Variable Redundancy Coding for Adaptive Error Control

Abstract

This thesis is concerned with variable redundancy(VR) error control coding. VR coding is proposed as one method of providing efficient adaptive error control for time-varying digital data transmission links. The VR technique involves using a set of short, easy to implement, block codes; rather than the one code of a fixed redundancy system which is usually inefficient, and complex to decode. With a VR system, efficient data-rate low-power codes are used when channel conditions are good, and very high-power inefficient codes are used when the channel is noisy. The decoder decides which code is required to cope with current conditions, and communicates this decision to the encoder by means of a feedback link. This thesis presents a theoretical and practical investigation of the VR technique, and aims to show that when compared with a fixed redundancy system one or more of the advantages of increased average data throughput, decreased maximum probability of erroneous decoding, and decreased complexity can be realised. This is confirmed by the practical results presented in the thesis, which were obtained from field trials of an experimental VR system operating over the HE’ radio channel, and from computer simulations. One consequence of the research has been the inception of a study of codes with disjoint code books and mutual Hamming distance (initially considered for combatting feedback errors), and this topic is introduced in the thesis

    Similar works