and the increasing proportion of these

low rate blocks that contain no errors. This is due to the slower

response of the transmitter to changes in channel conditions.

183

ARQ Efficiency for : -

Scheme No errors Lewis & Cox

Raw Scrambled.

GBNARQ 0.95 0.64 0.64

GBN -Type II 0.95 0.74 0.74

SRARQ 0.95 0.77 0.77

Adaptive

(963/923,923) 0.95 0.79 0.70

(1023/923,923) 0.95 0.80 0.74

(1023/933,923) 0.94 0.82 0.74

(1023/963,923) 0.91 0.84 0.75

Fixed rate

(933,923) 0.94 0.74 0.63

(963,923) 0.91 0.81 0.73

(1023,923) 0.86 0.80 0.75

Table 5. p Efficiency of ARQ schemes, obtained by simulation based

on both scrambled and unscrambled channel error data (Lewis and

Cox data). Channel delay is 1000 bits.

184

Value of N13 5

(acknowledgement

delay - frames)

Efficiency 0.92 0.82 0.77

Proportion of blocks

sent using: -
High rate code 92% 85% 81%

Low rate code 8% 15% 19%

Proportion of blocks encoded using the

high rate code with: -

no errors 85% 85% 84%

correctable errors 6% 6% 6%

uncorrectable 9% 8% 10%

Proportion of blocks encoded using the

low rate code with: -

no errors 46% 62% 72%

correctable errors 49% 33% 26%

correctable by high

rate code 13% 8% 9%

uncorrectable 4% 4% 2%

Table 5. q Some statistics obtained from the simulation of the

(1023,923)/(923,923) adaptive ARQ scheme.

185

It may be possible to improve the efficiency of the adaptive

schemes still further if the transmitter had earlier warning of

degrading channel conditions. If forward and backward channel data

streams share the same path, the transmitter could estimate the

error rate in the forward direction by observing the number of

errored blocks or acknowledgements received on the backward

channel.

5.7.3 Performance of the adaptive hybrid ARQ scheme on the binary

symmetric channeL

The efficiency of the adaptive hybrid ARQ scheme on the

binary symmetric channel may be calculated using the expression
(derived in Appendix C): -

efficiency = (k - h)
.1 (Pf. n + (1-PL. k) T

where Pf is the probability of a frame being transmitted with forward

error correction, and p the number of additional parity bits used.
As the channel is an independent error channel. the

probability Pf is simply the probability that the c previous frames

were not errored (where c is the number of frames for which the
FEC is maintained): -

186

Pf =1- (1 - P(m>O, k))C

The average number of retransmissions T is basically the

same as that for Go Back N ARQ, although the frame error probability

will depend on Pf, giving: -

T=1+ N. 1-Pr)
(1 - P(m>t, n))

where Pte. is the probability of the first transmission being

successful: -

Pnr = Pf"(1-P(m>t, n)) + (1-P? . (1-P(m>O, k))

Figures 5. r(i) and (ü) show the results for channel delays of

1000 and 5000 bits. For comparison, Go Back N, Selective Repeat,

and Types I and II hybrid ARQ schemes are also shown. The binary

symmetric channel with large delay represents a fairly severe test of

the various schemes.

The adaptive hybrid ARQ scheme shows some interesting

features. At low error rates, the efficiency is close to that of both Go

Back N and Selective Repeat ARQ. As the error rate increases,

efficiency drops, but not as much as that of GBN ARQ, due to the

effect of the forward error correction, which is being invoked more

often. At an error rate of approximately 0.0001, the efficiency rises,

until it coincides with that of the Type I hybrid scheme. This is

187

because the high error rate results in the forward error correction

element being continually invoked, and hence the adaptive scheme

acts exactly as a Type I hybrid.

The effect of increasing the delay to 5000 bits is shown in

Figure 5. r(ii). The dip in the efficiency curve has deepened, however

this is dependent on the sustain factor, the delay built into the

adaptive algorithm, and increasing this value would increase

efficiency in this area, at the cost of a slight reduction in efficiency

under low error rate conditions.

The performance of the adaptive scheme in comparison to

the others shown, is generally good. The scheme has the benefits of

the Type I hybrid at high error rates, and of simple ARQ at lower

error rates. At high error rates the method outperforms Selective

Repeat ARC), as the forward error correction element reduces the

number of retransmission requests.

188

t
a u
U

W
a a
b

e

e. 6 4 iý'"`; 1I

0.4
(1) Adaptive hybrid ARQ '".

t i \.
(ii) GBNARQ

(iii) Selective Repeat ARQ 't "ý",

(iv) Type I hybrid 5
8.2 tt

(v) Type U hybrid t1

v
,t

-2 -1 -6 -5 -4 -3
Bit Error Rate (Log 1O Scale)

Figure 5. r(i) Transmission Efficiency of five AR9 schemes, for the
binary symmetric channel4 with zero delay.

B.

t 8.
Q
V

10
W
q ei
0

I
Je

Figure 5. r(ii) Transmission Efficiency of five ARQ schemes, for the
binary symmetric channel, with a 1000 bit channel delay.

189

" -6 -5 -4 -3 -Z -1

Bit Pnror Rabe (Log 10 Scale)

5.7.4 Selection of code rate and sustain factor.

The preceding sections have shown that the adaptive hybrid

ARQ scheme is effective for certain values of the sustain factor and

code rate. The aim of this section is to discuss the choice of these

parameters.

On the binary symmetric channel, the adaptive scheme

behaves as simple ARQ at low error rates, and as type I hybrid ARQ

at high error rates. Ideally the sustain factor would be zero at low

error rates to avoid any loss in performance, and infinitely large at

high error rates to maintain the system in type I mode. The

crossover occurs where the efficiency of the two ARQ schemes is the

same: -

1k h) 1= (k_h) 1
k (1 +NP)n (1 +N P(m>t. n))

(1-PE) (1 - P(m>t, n)

At low to medium error rates, P(m>t, n) is very small, and hence the

crossover between ARQ and type I mode should occur at: -
PES r-k

(n + 2. D)

Figures 5. s(i) and (ii) show the efficiency of the adaptive
scheme on the Lewis and Cox channel error data, for a range of

values for the sustain factor of 1 to 16. Each graph gives the

efficiency curve for a number of values of channel delay.

190

*1E-2

0
W
a 0

I
I 60

rr
rr ii_ r"

f!
"'"'"'-"ý,.

r/"ý.. ý. ý"ý""ý, ý, 1.. r"ß .. r

ý iii ý, /"ý . ý. ". tiý, "

f r' ý

IV/

p) delay= O bits
(U) 500 bits
(iii) 1000 bits
(iv) 1500 bits
(o) 2000 bits

02468 19 12
Sustain factor

14- 16

Figure 5. s(I) Transmission efficiency of the adaptive hybrid ARQ
scheme on the Lewis and Cox channel data

*1E-2

82

Be

78

76 ___,,. .. ----"---". - .
74 0""

72

78 III . """ý I. _. _r. "r-". ý
", ""

1, ý,. """

....... "" 68

66 iv / "'"

64 "'' 'ý

62 v . ""
68

58

lot
v

C)
v

a 0

9246B 16 12 14 16
Sustain factor

Figure 5. s(ii) Transmission efficiency of the adaptive hybrid ARQ
scheme on the scrambled Lewis and Cox channel data

191

Figure 5. s(i) shows that the efficiency is relatively insensitive

to the sustain factor for low channel delay, but the sustain factor

needs to be substantial if the channel delay is increased. The value of

16 selected in the preceding sections would appear to be a

reasonable choice for this set of data, although the curve shown for

zero delay indicates that this value is just over the optimum region.

Figure 5. s(ii) shows the equivalent results for the scrambled

Lewis and Cox data. The performance is markedly affected by the

higher error rate, but the observations made above are still

applicable.

In Section 5.7.2, the use of a (1023,923,10) low rate code,

and (923,923,0) high rate code (i. e. no forward error correction)

was proposed on the grounds that high efficiency was desirable

when low error rate conditions exist. A small number of alternative

code rates were tried, and the results compared.

Figure 5. t shows the efficiency of the adaptive scheme for a

range of code rates. The optimum rate for the FEC element of the

adaptive scheme for this channel is between 0.92 and 0.96, and
depends on the channel delay.

192

*IE-2
88

86

84

t

a v
., v

a 0

"1 j

78

?4

72f /
76
68

66

delay =0 bits

75 Be es 99 9s

Forward error correcting code rate.

Figure 5. t The transmission efficiency of the adaptive Hybrid ARg,
scheme for FEC code rates from 0.75 to 1.00, on the Lewis and Cox
channel error data.

188
*1E-Z

To summarise, the choice of the sustain factor does not seem

critical. On the binary symmetric channel an optimum only exists at

some given error rate. From the results obtained on the Lewis and

Cox channel error data, the earlier choice of 16 would seem

reasonable, although a larger value would improve performance if the

channel 'delay is substantial. The selection of code rate is still fairly

important, which implies that the use of variable redundancy

forward error correction may achieve more than Section 5.7.2

intimated.

193

_
IOW bits

5.8 Residual error rate

The uncorrected error rate, i. e. the probability of a bit error

in the ARQ receiver output, depends on the error detecting

capability of the error detection code used to construct the ARQ

frame. For a hybrid ARQ scheme, there will be some interaction

between the forward error correcting and the error detecting codes.

Klove and Miller (ibid) found that, for certain linear block codes

used on the binary symmetric channel, the reliability of the error

detection code is increased if its minimum distance is less than half

of the minimum distance of the inner error correcting code, i. e.: -

dmin (FEC) >2 dmin (error detection code)

In order to make realistic estimates of the uncorrected error

rate, the error pattern and code weight distributions must be

known. If a sufficiently accurate model can be constructed,

simulation may be used (Muntner and Wolf 1968).

In Section 4.2, the error pattern distribution of high speed

voiceband data communications systems was discussed. The errors

typically occur in bursts with length and weight dependent on the

modem design. The use of long scramblers would result in bursts of

length 23 bits or more, as found by Balcovic et al. Provided that the

scrambler polynomial and generator polynomial are mutually prime,

and the unscrambled error patterns are less than (n-k) bits in

length, even long error patterns can be detected, as discussed in

194

Section 4.5.6.

Funk (1982) examined another source of error extension,

synchronization failure. The SDLC protocol and its derivatives

(HDLC, X25, ..) use a bit oriented frame synchronization mechanism,

described in Section 6.7, with a 16 bit cyclic error detection code of

minimum distance four. The receiver relies on the detection of a

unique bit pattern (01111110) within the received data stream for

location of the end of a frame.

In order to achieve data transparency (i. e. to allow the

message to contain any bit pattern, including the synchronization

sequence) a bit stuffing mechanism is used. After any sequence of

five 1's (excluding the synchronization sequence) the transmitter

inserts a zero; similarly, the receiver removes a zero if preceded by

five 1's.

A cyclic code should be capable of detecting all errors of

weight three or less, however a single bit error is sufficient to cause

loss of synchronization, with consequent large error extension. Funk

discusses the following possible causes of undetected error: -

(I) Spurious flags (synchronization characters) may be created

within the frame. As the bit stuffing mechanism inserts a single

zero after a series of five 1's (01111 1OXX), a single error is

sufficient to corrupt the inserted 0, and hence create a false

synchronization character. The effect of this is the division of the

frame into two parts.

195

(ii) The flag character (01111110) may be corrupted by a single

error, causing the frame to merge with the following frame.

(iii) An abort sequence is a series of eight consecutive l's, and

may be caused by failure of the bit stuffing mechanism, as in (i).

(iv) A bit may be lost if, in a sequence of the form 011101OXX a0

is corrupted, causing an incorrect bit removal operation.

(v) A bit may be gained if, in a sequence of the form 011111OXX a

1 is corrupted., resulting in the bit removal not being carried out.

The undetected error probability for case (i), is given as: -

P(uncorrected error) - (n-32) . pt . 4.8x10'7

due to false flags, where n is the block length, and pt is the

transition probability for the assumed binary symmetric channel. For

a bit error rate of 0.001, and a block length of 1023, the predicted

residual error probability due to false flags would be 2x10'8.

Reliability may be improved by the use of lower rate error
detection codes; (n, n-32) is a common alternative to the (n, n-16)

code used in most ARQ systems. The lower rate will of course result
in a slight reduction in efficiency. Goodman and Farrell (ibid)

describe an ARQ system for a high frequency radio channel, which

196

employed adaptive selection of an error detecting code to suit the

prevailing channel conditions. The range of frame lengths and the

type of channel used preclude comparison of their results, however

it is interesting to note that they report that frame synchronization

problems led to bursts of uncorrected errors.

197

5.9 Discussion

This chapter discussed a number of ARQ and hybrid ARQ

techniques, and considered the performance of four schemes under

a range of channel conditions. The results showed consistent

differences in performance between the error control schemes,

providing some basis for the selection of an appropriate method for

the test channels. In addition, an adaptive hybrid ARQ scheme was

proposed, that showed good performance under simulated channel

conditions.

Ideally an error control scheme should provide high efficiency

under zero error conditions, and low uncorrected error rate under

poor channel conditions. The importance of the first criteria may be

justified by Balcovic et al (1971) who found that between 20 and 50

percent of calls in the A. T. & T. 1969-1970 network survey were

error free.

Two effects due to the channel error distribution were

observed when comparing the performance of the ARCS schemes on

the various channel models. The clustering of errors that occurred

in the recorded data given by Lewis and Cox tended to give a larger

number of error free blocks, and a higher density of errors within

the errored frames than for the binary symmetric channel. This

improved the performance of ARQ, and reduced the effectiveness of

the forward error correction component of hybrid ARQ.

The choice of code rate for a hybrid - ARQ scheme was

198

discussed in Section 5.6. For some known channel conditions it is

possible to select an optimum code rate, however the channel

conditions are generally not stable. The disadvantage of hybrid ARQ

schemes employing fixed rate codes is the loss in efficiency during

error free periods.

An adaptive hybrid ARQ scheme was proposed in Section 5.7,

which behaved well under a range of simulated test conditions. The

scheme was compared to Go Back N ARQ, hybrid ARQ, ARQ with

parity retransmission, and to Selective Repeat ARQ, and was found

to give reasonable performance under both errored and error free

conditions. On the random error (BSC) channel, the scheme

performed very well, with an efficiency close to that of GBN ARQ at

low error rates, and equal' to that of an equivalent Type I hybrid

scheme at high error rates.

The selection of code rate for the adaptive scheme still

proved to be important, and should be investigated further.

The choice of scheme depends on the degree to which the

channel conditions are known, and on the allowable complexity.

Simple Go Back N ARQ provides reasonable performance on burst

error channels such as the telephone channel, as Burton and

Sullivan (ibid) concluded, however substantial performance

improvements may be made if an increase in complexity is

acceptable.

Selective Repeat ARQ provides better performance than Go

Back N ARQ for channels with delay, and may be an acceptable
technique given that the error rate is low. If the channel error rate

199

is substantial, with a bit error rate greater than 0.001 for example,

hybrid Go Back N ARCS offers better performance.

The adaptive hybrid ARQ scheme appears to give the promise

of high efficiency under both low and high error conditions, and

would be preferable to a scheme using a fixed rate forward error

correcting code or parity retransmission.

To summarize, the ARQ schemes that seem appropriate to the

telephone channel are: -

(i) Go Back N ARQ, when low complexity is a criteria.

(ii) Selective Repeat, when channel delay is high, and the error

rate is low or the errors occur in short bursts.

(iii) Adaptive hybrid ARQ, when high efficiency is required under

a range of error conditions.

200

6 SYSTEM DESIGN CONSIDERATIONS.

6.1 Introduction.

The objective of this study was to investigate the use of data

compression and error control techniques in data communication

systems for the telephone channel. The preceding chapters have

examined these areas in some depth, and have suggested

appropriate techniques. The aim of this chapter is to discuss some

of the practical implementation considerations for a system

employing both types of coding technique, and to provide some

estimates of the system performance.

The discussion of data compression schemes highlighted

several problem areas, including the difficulty of designing a

compression algorithm suitable for a source with unknown or time

varying characteristics. Several adaptive codes were proposed in

Chapter 3, with differing degrees of complexity and performance.

In Chapters 4 and 5, error control techniques suitable for

burst error channels such as the telephone channel were discussed.

Three alternative automatic retransmission error control techniques

were suggested, each more appropriate to some stated channel

conditions.

Figure 6. a may help to place the data compression and error

control subsystems in context. A terminal provides a source of

asynchronous characters, which are read into the error control/data

compression system (the ECU), and are stripped of their

201

asynchronous framing elements and stored in a buffer. Characters

are read from the buffer, compressed and passed into the ARQ stage.

Frames from the ARQ transmitter are sent through the forward

error correction code encoder (if applicable) and then to the

modem transmit channel. The receive path follows the reverse

order to the transmit channel, however an additional path is

provided from the ARQ receiver to the ARQ transmitter for

acknowledgements.

More formally, the logical and procedural interface between

two communicating systems is generally defined by a class of

protocols. The protocols may include a number of elements or

functions, including ARQ and data compression. For correct

operation of the communications interface, both systems must

interpret the information flow identically. However one of the

principal problems in telecommunications has been the low degree

to which interworking between communications equipment is

possible.

The International Standards Organisation (ISO) proposed a

seven layer model, the Open Systems Interconnection (OSI) model,

to introduce a framework for co-ordinating the development of data

communications standards, and for placing existing standards in

perspective,

The OSI model has achieved general acceptance, and has

been adopted by the CCITT as the X200 series recommendations. In

addition most major companies involved in the development of data

communications equipment have supported the introduction of the

model.

202

z

9 4)

Dý
ai
q
0

as

w
O

O
0

w
0

v
0
a
w
a
cý
co

203

The seven layers of the model are shown in Figure 6. b. Those

of immediate interest to this study are layers one, two and six. Layer

one, the physical level, is concerned with the electrical and

mechanical aspects of transmission, and provides the means to

transmit bits of data across a continuous communications path. Layer

two, the data link layer, provides an error controlled path across a

physical communications link, and may for example incorporate

ARQ. Layer six, the presentation layer, incorporates more general

data transformation functions, such as data compression and

encryption.

Figure 6. c illustrates how the error control and data

compression system may be represented in terms of the OSI model.

204

Common functions, such as data
compression and encryption

User interface to network

Ind to end transport of data

Packet transmission and routing

Provide error free data link

Mechanical, electrical and
procedural interface

Figure 6. b The Open Systems Interconnection Model.

205

V
'd
O
E
G
4)

'd

r7

O
H

O
U
w O

4)

O

O

V

V

b
O
U

V
cD
aý

206

6.2 ARS Protocol Design.

The ARQ techniques suggested in the last chapter were

examined from the view of error control and transmission efficiency.

In fact an ARQ protocol needs to provide more than simply error

correction, as this section will show.

When data first enters the communications system, it consists

of discrete characters. These will be formed into a frame and

transmitted, however some mechanism is necessary to delineate

frame boundaries.

The rate at which information is transmitted in an ARQ

system is variable, and depends on the current error rate. Thus the

source needs to be controlled in some way to avoid the loss of source

symbols. This class of techniques is generally termed flow control.

It is often necessary to accomodate some form of signalling

between the two communicating systems. For example, end to end

flow control, or exception signalling. An important application of

inter-system signalling occurs during link establishment in which

the two systems must agree on the protocols to be used.

6.2.1 Frame Synchronization

The function of frame synchronization is to delineate frame

boundaries in order that each frame may be processed seperately. A

specific bit pattern is included within the transmitted frame, which

may be detected by the receiver. The pattern may be a short

207

sequence of bits, or may be distributed through the frame.

One problem that occurs with this type of frame

synchronization technique relates to the difficulty of preventing the

synchronization pattern from occuring within the data field of the

frame. This may of course be cured by not allowing the source to

emit symbols which cause false synchronization, or by using a fixed

length frame. It is however desirable to place few constraints on the

manner in which the system is used.

A common approach is byte oriented frame synchronization,

as typified by the IBM BISYNC protocol. The frame is composed of a

series of bytes or octets, the first two of which are synchronization

characters. If a synchronization character appears within the

information field of the frame, a defined control character DLE is

inserted before it. The receiver may thus discriminate between true

and false synchronization characters.

The second common approach is bit oriented synchronization

method used by IBM SDLC (Donnan ibid) and its derivatives, already

mentioned in Section 5.8. This uses the bit sequence 01111110 as a

synchronization pattern. If a sequence of five i's is detected in the

frame prior to transmission, a0 is inserted. The receiver may detect

the start of a frame by testing the input bit stream for the

synchronization pattern, but also reverses the bit stuffing procedure

by removing any 0 preceded by five 1's.

The frame synchronization techniques work well in practice,

as shown by the popularity of the protocols, but are susceptible to

errors. In Section 5.8 the effects of errors on the SDLC approach

was discussed.

208

6.2.2 Flow Control

Flow control is necessary to provide a mechanism for

regulating the transmission rate of various elements of a

communications link to prevent congestion or loss of data (Ahuja

1985). On the simple point to point link under consideration three

flow control procedures are needed for each direction of

transmission.

(i) To control the flow of däta from the terminal into the error

control system, to prevent data from the terminal being lost

whilst the error control system is retransmitting frames.

(ii) To control the flow of data from the error control system

into the terminal. This would be applied by the terminal to

prevent for example, loss of data whilst performing other tasks,

or applied by the user of a terminal to prevent the screen

contents from scrolling whilst it is read.

(üi) To control the flow of data across the channel, to prevent

the receiver from running out of buffer capacity whilst the far

end terminal is applying flow control as in (ii).

Flow control across the terminal / error control system
interface is usually accomodated by one of two techniques RTS/CTS

or X-ON/ X-OFF. The first technique makes use of the control lines

209

on the interface, RTS/CTS for the EIA RS232 definition of the

interface, and circuits 105 and 106 within the CCITT V24

recommendation. The second technique is an in-band method,

which employs two ASCII control characters to turn on and turn off

the data flow.

Flow control across the channel is implemented in two ways,

explicit control signals and the use of the frame number window.

The first of these is simple, a control message is sent to

indicate that no further data frames may be accepted, and a further

control frame used to indicate that data flow may be resumed. In the

SDLC protocol the two frames are termed RNR (receive not ready)

and RR.

Information frames are numbered to allow retransmission

requests to be made. The number is a fixed width binary field, and

hence is incremented modulo M, where M depends on the field

width. Within this number range a window may be defined, and the

transmitter programmed to send frames only whilst no

unacknowledged frames exist with sequence numbers outside the

window. For example modulo 8 numbering may be used, with a

window of 4. The transmitter may send four frames, but cannot send

any more until an acknowledgement is received for at least one of

the transmitted frames.

210

6.2.3 In Band Signalling

Some examples of in-band signalling have already been given,

the RR and RNR flow control frames of the preceding section. Other

control frames may be needed for exception signalling. The most

obvious example of exception signalling is the break signal, which is

often used in terminal applications to escape from some

catastrophic situation. The CCITT recommendation X. 3 defines

several alternative actions that could be taken as a result of receiving

a break from a terminal, including sending an interrupt frame or a

indication of break frame. The principal point is that the break key

on a terminal does not produce an ASCII character, and hence would

not normally result in an 'indication being transmitted across an

ARQ link.

6.2.4 Link Establishment and Clearing

The link establishment phase of the communications cycle

has two functions, firstly to allow both of the communicating systems

to move from the disconnected to the information transfer state,

and secondly to permit the negotiation of parameters such as

window size, and maximum frame size. The clearing or disconnect

phase permits both systems to establish that no further information

is to be sent, and then to clear down the link.

Within the HDLC protocol (Davies 1979), the SABM (set

asynchronous balanced mode) control frame may be used to initiate

211

link establishment, UA (unnumbered acknowledgement) is used to

confirm. Parameter negotiation may be accomodated with the XID

(exchange identification) frame.

6.2.5 Transmission Efficiency

The system transmission efficiency will depend on a number

of factors, of which only some were considered in the preceding two

chapters. The finite frame sequence numbering, and the use of

windowing for flow control will reduce the efficiency of the ARQ

system. The effects will depend on channel delay and on frame

length. If short frames are sent on a channel with moderate delay

the transmitter will spend a considerable proportion of the time

waiting for acknowedgements.

The analysis of the transmission efficiency of ARQ protocols

using queueing theory rather than the approach taken in Chapter 5.

allows the effects of window size and random distributions of frame

lengths to be accomodated. Reiser (1979), Konheim (1980), Bux et

al (1980), Agnostou (1984) and Hayes (1985) have applied this

approach to ARQ protocols.

The ARQ system may be modelled by a set of queues (Figure

6. d). The transmitter is represented as a queue with service time

1/µl, which feeds M branches, where M is the window width. Each

branch may hold only one frame at a time, and is made up of three

service times, the round trip delay T, and the delay until an

acknowledgement Js sent 1192, Labetoulle and Pujolle (1981)

212

compared analytic results obtained using this approach with a

simulation of the HDLC protocol, and obtained reasonable

correspondence.

1/µ lJT
Ilh/2ft/lt2I branch 1

window
width

T u119 2 u1/µ 21 branch m

Figure 6. d Modelling an ARQ system with queues, to
allow the effects of window size to be incorporated.
(Hayes 1984).

The transmission efficiency of ARQ when used over a

synchronous channel is enhanced by the gain made in reframing

asynchronous characters. Typically an asynchronous character has

seven data bits, one parity bit, one start bit and one or two stop bits.

This format may be reconstructed at the receiver prior to onward

transmission to the remote terminal. The effective gain is therefore

forty to fifty percent, prior to transmission. The preceding chapter

showed that transmission efficiencies of 0.6 to 0.95 were achievable

under a wide variety of channel conditions, hence the likely overall

transmission efficiency is between 0.8 and 1.4. The implication is

that under good conditions the bit rate between terminal and error

control system may be higher than the channel bit rate, even

without data compression.

213

6.3 Integrating Data Compression into the Protocol

6.3.1 Adaptive Data Compression Algorithms.

Several alternative data compression schemes were proposed

in Chapter 3, with varying degrees of complexity and coding gain.

The choice of technique depends on the application, the memory

and processing requirements, and the transmission speed.

The simplest scheme suggested used a simplified Huffman

code with codeword lengths of 4 and 8 bits. The average encoded

symbol length for the sample data employed was between 5 and 6

bits, although better performance may be obtained if the data is

suitable for run length encoding. The encoder and decoder may be

realised in software, without placing an undue burden on a standard

microprocessor, and only require approximately two hundred bytes

of memory each.

The more powerful compression algorithm discussed was

based on the Ziv-Lempel technique. This provides substantially
better performance, the average length found in tests was between

2.5 and 4 bits per encoded symbol. The additional performance was

obtained at the expense of an increase in the memory capacity

needed at both transmitter and receiver.

An implementation of the algorithm was proposed that was
economical in both memory and processing requirements compared
to other known implementations. The encoder and decoder may be

214

simply realised in software, but require up to 20 kilobytes of

memory for the encoder and 28 kilobytes for the decoder. Less

memory may be used at the expense of some slight degradation in

performance.

6.3.2 Interaction with ARQ Protocol

0 Two significant problems arise when implementing a

combined data compression and error control scheme, firstly the

risk of uncorrected errors causing loss of synchronization of the

source coder and decoder, and secondly the processing overhead

introduced by the data compression sub-system.

The effects of uncorrected errors on adaptive data

compression systems was discussed in Section 3.4. Errors will

result in incorrect decoding of received codewords, and may

possibly result in error extension. If the encoder and decoder are

not in synchronism some mechanism is needed to prevent
indefinite system misoperation.

Variable length codes may be designed such that codeword

synchronization will be recovered, although adaptive variable length

codes would benefit only if the error did not result in a modification

to the symbol frequency table. The Ziv-Lempel decoder has some

limited error detection capability. At some given instant there will

generally be some unused codewords, which if received by the

decoder, may be regarded as indicating loss of dictionary integrity.

215

For either code, the corrective action would be the same, to

reset both encoder and decoder to some starting condition. This

leads to an interesting point; it is tempting to apply the

compression algorithm to data prior to buffering in the transmitter,

to save storage. If the source encoder is reset, the data held in

encoded form in the buffer will be effectively lost. Hence it is

desirable to hold data in uncompressed form. On the other hand, if

the data is held in uncompressed form, the adaptive source encoder

will have adapted to the latest transmitted data. If the ARQ system

requires any retransmissions, it would be necessary to reconstruct

the ARQ frames, which would require the source encoder to be reset

to the state that it was in immediately after the last acknowledged

frame was encoded.

For example, an ARQ system sends frames 1... 16. Frame 5 is

received in error, and a retransmission requested. Frame 13 is also

corrupted but the errors not detected until frame 14 is decoded,

hence the source decoder is assumed to have lost synchronization

with the adaptive source encoder.

(i) Data held in uncompressed form.

When the retransmission request is received, frame 5 must be

retransmitted. This requires the uncompressed data that was

originally in frame 5 and subsequent frames to be re-encoded.

However the source decoder has successfully decoded frame 4,

and has adapted to the source statistics at the end of that frame.

The source encoder will need to be reset to the equivalent state.

When the request to reset the encoder, due to loss of

216

synchronization in frame 13 is received, the code table is set to

the initial or default state, and the data re-encoded and

transmitted. This may result in a small amount of corrupted data

being sent to the remote terminal, however the recovery process

is straightforward.

(ii) Data held in compressed form.

When the retransmission request is received, the encoded

data is retransmitted, this presents no difficulty. When however

the request to reset the encoder is received, the compressed

data is effectively lost.

One solution to the problem may be to store data in both

compressed and uncompressed form, which would of course require

more storage. The other alternative would be to assume that

undetected errors are comparatively rare, and thus select option (ii).

The framing imposed by the ARQ stage can be of some help. If

a frame always contains an integral number of source code words,

the source decoder has two additional safeguards. The first bit in a

received ARQ frame is the first bit of a source code word, hence the

decoder is realigned each frame. The last bit in a received frame is

the last bit of a source code word, hence the source decoder can

detect a proportion of the errors missed by the ARQ stage. If the

source decoder does detect any residual errors, a reset message

should be sent to the source encoder, to ensure that the encoder

and decoder code tables are resynchrornized.

217

The data compression operations performed in the encoder

and decoder fall into two classes, symbol related and housekeeping.

The symbol related operations, such as encoding or decoding a

symbol, occur regularly and may be designed to have little impact on

the normal operation of the system.

The housekeeping functions of an adaptive data compression

system include dictionary or frequency table updating, purging or

scaling, and are likely to impose an occasional but heavy burden on

the processor. It is quite possible that the system may lose

transmission efficiency because the processor is performing

dictionary maintenance and is temporarily unable to handle normal

traffic.

6.4 Designing for Reliable Operation

The potential problems with adaptive data compression

systems due to errors causing loss of synchronization are the tip of a

rather large iceberg. The general problem is that of two finite state

machines communicating over a noisy link, each can never know the

precise state of the other. To design a reliable system it is necessary

to construct the finite state machines in such a manner that no

disastrous system state is ever reached. The difficulty of this task

may be illustrated by reference to Zafiropulo (1980) in which

specific examples are given of communications protocols that were

found to contain design errors after acceptance.

218

Modelling or formal description of protocols has been an area

of active research for a number of years. The well known techniques

are Petri nets (Diaz 1982), and communicating finite state

machines (Bochmann 1978, Milner 1980).

The reliability of the protocol is as important as the reliability

of the error detection mechanism. There is little point in providing

an error correcting system that may itself introduce errors. If the

protocol is designed in accordance with the OSI model, and formal

verification techniques are applied to the mathematical model and

the software implementation of the protocol, the reliability of the

system can be improved. The present difficulty is that many of the

necessary tools are still in an early stage of development.

219

6.5 System Realization.

A number of options for the various system components have

been given. This section will discuss the implementation of three

systems 'A', 'B' and 'C', which represent realistic alternatives. The 'A'

system is a low complexity moderate performance error control

system, whilst the 'B' and 'C' systems offer higher performance at

the expense of complexity.

The terminal interface of the three systems is similar, and is

shown in Figure 6. e. Data is read from the DTE port into a buffer.

The buffer level is monitored, and if it exceeds a threshold level flow

control is applied at the DTE port, to inhibit the flow of incoming

data. An output buffer holds data received from the ARQ system,

until ready for transmission. The buffer level is similarly monitored,

but flow control is applied by requesting the ARQ stage to send

in-band flow control messages to the remote system.

The interface to the terminal must also handle break

detection, although the ARQ stage would transmit an in-band control

message to communicate the break to the remote terminal.

The interface lines (EIA RS232 or CCITT V24) are used to

indicate terminal and modem status, provide timing for synchronous

data', and allow out-of-band flow control.

220

0

w

Ä

0A

Uä

I

wý
cß ä

b $t

w
0

0

U

U
U

id"+
a

W

U
H

w
0

J4 U)

.0
4)

ýr
qÖ

0
aýw
cö 0

W

221

6.5.1 System A.

The low complexity system uses simple Go Back N ARQ, with

the 4/8 variable length adaptive source code described in Section

3.3.1. (type (i)). The memory requirements are modest, and the

processing within the capacity of an 8 bit microprocessor or

microcontroller.

Figure 6. c shows the general form of the system. Data is read

from a terminal port (the DTE), through a source encoder into a

buffer. The buffer level is monitored. and flow control applied to the

DTE if the buffer level exceeds some given threshold. The data is

stored in compressed form, hence the assumption is made that loss

of source encoder/ decoder synchronization will not occur.

When the ARQ transmitter has sent the current frame, it

constructs the next frame as follows. The header is constructed.

using a standard control field, into which is entered the next frame

number and the number of the next expected received frame (i. e.

the acknowledgement). The transmitter then reads data from the

input buffer through the source encoder, and hence into a frame

buffer. The amount of data read will be sufficient to fill the frame

buffer to the current maximum frame length, or may be less if

insufficient data is available in the input buffer. The frame is then

transmitted. The transmitter maintains pointers to the buffer for

each frame sent, indicating the start and end of the data field of the

frame.

The source code may be updated at the end of each frame, or

after each character is encoded. The choice will depend on the

222

available processing time.

The receiver accepts frames from the modem, delimited by

the synchronization patterns and checks them for transmission

errors. If errors are not-detected and the frame sequence number

matches that expected, the receiver calculates the next expected

received, and passes the frame contents through the source decoder

to the output buffer.

223

O 4) ci 4)
'ico",

Öd
co

O O

Ici U
n4
b
U

O

cti
L".

O
J

O

0
V
v

e -id
4)

Cl, v

.ä
ca
ce)
.,

ü

Va a)

0 CZ to

' 30
o

o
Ä

N
k

z

V än

oý ö)
ö ö

ä . 4-1 Ua .
ö
Uq

to a 3a 3
ý Lr.. r Lz. w ö

au

äý

.n

N

(4) uý
kmm
ov
u

0
0

0
.a

C2

U)

cD
M

E O

y

. "n O

O{ý

Fr

ca

224

6.5.2 System B.

This more powerful example system uses the modified

Ziv-Lempel compression technique described in Section 3.3.2., and

the adaptive hybrid ARQ error control technique developed in

Section 5.7.1. Figure 6. g shows the general form of system B, which

is similar to system A in many respects. The memory requirement is

substantially greater, typically 32 kilobytes of data storage, and the

microprocessor would need to be a high performance 8/16 bit

device. The forward error correction subsystem would ideally be an

independent element, but could be implemented in either hardware

or software (for example Sinha 1983).

The data compression stage uses a dictionary with 2048

entries, with a seperate dictionary for the transmit and receive

channels. The dictionary used for encoding uses 5 bytes per entry,

whilst that used for decoding uses 7 bytes per entry. The source

alphabet may have characters of any size up to eight bits.

The frame assembly process is similar to that in System A, but

the dictionary will be updated for each string encoded. If the input

buffer becomes empty during the encoding of a string, a timeout

control character is appended to the string, and encoding

terminated.

The adaptive ARQ section contains an encoder and decoder,

which may be switched in or out. The code used will depend heavily

on the ease with which a decoder can be constructed, and on the

225

availability of suitable integrated circuit support. The code needs to

be suitable for correcting the types of errors discussed in Section

4.3.1., burst errors of the type produced by a modem modem. As the

bursts will in general be sparse, a random error correcting code

such as the BCH code used' for performance comparison in Chapter

5 could be used. A number of integrated circuits suitable for

decoding this type of code are being developed (Johnson 1983, Hsu

1984). An interleaved single error correcting code could be used

(Section 4.5.4), which would be simple to decode, in software or

hardware, although would not achieve the same error correcting

potential as the BCH code.

226

E

O

U

O

a

Ü
Co
A

co

227

do
A

A

6.5.3 System C

This system uses the modified Ziv-Lempel compression

algorithm, as with system 'B', however the error control algorithm

used is selective repeat ARQ. As discussed in Chapter 5, the

selective repeat system requires more complex logic, and a

substantial amount of memory at the receiver, but offers better

performance on channels with low error rates and significant delay.

The general system structure is shown in Figure 6. h .

The main difference to' the preceding two systems is the

addition of a set of receiver frame buffers. These are used to store

frames received out of sequence, whilst waiting for rejected frames

to be correctly received.

228

co aý

x

0

O0

'12 0

9 ICJ w qo 4)
p' ö

72

ýýo

V

`4

U
E O
4-1

D,

O
4b q
U

O

O
q
O

H

dl

229

6.5.4- Expected Performance

The performance of data compression depends heavily on the

source characteristics, and that of ARQ on the channel error

distribution. The performance estimates given below are based on a

small subset of the range of source and channel conditions used in

earlier chapters, and are intended to be illustrative rather than

provide a definitive comparison. The system efficiency is based on

the corresponding values calculated in sections 3 and 5 (tables 3. q

and 5. p).

The test conditions assumed are: -

(i) Channel conditions

(a) Error models

-error free

-Lewis and Cox data

-Binary symmetric channel.

(b) Channel delay 1000 or 5000 bits (end-end)

(ii) Source, assumed 7 bit ASCII characters in

10 bit asynchronous format.

(a) Sample A from Section 3.3.1.

(b) Sample FORTRAN2 from Section 3.

(iii) Other assumptions.

(a) Frame data field 875 bits

230

(b) Frame header 48 bits

(c) No processing overhead

(d) DTE continually supplies data.

Table 6. j shows that for the sample conditions given, the

performance of system B is substantially better than that of system A.

The ratio of input data rate to channel data rate, a measure of the

gain of the system, is between 30 and 180 percent higher for system

B than for system A. System C, employing selective repeat ARQ is

slightly less efficient than system B under error conditions, but

would be more effective if the channel delay were larger.

An example of the effective transmission speed for the three

systems, when with a 2400 bit/s modem, is shown in Table 6. k. This

essentially repeats the information in the preceding table. but

illustrates the end result.

231

Source Channel Efficiency

type type System A System B System C

Delay 1000 bits:

'A' no errors 1.66 3.86 3.86

'F2' no errors 1.60 2.09 2.09

'A' errored 1.34 3.25 3.13

'F2' errored 1.08 1.76 1.69

Delay 5000 bits:

'A' no errors 1.66 3.86 3.86

'F2' no errors 1.60 2.09 2.09

'A' errored 0.79 2.84 3.13

'F2' errored 0.76 1.54 1.70

Table 6. j Ratio of input data rate to channel data rate, for complete

error control/ data compression system. Error free and Lewis and

Cox error distributions.

232

Source Channel Effective transmission speed (kilobits/sec)

type type System A System B System C

Delay 1000 bits:

'A' no errors 4.0 9.3 9.3

'F2' no errors 3.8 5.0 5.0

'A' errored 3.2 7.8 7.5

'F2' errored 2.6 4.2 4.0

Delay 5000 bits:

'A' no errors 4.0 9.3 9.3

'F2' no errors 3.8 5.0 5.0

'A' errored 1.9 6.8 7.5

'F2' errored 1.8 3.7 4.1

Table 6. k Effective transmission speed of the complete error control

/data compression system, for a nominal channel (modem) bit rate

of 2.4 kilobits/s. Error free and Lewis and Cox error distributions.

233

The expected system performance on the binary symmetric

channel is shown in figures 6. m(i) and (ii) for source A. and figures

6. n(1) and (ii) for source FORTRAN2.

In Figure 6. m(i) the transmission rate for system A is

approximately 4 kilobits per second at low error rates, falling below

2400 bits per second at a bit error rate of approximately 0.0002.

Systems B and C have a transmission rate of over 9 kilobits per

second at low error rates. System B sustains a throughput of over 8

kilobits for bit error rates of up to 0.01, whilst system C performs

poorly at bit error rates in excess of 0.001.

The effects of delay may be seen in Figure 6. m(ii), in which

the channel delay has been increased to 5000 bits (approximately

two seconds at 2400 bits/s). The performance of selective repeat
(system C) is unaffected, whilst systems A and B show some loss in

throughput. System B is still the most effective at high error rates,

although the throughput in the valley at a bit error rate of 0.0001 has

dropped to around 7 kilobits per second.

The performance of systems A to C on the FORTRAN sample,

shown in Figure 6. n(i) is not as impressive as the preceding

example. Although systems B and C do achieve higher throughput

than the simpler system A. at low error rates the improvement is

only 25 percent. The results for a delay of 5000 bits shown in Figure

6. n(ii) indicate, as before, a small loss in throughput for systems A

and B.

234

ýo G
0

M

R

s
.0
0

0
a 0

a

Figure 6. m(i) Effective Transmission Rate of the Error Control Unit
over a 2400 bit/s binary symmetric channel, with source "A" and a
1000 bit channel delay

(1) Scheme A

a- v
a
O

Y
MY

ii

O

a
0
3
8
a
I.

Bit E Tor Rate (Log 10 scale)

Figure 6an(11) Effective Transmission Rate of the Error Control Unit
over a 2400 bit/s binary symmetric channel. with source "A" and a
5000 bit channel delay

235

-b -5 -1 -a -L -i

ffit Ebiu Rate (1. cg 10 sc")

- -6 -5 -4 -3 -z -1

b q
O
V

M
V a

a 0
V

ä a

b
q
O
V

M
V
a

a 0

v

q
0
I

If

Figure 6. n(i) Effective Transmission Rate of the Error Control Unit
over a 2400 bit/s binary symmetric channel, with source 1721 and a
1000 bit channel delay

ti) Scheme A
(ii) Scheme s
(iii) Scheme C

8 (iv) Nominal channel tz rate

6

""h il
.. _ .., _. iii

2

"` t
"

64 -3 -Z

Btt L ror Rate (Log 10 &: ale)

Figure 6. n(ii) Effective Transmission Rate of the Error Control Unit
over a 2400 bit/s binary symmetric channel, with source' 2' and a
5000 bit channel delay

236

-b -b -dl -ý -ý -i

Bit Parat Rate (Log io Scale)

In the examples given above, system 'B', with the modified

Ziv-Lempel compression algorithm and adaptive hybrid ARQ

scheme, performs well. The FORTRAN sample used as one of the

data sources was selected on the basis that it resulted in poor

performance of the Ziv-Lempel compression algorithm in the tests

of Chapter 3. It is expected that the system throughput would be

generally between the results of Figure 6. m and 6. n, and could well

be higher.

237

6.6 Summary and Discussion

This chapter has examined some of the issues involved in

combining the data compression and error control techniques

identified in Chapters 3 and. 5 to form a system. The Open Systems

Interconnection concept was reviewed, and the error control

system defined in terms of this established protocol model. This

was followed by a discussion of frame synchronization, flow control,

signalling, and link establishment.

Section 6.3 considered the problems involved in

incorporating adaptive data compression into the error control

system: the possibility of loss of source decoder synchronization

must be considered carefully.

The need for verification of communications protocols was

briefly discussed in Section 6.4. Whilst not within the scope of this

study, this subject forms a vital part of the protocol design process.

Three complete systems were described, and their

performance compared. The most effective appears to be that

employing the modified Ziv-Lempel compression algorithm and the

adaptive hybrid ARQ error control scheme. The performance of this

system under the test conditions indicates that the effective

transmission rate of the terminal may be up to four times the

modem transmission rate. The compression achieved by the

Ziv-Lempel algorithm is not limited in the way that a Huffman code

would be, and the effective system performance may well be far

better than the results would indicate.

238

In addition to the transmission efficiency of the systems,

there are other more subjective criteria by which they may be

compared. If used in an interactive terminal application, the

efficiency of the system would not be as noticeable to the user as the

delay, or the irregularity in the data flow. For example, if text

appears on the terminal screen at high speed but in a jerky fashion,

this is likely to be more disturbing to the user than a slower but

smoother flow of data. Barber and Lucas (1983) discuss the effects

of system response time on terminal operators, but do not consider

the effects described above.

Within the present study, the effects of errors on the data

flow have not been considered, the main performance parameter

used was transmission efficiency. Hybrid ARQ may be less efficient

than ARQ under conditions of low channel error rate, however this

is due to the overhead imposed by the additional parity bits, not

generally to retransmissions. The data flow produced by an ARQ

system will be more irregular, as each retransmission may result in

a temporary halt in output to the terminal. One possible measure of

the irregularity of the data flow is the variance of the overall system

delay. This could be calculated directly for properly defined channel

models, but should be supported by both objective and subjective

tests using real or simulated systems.

239

7. CONCLUSIONS.

The objectives of the research project were to investigate the

performance of data compression and error control techniques for

use in an error control unit. The error control unit will be used to

enhance the performance of a data communications link, established

using high speed modems over the Public Switched Telephone

Network. Throughout the research project, a 'realistic' approach

was taken when considering performance and implementation

issues. The data compression algorithms discussed were adaptive,

and required little prior knowledge of the data source. The error

control techniques were selected to give reasonable performance

under a wide range of channel conditions. The practical problems of

implementation were discussed at some length, for both the

individual techniques and the overall system.

Two data compression algorithms were given. one a very

simple form of the Huffman code, and the other a modification of

the Ziv-Lempel algorithm. The simple scheme offers reasonable

compression, and is of low complexity, whilst the second algorithm

provides very good performance but at the expense of complexity.

The modification resulted in a reduction in the memory

requirement of the Ziv-Lempel algorithm, with negligible effect on

performance.

The telephone channel is not sufficiently well known to

enable one error control technique to be classed as optimum. A wide

range of channel conditions were used to compare a number of
different ARQ and hybrid ARQ error control schemes. Three

240

techniques were selected as candidates for the error control system

of which two are existing ARQ protocols. The adaptive hybrid ARQ

technique described in Chapter 5, gave excellent performance

under both low and high error rate conditions. The choice of error

control scheme will ultimately depend on the permissible

complexity, however adaptive schemes seem particularly applicable

to use on the telephone channel due to the non-stationary nature of

the error distribution.

System design considerations were discussed in Chapter 6,

which was intended to place the data compression and error

control schemes in context. Three system configurations were

given, and their complexity and performance compared. That

employing the modified Ziv-Lempel data compression algorithm and

the adaptive hybrid ARQ scheme provided excellent performance,

although Selective Repeat ARQ may be a better choice for channels

with long delay.

The project achieved the objectives; if, however, any one area

of the work could have been extended further, the implementation

of the forward error correcting code element of the adaptive hybrid

ARQ scheme would have been considered in more. detail.

Realistically, the encoder and decoder should be implemented in

software, possibly with a little hardware support, which presents

interesting problems when the transmission speed is considered.

241

S. Further Work.

(i) Compression of synchronous data.

Noiseless data compression schemes in general require that

the data stream is split into identifiable symbols. On synchronous

data streams however, the symbol boundaries are not defined, and in

packet networks the symbol sizes may vary from packet to packet. In

Section 3.3.3, it was shown that compression may still be achieved

if arbitrary symbol sizes are assumed, although the assertion was not

well supported by test data. There are many potential applications

for data compression schemes which can operate under these

conditions.

(ii) Improvements to the Ziv Lempel algorithm.

In Chapter 3 the Ziv Lempel compression algorithm was

discussed, and a number of improvements proposed. The resulting

modified algorithm used a relatively small amount of memory but

achieved excellent compression. It was also shown that reasonable

compression could be obtained with a small dictionary, of as little as

512 entries. The improvement resulting from simple modifications

to the basic algorithm suggests that further study of the algorithm

should produce valuable results. Areas of particular interest are

dictionary maintenance strategies, increasing the speed of adaption

to a source, and improving tolerance to transmission errors.

(iii) Integration of ARQ and data compression

A fundamental problem with integrated ARC) / adaptive

242

data compression systems was discussed in Section 6.3.2., relating

to the point at which the data compression is applied. If

compression is applied immediately the data enters the system, loss

of source encoder/decoder synchronization would result in the data

being effectively lost. If compression is applied immediately prior to

transmission, the source encoder may only be updated using

information from acknowledged frames, which will slow the

adaption process. Another alternative would be to store the data in

compressed form, but to download the dictionary or code table to

the decoder if synchronization is lost. This would take a

considerable time for the Ziv Lempel source encoder, due to the size

of the dictionary. This general problem needs further investigation,

as it affects both the reliability and efficiency of the system.

(iv) ARQ protocol reliability.

In the immediate future, high speed modems will provide a

valuable service for point-to-point links and gateways to packet

networks. The SDLC/ HDLC/ X25/ X32 family of protocols is already

widely used for public data networks and private wide area

networks, despite some uncertainty concerning the reliability of the

error detection methods used. A study of the error distribution

produced by modern synchronous modems, for example those using

V22, V26, V29, and V32/33, could form the basis of a detailed

analysis of the error detection properties of the HDLC class of link

level protocol, extending the work of Funk (1982) and others.

243

(v) Improvements to the adaptive hybrid ARQ scheme

The adaptive hybrid ARQ scheme developed in Section 5.7

has good performance under the test conditions applied. The

method needs further development however, in several areas. The

forward error correcting code used in the analysis of Section 5.7 was

a shortened (1023,923) BCH code, however the comments made in

Section (i) below, relating to decoder implementation, should be

considered. A more extensive performance comparison should be

made under a wider range of channel conditions, however this

should be based on recorded channel error data if possible.

(vi) Adaptive frame length allocation

Section 5.5 briefly discussed the question of optimum frame

length, and also a potential problem that may occur on channels

with extended noisy periods (for example, either the telephone

channel or a fading channel). If during the error free period, the

ARQ transmitter is sending long frames (which are more efficient

under these conditions), and the channel then switches to a noisy

state, the transmitter will retransmit the original frames. The long

frames will have a low probability of successful transmission, and

hence the ARQ system is effectively locked up until the errors cease.

The. solution proposed was to retransmit the data rather than the

frames, which implies that the retransmitted frames may be shorter

than the original ones, and hence the probability of successful

transmission improved. This is more likely to be useful on a fading

channel than a simple burst error channel, due to the delays

involved but is worthy of further consideration for the telephone

244

channel.

(vii) Subjective measures of ARQ system performance

In Section 6.6 a question was raised relating to the usefulness

of transmission efficiency as a performance measure in interactive

(terminal/computer) applications. The suggestion was made that

the mean and the variance of the delay would be of more immediate

relevance to the user, as these influence their perception of the

operation of the system and could prove distracting. Hybrid ARQ

schemes offer the promise of a reduced number of retransmissions

and hence a more even data flow. This should be investigated

further, but should be supported by experiments involving terminal

users.

(viii) Alternative hybrid ARQ systems.

The assumption was made in Chapter 5 that the error

correcting codeword consisted of the ARQ frame with additional

parity bits. An alternative method would be to use an independent

error correcting encoder/ decoder, i. e. one in which the codewords

are not synchronized to the ARQ frames. This would simplify the

design of the decoder but would render certain types of hybrid ARQ

scheme difficult to implement (namely the adaptive scheme and the

type II hybrid). The design of a variable rate encoder/ decoder able

to support this type of operation would be an interesting area for

development.

245

(ix) Software implementation of error correcting codes.

One area of practical difficulty encountered in implementing

the results of this study, centred on the software implementation of

error control codes. Most of the established methods are ideally

suited to hardware implementation, but do not lend themselves

readily to the software approach. Whilst advances in programmable,

semi- and full-custom integrated circuits are being made, several

fundamental problems still exist, namely the price/volume ratio and

the relatively high cost of memory in terms of gates per cell. For

many medium volume applications, the use of single chip

microcomputers or micro controllers is preferred, giving greater

flexibility and moderate cost, and permitting processor to be shared

between the error correction function and other control functions.

For many data communications systems, the development of error

detecting and correcting codes suited to software implementation

would be of considerable advantage. Such codes do exist, but the

number of hardware implementable techniques is far greater.

246

Appendix A References.

Abramson N. Information Theory and Coding.

McGraw Hill 1963

Agnostou M. E. Steady-State and Transient Delay Analysis

Sykas E. D. of ARQ Protocols
Protonotarius E. N. Computer Commun 7,1

Feb 1984 pp 23-30

Alexander A. A. Capabilities of the Telephone Network

Gryb RM. Nast D. W. for Data Transmission

B. S. T. J. Vol 39.3 May 1960 pp 431-476

Balcovic M. D. High Speed Voiceband Data Transmission
Kiancer H. W. Klare S. W. Performance on the Switched
McGruther W. G. Telecommunications Network

B. S. T. J. Vol 50,4 Apr 1971 pp 1349-1384

Barber R. E. System Response Time, Operator
Lucas H. C. Productivity and Job Satisfaction

CACM 26,11 Nov 1983 pp 972-986

Barnard GA Statistical Calculation of Word Entropies
for Four Western Languages
IRE Trans IT-1,1955, pp 49-53

Bartlett M. S. An Introduction to Stochastic Processes.
Cambridge Univ. Press 1978

Batorsky D. V. 1980 Bell System Noise Survey of the
Burke M. E. Loop Plant

B. S. T. J. 63.5 May 1984 pp 775-818

A- 1

Bell Labs (A. T. & T.) Data Communications Using the Switched

Telecommunications Network

Bell System Technical Reference 41005

May 1971

Benice RJ. An Analysis of Retransmission Systems

Frey A. H. IEEE Trans COM-12,4 December 1964

pp 135-145

Benice RJ. Comparisons of Error Control Techniques
Frey A. H. IEEE Trans COM-12,4 December 1964

pp 146-154

Berger J. M. A New Model for Error Clustering in
Mandelbrot B. Telephone Circuits

IBM J. Res. Dev. July 1963 pp 224-236

Bjorner D. Finite State Automaton Definition of
Data Communication Line Control
Procedures.
AFIPS Proc. 37 1970 pp 477-491

Blahut RE. A Universal Reed-Solomon Decoder
IBM J. Res. Dev. Mar 1984 pp 150-158

Blank H. A. A Markov Error Channel Model
Trafton P. J. Proc Nat Telecomm Conference 1973

Vol 1 pp 15B/1-8

Bochmann G. V. Finite State Description of Communication
Protocols.
Computer Networks 2.1978 pp 361-372

Bose R. C. On a Class of Error Correcting Binary
Ray-Chaudhuri D. K. Group Codes

Inf Control 3, March 1960, pp 68-79

A- 2

Brayer K. Error Control Techniques Using Binary

Symbol Burst Codes
IEEE Trans COM-16, Apr 1968

pp 199-214

Brownlie J. D., Duplex transmission at 4800 and 9600

Cusack E. L. bit/s on the PSTN and the use of channel

coding with a partitioned signal
constellation
Br. Telecom Tech. J. Vol 2, No 4

Sept 1984, pp 64-73

Burton H. O. Errors and Error Control
Sullivan D. D. Proc. IEEE Nov 1972 pp 1293-1300

Bux W. Kummerle K. Balanced HDLC Procedures: A

Truong H. L Performance Analysis

IEEE Trans COM-28,11 Nov 1980

pp 1889-1898

Bylanski P., Digital Transmission Systems.
Ingram D. G. W. Peter Peregrinus 1980

Cain J. B. The Distribution of Burst Lengths
Simpson R. S. on a Gilbert Channel

IEEE Trans IT-15 Sep 1969 pp 624-627

Carey M. B., Chen H. T., 1982/83 End Office Connection Study:
Descloux A. Ingle J. F., " Analog Voice and Voiceband Data
Park K. I. Transmission Performance

Characterization Switched Network
B. S. T. J. Vol 63,9 Nov 1984 pp 2059-2119

CCITT Red Book Recommendations

-V22, V32, V41, X25, T. 6
Published ITU, 1984

A- 3

Chu W. W. Optimal Message Block Size for Computer

Communications with Error Detection and
Retransmission Strategies.

IEEE Trans COM-22.10 Oct 1974

pp 1516-1525

Clark A. P. Advanced Data Transmission Systems

Pentech press 1977

Cleary J. G., Data Compression using Adaptive Coding

Witten I. H. and Partial String Matching

IEEE Trans. COM-32,4 April 1984

pp 396-402

Cooper D., Lynch M. F. Text Compression Using Variable to Fixed
Length Encodings
J. American Society for Inf. Science
Jan 1982, pp 18-31

Cooper L., Introduction to Dynamic Programming
Cooper M. W. Pergamon 1981

Cox D. R. Renewal Theory
Methuen 1962

Davies D. W. Computer Networks and their Protocols
Wiley 1979

Deo N. Graph Theory with Applications to
Engineering and Computer Science.
Prentice Hall 1974

A- 4

Diaz M. Modelling and Analysis of Communication

and Cooperation Protocols using Petri

Net Based Models
Computer Networks 6,1982 pp 419-441

9

Djikstra E. W. Cooperating Sequential Processes
In: - Programming Languages

ed. F. Genuys
Academic Press 1968

Drajic D. Evaluation of Hybrid Error Control
Vucetic B. Systems

IEE Proc F Vol 131,2 Apr 1984

pp 181-193

Drukarev A. A Comparison of Block and Convolutional
Costello D. J. Codes in ARQ Error Control Schemes

IEEE Trans COM-30,11 Nov 1982

pp 2449-2455

Drukarev A. Hybrid ARQ Error Control Using
Costello D. J. Sequential Decoding

IEEE Trans IT-29,4 Jul 1983 pp 521-535

Duffy F. P., Analog Transmission Performance on the
Thatcher T. W. Switched Telecommunications Network

B. S. T. J. Vol 50,4 Apr 1971 pp 1311-1347

Easton M. C. Batch Throughput Efficiency of ADCCP/
HDLC/SDLC Selective Reject Protocols
IEEE Trans COM-28,2 Feb 1980

pp 187-195

Elliott E. O. Estimates of Error Rates for Codes on
Burst Noise Channels
B. S. T. J. Vol 42, Sep 1963 pp 1977-97

A- 5

Elliott E. O. A Model of the Switched Telephone

Network for Data Communications

B. S. T. J. Vol 44,1 Jan 1965 pp 89-109

Enticknap R. G. Errors in Data Transmission Systems

IRE Trans Comm Systems March 1961

pp 15-20

Faller N. An Adaptive System for Data Compression

7th Asilomar Conf. on Circuits, Systems

and Communications 1974

pp 593-597

Fano R. M. A Theory of Impulse Noise in Telephone
Networks
IEEE Trans COM-25,6 Jun 1977

pp 577-588

Farrell P. G. Coding for Noisy Data Links
Ph. D. Dissertation
University of Cambridge 1969

Ferguson T. J., Self-Synchronizing Huffman Codes
Rabinowitz J. H. IEEE Trans IT-30 July 1984

pp 687-693

Field J. A. Efficient Computer-Computer
Communication
Proc IEE, 123,8 August 1976 pp 756-760

Fleming H. C. Low-Speed Data Transmission
Hutchinson RM. Performance on the Switched

Telecommunications Network
B. S. T. J. Vol 50,4 Apr 1971 pp 1385-1405

A- 6

Fontaine A. B. Error Statistics and Coding for Binary
Gallager RG. Transmission over Telephone Circuits

Proc IRE vol 49 Jun 1961 pp 1059-1065

Fujiwara C., Kasahara M., Evaluations of Error Control Techniques
Yamashita K., in Both Independent Error and
Namekawa T. Dependent Error Channels.

IEEE Trans COM-26,6 Jun 1978

pp 785-793

Gallager RG.

Gallager R. G.

Garten H.

Information Theory and Reliable
Communication
John Wiley & Sons, 1968

Variations on a Theme by Huffman
IEEE Trans IT-24 1978

pp 668-674

On Variable Length Codes under Hardware
Constraints
IEEE Trans. COM-33,5 May 1985

pp 491-494

Gilbert E. N. Capacity of a Burst Noise Channel
B. S. T. J. Vol 39, Sep 1960 pp 1253-1265

Gilbert E. N. Codes Based on Inaccurate Source
Probabilities
IEEE IT-17.3 May 1971 pp 304-314

Goodman R. M. F., Data Transmission with Variable
Farrell P. G. Redundancy Error Control over

a High Frequency Channel
Proc IEE Vol 122,2 Feb 1975 pp 113-118

A- 7

Gottlieb D., Hagerth S. A., A Classification of Compression Methods
Lehot P. G. H and their Usefulness for a Large Data

Rabinowitz H. S. Processing Center

AFIPS Joint Computer Conf.

May 1975, pp 453-458

Hailpern B. A Simple Protocol Whose Proof Isn't

IEEE Trans COM-33 1985 pp 330-337

Hamming RW. Error Detecting and Correcting Codes

B. S. T. J. 29, April 1950, pp 147-160

Hamming R. W. Coding and Information Theory
Prentice Hall 1980

Harary F. Graph Theory
Addison Wesley 1969

Hardy. G. H. An Introduction to the Theory of Numbers
Wright E. M. Oxford University Press 1984

Hartley R. V. L. Transmission of Information
Bell System Tech. J.
July 1928 pp 535-563

Hayes J. F. Modeling and Analysis of Computer
Communications Networks
Plenum Press 1984

Hoare C. A. An Axiomatic Basis for Computer
Programming
CACM 12.1969 pp 576-580

Hocquenghem A. Codes Corecteurs D'Erreurs
Chiffres 2,1959, pp 147-156

A- 8

Hsu I., Reed I. S., The VLSI Implementation of a Reed-

Truong T. K. Wang K., Solomon Encoder Using Berlekamp's

Yeh C., Deutsch L. J. Bit Serial Multiplier Algorithm

IEEE Trans C-33,10 1984, pp906-911

Huffman D. A. A Method for the Construction of
Minimum Redundancy Codes
Proc IRE Vol 40,9 1952 pp 1098-1101.

Humblet P. A. Generalization of Huffman Coding to

Minimize Probability of Buffer Overflow

IEEE Trans. IT 27,2 March 1981

pp230-232

Johnson B. L. Design and Hardware Implementation of
a Versatile Transform Decoder for Reed-
Solomon Codes
IEE Conf. VLSI for Communications,
London, Dec 1983, pp 53-61

Karp R. M. Minimum Redundancy Coding for the
Discret Noiseless Channel
IRE Trans IT-7 Jan 1961 pp27-38

Katona G. O., Huffman Codes and Self
Nemetz T. O. H Information.

IEEE Trans IT-22,3 1976 pp337-340

Kitces S. Heller R. A Technique for Improving the
Bowen J. Transmission Reliability of a Fading

Channel
IEEE Int Convention Record 1963
Vol 11,8 pp 154-162

A- 9

HIove T., The Detection of Errors After Error-

Miller M. Correction Decoding

IEEE Trans COM-32,5 May 1984

pp 511-517

Knuth. D. The Art of Computer Programming.

Vols 1 and 3.

Addison Wesley

Konheim A. G. A Queueing Analysis of Two ARQ Protocols

IEEE 7Yans COM 28,7 Jul 1984

pp 1004-1014

Labetoulle J. HDLC Throughput and Response Time for

Pujolle G. Bidirectional Data Flow with Nonuniform

Frame Sizes

IEEE Trans C-30,6 June 1981

pp 405-413

Lai W. S. An Analysis of Piggybacking in Packet
Networks
Computer Networks 6 1982 pp 279-290

Langdon G. G. An Introduction to Arithmetic Coding.
IBM J. Res. Develop. Vol 28,2 March 1984

pp 135-149

Lavelle P. J. An Efficient Method for File Transmission.
IEEE 1981 Communications Conf.

vol 3, pp 53.4.1-53.4.4

Leung C. S. K., Forward Error Correction for an ARQ
Lam A. Scheme

IEEE Trans COM-29,10 Oct 1981
pp 1514-1519

A- 10

Lempel A., Ziv J. On the Complexity of Finite Sequences.

IEEE Trans. IT-22,1 Jan 1976

pp75-81

Lewis P. A. W. A Statistical Analysis of Telephone
Cox D. R. Circuit Error Data

IEEE Trans COM-14,4 Aug 1966

pp 382-389

Lin S. Error Control Coding: Fundamentals and
Costello D. J. Applications

Prentice Hall 1983

Lin S., Yu P. S. An Efficient Error Control Scheme for
Satellite Communications
IEEE Trans COM-28 Mar 1980

pp 395-401

Lin S., Yu P. S. A Hybrid ARQ Scheme with Parity
Retransmission for Error Control of
Satellite Channels
Nat Telecom. Conf. 1981, Vol 4,

pp G10.3/1-8

Lucky R. W. Saltz J. Principles of Data Communication
Weldon E. J. McGraw Hill 1968

Maguire T. A. The Examination of Error Distributions
Wright E. P. G. for the Evaluation of Error Detection

and Error Correction Procedures
IRE Trans CS-9 Jun 1961 pp 101-106

Mandelbaum D. M. An Adaptive-Feedback Coding Scheme
Using Incremental Redundancy
IEEE Trans IT-20,3 May 1974

pp 388-389

A- 11

Manfrino R. L. Printed Portugese (Brazilian) Entropy

Statistical Calculation

Int Symposium of Inf. Theory, Jan 1969.

Maxemchuk. N. F. Reduction of Transmission Error
Stuller. J. A. Propagation in Adaptively Predicted DPCM

Encoded Pictures.
B. S. T. J. 58,6/2, Jul 1979, pp 1413-23

Maxted J. C. Error Recovery for Variable Length Codes

Robinson J. P. IEEE Trans IT-31,6 Nov 1985

pp 794-801

Mertz P. Model of Impulsive Noise for Data
Transmission
IRE Trans CS-9 June 1961 pp 130-137

Mertz P. Statistics of Hyperbolic Error
Distributions in Data Transmission
IRE Trans CS-9 Dec 1961 pp 377-382

Metzner J. J. Improvements in Block-Retransmission
Schemes
IEEE Trans COM-27,2 Feb 1979

pp 524-532

Miller M. J. Hybrid ARQ Systems for Data Networks
IREECON Int. Conf. 1983 pp 44-46

Miller V. S., Variations on a Theme by Lempel and Ziv.
Wegman M. N. Draft, December 1982

IBM Thomas Watson Res. Center.

Milner R. A Calculus of Communicating Systems
Springer Verlag LNCS 92,1980

A- 12

Morris J. M. Optimal Blocklengths for ARQ Error

Control Schemes

IEEE Trans COM-27,2 Feb 1979

pp 488-493

Muntner M. Predicted Performance of Error-Control
Wolf J. K. Techniques over Real Channels

IEEE Trans IT-14.5 Sep 1968

pp 640-650

Reiffer B. Schmidt W. G. The Design of an Error Free Data
Yudkin H. L. Transmission System for Telephone

- Circuits
Trans AIEE (Comm & Electronics) 80,

July 1961 pp 224-231

Reiger S. H. Codes for the Correction of Clustered
Errors
IRE Trans IT-6 Mar 1960 pp 16-21

Reiser M. A Queueing Network Analysis of Computer
Communication Networks with Window
Flow Control
IEEE Trans COM-27,8 Aug 1979

pp 1199-1209

Ridout I. B. The Principles of Scramblers and
Harvie I. B. Descramblers Designed for Data

Transmission Systems
British Telecommunications Eng. Vol 1
July 1982 pp 111-114

A- 13

Rocher E. Y. An Analysis of the Effectiveness of Hybrid

Pickholtz R. L. Transmission Schemes.

IBM J. Res. Dev. 14, July 1970 pp426-433

Sastry A. R. K. Hybrid Error Control Using
Kanal L. N. Retransmission and Generalized

Burst-Trapping Codes
IEEE Trans COM-24,4 Apr 1976

pp 385-393
.

Schreiber W. F. The Measurement of Third Order
Probability Distributions of Television
Signals
IRE Trans IT-2,3 1956 pp 94-105

Schwartz E. S. Generating a Canonical Prefix
Kallick B. coding

CACM 7,3 March 1964 pp 166-169

Shannon C. E. A Mathematical Theory of Communication.
Bell System Tech. J.
Vol 27 1948 pp 379-423
Vol 27 1948 pp 623-656

Shannon C. E. Prediction and Entropy of Printed English
Bell System Tech. J.
Vol 30.1 Jan 1951 pp 50-64

Smith S. A. A Generalization of Huffman Coding for

Messages with Relative Frequencies given
by Upper and Lower Bounds.
IEEE Trans. IT-20 1974 pp 124-125

Stuffier J. J. Theory of. Synchronous Communication.
Prentice Hall 1971

A- 14

Stuck B. W. A Statistical Analysis of Telephone
Kleiner B. Noise

B. S. T. J. Vol 53,7 Sep 1974 pp 1263-1320

Sussman S. M. Analysis of the Pareto Model for Error

Statistics on Telephone Circuits

IEEE Trans COM-11 Jun 1963

pp 213-221

Tan C. P. On the Entropy of the Malay Language
IEEE Trans IT-27,3 1981 pp383-4

Tarjan R. Depth First Search and Linear Graph
Algorithms
SIAM J Comp. 1,2 Jun 1972,

pp 146-160

Townsend R. L. Effectiveness of Error Control in Data
Watts RN. Communication over the Switched

Telephone Network
B. S. T. J. Vol 43,6 Nov 1964 pp 2611-2638

Van Duuren H. C. A. Typendruktelegrafic over
Radioverbindiger TOR
Tijdschrift Nederlands Radlogenootschap
Mar 1951 pp 53-67

Van Voorhis D. C.

Wanas MA., Zayed A. I.
Shaker M. M. Taha E. H.

Constructing Codes with Bounded
Codeword Lengths

" IEEE Trans. IT-20 March 1974

pp 288-290

First, Second and Third Order Entropies

of Arabic Text
IEEE Trans. IT 22 Jan 1976

pp 123-125

A- 15

Wang Y. Lin S. A Modified Selective-Repeat Type II
Hybrid ARQ System and its Performance

Analysis
IEEE Trans COM-31,5 May 1983

pp 593-607

Watanabe M. A 4800 Bit/s Microprocessor Modem
Inoue K., Sato Y. IEEE Trans COM-26,5 May 1978

pp 493-498

Welch T. A. A Technique for High-Performance Data

Compression
Computer June 1984 pp 8-19

Wells M. File Compression Using Variable
Length Encodings
Computer Journal 1972 15,4 pp 308-313

Weng L, -J Variable Redundancy Product Codes
Sollman G. H. IEEE Trans COM-15,6

Dec 1967 pp 835-838

Williams M. B. The Characteristics of Telephone Circuits

in Relation to Data Transmission
Post Office Elect. Eng. J. Vol 59,3
Oct 1966 pp 151-162

Yannakoudakis E. J., The Generation and use of Text Fragments
Goyal P. for Data Compression Information
Huggill J. A. Processing and Management,

Vol 18,1 Jan 1982 pp 15-21

Yu Y. Gouda M. Deadlock Detection for a Class of
Communicating Finite State Machines
IEEE COM-30,12 1982 pp 2514-2518

A- 16

Ziv J., Lempel A. A Universal Algorithm for Sequential
Data Compression
IEEE Trans. IT 23,3 May 1977
pp 337-343

Sinha V. Tambe M. A. A Parallel Processing Hardware for
Baindur. Binary BCH Double Error Correcting

Codec
J Inst Electronics & Telecomm Eng.

Vol 29,1 1983 pp 10-14

A- 17

Appendix B

Extracts from the samples of data used for comparison of source

codes.

In each case sufficient text is given to give a fair impression of

the nature of the sample.

Sample Text 3L Entropy 4.504 Length 40598 characters

Description - Technical paper

The first problem to be solved is that of finding a common

point of interaction between the scientist and the machine. The

reason is simple. There is no point in the scientist talking to the

machine about one thing and the machine thinking that he is talking

about something else, or vice versa.

B- 1

Sample Text2 Entropy 4.641 Length 44685

Description: Documentation for software package.

: CAPTURE LIVE IMAGE OR READ FROM DISK? R:

I

: PLEASE INPUT NAME OF SAVED FILE E. G. DM1: IMDAT :

S

If the user inputs the wrong reply then the IPL will prompt

the user to input again, with the legal prompts shown to them.

Sample Text3 Entropy 4.456 Length 13873

Description: Technical document

In Artificial Intelligence (A. I) and related work, test rigs and

other development tools are essential. The problem is that by its

nature, the details of the research cannot be specified in advance

and hence neither can the facilities which it requires.

B- 2

Sample Text4 Entropy 4.722 Length 48753

Description: Technical document

The concept of template matching has found wide

acceptance in segmentation applications mainly due to the

simplicity of the method. The template is an array designed to

detect some invariant regional characteristic. Many people have

suggested various templates for detecting points, lines, arcs, etc

[10,30-341.

Sample Text5 Entropy 4.019 Length 27198

Description: Technical document (containing a fair proportion of

pseudo-Pascal program description.

Although any real time operating system should supply these

facilities, execution of operating system functions should, in

general, occupy only a small proportion of the processor time. For

embedded system software, tasks will usually be created at system

initialization, remain resident until system reset, and often (but not

always) require a fixed resource allocation.

B- 3

Sample FORTRAN I Entropy 5.281 Length 5387

Description: FORTRAN source code.

WRITE(CON, 600)

BEAD(CON, 650)MARGIN

IF(MARGIN. EQ. O)MARGIN=8

WRITE(CON, 670)

READ (CON, 570)IDTIM, IDTIMP

WRITE(CON, 590)IDTIM

Sample FORTRAN2 Entropy 4.773 Length 1971

Description : FORTRAN source code

C INITIALISE EOF FLAG, CHARACTER COUNT(S)

IEOF=O

CHAR=O

DO 50 I=1,130

50 COUNT(I)=O

C

C READ RECORDS UNTIL EOF

C

B- 4

Sample Pascall Entropy 5.022 Length 7097

Description: Pascal source code

BEGIN (* PROCEDURE Correct *)

Goodness := Dot(Vector, Rules[Chosen]);

FORJ :=1 TO Noutputs DO

IF (DecisionUl >= Goodness) AND 0 <> Chosen) THEN

Rules(j] := Vret[Diff(Rules[j], Vector)];

Rules[Chosen] := Vret[Sum(Rules[j]. Vector)];

END; (* PROCEDURE Correct I

Sample Pascal2 Entropy 4.420 Length 8656

Description: Pascal source code

length: =length-1;

UNTIL (length=0) OR (buflen=8);

IF buflen=8 THEN buffull: =TRUE ELSE buffull: =FALSE;

END; {of bitpak)

B- 5

Sample Prolog Entropy 4.747 Length 7218

Description: Prolog source code.

add: -write('unknown feature... please check word list '), nl

retractall(feature(J), retractall(featurelist(,).

current: -context(X), entry(X, L), nl, write(X), nl, write(L), showmenu.

Sample Numbers Entropy 3.988 Length 2736

Description: Tables of decimal numbers

1 1.112 1.157

2 1.148 1.111

3 1.302 1.269

4 1.157 1.135

Mean length 1.176

1.232 1.176

1.188 1.134

1.089 1.286

1.203 1.118

std. dev 0.066

Sample Image Entropy 4.734 Length 65664

Description: This was a grey level close-up image of the surface of a

road. The sample was quantised to 7 bits.

B- 6

Samples of text used for testing adaptive codes:

Sample type 1 Upper case text.

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Sample type 2 Mixed upper and lower case text

27 MORE THAN ONE RECORD

An attempt was made to read or write more than a single

record in an encode or decode statement.

Sample type 3 Numeric data

. 000 1.2468 19.531 . 5363 39.063 -1.8771 58.594

78.125 -29.4091 97.656-6.2786 117.188 -1.2692 136.719

156.250 1.4597 175.781 . 5815 195.313 -2.1197 214.844

234.375 -18.6578 253.906 -4.5225 2363.281 -21.6124

B- 7

Appendix C. Derivation of ARQ Efficiency Equations.

C. 1 Introduction

The derivations given below are generally well known, except

perhaps for those in C. 5 to C. 7, but are included for completeness.

The general approach to calculating ARQ efficiency is based on the

expression: -

Efficiency = k-h I
kT

where k is the length of the frame (and equal to n in non

hybrid ARC) schemes), h the number of additional bits required to

construct an ARQ frame, and T the expected number of

transmissions required to send a frame.

The major difference between the efficiency equations given

below is in T, the expected number of transmissions per frame.

An important element in the Stop and Wait, and Go Back N

equations is N. the delay between the transmission and

acknowledgement of a frame. This consists of the forward channel

propagation delay, the backward channel propagation delay, and the

time taken for the receiver to completely read the frame and check

for errors. If piggybacking is used to transport the

acknowledgements, the delay will be greater (see for example Lai

1982).

Acknowledgement delay N=1+2 D/n frames

(round trip)

C- 1

where D is the end to end propagation delay of the channel,

and n the frame length (both D and n in are in bits).

The major assumptions made below are: -

(i) The forward and return channel have the same propagation

delay.

(ii) An acknowledgement takes a negligibly small period of time

to encode and decode.

NO The return channel is error free.

The block error probability is given in the form P(m>t, n),

where n is the block length, t is the number of correctable errors

and m the random variable denoting the number of errors within the

block or frame. The expression PE will be used to denote P(m>O, n).

C- 2

C. 2 Stop and Wait ARQ

In the Stop and Wait scheme, the transmitter will send a

frame, wait N frame intervals, and then either retransmit the frame

or send the next in sequence. The expected number of frame

intervals required to send one frame successfully is thus: -

T= (1-PE)N+PE (1-PE)2N+PE2(1-PE)3N+...

00

=N (1-PE). PE
i=1

=N
(1-PE)

the efficiency is therefore

E= 1k-h 1-PE I
kN

C- 3

C. 3 Selective Repeat ARQ

In the Selective Repeat scheme, the transmitter sends

continuously and only retransmits rejected frames. The average

number of transmissions required to send one frame is: -

T=(1-PE)+PE (1-PE). 2+PE2 (1-PE). 3+....

00

1
1(1-RE)" E(i-1) t-1

=1
(1-PE)

the efficiency is therefore

E= (k-h) (1-PE)
k

C- 4

C. 4 Go Back N ARQ

The Go Back N scheme is slightly less efficient than Selective

Repeat as the transmitter retransmits a sequence of N frames when

a reject is received.

T= (1-PE) + (1+N)PE (1-PE) + (1+2N)PE 2(1-PE) +...

00
1:

_ (i. N+1). (1-PE). PE'
1=0

(1-PE) (N-A-PE +

(1-PE)2 (1-PE)

= N. PPE+ 1
(1-PE)

the efficiency is therefore

E= k-h 1
k(1 +N. PE)

(1-PE)

C- 5

C. 5 Type I Hybrid GBN ARQ

The type I hybrid ARQ scheme employs an (n. k. t) forward

error correcting code. This reduces the effective error rate, but also

reduces the efficiency by the rate of the code.

The expression for T is basically the same as that given in

section C. 4, however PE is replaced by P(m>t, n).

T=N. P(m>t. n) +1
(1-P(m>t, n))

the efficiency is therefore

E=k (k-h) 1
nk (1 + N. P(m>t. n))

(1-P(m>t, n))

= Ik-h1 1
n (1 + N. P(m>t. nl)

(1-P(m>t. n))

If desired, the value of N may be increased to allow for

decoding delay.

C- 6

C. 6 Type II Hybrid GBN ARQ

The type II hybrid, or parity retransmission ARC) is based on

the principal that error correcting code parity is sent in the

retransmitted frame instead of data. This has the advantages that no

additional parity is sent with the first transmission, which improves

efficiency under error free conditions, but if errors are present the

system effectively employs a half rate code which is capable of

correcting a large number of errors.

The forward error correcting code is effectively a (2k, k, t)

code, of which k data bits are sent in the first transmission, and k

parity bits in the second. The effective number of transmissions is

thus: -

T= (1-PE) + (1+N). PE. (1-P(m>t. n)) +

(1+2N). PE. P(m>t, n). (1-P(m>t, n)) +

(1+3N). PE. P(m>t, n)2. (1-P(m>t, n)) +...

Note that n= 2k in this case, as the effective block length of
the FEC code is 2k.

C- 7

00

T= (1-PE) + (iN+1). PE. (1-P(m>t, n)). P(m>t, n)(1-1)

_ (1-PE) + PE (1-P(m>t, n))(N+1
(1-P(m>t, n))2 (1-P(m>t, n))

=1+, N
(1-P(m>t, n))

the efficiency is therefore

E= (k-h) 1
k (1 + N. PE

(1-P(m>t, 2k))

C- 8

C. 7 Adaptive Zrpe I Hybrid GBN ARQ

The adaptive hybrid scheme has some similarity to the parity

retransmission scheme discussed above, in that the retransmission

probability for the second and subsequent frames is less than that of

the first. This is because the forward error correction element of the

system is switched in when a retransmission request is received.

The probability of a block being rejected depends on whether

the block was encoded using the FEC code or not. The probability of

a block being encoded (assuming that block errors are independent)

is equivalent to the probability that the preceding c blocks are error

free, where c is the number of frames that must be sent before the

FEC code is switched out (the sustain factot).

Pf=1-(1-PE)c

The first transmission thus has a probability of success
(i. e. no retransmission) of: -

Pnr = (Pf. (1-P(m>t, n)) + (1-Pd. (1-PE))

Note that the block length is k for uncoded frames and n for

encoded frames, therefore PE = P(m>O, k)

C- 9

The expected number of transmissions is thus: -

T= Pn. + (1+N). (1-Pnr). (1-P(m>t, n)) +

(1+2N). (1-Pnr). P(m>t, n). (1-P(m>t, n)) +...

00

= Pnr + (iN+1). (1-Pnr). (1-P(m>t, n)). P(m>t, n)(i"1)
i=1

the next step follows C. 6 to give: -

T=1+ 1-P N
(1-P(m>t, n))

The expected frame length will be between k and n, as the

uncoded frame has length k, and the encoded length n. Under the

assumption given above in calculating Pf, the expected frame. length

will be: -

n' = Pf. n + (1-P1). k

the efficiency is therefore: -

E (k-h) 1
(Pf. n+(1-Pf). k) (1 + (1-Pnr1, N

(1-P(m>t, n))

C- 10

If

Appendix D. Derivation of Optimum Frame Length Equations for

ARQ.

D. 1 Introduction

The basic approach to calculating the optimum frame length

is given by Chu (1974) and Morris (1979), although they give

expressions in terms of wasted time rather than efficiency. The

efficiency equation is differentiated with respect to block length,

and the derivative set to zero. The optimum block length will be a

root of the equation.

It should be noted that the conditions stated in Appendix C

apply, and that both PE and N are functions of the block length k. As

PE = P(m>O, n) the derivative of PE depends on the channel model,

and will therefore be denoted merely as: -

IIPE' PE
dk

The derivative of N, the acknowledgement delay is easily found from

the expression given in Appendix C Section C. 1.

dN = 11-N)
dk k

D- 1

D. 2 Stop and Wait ARQ

E=(k-h) 11=2E)
kN

dE =(E)si k- + ! maid (J-PE)
dk *N dk kk dk N

=)3 (E) - 1k_h) (EE' + (1-PE). 1-N)
k2 NkNk. N2

when the derivative is set to zero,

k2 - k. (IN-11. (1-PZ 1+ h) - h. l --PE) =0
N. PE' N. PE

The optimum frame length for Stop and Wait ARQ is a root of

this equation. For example, the optimum frame length for a binary

symmetric channel, with the parameters PT=0.001, D=1000 bits,

and a header length of 48 bits, may be determined from the above as

783 bits.

D- 2

D. 3 Selective Repeat ARQ

E=(k-h) (1-PE)
k

dE _ (1-PE). d 1k-h) + (k-h) j(1-PE)
dk dk kk dk

JL(1-PE) + (k-hl PE'
k2 k

when the derivative is set to zero,

k2 - k. h - h. (1-PZ) =0
PE

The optimum frame length for Selective Repeat ARQ is a root

of this equation. Under the conditions given in D. 2, the optimum

frame length would be 244 bits.

D- 3

D, 4 Go Back N ARQ

E= k-h 1
k(1+, , PE)

(1-PE)

= k-h 1-PE-1
k (1 + PE. (N-1))

d= 1-PE 1 Sl Lk-h) + (k-h). d (E_l. _ dk (1+PE. (N-1)) dk kk dk (1+PE. (N-1))

= 1-P_). fh + k. Pr . (N-1)) - (k-h1. k. N. PE
k. (1 + PE. (N-1))2

when the derivative is set to zero,

(1-PE)(h + k. PE. (N-1)) - (k-h). k. N. PE =0

k2 - k(F£J1)+ h) - h. 1-PE) =0
N. PE' N. PE'

The optimum frame length for Go Back N ARC) is a root of this

expression. Under the conditions given in D. 2 the optimum frame

length would be 287 bits.

D- 4

