239 research outputs found

    Biological control via "ecological" damping: An approach that attenuates non-target effects

    Get PDF
    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous" levels, in a finite time. We next propose various controls to drive down the invasive population growth and, in certain cases, eliminate blow-up. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in earlier work. Lastly, we confirm the existence of spatio-temporal chaos

    High-order adaptive methods for computing invariant manifolds of maps

    Get PDF
    The author presents efficient and accurate numerical methods for computing invariant manifolds of maps which arise in the study of dynamical systems. In order to decrease the number of points needed to compute a given curve/surface, he proposes using higher-order interpolation/approximation techniques from geometric modeling. He uses B´ezier curves/triangles, fundamental objects in curve/surface design, to create adaptive methods. The methods are based on tolerance conditions derived from properties of B´ezier curves/triangles. The author develops and tests the methods for an ordinary parametric curve; then he adapts these methods to invariant manifolds of planar maps. Next, he develops and tests the method for parametric surfaces and then he adapts this method to invariant manifolds of three-dimensional maps

    On Vibration Analysis and Reduction for Damped Linear Systems

    No full text

    Interpolation Based Parametric Model Order Reduction

    Get PDF
    In this thesis, we consider model order reduction of parameter-dependent large-scale dynamical systems. The objective is to develop a methodology to reduce the order of the model and simultaneously preserve the dependence of the model on parameters. We use the balanced truncation method together with spline interpolation to solve the problem. The core of this method is to interpolate the reduced transfer function, based on the pre-computed transfer function at a sample in the parameter domain. Linear splines and cubic splines are employed here. The use of the latter, as expected, reduces the error of the method. The combination is proven to inherit the advantages of balanced truncation such as stability preservation and, based on a novel bound for the infinity norm of the matrix inverse, the derivation of error bounds. Model order reduction can be formulated in the projection framework. In the case of a parameter-dependent system, the projection subspace also depends on parameters. One cannot compute this parameter-dependent projection subspace, but has to approximate it by interpolation based on a set of pre-computed subspaces. It turns out that this is the problem of interpolation on Grassmann manifolds. The interpolation process is actually performed on tangent spaces to the underlying manifold. To do that, one has to invoke the exponential and logarithmic mappings which involve some singular value decompositions. The whole procedure is then divided into the offline and online stage. The computation time in the online stage is a crucial point. By investigating the formulation of exponential and logarithmic mappings and analyzing the structure of sums of singular value decompositions, we succeed to reduce the computational complexity of the online stage and therefore enable the use of this algorithm in real time

    Invariant Reconstruction of Curves and Surfaces with Discontinuities with Applications in Computer Vision

    Get PDF
    The reconstruction of curves and surfaces from sparse data is an important task in many applications. In computer vision problems the reconstructed curves and surfaces generally represent some physical property of a real object in a scene. For instance, the sparse data that is collected may represent locations along the boundary between an object and a background. It may be desirable to reconstruct the complete boundary from this sparse data. Since the curves and surfaces represent physical properties, the characteristics of the reconstruction process differs from straight forward fitting of smooth curves and surfaces to a set of data in two important areas. First, since the collected data is represented in an arbitrarily chosen coordinate system, the reconstruction process should be invariant to the choice of the coordinate system (except for the transformation between the two coordinate systems). Secondly, in many reconstruction applications the curve or surface that is being represented may be discontinuous. For example in the object recognition problem if the object is a box there is a discontinuity in the boundary curve at the comer of the box. The reconstruction problem will be cast as an ill-posed inverse problem which must be stabilized using a priori information relative to the constraint formation. Tikhonov regularization is used to form a well posed mathematical problem statement and conditions for an invariant reconstruction are given. In the case where coordinate system invariance is incorporated into the problem, the resulting functional minimization problems are shown to be nonconvex. To form a valid convex approximation to the invariant functional minimization problem a two step algorithm is proposed. The first step forms an approximation to the curve (surface) which is piecewise linear (planar). This approximation is used to estimate curve (surface) characteristics which are then used to form an approximation of the nonconvex functional with a convex functional. Several example applications in computer vision for which the invariant property is important are presented to demonstrate the effectiveness of the algorithms. To incorporate the fact that the curves and surfaces may have discontinuities the minimizing functional is modified. An important property of the resulting functional minimization problems is that convexity is maintained. Therefore, the computational complexity of the resulting algorithms are not significantly increased. Examples are provided to demonstrate the characteristics of the algorithm

    The development of virtual leaf surface models for interactive agrichemical spray applications

    Get PDF
    This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered
    corecore