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Abstract 

The application of thin plate srnoothing splines to the spatial interpolation 

of large data sets has in the past been limited by t he associated computa­

tional cost . To obtain the analytic solut ion to the thin plate smoothing spline 

equations, O(n3) operations are required, making routine con1putation on the 

average workstation infeasible for data sets with more than around 2000 data 

points. Methods for fast cornputation of analytic thin plate smoothing splines 

have been developed by past studies, and finite elen1ent approaches have also 

been widely en1ployed. These studies have investigated the t hin plate spline 

systen1 rnainly fron1 a numerical perspective, without an automatic mechanism 

for optirnising 'sn1oothness'. The srnoothness of a thin plate sn1oothing spline 

function is controlled by a sn1oothing paran1eter ,\. This parameter deterrnines 

how closely the data points are fitt ed. Depending on the value of,\, the data 

points can be exactly interpolated, or globally smoothed. 

For practical sn1ooth spatial interpolation problems, surface sn1oothness is a 

central issue. The 1notivation for this study was the spatial interpolation of 

large environmental data sets, particularly climate data sets. Observations of 

environn1ental processes often contain a high noise component, so the extent 

to which the data are sn1oothed has a considerable influence on the predic­

tive accuracy of the fitted function. Opti1nising the s1noothing para1neter by 

1nini1nising the generalised cross validation ( GCV) is well known to be a suit­

able n1ethod for 1ninin1ising the predictive error of the thin plate smoothing 

spline surface, and has been used in 1nany applications of thin plate smoothing 

splines . It was therefore the goal of this study to develop a co1nputationally 

efficient nu1nerical strategy for fitting approxi1nate 1nini1nu1n GCV thin plate 

sn1oothing splines to large data sets . 

Hutchinson [67] has presented an iterative procedure for calculating finite ele­

n1ent approxin1ations to thin plate s1noothing splines, opti1nising s1noothness 



to deliver a user specified residual stun of squares fron1 the data. This s111ooth­

ness criterion is appropriate in the context of interpolating topography, where 

an esti111ate of the data error is known. This study n1odifies the 111ethods ·in 

Hutchinson [67], to iteratively obtain finite ele111ent approxi111ations to 111ini-

111un1 GCV thin plate sn1oothing splines. 

The procedure involved discretising the thin plate smoothing spline equations, 

and using a nested grid 111ultigrid iterative strategy to solve the discretised 

system. The nested grid fra111ework facilitates iteration on grids of varying 

resolution, starting at a coarse resolution and sequentially refining the grids. 

To opti111ise smoothness , the solution process incorporated a double iteration 

to simultaneously update both the esti111ate of the discretised solut ion , and 

the estimate of the mini111un1 GCV s111oothing para111eter. A Taylor series 

expansion was used to esti111ate the value of ,,\ corresponding to the 111ini111u111 

GCV. A stochastic approxi111ation to the GCV was used to estin1ate the GCV 

for given ,,\ values. 

The investigations in this study led to an understanding of the process of double 

iteration for t he case of the thin plate smoothing spline proble111 . It was found 

that the iteration converged efficiently, except when the thin plate s111oothing 

spline syste111 was poorly conditioned . Conditioning generally deteriorated as 

the grid resolution was refined, particularly when the smoothing parameter was 

large. Poor conditioning resulted in degradation of the efficiency of the iterative 

processes. This caused the double iteration to becon1e poorly synchronised, 

in that the solut ion estin1ate could not be efficiently adjusted in response to 

changes in the s111oothing para111eter estin1ate. In these circu111stances the 

double iteration did not always converge. 

Throughout extensive testing of the procedure , a nu111ber of strategies_ for ov r­

co111ing the above proble111s were identified. Firstly, the type of discretisation 

·was varied . Discretisation of the spline system using basis elen1ents co111pos d 

of quadratic B-splines was found to stabilise the double iteration considerably 

in con1parison to a sin1pler, piecewise constant discretisation. The i111prove-

1nent ·was attributed to the first order continuity of the quadratic B-spline 

approxi1nation, which alluwed continuous, broadscale functions to be accu­

rately approxin1ated at coarse grid resolutions. Accurate methods of transfer­

ring quadratic B- plines fro1n coarse to fine grid resolutions also i111proved the 

effici ncy of the algorith1n. 



Convergence was further in1proved by appropriately setting the initial value 

of the ,.\ estin1ate, lin1iting the an1ount by which ,.\ could be updated, and 

en1placing suitable lower and upper bounds on the ,.\ estimate. A first order 

correction, applied to the solution estin1ate after each smoothing paran1eter 

update, was also found to i1nprove the perfonnance of the algorithm, by allow­

ing the solution esti1nate to respond more quickly to the smoothing para1neter 

update. This depended on obtaining an efficient esti1nate of the derivative 

of the solution with respect to the s1noothing para1neter . The Taylor series 

expansion of the GCV in tenns of the s1noothing para1neter also used this 

derivative esti1nate. 

The algorithm produced by this study was tested on several simulated data 

sets, with varying spatial co1nplexity, noise level, and distribution. Accurate 

approxi1nations to the analytic 1ninimum GCV thin plate s1noothing spline 

were produced for all test data sets. Given that the intended application was 

the spatial interpolation of environmental data, the algorith1n was also tested 

on environn1ental data sets , including te1nperature data for the African and 

Australian continents. Accurate esti1nates of the analytic solution were gen­

erated by the algorith1n for both the African and the Australian temperature 

data sets. This de1nonstrates that the algorithm constructed by this study is 

suitable for fitting approxi1nate mini1nu1n GCV thin plate s1noothing splines 

to large environn1ental data sets. 
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Chapter 1 

Introduction 

1.1 Overview and motivation 

The techniques involved in this study are designed to estimate spatially de­

pendent processes throughout a given region by spatially interpolating large 

nu111bers of noisy point observations of the process. The principal intended 

application is the prediction of spatial processes that occur in natural ecolog­

ical syste111s . Many natural processes, such as climate, topography, soil and 

vegetation, have underlying spatial coherence, in that two observations that 

are close together are 111ore likely to have si111ilar values than two observations 

that are far apart. The interpolation procedure is designed to describe this 

coherence, by finding spatially dependent trends in data observations taken 

at particular locations in the study area. Interpolation of these trends allows 

prediction at locations where 111easurements have not been taken. Interpolated 

values a1~e used to create regular two di111ensional grids of predictions , known 

as surfaces , which can be incorporated into geographic information systems 

to visualise spatial patterns and detect spatial relationships. The appropriate 

resolution of the interpolated grid depends on the co111plexity of the process 

and the density of the data. 

Research on the prediction of surface cli111ate provided the underlying motiva­

tion for further investigation of the thin plate s111oothing spline 111ethodology 

in this study. Studies by Mackey [86] and Mackey et al. [87 , 88] emphasise the 

need for information about the spatial variation of ecosystem characteristics 

as input to landuse decision making. Given that vegetation co111111unities are 
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1.1. OVERVIEW AND MOTIVATION 

generally inadequately sampled and mapped, clirnate variables t hat are kno-\;vn 
to be correlated with plant and anin1al distributions are often used to predict 
vegetation characteristics. Bioclin1atic indices such as rainfall , temperature 
and solar radiation are widely known to discriminate between different veg­
etation types, as de1nonstrated by Nix [93] and Mackey et al. [88]. Spatial 
interpolation of climate data has been shown to effectively predict spatial pat­
terns in vegetation and agriculture [71]. The use of interpolated surfaces to 
detect spatially varying trends also provides much needed spatially predictive, 
as well as descriptive capacity. In this way they are 1nore informative than 
other techniques of spatially mapping vegetation, such as aerial photography 

-· 

and remote sensing. Furthennore, ecosystem attributes do not always fonn 
distinctive and recognizable photographic patterns or spectral signatures [86]. 

Spatial interpolation of surface cli1nate variables is also an integral part of 
te1nporal cli1nate prediction via stochastic generation of climate data [64]. 
Elevation dependent spatially interpolated surfaces are used to predict long 
tenn spatial cli1nate variability . These techniques are linked to the develop-
1nent of space-ti1ne stochastic weather 1nodels through the process of spatially 
extending the para1neters of point simulation 1nodels. Methodologies for con­
structing such models are discussed in Hutchinson [63, 64] and Guenni and 
Hutchinson [43] . 

The thin plate s1noothing spline 1nethod of spatial interpolation used in this 
study can be motivated by the following data model. Consider data obser­
vations (zi, x1i, x2i, ... , xdi) 1neasuring a dependent variable z and a set of d 
predictor variables x1 , ... , xd . For exa1nple, surface climate is often well pre­
dicted using latitude, longtitude and elevation. If it is assu1ned that z has 
both continuous long range variation as well as short range variation that is 
discontinuous and random, then we can propose the following 1nodel 

i = 1 .. . , n (1. 1) 

where n are the nu1nber of data observations, g is a slowly varying continuous 
function and Ei are realisations of a random variable E. The function g repre­
ents the patially continuous long range variation in the process measured by 

zi . The error Ei are assun1ed to be independent with mean zero and variance 
a- 2 . They are assu1ned to be due to measure1nent error and short range mi-
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CHAPTER 1. INTRODUCTION 

croscale variation that occurs over a range smaller than the resolution of the 

data set. The microscale variation may be spatially continuous, but the data 

is not spatially dense enough to represent it, so it is usually assumed to be 

discontinuous noise. 

We airn to estimate the process g by a suitably continuous function f. The 

function f must be able to separate the continuous signal g from the discon­

tinuous noise Ei. This function can be estimated by 111inirnising 

(1.2) 

over functions f E X, where X is a space of functions whose partial derivatives 

of total order m are in £ 2 
( Ed) [113]. The Ji are values of the fitted function at 

the ith data point, ,,\ is a fixed smoothing parameter, and 1:/'a (J) is a measure 

of the roughness of the function f in tenns of m th order partial derivatives. 

The form of J! (J) depends on m and the number of independent variables d. 

For example, if m = 2, which is a typical value, and d = 2, then 

(1.3) 

[113]. Expression (1.2) represents a trade off between fitting the data as 

closely as possible whilst maintaining a degree of s111oothness. The smoothing 

para111eter ,,\ controls the separation of signal and noise. If ,,\ = 0 the function 

f exactly interpolates the data, implying zero noise, where as if ,,\ is very large 

the function approaches a hyperplane. It is shown in Craven and Wahba [24] 

that the. ,,\ corresponding- to the spline function f that best represents the 

underlying process g can be accurately estimated by minimising the generalised 

cross-validation, or GCV. The GCV is a measure of predictive error, and will 

be discussed in Chapter 2. 

The solution to this 111inimisation proble111 is well known to be a thin plate 

smoothing spline function [99 , 31, 92, 113]. Multivariate thin plate splines 

are not piecewise polyno111ial functions like the traditional univariate splines. 

They are tenned 'splines' because the solution to (1.2) for the univariate case, 

with m = 2, is a natural cubic spline. 

The application of thin plate smoothing splines to the representation of broad-
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1.1. OVERVIEW AND MOTIVATION 

scale trends in noisy data is well documented in past studies over the last 20 
years, in a wide variety of fields. The thin plate smoothing spline rnethodol­
ogy is often an integral part of spatial modelling of environmental processes, 
including surface cli111ate processes [49, 63, 118], topography [58] remote sens­
ing [10], pollutant dispersion [73] and plankton distributions [116] . They are 
also commonly used in other fields such as image analysis [11], medical re­
search [83] and data mining [54, 53]. 

S111oothing splines have several attractive characteristics that explain their 
popularity across such a wide range of disciplines. They are robust in that 
accurate predictions ~an be achieved in the presence of significant data error. 
They are global in that they use information from all the data observations 
to calculate a prediction at any given location in the study area. Furthennore, 
the algorithms associated with smoothing spline co111putation are now effi­
cient and operationally straightforward. Smoothing splines are also directly 
associated with a statistical framework that allows calculation of pointwise 
standard errors [113], as well as summary statistics such as the generalised 
cross-validation ( GCV) and the degrees of freedom of the fitted model. This 
facilitates quantitative assessment of the ability of the function to represent 
the underlying data generation process [ 63] . 

To put thin plate smoothing splines in the context of other methods of spatial 
interpolation of noisy data vve can think of two approaches to smoothing noisy 
data. A penalty term, such as >.J! (f) can be added to the residual sum of 
squares tenn t L~ 1 (zi - f i) 2 to impose smooth interpolation or the space of 
functions that make up f can be restricted so that exact interpolation is not 
po ible. For example -.ve could solve 

ry 1 

f (x1 . x2) =LL Cjk in jx1 in kx2 
j =l k=l 

(1.4) 

(1.5) 

\\-here Cjk are the fi tted coefficient and x M < < n to achieve a low dimen-
ional bi-.-ariate Fourier ine erie fit hat smooth the data. 

There are al o a number of local echnique for 11100 h pat ial interpola ion , 

6 



CHAPTER 1. INTRODUCTION 

which constrain the form of f ( x) by considering only certain portions of the 

data to generate predictions in a certain area. Techniques such as Thiessen 

polygons [109] and deLauny triangulations [1] paritition the study area into 

small elen1ents and fit si1nple functions on each element. The data are exactly 

interpolated on each element. These methods are not easily extended to higher 

di1nensions [60]. There are also inverse distance weighting [101] and moving 

average methods [26, 91 , 82]. These 1nethods involve a subjective choice of 

weighting function , which is usually defined in terms of a radius of influence 

beyond which data points are ignored [60]. 

The geostatistical method known as kriging is regarded as the main competi­

tor to thin plate splines as a method for spatial interpolation [25 , 60]. Kriging 

originated in the mining industry, to help improve spatial esti1nation of ore 

reserves [111]. Like splines, kriging is based on the model in ( 1. 1), but as­

sumes g is a realisation of a spatially correlated random furiction [7 4]. Both 

splines and kriging have been shown by Kimeldorf and Wahba [79], Math­

eron [90] and Duchon [29 , 30] to be formally equivalent, although they are 

operationally different. Both generally provide higher predictive capacity than 

the si1npler interpolation methods mentioned above, and require fewer guid­

ing covariates [63, 75]. They are also easily extended to higher dimensions, 

although there are natural restrictions on the dimensions of the fitt ed surfaces 

if they are to be robustly detennined fro1n observed data [22]. Splines tend 

to be operationally simpler than kriging, because the kriging 1nethod requires 

separate fitting and calibration of a spatial covariance structure [65]. 

As an example of thin plate smoothing spline interpolation of climate processes, 

consider .the cases of temperature and precipitation. Thin plate smoothing 

spline functions of latitude, longtitude and elevation have been shown to accu­

rately describe long term annual and 1nonthly mean surface temperature and 

precipitation [57, 60 , 118, 119, 63 , 77]. Temperature is the simpler of the two 

spatial processes, and has a roughly linear dependence on elevation that is 

independent of location [60]. Hutchinson [60] de1nonstrated that the following 

partial spline model is a sensible model for temperature 

(1.6) 

where xi is the longtitude, Yi is the latitude and hi is the elevation at data 
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measurement location i. The resulting solution incorporates a bivariate thin 
plate smoothing spline f ( x, y) and a spatially constant linear trend on elevation 
with slope, or 'elevation lapse rate ' {3 . 

Rainfall is a more complex and localised process than temperature, and it is 
not reasonable to assume a constant dependence on elevation throughout the 
study area. Rainfall can be accurately n1odelled by a thin plate spline with 
three independent variables, according to the following model 

[57] . This allows for a spatially varying dependence on elevation. Other 
independent variables, such as slope and aspect, have been found to provide 
minirnal additional explanatory power [63] . 

As rainfall is more spatially complex than temperature , it requires more data 
points for accurate prediction over a given area. Approximately 14000 points 
have been used to construct a reliable rainfall surface for the entire Australian 
continent , where as temperature surfaces have been constructed fro1n 1000 
data points [60]. This raises the issue of computational efficiency, which has in 
the past been a major practical problem associated with thin plate s1noothing 
splines [119, 54, 53]. The analytic calculation of thin plate s1noothing splines 
described in [113] requires O(n3) operations, where n is the number of data 
points . This method quickly becomes unworkable when the nu1nber of data 
points increases. To fit a thin plate s1noothing spline using 14000 data points 
would require a number of operations within an order of magnitude of 1012 . 
As a result, the production of a mean rainfall surface covering Australia by 
Hutchinson and Kesteven [70] required joining together a number of smaller 
urfaces. There are clearly many other spatial data sets that consist of thou­
ands , or even millions , of data points. Also , one may wish to generate several 
urfaces for one process , corresponding to many different seasons or years . In 

this case , a fast , straightforward procedure is required. 

This study ai1ns to ,viden the applicability of minimum GCV thin plate smooth­
ing pline to the 1nodelling of climate and other environmental processes by 
increa ing the co1nputational efficiency of the spline fitting process. An opti­
mal nu1nerical rategy ·who e co1nputational speed depended linearly on the 
nu1nber of unkno\vn ,vould greatly increase the efficiency of thin plate spline 
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computation. This corresponds to an O ( N) algorithm, where N is the number 

of unknowns. There are methods described in recent literature for fast compu­

tation of analytic thin plate smoothing splines for large data sets. Techniques 

utilizing conjugate gradient preconditioning techniques [102] and ideas from 

1nultipole expansions and Lagrangian junctions [8, 9, 7] calculate the analytic 

thin plate smoothing spline solution to (1.2). These methods achieve O(n) 

workload, but involve co1nplex data structures and algorithms. 

Finite element approaches have also been used in a nu1nber of studies, in­

cluding those by Terzopoulos [108], O'Sullivan [94] and Szeliski [106]. Ear­

lier methods discuss discretisation of the roughness penalty, denoted above as 

J! (!), fro1n the perspective of interpolation with minimum curvature [18, 105] 

. Hegland et al. [53] also present a methodology for calculating discrete thin 

plate s1noothing splines based on first order techniques similar to mixed finite 

element techniques for the biharmonic equation [23, 50]. Similar techniques 

were adopted by Ramsay [97], who presents an approach for bivariate spline 

smoothing over complex domains. 

All of these methods tend to focus on the numeric-analytic properties of thin 

plate smoothing splines rather than their statistical properties, and therefore 

do not incorporate an auto1natic 1nechanism for opti1nising smoothness. For 

practical spatial interpolation problems, surface smoothness is a central issue 

given that the data observations contain a significant noise component. The 

amount of smoothing will affect the predictive accuracy of the fitted surface, 

so clearly it should be optimised. The smoothness of the fitted spline directly 

corresponds to the ratio of the signal , or the effective nu1nber of parameters of 

the fitted model, and the noise, or the degrees of freedo1n of the error [61]. Esti-

1nates of the noise due to measure1nent error and microscale variation therefore 

depend on the s1noothness of the fitted surface. Optimising smoothness also 

provides insight into the variability of the data, and the scale and coherence 

of the underlying data generation process. 

The rninimu1n GCV criterion previously mentioned is generally appropriate for 

opti1nising the smoothness of thin plate smoothing spline fits to noisy data [24, 

113, 62]. The GCV has been used to opti1nise smoothness for 1nost thin plate 

smoothing spline applications to climate , eg. [57 , 63 , 118, 96 , 77]. Minimising 

the GCV provides an objective criterion for co1nparing the predictive capacity 

of different spline models [65 , 66]. The signal corresponding to the minimum 
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GCV surface can also be used to assess the reliability of the surface and its 
associated statistics [62]. For example , if the signal is equal to n, the spline 
has exactly interpolated the data and therefore has not separated the signal 
from the noise. 

The primary objective of this study was therefore to construct a simple, fast , 
grid-based algorithm for calculating nun1erical approximations of t hin plate 
smoothing splines, incorporating procedures to minimise GCV. The intention 
was to make the process of optimising srnoothness as efficient as possible. A 
double iteration was therefore used to simultaneously produce increasingly ac­
curate estimates of the minimum GCV smoothing parameter and the s1nooth­
ing spline solution. Such a process would be considerably faster than fully 
solving the spline equations for a number of different levels of smoothness in 
order to find t he optimal solution. 

Hutchinson [58, 67]_ developed a simple multigrid based strategy which calcu­
lates finite element approxi1nat ions to thin plate smoothing splines for elevation 
data in O(N) operations, where N is the number of grid points . This method 
emphasises the statistical framework of thin plate sn1oothing splines [61], and 
optimises smoothness to yield a user specified residual su1n of squares. This 
criterion is appropriate in t he context of interpolating topography, where an 
estimate of the amount of noise is available [58]. A study by Altas et al. [2] 
showed that multigrid methods are very efficient for solving a finite difference 
discretisation of the biharmonic equation, whilst standard iterative methods 
such as J acobi and Gauss-Seidel exhibit very slow convergence. The discretised 
thin plate smoothing spline equations have a similar structure to the discre­
tised biharmonic equation, as discussed in Chapter 6. The results of Altas et 
al. [2] therefore indicate that the success of the Hutchinson [58, 6?] method is 
largely due to the use of 1nultigrid techniques . 

The methodology on which this study is based is a variation on the Hutchin­
son [67] method, in that it seeks to 1ninimise the GCV rather than achieve a 
prescribed residual su1n of squares . Quadratic B-splines were used as the basis 
ele1nents for the discretised solution, incorporating the favourable properties 
of first order continuity into the solution estin1ate. o more than two dimen­
sions were considered, given that is the mini1nu1n nurnber required for spatial 
interpolation. Other dimensions can then be incorporated using additive 1nod­
el [113 72]. A conceptual overview of the method developed during the course 

10 
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of this study is given below. Hancock and Hutchinson [48], a publication re­

sulting from this study, presents results of in1plen1enting the methodology to 

approximate minimum GCV univariate smoothing splines. 

1.2 Summary of the research process 

The process undertaken to obtain the discretised minimu1n GCV thin plate 

s1noothing splines is shown in Figure 1.1. The thin plate s1noothing spline 

equations were first discretised to allow the solution to be approximated by a 

series of discrete ele1nents. Various multigrid iterative schemes were then tested 

with the aim of selecting an optimal method for solving for the coefficients 

of the discretised system. Additional procedures were then incorporated to 

allow simultaneous solution of the system and optimisation 9f s1noothness by 

1nini1nising G CV. 

Although this study is interested in bivariate thin plate smoothing splines, 

1nuch of t he early algorith1n analysis and development was done for the univari­

ate case. This was because the process of testing and optimising the methodol­

ogy was 1nuch si1npler and more transparent in one dimension. The results of 

the univariate testing provided guidelines for the development of the bivariate 

algorit h1n. 

The methods involved in the three stages in Figure 1.1 were continually re­

fined t hroughout the preliminary univariate analysis. A number of different 

approaches were investigated and optimal strategies were selected. The most 

i1nportant progression was the type of discretisation. The system was origi­

nally discretised using piecewise constants. Further analysis indicated that a 

quadratic B-spline discretisation was better suited to the t hin plate smoothing 

spline equations, due to its ability to represent smooth processes at coarse grid 

resolutions . This progression explains the chapter organisation for this thesis . 

1.3 Summary of each chapter 

The following summary of each chapter is intended to be a non-technical 

overview of the processes used in this study. The aim is to give the reader 

a conceptual grasp of the 1nore important features of the analysis before the 

11 
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full procedures are explained in detail. 

PART 1: METHODS 

The first part of the thesis presents the technical details of the methods used 

1. Discretisation 

Using piecewise constants and 

quadratic B-splines. 

2. Iterative solution 

Using multigrid methods. 

3. Optimisation 
Using a double iteration to 

simultaneously solve the discretised 
system and converge to a 
minimum GCV solution . 

Figure 1.1: Stages in developing the algorith111 to iteratively solve for discre­
tised mini111un1 generalised cross-validation thin plate smoothing splines. 
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CHAPTER 1. INTRODUCTION 

in this study, from the underlying thin plate smoothing spline model to meth­

ods of discretising the spline system, to the iterative algorithm for solving the 

equations and optimising smoothness. 

Chapter 2 - Smoothing splines. 

The necessity of optimising the smoothness of spline functions fitted to noisy 

data is easily depicted in the univariate case. Assume we want to estimate a 

process X that has both smooth, broadscale variation and short range varia­

tion, as shown in Figure 1.2. We collect data measuring the phenomenon X, 

shown in Figure 1.3. The data set contains significant noise due to measure­

ment error. Smoothing spline functions are ideal for representing the process 

X from such data, as they can be used to detect broadscale trends that can 

be reliably interpolated into data sparse regions. 

The smoothing parameter ,,\ in equation (1.2) provides a lot of flexibility in 

the way smoothing splines fit noisy data. A very small value of,,\ produces a 

spline function that exactly interpolates the data, as shown in Figure 1.4. This 

is clearly a poor representation of the process X because it incorporates the 

errors in the data. Conversely, if the ,,\ value is too large, we can oversmooth 

the data, as shown in Figure 1. 5. 

One method of optimising the smoothness of the fitted spline to estimate the 

process Xis to minimise the CCV. The CCV measures the predictive capacity 

of the fitted spline by essentially determining how well the function predicts 

withheld data. The CCV calculation implicitly involves removing each data 

point in turn and sumrning, with appropriate weighting, the square of the dis­

crepancy of each omitted data point from a surface fitted to all other data 

points. A plot of the CCV as a function of the logarithm of the smoothing 

parameter for the data set in figure 1.3 is shown in Figure 1.6. Figure 1. 7 

shows the result of 1ninimising the CCV to optimise smoothness for this data 

set. The nu1nerical methods in this study ai1n to approximate this optimal 

s1noothing spline function in the bivariate case. 
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Figure 1.2: The process X. 
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Figure 1.3: Noisy data observations of t he process X. 
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Figure 1.4: Srnoothing spline fit to data observations using a small 
s1noothing parameter. 
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Figure 1.5: Smoothing spline fit to data observations using a large 
smoothing parameter. 
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Figure 1.6: The GCV as a funct ion of the smoothing parameter , 
for the data set in Figure 1.3. 

2 

+ 1.5 + + 
++ 

+ + 
++ + + + ++ ++ + ++ 

+ + + 
0.5 

+ + + + 
+ + 

+ /+ 
0 + + 

+ + 
+ + 

-0 .5 + + 
+ + 
+ 

-1 + + 

+. + 

+ -1 .5 
+ + + 

-2 
+ + 

-2.5 
0 50 100 150 200 250 300 350 
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CHAPTER 1. INTRODUCTION 

Chapter 3 - Discretisation of the univariate smoothing spline equa­

tions. 

This chapter first presents a piecewise constant discretisation of the univari­

ate smoothing spline problem. However , preliminary analysis demonstrated 

that the rectangular elernents composing a piecewise constant representation 

were not an ideal approximation for the smoothing spline problem. This was 

primarily due to their inability to represent smooth functions at coarse discreti­

sations. The piecewise constant discretisation approaches smoothness only at 

fine discretisations, as is de1nonstrated by Figure 1.8. 

A discretisation that was smooth at coarse resolutions was therefore developed 

using quadratic B-spline basis elements. Quadratic B-spline elements are lo­

calised piecewise quadratic functions. A visual depiction is given in Figure 1.9. 

The process of constructing a B-spline approximation from the basis elements 

is shown in Figure 1.10. Unlike the piecewise constant discretisation, this ap­

proximation is always smooth, with a continuous first derivative, regardless 

of the resolution. This discretisation is therefore ideal for smoothing spline 

functions, that are inherently smooth. 

Chapter 4 - Multigrid methods. 

Past studies indicate that multigrid methods are efficient for iteratively solving 

the discretised thin plate smoothing spline system [58, 2, 67]. The multigrid 

principle provides the initial concept of decomposing a solution into compo­

nents of different scale, and representing these components on grids of different 

resolutions. Iterations are perfonned on grids of varying coarseness during the 

solution process, as shown in Figure 1.11. This improves the convergence, be­

cause fine scale components of the solution are solved more efficiently on fine 

resolutions and coarse components can be obtained more efficiently on coarse 

resolutions. By visiting a variety of resolutions, all components of the solution 

can be quickly estimated. 

Although based around a com1non sense idea, the multigrid method is asso­

ciated with a somewhat subtle and abstract body of theory. The review in 

this chapter extracts some practical guidelines from multigrid theory. This 

study de1nonstrates the advantages of an empirical, experimental approach to 

multigrid i1nple1nentation. 
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I 

I 

Piecev.;ise constant discretisation on the coarse grid 

Piecewise constant discretisation on the fine grid 

Figure 1. 8: Piecewise constant discretisation on coarse and fine 
grids. 
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Figure 1.9: A quadratic B-spline basis elernent . 
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l 

Figure 1.10: The process of constructing a quadratic spline by summing a 
linear combination of the basis elements. 

1 

Figure 1.11: The multigrid process of transferring the solution estimate to and 
from grid of var 111g coarseness. 
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Chapter 5 - Prolongation and restriction of univariate quadratic 
B-splines. 

Prolongation and restriction are multigrid processes for transferring the so­
lution estimate to and from grids of different resolution. Prolongation, the 
process of transferring a solution estimate from a coarse grid to a fine grid , is 
performed in standard multigrid algorithms by interpolating the coarse grid 
solution. However, it was realised during the course of the univariate analysis 
that these transfer techniques are not needed for the discretised smoothing 
spline proble111, because a coarse grid solution can be exactly represented on 
the fine grid by refining the B-spline basis elements. This refinement process 

-· 
does not change the solution estimate. Thus issues associated with errors intro-
duced by interpolating the solution estimate to a finer grid are avoided . This 
chapter presents a B-spline refinement process, using a hierarchial B-spline 
fra111ewor k. 

The opposite process of transferring from a fine grid to a coarse grid , known as 
restriction, is comn1only done by taking local weighted averages of grid values, 
or si111ply by taking every second grid point . This study obtains a coarse grid 
representation that is a least squares est i111ate of t he fine grid solution. The 
advantage of restricting in this way is that a quantitative measure of the ad­
ditional variation explained by the finer grid can be obtained. This technique 
makes use of the quadratic B-spline fra111ework. 

Chapter 6 - Discretisation of the bivariate thin plate smoothing 
spline equations. 

The bivariate thin plate s111oothing spline solution was discretised using tensor 
product quadratic B-splines. These basis ele111ents are depicted in Figure 1.12. 
The discretisation process is more technically co111plex for the bivariate syst 111 
than for the univariate case, and involves calculating integrals of products of 
unidi111ensional B-splines on a 2 di111ensional grid. 

Chapter 7 - Prolongation and restriction of bivariate quadratic B­
splines . 

Prolongation and restriction operations for bivariate quadratic B-splines are 
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Figure 1.12: A bivariate quadratic B-spline basis element. 

co1nbinations of the univariate operations discussed in Chapter 5. The bi­

variate operations can be expressed as Kronecker, or 'tensor', products of the 

1natrices for the univariate transfer operations. 

Chapter 8 - Optimisating the smoothing parameter. 

After establishing the iterative solution framework for the discretised thin plate 

s1noothing spline syste1n, the methods of Hutchinson [67] were extended to 

construct a procedure for optimising the smoothing parameter A. This involved 

a double iteration to produce increasingly accurate estimates of the minimum 

GCV s1noothing parameter A and update the solution esti1nate accordingly. 

The algorithm therefore produced two sequences of updates for the solution u 

and the smoothing parameter A, converging to the discretised 1ninimum GCV 

s1noothing spline solution. A conceptual de1nonstration is given in Figure 1.13. 

The vector u 0 is an estimate of the discretised s1noothing spline solution cor­

responding to the initial s1noothing parameter ,\0 . As the estimates of u get 

more accurate , the approximations of the s1noothing parameter approach the 

rninimum GCV value. 
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Figure 1.13: The process of double iteration, obtaining increasingly accurate 
estimates of the solution u and the mini1nu1n GCV smoothing parameter >. 

PART II: RESULTS 

The second part of this thesis documents the behaviour of the techniques 
described above when they were applied to the thin plate s1noothing spline 
proble1n, for both the univariate and bivariate case. 

Chapter 9 - Multigrid testing. 

As mentioned above, the design of an optimal multigrid scheme for a partic­
ular system is an empirical process that involves testing to understand the 
behaviour of the procedures for the specific proble1n considered. Testing was 
performed for the univariate s1noothing spline system using simulated data. 

The results e1nphasised the fact that, for fine discretisations , the equations 
are poorly conditioned, especially if >. is large. This meant that the 1nulti­
grid schemes that relied on fine grids performed poorly. It became clear that a 
nested grid multigrid algorithm was an efficient iterative solver for the smooth­
ing spline equations. The nested grid algorith1n starts with a very coarse grid 
and periodically refines the grids . By developing an initial solution esti1nate 
on coarse grids the algorithm avoids visiting unnecessarily fine grids, where 
the s1noothing spline system is slow to converge. 

Chapter 10 - Minimising G CV for the univariate piecewise con­
stant smoothing spline system. 

After deciding on a suitable multigrid solver, procedures to optimise the smooth­
ing para1neter >. ·were incorporated. Before optimising the GCV, a preliminary 
algorithm, ·which opti1nises >. to give a prescribed residual su1n of squares from 
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the data, was imple1nented. This algorithm is similar in structure to the pro­

cedure for minimising the CCV, but it is simpler and has been well tested 

by past studies [58, 67]. It was used in this preliminary analysis to test the 

optimisation framework, and understand its behaviour in the context of the 

smoothing spline problem. 

While t he algorithm converged on coarse grids, the initial results revealed the 

damaging effects of poor conditioning on fine grids. Due to the slowness of 

the iterative solution process on the fine grids, the double iteration procedure 

became poorly synchronised. This resulted in the development of an oscilla­

tory pattern in t he A updates , as shown in Figure 1.14. The ,,\ updates kept 

overshooting the optimal value, because the solution estimate represented old 

>- updates more strongly than current updates. For particularly poorly condi­

tioned systems , divergence patterns such as those in Figure 1.15 were observed. 

No . of updates 

Figure 1.14: The oscillatory behaviour of ,,\ updates . 

When the optimisation framework was modified to 1ninimise CCV, similar be­

haviour to the above ·was observed on fine grids. It was also found that the 

piecewise constant discretisation disturbed the solution structure such that a 

unique local 1ninimu1n CCV value did not exist on some grids. These fac­

tors 1nade the algorithm unstable. This problem was largely solved by the 

quadratic B-spline discretisation. 
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No . of updates 

Figure 1.15: Divergent oscillatory behaviour of A updates. 

Chapter 11 - Minimising GCV for the univariate quadratic B­
spline smoothing spline system. 

Replacing the piecewise constant discretisation with the quadratic B-spline 

discretisation allowed a more accurate approximation to the solution to be 
obtained on coarse grids. This also stabilised the algorithm considerably, al­
lowing faster convergence on coarse grids, and convergence on fine grids where 
the algorith1n had diverged using piecewise constants. Interestingly, a unique 

1nini1nu1n GCV could always be found using the quadratic B-spline discreti­

sation, demonstrating that this discretisation gives a better representation of 
the true structure of the s1noothing spline solution. The iterative algorithm, 

t enned the MI GCV algorithm, was found to be stable, efficient and accu­
rat e at grid resolutions that 1natched the scale of the data generation process. 
Thus the univariate testing provided a pro1nising fra1nework on which to base 
develop1nent of the bivariate MI GCV algorith1n . 

The efficiency of the 1v'IINGCV algorithm was further improved by 1naking a 
si1n ple first order correction to the solution esti1nate after each s1noothing pa­

ra1neter update . This allowed the solution estimate to respond more quickly to 
t he s1noothing paran1et er updates , avoiding the oscillatory patterns discussed 
above . 
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Chapter 12 - Minimising GCV for the bivariate quadratic B-spline 

thin plate smoothing spline system. 

The univariate analysis provided a good practical understanding of the tech­

niques used in the algorithm and developed a number of guidelines which 

defined the structure of the bivariate algorithm. The bivariate procedure was 

tested on a more diverse range of simulated data sets than the univariate al­

gorithm. The level of noise was varied widely, and clumped data distributions 

with large data sparse areas were constructed for testing. This led to a series 

of 1nodifications to the algorith1n to control t he magnitude of the A update, 

the init ial value of A, the lower and upper bounds on A, updating of the GCV 

derivatives and the final resolution of the grid . The final MINGCV algorithm 

converged for all test data sets . 

Chapter 13 - Performance of the MINGCV algorithm for large 

temperature data sets. 

The develop1nent MI GCV algorithm was motivated by the need for a com­

putationally efficient procedure for spatially interpolating data observations 

for cli1nate and other environmental processes . Environ1nental processes can 

feature complex fine scale interactions with the landscape that are difficult 

to emulate by a 1nathe1natical function. It was therefore important to test 

the ability of the bivariate MINGCV algorithm to approximate t he thin plate 

spline surfaces that represent ' real' environmental processes. Sea-level temper­

ature data for Africa and Australia were used for this purpose. 

Accurate representations of t he analytic smoothing spline solut ion were ob­

tained for these data sets using t he MI GCV algorit hm. However, the MINGCV 

algorith1n was unstable for the African temperature data set, due to the fine 

grid resolution required and the large areas devoid of data in the grid. The 

shape of the African continent is non-rectangular, leaving large areas in the cor­

ners of the grid which have no data. The analysis in earlier chapters showed 

that the smoothing spline equations are poorly conditioned when a highly 

smooth solution 1nust be obtained on a fine resolution. This can cause poor 

synchronisation of the NII GCV iterations, leading to instability. In this situ­

ation, one alternative presented in this chapter is to subdivide the grid to avoid 

large holes at grid boundaries. An accurate solution for the African tempera-
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ture data set was obtained in this way using the MI GCV algorithn1. For the 

Australian continent , which is more rectangular in shape, the algorithrn con­

verged efficiently despite the fine resolution of the final grid, and the clumped , 

sparse distribution of the data. The results presented in this chapter indicate 

that the MINGCV algorithm is suitable for application to environn1ental data 

sets . 
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Chapter 2 

Smoothing splines 

When faced with the task of choosing a function to fit a series of data obser­

vations (zi, xi), i = 1, ... , n, it is generally desirable to choose one that does 

not feature significant local variation , given that the data observations usually 

contain error. A function capable of fast oscillation is likely to be highly sensi­

t ive to local fluctuations , and may 'overfit ' the data, representing false trends 

and disguising broader scale trends in t he data network. This diminishes the 

predictive capacity of the fitted model. Green and Silverman [40] note that 

even when the given observations are known to be extremely accurate, it is 

often of interest to regard the local variation as random noise in order to study 

the broader scale trend in the data. 

Spline functions have 111any favourable characteristics that are useful for this 

purpose, and are thus covered by a vast body of literature. Theory on splines 

and their advantageous mathematical properties generally relates to the fact 

that they can vary slowly whilst still being flexible. To int roduce spline func­

tions, we begin with an overview of univariate splines 

2.1 Univariate splines 

To define a univariate spline function, consider a strictly increasing sequence 

of real numbers, known as 'knots', on so111e interval [a, b] 

, := rr, r = 0, ... , N (2 .1 ) 
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where N is the number of knot intervals , or 'spans ' . Typically, 10 = a and 

rN = b. An example grid is shown in Figure 2.1. A function is a spline if two 

conditions are satisfied. Firstly, a spline function of degree k is specified ·within 

individual spans [rr, rr+i] by polynon1ials of degree at most k . Secondly, the 

function is in ck-l [a, b], the space of all functions that are continuous, and 

have continuous derivatives of order up to k - l , on the interval [ a, b] . Note 

that in the general case spline functions can have coincident knot points . This 

breaks this continuity property, but such cases will not be considered in this 

study. Note also that in Figure 2.1 the knots are regularly spaced, but this 

need not be the case. 

'Y 'YN =b N-1 

Figure 2.1: Knot positions for a univariate smoothing spline. 

The polynomial piece on each span can be expressed as 

where 

k 

Sk ,r(x) = L Ad,r(x - rr)d 
d=O 

rr < X < rr+l , rE{O, ... ,N -1} 

(2 .2) 

(2 .3) 

The coefficients Ad,r are constrained to meet the continuity condit ions at the 

knot points, so that 
(m) ( ) (m) ( ) 3kr-1 fr = Skr fr 
' ' 

(2 .4) 

where r E {1, ... , N - 1} , m E {O , ... , k - 1} and the superscript m denotes 

differentiation of order rn. 

The collection of spline functions of degree k with a given knot sequence , 

form a vector space, Sk,,· The di111ension of Sk,, is easy to calculate. A single 

polyno111ial curve of degree k belongs to a space that has di111ension k + l. A 

spline function is 111ade up of N polynomial pieces. The polynomial in the 

first span [10 , , 1] has dimension k + 1. Polynomials in the remaining spans 

are constrained by k continuity conditions at the knot points , and therefore 

contribute only 1 dimension each. The dimension of the spline space Sk,, is 

there£ ore k + 
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2.1.1 Smoothing splines 

Roughness penalties 

The use of splines as a smooth interpolant can be rationalised by the roughness 

penalty approach. The 'roughness' of a twice differentiable curve J defined on 

[a, b] is often measured by its integrated squared second derivative 

(2 .5) 

This quantity is known as the 'roughness penalty' . There are various motiva­

tions for this measure of roughness, some of which are discussed in [40]. For 

example, if a thin piece of flexible wood, termed a 'spline ', is constrained to 

pass through the points ( zi, xi), then the leading term in the strain energy is 

proportional to J g112 dx, where g is the graph of t he spline [40] . This was a 

co111mon n1ethod of drawing smooth curves before the age of computer graph­

ics . The quantity in (2 .5) is also a natural measure of smoothness as it is an 

approximation to the curvature of g, and the addition of a constant or a linear 

function does not change the curvature [40] . It was shown by Schoenberg [99] 

that, among all curves J in C 2 [a, b] interpolating the points in (zi, xi), the one 

minimising the roughness (2 .5) is a natural cubic spline. 

A cubic spline is given by sk ,r(x), r E 0, ... , N -1 , with k = 3. A natural cubic 

spline is a cubic spline J ( x) ·with the following 'natural ' boundary conditions 

J" (a) 

.JIii (a) 

J11 (b) = O 

JIii (b) = O 

(2.6) 

These conditions result in J (x) being linear on the two extreme intervals [a, 11] 

and [, __ 1 b] . 

Smoothing 

When modelling environmental phenomena it is usual to encounter noisy data 

sets. In this case it is logical to choose not to interpolate the data exactly. The 

following statistical framework is generally proposed . Then data observations 
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2.1. UNIVARIATE SPLINES 

zi, measured at positions xi, are deco111posed into 

i = 1, ... ,n · (2.7) 

where g(x) is a s111ooth continuous process [113, 63]. The observations incor­

porate the error term Ei, which is modelled by 

(2 .8) 

where eT = ( E1 , ... , En), V is a known, positive definite n x n 111atrix, and o- 2 

is unknown. 

The errors are usually assu111ed to be independent fro111 one location to the next 

and thus V is assu111ed to be diagonal. Provided this is the case, the n1odel 

effectively deco111poses the observed data into two co111ponents - a coherent 

signal and spatially discontinuous noise [61]. This operates under the assu111p­

tion that the pheno111enon being interpolated has an underlying continuous 

co111ponent that can be sensibly represented by a s111ooth function [61]. The 

discontinuous noise is assu111ed to be due to measure111ent error or 111icroscale 

effects below the resolution of the data network. The aim is to estimate g( x), 
the signal or the s111ooth broadscale co111ponent of the continuous pheno111enon, 

and re111ove the discontinuous noise . 

The roughness penalty approach can be applied to obtain a suitable esti111ate 

for g(x), using the penalised su111 of squares [40] . The penalised sum of squares 
P(f) is defined as 

P(J) = (z - ffv- 1 (z - f) + >. [ [f"(x)] 2dx (2 .9) 

'\1/here z is a vector containing the data values zi and f is a vector of the values 

of f at the data point locations xi . The curve g ( x) is estin1ated by the function 

f that minimises P(f). The first tenn is the su111 of the square of the residuals 

of the data values from the values of the function f at the data point locations. 

The 111ini111iser represents a tradeoff between fidelity to the data, as represented 

by the weighted residual su111 of squares, and s111oothness of the solution, as 
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CHAPTER 2. SMOOTHil G SPLI ES 

represented by the roughness penalty [113]. The relative importance of each 

of these components is controlled by the smoothing parameter A, which is 

determined by the method discussed in section 2.2.1. It was again shown by 

Schoenberg (99] that the mini1niser of P (f) over C 2 [a b] is a natural cubic 

spline f >- ( x) . A demonstration of this is also given in [40] . 

Unless the smoothing parameter A is zero the function f >- ( x) no longer inter­

polates he data exactly. It is designed to represent s1nooth broadscale trends 

that can be reliably interpola ed into data sparse regions , rather than repre­

sen ing localised trends that are heavily reliant on individual data points. An 

example of how the function f>-(x) smooths noisy data is shovvn in Figure 2.2 . 
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Figure 2.2: Smoo hing spline fit to nois - data. 

2.2 Thin plate smoothing splines 

The generali a ion of he 1noothing pline problem o higher dimensions begin 

b a ing he underl ing model (2. 7) in erms of he et of coordinates in 

mul idirnen ion al pace t i a follow : 

i = l ... , n (2.10) 
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The penalised sum of squares (2 .9) in higher dimensions is then expressed as 

· (2 .11 ) 

where J!(J) is the t hin plate 'roughness' penalty functional, dis the number 

of independent variables and m is the order of the partial derivatives of f in 

the expression for J!(J) [113, 61]. For example, ifm = 2, which is aconunonly 

used value, and the t i represent bivariate coordinates x and y, then 

(2 .12) 

[113]. The thin plate penalty function measures the roughness of the rnulti­

di1nensional function f. 

Duchon [31] and Meinguet [92] obtained the function f that 1ninimises expres­

sion (2.11) over X , where X is a space of functions whose partial derivatives 

of total order m are in £ 2 (Ed) [113]. The solution is a 1nultivariate function 

known as a thin plate spline, denoted f >- ( t ). This group of functions includes 

univariate splines as a special case. A de1nonstration of how a bivariate thin 

plate s1noothing spline smooths noisy data is shown in Figure 2.3. 

The thin plate s1noothing spline solution, first obtained by Duchon [31], can 

be expressed as 
M n 

f>-(t) = L aj¢j(t ) + L b(1/J( di) (2 .13) 
j=l i=l 

where aj and bi are the coefficients, ¢j are a set of M low order monomials 

forming a basis for the null space of the roughness penalty and 'ljJ (di) are the 

natural scalar radial basis functions , where di is the euclidean distance between 

t and t i [ 61] . Both M and the function 'ljJ depend on the di1nension of t and 

the order of the derivative m [113, 61] . For the bivariate case with m = 2, ¢ 

are 1, x and y, and 'I/J( di) = c df ln di where c is a constant. 

A necessary condition for obtaining the thin plate smoothing spline solution 

is that 2m - d > 0 [113] . This ensures that the space X endowed with the 

se1ninonn J! (f ) is a reproducing kernal Hilbert space. It can then be shown 

that the vector f is 

f = Ta-Kb (2.14) 
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where a T = ( a1, ... , aM) and bT = (b1, ... , bn) are vectors of coefficients. 

The matrix K is a sym111etric matrix containing values of the natural scalar 

radial basis functions at the data point locations. Thus K is given by K ij = 

?J;(ll t i - t jll) . The 111atrix Tis then x M matrix defined by Tij = ¢j(t i) [61]. 

The roughness penalty term in (2 .11) also contains the matrix K , and can be 

expressed as 

J!(J) = br Kb (2 .1 5) 

The minin1isation problem (2 .11) is t hus 

~11vv-T(z -Ta - Kb)ll 2 + ,,\bT Kb 
n 

(2.16) 

where W results from the Cholesky deco111position of V ie. 

(2 .1 7) 

The coefficients b are restricted to satisfy the boundary conditions TTb = 0, 

which ensures the function f is a plane at infinity. Minimising (2.16) with this 

boundarJ condition gives the following syste111 of n + M equations 

(2.18) 

[113] . An efficient procedure for solving equations (2 .18) 1s given in [61]. 

Solution requires O (n3) operations . 

2.2.1 Optimisation using generalised cross validation 
(GCV) 

I can be seen fro111 equation (2.11) that the hin plate spline solution o the 

minirni a ion problem will depend on the smoothing parameter A. The next 

ep 1 herefore to determine he, alue of,,\ that produces the best approxima­

ion b - he hin pla e spline to he actual continuou surface g that the spline 

i a ternp ing o represent [113]. Craven and \ ahba [24] in their analysis of 

he ca e where he ti are unidimensional argue hat the ideal solution would 
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Figure 2.3: Thin plate smoothing spline fit to bivariate noisy data. 

be to 111ini111ise the true error, given in [24] as 

(2 .19) 

It is shown in [24] that, using 111athematical expectation and assu111ing that 

the errors are independent , an unbiased estimate of R(>.) is given by 

~ 1 20-2 0-2 -
R(>.) = -III - A(>.)z ll - -tr(I - A(>.)) + -trA2(>. ) 

n n n 
(2.20) 

where 

(2.21 ) 

Here o-
2 is the variance of the noise, 6ij is the Kronecker delta and A(>.) is an 

n x n 111atrix, known as the 'influence ' matrix. The influence matrix takes the 

vector of data values to the vector of fitted values . It is thus defined by 

f = A(>.) z 
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where f is the vector containing the values of the fitted spline at the data point 

locations. The value of A that minimises expression (2.20) is difficult to ascer­

tain because o-2 is generally unknown [24]. The optimal A value is therefore 

chosen to be that which minimises a function known as the generalised cross 

validation (GCV) [24, 113, 39]. 

The GCV is a measure of the predictive error of the fitted surface and is 

effectively calculated by removing each data point in turn and summing, with 

appropriate weighting, the square of the discrepancy of each omitted data point 

from a surface fitted to all other data points [63]. This is a relatively common 

concept in statistical analysis [7 4]. It is shown in [24] that, using the ' leaving 

out one' lemn1a [113] the generalised cross validation for the multidimensional 

case can be calculated i1nplicitly and hence efficiently by 

GCV(A) = (z - A(A)z)Tv-1 (z - A(A)z)/n . 
[ tr ( J - A (A) ) / n] 2 

(2.23) 

It is demonstrated in Hutchinson [61], following a once only O(n3) tridiag­

onalisation of an ( n - M) x ( n - M) positive definite matrix, the value of 

expression (2.23) for a given A can be calculated in O(n) operations. A the­

oretical justification for using the GCV to determine the optimum thin plate 
A 

spline function is given in [24], where it is shown that, if A is the minimiser of 

the true error and A* is the minimiser of the G CV, then 

A 

lim R(A ) = 1 
n-CX) R( A*) 

(2 .24) 

Thus , in theory, as the number of data points increases , the mini1niser of the 

GCV approaches the minimiser of the true error . 

2.2.2 Estimating the variance of the noise 

According to Wahba [113], determining the optimum surface by minimising 

the GCV also yields an estimate of o-2
, the variance of the noise. The estimate 

is given by 
A2 (z - A(A)z)Tv- 1 (z - A(A)z) 
CT=-----------

tr(J - A(A)) 
(2.25) 

Hutchinson [ 61] explains that tr ( J - A (A)) 1nay be interpreted as the degrees of 

freedom of the residual sum of squares, and thus equation (2.25) is analogous 
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to the estimate of o- 2 obtained in linear regression [113, 98] . It follows t hat 

the effective number of parameters of the fitt ed rnodel, known as the signal, is 

given by tr(A( ,,\ )) [62]. 

2.2.3 Interpretation of the signal 

Hutchinson and Gessler [62] present evidence to show that the value of the 

signal is a useful diagnostic in its own right. They state that , in most ap­

plications, if the signal exceeds n/2, it is likely that the data are too sparse 

to adequately support spline interpolation. In the extreme case, exact inter­

polation corresponds to a signal equal to the number of data points. This 

implies that there is no 1neasurement error and no 1nicroscale variation , which 

is generally an unrealistic assumption. It may indicate that the opti1nisation 

procedures have failed due to insufficient data [62] , short range correlation in 

the data values [65], or autocorrelation in the error structure that has been 

unaccounted for by the model [28]. On the other hand, when the signal reaches 

its mini1nu1n value, a number which depends on the nu1nber of independent 

variables and the order of the derivative [68] , the fitted spline is equivalent to 

a least squares regression of the data on the M 1nono1nials cpj [62] . This results 

in co1nplete global smoothing of the data. Extre1ne signal values can indicate 

a lack of spatial structure in the data. 

2.2.4 Standard error estimates 

According to Wahba [112] and Hutchinson [61], it can be shown using the 

n1ultivariate prior distribution which gives rise to splines that the posterior 

covariance of t he vector of the fitted values is given by the sy1nmetric matrix 

A(,,\) V o- 2
. This result allows the estimation of the pointwise standard errors of 

the fitted spline esti1nat e of g , as shown by Hutchinson [61]. The sa1ne result 

can be obtained for t he kriging 1nethod. This involves using the multivariate 

prior distribut ion ,i\/hich underlies the kriging equations [63]. 

2.2.5 Geostatistical models 

A useful interpretation of t he process o-f fitting a thin plate smoothing spline to 

patial, environmental data is provided by geostatistical models [25 , 111 , 74]. 
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Geostatistical models are statistical models designed to incorporate , and take 

advantage of t he spatial dependencies inherent in environn1ental data [25] . 

Thin pla e smoothing splines achieve essentially the sarne goal as geostatisti­

cal n1ethods and have a close association ·with the geostatistical fran1ework. 

Certain aspects of geos atistical 1nodels of spatial data are t herefore discussed 

belo,i\T. 

The variogram model 

Starting with t he 1nodel in equation (2.10), geostatistical methods 1nodel the 

process g as a spatially correlated randon1 function. According to '\iVacker­

nagel [111] t he concept of a random funct ion can be understood as follovvs . 

Take he data locations t i and construct at each of he n locations a random 

\ ariable Z (t i) . ow assun1e that these rando1n variables are a subset of an 

infini e collection of rando1n \ ariables called a rando1n function Z ( t ) defined 

a an location t throughout t he don1ain of interest . The da a are assu1ned to 

be realisations of t he rando1n funct ion at each data point locat ion. 

The random function is assu1ned to have 'int rinsic stationarity' which requires 

he sta ionarit of the first v. o 1110111ents of t he difference of a pair of values 

at v. o points ie. 

E [Z (t + h) - Z(t )] = 0, 

\ ar [ Z ( t + h) - Z ( t )] = 2v (h) 

(2.26) 

(2.27) 

where h is he displacemen av. a1 fro1n t and v(h ) is known as the variogran1 

function . rrhis a su1ne that the rela ionship between all pairs of random 

ariable Z (t i) Z(t j) is the ame joint probability distribution. The underlying 

in1plicat ion i t ha t he rela ionship between Z (t ) and Z (t + h ) depends onl1 on 

he leng h and orien a ion of h but not on the position of h. In other words, 

he pa ial trend depend onl1 on the covariance structure of the randon1 

func ion Z ( t ). In prac ice he orientation of h is often not incorporated into 

he n1odel of v(h ) and hen he measure of patial dependence aries only 

v. i h he leng h of h. 

ing hi geo a i ical n1odel t he 1nethod of kriging is used to predict the 

\ alue of Z ( t ) at a cer ain loca ion t 0 . Thi i done by constructing a v. eighted 
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linear con1bination of the realisations at the san1ple locations as follows 

n 

Z(to) = L wiZ(ti) (2.28) 
i=l 

where Z(t0 ) is the prediction of Z(t0). The weights wi are chosen such that 

Z(t0 ) is an unbiased, rninimum error variance estirnate. The in1portance of 

the covariance structure of Z ( ti) is in determining the weights. The estima­

tion of the wi requires calibration of a covariance function C(h), which is the 

covariance between random variables separated by a displacement h: 

C(h) = Cov{ Z(t) , Z(t + h)} = E[Z(t)Z(t + h)] - E[Z(t)]E[Z(t + h)] (2.29) 

The covariance decreases with separation distance, and becomes zero at sep­

aration distances large enough so that realisations of Z ( t ) are unrelated. In 

geostatistics , the variogram function in (2 .29) is 1nore commonly used as a 

1neasure of spatial continuity [111]. The variogra1n function can be deduced 

fro1n a covariance function by the f onnula 

v(h) = C(O) - C(h) (2 .30) 

but the reverse is not true, because the variogra1n is not necessarily bounded. 

The variogra1n is clearly the opposite of the covariance function , in that it 

generally increases with separation distance until a further increase no longer 

causes a corresponding increase in the average squared difference between pairs 

of values. At this point , known as the range, the variogra1n reaches a plateau. 

The value associated with the plateau the variogra1n reaches at the range is 

called the sill. In terms of the covariance function the sill for the process Z ( t ) 
is given by C(O), and is thus denoted by oJ [25, 74]. 

The scale of variation 

The variogra1n 1nodel is useful for analysing the spatial variation in the random 

process Z ( t ). Cressie [25] presents the following decomposition of the random 

proce s Z(t): 

Z(t) = µ( t ) + W(t ) + 77 (t ) + e(t ) 
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where 

µ = E( Z) is a detenninistic 111ean structure known as large scale 

variation. 

W ( t ) is a zero mean , £ 2 continuous, intrinsically stationary process 

whose variogram range is larger than min { \\ ti - t j \\ : 1 < i < j < 
n }, t he 111ini111um separation distance. This process accounts for 

t he spatial dependence in the data values. 

77 ( t ) is a zero mean, intrinsically stationary process whose variogram 

range is smaller than 111in { \ I t i - t j 11 : 1 < i < j < n} 

e( t ) is a zero-mean random noise process attributed to 111easurement 

error . 

. 
The assu111pt ion of intrinsic stationarity implies that the process Z ( t ) is spa-

t ially continuous, with zero semivariance at zero separation distance. In reality, 

sa111ple values separated by extre111ely small distances may be quite dissimilar. 

Cressie [25] attributes this to a combination of the sampling error e( t ) and 

discontinuity in t he microscale process 77 ( t ). It is often reasonable to expect 

the 111icroscale variation in the physical process to be spatially coherent, but 

little can be known about it as the data observations are spread too far apart 

to represent it . If the microscale process is continuous, then the errors in the 

approxi111ation of g will be correlated at close separations. Due to the earth 

sciences origin of geostatistics, the discontinuity at t he origin is termed the 

nugget effect. The nugget value c0 is given by 

Co = li111 v(h) = CME+ CMS 
ll hll -O 

(2.32) 

where cM E is the variance of the noise process e( t ) and CM s is the nugget 

effect of the microscale process. The variogram model clearly assumes that 

the nugget variance is constant across the data network, an assumption that 

the thin plate smoothing spline model avoids by incorporating the matrix V . 

A typical variogram for the process Z ( t ) is depicted in Figure 2.4. As stated 

above, little is known about the process 77( t ) , and so in practice the vari­

ogram at separation distances closer than the minimum distance between data 

points is usually extrapolated through the vertical axis. The processes shown 
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Figure 2.4: Variogram components. 

in Figure 2.4 are also implicitly present in the smoothing spline rnodel in equa­

tion (2 .10). Wahba [113] has shown that thin plate s1noothing splines and a 

particular type of kriging, known as universal kriging , are formally equivalent. 

Variogra1ns and other covariance structures are not explicitly used in the thin 

plate spline fitting process. However, these structures, created fro1n observed 

data values, are a useful method of visualising the spatial dependence in the 

data. 
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Chapter 3 

Discretisation of the univariate 

smoothing spline equations 

There are a nurnber of possible approaches to discretising equation (2.9) to ob­

tain a series of equations suitable for numerical solution. A standard method 

would be piecewise constant discretisation. However smooth basis elements 

offer a better struct ure for approximating smooth functions , particularly when 

used in conj unction with the multigrid method of nun1erical solution, as will 

be discussed in later chapters. This study has adopted the B-spline fr an1ework 

for approxirnating t he t hin plate smoothing spline function [27]. The simplest 

first order B-spline representation is to represent functions by piecewise con­

stants. Such functions do not have continuous derivatives , but derivatives can 

be approxi1nately represented by taking fini te differences of t he piecewise con­

stant values . Third order B-splines represent functions by piecewise quadratic 

elements . These functions have cont inuous first derivatives and piecewise con­

stant second derivatives. This study has developed procedures for discretising 

the thin plate smoothing spline problem using both piecewise constants and 

quadratic ele1nents , or t hird order B-splines . These fonnulations are discussed 

below. A comparison of the results for both forms of discretisation is discussed 

in the Part 2 of this thesis. 

While this project is directed towards smooth bivariate spatial interpolation, 

a thorough analysis of univariate interpolation was first conducted. It was 

found that the simplicity of the univariate case allowed empirical analysis to 

be conducted in a transparent and detailed fashion. T his was ideal given that 
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existing theory relating to the n1ethods used in this proj ect is not comprehen­

sive, and user experin1entation is required to understand t he algorithms and 

opti111ise their perfonnance. Note, however , t hat O(n) algorith111s, where n 

is the number of data points, already exist for calculating analytic univariate 

thin plate smoothing splines [69]. 

3.1 Discretisation with piecewise constants 

Consider an approximation f ( x) to the natural cubic spline mini111ising ex­

pression (2.9). In _the case of piecewise constants, f (x) will be a discrete 

approximation represented on a grid labelled as in Figure 3.1 where 1o, ... , 1N 

are knot points and Jo , ... , f N -l are the values of the discretised function in 

each grid cell. 

• I • I • I • I • I • I • I • I 

'Y 

Figure 3 .1: The unidi111ensional grid. 

There are N + l grid points or 'knot points ' and N grid cells. The integral 

term in equation (2 .10) was approxi111ated across the N grid cells using second 

differences to give 

00 N-2 ,\ 1 (j"(x))2 dx = A~ I:Ul+l - 2/J + !J_1 )
2 

-oo h 
l=l 

(3 .1) 

Note that the discretised integral only covers t he interval [10 , rN], not the 

infinite line. This does not affect the system, due to the natural boundary 

conditions in (2.6). Using (3 .1 ), the 111ini111isation proble111 can be expressed 

in fully discretised form as 

Minin1i e II Pf - zll 2 + : 3 IIQf 11
2 (3 .2) 

where f is a vector of length N containing the values of the fitted function f 
across the grid cells. The vector z contains values of the data points. It has 

components zi i = l , .. . n . The matrix Q is an ( - 2) x N 111atrix of the 
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form 
1 -2 1 

1 -2 1 
(3.3) 

1 -2 1 

This 1natrix operates on f to calculate finit e difference second derivatives . The 

matrix P selects from f t he grid values at grid cells containing data points, so 

(3.4) 

where f 1 is the value off in the I th grid cell, which contains data point i . Each 

row of P has exactly one non-zero element. If data point i is in gridcell I , the 

element [P]il will be 1. If there is no data point in grid cell I the I th column 

of P will be zero . 

Differentiating expression (3 .2) with respect to t he vector f gives and equating 

to zero for 1ninimisation gives the system 

(3.5) 

The matrix pT P is the N x N diagonal 1natrix 

m11 (3.6) 

where m11 is the nu1nber of data points in the I th grid cell . This can be seen 

by considering the exa1nple of t hree data points in the first grid cell, which 

1nakes the first three ele1nents of the first column of the matrix P equal to 1 

and the remaining ele1nents in the first colu1nn equal to zero. Thus [ pT P] 11 

equals 3. The right hand side 'data' term pT z effectively sums the values of 

the data points occurring in the same grid cell. The ith entry of vector pT z is 

zero if there are no data points in the I th grid cell. Thus data points occurring 

in the same grid cell are effectively averaged, with the sums on the right and 

side and the counts in the diagonal matrix on the left hand side. The matrix 
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QT Q is a symn1etric , non-negative definite N x N n1atrix of the forrn 

1 -2 1 

-2 5 -4 1 

1 -4 6 -4 1 

1 -4 6 -4 1 (3.7) 

1 -4 5 -2 

1 -2 1 

It can be seen that ,-·assuming there are no data points in the first and last grid 

cells, the second differences at the endpoints are set to zero. This is a result of 

the minimisation condition enforcing zero second derivatives at the boundary. 

The rank deficiency of QT Q is 2. The addition of the n1atrix pT P prevents 

this from being a rank deficient system. However , the systen1 will approach 

rank deficiency if the value of >.. / h3 is large. 

3.2 Discretisation with quadratic B-splines 

3.2.1 B-spline formulation 

B-spline definition 

As an alternative to piecewise constants, spline functions known as quadratic, 

or third order B-splines, were used as the building blocks to approxin1ate the 

function f>-( x) . The B-spline fr an1ework was developed by Schoenberg [100] 

and is extensively docurnented by de Boor [27]. It incorporates piecewise 

constants as a special case. B-splines allow efficient and flexible representation 

of spline functions , and are used in a variety of n1ultivariate function estirnation 

problen1s [3, 34, 52, 81]. A practical introduct ion to B-splines is given in the 

following paragraphs . 

In one dimension, the r th nonnalised B-spline of degree k, and 'order ' k + l , 

with knots rr) . . . ) rr+k+l is defined as 

44 



CHAPTER 3. DISCRETISATION OF THE UNIVARIATE SMOOTHING 
SPLINE EQUATIONS 

where D1+1 is the kth divided difference operator. The above expression takes 

the kth divided difference of ( t - x )i evaluated at the points "fr, ... , "fr+k+l · 

The subscript t is used to indicate that the divided difference of the function 

( t - x) i of two variables is to be taken by fixing x and considering ( t - x) i to 

be a function of t alone [27]. 

The rationale behind definition (3.8) given 1n de Boor [27]. The essential 

element of this definition is the truncated power function , which is itself a 

simple spline function [27] . It is given by 

( - )k -{ (t - x)k t X + -
0 

if t > X 

if t < X 
(3.9) 

The fact t hat the kth derivative of this function is zero on the left side of the 

discont inuity 1neans that the B-spline (3.8) 'has small support' •ie 

(3.10) 

[27] . As an example of how this arises, consider the case of second order 

B-splines , where k = 1. This gives 

(3. 11 ) 

Letting "fr = 3, with knot intervals of lengt h 1, gives 

2 D; (3, 4, 5)(t - x)+ (3 .1 2) 

As t - x is linear , t he second difference Dt is always zero , except inside the 

interval [3 , 5], where the discontinuity comes int o effect . This can be seen by 

setting x = 4, which gives 

Br,2( 4) = 2(0 + 0 + 5 - 4) = 2 (3.13) 

This is not zero because (3 - 4)+ is zero , as t is less than x . 

It is also shovm in de Boor [27] that a B-spline is always non-negative. T hus 

a visual concept of B-splines can be developed , looking at first , second and 

third order B-splines as seen in Figure 3.2. It is shown in de Boor [27] that 
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B-splines are spline functions ie. 
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Figure 3.2: B-splines of varying orders. 
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Quadratic B-splines splines were selected for this analysis for practical reasons. 

Firstly, third order is the minin1um order required for a visually 'smooth' 

function, because its first derivatives are continuous. It is desirable to choose 

functions of small order, to maintain small co1npact support. This allows the 

associated system of equations to be solved simply and efficiently by numerical 

methods. It is also shown in Marsden [89] that quadratic splines produce 

better fits to continuous functions than do cubic splines. Further favourable 

properties of quadratic B-splines are discussed in the following sections. 

Fortunately, the formula for quadratic B-splines functions does not have to 

be derived from equation (3.8), thanks to a recursive formulation given in de 

Boor [27]. This is given by 

Br,k+1(x) X - fr Br,k(x) 

fr+k+l - fr ( fr+k - fr) ( fr+k+l - fr) 

+ fr+k+l - X B ( ) 

( ) ( ) 
r+l,k X 

fr+k+l - fr+l fr+k+l - fr 

(3 .15) 

Thus the expression for third order, or. quadratic B-splines , can be derived 

from first order B-splines. A first order B-spline is simply 

( ) 
_ { 1 if fr < X < f r+l 

Erl X -
' 0 otherwise 

Using equation (3 .15), the expression for third order B-splines is 

X - fr [ X - fr ( ) fr+l - X ] 
Br,3 = ---- ----Br,1 X + ----Br+1,1(x) 

fr+2 - fr fr+ l - fr fr +3 - fr+ l 

+ fr+3 - X [ X - fr+ l B ( ) + fr+3 - X B ( ) ] 
r+l ,l X r+2,l X 

fr+3 - fr+l fr+2 - fr+ l fr+3 - fr+2 

(3.16) 

(3 .17) 

This can be clarified by considering the polynomial piece over each knot interval 

of the quadratic B-spline basis element. Assume we have equally spaced knot 

intervals of length h. We can then represent the quadratic B-spline in terms 

of Wr = ( x - fr)/ h, the proportion of the distance along the r th knot interval. 
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For the basis element Br,3 ( x), the polyno1nial pieces are 

w2 
_______I._ 

2 

Wr+l (1 - Wr+l) + ½ 
(l-wr+2) 2 

2 

fr< X < rr+l 

fr+l < X < rr+2 

rr+2 < X < rr+3 

These polyno1nial pieces are depicted in figure 3. 3. 

(1 - Wr)
2 

2 

(3 .18) 

Figure 3.3: Polyno1nial pieces of a quadratic B-spline, with Wr ranging from 0 
to 1 on each knot interval. 

B-splines as a vector space basis 

The spline vector space was discussed in Chapter 2. It is shown in de Boor [27] 

that a sequence of B-splines B o,k+l, ... , B N+k-l,k+l is a basis for t he space S k,,, 

defined in Chapter 2. De Boor [27] presents the definition of a spline function 

in tern1s of B-splines, stating that a spline function of order k + l with knot 

sequence , is any linear combination of B-splines of order k + l for the knot 

sequence , . The advantage of representing splines in terms of B-spline basis 

ele1nents is that the spline can be constructed over all knot intervals by simply 

calculating the coefficients of the basis vectors for the spline space. The basis 

vectors are the1nselves splines and have the desired continuity properties . This 

en ure that all the other vectors of the space which are linear combinations 

of the ba i have the sa1ne properties . 
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Any spline function of degree k defined on [1k, 1N+k] can be represented as 

N+k-1 

f(x) = L arBr,k+1(x) (3.19) 
r=O 

where ar are called the B-spline coefficients of f ( x). There are N + 1 knot 

intervals and N spans. Note that the B-spline basis is norrnalised, so 

N+k-1 

L Br,k+1(x) = 1 (3.20) 
r=O 

A piecewise constant representation corresponds to a construction off ( x) using 

B-splines of order 1. The B-spline coefficients correspond to the values of 

the piecewise constant function on the knot interval [1r, 1r+i]. Clearly the 

dimension of the space of first order B-splines is N, while the dimension of 

the space of third order B-splines is N + 2. This means that, in the case of 

third order B-splines, there are more basis elements than spans. In order to 

represent a third order spline in terms of a quadratic spline basis we included 

two extra basis elen1ents, centered a distance h/2 outside the first and last 

spans, as can be seen fro111 Figure 3.4. .Note that f ( x) is not defined on the 

exterior regions [1o, 1 2] and [1N+2, 1N+4]-

10 11 12 1N+2 1N+3 1N+4 

Figure 3.4: Positions of quadratic B-spline basis ele111ents Br on the unidimen­
sional grid. 
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3.2.2 B-spline approximation of smoothing splines 

Starting with the 111inin1isation problen1 (2 .9) a quadratic B-spline approxi-

111ation f ( x) is fonnulated as 

N+l 

f ( X) = L Ctr Br,3 ( X) (3 .21) 
r=O 

Thus f is a spline function co111posed of quadratic B-splines, and is defined on 

the interval [, 2 , rN+2J. We substitute the approximation f into the 111ini111isa­

tion expression (2 .9) and choose the coefficients ar to 111inimise. This requires 

differentiating (3 .21). The derivative of a B-spline Br,k(x) is given in page 138 

of De Boor [27] as 

dBr,k (x) = (k _ l ) (-Br+l ,k-1(x) + Br,k- 1(x) ) 
dx rr+k - rr+l r r+k-1 - rr 

(3.22) 

which in1plies that 

(3 .23) 

[27] . It can be seen fron1 this expression that the first derivative of a spline 

function f can be found si111ply by differencing its B-spline coefficients . For . 

quadratic splines with knots equally spaced at intervals of length h this gives 

N+l 
J'(x) = L (ar -tr-1) Br,Z(x) (3.24) 

r=l 

(3.25) 

Thus the second derivative of a quadratic B-spline is given by taking the econd 

difference of its coefficients. The sin1plicity of this formulation further moti­

-:ate the choice of quadratic B-splines for use in this stud). The roughne 
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penalty term of the minimisation problem in equation (2.9) is given by 

N+l ( ) 2 N+l '/(J"( ))2d = 'h~ Ctr-2Ctr-1+ar-2 =~~( _ )2 
/\ X X /\ L....t h2 h3 L....t Ctr 2ar-l +ar-2 

r=2 r=2 
(3.26) 

Equation (3.26) is the same as equation (3.1), with the f values in the roughness 

penalty now substituted for O'. values, where a is a vector containing the N + 2 

quadratic B-spline coefficients ar. The minimisation proble111 is therefore given 

by 
A 

11Pa - zil 2 + h3 IIQnll 2 (3.27) 

The matrix Q is once again given by (3.3). The 111atrix P operates on a to 

calculate values off (x) at data point locations i and is given by 

[P]ir = Br,3(xi) (3.28) 

There are at most 3 non zero B-splines in any knot interval, as can be seen 

from Figure 3. 4, so the 111atrix P has no more than 3 non zero entries in each 

row. Differentiating (3.27) and equating to zero once again gives 

A 
(PTP+ h3QTQ)a=PTz (3.29) 

The matrix pT P is 5 banded, which requires more storage than the diagonal 

syste111s arising fro111 first order B-spline discretisations. However, the results 

presented in Chapter 11 show that the ability of quadratic B-splines to produce 

smooth functions at very coarse discretisations is essential to the develop111ent 

of an efficient algorithm for the purposes of this study. 

Solution of equation (3.29) gives coefficients for B-splines with a support width 

of 3h. Thus on the coarse grid there will be few B-splines of relatively large 

support, and on the fine grid there will be more B-splines with smaller support , 

as de111onstrated in Figure 3.5. In the next chapter, 111ultigrid methods of 

solving discretised systems such as those mentioned above will be discussed. 
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Coarse grid quadratic B-splines 

Fine grid quadratic B-splines 

Figure 3.5: Quadratic B-spline basis elen1ents on coarse and fine grids. 
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Chapter 4 

Multigrid methods 

The basic idea behind n1ultigrid methods is simply to perform the process of 

iterative solution of a syste1n of equations on several grids of varying resolution , 

rather than just iterating on the resolution at which the solution is desired. 

This initial concept is central to the algorith1n developed in this study. A 

review of 1nultigrid 1nethods is therefore given in t his chapter , at a basic level, 

to den1onstrate the value of multigrid principles to the algorithm presented in 

this project. 

4.1 Classical iterative methods 

A basic analysis of classical iterative 1nethods was useful in understanding 

the mult igrid schemes involved in t his study and interpreting their behaviour. 

Classical iterative 1nethods include variations of t he J acobi n1ethod , the Gauss­

Seidel 1nethod , and successive overrelaxation (SOR) [78] . These 1nethods are 

discussed in detail in Young [1 17], Hage1nan and Young [47] and Briggs [20]. 

Classical iterative 1nethods, often called basic iterative methods , are used to 

perforn1 'sn1oothing ' iterations during the multigrid process. Iteration using 

basic iterative n1ethods is often tenned 'relaxation ' . In particular , this study 

exa1nined the ,¥eighted J acobi 1nethod and the SOR 1nethod. Aspects of these 

methods that are relevent to this study are discussed below. 
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4 .1.1 The weighted Jacobi method 

Assume we wish to solve the linear systen1 

Af = z ( 4.1) 

where A is an N x N matrix, and the N x 1 vector f is the solution for the 

N x 1 right hand side vector z. Classical iterative 1nethods typically begin by 

partitioning the matrix A as follows 

A= D + L +U (4.2) 

where Lis the lower triangular part of A, U is the upper triangular part of A , 

and D is a diagonal matrix containing the diagonal elements of A . 

The Jacobi iteration is given by 

Dfk+l = (-L - U) f k + z (4.3) 

where fk is the approximation to f after k Jacobi iterations . The updates f k+l 

are easy to calculate because D is easy to invert. 

The performance of the Jacobi iteration can be enhanced by taking a weighted 

average of the current approximation and its update [20] . Set 

D f * = ( - L - U) f k + z (4.4) 

The weighted J acobi iteration is then given by the convex co1nbination 

f k+l = (1 - w) f k + wf * (4.5) 

where w is a real nu1nber chosen by the user. When w = 1 the weighted Jacobi 

1nethod reduces to the J acobi 1nethod. 

4 .1.2 The SOR method 

The SOR iteration is given by 

(D + wL) f k+l = [(1 - w) D - wU] f k + (1 - w)z 
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The only difference between this iteration and the weighted Jaco bi iteration 

is that, by incorporating L into the left hand side, it uses the updated com­

ponents l ik+l in the calculation of the components f k+l that have yet to be 

updated . This can be seen by writing the SOR iteration in terms of the vector 

components as follows 

(

i -l N ) 
lik+l = w!.!:_ - w '\""' lij 1;+1 + '\""' 'Uij 1/ + (1 - w)lik 

d· · 0 d·· 0 d·· 
1,7, . 1 ii . ·+1 1,7, J= J=i 

(4.7) 

and comparing this to the weighted Jacobi iteration 

(

i-l N ) Jt+l = w ;, - w L d] 1; + L ~'] Jjk + (1 - w)J;k 
1,7, . 1 ii . ·+1 1,7, J= J=i 

(4 .8) 

where 1 < i < N . SOR is a more efficient n1ethod than weighted Jacobi , 

given that its updates use n1ore recently updated information, but both were 

exan1ined because the Jacobi iteration is easier to analyse. 

4.1.3 Conv ergence 

The weighted Jacobi and SOR iterations can be expressed as 

f k+l = Gfk + Kz (4.9) 

.. where G is lu1ovvn as the ' iteration rnatrix' . In the case of weighted J acobi 

and 

For SOR 

and 

G = (1- w) J + wD-1 (-L - U) 

K = wD-1 

G = (D + wL)- 1 [(l - w) D - wU] 

K = (D + wL)- 1w 
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It is easy to show that the iterations ( 4.9) will only converge if S( G) < 1 

where S( G) is the spectral radius, or the eigenvalue of n1axi1nurn 1nagnitude, 

of G [104]. If ek is the error f - fk after k iterations , then 

k+1 G k e = e (4 .14) 

and 

ek = ( G)keo (4.15) 

so 

\\ ek\\ = \\G\\k\\eo\\ ( 4.16) 

It is stated in Hageman and Young [47] that S(G) < 1 for the Jacobi iteration 

if the 1natrix A is symmetric positive definite , and is irreducible with weak 

diagonal dominance. The weighted Jacobi iteration will converge under these 

conditions with the additional require1nent that O < w < 1. The SOR 1nethod 

converges provided that A is sy1n1netric positive definite , and O < w < 2. 

4.2 The multigrid method 

The literature that is most relevant to this study strongly indicates that multi­

grid techniques are well suited to the algorithm proposed. As discussed in 

Chapter 1, Hutchinson [58] and Altas [2] found multigrid to be a si1nple, ef­

ficient strategy for solving systems si1nilar to the one considered here. The 

following review was conducted to give an understanding of the 1nultigrid pro­

cess in the context of the thin plate smoothing spline proble1n. 

4.2.1 Multigrid context 

With the growth in co1nputational 1nathe1natics during recent decades , there 

has been intensive research into the problem of nu1nerically solving discretised 

linear syste1ns. Typically, the algorith1ns fall into two classes: direct and itera­

tive 1nethods [103]. Direct methods, such as Gaussian eli1nination, fast Fourier 

transforn1s and cyclic reduction , calculate the solution exactly to within ma­

chine precision. These methods are very efficient for certain types of proble1ns, 

such as separable, self adjoint boundary value proble1ns [103]. They are also 
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not dramatically affected by the conditioning of the system. However, they are 

co111putationally intensive, and require excessive amounts of co111puter memory 

when applied to large, dense problems [103]. 

Iterative methods are more widely applicable than direct 111ethods. The class 

of iterative 111ethods consists of the basic iterative methods discussed in sec­

tion 4.1, as well as other more advanced methods including alternating direc­

tions i111plicit (ADI), Chebyshev semi-iterative 111ethods, conjugate gradient 

111ethods and 111ultigrid methods [78]. Iterative 111ethods approxin1ately solve 

the discretised system by starting from an initial guess and, using so111e cornpu­

tational cycle, obtaining increasingly accurate approximations until a desired 

accuracy is achieved [103]. Iterative methods are often better suited to com­

puter solution than direct methods as they consist of a repetition of si111ple 

steps [103]. Moreover, they can take advantage of the sparse nature of finite 

difference systems of equations, and may require no co111puter memory in ad­

dition to the storage of the discretised domain. They are also generally more 

efficient than direct methods for multidimensional problems [103]. 

Multigrid 111ethods were developed after study of the basic iterative methods 

revealed that, while these methods are very useful, they have two fundamen­

tal deficiencies that are 111anifestations of the same underlying property [103]. 

Firstly, the convergence factor, S ( G), is 1 - 0 ( h 2 ) or 1 - 0 ( h) where h is 

the size of the grid or 111esh [103, 41 J. Hence any attempt to improve accu­

racy by refining the grid will cause convergence to deteriorate [20]. Secondly, 

a related difficulty is that the s111ooth ( or long frequency) modes of the er­

ror are very slowly reduced, so relaxation quickly stalls once high frequency 

modes are eli111inated. Recognition of these problems lead to the development 

of multigrid. The multigrid process uses relaxation to obtain smooth errors 

on an initial grid, then calculates corrections to the approxi111ate solution by 

relaxing on grids of varying coarseness. Or , in the case of this study, relaxation 

is performed on the coarsest grid to obtain a smooth initial guess , and then 

the grids are successively refined to develop fine scale structure. An optimal 

111ultigrid scheme has a convergence rate that is bounded away from 1, and is 

independent of the mesh size h, so we can increase the number of unknowns and 

not change the convergence rate. As a consequence an acceptable approxima­

tion of the discrete problen1 can be obtained at the expense of computational 

work proportional to the nu111ber of unknowns [46]. It has been shown in prac-
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tice that suitable multigrid 1nethods are at least competitive with direct fast 

solvers [17]. 

4.2.2 History of multigrid development 

For about one century the Jacobi and Gauss-Seidel methods were the only tools 

for solving small linear systems iteratively [46]. Then, with the develop1nent 

of the conjugate gradient method by Hestenes and Stiefel [56], the idea of 

correcting blocks of unknowns instead of single unknowns was introduced. 

The first development of a correction process involving two grids was made 

by Fedorenko [32]. For Poisson's equation on a regular grid, Fedorenko [32] 

proved that the procedure reduced the residuals by a factor c in O(Nllogcl) 

operations, where N is the nu1nber of grid points. This is asymptotically the 

opti1nal result, in that the algorithm is O ( N), and therefore scalable, for large 

E. Bakhvalov [5] later generalised this result to any second order elliptic PDE 

with continuous coefficients . In 1973 the first full multigrid algorithms and 

results were published by Brandt [15] . However , the convergence properties of 

1nultigrid 1nethods were still poorly understood. In 1975, Hackbusch [45] began 

to syste1natise convergence analyses of general multigrid methods. Subsequent 

developments in multigrid convergence theory have clarified a nu1nber of the 

uncertainties surrounding this issue , but further develop1nents are required 

before convergence theories can match the convergence rates found in practice. 

4.2.3 The multigrid principle 

The 1n ultigrid principle is based on the recognition that a continuous problen1 

can be discretised on a grid of any coarseness for numerical solution. Different 

discretisations have different accuracy and different convergence properties, 

both of which depend on the scale of the solution structure. Multigrid takes 

advantage of t he fact that the discretisations of the sa1ne continuous problem 

are related [16]. 

Consider the syste1n 

Af = z ( 4.17) 

discussed in section 4.1. Briggs [20] establishes that , if A in this case is the 
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finite difference matrix for the following boundary value problem 

- J" (x) +CY f (x) = z(x) f (0) = f (1) = 0, 0 < X < l, CY > 0 ( 4.18) 

then the eigenvectors of A are the same as the eigenvectors of G, the iteration 

matrix for the weighted J acobi relaxation 111ethod . The error e (k) can then be 

represented by an eigenvector expansion such as the following: 

N 

e (k) = L ciAJw i 
i=l 

( 4.19) 

where ci are the expansion coefficients, Ai are the eigenvalues of G and w i are 

the eigenvectors of A. The w i are known as the 'inodes' of the error . The jth 

component of the ith eigenvector is given by 

. (J'l7f ) 
Wij = sin N ( 4.20) 

Thus the first 111ode w 1 is a s111ooth sine curve, and the modes become increas­

ingly oscillatory as i increases ( see Figure 4.1) . 

Briggs [20] shows that 

A1 ~ 1 - w2h21r2 

2 
(4 .21) 

where w is the relaxation factor for the weighted J acobi method. This implies 

that the eigenvalue associated ·with the smoothest 111ode will always be close 

to 1. Thus no value of w will reduce the smooth components of the error 

effectively. However, if w = 2/ 3, t he modes corresponding to N / 2 < i < N 

can be reduced by a factor of at least 1/ 3 wit h each relaxation [20] . Arguments 

such as the above can also be developed for other relaxation methods and 

different 111odel problems [20]. 

The next key concept behind the 111ult igrid principle relates to the transfer 

of the error e (k) to a coarser grid. It is demonstrated in Briggs [20] and Jes­

persen [78] t hat, for t he 'smooth ' 111odes 1 < i < N /2, the mode beco111es more 

oscillatory when passing from a fine grid to a coarse grid. This is de111onstrated 

in Figure 4.2 . The essent ial principle of 111ultigrid is therefore to iterate or ' re­

lax' on the fine grid to eliminate oscillatory components, then move to a coarse 

grid t o make s111ooth components more oscillatory and continue relaxation. A 
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Figure 4.1: The modes w i . 
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0 N/2 

Figure 4.2 : Representation of a given mode on a fine grid and a coarse grid 
( adapted frorn Briggs[20]) . 

s1noot h correction to the original approxi1nation is then transferred back to 

the fine grid , leaving only the oscillatory modes to be reduced at the fine scale. 
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4.2.4 Elements of multigrid 

As discussed above, the multigrid solution process involves relaxation , and 

transfer of the solution process between coarse and fine grid levels. This section 

will summarise the technical details of these processes and describe their role 

in the multigrid algorithm. 

The residual equation 

The first step in rnoving from a fine grid to a coarse grid involves the residual 

equation. If fl is an approxin1ation to the exact solution f then the error 

el = f - fl satisfies the residual equation Alel = zl - Alfl = rl. The subscript l 

denotes discretisation on grid level l, l = 0, 1, 2, ... , L, where a larger value of 

l corresponds to a coarser grid, and L is the level of the coarsest grid visited. 

Relaxing on the residual equation with an initial guess el = 0 is equivalent to 

relaxing on the original equation with an arbitrary initial guess fl [20]. For a 

particular grid level l, a simple form of n1ultigrid, known as the coarse grid 

correction, proceeds through the following steps: 

1. Relax on Alfl = zl 

2. Compute the residual rl = zl - Alfl 

3. Transfer the residual rl to a coarser grid 

4. Solve the residual equation directly on the coarse grid ie. el+i = Az=i.\ rl+1 

5. Transfer the solution el+l to the fine grid 

6. Correct the fine grid approxi1nation fl = fl + el 

7. Relax on the fine grid 

This procedure is repeated until a desired tolerance is reached, which might be 

the discretisation error. It uses the solution on the coarse grid to correct the 

fine grid solution. The coarse grid correction 'solves' for the smooth compo­

nents of the solution, leaving only the oscillatory components to be obtained 

on the fine grid. Note that the residual equation can be solved directly on the 

coarse grid , however for large problems this can be quite expensive computa­

tionally. Also, the above procedure does not specify how the information is 

transferred between the grids. This is discussed below. 
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Prolongation 

Transfer of approximations from a coarse grid to a fine grid is known as pro­

longation. A co1n1non 1nethod of prolongation is by a linear interpolation 

operator. The linear interpolation operator Tz+1,1 maps from grid l + 1 to grid 

l and is of the form 

-- 1 
Tz+1,1 = 

2 

1 

2 

1 1 

2 

1 

1 

2 

1 

( 4.22) 

If there are N /2 grid cells on grid level l + 1 then 11+1,1fz+ 1 gives the following 

expression for the components of fz, ignoring the end conditions 

fz ,2i = fz+1,i ( 4.23) 

1 
fz ,2i+l = 

2 
(ft+l,i + ft+l ,i+l) 1 < i < N/2 - 1 ( 4.24) 

Clearly, linear interpolation will be more accurate when fz is smooth. Other · 

forn1s of interpolation, such as quadratic interpolation , may improve interpo­

lation accuracy [ 46]. 

R estriction 

The econd cla of intergrid tran fer function involve 1no -ing vectors from 

fine grid to coar e grid . They are knov rn as restriction operator denoted by 

~ .2. co1nmon form of re triction is called full weighting vvhere Tz ,2 is of the 

fonn 

1 
112 = -

4 

1 2 1 

1 2 1 
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[20]. Tz_ 1,2fz_ 1 gives the following expression for the components of fz 

1 
fz,i = 4 (fz-l ,2i-l + 2fz-l ,2i + fz-l ,2i+l)' 

N 
1 < i < -

- ') ,_, 
( 4.26) 

There are, however , many possible choices of restriction operators. It is the­

oretically convenient to have T,,~ = Tz,1 , although in practice similar results 

are observed when Tz 2 is the adjoint of a prolongation operator different from 
' 

Tz,1 [ 46) . Sorne guidelines for choosing appropriate inter grid transfer operators 

are discussed in section 4.2 .5. 

It is shown in Wesseling [115] that, for a two grid rnultigrid procedure, if rz is 

t he residual Zz - Azfz aft er the coarse grid correction, 

( 4.27) 

This relation implies that, on the fine grid, the residual after a coarse grid 

correction is 'rough ', in that it consists only of oscillatory con1ponents. This 

explains why n1ultigrid convergence is independent of h [115]. 

The coarse grid operator 

There is some flexibility in what is used for Az+i ,the operator A on grid level 

l + l. There are two co111111on alternatives for the coarse grid operator. The 

first is the discretisation coarse grid operator , t hat is simply the operator that 

results from discretising the proble111 on t he coarse grid [115]. Secondly there 

is the Galerkin coarse grid operator 

( 4.28) 

where Tz~ = Tz,1. This alternative has some theoretical advantages in calcu­

lation of relative consistency [46] and convergence analysis [11 5] . In practice , 

however, si111ilar results are achieved for both operators and the Galerkin fonn 

generally does not warrant the extra co111putation involved [46] . It is further 

stated in Brandt [17] that in principle, the coarse grid operator may be any 

reasonable difference operator approximating the fine grid operator. 
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The algorithm 

There are a number of multigrid algorithms which combine the above elements . 

This revie"'r \\ ill discuss t\vo multigrid algorithms knuwn a v-cycle and nested 

grid " 'hich form the basic building blocks for more complex multigrid algo­

rit hms. 

V-cycle 

The v-c} cle algorithm is an extension of the coarse grid correction or two-grid 

algori hm, discu ed in section 4.2.4. The v-cycle algorithm is 

for l = 1 to L - 1 

end 

fz = St 1 
( ft , z t) 

rz = Zt - A t fl 

Zz+1 = Tz ,2rz 

fL = SL vi (fL ZL ) 
fo r l = L - 1 t o 1 

ft = fz + Tz+1,1 fz+1 

ft = Sz v2 
( fz. Zz) 

end 

f 1 = 1 i·2 
( f 1 , Z 1 ) 

"-here i·1 i the number of (pre- moothing' operation , or the number of re­

lax ation per grid le\-el before the correct ion proce begin ( the fi r t half of 

the cycle) and r 2 i the number of (po t- moothing · operation . or he number 

of relaxation per a-rid le\-el during the correction proce . L i the number of 

a-rid le-,-eL. and i the i eration matrL"\: for the ba ic iterative method cho en. 

In mul io-rid terminology. relaxation on a gi\-en grid level i called · moothing' 

and is called he moothing iteration matrL'< . T he notation vi (f , z) corre­

~ponds o perfonnino- u1 moothing iteration on a generic y tern Af = z . 

The ·mtltio-rid ~chedule · for hi alo-ori hm. ·which dictate the order in ·which 

he q-rids are \-i i ed. i ~hown in Fi~e -1 .3. -- cycle i u ed o replace he t·wo 

o-ria alo-ori hn1 no to improve conYero-ence . but o avoid expen ive computa­

. on o the exact ol ion of he coar e grid equa ion 46] . T he idea i that 
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l = 3 

l= 4 

Figure 4.3: Grid schedule for the v-cycle algorithm. 

the coarse grid correction takes care of the smooth error components on the 

current fine grid. Therefore, by adding relaxation at all levels, all components 

of the error are eventually acted on and quickly removed [20]. 

Nested grid 

Nested grid is one of the simplest and earliest forms of multigrid. It does not 

involve coarse grid correction or t he residual equation. The idea of nested 

iteration is to provide a good starting guess by 111eans of iterating on a coarser 

grid . The algorithm can be described as follows 

for l = L to 2 

end 

ft = St1 
( ft ' z l) 

ft-1 = Tl 1ft , 

f1 = S1 v i ( f1, Z1) 

The multigrid schedule for nested grid is shown in Figure 4.4. Unlike v-cycle , 
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l == 4 

l == 3 

l == 2 

l == 1 

Figure 4.4: Grid schedule for the nested grid algorithm. 

nested grid is not a cyclic algorithn1) so some experirnentation is involved in 

setting v1 to achieve an appropriate level of accuracy. Nested grid operates 

under the simple principle that relaxation on a number of grid levels will even­

tually eliminate all components of the error . The coarse grids will remove 

smooth components and the finer grids will deal with oscillatory components. 

The smoothing rate 

On the basis of these arguments) a criterion for measuring the effectiveness of a · 

multigrid n1ethod) known as the smoothing rate) was developed . One n1easure 

of the smoothing rate p is defined as 

p = supmax{ l>-;lv1 
: j = '1/)l) ... , Nl} 

l2'.l 

( 4.29) 

v\~here '1/)L is the value of j corresponding to the start of the domain of oscillatory 

111ode on grid level l) Nl is the number of grid cells on level l and >-; are the 

eigenvalues of the smoothing iteration 111atrix G on grid level l denoted Gl [46]. 

Thi i the convergence factor for the relaxation method over the domain of 

the o cillatory modes ) or the worst factor by which all high frequency error 

component are reduced per cycle. The smooth components of the error are 

ignored in the smoothing factor because they are annihilated by iteration on 

coar e grid [115] . 
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4.2.5 Guidelines for optimising the multigrid 

algorithm 

From the above discussion it is clear that there are a lot of 'parameters' J.n 

the multigrid process that rnust be set by the practitioner, ranging frorn the 

type of algorith1n chosen to the number of relaxations performed at each grid 

level [103] . So1ne theoretical principles that help guide the choice of multigrid 

paran1eters are outlined below. Despite these guidelines , multigrid is far fro1n 

being a fixed method, and so1ne experimentation is desirable [103]. 

a) Let mp be the order of the prolongation operator and mr be the order of the 

restriction operator, where the order is defined as the order of the polynomial 

that would be exactly approximated by the given interpolation technique. For 

differential equations of order m, the following relation should h?ld: 

( 4.30) 

For exa1nple , piecewise linear interpolation and full weighting restriction gives 

mr = mp = 2, which is adequate for a differential equation of no 1nore 

than third order. The necessity of the above conditions has been shown by 

Hemker [55]. In the case of two grid multigrid , the explanation relates to en­

suring that the coarse grid correction does not amplify the oscillatory part of 

the error in the process of annhilating the s1nooth part [115]. Wesseling [115] 

attributed the failure of a v-cycle algorithm to a breach of this relation. 

b) The opti1nal nu1nber of s1noothing operations per grid level is 3, or 2 for 

very efficient cycles [17]. 
c) The optimal coarsening ratio, or the ratio of the nu1nber of grid points on 

grid level l to the number of grid points on grid level l + l, is nonnally 2. Large 

ratios will not save significantly more work, but will significantly degrade the 

s1noothing rates [17] . 
d) Basic relaxation methods with fast overall convergence rates do not necessar­

ily have low s1noothing rates. Jacobi relaxation often has superior smoothing 

properties to Gauss-Seidel, even it is slower to converge as a basic iterative 

1nethod. In the case of SOR, overrelaxation results in a better convergence 

rate but underrelaxation improves the smoothing rate, so it is often preferred 

in 1nultigrid sche1nes [103]. 
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Despite these rather abstract guidelines there is still a lot of flexibility in the 

1nultigrid process. Some of the other parameters which must be chosen by the 

practitioner include the type of cycle, the nu1nber of grid levels, the type of 

discretisation, and the type of initial guess. 

4.2.6 Multigrid convergence 

The general consensus in literature on 1nultigrid convergence is that the con­

vergence theories are often too abstract to provide constructive criteria for the 

develop1nent of opii1nal methods for concrete situations [17]. Briggs and Mc­

Connick [19] explain that the analysis of any 1nultigrid algorithm can be quite 

co1nplex since it must account for many factors, including relaxation and its 

ordering, prolongation and restriction. In an atte1npt to overcome this com­

plexity, the theories are constructed on an abstract level, and have significant 

uncertainty attached to the para1neters involved in theoretical calculations. As 

a consequence the theories tend to be pessimistic, predicting convergence rates 

that are significantly slower than those observed in practice [115, 17, 6]. Details 

on the theory of 1nultigrid convergence can be found in Hackbusch [ 46], Wes­

seling [115] and Bra1nble [14]. The theory is based on two sufficient conditions 

known as the smoothing property and the approxi1nation property [115] . 

Brandt [17] suggests a practical technique called local 1node analysis to pre­

dict the speed of 1nultigrid convergence. In the context of local mode analysis, 

Brandt [17] conceptualises the 1nultigrid principle by e1nphasising that reduc­

tion of the oscillatory error co1nponents is essentially a local task and can thus 

be efficiently perfonned by relaxation , which is a local process. Through the 

use of coarse grids, 1nultigrid methods use relaxation essentially as a 1neans of 

attenuating the oscillatory 1nodes [19] . Therefore, the overall convergence fac­

tor for a good 1nultigrid sche1ne is close to the convergence factor of relaxation 

restricted to the oscillatory modes [19]. This is simply the smoothing rate. 

The argument that 1nultigrid convergence is independent of h follows from the 

fact that the reduction of the oscillatory 1nodes is independent of h and thus 

the s1noothing rate is independent of h [19] . Brandt clai1ns that local 1node 

analy is always gives reliable estimates of the overall convergence rate of the 

multigrid 1nethod [7 ] . 
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Chapter 5 

Prolongation and restriction of 

univariate quadratic B -splines 

5.1 Hierarchial B-splines 

Using B-splines for approxin1ating the solution of the discretised s111oothing 

spline system has so111e advantages fro111 a 111ultigrid perspective. Using the 

hierarchial B-spline fra111ework , intergrid transfer can be 111ade with greater 

efficiency and accuracy in con1parison to the standard n1ult igrid prolongation 

and restriction techniques [34, 80]. A hierarchial spline space can be defined as 

a linear span of B-splines with nested knot sequences [80]. Consider the knot 

sequences 

rr,l =a+ r2lh, r = 0, . . . , Nz + k + 2, l = 0,1 ,2 .. . (5 .1 ) 

·where a is the first knot in the sequence, l is the grid level , h is the width 

of the knot intervals on the finest level and Nz is the number of spans on 

level l . The width of the knot intervals doubles as l is incremented. The B­

spline B~,k of level l is the B-spline to the knot sequence rr,l, . . . , rr+k+l,l with 

supp B~,k = [,r,l, rr+k+1,z] . Consider the spaces Sz = span{ B ~,k } = { sl E Sz : 
sl = L ~L 1 ar B~,k; ar E R}, where dz is the din1ension of level l. These spaces 

form a sequence of nested subspaces such that 

Sz C sl-l c, . .. ,S1 C So (5.2) 
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This means that any element in Sl can be written as a linear cornbination of 

the basis vectors B;,/ of Sl-l, although this representation would be redun-, 

dant since the di111ension of Sl is half t hat of Sl-l · B-splines are therefore 

'refinable ' [34], in that each one can be re-expressed as a linear co111bination of 

one or 111ore 'smaller' basis functions. In the multigrid context, this 111eans t hat 

standard intergrid transfer operators are not required. In the case of nested 

grid , refine111ent occurs by si111ply expressing each coarse grid basis element in 

terms of the fine grid basis, as discussed below. 

5.2 Prolongation 

Prolongation of the quadratic B-spline solution estimate by refining the basis 

ele111ents does not change the solution estimate . The process involves repre­

senting the solution esti111ate on grid l in tenns of the basis vectors on grid 

l - l. The coarse grid basis ele111ent can be expressed as a combination of 4 

fine grid basis elements as follows. 

Figure 5 .1: Refinement of a quadratic B-spline basis element . 

2q+l 

B l+1,q(x) = L /3r B l,r(x) (5 .3) 
r=2q-2 
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where Bz+1,q( x) is the qth coarse grid basis ele1nent and Bz ,r ( x) is the r th fine 

grid ele1nent. This concept is illustrated in Figure 5.1. The coefficients f3r are 

chosen to obey this equality. This is done by setting 4 conditions requiring 

that the second derivative of L~q~~- 2 f3r Bl ,r ( x) equals that of Bz+1 ,q ( x), and 

that the values of these two functions are equal at the knot intervals of the 

coarse grid function. Setting q = l, the conditions can be stated as 

1 1 1 
2/3° + 2/31 = 2 

1 1 3 
2/31 + 2/32 = 4 

1 1 1 
- /32 + - {33 = -
2 2 2 

(5.4) 

(5 .5) 

(5.6) 

(5.7) 

This uses the fact that the values of a quadratic B-spline basis element at the 

1niddle t \vo knot intervals within its support are 1/2 and 1/2, and the value 

at the centre point is 3/4. This gives {3T = (1/4,3/4,3/4, 1/4) . From this, 

the coarse grid quadratic B-spline solution can be 'converted ' to a fine grid 

solution using the above relationship to change the basis. Let ar be the B­

spline coefficients on grid level l and bq be the B-spline coefficients on grid level 

l + 1. Substituting (5 .3) into 

N1+l N1+1+l 

L arBz ,r(x) = L bqBl+1 ,q(x) (5.8) 
r=O q=O 

gives 

(5 .9) 
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·where a and b are the vectors of coefficients (ao, . .. , aNL+1)T and (bo, . . . , bNL+i +1)T 

respectively, and P 2 is an (Nz + 2) x (Nz+i + 2) 111atrix of the form 

3 

1 

1 
-

4 

5.3 Restriction 

1 

3 

3 1 

1 3 

3 1 

1 3 

(5 .10) 

The B-spline fra111ework also allows the development of a specific restriction 

n1ethod involving a least squares fit of the fine grid solution to the coarse 

grid . This 111ethod decomposes the solut ion into components that correspond 

to the grid scales at which they can be represented. In comparison to standard 

multigrid techniques, this allows a clearer understanding of how the solution 

changes as it passes fro111 a fine grid to a coarse grid . The least squares objective 

is to minimise the £ 2 norm of the difference between the coarse grid and fine 

grid functions ie. 

(5 .11 ) 

Differentiating this expre sion ·with respect to the kth coar e grid B-spline 

coefficient bk gives 

(5.12) 

Equating to zero for 111inimi ation ,;;\ ith respec to all coefficient bk give 

(5.13) 
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To solve for b, the vector of coarse grid coefficients, the equations for k = 

0, ... , Nl+l + 1 can be written as 

Xb=Ya (5.14) 

where 

[X]qk = lb B1+1,q(x) B1+1,k(x)dx (5.15) 

[Y]rk = lb B1,r(x) B1+1,k(x)dx (5.16) 

Integrals of this form often arise in applications where B-splines are used as ba­

sis functions , such as the finite element method and least squares fitting [110]. 

Vermeulen et al. [110] present a general method , based on integration by parts , 

for integrating 

(5.17) 

where Br,k is the r th B-spline of order k defined over the knots x. Fortu­

nately the rnatrices X and Y are simple cases. Calculation of these matrices 

is discussed in the fallowing sections. 

5.3.1 The matrix X 

Figure 5.2 shows that all basis ele1nents Bl+l,r, except the first two and the last 

two on the grid, overlap with only 5 others, which means that the matrix X is 

5-banded. It is also shown that the first and last basis elements overlap with 

3 other basis ele1nents and the second and second last basis elements overlap 

with 4 other basis elements. 

To calculate the value of the above integrals, the polynomial representation of 

a quadratic B-spline in equation (3 .18) is used. For si1nplicity of notation we 

write u = Wr . Values of the integrated products in the matrix X for elements 

away fro1n the endpoints are 

rl rl U2 1 lo Bl+1 ,k-2(u)Bl+1,k(u)du = lo 2 (1 - u)du = 
120 

(5 .18) 
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A way from the edges 

Near the edges 

0 

At the edges 

0 

Figure 5.2: Overlaps of coarse grid basis elernents with surrounding coarse grid 
basis ele111ents. 
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11 

B1+1 ,k(u)B1+1 ,k(u)du 11 (~2r du 

+ 11 

(u(l-u)+~rdu + [Cl~u)2rdu 

6 54 6 66 
120 + 120 + 120 = 120 

11 

B1+1 ,k+1(u)B1+1 ,k(u)du = j B1+1,k-1(u)B1+1,k(u)du = 
1

2

2

6

0 

11 

B1+1,k+2(u) B1+1,k(u)du = j B1+1 ,k- 2(u) B1+1 ,k(u)du = l~O 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

For Bz+ 1,1 ( x), integration goes only to the grid boundary, as shown in Fig­
ure 5.2. The values of the above integrals for these basis elements are 

fl fl (1 - U )2 ( 1) 13 
Jo Bz+1 ,o(u) Bz+1,1(u)du = Jo 2 u(l - u) + 2 = 120 (5.23) 

11 (u(u-1)+ ~r + cl ~u)2r du 

54 6 60 
120 + 120 = 120 

(5 .24) 
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f l u2 ( 1) 
l o 2 u(u-1)+2 + 

uu-l +- u--(1 - u )
2 

( ( . ) 1) d _ 26 
2 2 120 

(5.25) 

(5 .26) 

The identical situation occurs for the basis element Bl+l ,Nt+i ( u). For Bl+l ,o ( u) 
the integrals are -· 

fl . f l ( (1 - U )2 ) 2 6 
lo Bl+1 ,o(u)Bl+1,o(u)du = lo 2 du= 120 

fl fl (1 - u)2 ( 1) 13 
lo Bl+1,1(u)Bl+ 1,0 (u)du = lo 

2 
u(l - u) + 

2 
du= 

120 

fl f l (1 - U )2 U2 1 
lo Bl+1 ,2(u)Bl+1,o(u)du = l o 

2 2 du = 
120 

The sit uation is again the same for Bl+l ,Nt+i +1 ( x) . 

Given our scaling u, we have to n1ultiply all the above integrals by h. 

the 111atrix X is an (Nz+1 + 2) x (Nl+l + 2) matrix of the fonn 

6 13 1 

13 60 26 1 

1 26 66 26 1 
h 

1 26 66 26 1 -
120 

1 26 60 13 

1 13 6 

5.3.2 The matrix Y 

(5 .27) 

(5 .28) 

(5.29) 

Thus 

Figure 5.3 shows that basis ele111ents B z+l ,r, except t he first two and the last 

two on the grid , overlap with 8 elements from Sl . The matrix Y is therefore 

-banded. To calculate the integrated products in t his 111atrix , the difference 
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in the width of the knot intervals must be accounted for. Given that the knot 

intervals in Sl are half the width of those in Sl+l, the basis ele111ent from Sl+l 

must be represented as shown in Figure 5.4. The total range of integration is 

now twice that considered in section 5.3.1, because we take the fine grid knot 

intervals to be 1. 1 ovv the elements of Y away from the endpoints are 

A way fron1 the edges 

I ear the edges 

0 

At the edges 

0 

Figure 5.3: 0 erlap of coar e grid basis elements with surrounding fine grid 
basis elements . 
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'U 'U 1 
- (l--) +-
2 2 2 

(u. +1) 2 

8 

11, 2 

8 

3 11,2 

4 4 

(2 - 'U )2 

8 

(1 - 'U )2 
8 

Figure 5.4: Polynomial pieces of a quadratic B-spline, divided up into fine grid 
knot intervals, wit h u ranging from 0 to 1 on each knot interval. 

11 111 (1 - u)2 u2 1 
Bt 2k-?(1l) B t-L1 k(u)du = - --- -du = -

0 l ~ I l 4 0 2 2 480 

11 

B1 ,2k-1 (u) B1+1 ,k(u)du = 11 

( u( l - u) + ~) ~
2 

du+ 

(
1

(1- u) 2 (u+ 1)2 du = 29 
_ } 0 2 8 480 
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1
1 11 

u2 u2 11 
( 1) ( u + l )2 Bz ,2k(u) Bz+1,k(u)du = --du+ u( l - u) + - ---du 

0 0 28 0 2 8 

+ f 1 
(1 - u) 2 (u (l _ u) + !) du= 147 

lo 2 2 2 2 480 

1
1 11

u
2

(u +1)
2 11

( l)(u u 1) Bz ,2k+1(u)Bz+1,k(u)du = ----du+ u(l - u) -+ - - (1 - -) + - du 
0 0 2 8 0 2 2 2 2 

f1 
(1-u)

2 
(3 _ u

2
) du= 303 

+ lo 2 4 4 480 

f 1 f 1 303 
lo Bz ,2k+2(u) Bz+1 ,k(u)du = lo Bz ,2k+1(u)Bz+1 ,k (u)du = 480 

fl fl 147 
lo Bz,2k+3(u)Bz+1,k (u)du = lo Bz,2k(u)Bz+1,k(u)du = 

480 

f 1 f 1 29 
lo Bz ,2k+4 (u)Bz+1 ,k(u)du = lo Bz ,2k-1(u)Bz+1,k(u)du = 480 

11 

B1 ,2k+5(u) B1+1 ,k(u)du = 11 

B1,2k-2(u) B1+1,k(u)du = 4~
0 

For Bz+1,1 (x) the integrals are 

f 1 f 1 
( 1 - u) 

2 
( u u 1) 48 lo Bz ,o(u)Bz+1,1(u)du = l o 2 2 (1- 2)+ 2 du= 480 

(5.32) 

(5 .33) 

(5 .34) 

(5 .35) 

(5.36) 

11 

B1,1(u) Bi+1,1(u)du [ ( u(l - u) + ~) (~ (1 - ~)+~)du 

+ f 1 
(1-u)

2 
(3 _ u

2
) = 272 

l o 2 4 4 du 480 

fl fl 303 
l o Bz ,2(u) Bz+1,1(u)du = l o Bz ,2k+1(u) Bz+1 ,k(u)du = 480 

fl fl 147 
lo Bz ,3(u) Bz+1 ,1(u)du = l o Bz,2k(u)Bz+1,k(u)du = 480 
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f 1 f 1 29 
lo Bz ,4(u) Bz+1,1(u)du = l o Bz ,2k-1(u) Bz+1 ,k(u)du = 480 

11 

B1,5(u) Bl+1,1(u)du = fo 1 

B1 ,2k-2(u)B1+1 ,k(u)du = 
4

~
0 

For Bz+1,0 (x) they are 

f 1 f 1 (1 - U )2 (2 - U )2 31 
lo Bz ,o(u) Bz+1 ,o(u)du = l o 2 8 du= 480 

fl f l ( 1) (2 - u)2 
lo Bz ,1(u)Bz+1 ,o(u)du = l o u(l - u) + 

2 8 
du 

f 1 (1 - U )
2 (1 - U )

2 
_ 99 

+ l o 2 8 du - 480 

11u2(2-u)2 
----du+ 

0 2 8 

1
1 

( 1) (1 -u) 2 29 u(l-u)+- ---du= -
o 2 8 480 

f 1 f 1 u2 (u u 1) 1 
lo B1 ,3 (u) B1+1 ,o( u)du = lo 2 2 

(1 -
2

) + 
2 

du= 
480 

(5 .40) 

(5.41) 

(5.42) 

(5.43) 

(5 .44) 

(5 .45) 

Due to doubling of the total range of integration, we have to divide all these 

integrals by 2 to stay consistent with our transformation u = Wr . The matrix 

Y is therefore 

31 99 29 
48 272 303 

1 29 147 
h 

-

960 
1 29 

1 

147 29 1 

303 303 147 29 1 
147 303 303 147 29 1 

1 29 147 303 272 48 

1 29 99 31 

In fact , both 111atrices X and Y can be derived by the representation in equa-
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tion (5 .3). The matrix Xl , containing the inner products of the elements Bl ,r , 

can be transfonned into the 111atrix Xl+l using the relation in equation (5.3) to 
turn fine grid quadratic B-spline elements into coarse grid elements. Consider 
the product P! XlP2 , given by 

6 13 1 3 1 

3 1 13 60 26 1 1 3 

1 3 3 1 1 26 66 26 1 3 1 

1 26 66 26 1 1 3 

1 3 3 1 

1 3 1 26 60 13 3 1 

1 13 6 1 3 

. 
The 111atrices P! and P 2 contain the coefficients Pi , and therefore convert the 

products Bl ,rBl ,k to coarse grid inner products Bl+l ,qBl+l ,k· I'v1ultiplying the 
first t,;vo 111atrices of the above product gives P! Xl, which contains the inner 

products Bl+i ,qBl ,k· This produces the 111atrix Y , in a 111uch 111ore efficient way 
than that presented at the start of this section. Multiplying all three 111atrices 

gives the matrix Xl+l · 

5.3.3 T he restricted solution 

It ,;vould be expected that a function fl that is in the space Sl and is also 
in the subset Sl+l C Sl would be the sa111e before and after restriction fro111 
level l to level l + l. This 111eans that a function that is prolongated and then 
restricted should not change. If the function is not in Sl+l C Sl then fl will 
contain co111ponents that cannot be represented on the coarser grid. These 
co111ponents can be obtained by calculating the orthogonal distance between 
the solution estimate on grid l and its least squares fit to grid l + l , denoted 
by gl. This is given by 

N1 +l 

gl = L ( iBl ,i(x) (5.46) 
i =O 

where ( = ( (0 , . . . ( N1+1 ) T are the B-spline coefficients , given by 

(5.47) 
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recalling that bis given by equation (5.14) . The £ 2 nonn of 9l is given by 

(5.48) 

This nonn is a useful 1neasure of the effect the information lost when a func­

tion transferred fro1n a fine grid to a coarser grid. The results in Part II 

will show this to be an effective criterion for deciding the grid resolution for 

representation of the final solution . 
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Chapter 6 

Discretisation of the bivariate 

thin plate smoothing spline 

equations 

The techniques for discretising univariate smoothing spline syste1ns using the 

B-spline framework can be generalised to the bivariate case. As discussed in 

Chapter 2, the exact solution to the bivariate 1ninimisation proble1n 

Mini1nise (6.1) 

is given by a thin plate s1noothing spline. The bivariate thin plate smoothing 

spline solution was approximated using tensor product quadratic B-splines 

composed of the quadratic B-splines used in the univariate problem. Tensor 

product quadratic B-splines are confonning finite elements, in that they are in 

the space X in which the bivariate thin plate spline problem is solved [13]. 

Tensor product splines are commonly used to approximate bivariate functions, 

and fit s1nooth surfaces to data observations [42, 3, 33, 94 , 81, 21, 44]. De 

Boor [27] states that tensor product methods should be used where applicable 

because they are extremely efficient compared to other surface approxi1nation 

techniques. They are, however , generally only suited to rectangular do1nains, 

which is the case considered in this study. 
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6.1 Tensor product splines 

The theory of univariate B-splines can be generalised to bivariate splines using 

tensor products. The tensor product w(x, y) of two functions u(x) and v(y) is 

given by 

w(x, y) = u(x)v(y) x,y E R (6 .2) 

[27]. To construct a bivariate B-spline , or tensor product spline, the tensor 

product of unidi1nensional quadratic B-splines can be used as the basis element. 

Thus a tensor product spline is given by 

N+l M+l 

f(x , y) =LL ar1Br(x)B1(Y) (6 .3) 
I=0 J=0 

f (x, y) is defined on a finite region [a, b] x [c, d], shown in Figure 6.1 . There 

are two independent, strictly increasing knot sequences: 

I= 0, . . . ,N +4, where rr2 = a and rrN+2 = b (6.4) 

J = 0, ... ,M +4, where µ2 = c and µN+2 = d (6.5) 

Thinking in univariate terms, 1 is the knot sequence for the quadratic B-spline 

ele1nents Br ( x) and µ is the knot sequence for the quadratic B-spline ele1nents 

B 1 (y). The coefficient ar 1 corresponds to the basis element centered in the 
1niddle of grid cell I J. 

A visual depiction of the bivariate basis element, Br (x) B1(y) is given in Fig­

ure 6.2. Clearly, Br(x)B1(y) = 0 if x tf. [rrr, rrr+3J or y tf. [µ1, µ 1+3 ]. The basis 
is still nonnalised , so that, 

N+l J\1+1 N+l M"+l 

L L Br (x) B1 (Y) = L Br(x) L B1(Y) = 1 (6 .6) 
I=0 J=0 I=0 J=0 

The properties of quadratic tensor product splines are analogous to those of 

the univariate quadratic B- plines splines previously discussed. They are con­

tinuou and have continuous first partial derivatives 8s(x,y)/Bx 8s(x , y)/By. 
The din1en ion of the tensor product space is obtained by multiplying the di-

1nen ion of the t\YO univariate spaces_ in the tensor product [27] . In the case 

of quadratic ten or product pline this is ( -+ 2) x ( M + 2). -ote that as in 
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("(M+2' µ N+3): 

=(b,d) 

("(M+3' µN+2) ~"(M+4' ~+2) 

=(b,c) 

{"(M+4' µ 'l) 
' -

(y 'µ ) (y ' µ ) ... . 2 .... 0 ..... ... . .. .. . ......... . . .. . ... . .. . .. ..... .. . . .. ... .. . .. M+2 ... . . 0. 

Figure 6.1: Two dimensional grid for the bivariate smoothing spline. 

the univariate case, the tensor product spline is not defined on the 2 x 4N M 
'exterior' knot intervals shown in Figure 6.1. The region of definition covers 
the N x M spans within the shaded region. 

6.2 Roughness penalty calculation 

The discretisation process in 2 dimensions once again involves substituting the 
discretised approxin1ation to the thin plate smoothing spline into the minimisa­
tion expression (2.11) . A n1ore involved process must be followed to calculate 
the discretised bivariate roughness penalty. As in the unidin1ensional case, 

the expression for f (x, y) in equation (6 .3), is substituted into the roughness 
penalty expression 

(6.7) 
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0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
4 

3.5 

0 O 

Figure 6.2: Bivariate quadratic B-spline basis elen1ent. 

Once again, given that our discretised approxi1nation is defined -only on a set 

region , we no longer integrate over t he whole 2 di1nensional plane. Roughness is 

1ninimised only on the defined region. Denot ing t he basis ele1nent B 1 ( x) B 1 (y) 

as B 11 , the substitution process gives firstly 

L °'IJ lb i d fxx BIJxxdxdy + 2 L °'IJ lb i d fxy BIJxydxdy 
IJ a c I J a c 

+ L °'IJ lb i d fyy BIJyy dxdy 
I J a c 
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and then 

LL 0:JJO'.kl ( lb id BuxxBklxxdxdy + 2 Jb id BuxyB klxydxdy 
J J kl a c a c 

+ lb id BuyyBklyydxdy) 

(6.8) 

a,T [lb i d BuxxBklxxdxdy] a+ 2a.T [lb id BuxyBklxydxdy] a 

+ a,T [lb i d BuyyBktyydxdy] a 

(6.9) 

(6 .10) 

where Z1 , Z2 , Z3 and Z are matrices of dimension (M + 2)(N + 2) x (M + 
2)(N + 2). We now calculate these n1atrices. 

Firstly, consider O'.T Z1a, the first term of (6.9). The elements of a row of Z1 

are f~oo f~oo B11xxBklxx dxdy, for k = 0, ... 'N + l and l = 0, ... 'M + l. We 
need to consider all non-zero overlaps with the ele111ent B11 . Figure 6.3 shows 

the centre position of all basis ele111ents that overlap with B 11 . 

ow we write J: f ed B11xx Bklxx dxdy as 

[ i d Bj (x)Bi(x)BJ(y)Bz(y)dxdy = ([ Bj (x) Bi (x)dx ) ([ BJ(y)B1(y)dy) 

(6.11) 

so we can work with the unidimensional components. Figure 6.3 corresponds 

to the 5 x 5 matrix 

fed BJB1+2dy 

fed B1B1+1dy 

fed B1B1dy 

fed B1B1-1dy 

f/ B1B1-2dy 

(J b B" B" dx f b B" B" dx f b B" B" dx f b B" B" dx f b B" B" dx ) a I k-2 a I k-1 a I k a I k+l a I k+2 

(6.12) 

We now follow a si111ilar procedure to that described in Chapter 5, whereby 
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Figure 6. 3: Cent re positions of basis elen1ents that overlap with B 1 J · 

the non-zero overlap between the unidimensional basis element B 1 ( x) or B 1 (y) 

and other basis elements Bk ( x) or Bz (y) is calculated by integrating from O to 

1 across each knot interval within the overlapping region. We again use t he 

transformation u = Wr for knot intervals in the x direction, and v = Wr for knot . 

intervals in they direction. Values of f
0

1 B1(u) Bk(u) dx or f
0

1 B1 (v) Bk(v) dy can 

be obtained fron1 Chapter 5, but now we need corresponding values for t he .first 

and second derivatives of the basis ele111ents as well. The derivatives of t he 

quadratic B-spline are shown in Figure 6. 4, once again using t he. polyno111ial 

expressions for each knot interval given in equation (3.18) . Calculation of the 

integrated products f0

1 
BJ ( u )Bi ( u )du away fro111 t he endpoints gives 

[ Bi_ 2 (u)Bi(u)du = 1 x 1 = 1 

11 

Bi_1 (u) Bi (u) du = -2 x 1 + 1 x -2 = -4 

[ Bi (u)Bi(u) du = 1 x 1 + -2 x -2 + 1 x 1 = 6 
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11 

Bi+1 (u)Bi(u)du = 11 

Bk-l(u)Bk(u)du = -4 (6.16) 

11 

Bi+2(u)Bi(u)du = 11 

Bk-2 (u) Bk(u)du = 1 (6.17) 

Non-zero values of (!0

1 
BJ( v )B1 ( v) dv) (!0

1 
B'j ( u) Bi ( u )du) for all J , J, k and l 

away from the endpoints are therefore given by 

1 (1 - 4 6 -4 1) 

26 
1 

(6 .18) 
120 

66 

26 

1 

where the numbers in the first vector were obtained in Chapte~ 5. 

Multiplying this product gives 

1 -4 6 - 4 1 

26 -104 156 -104 26 
1 

(6 .19) 120 
66 -264 396 - 264 66 

26 -104 156 -104 26 

1 - 4 6 -4 1 

The second term of expression ( 6. 9) , corresponding to the 1natrix Z2 , is 

o? [[ 1d BrJxy Bktxy] a= aT ([ B~(x) B~(x)dx) (1d B~(y)B{(y)dy) a 

(6.20) 
Using the polynomial expressions in Figure 6. 4, the products f

0

1 
B~ ( u) B~ ( u) du 

away from edges and corners are 

11 11 1 B~_2 (u) B~ (u)du = u(u - l )du = --
o O 6 

[1 B~_ 1(u) B~ (u)du = [1 u(l - 2u) + (u - 1)(1 - 2u)du = _! Jo Jo 3 

11 

B~ (u) B~ (u)du = 11 

u2 + (1 - 2u)2 + (u - 1)2du = 1 
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2 

u 

l 

B-spline 

1 
u(l-u)+-

2 

First derivative 

1 - 2u 

Second derivative 

- 2 

(1 - 'LL)
2 

2 

u - 1 

1 

Figure 6.4: Polyno111ial pieces for a quadratic B-spline and its first and second 
derivatives , ·with u ranging fro111 0 to _l over each knot interval. 
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[1 B~+l (u)B~(u)du = [1 B~_ 1 (u)B~( u)du = _! (6.24) lo lo 3 

/1 B~du)B~(u)du = [1 B~_2 (u)B~(u)du = _! (6.25) lo lo 6 

The values of (10
1 B~(v)Bf (v)dv) (10

1 EHu)B~(u)du) are therefore 

1 (1 -2 6 -2 1) 1 2 -6 2 1 
-2 2 4 -12 4 2 

1 1 
- 6 - -6 -12 36 -12 -6 36 36 

-2 2 4 -12 4 2 
1 1 2 -6 2 1 

(6.26) 

For the final term of expression (6.9), corresponding to the matrix Z3 , the 
calculation is sin1ilar to that for the first term. The values of 
(10

1 B;(v)Bf'(v)dv) (10
1 B1 (u)Bk(u)du) are given by the transpose of (6.19), 

le. 
1 (1 26 66 26 1) 

-4 
1 

120 
6 (6.27) 

-4 

1 

which gives 

1 26 66 26 1 

-4 -104 -264 -104 -4 
1 

- 6 156 396 156 6 120 
(6.28) 

-4 -104 -264 -104 -4 

1 26 66 26 1 

The total of the values for all three tenns is 

26 106 96 106 26 

106 -544 -564 -544 106 
1 

(6.29) - 96 -564 3096 -564 96 
360 

106 -544 -564 -544 106 

26 106 96 106 26 
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The above calculations apply to basis elements that are away frorn t he edges 

of the region in Figure 6.1 , and are not influenced by edge effects . Separate 

calculations are required at the endpoints and near the endpoints , as for t he 

unidi1nensional case discussed in Chapter 1. For the bivariate case, this cor­

responds to a number of different possible positions , as shov.rn in Figure 6.5. 

The following procedures demonstrate that there is high sy1n1netry in the left , 

right , top and bottom positions. It turns out the 1natrices for the right , top 

and bottom posit ions are simple rearrange1nents of the numbers for the left 

botto1n positions B-F , shown in Figure 6.6. 

B . At the corners 

At the endpoints , the first and last basis elements overlap with 3 other basis 

elements, as discussed in Chapter 5. At the corners both sequences B 1 ( x) and 

B1 (Y) are at t he end points. For the first term of expression (6.9), the values 

of J0
1 B1 (v) Bz(v)dv at the end points were calculated in Chapter 5. The values 

X X X X X X X X X 

X X X X X X X : X X 

X X : X X 
·········· ......... ······· · · ......... ········· ......... ·········>········· ··· · ····· 

X X : X X 
.................... .. ...... ... ....... ...... . . ...... ... .... ... . : .......... ···· · ···· 

X X : X X 
········ · ......... · ········ . ... ..... . . ... . .. . · ········ ·········>········· ........ . 

X X : X X 

X X X X X X X : X X 

X X X X X X X X X 

Figure 6.5: Centre points of basis elements in positions at or near the edges . 
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Figure 6.6: Edge and near edge positions for the lower left corner. 

of f0

1 BJ(u)Bt(u)du at the endpoints are given by 

[ Bi(u)Bi(u)du = 1 x 1 = 1 (6 .30) 

fo 1 

B~(u)Bi(u)du = 1 x -2 = -2 (6 .31 ) 

1 . 1 B;(u)Bi(u)du = 1 x 1 = 1 (6 .32) 

Values of (Jo1 BI(v)Bz(v)dv) (!0
1 

BJ(u)Bi(u)du) at the left bottom corner are 
given by 

0 (0 0 1 -2 1) 0 0 0 0 0 

0 0 0 0 0 0 
1 1 

(6 .33) 120 
6 

120 
0 0 6 -12 6 

13 0 0 13 -26 13 

1 0 0 1 -2 1 
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where the zeros correspond to quadratic B-spline ele1nents whose support lies 

outside the defined region. 

For the lower right corner , the only change is a shift in the position of the 

zeros . 

0 (1 -2 1 0 0) 0 0 0 0 0 

0 0 0 0 0 0 
1 1 

(6 .34) 
120 

6 
120 

6 -12 6 0 0 

13 13 -26 13 0 0 

1 1 -2 1 0 0 

Similarly, values for the upper left corner are 

0 0 6 -12 6 

0 0 13 -26 13 
1 

120 
0 0 1 -2 1 (6 .35) 

0 0 0 0 0 

0 0 0 0 0 

and the upper right corner values are 

6 -12 6 0 0 

13 -26 13 0 0 
1 

120 
1 -2 1 0 0 (6.36) 

0 0 0 0 0 

0 0 0 0 0 

-

For the second term of expression ( 6. 9), calculations of f
0

1 B~ ( u) B~ ( u) du at 

the endpoints are required. These are as follows. 

1
1 11 1 Bb (u) Bb (u) du = (u - l )2 du = -

0 0 3 
(6.37) 

11 11 1 B~(u) Bb(u)du = (u - 1)(1 - 2u)du = --
o O 6 

(6 .38) 

11 -11 1 B;(u) Bb (u)du = u(l - u)du = --
o O 6 

(6.39) 
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The values of (f 01 Bf( v) B' ( v) dv) (f 01 EH u) B~ ( u) du) in the lower left corner 
are there£ ore 

0 (0 0 2 -1 -1) 

0 
1 

- 2 
36 

(6.40) 

-1 

-1 

which gives 

0 0 0 0 0 

0 0 0 0 0 
1 

- 0 0 4 -2 -2 
36 

(6.41) 

0 0 -2 1 1 

0 0 -2 1 1 

Values for the other corners are given by shifting the zeros in the same manner 
as in (6 .34), (6.35) and (6.36). The final term, 

(!0
1 BJ(v)B;'(v)dv) (!0

1 B1(u)Bk(u)du) is again just the transpose of the ma-

trices for (!0
1 BJ( v )B1 ( v )dv) (!0

1 B'j ( u )Bi ( u )du). 

The total of the values for all three terms for the left bottom corner is 

0 0 0 0 0 

0 0 0 0 0 
1 

(6.42) - 0 0 116 -37 -19 
360 

0 0 -37 -136 53 

0 0 -19 53 26 

The total values for the other corners are the same but , as the above procedure 
shows, the position of the zeros differs for each template. 

C. Edges) away from corners 

At the edges, away from corners, one quadratic B-spline sequence is at an end 
point and the other is unchanged by edge effects. Using the numbers calcu­

lated above, the values of (!0
1 BJ(v)B1(v)dv) (!0

1 B'j(u)Bi(u)du) at the left 

95 



6.2. ROUGHNESS PENALTY CALCULATION 

edge are 
1 (0 0 1 -2 1) 

26 
1 

- 66 
120 

(6. 43) 

26 

1 

which gives 

0 0 1 -2 1 

0 0 26 -52 26 
1 

- 0 0 66 -132 66 
120 

(6.44) 

0 0 26 -52 26 

0 0 1 -2 1 

Using t he san1e process involved in changing corners , the right edge is given 

by 

1 - 2 1 0 0 

26 - 52 26 0 0 
1 

(6. 45) - 66 -132 66 0 0 
120 

26 -52 26 0 0 

1 -2 1 0 0 

The top edge is clearly the t ranspose of t he matrix for t he right edge, and t he 

bottom edge is the transpose of the 1natrix for the left edge . For 

(10
1 

B;(v) B' (v)dv ) (10
1 EHu) B~(u)du) , the left edge is 

1 (0 0 2 -1 -1 ) 

- ? ,_, 

1 
- 6 
36 

(6 .46) 

-2 

1 

\\·hich crive 
0 

0 0 2 - 1 - 1 

0 0 - 4 2 2 
1 

- 0 0 12 - 6 - 6 
36 

( 6.4 7) 

0 0 - 4 2 2 

0 0 2 - 1 - 1 
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The right , top and bottom edges are obtained in the same fashion as for the 

first term. The matrix for (10
1 BJ(v)B1(v)dv) (10

1 B'j(u)Bi(u)du) is no longer 
the transpose of the 1natrix for the first term, because the quadratic B-spline 

series in the x direction is in a different position to the series in the y direction. 

The matrix at the left edge is 

1 (0 0 6 13 1) 

-4 
1 

120 
6 (6.48) 

-4 

1 

which gives 

0 0 6 13 1 

0 0 -24 52 - 4 
1 

120 
0 0 36 78 6 (6 .49) 

0 0 -24 -52 -4 

0 0 6 13 1 

and the other edges are once again calculated as above. 

Values for the total, again in the left botto1n position, are 

0 0 26 53 -19 

0 0 106 -272 -74 
1 

(6 .50) - 0 0 96 -282 546 
360 

0 0 106 -272 -74 

0 0 26 53 -19 

D. Near edges) away from corners 

Near the endpoints, the second and second last basis elements overlap with 

4 other basis ele1nents, as discussed in Chapter 5. Values of f
0
1 B1 (v) Bk(v)dv 

near the end points were calculated in Chapter 5. For f
0

1 BJ ( u) Bi ( u) du the 

corresponding calculations are 

11 

Bi(u)B~(u)du = 1 x -2 = -2 
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11 

B{(u) B{(u)du = - 2 x - 2 + 1 x 1 = 5 

11 

B;(u)B{(u)du = l x -2 + - 2 x 1 = - 4 

11 

B~(u)B{(u)du = l x 1 = 1 

(6.52) 

(6 .53) 

(6 .54) 

Away from the corners, only one quadratic B-spline sequence is influenced by 

edge effects. The matrix for (10
1 

BJ(v) Bz(v)dv) (10
1 BJ (u)Bi (u)du) near the 

lef edge is thus given by 

1 (o-- - 2 5 - 4 1) 0 -2 5 - 4 1 

26 0 52 130 -104 26 
1 1 

- 66 0 -132 330 -264 66 
120 120 

26 0 - 52 130 -104 26 

1 0 -2 5 - 4 1 
(6.55) 

The near right edge matrix was calculated to be 

- 2 5 - 4 1 0 

52 130 -104 26 0 
1 

(6.56) 
120 

- 132 330 - 264 66 0 

- 52 130 - 104 26 0 

-2 5 - 4 1 0 

The matrix for near the bo om edge is clearly the transpose of the matrix 

corre ponding to the near left edge position. Similarly, the near top edge 

matri,~ i the tran pose of t he matrix for the near right edge p6sition. 

To calculate the matrice for econd term of expre ion (6.9), value of 

f0
1 

B~ ( u) B~ ( u )du mu t once again be calculated . The calculation for 

f0

1 
B~(u) B~(u)du near the endpoint are 

f l f l 1 
Jo Bb(u) B; (u)du = Jo (1 - 2u)(u - l )du = -

6 

[1 B; ( u) B; (u)du = f \ 1 - 2u) 2 + (u - l )2du = 
2 

Jo J0 3 

9 

(6.57) 

(6.5 ) 
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11 11 1 B~(u) B~(u)du = u( l - 2u) + (1- 2u)(u - l )du = --
o O 3 

(6 .59) 

11 11 1 B~(u)B~(u)du = u(u - 1) = - -
o O 6 

(6.60) 

T he matrix fo r (!0
1 
Bf (v) B' (v)dv) (!0

1 EHu) B~(u)du) near t he left edge is 

1 (0 -1 4 -2 1) 0 -1 4 - 2 1 

- 2 0 2 - 8 4 2 
1 1 

(6 .61) - 6 - 0 -6 24 -12 -6 
36 36 

- 2 0 2 - 8 4 2 

1 0 -1 4 - 2 -1 

The matrices for positions near t he right , top and bottom edges are t hen 

derived in t he same manner as for t he fi rst term. The matrices ,for 

(!0

1 BJ(v)B;' (v)dv) (!0

1 Br (u) Bk(u)du) near t he left edge are given by 

1 (0 13 60 26 1) 0 13 60 26 1 

- 4 0 - 52 - 240 -104 - 4 
1 1 

- 6 - 0 78 360 156 6 120 120 
- 4 0 - 52 -240 - 104 - 4 

1 0 13 60 26 1 
(6.62) 

and the other positions are again calculated by shift ing the posit ion of the 

zeroes as above. 

The total of the values for all three terms near the left edge is 

0 53 115 106 26 

0 - 272 - 490 - 544 106 
1 

(6.63) - 0 - 282 2550 - 564 96 
360 

0 - 272 - 490 -544 106 

0 53 115 106 26 

E . At one edge and n ear one edge 

Using t he numbers obtained above, the matrix for 
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(10
1 BJ(v)B1(v )dv) (10

1 BJ(u)Bi(u)du) at the left bottom position is 

0 (0 13 60 26 1) 0 0 0 0 · o 
0 0 0 0 0 0 

1 1 

120 
1 

120 
0 13 60 26 1 

-2 0 -26 -120 -52 -2 

1 0 13 60 26 1 

(6.64) 

The 1natrix for the right botton1 position is once again given by shifting the 

colu1nns of zeros , as follows. 

0 (13 60 26 1 0) 0 0 0 0 0 

0 0 0 0 0 0 
1 1 

1 - 13 60 26 1 0 120 120 
-2 -26 -120 -52 -2 0 

1 13 60 26 1 0 
(6.65) 

For t he left t op position, we have 

0 (13 60 26 1 0) 0 13 60 26 1 

0 0 -26 -120 -52 -2 
1 1 

120 
1 0 13 60 26 1 

120 
-2 0 0 0 0 0 

1 0 0 0 0 0 
(6.66) 

and for the right top position, 

1 (13 60 26 1 0) 13 60 26 1 0 
-2 -26 -120 -52 -2 0 1 1 

120 
1 13 60 26 1 0 

120 
0 0 0 0 0 0 
0 0 0 0 0 0 

(6.67) 

Moving on to the second tenn, t he values of 
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(!0
1 B! (v)B'(v)dv) (!0

1 B~(u)B~(u)du) in the left bottom position are 

1 

36 

0 

0 

2 

-1 

-1 

(0 -1 4 -2 1) 

1 

36 

0 0 0 0 0 

0 0 0 0 0 

0 -2 8 -4 2 

0 

0 

1 -4 2 -1 

1 -4 2 -1 

(6.68) 

Values for the second term at the right, top and bottom positions are obtained 
in the same way as for the first term. 

Values for (!0
1 BJ(v)B;'(v)dv) (!0

1 Br(u)Bk(u)du) at the left bottom edge are 

0 (0 -2 5 -4 1) 0 0 0 0 0 

0 0 0 0 0 0 
1 

(6.69) 120 
6 0 -12 30 -24 6 

13 0 -26 65 -52 13 

1 0 -2 5 -4 1 

and the other positions are also obtained in the same way as for the other two 
terms. For the left bottom position, the total is 

0 0 0 0 0 

0 0 0 0 0 
1 

(6.70) - 0 -37 430 -74 -19 
360 

0 -136 -245 -272 53 

0 53 115 106 26 

F. Near the corners 

Calculations near the corners are si1nilar to those at the corners , but we use 
the near endpoint values , rather than the values at the endpoints. So for 

(!0
1 
BJ(v)B1(v)dv) (!0

1 
B](u)Bi(u)du ), in the near left bottom corner posi-

101 



6.2. ROUGHNESS PENALTY CALCULATION 

tion ,we have 

0 (0 -2 5 -4 1) 0 0 0 0 0 

13 0 -26 65 -52 13 
1 1 

- 60 0 -120 300 -240 60 
120 120 

26 0 -52 130 -104 26 

1 0 - 2 5 -4 1 
(6 .71 ) 

Near the right bottom corner, we have 

0 (~2 5 -4 1 0) 0 0 0 0 0 

13 -26 65 -52 13 0 
1 1 

60 - - -120 300 -240 60 0 -
120 120 

26 -52 130 -104 26 0 

1 -2 5 -4 1 0 
(6 . 72) 

For the right top corner, the 1natrix is 

-26 65 -52 13 0 

-120 300 -240 60 0 
1 

(6 . 73) 
120 

-52 130 -104 26 0 

-2 5 -4 1 0 

0 0 0 0 0 

and for the left top corner the matrix is 

0 -26 65 -52 13 

0 -120 300 -240 60 
1 

120 
0 -52 130 -104 26 (6 .74) 

0 -2 5 -4 1 

0 0 0 0 0 
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The matrix for (J0
1 Bf (v) B1(v)dv) (10

1 EHu)B~(u)du) is 

0 (0 -1 4 -2 1) 0 0 0 0 0 
-1 0 1 -4 2 -1 

1 1 
(6.75) - 4 - 0 -4 16 -8 4 36 36 

-2 0 2 -8 4 -2 

1 0 -1 4 -2 1 

The other positions are again calculated in the same way as they were for the 

first term. 

Values for the third term, (10
1 B](v)B{1(v)dv) (10

1 B1 (u)Bk(u)du ) , are given 
by the transpose of the 111atrices for the first term, because both the B 1 ( x) and 

B 1 (y) series are in the same position. 

The total of the values for all three terms is 

0 0 0 0 0 

0 53 115 106 26 
1 

( 6. 76) - 0 -272 490 -544 106 
360 

0 -245 2120 -490 115 

0 -136 -245 -272 53 

6.3 The total roughness penalty 

As explained in section 6.2, the above te111plates give the rows of the roughness 

penalty 111atrix Z. The ele111ents in 111atrix (6.12) appear in row I , J in the 

order 

B11Bk-2 ,l-2, B11Bk-l ,l-2 , • • • , B11Bk-2 ,l-1, · · · · · ·, B11Bk-2,l+2, · · ·, B11Bk+2 ,l+2 

(6.77) 

Using the templates for the total derivative calculations, given at the bottom 

of each of the above sections, the full roughness penalty matrix Z is of the form 

shown in Figure 6.7. We have to divide the 111atrix by h2 due to our scalings 

u = Wr / h and v = Wr / h. The plot in Figure 6. 7 shows that the matrix Z 

is 'block-banded', in that it has 5 bands surrounding the main diagonal, with 

each band consisting of blocks of 5 banded matrices. Each block is symmetric, 

as is the total 111atrix Z. Its repetitive nature stems from the fact that it is the 
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su1n of three tensor product 1natrices. The di1nensions of Z are (M + 2) (N + 

2)x(M+2)(N+2). 
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Figure 6.7: Position of non-zero entries 1n the roughness penalty matrix Z. 

"\Ve nuw have the discretised 1nini1nisation proble1n 

Iviinimise 1 2 A T - II Pa - zll + - a Z a 
n h2 

(6.78) 

,,-here the matrix P stores the value of the basis element B 1 (x) B 1 (y) at t he 

data point locations (xi, Yi), so that 

(6. 79) 
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where ind= (N + 2)J + I. Differentiating and equating to zero gives 

(6.80) 

This syste111 is of the same form as equations (3.5) and (3.29). There are a 
couple of points to note about this discretised system. Firstly, these equations 
minimise roughness only over the defined region, where as analytic bivariate 
splines consider the infinite plane. Localising the region of integration was 
not an issue for the univariate case because the second derivative reduced 
to zero outside the interval covering the data points. For bivariate thin plate 
splines the second derivative does not reduce to zero, so there is a fundamental 
difference between the analytic solution and the discretised solution for the 
bivariate case. 

Secondly, note that, for a finite difference discretisation of the 'bivariate thin 
plate s1noothing spline equations, the roughness penalty matrix is the same as 
that produced fro111 a finite difference discretisation of the bivariate biharmonic 
equation [18]. The bivariate biharmonic equation is given by 

(x, y) E 0 

(x, y) E 80 

(6.81) 

where z( x, y) is so1ne function of x and y, 0 is a closed convex domain in 
two di1nensions and 80 is its boundary. The functions g1 and g2 are bound­
ary conditions , where n is the unit normal to the boundary 80. For regions 
containing no data points, the bivariate thin plate smoothing spline system 
reduces to (6.81). We can therefore use current knowledge on the nu1neri­
cal solution of the biharmonic equation to interpret the results of algorith1ns 

developed in this study. 

The bihannonic equation is known to be poorly conditioned , and therefore 
slow to solve iteratively, on fine resolutions. Many numerical techniques ex­
hibited convergence when applied to the biharmonic equation, even when the 
syste111 is converted to a syste111 of second order equations [2]. The experi-
1nents conducted by Brandt [16] found relatively poor convergence rates for 
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the bihannonic equation using multigrid algorithms . Braess [12] related the 

poor convergence to the high condition number of fourth order proble1ns. 
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Chapter 7 

Prolongation and restriction of 

bivariate quadratic B-splines 

Prolongation and restriction processes for the bivariate case involves the uni­
dimensional processes discussed in Chapter 5. These processes act on both 
quadratic B-spline series in the x direction and the quadratic B-spline series 
in the y direction. Any prolongaton or restriction that occurs in one direction 
will not affect the bivariate basis element in the other direction. This means 
that the result of prolongation is independent of the order in which the two 
univariate prolongation operations are performed. 

7 .1 Prolongation 

The process of prolongating the bivariate solution estimate to a finer grid is 
shown in Figure 7.1. The rows are prolongated first , giving an intermediate 
set of coefficients corresponding to the refinement of the resolution in the x 

direction. The procedure is con1pleted by refining the columns. 

Pease [95] den1onstrates a general n1ethod which can be used to look at the two 
univariate operations simultaneously. We can apply the process in Pease [95] 
by considering a bivariate quadratic spline that is zero on the entire grid except 
for one basis element that has a coefficient of 1. 
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X X X X X 

X X X X X 

X X X X X Coarse grid 

X X X X X 

-- X X X X X 

t 
xx xxxxxxx 

xx xxxxxxx 

X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

t 
X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X Fine grid 
X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

Figure 7.1: The process of prolongating biquadratic B-splines, where the x 

syn1bol corresponds to the centre point of a biquadratic B-spline basis ele1nent. 
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This spline is 

where 

Ml+I +l Nl+I +l 

s(x,y) = L L b11Bl+1,1(x)Bl+1,1(Y) 
I=O J=O 

0 

1 

I # K , J # S 

I= K , J = S 

so the spline s ( x, y) is 

s(x, y) = BK (x) Bs(Y) 

(7.1) 

(7.2) 

(7.3) 

To prolongate s(x, y) down to grid l we only have to prolongate .one basis ele­
n1ent , which involves prolongating each univariate basis ele111ent in the tensor 
product. The two univariate processes are 

µ Pv 

¢ Qr..p 

(7.4) 

where µ and v are the coefficients for the B-spline series in t he x direction , for 
the fine grid and the coarse grid respectively, ¢ and r..p are t he corresponding 
coefficients for the B-spline series in the y direction, and P and Q are prolon­
gation 111atrices for each direction. The vectors v and r..p clearly have vK and 
<ps as their only non-zero ele1nents. For notation simplicity, set the lengths of 
the vectors µ , v , ¢ and r..p to n 1 , n 2 , m 1 and 1n2 respectively. 

We know that the non-zero part of s ( x, y) on grid l will be 
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The fine grid coefficients for s ( x, y), denoted by aij, are therefore 

a2K-2 2S-2 
' 

a2K-l 2S-2 
' 

a2K 2S-2 
' 

a2x+1,2s-2 

a2x-2 2s-1 
' 

a2K-l 2S-1 
' 

a2K 2S-1 
' 

a2x+1,2s-1 

etc 

1. X 1. 
4 4 

J X 1. 
4 4 

J X 1. 
4 4 

1. X 1. 
4 4 

1. X J 
4 4 
J X J 
4 4 
J X J 
4 4 

1. X J 
4 4 

etc 

Knowing this, we write a and b in terms of products of the univariate coeffi­

cients µ, v , ¢ and <.p. 

a= b = 

1 ow to find the relationship between these two vectors, look at the individual 
cornponents 

µ1 ¢ 1 (P11 Vi + · · · + Pln 2 VnJ ( q11 l.f)1 + • • • qlm2 i.f)m2) 

P11 q 11 V1 1.f) 1 + P12q11V2 1.f)1 + · · · + P11q12V1 1.f)2 + ... etc 

q1dP 11 P 12 · · · Pln2 ]b 1 + q12[p11 P12 · · · Plm2]b 2 + ··· etc 

(7.6) 

vvhere b i = [v1 i.f)i V21.f)i ... Vn 2 cpi ]T , the coefficients corresponding to the ith row 

of t he coarse grid. We now see a relationship between a and b which can be 
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written syn1bolically as 

a= 

q11P q12P 

q21P q22P 
b (7 .7) 

This matrix is a Kronecker product , also called a direct product or a tensor 
product [95, 85]. It is denoted 

Q @ P (7.8) 

so we can write 

a= Q @ Pb (7 .9) 

In general, the Kronecker product of an ( 1n x n) n1atrix A = [ aij] and a (p x q) 

n1atrix B = [bi j] is an (1np x nq) rnatrix given by 

A @B= 

[85] . 

I ov\r that we have considered the simple case of a spline with bKs = l being 
the only non-zero coefficient , we generalise the result to any spline. This 
follows by considering the spline as a linear co1nbination of single basis ele1nents 
and the linearity of the transfon11ation represented by the Kronecker product 
n1atrix. Clearly in the case of prolongation the Kronecker product corresponds 
to prolongating first the rows of coefficients then the columns . Each row, 
bi, is operated on by the prolongation 1natrix P. The prolongated rows are 
then added together in an appropriate linear combination to prolongate the 
colu1nns. The Kronecker product 1natrix for prolongating biquadratic B-splines 
is depicted in Figure 7. 2. 
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Figure 7.2: Position of the non-zero entries in the tensor product matrix for 
prolongation of a bivariate quadratic B-spline. 

7. 2 Restriction 

The bivariate restriction process 1s analogous to the prolongation process 

above. The bivariate restriction 111ini111isation problem is 

( 

Mt+l +1 Nt+l +1 

Minimise J J L L buB1+1,1(x)B1+1,J(Y) 
I=O 1=0 

Mt+l Nt+l ) 2 -k H % Bi,;(x) B1 ,j(y) dxdy 
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Differentiating with respect to coefficients bKs gives 

M1+ 1 +1 N1+ 1 +1 

L L bIJ J J B1+1,1(x)B1+1,1(y)B1+1,K(x) B1+1,s(y)dxdy 
l=O J=O 

N1+l M1+l 

L L % J J B1,i(x)B1,j(y)B1+1,K(x)B1+1,s(Y)dxdy 
i=O j=O 

Separating out the integrals gives 

M1+ 1 +l N1+ 1 +l 

L L bIJ J B1+1,1(x)B1+1,K(x)dx J B1+1,J(y)B1+1,s(y)dy 
l=O J=O 

M1+l N1+l 

L L % J B1,i(x) B1+1,K(x)dx J B1,j(y)B1+1,s(y)dy 
i=O j=O 

(7.11) 

(7.12) 

Looking at the left hand side, we can see that J Bz+ 1,1 (y )Bz+i,s(Y )dy will stay 
constant for each row, and on the right hand side J Bz ,j(y)Bz+i,s(y)dy will stay 
constant for each row. We can write (7.12) as 

(7.13) 

where X1 and X 2 are restriction matrices X, discussed in Chapter 5, for the x 

and y directions respectively and Y1 and Y2 are matrices Y for each direction. 

Both these Kronecker product matrices are depicted in Figures 7.3 and 7.4. 
These operations can also be seen to act first on the rows and secondly on the 
columns. On the right hand side, for exa1nple , the matrix Y1 acts on each row, 
then the rows are multiplied by ele1nents of the matrix Y2 and added together 
to restrict the columns. This process is shown in Figure 7.5. 

The least squares restriction has been used in this study to determine the differ­
ence between fine grid and coarse grid bivariate quadratic B-spline functions. 
For the bivariate case the orthogonal distance between the solution estimate 
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Figure 7.3: Positions of non-zero entries in the tensor product rnatrix X2 0 X1. 

on grid l and its least squares fit to grid l + l is 

where 

M1+l N1+ l 

gl = L L ( ij Bl ,i(x)BL ,j(y) 
i=O j=O 

(=a- P @ Qb 

114 

(7.14) 

(7.15 ) 



CHAPTER 7. PROLONGATION AND RESTRICTION OF BIVARIATE 
QUADRATIC B-SPLINES 

20 

40 

60 

80 

100 

120 =-----____j___ __ ____j___ __ --1... ___ L__ __ ___j______ __ --'----_ ____::=-------1..--'=-------="'--------"""' 

0 50 100 150 200 250 300 350 400 

Figure 7.4: P osit ions of non-zero entries in t he tensor product matrix Y2 @ Y1 . 

recalling t hat b is given by (7 .13). The norm of this function is 

(7 .16) 
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X X X X X X X X X 

X X X X X X X X X 

X X X X X X X X X 

XX X X X X X X X 

X X X X X X X X X Fine grid 

XX X X X X X X X 

X X X X X X X X X 

-- X X X X X X X X X 

X X X X X X X X X 

t 
X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

t 
X X X X X 

X X X X X 

X X X X X Coarse grid 

X X X X X 

X X X X X 

Figure 7. 5: The process of restricting a biquadratic B-spline. 
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Chapter 8 

Optimising the smoothing 

parameter 

. 
The techniques used in this study for optin1ising the parameter >. for the uni-
variate discretised syste1n in equations (3 .5) and (3 .29) or the bivariate dis­
cretised syste1n in equation (6 .80) are based on an adaptive iterative strategy 
described in Hutchinson [67]. The process involves double iteration to attain 
increasingly accurate estin1ates of both the solution and the smoothing param­

eter. The 1nethod uses the nested grid method to iteratively solve the system 
whilst periodically updating the esti1nate of >. using the current solution esti­

mate. This is designed to be 1nore efficient than converging co1npletely to the 
solution for a given estimate of >. before obtaining a 1nore accurate update. 
However, it does con1promise the 1nultigrid process by repeatedly altering the 
discretised syste1n, changing the target solution and adding new error co1npo­

nents to the existing solution esti1nate. 

The Hutchinson [67] study opti1nised the smoothness by iteratively updating 

the s1noothing paran1eter >. to deliver a user specified residual sum of squares. 
This method is 1nodified here to opti1nise the s1noothness by 1nini1nising GCV. 
Both of these iterative processes are outlined in the following paragraphs. 

8.1 The OPTRSS algorithm 

As the nan1e suggests, the OPTRSS algorith1n opti1nises the s1noothing pa­
ra1neter to yield a prescribed residual su1n of squares from the data. The 
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algorithm, detailed in Hutchinson [67], uses an iterative Newton procedure 

to produce smoothing parameter estimates that converge to the prescribed 

residual sum of squares. Such a 1nethod is useful in terrain 1nodelling- where 

some infonnation about data errors is known [58]. The OPTRSS algorithm 

was used in this study to understand and test the double iteration framework 

before applying it to minimisation of the GCV, given that it is a simpler, well­

tested algorith1n. The OPTRSS procedure is based on constructing a Newton 

incre1nent in the smoothing parameter, denoted 50, from the residual su1n of 

squares as follows: 

50 = (S - R)/dR 
d0 

(8.1) 

where S is the prescribed residual su1n of squares, R is the residual sum of 

squares for the current solution esti1nate and 0 = lnA. This sche1ne is used 

to obtain updates to the 0 estimate that lead to convergence of R to S. The 

logarithm of the smoothing parameter is used to ensure that the s1noothing pa­

rameter estimate does not become negative in the initial stages of the iterative 

procedure. 

The Newton scheme requires calculation of dR/ d0 . From Chapters 3 and 6, 

covering both piecewise constant and quadratic B-spline discretisation for the 

univariate case, and biquadratic B-spline discretisation for the bivariate case, 

we write the generic system of discretised thin plate smoothing spline equations 

as 

(PTP + >-B)u = pT z (8 .2) 

where z is the vector of data values . Both P and u depend on whether piecewise 

constants or quadratic B-splines are used to approximate the thin plate spline 

solution f. For piecewise constant discretisation , u is a vector of coefficients 

for first order B-splines as in equation (3.5), where ui = f i - For univariate 

quadratic B-spline discretisation u stores the coefficients in equation (3.29), so 

ui = ai . For the bivariate case, ui = a 11 , as in equation (6.80). The vector Pu 

gives the values of the function f at the data point locations. The matrix P is 

given by (3.4) for piecewise constants, (3.28) for univariate quadratic B-splines 

and (6 .79) for biquadratic B-splines . The 1natrix B is the generic roughness 

penalty matrix , which is given by QT_Q/ h3 for the univariate case and Z/h2 

for the bivariate case. l ow we can write the residual su1n of squares for any 
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of the cases above as 

R = IIPu - zll 2 = uTPTPu - 2uTP z + zT z (8 .3) 

Applying the chain rule to equation (8 .3) gives 

(8.4) 

where 

v 1 = pT P u - pT z = pT ( P u - z) (8.5) 

Differentiation of the discretised syste1n in (8.2) with respect to ;\ gives 

(8.6) 

Converting to differentiation with respect to {) gives 

(8 .7) 

given that 

(8 .8) 

Thus du/ d{) satisfies the same syste1n of equations as u , but with the data 
vector pT z replaced by the vector v 1

. It is therefore possible to simulta­
neously solve both (8 .2) and (8 . 7) nu1nerically with a relatively low storage 
requirement . 

Having established the Newton method procedure, the OPTRSS algorithn1 is 
given by modifying the nested grid algorithm given in section 4.2.4. Conver­
gence of the s1noothing paran1eter esti1nate on a given grid was detennined 
by a criterion Q, and the resolution refinement process was tenninated by a 
criterion D. Assuming that we start on a grid of coarseness 2z and refine the 
resolution by a factor of 2, the algorithm can be written as follows: 
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8.1. THE OPTRSS ALGORITHM 

while D > toll 

q=O 

while Q > tol2 

lil(0q) = Slv1 (ul(0q), Zl) 

U~ ( 0 q) = Sl vi ( U ~ ( 0 q) , V l) 

50 = (S - R)/~: 

0q+l = 0q + 60 

q=q+l 

end 

ul-1 = Tzul 
I r,-, I 

Ul-1 = 1 llil 
l=l-l 

end 

q=O 

while Q > tol2 

lil = Sl vi ( lil ' Zl) 

U~ = Sl vi ( U~ , V l) 

q=q+l 

end 

The process in the above algorithm is to perform v1 smoothing iterations on . 

the discretised system on grid level l, to solve for u l, the solution on level 

l, and its derivative with respect to 0, u ~. The estimate of u~ is then used 

to update 0q , the qth update of 0, to converge to the sn1oothing parameter 

corresponding to the prescribed residual S . The procedure is repeated until 

the 0 updates converge, as determined by the criterion Q. The value of Q was 

set to the su111 of the absolute differences between 4 consecutive 0 updates . 

The appropriateness of this tolerance is discussed in Chapter 12. When the 0 

updates converge, the estimates of the discretised solution and its derivative 

are prolongated to grid level l -1 . The prolongation operator is denoted Tz. For 

the piecewise constant univariate discretised syste111 , the prolongation operator 

Tt is the linear interpolation operator given in ( 4.22) , and for the quadratic 

B-spline univariate discretised system the prolongation operator corresponds 

to hierarchial B-spline refinement and is given by (5 .10) . For the biquadratic 
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B-spline discretised system, Tz is the tensor product prolongation in (7.9). 

This process continues until the criterion D prevents further grid refinement. 
The value of D is given by 

D = llizill 
ll!z II 

(8.9) 

where gz comes from the least squares restriction discussed in section 5.3.3. The 

value of llgz II, normalised by II fz II, is a 111easure of the fine scale information 
contributed by the finer grid . If this measure was less than an experimentally 

determined tolerance , it was considered unnecessary to consider refinement. 

This is discussed further in Chapter 11. However , during the initial testing 

phases reported in Chapters 10 and 11 the number of 0 updates and the number 
of grids ·was often allowed to go beyond the tolerance to observe the behaviour 

of the algorithm. 

8.2 The MINGCV algorithm 

The objective of this study was to develop a procedure to iteratively solve for 

111inimu111 GCV bivariate finite element thin plate smoothing splines . The min­

imum GCV criterion is used to opti111ise the predictive accuracy of the fitted 

surface, as discussed in Chapters 1 and 2. The algorithm developed during 

this study to converge to a 111inimum GCV solution is termed the fIN GCV 

algorithm. The MIN GCV algorithm has the same design as the OPTRSS algo­

rithn1 but >. is optin1ised to achieve a mini111um GCV rather than a prescribed 
residual sum of squares. This is done using the following second order taylor 

. . 
senes expansion 

GCV (0) = GCV(e ) dGCV(0q ) (0 - e ) d2GCV(0q ) (0 - 0q )2 
q + d0 q + d0 2 2 

Differentiat ing with respect to 0 gi es 

here 

dGCV (0) = b + ce 
d0 

- 121 

(8.10) 

(8 .11 ) 

(8.12) 
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d2GCV(0q) 
C = dfJ2 (8 .13) 

Thus the value of fJ that minimises GCV is esti111ated by 

0=-b/c (8 .14) 

This procedure requires esti111ates for the first and second derivatives of GCV ( fJP) . 

The expression for the GCV in equation (2 .23) can be expressed as 

nR 
Tr 2 

(8 .15) 

where Tr= tr(I - A) and A is the influence 111atrix defined in (2.22) . Differ­

entiating equation (2.23) gives 

dGCV = _!!_ ( dRT 2 _ Tr dTr R) 
- dfJ Tr 4 dfJ r 2 dfJ (8.16) 

d
2
GCV = _!!_ (d2 

RT 2 _ ( 2T dTr 2 (dTr) 
2

) R) 
d02 Tr 4 d02 r r dfJ + dfJ 

_ 4n dTr (dRTr2 _ 2Tr dTr R) 
Tr 5 dfJ dfJ dfJ 

(8 .17) 

These derivatives require an esti111ate of the second derivative of R in addition 

to the first derivative required by the OPTRSS algorithm. This is obtained by 

differentiating equation (8 .4) to give 

- = 2(v l)T ~ 2pTp ~ d
2 R d

2 (d ) 2 

d02 d20 + dfJ (8 .18) 

An esti111ate of d2u/ d0 2 is obtained by differentiating equation (8 . 7) to give 

(8 .19) 

Thus d
2u/ d0 2 is obtained by solving the same syste111 of equations as those 

that give du/ dfJ and u . 

The equations for the GCV and its derivatives also involve Tr , dTr / dfJ and 

122 



CHAPTER 8. OPTIMISING THE SMOOTHING PARAMETER 

d2Tr / d0 2 . Calculation of the trace and its derivatives requires some knowl­
edge of the influence matrix A. Given that this matrix is not involved in 
t he previous calculations of the discretised systen1, Hutchinson [59] proposes a 
con1putationally efficient approximate method that yields a stochastic estimate 
of Tr. This method is discussed below. 

8.2.1 A stochastic estimate for the trace of the influence 

matrix 

The stochastic estimator developed by Hutchinson [59] is motivated by the 
relation 

n 

tr (A) = Le[ Aei (8 .20) 
i =l 

where { e1 , ... , en} are the n linearly independent columns of the n x n iden­
tity matrix. This sun1mation is numerically impractical , since it requires n 
solutions {Ae1 , ... , Aen} of the smoothing spline. Hutchinson [59] therefore 
suggests replacing the n linearly independent vectors by a single vector with 
stochastically independent entries. It is shown in Hutchinson [59] that 

(8 .21 ) 

where t = ( t 1 , . .. , tn)T is a vector of n independent samples from a random 
variable T with mean zero and variance o- 2

. This follows immediately from the 
expansion 

tT At = L tiaijtj 
i,j 

(8 .22) 

The value of E(T2
) is o- 2

, and the value of E (T )E (T ) 1s zero, so the only 
non-zero tenns in the su111 are t hose in which i = j. 

Thus tT At is an unbiased estimator of tr A if o- 2 = 1. This relation has been 
recognised by both Girard [36] and Hutchinson [59] . Girard [36] takes T to be a 
standard normal random variable. Hutchinson [59] proposes a minimum vari­
ance estimator obtained by chasing t to be a vector of n independent samples 
fron1 t he discrete rando111 variable T which takes the values 1,-1 each with prob­
ability 1/ 2 [59] . This esti111ator has been employed in a wide range of numerical 
problems including calculation of t he trace and determinant of symmetric pos-
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it ive definite 1natrices, and general Tikhonov regularization proble1ns and as­

sociat ed applications, as docu1nented by [38 , 37, 4] and [114]. Hutchinson [59] 

also shows that , with this choice oft , the relative standard error of tT (I - A)t 

in estimating tr (I - A) is bounded by 

(2/n)l /2 (8.23) 

It is further shown in [59] that this is a conservative bound , so the actual 

standard error could be expected to be considerably less . 

An esti1nate of Tr at any point in the iterative procedure can be obtained by 

applying the MINGCV procedure to the equation 

(8.24) 

Equation (8.24) is the same as the discretised system for the s1noothing spline, 

but it has pT t as the right hand side instead of pT z . The vector At is then 

esti1nated by Pb. With this i1nplicit estimate of the influence 1natrix, the trace 

estimate is given by 

tr A= tt (8.25) 

where t = Pb. The first and second derivatives of the vector b are given by 

where 

and 

where 

w 1 = pTpb - pTt 

(PT P +AB )!~~ = w 2 

w 2 = -wl + 2pT pdb 
d0 

The first and second derivat ives of T r are t hen calculated by 

dT r dt 
dfi = -d0t 

d2T r - d2t 
d0 2 = - d0 2 t 
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8.2.2 The algorithm 

The MI TGCV algorit h111 is given on the next page, where vp is pT zl and 
u (m) is the m th derivative of u vvith respect to 0. The MINGCV algorithm 

proceeds in a si111ilar manner to the OPTRSS algorith111. This time, smoothing 
iterations are perfonned to solve for m derivatives of the solution estimate and 
n derivatives of t he vector b. These estimates are all needed to update 0q to 
converge to t he 111ini111um GCV s111oothing parameter . All t hese vectors need 
to be prolongated when refine111ent occurs . 

8.2.3 Differentiation of T r 

The above process fo r obtaining the derivatives of T r can be made considerably 
more efficient by differentiating with respect to A instead of e. Equations (8 .26) 
and (8 .28) can be written as 

(PTP+AB)!~ =-Bb=w1 

(P TP+AB )d2b =-2Bdb =w2 
dA2 dA 

(8.32) 

(8.33) 

Note that the right hand side of expressions (8 .32) and (8 .33) has been ex­
pressed in tenns of the solut ion vector b rather t han t he data vector t. Rear­
ranging (8 .33) gives 

(8 .34) 

Differentiating t T Pb with respect to A and using (8 .34) and (8 .24) gives 

(8.35) 

and 

(8.36) 

Differentiating again gives 

(8 .37) 
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while D > toll 

q=O 

while Q > tol2 

Uz ( 0 q) = Sz vi ( Uz ( 0 q) , vf) 

u ~ ( 0 q) = Sz vi ( u~ ( 0 q) , v l) 
u/ ( 0 q) = Sz vi ( u~' ( 0 q) , vf) 

for n = 0 to 2 

bin\ 0q) = Sz vi (bin\ 0q)' Wz) 

b (n) (0 ) = S vi (b (n) (0 ) w n) 
l q l l q, l 

end 

0 +l = _ _Jz__ 
q 2c 

q=q+l 

end 

form= 0 to 2 
u (m) - ,r,u(m) 
l-l - _1_z l 

end 

for n = 0 to 2 
b (n ) - rr, b (n) l-1-_1_z l 

end 

l=l-l 

end 

q=O 

,vhile Q > tol2 

form= 0 t o 2 

uim\0q) = St 1 (uim\0q ), vr) 
end 

for n = 0 to 2 

h im) (0q) = Szv 1 (b~n\0q ), wr ) 

end 

0 - b 
q+l - - 2c 

q=q+l 

end 
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ote that the expression for dTr / d0 does not involve db / d>. and d2Tr / d02 only 

requires the first derivative of b with respect to >.. This cuts v1 smoothing 

iterations out of each 0 update procedure in the MI GCV algorithm. The 

modified MIN GCV algorithm is given on the next page. 

8.2.4 An alternative for the bivariate case 

Most of the exploratory analysis for the MII GCV algorithm was done using 

the univariate processes. The design of the bivariate algorithm was therefore 

more structured, and it was decided to use a consistent formulation for the 

above systerns of equations . Given the above results for Tr and its derivatives , 

it was decided to differentiate both the vectors u and b with respect to >.. This 

gives the following equations for the bivariate solution and its derivatives . 

(PTP + >.B )u = pT z 

du 
(PT P + >.B ) d>. = -Bu 

(pT p >.B) d2 u = - 2B du 
+ d>.2 d>. 

(8 .38) 

(8 .39) 

(8.40) 

Note that the right hand sides for (8.39) and 8.40 have now been expressed in 

terms of the solution vector u rather than the data vector z. This was done 

to be consistent with the equations for b. The equations for the derivatives of 

R in tern1s of du / d>. and d2u/ d>. 2 are 

dR = - 2>_2 TBdu 
d0 h2 u d>. 

d2 R = -4>.2 Edu - 2>.3 ( du )T Edu - 2>.3 T Bd2u 
d02 u d>. d>. d>. u d>. 2 
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while D > toll 

q=O 

while Q > tol2 

form= 0 to 2 

u;m\eq) = St1 (u;m\eq), vr) 

end 

for n = 0 to 1 

b;m\eq) = St1 (b;n\eq), wz) 
end 

{) +l = _l_ 
q 2c 

q=q+l 

end 

form= 0 to 2 
(m) ryi (m) 

Uz-1 = .. LzUz 

end 

for n = 0 to 1 

b (n) _ ryi b (n) 
l-1--1.z l 

end 

l=l-l 

end 

q=O 

while Q > tol2 

form= 0 to 2 

u~m\eq) = Szv1 (u;m\eq ), vz) 
end 

for n = 0 to 1 

b ~m) (eq) = St1 (b ;n\eq), wz) 
end 
() - b 

q+l - - 2c 

q=q+l 

end 
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8.2.5 Variation in solution characteristics with changes 

in A 

There are some basic relationships between the statistics and parameters de­

scribed in the previous sections that are useful in analysing the output of the 

NII GCV algorithm. Standard output descriptors include the smoothing pa­

ra1neter A, the residual sum of squares R, the GCV and t he signal, or tr(A). 
These quantities are produced by the programs in ANUSPLIN [68], that cal­

culates analytic minimu1n GCV thin plate smoothing splines. It was useful to 

this study to consider the variation in R , the GCV and the signal with changes 

in A. 

The typical structure of the GCV curve is shown in Figure 8.1 [68] . The GCV 

nonnally has a unique local minimu1n value for a smoothing parameter value 

A = Am, unless there are significant errors in the data or the model has been 

significantly misspecified [68] . Using the GCV curve, the expected shapes of 

the curves for dGCV/ dA and d2GCV/ dA 2 were derived , as shown in Figure 8.2. 

A close up of the interval containing the A values close in magnitude to Am is 
shown in Figure 8.3. The curves show that, for the region in the vicinity of 

0 . 25 

02 

0.15 

GCV 

01 

0 . 05 

0 

-5 0 5 10 15 20 

log";.,, 

Figure 8.1: Plot of the GCV as a function of the logarithm of the smoothing 
parameter. 
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Am, the value of dGCV / dA should be negative if A < Am, positive if A > Am , 
and zero at the mini1num. Near the endpoints of the GCV curve dGCV / dA 
will clearly approach zero , at a slow rate . The second derivative, d2GCV / A 2 , 

should always be positive near Am, although at the endpoints its value may be 

negative or zero. 

0.3 

CCV 02 

0.1 

o~-~--~--~--~--~--~--~--~-~~-~ 
-15 -10 -- -5 0 5 10 15 20 25 30 

log>. 

0.15 

0.1 

dGCV 
d0 0.05 

0 

-0 .05 
-15 -10 -5 0 5 10 15 20 25 30 

log>. 

0.04 

0.02 

d2 GCV 
d0 2 0 

-0.02 

-0.04 
-15 -10 -5 0 5 10 15 20 25 30 

[ og>. 

Figure 8.2: Plot of t he GCV and its derivatives as a function of the logarithm 
of the s1noothing para1neter. 

T he curves for R are shown in Figure 8.4. As the smoothing para1neter in­

creases , the fitted curve beco1nes s1noother and the data are not fitted as 

closely, so R increases. The value of dR/ dA should therefore always be pos­

itive leveling off at the endpoints. The value of d2 R/ dA 2 can be positive, 

z ro or negative. The signal and its derivatives behave in the reverse manner , 
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Figure 8.3: A closeup of Figure 8.2, showing the region surrounding the mini-
111u111 CCV. 

as shown in Figure 8.5. As· the smoothing para111eter decreases the struc­

ture of the fitted curve beco111es more co111plicated and the effective number 

of para111eters increases. A com111on feature of the patterns observed above is 

the inconsistency of the relationship at the endpoints of the curve , as the pro­

cesses approaches exact interpolation or flat plane regression. The curve either 

changes erratically or weakens to no relationship . It is therefore expect ed that 

the values of R, the CCV and the signal will not give accurat e predictions of 

the 111ini111u111 CCV value at the end regions of the curve. 
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Figure 8.4: Plot of R and its derivatives as a function of the logarithn1 of t he 
smoothing paran1eter . 
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Figure 8.5: P lot of the signal and its deriva ives as a function of the logarithm 
of the smoothing parameter . 

133 





Part II 

Results 

· 135 





Chapter 9 

Testing of multigrid algorithms 

As discussed in Chapter 1, the initial rnethod of discretisation was to use 

a piecewise constant approxi111ation, with a constant value in .each grid cell. 

Preli111inary analysis of the v-cycle and nested grid 111ultigrid schemes applied 

to the univariate piecewise constant smoothing spline syste111 in equation (3 .5) 

was conducted . These 111ultigrid algorith111s were investigated here on the 

basis of the review in Chapter 4. The nested grid and v-cycle algorithms are 

described in section 4.2.4 . The aim was to assess the perfonnance of multigrid 

as a method of iteratively solving the univariate piecewise constant smoothing 

spline proble111 without the additional complications associated with optimising 

sn1oothness. The opti111al , or minin1um GCV, s111oothing para111eter A was 

therefore detennined separately using the analytic procedures incorporated in 

the program ANUSPLil [68]. The ANUSPLIN progra111 calculates analytic 

thin plate spline fits to data, with the option of 111inimising GCV, and produces 

diagnostic statistics, such as the GCV, the residual sum of squares R, and the 

signal , or tr (A). 

The analyses in this chapter ,¥ere designed to identify the key influences on 

the perfonnance of 111ultigrid algorithms when applied to piecewise constant 

s111oothing splines , and to assist in the design of an optimal 111ultigrid algorithm 

for solution of this syste111. It was emphasised in Chapter 4 that , while multi­

grid literature provides guidance and recommendations 111ultigrid sche111es are 

very flexible in their design , allowing the user to experiment with different al­

gorith111s and settings to optimise convergence properties. The initial settings 

chosen for nested grid and v-cycle in this analysis are su111marised in Table 
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1. The sensitivity of the multigrid algorithm to changes in these settings is 

discussed in this chapter. 

Setting V-cycle Nested grid 
No. of grid levels (L) 6 6 

No . of smoothing iterations ( v1 ) 3 10 
per grid level 

Coarsening ratio 2 2 
Type of s111oothing iteration SOR SOR 

Relaxation parameter ( w) 1.6 1.6 
Coarse grid operator discretisation discretisation 
Type of prolongation linear interpolation linear interpolation 

Type of restriction Full weighting Full weighting 
No. of grid points on 361 361 

the fine grid 
Initial guess (u0 ) zero zero 

Data set sine.dat sine.dat 

Table 9.1: Initial multigrid settings . 

The significance of these settings has been discussed in Chapter 4, however 

so111e further points require clarification. Several settings, including the num­

ber of grid levels, the type of smoothing iteration, the coarse grid operator , the 

number of grid points on the fine grid and the initial guess were set arbitrarily 

and optimised experimentally. The relaxation parameter for SOR smoothing 

was also optimised experi111entally for both algorithms, as is commonly don_e 

for multigrid algorithms [2]. It is stated in Brandt [16] that the smoothing 

factor is generally insensitive to the relaxation para111eter, and its value i s not 

significantly increased if w is not opti111al. Interestingly, the value of w = 1.6 

was also obtained experimentally for SOR by Hutchinson [58] and Atlas [2]. 

For v-cycle, it is reco111mended by Brandt [17] to choose 3 presmoothing and 

3 postsmoothing iterations. Nested grid, however, is not a cyclic algorith111, 

so the number of s111oothing iterations is detennined by the desired accuracy. 

The results in this chapter indicate that there is an advantage in having more 

smoothing iterations on so111e grids than on others. 

With regard to the transfer operators, both are second order , and are standard 

choices for multigrid algorithms [20]. The order of these transfer operators is 

slightly too sn1all to be consistent with the recom111endation in equation ( 4.30), 

as the smoothing spline equations are fourth order . Preliminary investigation 
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CHAPTER 9. TESTING OF MULTIGRID ALGORITHMS 

showed that this did not significantly influence the results presented here. 

The following sections describe the process undertaken to understand multigrid 
and optirnise its performance. To 1nake the analysis as transparent as possible, 
only the univariate case was considered and the initial data set was designed to 
be small and simple. This allowed the analytic solution to be calculated easily 
using ANUSPLI I . The analytic solution has been used extensively throughout 
this study to assess the accuracy of the solution estimates, estimates of the 
GCV, Rand the signal, and to provide an optimal smoothing parameter. 

For the analyses described below, the error is measured by the deviation be­
tween the analytic solution determined from A USPLIN and the solut ion es­
t in1ate. Deviations fro1n the analytic values of the GCV and the signal due to 
the piecewise constant discretisation were found to be negligible in comparison 
to other sources of error. The do1ninant influence on the accuracy of the these 
statistics for the data sets considered in this chapter was found to be stochastic 
error in the esti1nate of the trace of the influence matrix. This can be seen 
fro1n the folluw·ing analysis. 

9.1 Performance of v-cycle and nested grid 

The v-cycle and nested grid algorith1ns described in Chapter 4, with the set­
tings fro1n Table 9.1 , were applied to equation (3 .5) using data set sine.dat. 
This data set, shown in Figure 9 .1 , consists of 101 noisy data points randomly 
perturbed fron1 a single sine curve by values from a zero 1nean normal variable 
,~.rith standard deviation 0.2. The data points are equally spaced at intervals of 
3.6. The optimal s1noothing para1neter for this data set , obtained from A IUS­
PLI , ·was found to be 25500. This value is large enough to cause the second 
term of equation (3 .5) to do1ninate the system. Both multigrid algorithms 
produced accurate estimates of the analytic solution, as shown in Figures 9.2 
and 9.3. The analytic solution shows good agreement with the true sine curve 
from v. hich the data was obtained de1nonstrating the appropriateness of the 
cubic smoothing spline for this data set. ote that, for the plots of the piece­
wise constant discretisation in the results chapters of this thesis the centre 
points of each grid cell are joined by straight lines . This was deemed to be an 
appropriate representation of piecewise constant discretistations of smoothing 
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splines . 
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Figure 9.1: The data set sine.dat. 

Accurate estimates of the GCV, R and signal corresponding to the discre­
tised solution were also obtained, as shown in Table 9.2. These estin1ates 
were obtained frorn equation (8.15) using the stochastic estimate of Tr in 
equation (8.21). The low signal reflects the sn1ooth nature of the underlying 
process, and explains the large smoothing parameter. Figure 9.4 shows how 
the s1noothing parameter varies with the signal for this data set. If, rather 
than 1ninimising the GCV, a smoothing para1neter of 50 is enforced, the solu­
tion in Figure 9.5 is produced, which is clearly a 1nuch poorer reflection of the 
underlying process fro1n which the data was created. 

Analytic Solution Nested Grid V-cycle 
Signal 8.4 9.8 9.1 -

Generalised Cross 0.034 0.035 0.034 
Validation 

Residual Su1n of 2.85 2.86 2.83 
Squares 

Table 9.2: A comparison of output statistics for nested grid, v-cycle and the 
analytic solution. 

The stochastic error in the esti1nate of the trace of the influence matrix, tr(A) , 
was found to have a considerable influence on other solution characteristics, 
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Figure 9.2: The analytic solution and the piecewise constant approximation 
obtained using the v-cycle algorithm. 
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Figure 9.3: The analytic solution and the piecewise constant approximation 
obtained using the nested grid algorithm. 
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Figure 9.4: The signal versus the smoothing parameter for the data set 
sine.dat . 

Figure 9.5: The smoothing spline solut ion corresponding to a smoothing pa­
rameter of .,\ = 50. 
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including the GCV. A sample of 50 spline fits using 50 different random vectors 
gave the results in Figure 9.6 , where we now present Tr , or tr(I -A) , instead of 
tr(A). The extent of the stochastic variability induced in the GCV estimates 
beco1nes especially noticeable after considering the analyses in Chapters 11 
and 12, which show that the GCV is usually extremely stable. 

According to formula (8.23) the relative standard error in the Tr estimate for 
this problem is bounded by (2 / n) 112 = 0.14 , giving an absolute standard error 
of 12.97. The standard error of the sample in Figure 9.6 was found to be 3.08 
which is significantly lower than this upper bound, demonstrating that the 
bound is conservative. Hutchinson [59] also presents a more accurate calcula­
tion of the bound on the standard error . This makes reasonable assumptions 
on the distribution of the magnitude of the eigenvalues of the influence matrix 
A, and involves making integral approximations for Tr and Tr'), . Using these 
calculations , the bound on the standard error of Tr for this case was calculated 
to be 2.97. This is an accurate estimate of the observed standard error. This 
standard error must be considered as a significant source of inaccuracy in the 
solution for this data set. However, for large data sets the error in the Tr 
estimation will be insignificant. 

To compare the stochastic error with the discretisation error in the trace , the 
trace of I - A for the piecewise constant system was calculated as 

(9.1 ) 

This fonnula was derived by recalling from section 2.2.1 that Az = Pf and 
using the expression for f given by the discretised syste1n (3.5) ie. 

(I - A )z 

.·. tr (I - A ) 

z-Pf 

z-P(PTP+ : 3QTQ )-1PTz 

(I-P (PTP+ : 3QTQ )-1PT )z 

tr(I - P (PTP + : 3QTQ )- 1PT ) 
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Figure 9.6: Values of tr(I - A) and the GCV for different random vectors t. 

The rnultigrid algorithms would converge to this trace in the absence of stochas­

tic error. Using this forrnula, the Tr was calculated to be 92 .6. The discretisa­

tion error , calculated as the magnitude of the difference between the analytic 

trace obtained from ANUSPLIN, and the trace obtained from equation (9 .2), 

is therefore zero to 3 significant figures. This is insignificant in con1parison to 

the stochastic error . 

The GCV, Rand signal estimates were also evaluated after each SOR iteration 

for the nested grid algorithm. These results are shown in Tables 9.3 , 9.4 

and 9.5. The esti1nates on the coarse grid are initially quite variable, but they 

settle down and converge to 4 decimal places on the 2 finest grids. Interestingly, 

the Tr esti1nates on the coarsest grid are not much different to those on the 

fine grid , indicating that little fine scale structure has developed as a result of 

the finer discretisation. Also, the trace esti1nates change very little after grid 

nun1ber 3. This i1nplies that further iteration of the solution on grids finer 

than the resolution of grid number 3 1nakes little change to the solut ion. 
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grid iteration number 
number 1 2 3 4 5 6 7 8 9 10 

1 95.22 95 .21 95.21 95.21 95 .21 95 .21 95 .21 95.21 95.21 95.21 
2 95.20 95.20 95.21 95.20 95.20 95 .21 95.21 95.21 95.21 95 .21 
3 95 .08 95.12 95.12 95.12 95.14 95. 14 95.16 95.16 95.16 95.17 
4 95.27 95 .24 95.19 95.08 94.93 94.81 94.78 94.75 94.74 94.71 
5 95.00 95 .14 94.30 93.65 93.86 94.13 94.37 94.41 94.41 94.42 
6 92.27 96 .10 94.84 95.10 95.12 95.04 95.14 95.03 95.13 95 .05 

Table 9.3: tr( I - A) values after each iteration, for the nested grid algorithm. 

grid iteration nurnber 
number 1 2 3 4 5 6 7 8 9. 10 

1 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 
2 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 
3 2.98 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 
4 2.78 2.83 2.80 2.82 2.80 2.81 2.80 2.81 2.80 2.80 
5 2.87 2.93 2.79 2.90 2.81 2.85 2.84 2.84 2.84 2.83 
6 13.54 5.75 3.94 3.54 3.55 3.48 3.49 3.48 3.48 3.48 

Table 9.4: R values aft er each iteration , for the nested grid algorithm. 

grid iteration number 
number 1 2 3 4 5 6 7 8 

1 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 
2 0.0320 0.0321 0.0320 0.0321 0.0320 0.0321 0.0320 0.0321 
3 0.0333 0.0331 0.0332 0.0331 0.0332 0.0331 0.0331 0.0331 
4 0.0310 0.0316 0.0313 0.0316 0.0314 0.0315 0.0315 0.0316 
5 0.0321 0.0327 0.0317 0.0334 0.0323 0.0325 0.0323 0.0322 
6 0.1606 0.0629 0.0442 0.0395 0.0396 0.0389 0.0389 0.0390 
9 10 

0.0316 0.0316 
0.0320 0.0320 
0.0331 0.0331 
0.0315 0.0315 
0.0322 0.0321 
0.0389 0.0389 

Table 9.5: GCV values after each iteration, for the nested grid algorithm. 
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It was found that v-cycle required 1724 SOR iterations to converge to the set 

tolerance, the level of accuracy reached by nested grid in 60 SOR iterations. 

The nested grid scheme was clearly a successful algorithm. V-cycle, however , 

reduced the error by an average of only 8.1 % per cycle, a much slower perfor­

mance than that of an optimal multigrid algorithm. It was therefore neces­

sary to further investigate the behaviour of the v-cycle in order to understand 

its poor performance. As discussed in Chapter 4, multigrid theory does not 

facilitate straightforward analysis and evaluation of 111ultigrid practice. The 

following sections therefore experimentally explain the observed behaviour. 

9.2 Application of the multigrid principle 

As described in section 4.2, the multigrid principle makes iteration highly 

efficient at reducing all co111ponents of the error by transferring the problem 

to and from grids of varying coarseness . To verify that this phenomenon is 

occuring in the case of the v-cycle, the error after k cycles was represented as 

the follovving expansion of the eigenvectors of the matrix pT P + ; 3 QT Q. 

N 

e (k) = "' C· W · 
~ i i 

i=l 

(9 .3) 

vvhere w i are the eigenvectors of the matrix pT P + ; 3 QT Q and ci are the 

coefficients . The effectiveness of v-cycle at eliminating these modes is shown in 

Figure 9.7. The povver of multigrid is clearly seen by comparing this behaviour 

,:\·i th the poor result given by basic SOR iteration, shown in Figure 9.8. The 

ineffectivene of basic iteration implies that the dominant mades of the error 

are highly 11100th. Figure 9.9 shovvs that this is indeed the case. This is a 

direct reflection of the smoothness of the solution. These results confinn that 

the 1nultigrid procedure are effective in targeting component of the error that 

could not be reduced by ba ic iteration. The low convergence of the SOR 

i era ion on the fine grid could be expected con idering the eigenvalue for 

his 111oothing spline problem. The spectral radii of the smoothing iteration 

n1atrice for each grid are hovvn in Table 9.6. Corresponding condition 
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Figure 9. 7: The coefficient for each error 1node VS the number of cycles for 
the v-cycle algorith1n, for the data set sine.dat. 
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Figure 9.8: The coefficient for each error 1node VS the number of SOR itera­
tions for SOR iteration on the fine grid, for the data set sine.dat. 
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Figure 9.9: Modes of e (0) corresponding to the 3 highest coefficients ci for the 
data set sine. <lat. 

numbers are shown in Table 9. 7. The spectral radius of 1 on the fine grid 

demonstrates the inability of basic iteration to eliminate smooth rnodes. The 

coarser the grid, the more efficient a basic iterative method will be. 

For 111ultigrid algorithms, the s111oothing factor is used as a perfonnance 111ea­

sure, as discussed in Chapter 4. Here it was suggested that fast iterative 

methods do not necessarily make good s111oothers, and that the weighted J a­

cobi iterative method may be a better smoother than SOR. It was found that 

this was not the case for the smoothing spline problem. When weighted J aco bi 

was used as the smoother in the v-cycle algorith111 it required 4125 iterations 

to converge to the tolerance, 111ore than twice as slow as SOR. When weighted 

J acobi was used in the nested grid algorith111, 300 iterations were required for 
-

convergence to the sa111e tolerance as that achieved in 60 iterations using SOR. 

The poor conditioning of this syste111 on the fine grid is a result of the high 

s111oothing parameter, which causes the rank deficient 111atrix QT Q to dom­

inate the syste111. Conditioning i111proved significantly on coarser grids, as a 

result of increasing h. However, in the case of the v-cycle algorith111, the data 

are only accessed on the fine grid. An initial hypothesis was therefore that, 

for v-cycle, iterations on coarser grids were ineffective because they relied on 

infonnation from the fine grid , were relaxation is very slow to yield accurate 

approximations . 
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Grid Spectral radius of SOR 
number iteration matrix 

1 1.000 
2 0.998 
3 0.996 
4 0.974 
5 0.889 
6 0.736 

Table 9.6: Spectral radius of SOR iteration matrix for the data set sine.dat . 

Grid nu111ber Condition number 
1 1 486 000 
2 91 745 
3 6321 
4 796 
5 99.71 
6 56.22 

Table 9. 7: Condition number of the matrix pT P + {3 QT Q for the data set 
sine.dat. 

Equation (3.5) can be rearranged to give the following expression for the fitted 

values 

(9.4) 

where Jg is the value of f in the gth grid cell, mg are the diagonal elements 
of the diagonal 111atrix pT P, ag are the diagonal elements of the matrix QT Q 
and cg are the sums of the contributions from the off-diagonal elements of the 

gth row of QT Q acting on the vector f ie. Jg-2 - 4fg-1 - 4fg+1 + Jg+2· 

As h beco111es large and the number of data points per grid cell increases , the 
function values approach the local averages of the data points in each grid cell. 
The similarity is shown in Figure 9.10. Thus on the coarse grid the solution is 
contained almost entirely in the data points , and little smoothing is required , 
so the system is well conditioned. The nested grid algorithm quickly attains 
this solution on the first grid, and has a good solution estimate to pass down 
to finer grids. Figures 9.11 - 9.16 show that, in the case of nested grid , little 
contribution is required from the fine grids as the solution for this data set 
is estimated accurately by iteration on coarser grids. This progression from 
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coarse to fine grids dernonstrates that the grids chosen in this analysis are 

unnecessarily fine , as the solution for this data set can be represented with 

far fewer grid points. Clearly there has been little alteration in the · solution 

after grid number 4. The inclusion of unnecessarily fine grids in the 111ultigrid 

algorith111s has caused a deterioration in their performance, particularly in the 

case of the v-cycle algorithm. 

In order to further understand how poor conditioning affects the v-cycle al­

gorit h111 , and verify that the transfer procedures were working correctly, the 

algorithm was modified to solve the equations directly on the coarsest grid. 

This is a co111111on version of the v-cycle algorithm [115]. The nu111ber of grids 

was set t o 2, and-·increased to 4 and then 6 grids. The results are shown in 

Table 9.8. Convergence was fast for the two-grid algorith111, and deteriorated 

as t he number of grids was increased. When 6 grids were used the convergence 

rate was no improve111ent on that obtained when the equations were not solved 

directly. 
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Figure 9.10: The piecewise constant solution on t he coarsest grid and t he local 
averages of t he dat a point s in each grid cell , for t he data set sine.dat . 
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Figure 9.11: The piecewise constant solution on grid no. 6. 
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Figure 9 .12: The piecewise constant solution on grid no. 5. 

151 



9.2. APPLICATION OF THE MULTIGRID PRINCIPLE 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

- 0.8 

50 100 150 200 250 300 350 

Figure 9.13: The piecewise constant solution on grid no. 4. 
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Figure 9.14: T he piecewise constant solution on grid no. 3. 
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Figure 9.15: The piecewise constant solution on grid no. 2. 
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Figure 9.16: The piecewise constant solution on grid no. 1. 
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These results are not surprising, since direct solution on the second grid gives 

a very accurate initial guess on the fine grid. There is clearly an efficiency 

gradient in the SOR process, rneaning that if the solution is not solved ·directly 

on grids close to the final grid, high accuracy cannot be achieved because 

the SOR process becomes 1nore inefficient as the grids get finer. The fast 

perfonnance of the v-cycle for schemes with fewer grid levels i1nplies that the 

v-cycle procedure, particularly the transfer processes , are functioning properly. 

No. of grid levels SOR iterations 
required to reach 

the tolerance 
2 -- 231 
3 627 
6 1853 

Table 9.8: Direct solution on coarsest grid , with different nu1nbers of grid levels 
in the v-cycle alg·orith1n. 

9.3 Different data sets 

Given that 1nany of aspects of 1nultigrid performance observed above are a 

direct result of the nature of the data set, it was important to investigate the 

performance of both algorithms on other data sets. Considering the above 

results , it would be expected that a larger data set would lessen the i1npact of 

the tenn QT Q and i1nprove the conditioning of the system. This should result 

in faster convergence of the v-cycle. A data set with the same properties as 

sine.dat was constructed, but 360 points were generated instead of 101. This 

data set , 360.dat , is shown in Figure 9.17. 

Using A USPLIN, the s1noothing parameter was calculated to be 110 000. For 

this data set , the v-cycle algorith1n converged to the tolerance in 2211 SOR 

iterations , slower than for sine.dat . This result is shown in Figure 9.18. The 

slo-N convergence indicates that conditioning has not improved by increas­

ing the nu1nber of data points. However co1nparison is co1nplicated by the 

1nini1nu111 GCV s111oothing para1neter , which increased significantly with the 

addition of n1ore data points even though the underlying process from which 

the data vvere generated did not change. When the analysis for 360dat.mat 
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Figure 9.17: The data set 360.dat. 

was rerun with the smoothing parameter set to 25500, v-cycle converged 111 
1254 iterations, faster than for sine.dat. This was the result expected. 

The condition number of the system should also be reduced by increasing the 
fine scale structure of the data generation process, which should lower the 
smoothing parameter. This would be expected to improve the convergence of 

the v-cycle, but 111ay require more iterations on the finer grids of the nested grid 
algorithms as these grids are important in developing the fine scale structure. 
In order to test these assertions, the 101 point data set bumpy.dat, shown in 
Figure 9 .19, was constructed from the function 

sin 2wx/ 180 + 0.5 cos 4wx/180 (9.5) 

Random noISe of 0.2 was again added. The smoothing parameter was cal­
culated using ANUSPLIN to be 733, reflecting the fine scale patterns in the 
data. Comparisons of the piecewise constant approxi111ation with the analytic 
solution is shown in Figure 9.20. The v-cycle algorith111 converged in 666 SOR 
iterations, over 50% faster than for sine.dat. The nested grid algorithm re­
quired 210 SOR iterations , approxi111ately 3 ti111es as many as required for 
sine.dat. Most of these iterations were performed on finer grids, further reduc­
ing the computational speed of the algorithm. In fact , the two coarsest grids 
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Figure 9.18: The analytic solution and the piecewise constant approximation 
obtained using the v-cycle algorithm, for the data set 360.dat . 
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Figure 9.20: The analytic solution and the piecewise constant approximation 
obtained using the v-cycle algorithn1, for the data set bumpy.dq,t . 

had only 5 iterations per grid where as all other grids had 50 iterations. These 
results further e1nphasise the importance of the scale of the data generation 
process . To give an opti1nal performance the 1nultigrid algorithms have to be 
tailored to suit the scale of the solution, so the do1ninant modes of the error 

can be targeted effectively on grids of suitable coarseness. 

The results presented thus far show that the above numerical methods for esti-
1nating piecewise constant t hin plate s1noothing splines collapse for extremely 
large values fo the smoothing para1neter. In the case of data that represents 
zero 1nean rando1n noise or a global linear t rend , ANUSPLIN reduces to linear 
regression and est i1nates the smoothing parameter to be a number approach­
ing infinity. Clearly t his corresponds to the matrix pT P + [3 QT Q having an 
infinite condit ion number , rendering nu1nerical solution by t he above methods 

i1npossible. 

9.4 Conclusion 

The analyses in this chapter demonstrate the value of e1npirical testing in the 
design of a 1nultigrid algorithm for a given system of equations. The perfor­
mance of t he algorithm clearly depends on the characteristics of the problem 
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to be solved. In this study, the scale of the solution was found to be a 111ajor 

issue influencing perfonnance, in that representation of a s111ooth problem on 

fine grids lead to syste111s that were poorly conditioned. This problem was 

overcome by choosing the nested grid algorithm, which incorporated a grid 

schedule that began on a coarse grid where the syste111 was well conditioned. 

The nested grid results showed that there was little difference between solu­

tion representations on fine grids for the smooth data set. It was therefore 

only necessary to solving the smoothing spline problem on coarse grids for 

this data set. The incorporation of unnecessarily fine grids slowed down the 

solution process considerably. 

Stochastic error iii the estimate of the trace of the influence matrix was found 

to be the do111inant source of error in the approximation of the signal and 

the GCV corresponding to the discretised solution. Discretisation error in 

these statistics was found to be negligible in co111parison to the stochastic 

error. However , the magnitude of the stochastic error greatly reduces as the 

size of the data set increases [59]. This source of error should therefore not 

significantly influence the performance of the algorithm developed during this 

study when it is applied to the large data sets for which it was intended. The 

findings fro111 the procedures reported in this chapter were used as a platform 

on 'Arhich to base further investigation of the algorith111s developed during this 

study. 
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A test of the v -cycle a lgorithm 
The copy of this thesis originally subrnitted for exarnination had 
a sign error in the pseudo-code for the v-cycle algorithm, given in 
C hapter 3. This sign error did not occur in the code d evelop ed 
to i1nplernent this algorith1n . The table below shows the p erfor­
n1ance of the v -cycle algorithn1. for systen1.s of the forn1. '.lJ 11 + cc1; = z . 
T his systen1. is identical to the univariate sn1.oothing spline systen1. 
-v.rith one data point in each grid cell , except that the boundary 
conditions , srnoothing paran1.et er 1/ a and right hand side ,--.; have 
been varied. The results show that the perfor1nance of the v -cycle 
algorith1n is slowed down by the conditioning of the system, not 
by errors in the code. 

proble111 n1odel (l boundary w s111oothing aver age 
11u1nber proble1n conditions 1nethocl error . 

r eduction 
L-"\te (Cfr) 

1 '.l/1 + Cl,'./) = S'i? /,T 0 clirichlet l.G SOR, ·) 4 71--J . ;J 

) '.l)
11 + <vlJ = s'i.n:i.: ) 

~ dirichlet l.G SOR ? ·) 14 .c..,J. 

3 y" + ay = si.rn· ') 
"-' n eu111a n11 l.G SOR, 74.87 

-1 ·y" + ay = S'in,:,z_; 0.1 n eu1na.nn 1.6 SOR, 99 .99 

5 7)
11 + WlJ = .S'l n T (J dirichlet 0. 5 Jacobi 80.5 

G II . 
_ij + Cl, .lJ = .'-i ·;, I u ; ') dirichlet 0. 5 Jdcobi 1 ·) r: 

I J . ;J 

-, 
.lJ 11 + (l,_lj = Yin.t 2 11eu111a1111 (J. 5 .h1.cobi 9 >_5 3 I 

8 '_l)
11 + (l'_lj = Si.'! /,T 0.1 11eun1a11n 0. 5 J acobi 100 

9 y" + Cl'.IJ = s'in25411 :.i 2 n e Ulllc:1.1111 l. G SOR, 99 .96 

T ct.ble 1: R,esults for each 1no clel proble111. ,Yit h d ifferent v-cycle ·p ecificc1 tion s. 
w i:::; t h e r elax ation p ar a111eter used in t h e SOR c1 11cl ( ,veighted) J c1cobi relc1x­
c1t ion 111eth ocl :::; . The d.ven1ge error reduction rc1te i · the a111ount bY "·hic-h the 
cliffe r en cE b ehveen t h e :::;olnt.ion esti111ate c"\ncl t he ana lvtic .··olution is rcclucecl 
,\·it h each cvcle. 
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Chapter 10 

Minimising GCV for the 

univariate piecewise constant 

smoothing spline system 

10.1 Performance of the OPTRSS algorithm 

After detennining that nested grid was the appropriate choice of multigrid 

algorith111 for use in this analysis, the OPTRSS algorithm, described in sec­

tion 8.1, was i111plemented. As discussed in Chapter 8, the OPTRSS algorithm 

was constructed as a preli111inary step towards minimising GCV. The objective 

was to test the underlying adaptive iterative framework. This was intended to 

be the basis of the MINGCV algorithm. These processes were carried out in 

the early stages of the univariate analysis and therefore used only the piece­

wise constant discretisation of the univariate smoothing spline proble111, given 

in equation (3.5) . 

As with the analyses in Chapter 9, there are a number of initial settings for 

the OPTRSS algorithm that were prescribed to intuitively sensible values , and 

then optimised experi111entally during the course of the investigation. The ini­

tial settings in Table 9.1 were again used for the nested grid framework. As 

discussed in section 8.1 , the convergence criteria in the OPTRSS algorithm, 
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determining the resolution of the final grid and the nun1ber of updates per­

formed on each grid, were not used during this testing phase. Instead , the 

number of grids, the final grid resolution , and the number of updates· per grid 

were prescribed in the same 1nanner as for the analysis in the previous chap­

ter. The initial value of 0 was set to the 1nini1num GCV value obtained fro1n 

ANUSPLIN. The 0 esti1nate then was updated every 3 SOR iterations using 

the Newton method in equation (8.1), and 10 updates were perfonned on a 

given grid before prolongation, giving a total of 30 SOR iterations per grid. 

Thus for the purposes of this chapter, the OPTRSS algorithm from section 8.1 

is simplified to 

for l = 6 to 2 

for q = 0 to 9 

Uz ( 0 q) = Sz 3 
( Uz ( 0 q) , z z) 

u; ( 0 q) = Sz 3 
( u; ( 0 q) , v z) 

50 = (S - R)I!: 
0q+l = 0q + 60 

end 

Uz-1 = Tzuz 
/ Tf1 / 

Uz-1 = .1 zUz 
end 

l = l 

for q = 0 to 9 

Uz = Sz3(uz, zz) 

u~ = Sz 3 
( u~ , v z) 

end 

For the initial implementation of the OPTRSS algorith1n, a different value 

of the prescribed residual su1n of squares S was set for each grid. The S 

values were set by fixing the smoothing parameter to the mini1num GCV value 

obtained fro1n A USPLI and solving the piecewise constant system on each 

grid . The values of S on each grid are therefore the values of the residual su1n 

of squares corresponding to the solution to the piecewise constant discretised 

systern on each grid, with a fixed s_moothing paran1eter. Prescribing the S 

values in this way is the simplest test of the iterative fra1nework , because the 
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solution on grid l + l is an accurate approximation to the solution on grid l. 
The prescribed S values on each grid are shown in Table 10.1 , with corre­
sponding stochastic estimates of the signals and GCV values. The smoothing 
parameter is fixed on all grids to the analytic minimum GCV value of 0 = 
10.14. There is considerable variation in the statistics in Table 10.1 between 
the grids, demonstrating that the fundamental characteristics of the solution 
change when it is represented on different grids, even though the smoothing 
parameter is the san1e. 

It might be expected that the residual sum of squares would decrease and 
the signal would increase as the grids get finer and the solution develops fine 
scale structure. However, after the transition from coarsest grid, there are 
no consistent trends in the solution characteristics. The statistics imply that 
representation on finer grids has not induced strong changes in the smoothing 
spline solution for this data set. 

grid no. s GCV signal 
1 2.8208 0.0313 5.5915 
2 2.8577 0.0317 5.5842 
3 2.9489 0.0327 5.6123 
4 2. 7817 0.0313 6.2487 
5 2.8376 0.0322 6.7007 
6 3.4815 0.0389 5.9134 

Table 10.1: Prescribed residuals on each grid level, with GCV and signal values. 

The results of running the OPTRSS algorithm with the prescribed S values in 
Table 10.1 are shown in section A. l with summary results in Table 10.2. In the 
tables in this chapter , the algorithm is said to have converged on a particular 
grid if the 0 updates converge to 2 decimal places. To fully appreciate the 
convergence behaviour of the algorith1n it is necessary to examine the more 
detailed results in the appendices. On grid nu1nber 6, the 0 estimate settled 
down and actually agreed to almost 4 decimal places after 10 updates. As the 
grids got finer the 0 estimate became less likely to converge. On the 3 finest 
grids the estimate shows no sign of converging, although it changes very little 
with each update. The superior performance of the algorithm on the coarse 
grids compared to the finer grids would be expected , given the results of the 
analyses in Chapter 9 which showed that the conditioning of the s1noothing 
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spline syste111 deteriorates as the grid resolution is refined. 

Grid no. No. of Converged Converged Converged 
updates 0 value S - R value dR/ d0 value 

6 6 10.14 0.000 0.068 
5 8 10.14 0.000 0.14 
4 11011 convergence 
3 11011 convergence 
2 11011 convergence 
1 11011 convergence 

Table 10.2: Results generated by the OPTRSS algorith111 for the data set 
sine.dat. 

A clearer picture of the behaviour of the 0 estimate can be shown by plotting 

its behaviour throughout the solution process, as seen in Figures 10.1- 10.6. 

On the coarsest grid, convergence is ahnost direct. On grid nu111ber 5, 0 os­

cillates towards the optimal value. This means that the solution estimate , 

and estimates of du/ d0 and dR/ d0 are not reacting to changes in 0 as quickly 

as on the coarse grid. As a result , the process becomes poorly synchronised. 

The estimates of the solution and its derivatives reflect old 0 updates more 

than recent ones. The 0 estimate 'overshoots ' the optimal value that would be 

obtained fro111 Newton's method if the derivative esti111ates were accurate for 

that 0 value. The finer the grid, the more of a problem this beco111es. 

Clearly on the fines t grid solution estimates are so slow to reflect changing 0 

that its value keeps increasing, and will probably continue to do so until 0 is 

so large that it will be impossible to recover by updating on any grid . This 

is demonstrated by looking at the S - R values in Table A.1.6 , which shows 

that the residual sum of squares on the fine grid is very slow to increase to 

the prescribed value. Techniques to overco111e this problem are discussed in 

follo-,ving chapters . 

Further insight v -ere gained by varying some of the initial settings chosen. 

Tho e factors that were found to have a considerable influence on the behaviour 

of he algorithm are di cus ed belo-w. 
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Figure 10.1: Successive smoothing parameter updates on grid no. 6 generated 
by the OPTRSS algorithm, for the data set sine.dat. 
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Figure 10.2: Successive smoothing parameter updates on grid no. 5 generated 
by the OPTRSS algorithm, for the data set sine.dat. 
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Figure 10.3: Successive s1noothing parameter updates on grid no. 4 generated 
by the OPTRSS algorithm, for the data set sine.dat . 
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Figure 10.4: ucce i\-e moo hing parameter updates on grid no. 3 generated 
bY the OPTR algorith1n; for the data et ine.dat . 
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Figure 10.5: Successive smoothing paran1eter updates on grid no. 2 generated 
by the OPTRSS algorithm, for the data set sine.dat. 
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Figure 10.6: Successive sn1oothing pararneter updates on grid no. 1 generated 
by the OPTRSS algorith111, for the data set sine.dat. 
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10.1.1 The starting value of 0 

Experiments varying the starting value 00 on the coarsest grid showed that 

some care must be taken when choosing the initial · estimate. In the case of 

this problem, the analytic value of the smoothing para1neter is known to be 

25500 , which corresponds to a 0 value of 10.1464. Starting values in a range 

two orders of magnitude s1naller than the analytic smoothing para1neter, 500 

and 100, were chosen. The results for Ao = 500 are shown in section A.2. The 

0 esti1nates are clearly much more unstable than those in section A.2. When 

the starting value_was set to 100, the procedure diverged even faster. However, 

it was found that if starting values around 2 orders of 1nagnitude larger are 

chosen ( Ao = 5000000), the esti1nates were 1nuch 1nore stable ( section A. 3) . 

Smaller values of 0 are likely to cause instability because they result in very 

s1nall values of Aj h3
, particularly on the coarse grid. This will cause the system 

of equations (3.5) to beco1ne dominated by the pT P term, 1naking the solution 

and its derivatives relatively insensitive to changes in 0. This 1neans that 0 

can deviate from the opti1num value by a large a1nount before the derivatives 

adjust in response to this change. 

T hese results show that it is clearly advantageous to chose a starting value of 

0 in t he s1nooth end of t he spectru1n. This makes intuitive sense as the nested 

grid algorit h1n ascertains the smooth, broadscale trends first by starting on a 

very coarse grid , t hen gradually builds up fine scale structure in the solution 

esti1nate as the process is transferred to finer grids. The obvious question is 

how to calculate t his start ing estimat e of 0. It was not an issue in this case 

because the full spectrum of A values and corresponding signal values could be 

calculated analytically, as was done in Figure 9.4. However , one 1nethod is to 

set the starting value of A, given by Ao, as 

10 = 6Ao 
h3 (10.1 ) 

This is designed to set the two terms in t he left hand side of equation ( 3. 5) to 

have approxi1nately equal influence, assu1n ing there are around 10 dat a points 

in each grid cell on the coarsest grid: This avoids putting particular e1nphasis 

put on s1noothing or close fitt ing of the data. 
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10.1.2 The prescribed residual sum of squares 

The above analysis prescribed different values of the residual sum of squares 
for different grids in such a way that the optimal value of ,\ would not change 
from grid to grid. It was not the original intention of the algorithm to prescribe 
S values in this manner, as information about the effect of discretisation on 
grids of differing coarseness is obviously unknown in practice. The algorithm 
was therefore modified to prescribe an S value of 2.8208 on all grids. This was 
the value obtained by solving the piecewise constant smoothing spline system 
on the fine grid with the smoothing parameter set to the minimum GCV value 
calculated from ANUSPLIN. The Newton method should therefore converge 
to this smoothing parameter. 

The effect of this modification was quite disastrous for the algorithm, as indi­
cated by the results in section A.4. The immediate divergence of 0 to negative 
values occurred because the prescribed R was too small to be achieved on the 
coarse grid. The smallest possible residual sum of squares on the coarse grid 
can be calculated by prescribing a smoothing parameter of zero. The resulting 
R was found to be 3.4201 on the coarse grid, larger than the fine grid value 
of 2.8208. The 0 esti1nate quickly became very small on the coarse grid in an 
attempt to achieve the fine grid S value, and eventually become infinitesimal. 
This emphasises the fact that exact interpolation cannot be achieved on grids 
too coarse to allow each data point to have a separate grid cell. In the case 
of this problem, there is more than one data point per grid cell until grid 2 
because the data occur at regularly spaced intervals of 3.6. 

One way to combat this problem is to put a lower limit on the 0 update, so it 
does not diverge past the point of recovery on grids for which the prescribed 
residual sum of squares is too small. A condition was set so that , if a 0 
update was lower than a certain threshold, the update would be set to that 
threshhold. Threshold values were chosen to give a value of ,\/ h3 that would 
not cause equation (3.5) to be dominated by one particular term. Requiring a 
lower limit on ,\ / h 3 allows the mini1num 0 value to decrease as the resolution is 
refined , as ,\/ h3 will be larger on finer grids for a given 0 because h decreases. 
The results for a chosen threshold value of,\/ h3 = 0.5 are shown in Table 10.3 

and section A.5. 

Clearly the 0 esti1nate is fixed at the threshold value for all coarse grid up-
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Grid no. No. of Converged Converged Converged 
updates 0 value S - R value dR/ d0 value 

6 1 9.70 -0.64 0.046 
5 9 10.02 0.000 0.14 
4 non convergence · 
3 non convergence 
2 non convergence 
1 non convergence 

Table 10.3: Results generated by the OPTRSS algorithm, with a lower thresh­
old on A updates of A/ h3 = 0.5, for the data set sine.dat. 

dates. Extre1ne negative updates have been avoided, stabilising the algorithm 

somewhat . The algorithm does converge on grid number 5, although the 0 esti­

mates in section A.5 are still not as stable as those produced by the procedure 

in section 10.1. Convergence on the grid number 5 is slower , and the estimates 

clearly diverge on grids 1 and 2 to a greater extent than in section A. l. These 

problems are a result of the fact that, in order to achieve the sa1ne prescribed 

residual sum of squares on all grids, the required smoothing para1neter must 

change from grid to grid. This means that the solution must change on every 

grid to adjust for the new 0 required to meet the prescribed S value. The 

analyses in Chapter 9 demonstrated the slow rate at which solution esti1nates 

change on fine grids, a manifestation of the poor conditioning of the system. 

It is clear that, in this case, the solution on finer grids cannot be corrected for 

the changing 0 esti1nate. The 0 esti1nate keeps increasing due to t he continual 

discrepancy between the prescribed residual su1n of squares and the residual 

SlllTI of squares of the current solution. The proble1n of 'synchronising' the 

0 update with the changing solution is fundamental to the use of these tech­

niques on syste1ns that are not well conditioned . Further 1nethods of dealing 

with this pheno1nenon are discussed in Chapter 11. 

10.1.3 The number of iterations per update 

The nu1nber of SOR iterations performed betv:.reen updates of 0 is fundamen­

tal to the synchronisation issues previously discussed. It might be expected 

that the process of updating 0 could be stabilised if the nu1nber of iterations 

per update ·was increased to allow the solution to change in response to the 
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previous update. This was confirmed by studying the rate of convergence on 
grid number 4 when the number of iterations per update was increased from 
3 to 10. Convergence of 0 to four decimal places was achieved in a total of 
180 SOR iterations with 10 iterations per update, where as a total of 306 SOR 
iterations were required with 3 iterations per update. These results suggest 
that the process is at its most efficient with fewer iterations per update on 
coarse grids and more on fine grids. This is a logical conclusion considering 
that on the coarse grid the solution can be changed by the required amount 
after each update in a very short time, and further iterations are wasteful. 

10.1.4 The effect of fixing the smoothing parameter to 
a lower value 

Many characteristics of the above results depended heavily on the scale of 
variation of the chosen solution. It was insightful to run the procedure on the 
data set sine.dat with a prescribed smoothing parameter of,\ = 5 or 0 = 1.61. 
The analytic spline solution corresponding to a sn1oothing parameter of 5 is 
shown in Figure 10. 7. While this solution is not optimal, it has much greater 
fine scale structure and is therefore be better suited to the scale of the grids 
chosen for this algorith1n. 

The procedure used at the start of this chapter, where S values on each grid 
were prescribed to correspond to a smoothing para1neter that did not vary 
between the grids, was again e1nployed here, where ,\ was fixed at 5. The 
lower threshold on 0 updates given by ,\/ h3 = 0.5 was again emplaced. This 
was necessary to maintain the stability of the algorithm on coarse grids, where 
exact interpolation was required to estimate the spline solution corresponding 
to this lower smoothing parameter. The results are shown in Table 10.4 and 

section A.6. 

On finer grids the 0 esti1nates show a lot more stability than the results for 
the higher s1noothing para1neter. On the 2 coarsest grids , the results show the 
forcing of the 0 esti1nate to its lower threshold. Convergence to 4 decimal places 
was achieved on grid nu1nbers 4 and 3. However, convergence was quite slow 
on the finest grid. Figures 10.8 and 10.9 show that the grids in this algorithm 
are again too fine compared to the scale of the solution. The solution clearly 
changes very little between grid numbers 2 and 1, i1nplying that grid number 
2 is fine enough to represent the variability in the solution. This raises the 
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Figure 10.7: Smoothing spline solution for the data set sine .dat , with a fixed 
smoothing parameter of 5. 
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Figure 10. : OPTR olut ion on grid no. 2 for a fixed smoothing parameter 
of 5. for the da a et ine.dat . 
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Figure 10.9: OPTRSS solution on grid no. 1 for a fixed smoothing parameter 
of 5, for the data set sine.dat. 

Grid no. No. of Converged Converged Converged 
updates 0 value S - R value dR/d0 value 

6 0 5.09 0.000 0.00 
5 4 3.02 0.000 0.00 
4 7 1.61 0.000 0.00 
3 4 1.61 0.000 0.33 
2 8 1.61 0.000 0.44 
1 14 1.61 0.000 0.44 

Table 10.4: Results of the OPTRSS algorith1n, with residuals prescribed to 
correspond to a fixed smoothing para1neter of 5, for the data set sine.dat. 

funda1nental question of when to stop refining the grids, an issue which is 
addressed in following chapters. 

10.2 Performance of the MINGCV algorithm 

This section describes the results produced by the MINGCV algorithm de­
scribed in Chapter 8, applied to the piecewise constant discretised system. 
The results of this process led to the incorporation of the quadratic B-spline 
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framework. The initial settings for the following analysis were the same as 

those used for the OPTRSS algorithn1, as discussed in the second paragraph 

of this chapter, except that 20 iterations were performed per grid instead of 

10 to give n1ore information about the behaviour of the 0 estin1ation process. 

The si1nplified MINGCV algorith1n used in this chapter is shown on the next 

page. 

Details of the results of the MINGCV algorith1n are shown in Table 10.5 and 

section A. 7. The patterns are similar to those observed for the OPTRSS 

algorithm, which is not surprising considering that the two algorithms are very 

similar in structure. Convergence to 4 decimal places was relatively fast on 

the two coarsest gr.ids. This is also reflected in the dGCV/ d0 esti1nates, which 

quickly approach zero. The 1nini1num GCV estimate of 0 was different on these 

grids, demonstrating that discretising on grids of different coarseness affects the 

1neasured s1noothness of the solution. Convergence deteriorated on the finer 

grids. On fine grids the solution is clearly non-responsive to changes in 0, to an 

apparently worse degree than that den1onstrated by the OPTRSS algorithm. 

There is reason to expect the OPTRSS method to be 1nore robust given that 

the Newton correction to 0 in equation ( 8.1) is based on the difference between 

the current residual sum of squares and the prescribed residual su1n of squares. 

It therefore always has the right sign, provided 0 values are not in the extre1ne 

range of Figure 8.1. The correction to 0 for the MINGCV algorith1n, given in 

equation (8 .14), is dependent on a greater number of esti1nated values , and is 

not so robust in sign or n1agnitude. 

Grid o. of Converged Converged Converged Converged 
110. updates 0 value R value signal GCV 

value value 
6 8 10.10 3.48 6.0 0.0389 
5 9 8.54 2.59 10.2 0.0317 
4 11011 convergence 
3 11011 convergence 
2 11011 convergence 
1 11011 convergence 

Table 10.5: Re ults generated by the Mll GCV algorith1n , for the data set 
sine.dat. 
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for l = 6 to 2 

for q = 0 to 19 

form= 0 to 2 

u[m\0q) = Slv 1 (Uim\0q), Vz) 
end 

for n = 0 to 1 

b im)(0q) = Slv1 (bin\0q), wr) 
end 

0 +1 = _J_ q 2c 

q=q+l 

end 

form= 0 to 2 

U
(m) - r,iu(m) 
l-1-..Ll l 

end 

for n = 0 to 1 

b (n) _ r,i b (n) 
l-1-..Ll l 

end 

end 

l=l 

for q = 0 to 19 

form= 0 to 2 

uim\0q) = Slv 1 (u[m) (0q), Vz) 

end 

for n = 0 to 1 

him\ 0q) = sl vi (b in) ( 0q)' wr) 
end 

0q+l = -1c 
end 

An initial test of whether the algorithrn is working correctly is to check whether 
the results are consistent with the analytic trends in Figures 8.1- 8.5. According 
to Figures 8.4 and 8.5 , dR/ d0 and dTr / d0 estimates should always be positive, 
provided 0 is not in the extreme low or high regions. The results in section A. 7 
show that this is always the case on the three coarsest grids . On finer grids the 
results deviate from analytic behaviour. According to Figure 8.3, the dGCV / d0 
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estin1ate can be negative or positive, depending on whether 0 is greater than 

or less than the value corresponding to the minin1um GCV. However , the 

d2GCV/ d0 2 estimate should not be negative unless 0 is in the extreme high or 

low ranges. If the d2GCV/ d0 2 estimate is negative, the MINGCV algorith1n 

will be unable to converge to a mini1nu1n GCV. The estimates of d2GCV/ d0 2 

in section A. 7 are always positive on the three coarsest grids, which is an 

indication that the algorithm is stable on these grids. The process clearly did 

not converge on the finer grids. 

The plots of the 0 esti1nate in Figures 10.10 - 10.15 give insight into the be­

haviour of the algorithm. The 0 estimate clearly converges on grid numbers 6 

and 5, but looks unlikely to do so on grid number 4, and clearly diverges on 

the finer grids. There could be a number of reasons for this. Based on the 

results of the OPTRSS algorithm, it seems logical that the inefficiency of basic 

iteration is responsible for the divergence. On fine grids, the syste1n is poorly 

conditioned and SOR is very slow to adjust to the required changes in the 

sn1oothness of the solution. This appears to be the problem on grid number 

3, where the inaccuracy of the solution is reflected in the dGCV/ d() value. As 

0 decreases to values clearly below the opti1nal level, dGCV / d() decreases in 

magnit ude and eventually beco1nes negative is response to the s1nall 0 value , 

but it is very slow to do so. The 0 estimate then increases to values that are 

too large, and dGCV / d() does not respond in time, creating a pattern of os­

cillatory divergence. Eventually () becomes extre1ne and d2GCV / d0 2 becomes 

negative, which destroys any chance of convergence. 

Further investigation of the GCV revealed another possible reason for the 

divergence observed in Tables 10.5 and section A. 7. Table 10.6 shows GCV 

values corresponding to the piecewise const ant solution for the 3 coarsest grids, 

for different smoothing para1neter values. The GCV trends deviate from the 

analytic pattern in Figure 8.3. On grid nu1nber 6 t here is a clear minimum 

at 25500 as would be expected , but t he GCV also appears to have a local 

1nini1nu1n at 70000 , an anomaly that did not occur in the analytic case . The 

results in section A. 7 are consistent with t his scenario , converging to a 0 value 

corresponding to A = 24416 on grid nu1n ber 6. On grid number 5 t here appears 

to be a local 1nini1nu1n at A = 5000 and again at A = 30000 and A = 500000. 

The MI GCV algorith1n clearly targets t he smaller optimum. However , on 

grid number 4, where there are minima at A= 5000 and A = 500000 , the 
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Figure 10.10: Successive s1noothing para1neter updates on grid 6 generated by 
the MINGCV algorithm, for the data set sine.dat. 
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Figure 10.11: Successive smoothing parameter updates on grid 5 generated by 
the MI GCV algorith1n, for the data set sine.dat . 
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0 

5 10 15 20 25 

No. of updates 

Figure 10.12: Successive smoothing parameter updates on grid 4 generated by 
the MINGCV algorithm, for the data set sine.dat . 
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Figure 10.13: Successive s1noothing para1neter updates on grid 3 generated by 
the MINGCV algorith1n , for t he data set sine.dat . 
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Figure 10.14: Successive smoothing parameter updates on grid 2 generated by 
the MINGCV algorithm, for the data set sine.dat. 
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No. of updates 

Figure 10.15: Successive srnoothing paran1eter updates on grid 1 generated by 
the MINGCV algorithm, for the data set sine.dat. 
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>. CCV 
grid 6 grid 5 grid 4 

1000 .0396 0.0329 0.0320 

5000 .0393 0.0318 0.0308 
10000 .0391 0.0319 0.0309 

25500 .0389 0.0322 0.0313 

30000 .0389 0.0318 0.0329 
40000 .0390 0.0325 0.0316 

50000 .0409 0.0317 0.0305 
70000 .0394 0.0329 0.0323 
100000 .0399 0.0335 0.0330 

Table 10.6: CC~ values for the piecewise constant approximation to the 
smoothing spline on each grid, for different prescribed smoothing parameters , 
where local minima are emphasised. 

algorithm appears to oscillate between the two. Initially the numbers tend 

towards the smaller optimum, although there is some oscillation, which would 

be expected as t his grid is relatively fine. At 12 updates the numbers jurnp 

towards higher values close to that of the larger optimum. This is followed by 

a sharp dive t owards lower values. 

The behaviour of the 0 estimate is clearly reliant on the under lying structure 

of t he CCV estimat e. The errant behaviour of the CCV estimate could be due 

to discretisation error introduced by the piecewise constant approxi1nation or 

stochastic error in t he esti1nate of Tr. This is discussed further in Chapter 11. 

It was also interesting t o note the resilience of the CCV to changes in the 

smoothing parameter in t he above analysis. Increasing >. by a factor of 10 

changes the CCV only around 2%. This implies that a high degree of accuracy 

in the 0 esti1nate is not necessary t o obtain a solution that represents the dat a 

in an optimal way. Further analysis revealed a number of factors that explain 

1nore about the behaviour of t he algorit hm. These findings are discussed below. 

10.2.1 Stochastic error in the trace estimate 

The MI CCV algorith1n has a funda1nental dependence on the trace esti1nate 

Tr , due to its presence in the calculation of t he CCV and all its derivatives. 

This factor distinguishes the MIN C CV algorit h1n from the OPTRSS algorithm, 

which did not involve the trace estimate in t he opt i1n isation process . The 
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data set sine.dat is very small, having only 101 observations. The stochastic 
error in the Tr estimate is therefore much higher for the analyses discussed 
in this chapter than it would be for a large data set, given that the relative 
standard deviation of the Tr esti1nate is bounded by (2/n) 112 as discussed in 
section 8.2.1. While the MINGCV algorithm is intended for application to 
large data sets, an investigation of the influence of stochastic error on this 
analysis was necessary to understand the behaviour of the algorithm. This 
involved looking at how different realisations of the random vector t affected 
the performance of the algorithm. For example, using a different random 
vector t to that used to produce the results in Table 10.5 gave the results in 
Table 10.7, with full results in section A.8. 

Grid No. of Converged Converged Converged Converged 
no. updates 0 value R value signal GCV 

value ' value 
6 11 9.93 3.47 13.6 0.0459 
5 non convergence 
4 non convergence 
3 non convergence 
2 non convergence 
1 non convergence 

Table 10. 7: Results generated by the MINGCV algorithm for the data set 
sine.dat, using a second random vector t. 

A GCV 
grid 1 grid 2 grid 3 grid 4 grid 5 grid 6 

1000 0.0349 0.0351 0.0363 0.0335 0.0353 0.0463 
5000 0.0355 0.0360 0.0371 0.0348 0.0359 0.0461 

10000 0.0358 0.0362 0.0374 0.0353 0.0362 0.0460 
25500 0.0361 0.0366 0.0378 0.0359 0.0364 0.0459 
40000 0.0364 0.0368 0.0380 0.0362 0.0365 0.0460 
60000 0.0367 0.0371 0.0383 0.0365 0.0367 0.0462 

Table 10.8: GCV values for the piecewise constant approxi1nation to the 
smoothing spine on each grid , for different prescribed s1noothing parameters, 
for a second random vector t. Local minima are e1nphasised. 

Convergence is direct on grid number 6, but there are clearly problems on grid 
number 5. In order to calculate where the minimu1n GCV value should be, the 
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piecewise constant system was again solved for different sn1oothing parameter 

values and GCV values were calculated, as shown in Table 10.8. These trends 

are different to those that would be expected for this problem, in that there 

is no minimu1n GCV value on grid number 5. Instead, the GCV continues 

to decrease as () gets smaller. This implies that the optimal solution is too 

fine in structure to be represented on a grid of 24 points, and () is forced to 

zero in an attempt to represent this solution. If this was the case, the opti1nal 

signal must be greater than 24. This is considerably larger than the analytic 

value of 8.2. Thus this particular random vector t is clearly associated with 

particularly high stochastic error in the trace estimate. 

The results for a third random vector are shown in Tables 10.9 and section A.9. 

The estimates are again stable on the coarse grid but behave erratically on all 

other grids. The results in Table 10.10 indicate that the GCV structure is 

analytic in its behaviour, with a single minimu1n on all grids . However , it can 

be seen from section A.9 that, following an update to a large () value on grid 

number 5, d2GCV/ d() 2 becomes negative. This is a sign that the () estimate 

is in the extreme range of the GCV curve in Figure 8.1. The optimisation 

procedure would be expected to perform poorly in this region. A procedure 

involving dampening the update to () was found to improve this situation. This 

is discussed further in the next section. 

Grid No. of Converged Converged Converged Converged 
no. updates () value R value signal GCV 

value value 
6 8 11.29 3.61 10.7 0.0448 
5 non convergence 
4 non convergence 
3 non convergence -
2 non convergence 
1 non convergence 

Table 10.9: Results generated by the MINGCV algorithm for the data set 
sine.dat , for a third rando1n vector t. 

The difference in the results in Tables 10. 5, 10. 7 and 10. 9 show that the trace 

esti1nate is clearly an important issue in this algorithm, particularly when it 

is used on s1nall data sets such as sine.dat. One possible solution is to use 

several rando1n vectors, and take the average of the result. For example, to 
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,\ CCV 
grid 1 grid 2 grid 3 grid 4 grid 5 grid 6 

1000 0.0386 0.0395 0.0407 0.0375 0.0391 0.0492 
5000 0.0379 0.0386 0.0398 0.0371 0.0379 0.0482 

10000 0.0373 0.0380 0.0391 0.0368 0.0375 0.0474 
25500 0.0367 0.0373 0.0384 0.0365 0.0370 0.0459 
40000 0.0366 0.0371 0.0383 0.0363 0.0369 0.0453 
60000 0.0366 0.0371 0.0383 0.0364 0.0369 0.0449 
80000 0.0366 0.0371 0.0383 0.0364 0.0369 0.0449 
100000 0.0373 0.0377 0.0389 0.0369 0.0373 0.0449 

Table 10.10: CCV values for the piecewise constant approximation to the 
smoothing spline on each grid, for different prescribed smoothing parameters , 
for a third random vector. Local minima are emphasised. 

reduce the variance of the stochastic error by a factor of 10 would require 10 
random vectors. This option is explored in section 11.1. 
One co1nmon result of the preceding analyses is that convergence on the coarse 
grid is always fast and direct, regardless of the instability of the performance 
on other grids. This shows that the algorithn1 obviously has potential for high 
speed performance for syste1ns that are well conditioned. 

10.2.2 Dampening the 0 updates 

One way to address the synchronisation issues observed in the above analysis 
is to damp the correction to the 0 estimate with each update. This can be used 
to stabilise the algorithm in situations where the 0 updates have high error. 
Also , basic iteration cannot efficiently respond to large 0 updates , particularly 
on fine grids. A da1npening factor of 1/ 2 was tried for the random vector used 
in Table 10.9 , 1neaning that the amount by which the 0 is updated , calculated 
by (8 .14), is multiplied by 1/2 . The results are shown in Table 10.11, with full 
results in section A.10. 

The effect of the damping is to improve convergence on finer grids, but slow it 
down on the coarse grid . On the coarsest grid, convergence to 4 decimal places 
was delayed by a few updates. On grid number 5, however, the numbers are 
much 1nore stable than those in Table 10.10, and the s1noothing para1neter 
does not jump into the region of negative d2GCV / d0 2

. This indicates that 
the issue of synchronising the various iterative processes in the algorithm is 
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Grid No . of Converged Converged Converged Converged 
no. updates 0 value R value signal GCV 

value value 

6 8 11.29 3.61 10.7 0.0448 
5 non convergence 
4 non convergence 
3 non convergence 
2 non convergence 
1 non convergence 

Table 10.11: Results generated by the MINGCV algorithm for a dampening 
factor of 1/2 , for the data set sine.dat . 

fundamental to its success. If the required change is smaller, basic iteration is 

powerful enough to make the algorithm stable. On the coarse grid, da1npening 

is clearly wasteful, as SOR can keep up with the full update. However , coarse 

grid updates are ·not computationally expensive. As soon as the grids get finer , 

SOR is only capable of making very small changes to the solution with each 

iteration in response to changing 0. Clearly the requirement of a different level 

of smoothness resulting from updating 0 introduces error components with a 

frequency too low to be reduced on fine grids. 

10.3 Conclusion 

The analysis so far has characterised , at a preliminary level, the behaviour 

of the MINGCV algorithm, or the algorithm for estimating mini1num GCV 

s1noothing splines, developed in Chapter 8. At this point, the algorit h1n has 

only been tested on the piecewise constant discretised system in (3 .5 ). It 

appears that the MINGCV algorith1n will converge efficiently on grids of an 

appropriate resolution, not too coarse to represent the complexity in the pro­

cess, and not too fine to render the system poorly condit ioned. Thus for an 

extremely smooth process such as a single sine curve, the algorith1n will only 

converge on the coarser grids. Divergence on finer grids occurs due to poor 

conditioning, which leads to poor synchronisation of the two iterative process 

updating both the smoothing parameter estimate and the corresponding so­

lution estimate. SOR iteration cannot respond efficiently to larger changes in 

0 for a poorly conditioned system, so the updates of 0 diverge away fro1n the 
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optimal value. For a finer scale process , the algorithm will converge efficiently 
on finer grids, because the conditioning improves as the smoothing para1neter 
is decreased. This was the case for the fine scale process corresponding to the 
smoothing spline fit to the data set sine.dat with the smoothing parameter 
fixed at ,\ = 5. 

The above results have identified two potential difficulties associated with the 
MINGCV algorithm. Firstly, due to the small size of the test data sets, stochas­
tic error in the Tr esti1nate was found to have a considerable influence on the 
resulting smoothing spline solution, and the convergence behaviour of the al­
gorithm. Using different random vectors t, it is possible to get convergence to 
an accurate solution estimate, convergence to a less accurate estimate, diver­
gence, or a GCV structure which does not have a local minimum. This can be 
overcome by averaging results from multiple si1nulations of the random vector 
t, as discussed in the next chapter. Secondly, it was found that the GCV 
structure corresponding to the discretised smoothing spline solution may have 
1nultiple 1ninima, or maxi1na. This deviation from analytic behaviour could 
be due to either stochastic error in the estimate of Tr, and the corresponding 
GCV estimate, or the effect of the piecewise constant discretisation. These 
issues will be addressed in following chapters. 
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Chapter 11 

Minimising GCV for the 

univariate quadratic B-spline 

smoothing spline system 

The MINGCV algorithm defined in section 8.2 can deliver an accurate solution 
to the piecewise constant discretised systen1 in equation (3.5) with a good es­
tin1ate of the opti111al sn1oothing parameter. However, it clearly has problems 
adjusting to the required corrections on finer grids . It therefore has a tendency 
to be slow and unstable. The quadratic B-spline approximation discussed in 
section 3.2 has clear potential to overco111e the difficulties of reducing errors 
on finer grids by allowing a more accurate estimate of the analytic solution 
on coarse grids, and a sn1oother transition between the grids. The MI GCV 
algorith111 was therefore applied to the quadratic B-spline discretised system in 
equation (3 .29), still maintaining the initial settings used in the previous chap­
ter, and beginning with the data set sine.dat. The results fro111 this chapter 
have been published in Hancock and Hutchinson [48] . 

As in Chapter 10 , the convergence criteria li111iting updates of the smoothing 
parameter on a given grid and further refinements of the grid resolution were 
not e111placed for the investigations presented in this chapter. This allowed a 
clearer understanding of the convergence process. The results for the quadratic 
B-spline discretised system were a significant improve111ent on those obtained 
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for the piecewise constant system. Surn1nary results are shown in Table 11.1 , 

but the effect is best seen by looking at more detailed results in section B. l. 

Convergence to 4 deci1nal places is achieved on grids 6 and 5. Section B.1 

shows that divergence occurs on grids 4 and finer. Figures 11.1, 11. 2 and 11. 3 

shows rapid convergence on the two coarsest grids, but a pattern of oscillatory 

divergence sets in on grid 4. However, the divergence on fine grids is 1nuch 

slower than that observed for the piecewise constant syste1n, and dGCV / d0 is 

very small, implying that the estimates are not far from the minimu1n. 

The performance of the algorithm for the quadratic B-spline system verifies the 

previous argument that divergence occurs on fine grids because basic iteration 

cannot respond to-large changes in the smoothing parameter, particularly when 

the smoothing parameter is very high. This is a result of the poor conditioning 

of fine grid discretisations of smoothing spline syste1ns corresponding to smooth 

processes. When a quadratic B-spline discretisation was used, the solution was 

very accurately represented on the coarse grid so little change was required on 

finer grids. Figure 11.4 clearly shows the superior representation given by 

B-spline representation on the coarse grid. 

An important benefit of using the quadratic B-spline approach is that the 

underlying GCV structure appears to be more stable. Values of the GCV 

for different smoothing para1neter values were again calculated, by solving the 

quadratic B-spline discretised system for fixed smoothing parameters. The 

results in Table 11.2 show that the GCV structure is consistent with analytic 

behaviour on all grids. The fact that a change of discretisation has led to 

Grid No. of Converged Converged Converged Converged 
no. updates 0 value R value signal GCV 

value value 
6 6 7.25 -

0.0312 2.78 6.1 
5 4 8.33 2.68 7.3 0.0309 
4 non convergence 
3 non convergence 
2 non convergence 
1 non convergence 

Table 11.1: Results generated by the MI GCV algorithm, using quadratic 
B-spline discretisation. 
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Figure 11.1: Successive smoothing paramater updates on grid no. 
6, generated by the MINGCV algorithm, for the data set sine.dat. 
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o. of updates 

Figure 11.2: Successive sn1oothing paramater updates on grid no. 
5, generated by the MINGCV algorithm, for the data set sine.dat. 
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Figure 11.3: Successive smoothing paramater updates on grid no. 
4, generated by the MINGCV algorith1n, for the data set sine.dat. 

Figure 11.4: Quadratic B-spline approximation to the srnoothing 
spline solution on grid 6) generated ~y the MINGCV algorithm for 
the data set sine.dat . 
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this improven1ent suggests that stochastic error in the trace estin1ate was not 
responsible for the erroneous GCV structure observed for the MINGCV algo­
rithm with piecewise constant discretisation , discussed in section 10.2. 

To test this further , A USP LIN was used to calculate Tr (A) = tt analyti­
cally for a sample of 9 rando111 vectors and 7 prescribed smoothing parameters , 

A 

where t is the vector of fitted values corresponding to the analytic spline fit to 
the data vector t. This allowed the calculation of the stochastic GCV estimate 
for each random vector in the absence of discretisation error or error due to 
the nu111erical solution not having converged exactly. These results are shown 
in Table 11.3. Although there are considerable differences in the estimates of 
the GCV for each rando111 vector, the GCV structure seems consistent across 
the random vectors. The GCV always increases monotonically either side of a 

single 111inimum, even if the 111inimum corresponds to a smoothing parameter 
much smaller than the analytic value. It therefore seems that, while stochastic 
error in the Tr estimate does shift the position of the GCV curve in Figure 8.1 
considerably, it does not cause the structure to behave in the anomalous way 
observed in Table 10.6 , 10.8 and 10.10, which feature 111ultiple minima. In­
stead, it is concluded that discretisation error was largely responsible for the 

errors observed for the piecewise constant discretisation. The higher continu­

ity of quadratic elements gives accuracy to the solution and the corresponding 
statistical characteristics that piecewise constant discretisation does not allow. 

,,\ GCV 
l= 6 l= 5 l= 4 l=3 l= 2 l=l 

1000 0.0314 0.0314 0.0314 0.0313 0.0316 0.0312 
2000 .0312 .0311 .0309 .0309 .0309 .0309 
4000 .0313 .0309 .0308 .0308 .0308 .0308 
5000 .0313 .0309 .0308 .0308 .0308 .0308 
8000 .0315 .0310 .0309 .0309 .0309 .0309 
25500 .0318 .0315 .0314 .0314 .0314 .0314 
40000 .0321 .0318 .0317 .0317 .0317 .0317 

Table 11.2: GCV values for the quadratic B-spline approximation to the 
s111oothing spline on each grid for different s111oothing parameters. Local 111in­
in1a are emphasised. 
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A GCV 
t1 t2 t3 t4 ts t6 t7 

5000 0.0358 0.0344 0.0389 0.0319 0.0323 0.0361 0.0320 
10000 0.0352 0.0342 0.0376 0.0318 0.0322 0.0352 0.0320 
20000 0.0349 0.0339 0.0365 0.0318 0.0321 0.0343 0.0322 
25500 0.0349 0.0338 0.0362 0.0319 0.0321 0.0342 0.0323 
40000 0.0348 0.0338 0.0357 0.0319 0.0321 0.0339 0.0325 
60000 0.0351 0.0339 0.0354 0.0323 0.0324 0.0340 0.0329 
100000 0.0356 0.0344 0.0356 0.0329 0.0331 0.0345 0.0330 

t s tg 
0.0336 0.0320 
0.0337 0.0320 
0.0338 0.0322 -. 

0.0339 0.0323 
0.0339 0.0325 
0.0341 0.0329 
0.0347 0.0337 

Table 11.3: Stochastic GCV esti1nates calculated using analytic thin plate 
splines, for 9 different random vectors t and for different s1noothing para1neters. 

11.1 Stochastic error in the trace estimate 

While the results in Tables 11.1 and section B .1 are 1nore stable than those in 

Chapter 10, they are still susceptible to disruption due to stochastic error in 

the Tr esti1nate. The two different rando1n vectors t used in Chapter 11 were 

again used to investigate the effect of stochastic error on the performance of the 

MINGCV algorithm. Table 11.4 and section B.2 shows that a different random 

vector causes the 0 esti1nate to be considerably different. These esti1nates 

are 1nuch closer to the analytic opti1num of 10 .1464 than the esti1nates in 

Table 11.1, indicating that this particular rando1n vector is likely to be giving 

a 1nore accurate trace esti1nate. The results are consistent with the GCV 

structure shown in Table 11.5. The presence of a single 1ninimum is evident on 

all grids, at approximately A = 60000. This agrees well with the value reached 

by the mini1nu1n GCV algorith1n. 

Table 11.6 and section B.3 shows the results for yet another rando1n vector. 

The 0 esti1nate is very stable on th~ coarse grid , and close to t he optimu1n. 

The estimate beco1nes more unstable as the grids get finer , eventually becoming 
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Grid No . of Converged Converged Converged 
110 . updates 0 value R value signal 

value 
6 5 10.95 2.98 10.6 
5 13 10.92 2.95 11.1 
4 11011 convergence 
3 11011 convergence 
2 11011 convergence 
1 11011 convergence 

Converged 
GCV 
value 

0.0369 
0.0368 

Table 11.4: Results generated by the TVII GCV algorithm, for a second random 
vector t. 

>- GCV 
l= 6 l= 5 l= 4 l= 3 l= 2 l= l 

1000 0.041 1 0.0392 0.0392 0.0392 0.0393 0.0407 
5000 0.0392 0.0383 0.0383 0.0383 0.0384 0. 0388 

10000 0.0383 0.0378 0.0378 0.0378 0.0378 0.0380 
25500 0.0373 0.0371 0.0371 0.0371 0.0371 0.0372 
40000 0.0370 0.0368 0.0368 0.0368 0.0369 0. 0369 
60000 0.0369 0.0368 0.0368 0.0368 0.0368 0.0368 
80000 0.0370 0.0369 0.0369 0.0369 0.0369 0.0370 
100000 0.0373 0.0372 0.0372 0.0372 0. 0372 0.0372 

Table 11.5 : GCV values for the quadratic B-spline approximation to the 
smoothing spline on each grid, for different prescribed smoothing para111eters , 
for a second random vector t . Local 111inima are emphasised. 

too small and causing d2GCV/ d0 2 to become negative. This could possibly be 
corrected using the dampening procedure described in section 10.2.2. However 
the GCV structure in Table 11.7 shows that the problem is likely to be similar 
to that identified in section 10. 2.1. There is no local minima on grids 5-2. 
This analysis demonstrates t hat the stochastic error in the trace estimate has 
an enonnous impact on the performance of the MI GCV algorithm for small 
data sets . In this case the stochastic error has distorted the solution to the 
point of exact interpolation. 

In order to resolve this fundan1ental difficulty the algorithm was 111odified to 
calculate 10 different random vectors t and work out the vectors b correspond­
ing to each rando1n vector. Estimates of Tr , dTr / d0 and d2Tr / d0 were then 
calculated for each t . The averages of these estimates across all random vectors 
were used in the calculation of the GCV and its derivatives. As discussed in 

· 191 
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Grid No. of Converged Converged Converged Converged 
no . updates 0 value R value signal GCV 

value value 
6 3 10.14 2.92 11.5 0.0368 
5 13 8.94 2.74 13.6 0.0363 
4 non convergence 
3 non convergence 
2 non convergence 
1 non convergence 

Table 11.6: Results generated by the MINGCV algorithm for a third randorn 
vector t. 

,,\ -- GCV 
l= 6 l= 5 l= 4 l=3 l=2 l=l 

1000 0.0378 0.0353 0.0353 0.0353 0.0355 0.0369 
5000 0.0371 0.0358 0.0358 0.0359 0.0359 0.0363 
10000 0.0369 0.0360 0.0360 0.0360 0.0361 0.0363 
25500 0.0368 0.0363 0.0363 0.0363 0.0363 0.0364 
40000 0.0368 0.0365 0.0365 0.0365 0.0365 0.0366 
60000 0.0370 0.0368 0.0368 0.0368 0.0368 0.0368 
80000 0.0374 0.0371 0.0371 0.0371 0.0371 0.0372 
100000 0.0378 0.0376 0.0376 0.0376 0.0376 0.0376 

Table 11.7: GCV values for the quadratic B-spline approximation to the 
s1noothing spline on each grid , for different prescribed s1noothing parameters, 
for a third rando1n vector t. Local mini1na are emphasised. · 

section 10.2.1, this reduces the upper bound on the variance in the T r esti1nate 

by a factor of 10. The results are shown in Table 11.8 and section B.4 . . 

Grid No. of Converged Converged Converged Converged 
no. updates 0 value R value signal - GCV 

value value 
6 4 10.38 2.93 5.8 0.0327 
5 5 10.11 2.86 6.7 0.0325 
4 10 9.88 2.86 7.3 0.0324 
3 8 9.87 2.80 7.5 0.0324 
2 8 9.86 2.80 7.5 0.0324 
1 1 9.86 2.80 7.5 0.0324 

Table 11.8: Results generated by the MINGCV algorithm, using the average 
of 10 different random vectors to calculate stochastic estimates of the signal 
and the GCV. 
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Convergence occurs on all grids, and the numbers are close to the analytic 

optimum. The improvement in stability achieved by reducing the stochas­

tic error in this way indicates that stochastic error in the Tr estimate does 

considerably hamper the performance of the MINGCV algorithm. While the 

above procedure clearly reduces the computation efficiency of the algorithm 

considerably, the minin1um GCV algorithm was originally designed for large 

data sets, which reduces the standard error in Tr to at most (2/n) 112 . It was 

therefore anticipated that 1neasures such as the above would not be necessary 

for very large data sets. 

11.2 A first order correction 

The oscillatory behaviour of the 0 estimate suggested a fonn of correction to 
' 

help the solution estimate keep up with the 0 updates. The first derivative 

estimate, du/ d0, can be used to correct the solution after the calculation of a 

0 update, using 

(11.1) 

The results of adding this correction after each update, using only the original 

rando1n vector t, are shown in Table 11.9 and section B.5. The performance 

of the algorithm has i1nproved considerably compared to that demonstrated in 

Table 11.1. 

Grid No. of Converged Converged Converged Converged 
no. updates 0 value R value signal GCV 

value value 
6 5 7.25 2.78 5.1 0.0312 
5 4 8.33 2.68 7.3 0.0309 
4 7 8.24 2.62 8.3 0.0308 
3 13 8.30 2.61 8.3 0.0308 
2 1 8.30 2.61 8.4 0.0308 
1 1 8.30 2.61 8.4 0.0308 

Table 11. 9: Results generated by the MI GCV algorithm, applying a first 
order correction to the solution after each 0 update. 
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Figure 11.5: Successive smoothing parameter updates on grid no. 
3, using a first order correction to the solution estimate following 
each 0 update, for a second random vector. 

11 .1 r----.----,-----,-----,-----,----,-----,-----,----, 

11.05 

11 

0 
10.95 

10.9 

10.85 

10B 

10.75 ~~----'------'-------'---L-----'----..L__-____J_ __ __, 

5 10 15 20 25 30 35 40 45 

No. of updates 

Figure 11.6: Successive smoothing parameter updates on grid no. 
3 without using the first order correction , for the second random 
vector. 194 
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Convergence to 4 decimal places occurs on grids 6, 5 and 4, and convergence 
to 2 decimal places occurs on all grids . Thus the correction has allovved con­
vergence on 4 additional grids in cornparison to t he results before applying the 
correction, from Table 11.1. 

The correction was also tried using the other 2 random vectors t , shown in 
section B .6 and B. 7. In section B.6 , the improvement was also significant, with 
convergence on all grids. Figures 11.5 and 11.6 show that the correction has 
ren1oved oscillatory behaviour on grid number 3. In section B.7 , d2GCV/d02 

still became negative on the grid number 4, a problem associated with stochas­
t ic error not poor convergence. However, convergence on t he grid number 5 is 
much faster , and gets to four decimal places accuracy in 7 updates. This was 
not achieved in 20 updates without the correction. 

The correction has been very helpful because it has helped overcome one of 
the main problems in the design of the MI TGCV algorithn1 and· the OPTRSS 
algorithn1. It reduces the extent to which the solut ion must be re-estimated 
when a nevv smoothing parameter is specified. If large changes to the solut ion 
are required in response to the updates , the implementation of the multigrid 
principle is disrupted because the updates introduce error into the solut ion 
estimate that may not have a frequency suitable to the current grid. 

11.3 Different data sets 

The MI GCV algorithm vvas run on a data set with a lower smoothing pa­
rameter to see to vvhat extent the above characteristics were particular to the 
data set sine.dat. The data set bumpy.dat , described in section 9.3, was used. 
The results are shown in Table 11.10 and section B. 8. The value of d2GCV/ d0 2 

quickl became negative on the coarse grid because there were not enough co­
efficients to make the solution sufficiently complex. This problem is resolved on 
the grid number 5 and convergence to four decimal places is achieved quickly 
on both grid numbers 4 and 5. On grid number 3 the estimate oscillates but 
Figure 11. 7 shows that the behaviour is convergent . On the two finest grids 
the estin1ate is again very slow to change and appears to be converging on 
grid 2. 

The pattern in the above results is similar to that observed for sine.dat though 
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Grid No. of Converged Converged Converged Converged 
no. updates 0 value R value signal GCV 

value value 
6 11011 convergence 
5 5 5.94 15.19 12.7 0.197 
4 8 6.66 15.09 13.3 0.198 
3 11011 convergence 
2 11011 convergence 
1 11011 convergence 

Table 11.10: Results generated by the MINGCV algorithm, for the data set 
bumpy.dat. 

it appears to have shifted to finer grids, as would be expected. Convergence 

is faster on the middle grids, but the coarsest grid is too coarse to allow opti-

111isation. The finest grids are still finer than is necessary to explain the true 

variation in the data. 

A pp lying the correction in equation ( 11.1) to this analysis gave a marked im­

provement, as shown in Table 11.11 and section B. 9. Convergence is faster on 

the coarser grids . On grid 3, Figure 11.8 shows that the correction has removed 

the oscillatory behaviour from the 0 esti111ate, speeding up convergence consid­

erably. On the two finest grids, the estimates do not change significantly. The 

success of the correction indicates that the estimate of du/ d0 is itself quite 

accurate, in that it can provide a helpful correction to the current solution 

estimate, particularly on the fine resolution grids. 

Grid No. of Converged Converged Converged Converged 
110. updates 0 value R value signal GCV 

value value 
6 11011 convergence -
5 4 5.94 15.19 12.8 0.197 
4 6 6.66 15.09 13.3 0.198 
3 10 6.92 15.32 13.9 0.200 
2 15 6.94 15.32 1.3 0.200 
1 1 6.94 15.30 13.1 0.200 

Table 11.11: Results generated by the MINGCV algorith111, for the data set 
bun1py.dat , applying the first order correction to the solution after each 0 
update. 
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Figure 11.7: Successive smoothing parameter updates for grid 3, for 
the data set bu1npy.dat , without using the first order correction. 
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Figure 11.8: Successive smoothing parameter updates for grid 3, 
for the data set bumpy.dat, using the first order correction. 
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11.4 The convergence criteria 

The restriction procedure described in section 5.3 was applied to the above 

data sets to produce a measure of how the solution changes between the grids. 

This technique was used to determine when the resolution was fine enough to 

represent accurately represent the spline solution. The value of D = ll9l II/ II fl II , 
measuring orthogonal distance between the fine grid solution and the restricted 

coarse grid solution, is shown for consecutive grids in Table 11.12. Clearly the 

differences between solutions before and after restriction are much smaller for 

the smooth data set , sine.dat, than for the more con1plex data set, bumpy.dat. 

The tolerance on D, denoted in the MINGCV algorithm stated in section 8.2 

as toll , was calculated by choosing the value below which no visible change 

could be seen in the solution estimate before and after restriction to a coarse 

resolution. For D values below this tolerance, it was considered inappropriate 

to continue refin·ement. For the data set sine.dat, no change could be seen 

between any of the grids, setting the cutoff on D to at least 0.5 x 10-4 . For 

bumpy.dat , changes in the solution estin1ate could be seen until the transition 

between grid 4 and grid 3, which corresponds to a D value of approxin1ately 

0.7 x 10- 4
. This is of the same order of n1agnitude as 0.5 x 10-4 , implying that 

the coarsest grid is not too fine for the data set sine.dat. This is consistent 

with the fact that a grid coarser than approximately 8 grid points is too coarse 

to deliver t he opt imal signal value of 8.2. Based on these observations the 

value of toll was set conservatively to 0.5 x 10-4 . 

data set D X 104 

l= 5 l= 4 l= 3 l=2 l=l 
sine.dat 0.455 0.113 0.000656 0.000000 0.000000 

bumpy.dat 222 6.73 0.725 0.00902 0.000000 

Table 11.12: D values for different grids, for the dat a sets sine.dat and 
bu1npy.dat. 

11.5 Improving the efficiency 

The above analysis served the purposes of verifying t hat t he MINGCV al­

gorithn1 was working correctly, understanding t he procedures involved , and 
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deterrnining t he best approach to carrying out those procedures . The algo­
rithm was t hen re-examined with the aim of further refinement to increase its 
efficiency. Some helpful modifications are discussed below. 

11. 5 .1 Differentiation of Tr w it h respect to A 

It is demonstrated in Chapter 8 that the NIIN GCV algorithm is more efficient 
if equations (8 .36) and (8 .37) are used to differentiate Tr instead of equa­
tions (8 .26) and (8 .28) . Once this option was realised , it was incorporated into 
t he algorithn1. Comparison of results in the tables of ?? shows that identical 
results were achieved for both systems. This is a validation that the procedures 
are correct . 

11.5.2 Finite difference estimat ion of d
2

~~v 

If the expensive calculat ion of d2GCV/ d0 2 could be replaced with a finite 
difference estimate , t he efficiency of the NIINGCV algorithm would almost 
double. Given t hat calculation of d2 R / d0 2 and d2Tr / d0 2 would not be re­
quired it would only be necessary to iteratively solve 3 systems instead of 5, 
assurning t he derivatives of T r were calculated using the method refered to 
in section 8.2.3. The calculation of d2GCV/d02 using the formula in equa­
tion (8 .17) was t herefore replaced by the fini te difference calculation 

dGCV(0q+ 1 )/d0 - dGCV(0q)/d0 
0q+l - 0q 

(11.2) 

The results for both the data sets sine.dat and bumpy.dat are shown in sec­
tions B.11 and B.12. To avoid numerical errors, a new estimate of d2 GCV/ d0 2 

v\ as onl calculated if the change in 0 was greater than O .1. As discussed 
in Chapter 8 the convergence criteria that prevent further updates of 0 on 
a given grid and prevent further refinement to finer grids are now emplaced. 
According to the analysis in section 11.4 toll was set to 0.5 x 10-4

. T he value 
of tol2 the tolerance on Q defined in section 8.1 > was set to 0.01. 

The finite difference estimate show good agreement with the estimates cal­
culated using equation ( .1 7). For sine. dat toll ensured that refinement did 
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not proceed past grid 5, as would be expected frorn the results described in 

section 11.4. The MINGCV algorithrn was therefore very fast for this data set, 

because it is extremely smooth. More iterations were required on the coars­

est grid because no initial infonnation was available . The data set bumpy.dat 

required an extra grid to represent the additional complexity, refining to grid 

number 4. Convergence was slightly slower on this grid, but was still 1nuch 

more efficient than the convergence patterns for the poorly conditioned sys­

tems observed in previous analyses. Overall the sets of results in sections B.11 

and B.12 represent an efficient and direct path to an optimal solution on a 

resolution suitable to the complexity of the data set . 

11.6 A modified, improved algorithm 

As a result of the above analysis, it is recommended that the MINGCV algo­

rith1n, stated in section 8.2 , be implemented with the following specifications. 

• A quadratic B-spline is used as the discrete approximation to the natural 

cubic spline 1ninimiser f>-( x) of equation (2.9). 

• The basis element prolongation operator described in Chapter 5 is used to 

transfer the solution estimate to finer grids. 

• Tr is differented by the method described in section 8.2 .3 , which reduces t he 

number of systems that require iterative solution. 

• The value of d2GCV / d0 2 is esti1nated by finite differences, according to the 

process reco1n1nended by the results in section 11.5.2 , rather than by estimation 

using equation (8 .17). 

• A first derivative correction to the solution estimate u , described 1n sec­

tion 11.2 , is added to the solution esti1nate after each 0 update. 

The algorithm in section 8.2 can now be rewritten as shown on the next page. 

Note that we now require only one derivative of ul with respect to the s1nooth­

ing parameter, and no derivatives of b l. 
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while D > toll 

q=O 

while Q > tol2 

form= 0 to 1 

Uim\eq ) = Szv1 (uim\eq) , vr) 
end 

b z(0q) = St1 (bz(0q), w?) 
0 +1 = _ ..!!___ q 2c 

u ( 0 q+ 1) = u ( 0 q) + U 1 
( 0 q) ( 0 q+ 1 - e q) 

q=q+l 

end 

form= 0 to 1 
(m) rr (m) 

Uz-1 = ..L zUz 
end 

b z-1 = Ttbz 
end 

l=l-l 

end 

q=O 

while Q > tol2 

form= 0 to 1 

Uim\eq ) = S1v1(uim\eq ), vr) 
end 

b z(0q) = St1 (bz(0q), w?) 
0 +l = _ ..!!___ q 2c 

u (0q+1 ) = u (0q) + u1(0q)(0q+1 - 0q) 
q = q+l 

end 
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11.7 Conclusion 

Chapters 10 and 11 have documented the process of developing an algorithrn 

for calculating mini1num GCV finite element univariate s1noothing splines, de­

noted the MINGCV algorithm. In the initial phases of construction of the 

algorith1n, the s1noothing spline solution was approxi1nated using a piecewise 

constant discretisation. Using this discretisation , the MINGCV algorith1n con­

verged to an accurate estimate of the analytic 1ninimu1n GCV solution on grid 

resolutions where the s1noothing spline system was well conditioned. On those 

resolutions where the system was poorly conditioned , the algorith1n so1netimes 

diverged. However; these grid resolutions were usually finer than necessary to 

represent both broadscale and finescale trends in the solution. For the piece­

wise constant smoothing spline system there were further difficulties associated 

with multiple 1ninima in the GCV as a function of the s1noothing parameter. 

This erroneous feature has been determined to be due to discretisation error. 

Due to these problems with piecewise constant discretisation, a quadratic B­

spline discretisation was used in the later stages of algorith1n development . 

This stabilised the behaviour of the algorithm considerably on all grids. Stochas­

tic GCV structures associated with this discretisation also featured single 1nin­

ima. The quadratic B-spline discretisation is clearly better suited to approxi-

1nating smoothing splines, due to t he higher order continuity allowing accurate 

approximation of smooth functions on coarse grids. Further i1nprovements 

were achieved by applying a first order correction to the solut ion estimate 

after each s1noothing para1neter update. This allowed the solut ion estimate 

to respond more quickly to updates to the smoothing parameter. Using this 

correction , MINGCV algorith1n converged on all grids for both test data sets , 

even grids which were unnecessarily fine and therefore associated with poorly 

conditioned syste1ns. The average of 1nultiple Tr esti1nates was taken to re­

duce stochastic error , and improve the accuracy of the solution esti1nate for 

s1nall data sets . 

In the final stages of algorithm develop1nent, the efficiency was further i1n­

proved by replacing the expensive esti1nation of d2GCV / d0 2 with a finite dif­

ference esti1nate . The convergence criteria for ceasing the updating process 

on a given grid , and for preventing further refine1nent of the grid resolution , 

were al o 1n placed. The re ulting algorithm is a robust, efficient method for 
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calculating finite element approximations to minimum GCV smoothing splines 
at a resolution appropriate for the scale of the data set . 
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Chapter 12 

Minimising GCV for the 

bivariate quadratic B-spline thin 

plate smoothing spline system 

Using t he guidelines developed in Chapter 11 , the iterative procedure for cal­
culating 1ninin1um GCV bivariate fini te element t hin plate smoothing splines 
v\ as constructed fro1n t he n1ethods described in P art 1. The univariate anal-

sis gave an understanding of the behaviour of t he individual processes that 
n1ake up the IN GCV algori hm and the ke - factors that influence its per­
forn1ance. This led to the development of design specifications hat resulted 
in fast con ergence to an accurate representation of the analytic solu ion for a 
range of si1nulated data sets of varying complexity. 

Construction of the univariate I\IIIN GCV algorithm hinged upon maintaining 
a rea onabl well-conditioned system of equations. The univariate analysis 
de, eloped a eries of techniques to avoid poor ynchroni ation of the double 
i era ion a direc result of a deterioration in conditioning. T he bivariate anal­
} si has in oh ed n1ore exten i e te ting of the algorithm on a larger and more 
di er e range of data e including spar e data set with irregularly po itioned 
da a poin . This ha led o more refined modifications of the IN GCV proce­
dure. T hi chap er demon ra es that the re ulting algorithm gives an accurate 
repre en a ion of the anal ic olu ion for all te t data set . Certain data set 
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characteristics that may cause poor conditioning are also identified. 

This chapter starts by outlining the specifications of the final bivariate MINGCV 

algorithn1. The algorithm is the same as that defined in section 11.6 , with the 

following conditions incorporated. 

1. The initial value of the smoothing parameter ,\ was set so that 

,\ 

h2 
1 

10 
(12.1) 

This setting weights the two terms in equation (6.80) approxin1ately equally, 

given that the diagonal elements of the roughness penalty matrix R have mag­

nitude of around 10. The even weighting prevents the rank deficient term R 

from dominating the system, avoiding the problem of ill-conditioning, whilst 

still 111aintaining a smooth setting so as not to require fine scale structure in 

the initial phases -of the iteration. 

2. When iteration begins on a new grid, twice the number of smoothing itera­

tions (2v1) are perfonned before the smoothing parameter is updated. This is 

helpful because the right hand side of the equation for du/ d0 ( equation (8. 7)) 

is dependent on the solution estimate u. The algorithm therefore performs v1 

s111oothing iterations to get an estimate of u, and then performs v1 iterations 

to update the estimate of du/ d0. Without this procedure, the first s111ooth­

ing parameter update would be performed with no information regarding the 

solution derivatives. 

3. The finite difference esti111ate of d2 GCV/ d0 2
, introduced in section 11.5.2, 

is only updated if the 6.0 used to calculate this derivative is greater than 0.1. 

This prevents nu111erical inaccuracies from being exacerbated by division by 

a very s111all nu111b er. This condition introduces a self correction behaviour 

into t he algorit h111 , in that if the d2GCV/ d0 2 estimate is s111all, 0 updates are 

likely t o be large, which can result in a significant update of the d2 GCV / d0 2 

esti111ate. Thus when the s111oothing parameter esti111ate is not accurate , second 

derivative est i111ates will be improved. But when the solution process is close 

to convergence and 0 updates are small, the d2GCV / d0 2 esti111ate will not be 

changed , and t he stable behaviour of the algorith111 will not be disrupted. 

4. The magnitude of t he 0 updates is not allowed to exceed 0.5. It was found 

t o be important t o avoid large s111oothing para111eter updates as they often 
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occur in the early stages of iteration when the estimates of the solution and 

its derivatives still contain significant error. A large change in the smoothing 
parameter can disrupt the synchronisation of the process, and the algorithm 

will not converge as discussed in Chapter 11 . 

5. It is irnportant that the 0 estin1ate does not become too small or too large 
because the relationship between the smoothing parameter and the GCV de­
teriorates in the extren1al regions of the GCV curve, as discussed in Chapter 8. 

To prevent the 0 estimate from entering these regions, the following approxi­

mate bounds ,vere in1posed . 

Amax = 50h2 

? 
Amin = 0.002h= 

(12.2) 

(12.3) 

These bounds have been determined experimentally to be apprc?priate . They 
allo A to differ fro1n the even ' weighting in equation (12 .1) by no more than 

a factor of 500 . 

6. If 0 reaches the minimu1n limit no 1nore iterations are performed and the 

solution e timate is transferred to a finer grid. Minimal values of 0 are a sign 
that the current basis elements are not flexible enough to represent the optimal 

solu ion and further iteration is likely to be detrimental to the performance of 
the algorithn1. 1Iaxin1al, alues indicate that that the 0 estimates are diverging 

awa from the optimal solution at which point the algorithm is tern1inated. 

7. It "v\ as considered sensible o emplace a minimum number of 0 updates on 

each grid o en ure tha the solution estimate has a chance to stabilise. The 

n1inimu1n number of update was set o 5. A maximum number of 16 updates , 
corre ponding o 80 SOR i era ions was also emplaced . This is necessary if 
con -ergence on a par icular grid is low and o cillatory. This can sometimes 

occur for ex re1nel 1nooth da a sets where the A value 1nakes little difference 

o he solu ion. 

The re ric ion procedure de ermining whe her further refinement should 

occur i no perforn1ed if the 1naximum i era ion li1nit is reached or if t he 
0 e i1na e hi i s maximum or 1ninimum lirni . In these cases the solu ion 
e imate ha no con, erged on he curren grid so i cannot be a urned t o 

reflec he rue ure of he op imal olution. 
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9. If the estimate of d2GCV/ d0 2 is negative then the previous d2GCV/ d0 2 

estimate is used to update 0. This allows the dGCV / d0 estimate to continue 

to improve t he 0 estimate. If this condition is not i111posed , the algorithm is 

unable to sensibly update 0. Negative estimates of d2GCV / d0 2 are usually 

avoided by the limits in condition 5, but they can still erroneously occur in 

the early stages of iteration when the estimates of the solution characteristics 

are still inaccurate. 

10. If the d2GCV/ d0 2 estimate is negative, the magnitude of the 0 updates 

is limited to 0.25~· The process must clearly be poorly synchronised if the 

d2GCV/ d0 2 esti111ates are negative , so it is likely to be unable to respond 

correctly to large 0 updates. 

11. If there are more than 3 consecutive negative d2GCV / d0 2 updates, 

iteration terminates on the current grid and the resolution is refined. This 

condition and the two conditions above are necessary to control the difficult 

situation of negative d2GCV / d0 2
. When this occurs, the algorith111 is unable 

to update accurately, and the constraints on its behaviour 111ust be made more 

severe until the process stabilises . This situation usually occurs if the solution 

is approaching exact interpolation, as discussed in the following analysis. It 

can also occur if the system is poorly conditioned, which cannot be avoided 

for some data sets even though t he algorithm is designed to maintain good 

conditioning. This is discussed in Chapter 13. 

12. In some cases it was found to be necessary to update t he estimate of 

d
2
GCV/d0 2 even if L0 was less than 0.1 , contrary to condition 3. When t he 

d
2
GCV/d02 esti111ate is quite inaccurate , and also quite large, it can be difficult 

to update , because a large value of d2GCV / d0 2 causes a s111all 0 update. An 

additional condition was therefore incorporated , specifying that d2GCV/ d0 2 

will be updated if 0 has changed by 111ore than 0.2 since the last d2GCV/ d0 2 

update. This is still unlikely to be ~verly affected by numerical error, as L0 

111u t still be not significantly s111aller than 0.1. 
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CHAPTER 12. MINIMISING GCV FOR THE BIVARIATE QUADRATIC 
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12.1 Results for different test data sets 

The bivariate MINGCV algorithrn described above was tested on a wide range 
of data sets, in order to vary the noise and complexity, as well as the distri­
bution of the data point positions . The results below show that the MI GCV 
algorithm produced good estimates of the analytic spline solution for all data 
sets . Note that , for the following analyses, esti111ation of Tr was performed 
by averaging 10 different rando111 vectors, as was done in section 11.1. This 
was done to reduce the stochastic error in the Tr estimate , which has been 
shown in previous chapters to have a major influence on the accuracy of the 
JVIINGCV solution esti111ate, as well as convergence behaviour, for s111all data 
sets. 

12.1 .1 121.dat 

The data set 121.dat consists of 121 points on the bivariate function 

x2 + y2 = z (12 .4) 

The positions of the data points were obtained fron1 a uniform random dis­
tribution on the region [-3 , 3] x [-3 , 3]. The data values were perturbed by 
normally distributed rando111 noise with standard deviation of 0.2 , introduc­
ing small errors into the data. The data set , along with the analytic thin 
plate smoothing spline fit obtained from ANUSPLIN, is shown in Figure 12.1. 
Clearly the process is very simple , smooth and broadscale. 

The spline solution is an accurate recreation of the parabolic function , thanks 
to the good cover of data points and the low noise level. The statistics for 
the analytic solution are shown in Table 12.1. The signal is less than half 
the number of data points , indicating a reliable fit , but it is not much less 
due to the low noise in the data. For the analyses in this chapter , the RMS 
(root mean square) residual is reported in the sum111ary tables , instead of the 
residual sum of squares R , in order to show more clearly how closely the data 
are fitted. The minimun1 GCV esti111ate of the standard deviation of the noise 
discussed in section 2.2.2 , denoted a, is also shown. 

Summary results of the MINGCV algorithm for 121.dat are shown 111 Ta-
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Figure 12.1: Analytic t hin plate s1noothing spline fit t o t he data set 121.dat . 

,\ Signal RMS residual GCV " (J" 

0.0134 56.6 0.151 0.0805 0.207 

Table 12.1: Su1nrr1ary statistics for t he analytic t hin plate spline fi t to 121.dat . 

ble 12.2. The algorith1n tenninates at a relatively coarse grid , giving a solut ion 

estimate that is slightly smoother than the analytic solut ion. However, the es­

timate of & is not greatly different for t he two solutions. It t herefore appears 

that both solutions have correctly identified the underlying data generation 

process. The difference in the signal values between the fine grid MINGCV fit 

and the analytic spline in this case is likely to be a consequence of choosing a 

very s1nooth underlying process with very low noise . In this situation , s1nooth­

ness can be maintained with a relatively low RMS residual , so the signal value 

can be higher for a given smoothness . 

The re ult in Table 12.2 do show how the discretisation constraints affect 

the solution e ti1nate . The smoothing parameter consistently increases as the 

grid re olution is refined , and the RMS residual decreases. This is a sign that 

the coar e di ere i ation forced excessive s1noothing, and the solution estimate 

benefited from the additional flexibility of the finer elements . 
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Grid no. h No. of A Signal RMS GCV 
A 

a 
updates residual 

6 1.20 13 0.0109 33.7 0.193 0.0717 0.227 
5 0.600 5 0.0278 39.0 0.183 0.0726 0.222 
4 0.300 5 0.0281 43.4 0.173 0.0727 0.216 

Table 12.2: Results generated by the bivariate MINGCV algorithm for the 
data set 121.dat . 

No. of iterations So bolev norm 
performed 

1 40.6 
2 20.9 
3 25.6 
4 22.8 
5 18.5 
6 16.8 
7 15.1 
8 14.8 

Table 12.3: Sobolev norm values after each iteration for 121.dat , before the 
first e update is perfonned. 

The MINGCV solut ion is shown in Figure 12.2. It appears to be an accurate 
representation of the analytic solution, and Figures 12.3 and 12.4 show that 
there is little difference, except in the edge regions. Differences between the 
analytic solution and the finite element approximation at data sparse regions 
such as the edge regions can related to the calculation of the roughness penalty 
for the discretised bivariate smoothing spline equations. The analytic bivariate 
s111oothing spline equations minimise roughness over the infinite plane (see 
equations (2.11) and (2 .12)). · This is a source of error in the finite element 
approximation of the bivariate roughness penalty, which 111inimises roughness 
only over the grid surrounding the data points and ignores the surrounding 
infinite region. This was not an issue for the univariate case because the 
second derivative of the natural cubic spline reduces to zero beyond the data 
points. For bivariate splines the second derivative does not reduce to zero 
beyond the data points. It could be argued in principle that minimisation over 
all R 2 is not necessary, given that the aim is to best approxi111ate the region 
in the vicinity of the data points. onetheless , we can expect less agree111ent 
between the MIN GCV solution and the analytic solution for bivariate splines 
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Figure 12.2: Biquadratic B-spline fit to the data set 121.dat. 
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Figure 12.3: Overlay of the biquadratic B-spline solution and the analytic 
solution for th data set 121.dat. 
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Figure 12.4: Difference between the biquadratic B-spline solution and the an­
alytic solution for the data set 121.dat. 

than univariate splines . 

Furthen11ore, the localised minimisation of roughness for the bivariate MINGCV 
algorith111 contributes to ' local poor conditioning' in data sparse regions and 
edge regions. If there is a relatively large patch with no data points , the rough­
ness penalty term will do111inate the system, and the MINGCV algorithm must 
effectively solve the bihannonic equation on that patch , with boundary infor­
mation from the rest of the surface surrounding the patch. This was discussed 
in section 6.3. The bihannonic system is poorly conditioned on fine grids, and 
cannot be solved effectively by basic iteration, but the MI GCV algorithm is 
designed so that s111ooth components are 111ostly solved before fine grids are 
reached. However , on the edges the discretised 111inimu111 GCV solution is more 
likely to change with refinement because there is no condition on how the sur­
face extends to infinity. The trends that are extrapolated to the edge regions 
depend on the solution values in the interior , which may change from grid to 
grid, particularly if there is a lot of fine scale structure in the solution. The 
MINGCV algorith111 cannot solve for these changes to the edge regions on fine 
grids . The edge regions are therefore likely to contain higher numerical error, 
especially if there are no data point near the edge regions. This phenomenon 
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will be further demonstrated in Chapter 13. 

Further details of the performance of the MINGCV algorithm are shown in 

Table 12.3 and section C.1. Table 12.3 shows the benefit of extra iteration 

before updating the smoothing para1neter esti1nate · at the start of the first 

resolution. A 1neasure of the curvature of the solution esti1nate, given by the 

Sobolev norm ✓ a,T Za , has been included in the bivariate analysis. This is the 

square root of the bivariate roughness penalty, as was shown in equation ( 6. 78). 

The Sobolev norm has proven to be the 1nost stable of the solution descriptors 

measured in this analysis. It takes around 5 iterations to settle down to a 

stable value, after which there are no significant further deviations on any grid. 

It therefore appears that a reasonable solution estimate has been reached at 

about this point, and further iteration makes only fine scale alterations. 

It is beneficial to the performance of the algorithm to have some stabilisa­

tion of the solution esti1nate before updating the s1noothing parameter , as the 

derivative estimates will be more likely to produce an accurate smoothing pa­

rameter update. This avoids smoothing parameter estimates that are in the 

end regions of the GCV curve in Figure 8.1, where the updating procedure is 

less effective. 

On the coarsest grid, Table A.1.1 shows convergence is quite fast, with the 

dGCV / d0 esti1nate being reduced by 4 orders of magnitude in 13 updates . Fast 

convergence on the coarse grid would be expected given that t he system is well 

conditioned. Some instability is evident at the fifth update, which is a point 

where the d2GCV / d0 2 esti1nate is updated. The initial d2GCV / d0 2 estimate 

was clearly quite inaccurate , given the final value of 0.004 corresponding to the 

converged solution esti1nate. This de1nonstrates the importance of condition 

12. The initial value of d2GCV/ d0 2 was so large that the change in the 0 
-

est i1nate was unlikely to be greater than 0.1, so the d2GCV / d0 2 esti1nate would 

have taken a long t ime to update without a condition considering cumulative 

changes in 0. 

However , the sudden , large change in d2GCV/ d0 2 caused an unstable situ­

ation , where the d2GCV / d0 2 esti1nate was relatively small in comparison to 

the dGCV / d0 esti1nate . This is a case where the criterion 4, preventing 0 up­

dates from exceeding 0.5 , beco1nes important. Table A.1.1 shows that there 

are two updates of O. 5 before t he dGCV / d0 esti1nates beca1ne s1naller , the 0 

updates beca1ne smaller , and the algorithm stabilised , eventually converging 
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on the coarse grid. This situation dernonstrates the potential instability in the 
MI GCV algorithrn, and the need to incorporate the conditions outlined at 
the start of this chapter to prevent erroneous deviations from destabilising the 
algorithm. 

On the final two grids, Tables A.1.2 and A.1.3 show that the algorithm con­
verged very quickly, requiring only the minimum possible number of updates. 
The GCV and the smoothing parameter estimate change very little between 
grid number 5 and grid number 4, although the RMS residual and the signal 
do change. This shows that, even when the predictive capacity is the same, 
the solution characteristics depend on the discretisation. 

12.1.2 Franke's principal test function 

Four data sets, of varying noise levels , were created from Franke's principal 
test function [35] . This function is a combination of negative exponential 
expressions , and is given by 

(12.5) 

where 

t1 ((9x - 2) 2 + (9y - 2) 2)) / 4 (12.6) 

t2 ex+ l r 
7 

+ (9y + 1)/10 (12. 7) 

t3 (9x - 4) 2 + (9y - 7) 2 (12.8) 

t4 ((9x - 7) 2 + (9y - 3) 2 )/ 4 (12.9) 

(12.10) 

The function decays from 4 centroids , 3 located in the unit square, as shown 
in Figure 12.5. Franke 's principal test function was also used in the analysis 
finite element smoothing spline analysis by Hutchinson (67]. One hundred 
data point positions were selected from a uniform random distribution on the 
unit square. Four noisy data sets were created by adding Gaussian noise to the 
sample values with standard deviations of 1/ 2 1/ 16 1/ 128 and O respectively. 
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Figure 12.5: Contours of Franke's principal test function, on the unit square. 

Frankel .dat 

Frankel.dat is the noisiest data set, having a standard deviation of 1/ 2. The 

data set, along with the analytic thin plate spline fit , are shown in Figure 12.6. 

The solution is so smooth as to be almost a flat plane. Su111mary statistics for 

the analytic spline are shown in Table 12.4. The standard derivation estimate 

shows that the fitted function accurately isolates the noise in the data. 

A Signal RMS residual GCV " (J" 

0.0616 7.2 0.413 0.198 0.428 

Table 12.4: Sum111ary results for the analytic thin plate spline fit to frankel.dat. 

Results of the MI GCV algorithm for frankel.dat are shown in Table 12.5 
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Figure 12.6: Analytic thin plate spline fit to the data set 
frankel.dat. 
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Figure 12. 7: Biquadratic B-spline fit to the data set frankel.dat. 
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Figure 12.8: Overlay of the biquadratic B-spline solution and the 
analytic solution for the data set frankel.dat. 
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Figure 12.9: Difference between the biquadratic B-spline solution 
and the analytic solution for the data set fr anke l.dat . 
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and Figures 12.7, 12.8 and 12.9. The MINGCV surface differs very little fro111 
the analytic function. The algorithm terminates on a very coarse grid, clearly 
indicating the lack of fine scale structure in the data set. There is therefore 
good agreement between the analytic and finite element surfaces at the edge 
regions, as there is no need to solve edge regions at a fine resolution. There is 
little difference between the statistics associated with the analytic spline and 
the finite element representation, with the exception of the >. value. 

Grid no. h No. of >. Signal RMS GCV 
A 

a 
updates residual 

6 0.200 11 0.236 5.20 0.421 0.197 0.433 
5 0.100 5 0.238 5.30 0.421 0.197 0.432 

Table 12.5: Results generated by the bivariate MINGCV algorithm for the 
data set frankel.dat. 

' This is likely to be an artifact of the coarse discretisation at which the solution 
is estimated. In the case of this data set, an appropriate smoothness can 
be achieved at a coarse discretisation, but >. does not need to be precisely 
optimised because a certain amount of smoothness is enforced by the coarse 
basis elements. 

Detailed results are shown in section C.2. The algorithm converges quickly on 
both grids. The fact that 0 increases so much from the starting value shows 
that the roughness penalty term clearly dominates this system. We would 
not expect the algorith111 to work for this data set if it had started on a fine 
grid. The solution estimate again changes very little between the two grids, 
as can be seen fro111 the So bolev norm and the estimate of Tr. This shows 
that that the solution esti111ate was accurate on the coarse grid , even though 
the dGCV / d0 estimate at the end of grid number 5 is quite different to that 
at the end of grid nu111ber 6. It has been generally the case for the analyses 
in this study that derivative estimates are far more sensitive to iteration than 
funda111ental solutions characteristics like the norm, Tr, R and the GCV. 

Franke2.dat 

Franke2.dat, the data set with a noise level of 1/ 16, and the analytic spline fit 
are shown in Figure 12.10. The signal value , given in Table 12.6 , is in the ideal 
range of values slightly less than half the number of data points. This is likely to 
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give a well conditioned system, associated with a reliable solution with a well­

defined optimum. The MINGCV summary results for franke2.dat , shown in 

Table 12. 7, show that all analytic solution characteristics are well estimated by 

the MINGCV algorith111. Good agree111ent is also shown in Figures 12.11 , 12.12 

and 12.13. 

,\ X 103 Signal RMS residual GCV xl02 -" 

(J" 

0.956 36.3 0.0427 0.450 0.0535 

Table 12.6: Summary statistics for the analytic thin plate smoothing spline fit 
to the data set franke2.dat. 

--
The trend of increasing signal and decreasing RMS residual as the grids are 

refined is evident, indicating the gradual development of fine scale structure. 

The full results in section C.3 show that convergence is very fast on all grids. 

On the coarsest grid dGCV / d0 is reduced by 4 orders of magnitude in 7 up­

dates, on grid number 5 there is a reduction of 4 orders of magnitude in 5 

updates, and convergence is si111ilar on the final grid. This is an example of an 

opti111al performance of the MINGCV algorith111, with fast convergence to an 

accurate esti111ate of the analytic solution. 

Grid no. h No. of ,\ X 103 Signal RMS GCV x l02 -" 

(J" 

updates residual 
6 0.200 7 0.508 29.0 0.0474 0.445 0.0562 
5 0.100 5 0.858 32.9 0.0447 0.445 0.0546 
4 0.0500 5 0.964 35.3 0.0435 0.451 0.0540 

Table 12.7: Results generated by the bivariate MI GCV algorithm for the 
data set franke2.dat. 

It is interesting to note that, according to the GCV, the predictive capacity 

doesn't necessarily i111prove with refine111ent. The coarser grid solutions have 

a lower GCV than the fine grid solution , although the fine grid solution is a 

111ore accurate representation of the analytic solution. It certainly possible for 

a function to have a lower GCV than the analytic spline fit. It see111s that 

in this ca e the coarse grid fini te elen1ent approxi111ation is a slightly better 
predictor than the analytic solution. 
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Figure 12.10: Analytic thin plate spline fit to the data set 
franke2.dat. 

1.5 

0.5 

0 
1 

0.8 

0.6 

0.4 

0.2 

0 O 

Figure 12.11: Biquadratic B-spline fit to the data set fr anke2 .dat . 
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Figure 12.12: Overlay of the biquadratic B-spline solution and the 
analytic solution for the data set franke2 .dat. 
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Figure 12.13: Difference between the biquadratic B-spline solution 
and the analytic solut ion fo r t he dat a set fr anke3.dat. 
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Franke3.dat 

Reducing the noise to 1/128 gives franke3.dat, shown in Figure 12.14, along 
with the analytic spline fit. The results of the MINGCV algorithm, in Ta­
ble 12.9, are in good agreement with the analytic results in Table 12.8, although 
they 

are not as close as for the previous data set. This could be due to the higher 
curvature of this function at end regions, as shown in Figure 12.14. Both 
franke2.dat and franke3.dat only required two refinements to represent the 
final solution. Convergence results are also similar for these two data sets. 
This is understandable given that the underlying function is the same and the 
signal values are in middle regions rather than the extremal regions of exact 
interpolation or flat plane regression. 

AX 103 signal RMS residual x 102 GCV xl03 C5 X 102 

0.0702 73.8 0.359 0.188 0.702 

Table 12.8: Summary statistics for the analytic thin plate spline fit to the data 
set franke3.dat. 
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Figure 12.14: Analytic thin plate spline fit to the data set franke3.dat. 
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Figure 12.15: Biquadratic B-spline fit to the data set franke3.dat. 
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Figure 12.16: Overlay of the biquadratic B-spline solution and the analytic 
olution for the data set franke3.dat. 
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Figure 12.17: Difference between the biquadratic B-spline solution and the 
analytic solution for the data set franke3.dat. 

Grid no. h No. of AX 103 Signal RMS GCV x103 C5 X 10 
updates residual 

6 0.2 10 0.102 36 0.0169 0.726 0.213 
5 0.1 5 0.0530 61.3 0.00476 0.152 0.0765 
4 0.05 5 0.0813 67.1 0.00431 0.171 0.0750 

Table 12.9: Results generated by the bivariate MINGCV algorithm for the 
data set franke3.dat. 

Franke4.dat 

The case of zero noise is a good test for the MINGCV algorithm. The 0 
estirnate will be forced to its minimum on several grids, so we can determine 

whether the updates are able to respond correctly to constant visits to the 

extreme region of the GCV curve. However, poor conditioning should not 

be a problem as the rank deficient component will be virtually zero. The 

sumn1ary statistics for the analytic solution in Table 12.10, and the graph in 

Figure 12.18, show that the analytic spline exactly interpolates the data . The 

MINGCV results in Table 12.11 show five refinements of the grid, at which 

point the signal estirnate shows that exact interpolation has essentially 
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occurred. The difference between the analytic and finite element solution is 

s111all , as shown in Figures 12.19, 12.20 and 12.21 , even though the approximate 

A and RMS residual values do not get as small as the analytic values·. 

Looking at section C.5 for further detail, we see that the 0 esti111ate has hit 

t he mini111um possible value on all grids except the final grid. Some instability 

is evident at the third update of grid number 3, in that there is a decrease 

in consecutive 0 updates co111bined with an increase in consecutive positive 

dGCV / d0 updates. This contradicts the analytic relationship between the 

GCV and the smoothing parameter A, shown in Figure 8.1, which is an indi­

cation that the process is poorly synchronised at this point, and the algorith111 

does not recognise the point of mini111u111 GCV. 

A X 1012 Signal RMS residual x 1010 GCV x104 a X 106 

0.577 100 0.209 0.148 0.284 

Table 12.10: Summary statistics for the analytic thin plate spline fit to the 
data set franke4.dat. 
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Figure 12.18: Analytic thin plate-spline fit to the data set fr anke4.dat . 
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Figure 12.19: Biquadratic B-spline fit to the data set franke4.dat . 
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Figure 12.20: Overlay of the biquadratic B-spline solution and the analytic 
solution for the data set franke4.dat. 
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Figure 12.21: Difference between the biquadratic B-spline solution and the 
analytic solution for the data set franke4.dat. 

Grid no. h No. of A X lOj Signal RMS GCV x 102 a X 10 
updates residual 

x 103 

6 0.256 14 0.131 28.3 0.306 0.177 0.352 
5 0.128 3 0.0328 57.5 0.0479 0.0130 0.0735 
4 0.0640 2 0.00819 83 .5 0.00408 0.00106 0.0100 
3 0.0320 5 0.00205 96.2 0.000647 0.000571 0.00331 
2 0.0160 6 0.000512 99.4 0.000503 0.000334 0.00631 
1 0.00800 15 0.000815 99 .2 0.000445 0.000623 0.00488 

Table 12.11: Results generated by the bivariate MI TGCV algorit hrn for the 
data set franke4.dat. 

This \Vould have resulted in a negative estimate of d2GCV/ d0 2 so condition 9 

i activated. This situation also occurs on grid number 2 at the third and fifth 

upda e . The negative d2GCV/ d0 2 estimates are a sign that the rnini111um 

po ible 0 \-alue ha been et too low in this case, because the 0 estimate is al­

ready at the point \vhere its relationship with the GCV has broken down. The 

final grid delivers the required flexibility and the s111oothing para111eter esti­

n1ate increa e . Thi recovery i a ign that the s nchronisation of the updates 

,,-a not de troyed on previou grid indicating that the conditions preventing 
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iteration fro1n lingering at extremal values of 0 are working effectively. 

On the final grid, convergence is quite slow, and the Tr, R and GCV esti­
mates do not settle down even though the 0 estimate barely changes. This 
is understandable considering that the GCV curve for exact interpolation will 
not have a local minimu1n. Also, the plots of Rand Tr versus ,:\ in Chapter 2 
show that, for extremal values of .:\, both R and Tr are relatively insensitive 
to changes in A. It is therefore not surprising that, for the case of zero noise , 
the MINGCV algorithm cannot stabilise. It does, however, give an estimate 
that is not significantly different from the optimal result. 

12.1.3 The peaks function 

Further testing of the MINGCV algorithm was aimed at creating data sets that 
more closely resembled the environ1nental data sets for which t his algorithm 
was intended. This involved generating a data set with areas of clumped 
data points , which might correspond to more heavily populated areas in a 
spatial region such as the Australian continent, and also large areas where 
data 1neasure1nents are very sparse. This could cause the conditioning of the 
finite ele1nent equations to deteriorate , even at coarse resolutions, because 
there are large areas of the surface where smoothing is the only priority, as 
discussed in section 12 .1.1. 

The generating function was chosen to be the peaks function obtained from [51]. 
The peaks function is obtained by scaling and translating Gaussian distribu­

tions, and is given by 

j(x , y) = 3(1 - x)2e-(y+1)2-x2 - 10 G - x3 - y5) e-x2-y2 - ~e-(x+1)2-y2 

(12.11) 

This function is shown in Figure 12.22. Although environmental processes are 
unlikely to behave in such a regular 1nanner, this function was dee1ned to be 
a good test function because of its Gaussian nature and its spatial anisotropy. 

Peaks.dat 

The data set peaks.dat was created by sampling 190 points from the peaks 
function and adding Gaussian random noise with standard deviation of 0.2. 
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Figure 12.22: The peaks function . 

6 

This is a very small amount of noise compared to the magnitude of the data 

values . The data point positions are shown in Figure 12.23 . They were chosen 

by eye to be clu111ped, with large areas of sparsity. The data set peaks.dat , 

along with the analytic spline fit, is shown in Figure 12.24. The analytic spline 

does not capture all the peaks in Figure 12.22 , because they are not represented 

by data. The MI TGCV results depicted in Figures 12.25 , 12.26 and 12.27 

show larger disagree111ent with the analytic solution than previous data sets. 

It can be seen that the regions where deviations are large in comparison to 

the rest of the surface correspond to areas where there are little or no data 

points particularly at edge regions. This is a result of the roughness penalty 

issues discu sed in section 12.1.1. However these deviations do -not necessarily 

indicate high error, considering that the analytic spline is not accurate in 

recreating the generating function in data sparse regions. 

Table 12 .12 sho-ws that the analytic spline fit has a signal slightly less than half 

the nu111ber of data points. The MI GCV algorith111 required four refinements 
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Figure 12.23: Data point positions for the data set peaks.dat . 
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Figure 12.24: Analytic s111oothing spline fit to the data set 
peaks.dat. 
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Figure 12.25: Biquadratic B-spline fi t to the data set peaks.dat . 
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Figure 12.26: Overlay of the biquadratic B-spline solution and the 
analytic olu ion for the data et peaks.dat . 
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Figure 12.27: Difference between the biquadratic B-spline solution and the 
analytic solution for the data set peaks.dat. 

AX 102 Signal RMS residual GCV 
A 

(J" 

0.754 87.2 0.113 0.0438 0.154 

Table 12.12: Summary statistics for the analytic smoothing spline fit to the 
data set peaks.dat. 

Grid no. h No. of AX 102 Signal RMS GCV 
A 

(J" 

updates residual 
6 2.40 11 1.15 38.0 0.412 0.264 0.451 
5 1.20 5 0.288 65.0 0.151 0.0540 0.186 
4 0.600 8 0.780 76.0 0.138 0.0538 0.179 
3 0.300 5 0.847 87.0 0.125 0.0529 0.170 
2 0.150 5 0.843 92.4 0.118 0.0528 0.165 

Table 12.13: Results generated by the bivariate MINGCV algorith1n for the 
data set peaks.dat. 

to represent this solution, as shown in Table 12.13. This can be attributed 

to the clumped distribution of the data set, as fine basis elements would be 

required to isolate the trends in the data clumps. 

The full results in section C.6 show that the 0 esti1nate hits the minimum 
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possible value on the coarse grid, implying that this grid is too coarse to rep­

resent the complexity required for the optimal solution. Instability is evident 

on the grid nu1nber 5 at the third and fourth updates, where dGCV / d0 starts 

to beco1ne 1nore positive as 0 continues to decrease. This again indicates that 

the minimu1n limit on 0 may be too low. The mini1num li1nit is soon reached, 

however, and estimates are transferred to a finer grid. On the three re1naining 

grids the behaviour is well conditioned. The reason for this is apparent from 

the behaviour on grid number 4. The smoothing parameter has to increase be­

fore the optimal solution is reached, which is a sign that the roughness penalty 

is having some influence on the solution, instead of the s1noothness i1nposed 

by the coarse initral grids. 

Peaks15.dat 

The peaks.dat data set is not realistic due to the low noise. The noise level was 

therefore increased so that the standard deviation was 1.5, producing the data 

set peaks15.dat. This data set, along with the analytic spline fit, are shown 

in Figure 12.28. Tables 12.14 and 12.15, and Figures 12.29, 12.30 and 12.31 , 

show good agree1nent between the analytic solution and the MINGCV estimate 

away fro1n the edge regions. A relatively large nu1nber of refine1nents was again 

required to obtain this solution, but the final level is twice as coarse as the final 

level for peaks.dat. The full results in section C. 7 shows slow convergence on 

the first grid, which 1nay indicate that the optimu1n is again not well-defined 

on this grid. This is quite possible given that there is not 1nuch flexibility in 

the representation of a clu1nped data set at a very coarse discretisation. -

The solution changes significantly between the first two resolutions, which 

further confirms that the coarsest grid was unable to represent the trends in 

the data. 

,\ signal RMS residual GCV A 

(J" 

0.129 33.3 0.916 1.23 1.01 

Table 12.14: Su1n1nary statistics for the analytic thin plate s1noothing spline 
fit to the data set peaksl5.dat. 
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Figure 12.28: Analytic thin plate spline fit to the data set 
peaksl5.dat. 
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Figure 12.29: Biquadratic B-spline fit to the data set peaksl5.dat. 
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Figure 12.30: Overlay of t he biquadratic B-spline solut ion and t he 
analytic solution for t he data set peaksl5.dat . 

3 

2.5 

2 

1.5 

0.5 

0 

- 0.5 
6 

0 

6 

-2 

-4 

- 6 - 6 

Figure 12 .31: Difference betvieen the biquadratic B-spline olution 
and the analytic olution for the data et peak 15.dat . 
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Grid no. h No. of ,\ Signal RMS GCV 
~ 

CJ 

updates residual 
6 2.40 11 0.155 28. 1.04 1.49 1.13 
5 1.20 5 0.125 37. 0.956 1.40 1.06 
4 0.600 5 0.159 38. 0.936 1.38 1.05 
3 0.300 5 0.169 40. 0.928 1.38 1.04 

Table 12.15: Results generated by the bivariate MINGCV algorith111 for the 
data set peaksl5.dat. 

Convergence is quite fast and stable on all remaining grids. The RMS residual 
shows that the data are fitted more closely as the grids are refined. According 
to previously observed trends we would expect the smoothing para111eter esti­
mate to increase with refinement, but this is not the case for the grid numbers 
6 and 5. This is further evidence that the coarse grid solution was not an 
accurate representation. 

The results for both peaks.dat and peaksl5.dat indicate that, for data sets 
with a clumped distribution more refinement will be necessary to represent 
the trends in the clumps, even though the underlying process might be quite 
smooth. 

PeaksO.dat 

As the na111e suggests, peaks0 .dat is the data set peaks.dat with no noise. 
Although this is unrealistic, it was chosen to test the algorithm by combining 
very fine scale trends with large areas of data sparsity. This could force the 
algorithm to have to solve poorly conditioned equations. The data set and 
analytic spline fit are shown in Figure 12.32. 
The results of running the MINGCV algorithm in Tables 12.16 and section C.8 
show si111ilar behaviour to that observed for franke4.dat, the other data set fea­
turing zero noise . The 0 estimate hits the minimum possible value on all grids 
except the last two grids , on which it fails to optimise. Although the algorithm 
does not converge, there are no signs that poor conditioning on fine grids is 
affecting the perfonnance. Tables 12.17 and 12.16 and Figures 12.33, 12.34 
and 12.35 show that the MI GCV estimate of the analytic solution is accu­
rate away from the end regions. 
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Figure 12.32: Analytic thin plate smoothing spline fit to the data 
set peaksO.dat. 
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Figure 12.33: Biquadra ic B- pline fit o the data et peak O.dat. 
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Figure 12.34: Overlay of the biquadratic B-spline solution and the 
analytic solution for the data set peaks0.dat . 
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Figure 12.35: Difference between the biquadratic B-spline solution 
and the analytic solution for the data set peaks0.dat. 
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Grid no. h No. of A X 104 Signal RMS GCV x 104 fJ X 10 
updates residual 

7 2.40 11 115 38 0.382 2390 0.428 
6 1.20 3 28.8 66 0.0458 51.8 0.0567 
5 0.600 3 7.20 110 0.00965 5.553 0.0149 
4 0.300 2 1.80 150 0.00272 2.71 0.00594 
3 0.150 5 0.450 181 0.000650 1.79 0.00303 
2 0. 075 2 0.213 187 0.000275 0.203 0.00207 
1 0.0375 17 0.100 189 0.000148 0.749 0.00193 
0 0.0187 5 0.122 189 0.000193 0.213 0.00244 

Table 12 .16: Result s generated by the bivariat e MINGCV algorith1n for t he 
data set peaks0.d~_t . 

A X 1011 Signal RMS residual x 1010 GCV x 103 fJ X 106 

0.492 190 0.476 0.195 0.816 

Table 12.17: Summary st atistics for the analytic t hin plat e spline fit t o t he 
data set peaks0. dat . 

12.2 Conclusions 

The bivariate MINGCV algorithm has been tested on a number of data sets , 

with varying co1n plexity, spatial distribut ion and noise level. As a result of 

this testing, a nu1n ber of controls on t he behaviour of t he algorit hm were 

e1nplaced, to 1naintain stability in the face of difficult sit uations presented by 

son1e types of data sets . The result ing MI GCV algorit hm gave an accurat e 

representation of t he analytic solution for all test data sets at a resolution 

appropriate to t he scale of t he data generation process. Convergence was 

efficient for all data sets, alt hough for the situation of exact interpolation the 

1ninin1u1n GCV is poorly defined and the algorithm cannot fully settle. The 

solution esti1nates generated in t his case are still accurat e representations of 

the analytic solution. 

The typical b haviour of the bivariate Iv1INGCV algorit h1n for s1nooth pro­

cesses is to converge quickly on t he coarse grid and not refine the resolution. 

For fine scale processes, t he opt i1n u1n _solution cannot be obtained on the coarse 

grid , as smoothness is enforced by t he coarse basis elements. On finer grids , 
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the discretisation has less control on smoothness, and the influence of the 
roughness penalty term increases. This is often reflected by an increase in the 
s1noothing parameter on finer grids, in order to maintain so1ne of the smooth­
ness that was passed down from the coarse discretisation. 
Issues did arise with regions of data sparsity, especially at the edges of grids. In 
these regions , there was less agreement between the MINGCV approximation 
and the analytic solution. The MINGCV solution is not as accurate in these 
regions, because, although the smoothing parameter estimate converges, the 
solution may not have converged to the analytic solution in these particular ar­
eas. This is because the roughness penalty term is dominant for the subsystem 
corresponding to these areas of the grid, and the subsystem is therefore poorly 
conditioned on fine grids. The optimal solution at the edge regions may well 
change considerably from grid to grid, because there are no conditions on the 
smoothness of the solution beyond the grid boundary. The algorithm therefore 
has to solve for smooth changes in the solution on fine grids, a situation which 
is known from previous analysis to cause instability. This phenomenon will be 
further discussed in the following chapter. 
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Chapter 13 

Performance of the MINGCV 

algorithm for large temperature 

data sets 

Previous chapters have documented the development and refinement of the 

bivariate MINGCV algorithm. The final algorithm was shown to yield an ac­

curate approxin1ation to the analytic solution for a wide range of simulated 

data sets with varying noise, spatial distribution and spatial complexity. How­

ever, simulated data sets are limited in their ability to recreate the features of 

a 'real' environmental data set consisting of noisy observations of an environ­

n1ental process. The simulated data sets used in Chapter 12 were all generated 

fron1 a relatively simple functions, so that only a limited amount of data are 

required to capture all the variability. Environn1ental processes often feature 

complex interactions both at the regional scale and the microscale . A denser 

data set can therefore give rise to quite a different interpolated surface than a 

sparser data set. The implications of this are demonstrated in the examples 

below, which consider temperature data for both the African and Australian 

continents. Te1nperature was chosen because, once an accurate estimate of 

the elevation lapse rate is known, past research shows that annual tempera­

ture can be accurately spatially interpolated with a bivariate thin plate spline 

with independent variables latitude and longitude [84, 60]. 
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Maximum and minirnum temperatures at various scales are known to be in­

fluenced by a variety of factors. Jarvis and Stuart [75] describe both surface 

and topographic controls on temperature. Features of surface type include 

the effects of absorbed solar radiation , surface roughness , internal boundary 

layers and urbanisation. The latter two tend to be microscale effects . Effects 

of internal boundary layers are difficult to incorporate into interpolated sur­

faces because the digital land cover and soils data that affect such processes 

are often not available at fine scales. Urban heating effects are also localised 

in that the influence on temperature declines steeply at the edge of suburban 

areas [75] . 
--

These effects interact with topographic controls . At a broader scale , tempera-

t ure declines roughly linearly with increasing elevation, at a typical 'standard ' 

lapse rate of -6.5°C per kilometre , though this does vary with season and 

location. However, cold air drainage on slopes operates on cold nights to pro­

duce local lapse rate inversions [60] . Other influences include the evaporation 

rate on slopes, given that damp soils create a cooling effect . This is one factor 

that lowers the temperature at valley bottoms. It has been incorporated into 

daily temperature interpolation models by J arvis and Stuart [75] by repre­

senting the distance to nearest rivers . Changes in slope also affect the depth 

of the surface-cooled atmostpheric layer , which is greater on concave rather 

than convex surfaces, leading to lower minima on concave slopes . The height 

of a point relative to the valley floor has also been considered as a measure 

of susceptibility to frost [107]. Further effects include adiabatic warming as a 

result of he descent of air from mountains and plateaus by fohn winds, as well 

as coastal shape and situation [75, 76]. 

Temperature is therefore driven by many different processes that operate to 

\-arying extents on different spatial scales . From a spatial interpolation per­

specti\-e , the ability of the fitted surface to detect these different levels of 

\-aria ion depends on the density of the data network , and the t ime scale at 

"Yhich the interpolation is required . Averaging the data to represent long term 

111onthly 111ean or annual mean temperature removes significant variability from 

the y tern . Studie by Hutchin on [60] and Price et al. [96] fitted thin plate 

moothing pline to 111onthly mean maximum and 111inimum temperature us­

ing latitude longitude and elevation_ a explanatory variables. Both reported 

tandard error of around 0.5°C for minimum temperature, and smaller er-
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rors for maximu1n temperature. Hutchinson [60] attributed the higher errors 

in minimu1n te1nperature interpolation to cold air drainage in winter months. 

This could not be predicted by the partial spline model used in the study, 

which assumes a spatially constant elevation lapse rate ( see equation ( 1. 6)). 

Jarvis and Stuart [75, 76] is the only study to report partial spline fitting of 

daily temperature. Given the high complexity of temperature influences at a 

daily time scale, a partial spline with 10 guiding covariates was used. The 

study found that maxi1num temperature was consistently better explained by 

fewer guiding covariates than minimum temperature. Maximum temperature 

was also determined to be more strongly influenced by terrain. 

Long term mean values of monthly maximum temperature for the both the 

African continent and the Australian continent were used to test the MIN GCV 

algorithm. As discussed above, a partial spline model with latitude and longi­

tude as independent variables , and a linear dependence on elevation, is appro­

priate for interpolating average temperature, particularly average maximum 

temperature. The partial spline model is given in equation (1.6). Given that 

the MINGCV algorithm only allows 2 independent variables , ANUSPLIN was 

used to estimate the elevation lapse rate by fitting a partial spline. The linear 

elevation trend was then removed from the data to correct the measurements 

to sea level. This is a common practice in temperature modeling ( e.g. Lennon 

and Turner [84]). A bivariate spline can then be fitted to the corrected data. 

13.1 Spatial interpolation of temperature data 

for the African continent 

There were a total of 1498 points in the African temperature data set. The 

distribution of the data values is shown in Figure 13.1. There is relatively 

even coverage throughout 1nost of the continent. However , the shape of the 

continent is such that a significant proportion of a rectangular grid fitted over 

this continent will be uncovered with data, particularly in the lower left corner. 

This is therefore a challenging situation for the MINGCV algorithm, given that 

large sparse areas at grid boundaries lead to poor conditioning, as discussed 

in Chapter 12. 
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Figure 13.1: Data point locations for the African temperature data set . 

1498 points is too many for efficient computation of the analytic spline , so the 

SPLINE rout ine within ANUSPLIN was used to calculate an approximation 

using a subset of 1000 knots [68]. The SPLINE results are shown in Table 13.1. 

The elevation lapse rate was estimated to be -6.22° per kilometre , close to 

the standard rate . 

A Signal RMS GCV o-2 

residual 
0.0925 469.1 0. 829 1.46 1.00 

Table 13.1: Summary statistics generated by SPLINE for t he African t emper­
ature data set . 

The results for the MI GCV algorith1n are shown in Table 13.2 , with full 

results in section D. 1. T he results are very close t o t hose obtained for t he 

partial spline fitted by SPLI -E using t hree independent variables, latitude, 

longitude and elevation. 

The final grid resolution of 1 ° is quite fine, implying local scale spatial trends 
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Grid no . h No. of A Signal RMS GCV 
A 

a 
updat es residual 

6 16.0 12 0.512 35 .4 1.72 3.13 1.75 
5 8.00 5 0.128 83.0 1.39 2.17 1.43 
4 4.00 5 0.0320 212 . 1.10 1.66 1.19 
3 2.00 5 0.0643 381. 0.906 1.48 1.05 
2 1.00 5 0.0732 494. 0.796 1.42 0.973 

Table 13.2: Results generated by the bivariate MINGCV algorithm for the 
African t emperature dat a set . 

have been det ect ed in long term annual mean t emperature for Africa. Sec­
tion D .1 shows t hat the 0 estimate decreased to the minimum possible limit 
on the first 3 grids , and then converged on the final two grids . The signal is 
slightly greater that a quarter of t he number of dat a points , which indicates 
that the smoothing procedure has reliably isolated the noise in t he data . The 
refinements show a st eady increase in fine scale structure, as reflect ed by the 
increasing signal values and decreasing RlVIS residual. The GCV in1proves with 
each refinement , though it has clearly st abilised on grid nu1nbers 3 and 2. 

The surface produced by t he above run is shovvn in Figure 13 . 2. Bearing 
in mind that the surface represents sea level t emperatures , the map shows a 
general trend of increasing t e1nperatures with decreasing distance from the 
equator and increasing dist ance fro1n the coast , as expect ed. 

These positive results are encouraging, and appear to indicate that the MI GCV 
algorithm is robust in dealing vvi t h real environmental dat a sets with a sparse 
distribution of dat a points . However , slight modifications of the algorit hm 
revealed that it is in fact unstable for t his data set . The above analysis had 
an initial resolution of 16°. The resolut ion of the coarsest grid depends on t he 
desired resolution of th out put grid , which is specified by the user. The coarse 
resolution is det ermined by successive doubling of the output grid resolution 
until further doubling would result in a coarse grid with less than 3 rows or 
3 columns , which could not support a single basis ele1nent . vVhen the out put 
resolution was modified to give an init ial coarse resolution of 25 .6°, it failed to 
converge. The results are shovvn in Table 13.3 and section D.2. 

The 0 estin1ate hits the minimum possible value on the first 4 grids. On 
grid number 5, the 0 estimate begins to increase, and continues to become 
1nuch larger than the value corresponding to the minimum GCV. As a result 
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Figure 13.2: Niinimum C CV biquadrat ic B-spline surface representing annual 
1nean m aximum te1nperaturei st andardised to sea-level , for the African conti­
nent. 

Grid no. h No . of A Signal R MS CCV 
~ 

a 
updates residual 

8 25 .6 7 1.31 19 .2 2.00 4. 12 2.02 
7 12.8 4 0.328 44 .9 1.60 2.73 1.63 
6 6.40 5 0 .0819 109. 1.34 2.11 1.40 
5 3.20 5 0.0205 290. 1.02 1. 62 1.14 
4 1.60 6 0.249 329. 1.01 1. 54- 1.14 
3 0. 00 2 0.528 299 . 1.18 1.83 1. 32 
2 0.400 2 1. 12 271. 1. 81 3.45 2.01 
1 0.200 2 2. 00 264. 2.99 11.4 3.30 
0 0.100 1 0.500 264. 1.1 5 13. 2 1.27 

Table 13 .3: R esults generated by the bivariate MI CCV algorit hm for t he 
_African ten1perature data set. vvith an initial grid re olution of 25.6° . 

the CCV begins to incrcas 1narkedly and so does R . This indicates t hat 
the derivative cstin1ates vvere unable to det ct a minimum CCV when 0 was 
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in the vicinity of the optimal value. Once again this is typical behaviour of 
the MINGCV algorithm on fine grids where the system is poorly conditioned, 
and was observed many times during the unidi1nensional analysis described in 
Chapter 11. Poor conditioning causes slow convergence of the SOR iterations, 
which results in poor synchronisation of the 0 updates and the updates of the 
solution and its derivatives. 

The errant solution estimate is shown in Figure 13.3. This figure clearly shows 
the cause of the problem. The large area of ocean in the lower left corner of the 
grid has produced a poorly conditioned system. The problem of poor conver­
gence in data sparse areas near boundaries was discussed in Chapter 12. The 
algorithm essentially has to solve the biharmonic equation at a fine resolution, 
with little help from coarse resolutions due to lack of fixed specification of the 
solution values beyond the grid boundaries. The solution estimate has there­
fore diverged in this region of the grid, which then introduced -error into the 
calculation of the solution estimate and corresponding derivatives on the rest 
of the grid. The reason why this occurred for the initial resolution of 25.6° and 
not the initial resolution of 16° has not been attributed to any particular pro­
cess. It is assumed that, for this data set, chances of divergence are significant, 
so small changes in the resolution of each grid may trigger divergence. 
A practical solution to this problem is to reduce the areas of data sparsity 
by dividing the continent up into 2 sections and solving for splines on the 
two grids separately. Two sections which avoid empty space are shown in 
Figure 13.4. With this subdivision we have eliminated virtually all the empty 
space that was problematic in the above analysis. The disadvantage of this 
approach is clearly that less data and therefore less information is available 
for the interpolation on each · section. Su1nmary results for the two halves are 

shown in Tables 13.5 and 13.6. 

Grid no. h No. of A Signal RMS GCV 
A 

(5 

updates residual 
6 8.00 10 0.128 54.6 1.46 2.42 1.51 
5 4.00 4 0.0320 151. 1.17 2.04 1.29 
4 2.00 8 0.135 216. 1.00 1.78 1.16 
3 1.00 7 0.164 254. 0.942 1.76 1.12 

Table 13.4: Results generated by the MINGCV algorithm for African te1nper­
ature data set, for the top section of the African continent. 
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Figure 13.3: Surface produced by the bivariate MINGCV algorithm for the 
African te1nperature data set, with initial grid resolution 25.6° instead of 16°. 

Comparing these Tables with Table 13.2 , it can be seen that both halves 

converged to solutions with similar GCV, fi and resolution to the MINGCV 

solution for the full data set. The surface produced by combining these two 

halves is shown in Figure 13.5. The patterns and trends are similar to those in 

Figure 13.2 , with so1ne fine scale differences. In general the surface generated 

by co1nbining two sections predicts slightly cooler te1nperatures in the top half 

Grid no. h No. of >- Signal RMS GCV 
A 

(J 

updates residual 
6 16.0 9 0.512 17.3 1.69 3.03 1.71 
5 8.00 6 0.128 39.1 1.42 2.23 1.45 
4 4.00 4 0.0320 97.1 1.10 1.58 1.17 
3 2.00 7 0.0310 206. 0.859 1.29 0.987 
2 1.00 7 0.0577 267. 0.770 1.26 0.930 

Table 13.5: Results generated by the MINGCV algorithm for the African 
te1nperature data set , for the bottom half of the African continent. 
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Figure 13.4: The two grids used to cover the African cont inent and avoid large 
areas of ocean . 

of the continent . Given that t h differences are relatively 1ninor ; t his option is 
still an efficient alternative to analytic n1ethods for a large data set . 

13 .2 Spatial interpolation of temperature data 

for the Australian continent 

As a second test ; t h MI CCV algorithn1 ,~as run on annual 1nean 1naxin1u1n 
te1nperature data; standardised to sea-level , for t he Australian cont in nt . The 
data set ; consisting of 1134 data observation l is 1napped in Figur 13 .6. The 
distribution is clu1nped and uneven , ,mth a strong bias toward coastal regions . 
However , t he hape of the continent is n1ore rectangular than that of the 
African cont inent ; so there i less of a problen1 vvith large data parse holes at 
the grid boundary. According to previous analysis . particularly that with t he 
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13.2. SPATIAL nVTERPOLATION OF TEMPERATURE DATA FOR 
THE AUSTRALIAJV COJVTIJVENT 
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Figure 13 .5: Combination of ten1perature surfaces produced by the bivariate 
IVII GCV algorithm for the top and botto1n segments of the African continent . 

peak .dat data set in Chapter 12 , we would expect the MINGCV algorithm t_o 
converge for this data set . 

This ti1nc; SPLINA was used to calculate the analytic partial spline solution , 
instca.d of using the SPLINE knot based approxi1nat ion as was done for the 
African data set . The data set was regarded as just small enough for a single 
SPLINA run . The results arc shown in Table 13.6. 

7<C 

>- Signal R 1S GCV a2 

residual 
0.0335 35 .5 0.407 0.527 0.600 

Table 13 .6: Sun1n1ary statist ics generated by SPLI A for the Australian t em­
perature data set . 

The partial spline estin1a te of the lap e rate was - 7. 67° per kilo1net er , higher 
than that for Africa . After using t his lapse rate to tandardise the data to 
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Figure 13.6 : Data point locations for the Australian temperature data set. 

sea level , the bivariate MI GCV algorithrn was run to produce the results in 
Table 13.7 and section D.3. The statistical characteristics of the MI IGCV 
solution agree well with those of the analytic solution. Estimates of the GCV 
and & are almost identical. The signal is well below half the number of data 
points , which indicates the processes are broadscale. This is demonstrated in 
Figure 13.8 , which shows a gradual inland gradient. 

The results are similar to those for the Africa data set in Table 13.2. If any­
thing, the statistics indicate less noise for the Australian data than for the 
African data given that the final resolution is finer , and the & estimate is 
lovver for the Australian data set. This could be expected , as the Australian 
data is of higher quality than the African data set with fewer errors in the 
recorded station locations and data values. 

The more detailed results for the MI GCV algorithm in section D.3 indicate 
that the 0 estimate hit the minimum possible value on the 3 coarsest grids. On 
the two final grids, convergence was reasonably fast. The 0 estimate does not 
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13.3. THE COMPUTATIONAL SAVING 

Grid no. h No. of ,\ Signal RMS GCV 
A 

(J" 

updates residual 
6 8.00 8 0.128 34.8 0.947 0.959 0.962 
5 4.00 3 0.0320 81.8 0.809 0.766 0.840 
4 2.00 7 0.0131 188. 0.644 0.597 0.705 
3 1.00 5 0.0272 270. 0.559 0.538 0.640 
2 0.500 5 0.0271 336. 0.512 0.529 0.610 

Table 13.7: Results generated by the bivariate MINGCV algorithm, for the 
Australian temperature data set. 

increase markedly on these finer grids, but the signal increases significantly. 

This shows the inability of the coarser grid to represent the trends in this data 

set. 

The solution produced by the MINGCV algorithm, shown in Figure 13. 7, shows 

no signs of instability at the grid boundaries. Testing of the algorithm using 

different initial grid resolutions was performed to see whether the process suf­

fered from similar instability to that observed for the African temperature data. 

As anticipated, the algorithm converged for all the tests. Given the rectan­

gular shape of the Australian continent, and observing the stable behaviour 

at the boundaries in Figure 13.7, we would expect the MINGCV algorith1n to 

converge efficiently for this data set. 

13.3 The computational saving 

To give a practical perspective on the computational efficiency of the MINGCV 

1nethod, we co1npare the number operations required by this 1nethod to that 
-

required for a non-auto1nated procedure for approximating finite ele1nent 1nin-

i1num GCV thin plate s1noothing splines. The automised mini1nisation of the 

GCV has two main sources of computational workload; the solution of the 

equations for du/ d0 and t he extra iteration required to adjust to periodic 

changing of the smoothing para1neter. The first source doubles the workload 

in comparison to that required to solve the syste1n for a fixed smoothing pa­

rameter , and we esti1nate that the second source triples the workload. Most 

of the work in finding the structure _ of the opti1nal solution is done on the 

coarse grids, and iteration on fine grids serves as a fine tuning process. So 
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the cost of updating the srnoothing parameter is kept to a minimum. In total 
this estimate n1eans that the auto111ated minimisation of the GCV makes the 
solution process 6 ti111es as slow as the process for solving for a fixed smooth­
ing parameter. To manually minimise the GCV, we estimate that the finite 
element system would have to be solved around 30 t imes in order to converge 
to an accurate esti111ate of the minimum GCV smoothing parameter. This is 
5 times more work than the automated procedure. 

Another advantage of the Mll GCV algorithm is that it determines an appro­
priate grid resolution for representation of the opti111al solution. By simulta­
neously solving for the optimal sn1oothing parameter whilst solving the spline 
system, the Mll GCV algorithm has a reasonably accurate estimate of the 
optimal solut ion by the t ime the finer resolutions are reached , so a suitable 
resolution for the final grid can be accurately determined. To solve the system 
for several fixed smoothing parameters , one would have to determine an ap­
propriate final resolution each time. As many of the trial parameters will not 
be close to the opti111al value, the solution process may involve visiting grids 
that whose resolution is unnecessarily fine. 

13.4 Conclusion 

Accurate approximation of analytic bivariate thin plate smoothing spline so-
1 u t ions \Vere obtained for real environ111ental data sets using the MINGCV 
algorithm. The algorithm converged for sea-level temperature data for both 
the African and the Australian continent . The problems associated with lower 
accuracy at grid boundaries noted in Chapter 12 were more extensive for the 
African temperature data set . For some initial grid resolutions , the 1INGCV 
algorithm failed to converge to a solution for this data set, due to divergence 
at the lower left grid boundary. This phenomenon was discussed in previous 
chapters although African temperature presented the only data set so far for 
which the bivariate 1I GCV algorithm did not converge to a solution. The 
unstable behaviour occurs when the algorithm has to represent a process with 
fine scale variability with data emp y regions surrounding grid boundaries . 
The subsystem of equations corresponding to the data empty regions is ill­
conditioned resulting in poor synchronisation of the double iteration. One 
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option in this situation is to subdivide the region and solve for the spline so­

lution on each section , avoiding data empty 'holes' . This was demonstrated in 

the above analysis to be an efficient alternative for the African temperature 

data set, although it is clearly not as accurate in approxi1nating the analytic 

solution. 

Te1nperature data from the more rectangular shaped continent of Australia 

presented no problem for the MINGCV algorithm. The algorith1n was found 

to be stable, efficient and accurate in approximating the analytic solution for 

this data set . This result emphasises the robustness of the MINGCV algo­

rithm, considering that the coverage of the data throughout the Australian 

continent is clumped and sparse. The above analysis demonstrates that thin 

plate smoothing spline interpolation of environmental data can be performed 

efficiently using the MINGCV algorithm. The algorithm is therefore useful in 

environmental modelling and management applications. 
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Figure 13. 7: Iini1nun1 CCV biquadratic B-spline surface for 1nean 
annual te1nperature; standardised t o sea leveli for t he Australian 
cont inent. 

-
1000 0 1000 2000 Kilometers 

Figure 13.8: lap sho'Ning t he surface in 13.7. 

- 257 

Degrees • 14-16 • 16 - 18 
1111 18-20 
- 20-22 
- 22-24 • 24-26 
D 26-28 

28 -30 
D 30-32 
D 32-34 

34 -36 
- 36-38 
c=J No Data 

N 





Chapter 14 

Conclusion 

This project developed an efficient, accurate, robust algorithm for generating 

finite element approximations to minimum GCV bivariate thin plate smooth­

ing splines for large data sets . A diverse range of simulated data sets was 

used to test the algorith1n, representing processes of varying spatial scales, 

fro1n smooth, broadscale processes to those with more fine scale trends. The 

distribution of the data points was varied, so that the data sets included large 

data sparse areas and dense clumps of data points. The algorithm generated 

accurate approximations to the analytic solution for all test data sets . Testing 

on continental temperature data sets also produced accurate surfaces , demon­

strating that the algorithm is suitable for application to large environmental 

data sets. 

The algorith1n presented in this thesis builds on past research of techniques for 

fast co1nputation of thin plate smoothing splines for large data sets using finite 

element discretisations , including studies by Terzopoulos [108], O 'Sullivan [94], 

Szeliski [106] and Hutchinson [67]. This study adopted a simple finite element 

discretisation using biquadratic splines , and presented an efficient iterative 

sche1ne for optimising the smoothing parameter in the thin plate s1noothing 

spline equations to minimise the GCV. Opti1nising smoothness by minimising 

GCV is well known to be a suitable way of minimising the prediction error 

of the fitted surface , and is therefore important in many applications of thin 

plate smoothing splines. In this case , the primary motivation was the spatial 

interpolation of surface climate data, which often require fitting minimum 
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GCV thin plate smoothing splines to thousands of data points corresponding 

to a continent wide network of weather stations [70]. 

During the course of this project, a number of approaches to discretising the 

thin plate smoothing spline syste111 and nu111erically solving for the opti111al 

solution were investigated. Initial testing of different 111ultigrid approaches 

for nu111erically solving the univariate discretised syste111 emphasised the ad­

vantages of choosing a simple nested grid algorith111 to solve for discretised 

smoothing splines. This testing showed that the smoothing spline equations 

are poorly conditioned on fine grid resolutions. When fitted to noisy data, 

s111oothing spline solutions inherently contain smooth broad scale co111ponents , 

which means that fhe underlying structure cannot be efficiently obtained by it­

erating on fine grid resolutions. The v-cycle multigrid algorithm, which begins 

the solution process at the finest resolution , therefore performed poorly for 

the smoothing spline system. The nested grid algorith111 , which starts at the 

coarsest resolution, is ideal for efficiently obtaining the underlying broadscale 

trends in t he spline solution. Finer scale structure can then be developed by 

refining the grid resolution. 

The efficiency and robustness of the algorithm developed by this project is 

largely due the i111ple111entation of the quadratic B-spline fra111ework. Com­

parison of the results of discretising the system using piecewise constants with 

those generated using quadratic B-splines demonstrated 111any advantages of 

the quadratic B-spline basis for approxi111ating thin plate smoothing spline 

solutions. The first order continuity of the quadratic B-spline approximation 

significantly i111proved the accuracy of the discretised solution on coarse grids, 

in comparison to the piecewise constant approxi111ation. This meant that the 

sn1ooth components of the solution were accurately est i111ated before transfer 

to finer grids. The lower discretisation error of the quadratic B-spline solut ion 

had further advantages when opti111ising the GCV, because the approximation 

was better able to reflect the properties of the analytic solution, especially with 

regard to the variation of the GCV with the smoothing para111eter. 

The techniques developed during this study for transferring quadratic B-spline 

functions between grids of varying coarseness allowed for efficient, accurate in­

tergrid transfer. Preli111inary testing of the algorithm showed that this was i111-

portant in 111aintaining a well conditio1Jed system, in that accurate prolongation 

of a s111ooth coarse grid esti111ate avoided the introduction of error components 
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that could not be efficiently reduced on fine resolutions. Quadratic B-spline 
restriction techniques were also used to develop an effective criterion for de­
termining the final grid resolution. Least squares projection of the fine grid 
solution onto a coarser grid allowed the change in fine scale variability between 
the two discretisations to be quantified. The use of this process for deciding 
when to stop refinement prevented the grids from becoming unnecessarily fine, 
and thus allowed maintenance of a well conditioned system throughout the 
solution process. The resolution of the final grid, as determined by the least 
squares restriction , also provided insight into the scale of the data generation 
process. 

The construction of a method for numerically minimising the GCV required 
extending the methods in Hutchinson [67]. This involved deriving formulae 
for calculating the derivatives of the GCV, the residual sum of squares and 
the trace of the influence matrix with respect to the smoothirig parameter. 
Relationships identified between these derivatives, the solution estimate and 
derivatives of the solution esti1nate with respect to A, led to the derivation 
of expressions that could be evaluated in a computationally efficient manner. 
A second order Taylor series expression for the GCV as a function of the 
smoothing parameter could then be evaluated in order to estimate the point of 

1ninimum GCV. This procedure was central to the functioning of the algorithm, 
and it was found to converge efficiently and accurately. 

To esti1nate GCV values corresponding to different smoothing parameters for 
the finite ele1nent approximation to the thin plate spline solution, it was nec­
essary to use the stochastic estimate of the trace of the influence matrix devel­
oped by Hutchinson [59]. Testing of the trace approximation showed that its 
observed standard error agreed with the bounds published in [59]. The suit­
ability of this estimate for application to large data sets was also confirmed. 

Empirical analysis of the behaviour of the algorithm has established the be­
haviour of the process of double iteration. In the case of this study, double 
iteration was performed to update two interdependent quantities , the solution 
esti1nate and the estimate of the optimal smoothing parameter. It was found 
that, for poorly conditioned systems , basic iteration was not fast enough to 
allow the solution estimate to respond to the smoothing parameter updates. It 
was also observed that , as the difference between current ,.\ estimates and the 
m1n1mum GCV smoothing parameter increased , the estimates of the deriva-
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tives of the GCV were less effective at producing accurate estimates of the 

minimu1n GCV smoothing parameter. 

The results of this testing led to the identification of appropriate controls on 

the initial value of ,.\, the 1naximum a1nount by which ,.\ can be updated , and 

lower and upper bounds on the ,.\ estimate. Convergence was i1nproved by 

making first order correction to the solution estimate after each ,.\ update. 

This allowed the solution estimate to respond more quickly to the changes in 

the s1noothing parameter, avoiding inefficient oscillatory patterns in the double 

iteration. The result was a significant i1nprovement in convergence rates on 

finer grids. 

The production of-the bivariate algorithm for application to large data sets in­

volved vector FORTRAN 90 coding. The roughness penalty calculations were 

efficiently incorporated, taking advantage of the sparseness, bandedness and 

repetition in the bivariate thin plate smoothing spline system. The computa­

tional efficiency of tensor product systems was also exploited. These factors 

optimised co1nputational speed and storage. 

When the final algorith1n was tested on 'real' environmental data sets, includ­

ing temperature data from the Australian and African continents, accurate 

approximations to the analytic solution were achieved. However , so1ne diffi­

culty was presented by the geometry of the African continent. A large area 

of ocean in the lower left corner of the grid produced a gap in data coverage 

extending inland fro1n the lower grid boundary. This part of the solution corre­

sponded to particularly poorly conditioned co1nponents in the spline system, 

and led to instability on fine grids . Further developments of this algorith1n 

could be aimed at addressing this difficulty. To overcome this problem here , 

the African region was subdivided into two parts to avoid fitting over areas of 

ocean. The procedure then converged efficiently. For the Australian continent , 

convergence to an accurate approximation was highly efficient. 

In conclusion, this project has addressed thin plate smoothing spline 1nodelling 

from a number of different perspectives , including numerical discretisation and 

solution, statistical modelling using thin plate s1noothing splines , and practical 

aspects of spatially interpolating environmental data. This study also de1non­

strates the process of imple1nenting a numerical algorithm. Each technical 

component of the algorit hm was tes_ted on a wide range of trial data sets. 

Opti1nal techniques were selected and combined into procedures for solving 
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the discretised thin plate srnoothing spline system. The technical complexity 
of the procedures was gradually increased by varying the smoothing require­
ments, to eventually achieve the aim of minimum GCV smoothing. As a result 
of this process, the behaviour of these procedures, when applied to the thin 
plate smoothing spline syste1n, is now well understood. The resulting algo­
rithm was designed for spatially interpolating noisy environmental data sets, 
and has been found to be suitable for this purpose. The relevance of this pro­
cedure to environmental modelling is in the efficient optimisation of the finite 
element approximations to thin plate smoothing splines by minimising GCV. 
This is the key contribution of this study. 
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Appendix A 

Results for Chapter 10 

The tables in this appendix are discussed in Chapter 10. They report updates 
of various quantities relevant to the OPTRSS and MINGCV algorith1ns 
described in Chapter 8. The notation is explained as follows: 

q: the nu1nber of updates perfonned on a given grid. 

0: the logarith1n of the s1noothing parameter. 

0q: the qth update of the logarith1n of the s1noothing parameter. 

S: the prescribed residual on a given grid, for the OPTRSS algorithm. 

R: the estimate of the residual sum of squares. 

T r : the estimate of tr(I - A), where A is the influence 1natrix. 

GCV: t he esti1nate of the generalised cross validation. 
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A.I Results generated by the OPTRSS algo­
rithm for the data set sine.dat 

q 0q dR/ d0 S-R q 0q dR/ d0 S-R 
0 10.14 0.925 -0.454 0 10.15 0.156 0.042 
1 9.67 0.054 0.029 1 10.42 0.133 -0.047 
2 10.18 0.072 -0 .005 2 10.06 0.149 0.010 
3 10.12 0.077 -0.001 3 10 .13 0.128 0.009 
4 10.10 0.061 0.005 4 10.20 0.131 -0.011 
5 10.18 -- 0.070 -0.002 5 10.12 0.142 0.006 
6 10.15 0.068 0.000 6 10.16 0.138 -0 .003 
7 10.15 0.068 0.000 7 10.14 0.136 0.001 
8 10.15 0.068 0.000 8 10.15 0.1 36 0.000 
9 10.15 0.068 0.000 9 10.15 0.137 -0.001 

Grid 6 Grid 5 

q 0q dR / d0 S-R q 0q dR/ d0 S-R 
0 10.15 0.137 -0.01 9 0 10.22 0.127 -0. 014 
1 10.00 0.152 -0.020 1 10.06 0.128 -0.008 
2 9.88 0.154 -0.003 2 10.00 0.129 -0.009 
3 9.86 0.162 0.014 3 9.93 0.131 -0.006 
4 9.95 0.1 61 0.019 4 9.89 0.133 -0.003 
5 10.06 0.1 55 0.017 5 9.86 0.135 -0.001 
6 10.17 0.148 0.009 6 9.86 0.137 0.002 
7 10.23 0.141 0.002 7 9.87 0.1 38 0.004 
8 10.25 0.137 -0.004 8 9.90 0.138 0.005 
9 10.22 0.135 -0.007 9 9.93 0.139 0.006 

Grid 4 Grid 3 

2 2 



q 0q dR/ d0 S-R q 0q dR/ d0 S-R 
0 9.93 0.133 0.006 0 10.29 0.132 0.004 
1 10.01 0.132 0.005 1 10.34 0.132 0.004 
2 10.05 0.132 0.005 2 10.37 0.132 0.003 
3 10.09 0.132 0.005 3 10.39 0.132 0.003 
4 10.12 0.132 0.005 4 10.42 0.132 0.003 
5 10.16 0.132 0.005 5 10.44 0.132 0.003 
6 10.19 0.132 0.004 6 10.47 0.132 0.003 
7 10.23 0.132 0.004 7 10.49 0.132 0.003 
8 10.26 0.131 0.004 8 10.52 0.132 0.003 
9 10.29 0.131 0.004 9 10.54 0.132 0.003 

Grid 2 Grid 1 

A.2 Results generated by the OPTRSS algo­
rithm, with a starting A value of Ao === 500, 
for the data set sine.dat 

q 0q dR/ d0 S-R 
0 5.73 5.249 2.10 
1 5.81 0.483 -0.04 
2 5.73 .032 0.06 
3 7.49 0.006 0.06 
4 17.10 0.150 -6.40 
5 -25.54 0.741 -0.24 
6 -25.87 0.069 0.05 
7 -25 .18 0.005 0.06 
8 -12.54 0.000 0.06 
9 192.88 0.000 -6.78 

Grid 6 
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A.3 Results generated by the OPTRSS algo­
rithm, with a starting A value of Ao == 

5000000, for the data set sine.dat 

q 0q dR/ d0 S -R q 0q dR / d0 I S - R 
0 13 .12 -7.198 -39.9 0 10.15 0.156 0.042 
1 10.14 1.22 -0.51 1 10.42 0.133 -0.047 
2 9.46 0.060 0.03 2 10.06 0.149 0.011 
3 10.00 0.06 0.01 3 10.13 0.12 0.009 
4 10.09 0.06 0.00 4 10.20 0.131 -0.011 
5 10.14 0.062 0.00 5 10.12 0.142 0.006 
6 10.17 0.070 0.00 6 10.16 0.13 -0.003 
7 10.14 0.06 0.00 7 10.14 0.136 0.001 

10 .1 5 0.06 0.00 10.15 0.1 36 0.000 
9 10 .1 5 0.06 0.00 9 10.15 0.137 -0.001 

Grid 6 Grid 5 

q ' 
0q dR / d0 -R q 0q dR /dB S-R 

0 10.15 0.137 -0.019 0 10. 22 0. 127 -0.014 
1 10.00 0.152 -0.020 1 10.06 0.12 -0.00 

I 
2 9 ~F) 0.15-J -0.003 2 10 .00 0.129 _ -0.009 .c 

3 9. 6 I 0.162 0.014 3 9.93 0.13 1 -0.006 
-J 9.95 0.161 0.019 4 9. 9 0.133 -0.003 
- 10.06 I ,J 0.155 0.017 5 9. 6 0.135 -0.001 
6 10 .1 T 0.1-:lc 0.009 6 9. 6 0.13 7 0.002 
- 10.23 I 0.1-Jl 0.002 7 9. 7 0.13 0.004 
s 10 .25 0.131 -0.00-J 9.90 0.13 0.005 

10.22 0.13.S -0.00 T 9 9.93 0.139 0.006 

Grid -1 Grid 3 
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q 0q dR/ d0 S-R q 0q dR / d0 S-R 
0 9.93 0.1 39 0.006 0 10.29 0.1 31 0.004 
1 10.01 0.133 0.006 1 10 .34 0.1 32 0.004 
2 10 .05 0.132 0.005 2 10.37 0.1 32 0.004 
3 10.09 0.132 0.005 3 10.39 0.1 32 0.003 
4 10.12 0.132 0.005 4 10 .42 0.1 32 0.003 
5 10.16 0.132 0.005 5 10.44 0. 132 0.003 
6 10 .19 0.132 0.005 6 10.47 0.1 32 0.003 
7 10.23 0.132 0.004 7 10.49 0.132 0.003 
8 10.26 0.132 0.004 8 10.52 0.1 32 0.003 
9 10.29 0. 131 0.004 9 10.54 0.1 32 0.003 

Grid 2 Grid 1 

A.4 Results generated by the OPTRSS algo­
rithm, with prescribed S values of 2.8208 
on each grid, for the data set sirie.dat 

q 0q dR/ d0 S-R 
1 10 .14 7.20 -40 .6 
2 8.89 1.38 -1.2 
3 0.90 7.78E-02 -0.622 
4 -96 .32 6.18E-03 -0.600 
5 -1569.10 4.07E-04 -0.599 
6 I aN NaN -0.599 
7 aN NaN NaN 
8 al NaN NaN 
9 aN Na NaN 

10 I aN NaN NaN 

Grid 6 

- 285 



A.5 Results generated by the OPTRSS algo­
rit hm, with a lower threshold on A up­
dates of A/ h3 , for the data set sine.dat 

q 0q dR/ d0 S-R q 0q dR/ d0 S-R 
0 10.14 0.055 -0.634 0 9.70 0.160 0.097 
1 9.70 0.050 -0.637 1 10.31 0.122 -0 .064 
2 9.70 0.050 -0 .637 2 9.79 0.155 0.039 
3 9.70 --0.042 -0.635 3 10 .04 0.125 -0.002 
4 9.70 0.047 -0.636 4 10.02 0.144 -0.004 
5 9.70 0.046 -0.636 5 9.99 0.143 0.008 
6 9.70 0.046 -0.636 6 10.05 0.137 -0.005 
7 9.70 0.046 -0.636 7 10.01 0.139 0.004 
8 9.70 0.046 -0.636 8 10.03 0.138 -0.002 
9 9.70 0.046 -0.636 9 10.02 0.140 0.000 

Grid 6 Grid 5 

q 0q dR/ d0 S-R q 0q dR/ d0 S-R 
0 10.02 0.137 0.037 0 10.27 0.150 -0.144 
1 10.29 0.138 0.015 1 9.07 0.188 -0.092 
2 10 .40 0.129 0.00 2 8.11 0.241 -0.009 
3 10.46 0.131 0.005 3 7.62 0.276 0.061 
4 10.50 0.130 -0.003 4 7.58 0.2 5 0.098 
5 10.48 0.129 -0.008 5 7.80 0.272 0.104 
6 10.42 0.131 -0 .010 6 8.15 0.247 0.090 
7 10.34 0.1 34 -0.00 7 .53 0.221 0.067 

10.2 0. 139 -0.002 . 9 0.197 0.043 
9 10.27 0. 143 0.004 9 9.20 0.137 0.037 

Grid 4 Grid 3 

2 6 



q 0q dR/ d0 S-R q 0q dR/ d0· S-R 
0 9.20 0.182 0.119 0 14.93 0.161 0.128 
1 10.07 0.179 0.114 1 16.28 0.162 0.128 
2 10.71 0.176 0.112 2 17.07 0.162 0.128 
3 11.34 0.174 0.108 3 17.86 0.162 0.128 
4 11.96 0.171 0.105 4 18.65 0.162 0.127 
5 12.58 0.169 0.102 5 19.44 0.161 0.127 
6 13.18 0.167 0.099 6 20 .23 0.161 0.127 
7 13.77 0.165 0.096 7 21.01 0.161 0.127 
8 14.35 0.163 0.093 8 21.80 0.161 0.127 
9 14.93 0.161 0.091 9 22.59 0.1 61 0.127 

Grid 2 Grid 1 
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A.6 R esults generated by the OPTRSS algo­
rithm, with the smoothing parameter fixed 
at A == 5, for the data set sine.dat 

q 0q dR/d0 S-R q 0q dR/ d0 S-R 
0 5.10 5.448 -2 .240 0 5.10 0.029 -0.013 
1 5.10 0.504 -0.104 1 4.66 0.015 -0.005 
2 5.10 0.035 -0 .005 2 4.31 0.001 -0.001 
3 5.10 -·0.002 -0 .000 3 3.39 0.000 -0.000 
4 5.10 0.000 0.000 4 3.02 0.000 0.000 
5 5.10 0.000 0.000 5 3.02 0.000 0.000 
6 5.10 0.000 0.000 6 3.02 0.000 0.000 
7 5.10 0.000 0.000 7 3.02 0.000 0.000 
8 5.10 0.000 0.000 8 3.02 0.000 0.000 
9 5.10 0.000 0.000 9 3.02 0.000 0.000 

10 5.10 0.000 0.000 10 3.02 0.000 0.000 
11 5.10 0.000 0.000 11 3.02 0.000 0.000 
12 5.10 0.000 0.000 12 3.02 0.000 0.000 
13 5.10 0.000 0.000 13 3.02 0.000 0.000 
14 5.10 0.000 0.000 14 3.02 0.000 0.000 
15 5.10 0.000 0.000 15 3.02 0.000 0.000 
16 5.10 0.000 0.000 16 3.02 0.000 0.000 
17 5.10 0.000 0.000 17 3.02 0.000 0.000 
18 5.10 0.000 0.000 18 3.02 0.000 0.000 
19 5.10 0.000 0.000 19 3.02 0.000 0.000 

Grid 6 Grid 5 

288 



q 0q dR/d0 S-R q 0q dR/d0 S-R 
0 3.02 0.025 -0 .010 0 1.62 0.352 0.007 
1 2.61 0.031 -0.013 1 1.64 0.318 0.012 
2 2.19 0.006 -0.002 2 1.63 0.340 -0.010 
3 1.84 0.004 -0.001 3 1.60 0.330 0.004 
4 1.69 0.003 -0 .000 4 1.61 0.025 -0.010 
5 1.64 0.003 -0 .000 5 1.61 0.333 -0.002 
6 1.63 0.003 -0 .000 6 1.61 0.332 0.001 
7 1.62 0.003 0.000 7 1.61 0.333 -0.001 
8 1.62 0.003 0.000 8 1.61 0.332 0.000 
9 1.62 0.003 0.000 9 1.61 0.333 0.000 

10 1.62 0.003 0.000 10 1.61 0.333 0.000 
11 1.62 0.003 0.000 11 1.61 0.333 0.000 
12 1.62 0.003 0.000 12 1.61 0.333 0.000 
13 1.62 0.003 0.000 13 1.61 0.333 0.000 
14 1.62 0.003 0.000 14 1.61 0.333 0.000 
15 1.62 0.003 0.000 15 1.61 0.333 0.000 
16 1.62 0.003 0.000 16 1.61 0.333 0.000 
17 1.62 0.003 0.000 17 1.61 0.333 . 0.000 
18 1.62 0.003 0.000 18 1.61 0.333 0.000 
19 1.62 0.003 0.000 19 1.61 0.333 0.000 

Grid 4 Grid 3 

q 0q dR/d0 S-R q 0q dR/d0 S-R 
0 1.61 0.479 -0.054 0 1.61 0.427 -0.012 
1 1.50 0.451 0.077 1 1.58 0.438 -0.005 
2 1.52 0.467 0.075 2 1.57 0.445 0.004 
3 1.63 0.414 -0 .049 3 1.58 0.449 0.009 
4 1.60 0.442 -0.012 4 1.60 0.448 0.009 
5 1.60 0.436 0.002 5 1.62 0.446 0.005 
6 1.61 0.439 -0.004 6 1.63 0.444 0.001 
7 1.60 0.436 0.005 7 1.63 0.442 -0.002 
8 1.61 0.436 0.004 8 1.63 0.441 -0.004 
9 1.61 0.438 -0.002 9 1.62 0.441 -0 .003 
10 1.61 0.437 0.000 10 1.61 0.442 -0.002 
11 1.61 0.437 0.000 11 1.61 0.443 -0.001 
12 1.61 0.436 0.000 12 1.60 0.444 0.000 
13 1.61 0.437 0.000 13 1.60 0.444 0.001 
14 1.61 0.437 0.000 14 1.61 0.445 0.001 
15 1.61 0.437 0.000 15 1.61 0.445 0.001 
16 1.61 0.437 0.000 16 1.61 0.445 0.000 
17 1.61 0.437 0.000 17 1.61 0.445 0.000 
18 1.61 0.437 0.000 18 1.61 0.445 0.000 
19 1.61 0.437 0.000 19 1.61 0.445 0.000 

Grid 2 Grid 1 
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A. 7 R esults generated by the MINGCV algo­
rithm,for the data set sine.dat 

q 0q dGCV d-ccv dR d,,.R 
rlA rf.A2 rl.A rf.A2 

0 10.14 0.0097 0.0187 0.9391 1. 7095 
1 9.6302 -0.0002 0.0004 0.0423 0.047 
2 10.2243 0.0001 0.0007 0.0744 0.0595 
3 10.0849 0.0000 0.0006 0.0671 0.054 
4 10.0606 -0 .0000 0.0006 0.0622 0.0544 
5 10.1293 0.0000 0.0006 0.0675 0.0571 
6 10 .0999 -0 .0000 0.0006 0.0656 0.0555 
7 10.1049 0.0000 0.0006 0.0659 0.0561 
8 10.1032 0.0000 0.0006 0.0659 0.056 --
9 10.1026 -0 .0000 0.0006 0.0658 0.0559 

10 10.1031 0.0000 0.0006 0.0658 0.0559 
11 10 .103 0.0000 0.0006 0.0658 0.0559 
12 10.103 0.0000 0.0006 0.0658 0.0559 
13 10 .103 0.0000 0.0006 0.0658 0.0559 
14 10.103 0.0000 0.0006 0.0658 0.0559 
15 10.103 0.0000 0.0006 0.0658 0.0559 
16 10.103 0.0000 0.0006 0.0658 0.0559 
17 10 .103 0.0000 0.0006 0.0658 0.0559 
18 10.103 0.0000 0.0006 0.0658 0.0559 
19 10 .103 0.0000 0.0006 0.0658 0.0559 

dTr d,,.Tr R Tr GCV rl.A rf.A 2 

0.9203 0.0473 3.9351 95 .03 0.044 
0.8423 0.2033 3.4519 94.58 0.039 
0.9004 -0.0174 3.4894 95.10 0.039 
0.8984 0.042 3.4806 94.97 0.039 
0.8972 0.0497 3.4743 94.95 0.0389 
0.8996 0.0231 3.4806 95 .01 0.0389 
0.8988 0.0351 3.4784 94 .99 0.0389 
0. 899 0.0329 3.4787 94.99 0.0389 

0.8989 0.0336 3.4786 94.99 0.0389 
0.8989 0.0338 3.4786 94.99 0.0389 
0. 989 0.0336 3.4786 94.99 0.0389 
0.8989 0.0337 3.4786 94.99 0.0389 -

o. 989 0.0336 3.4786 94.99 0.0389 
o. 9 9 0.0337 3.4786 94.99 0.0389 
0. 989 0.0337 3.4786 94.99 0.0389 
0. 9 9 0.0337 3.47 6 94.99 0.03 9 
0. 9 9 0.0337 3.4786 94.99 0.0389 
0. 9 9 0.0337 3.47 6 94.99 0.03 9 
o. 9 9 0.0337 3.4786 94.99 0.0389 
0. 9 9 0.0337 3.47 6 94.99 0.03 9 

Grid 6 
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q 0q dGCV d"GCV dR d"R 
rl.A ,-J(J2 rl.A r!A2 

0 10.103 0.0006 0.0005 0.1465 0.0092 
1 8.8597 0.0000 0.0004 0.1495 -0.0148 
2 8.7341 0.0001 0.0005 0.1638 -0.0006 
3 8.4695 -0.0000 0.0007 0.1597 0.0111 
4 8.5414 -0 .0000 0.0006 0.1603 0.0071 
5 8.553 0.0000 0.0006 0.1618 0.0079 
6 8.5249 -0.0000 0.0006 0.1602 0.0077 
7 8.5491 0.0000 0.0006 0.1611 0.0071 
8 8.538 -0.0000 0.0006 0.1608 0.0075 
9 8.5406 -0.0000 0.0006 0.1607 0.0073 

10 8.5424 0.0000 0.0006 0.1609 0.0073 
11 8.5399 -0 .0000 0.0006 0.1608 0.0074 
12 8.5415 0.0000 0.0006 0.1608 0.0073 
13 8.5409 0.0000 0.0006 0.1608 0.0074 
14 8.5409 -0.0000 0.0006 0.1608 0.0073 
15 8.5411 0.0000 0.0006 0.1608 0.0073 
16 8.5409 -0 .0000 0.0006 0.1608 0.0073 
17 8.541 -0 .0000 0.0006 0.1608 0.0073 
18 8.541 -0.0000 0.0006 0.1608 0.0073 
19 8.541 -0.0000 0.0006 

. 
0.1608 0.0073 

dTr d"Tr R Tr GCV rlA rf.A2 
1.5694 -0 .6597 2.7886 94.27 0.0317 
2.5278 -0.8794 2.6395 91.69 0.0317 
2.6507 -0.8539 2.6285 91.36 0.0318 
2.8751 -0.8566 2.5793 90.63 0.0317 
2.8175 -0.8511 2.5928 90.84 0.0317 
2.8067 -0 .8539 2.5952 90.87 0.0317 
2.8304 -0.854 2.5899 90.79 0.0317 
2.8102 -0.8533 2.5946 90.86 0.0317 
2.8193 -0.8541 2.5924 90.83 0.0317 
2.8173 -0.8537 2.5929 90.83 0.0317 
2.8157 -0.8538 2.5933 90.84 0.0317 
2.8178 -0.8538 2.5928 90.83 0.0317 
2.8165 -0.8538 2.5931 90 .84 0.0317 
2.817 -0.8538 2.593 90 .84 0.0317 
2.817 -0 .8538 2.593 90.84 0.0317 
2.8168 -0.8538 2.593 90 .84 0.0317 
2.817 -0.8538 2.593 90.84 0.0317 

2.8169 -0.8538 2.593 90 .84 0.0317 
2.8169 -0.8538 2.593 90.84 0.0317 
2.8169 -0.8538 2.593 90.84 0.0317 

Grid 5 
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0q dGCV d""GCV dR d"'R q rl.A rl,A2 r/.A rl,A2 

0 8.541 0.0001 0.0011 0.2045 0.025 
1 8.4897 0.0001 0.0011 0.1825 0.0057 
2 8.4245 -0.0002 0.0008 0.1734 -0.016 
3 8.6555 -0 .0002 0.0006 0.1451 -0.0337 
4 9.0265 -0.0001 0.0004 0.1266 -0.0362 
5 9.2708 0.0001 0.0003 0.1278 -0.0347 
6 9.0632 0.0003 0.0005 0.1667 -0.0213 
7 8.4544 0.0004 0.0013 0.2241 0.04 
8 8.1751 -0.0002 0.0011 0.1977 -0.0053 
9 8.3261 -0.0005 0.0007 0.1 562 -0.0407 

10 9.0137 -0.0003 0.0004 0.1057 -0 .0423 
11 9.7391 -0.000 1 0.0002 0.081 -0 .0361 
12 10.5455 0.0000 0.0001 0.061 -0.0267 
13 10 .9408 0.0001 0.0000 0.0585 -0.0252 
14 9.5177 0.0008 0.0002 0.1899 -0.0374 
15 6.3829 -0.0028 0.0014 0.201 -0.0479 
16 8.3358 0.0008 0.0033 0.2723 0.1736 
17 8.11 1 0.0001 0.0016 0.2259 0.0437 
18 8.0293 0.0000 0.001 1 0.2293 -0.0048 
19 8.0255 0.0000 0.00 11 0.2293 -0.0048 

dTr d,!,Tr R Tr GCV rl.A rl,A2 

3.5524 -1.379 2.5653 91.27 0.0311 
3.1658 -1.7138 2.5389 91.13 0.0309 
3.3875 -1.5801 2.5354 90 .92 0.031 
2.9463 -1.5556 2.5451 91.65 0.0306 
2.414 -1.3096 2.5905 92.67 0.0305 

2.1681 -1.1316 2.6329 93.25 0.0306 
2.5172 -1.1704 2.636 92 .76 0.0309 
3.4361 -1.4575 2.5605 91.01 0.0312 
3.8102 -1.8104 2.4927 90.02 0.0311 
3.5037 -1. 7472 2.4978 90.58 0.0307 
2.3453 -1. 3878 2.5754 92.64 0.0303 
1.6437 -0.9077 2.6454 94.21 0.0301 
1.1115 -0.5864 2.723 95.38 0.0302 
0.9069 -0 .5151 2.7869 95.79 0.0307 
2.0936 -1.1417 2.7619 93.71 0.0318 
7.47 2 -2.1294 2.0234 79.90 0.032 
3.5047 -1.9274 2.7302 90.64 0.0336 

-3.901 -1.7642 2.477 9.7 0.031 
4.06 4 -1. 7 2.5169 9.45 0.031 
4.0672 -1.8 92 2.4715 9.44 0.0312 

Grid 4 
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q 0q dGCV dL,GCV dR dL,R 
rl r:i r/(.:/2 rl.A r/(.:/2 

0 8.0255 -0.0001 0.0007 0.1339 0.0037 
1 8.5097 0.0000 0.0005 0.1294 -0.0049 
2 8.4796 0.0001 0.0004 0.1365 -0 .0139 
3 8.2439 0.0001 0.0005 0.1563 -0.0266 
4 7.9745 0.0002 0.0006 0.1831 -0.0366 
5 7.6971 0.0002 0.0007 0.2136 -0.0406 
6 7.4038 0.0003 0.0008 0.2476 -0.0376 
7 7.0838 0.0003 0.0009 0.2844 -0.0249 
8 6.7467 0.0003 0.0011 0.3168 -0.0036 
9 6.4701 0.0001 0.0012 0.3232 0.0059 

10 6.4132 -0.0004 0.0011 0.2824 -0.0213 
11 6.7985 -0.0008 0.0008 0.1931 -0 .0507 
12 7.8523 -0.0008 0.0005 0.0842 -0 .02 
13 9.3352 -0.0006 0.0004 0.0274 0.0152 
14 10.9293 -0.0005 0.0003 0.0126 0.0227 
15 12.8368 -0.0004 0.0002 0.0084 0.0166 
16 15.5323 -0.0004 0.0001 0.0043 0.0103 
17 19.3192 -0.0004 0.0001 0.0009 0.0062 
18 24.8494 -0.0003 0.0000 -0.0012 0.0034 . 
19 38 .0293 -0.0003 -0.0000 -0.0024 0.001 

dTr dL,Tr R Tr GCV rUl rl,A2 

2.4913 -0.9962 2.7023 92 .28 0.032 
2.1 966 -0.8552 2.7079 92.80 0.0318 
2.1753 -0.9539 2.7209 92 .84 0.0319 
2.455 -1.2782 2.7191 92.35 0.0322 
2.8559 -1.6224 2.7031 91.58 0.0326 
3.3224 -1.8759 2.6723 90 .64 0.0329 
3.8629 -1.9891 2.6267 89.55 0.0331 
4.4839 -1.9483 2.5649 88.23 0.0333 
5.1484 -1.8201 2.485 86.67 0.0334 
5.6623 -1.7993 2.3966 85.25 0.0333 
5.6599 -2.0002 2.3381 84.93 0.0327 
4.7098 -2.0324 2.3581 86 .99 0.0315 
2.7718 -1.1237 2.4535 90.91 0.03 
1.4655 -0.2921 2.5656 93.40 0.0297 
1.0034 0.0178 2.6609 94.58 0.03 
0.8444 0.0466 2.7302 95.18 0.0304 
0.7207 0.0198 2.7743 95.50 0.0307 
0.5921 0.0129 2.7972 95.71 0.0308 
0.479 0.0276 2.8053 95.87 0.0308 
0.3976 0.047 2.8058 96.01 0.0307 
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A.8 Results generated by the MINGCV algo­
rithm for .the data set sine.dat, using a 
second random vector t 

0q dGCV d 2 GCV dR d2 R q rl.A rf.A 2 rlA rl.A 2 

0 10 .14 0.0114 0.0215 0.9247 1.6537 
1 9.6155 0.0000 0.0011 0.0535 0.1141 
2 9.5792 0.0000 0.0005 0.0452 0.0585 
3 9.6476 0.0000 0.0004 0.0468 0.0588 
4 9.7373 -0.0001 0.0001 0.044 0.0311 
5 10. 7158 0.0005 0.0008 0.106 0.0874 
6 10.1483 0.0001 0.0005 0.0711 0.0605 

-7 9.9521 0.0000 0.0003 0.0571 0.0514 
8 9.9888 0.0000 0.0004 0.0603 0.0541 
9 9.9048 -0.0000 0.0003 0.0553 0.0502 

10 9.9437 0.0000 0.0004 0.0571 0.0505 
11 9.9287 0.0000 0.0004 0.0566 0.0508 
12 9.9281 -0.0000 0.0004 0.0565 0.0506 
13 9.9305 0.0000 0.0004 0.0567 0.0508 
14 9.9269 -0.0000 0.0004 0.0565 0.0507 
15 9.9287 0.0000 0.0004 0.0565 0.0507 
16 9.9279 -0 .0000 0.0004 0.0565 0.0507 
17 9.9281 -0 .0000 0.0004 0.0565 0.0507 
18 9.9282 0.0000 0.0004 0.0565 0.0507 
19 9.928 0.0000 0.0004 0.0565 0.0507 

dTr- d 2 Tr- R Tr GCV rlA rlR 2 

0.6553 -0.038 3.9351 87.54 0.0519 
0.6382 0.4019 3.4513 87.14 0.0459 
0.6017 0.2742 3.4524 87.12 0.0459 
0.6284 0.3187 3.4548 87.16 0.0459 
0.6519 0.2912 3.4575 87.22 0.0459 
0.8634 0.2561 3.5312 87.98 0.0461 
0.7939 0.2419 3.4829 87 .52 0.0459 
0. 7304 0.3294 3.4684 87 .37 0.0459 
0.7256 0.2799 3.4717 87.40 0.0459 
0.7091 0.3059 3.4664 87.34 0.0459 
o. 7139 0.2934 3.4688 87.36 0.0459 

-

0. 7128 0.2974 3.468 87.35 0.0459 
0.7118 0.2976 3.4679 87.35 0.0459 
0.7124 0.2968 3.4681 87.35 0.0459 
0.7117 0.2976 3.4678 87.35 0.0459 
0.7119 0.2971 3.468 87.35 0.0459 
0.7119 0.2973 3.4679 7.35 0.0459 
0.711 0.2973 3.4679 87.35 0.0459 
0.7119 0.2973 3.4679 87.35 0.0459 
0.7119 0.2973 3.4679 87.35 0.0459 
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q 0q dGCV dL,GCV dR dL,R 
rlA rf.(}2 rlA rlA2 

0 9.928 -0.0002 0.0004 0.1576 -0.0081 
1 9.9301 0.0002 -0.0004 0.1494 -0.0024 
2 4.9566 0.0005 0.0001 0.1486 -0 .0581 
3 4.6357 0.0005 0.0014 0.0311 0.0866 
4 4.6689 0.0000 0.0005 0.0151 0.0503 
5 3.4919 -0.0002 -0.0002 0.0024 0.0015 
6 4.5727 0.0000 0.0000 0.0001 0.0002 
7 3.1888 -0.0002 -0.0001 0.0055 0.0132 
8 3.3191 0.0000 0.0001 0.0000 0.0000 
g 2.6235 -0.0001 -0.0001 0.0006 0.0019 

10 4.971 0.0000 0.0000 0.0000 -0.0001 
11 -21.5137 -0 .0002 0.0000 0.0119 0.028 
12 -21.7763 0.0001 0.0004 0.0012 0.0056 
13 -21.9459 0.0000 -0.0001 0.0001 0.0006 
14 -22 .0642 0.0000 0.0000 0.0000 0.0001 
15 -22.1563 0.0000 0.0000 0.0000 0.0000 
16 -22.2315 0.0000 0.0000 0.0000 0.0000 
17 -22.2951 0.0000 0.0000 0.0000 0.0000 
18 -22.3502 0.0000 0.0000 0.0000 0.0000 
19 -22.3988 0.0000 0.0000 0.0000 0.0000 

dTr dL,Tr R Tr GCV rl.A rl.A2 
2.2512 -0.7586 2.7603 88 .50 0.0356 
2.1217 0.4124 2.7281 87.28 0.0362 
1.6551 -1.1155 2.8371 88 .23 0.0368 
0.0293 -0 .0912 2.315 80.98 0.0357 
0.2813 0.3573 2.3089 80.92 0.0356 
0.2511 0.2053 2.3055 80.93 0.0355 
0.0453 -0.0371 2.3039 80.75 0.0357 
0.275 0.3613 2.3063 80.91 0.0356 
0.0144 -0.1171 2.3038 80.73 0.0357 
0.0834 0.1386 2.304 80.74 0.0357 
0.0252 -0.0123 2.3038 80.70 0.0357 
0.3999 0.5008 2.3092 81.02 0.0355 
-0.0908 -0.3245 2.3041 80.66 0.0358 
0.0196 0.1178 2.3038 80.67 0.0358 
-0.0042 -0.0358 2.3038 80 .67 0.0358 
0.0009 0.01 2.3038 80.67 0.0358 
-0.0002 -0.0026 2.3038 80.67 0.0358 
0.0000 0.0007 2.3038 80.67 0.0358 
0.0000 -0.0002 2.3038 80.67 0.0358 
0.0000 0.0000 2.3038 80.67 0.0358 

Grid 5 

· 295 



A.9 R esults generated by the MINGCV algo­
rithm for the data set sine.dat , for a third 
random vector t 

q 0q dGCV d"'GCV dR d.!,R 
rl.A rf.A2 rl.A rf.A2 

0 10.14 0.0099 0.021 0.9247 1.6537 
1 9.675 -0.0014 0.0007 0.0547 0.1083 
2 11.665 0.0051 0.0134 0.6247 1.1255 
3 11.2802 0.0004 0.0032 0.2105 0.2083 
4 11.1669 -0.0003 0.0029 0.1649 0.2093 
5 11.2757 -0.0002 0.0023 0.1773 0.1624 
6 11.3451 0.0002 0.0031 0.204 0.2301 

- -7 11.2818 0.0000 0.0028 0.1854 0.1984 
8 11.2918 0.0000 0.0029 0.1883 0.2068 
9 11.2938 0.0000 0.0028 0.1879 0.2012 

10 11.2962 0.0000 0.0029 0.1891 0.2051 
11 11.2931 0.0000 0.0028 0.1882 0.2032 
12 11.2942 0.0000 0.0028 0.1885 0.2039 
13 11.294 0.0000 0.0028 0.1884 0.2036 
14 11.2941 0.0000 0.0028 0.1885 0.2038 
15 11.294 0.0000 0.0028 0.1884 0.2037 
16 11.2941 0.0000 0.0028 0.1885 0.2037 
17 11.2941 0.0000 0.0028 0.1885 0.2037 
18 11.2941 0.0000 0.0028 0.1885 0.2037 
19 11.2941 0.0000 0.0028 0.1885 0.2037 
dTr d.!,Tr R Tr CCV rl.A rf.A 2 

1.9288 -0.1127 3.9351 87.53 0.0519 
2.0012 0.7696 3.4537 86.46 0.0467 
2.3788 -0.2806 3.8594 91.13 0.0469 
2.2581 -0.6684 3.6286 90.24 0.045 
2.3853 -0.3264 3.5877 89.96 0.0448 
2.3785 -0.3521 3.6088 90.22 0.0448 
2.3421 -0.37 3.6266 90.39 0.0448 
2.3443 -0. 4006 3.6116 90.24 0.0448 
2.3577 -0.3657 3.6133 90.26 0.0448 
2.3541 -0.3746 3.6139 90.27 0.0448 
2.353 -0.3752 3.6145 90.27 0.0448 -

2.3532 -0 .376 3.6138 90.26 0.0448 
2.3537 -0. 3743 3.614 90.27 0.0448 
2.3535 -0.3752 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90.27 0.044 
2.3535 -0.3751 3.614 90.27 0.044 
2.3535 -0.375 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90.27 0.044 
2.3535 -0.375 3.614 90.27 0.0448 

Grid 6 

296 



q 0q dGCV d""GCV dR d"'R 
rl r:i r/(:/2 rl.A rl.A 2 

0 11.2941 0.0032 0.255 0.2348 
1 10.8166 0.0009 0.0029 0.2323 0.2097 
2 10.4876 0.0001 0.0014 0.1679 0.1002 
3 10.439 -0 .0005 0.0003 0.1217 0.0019 
4 11.911 -0 .0005 -0.0001 0.0431 -0 .0221 
5 6.4411 -0.0008 0.001 0.0618 0.1003 
6 7.2415 -0 .0005 0.0003 0.1224 0.0681 
7 8.8233 -0.0005 0.0007 0.2026 0.0892 
8 9.5832 -0.0007 -0.0003 0.1321 -0.104 
9 7.4672 0.0005 0.0007 0.2026 0.0892 

10 8.0882 0.0007 -0.0003 0.1321 -0.104 
11 4.0659 -0.0004 -0.0007 0.151 0.077 
12 3.7561 -0.0006 -0.0001 0.1574 0.0139 
13 3.1 951 -0 .0008 0.0026 0.0197 0.0634 
14 3.6891 -0.0003 -0.0005 0.0059 0.0248 
15 2.9043 -0.0001 0.0002 -0.0001 -0.0003 
16 5.0858 -0.0002 -0 .0003 0.0011 0.0037 
17 3.6949 -0.0001 0.0000 0.0000 -0.0002 
18 3.8651 -0.0006 -0.0004 0.0145 0.0336 
19 3.1375 -0.0001 0.0003 -0.0001 0.0000· 

dTr d"Tr R Tr CCV rl.A rlf:12 

1.9597 -0.5847 3.0128 90.27 0.0373 
2.3771 -0.4407 2.9665 89.45 0.0374 
2.497 -0.2711 2.8885 88.80 0.037 

2.4883 -0.3834 2.8671 88.71 0.0368 
1.2926 -0 .2025 3.0192 91.97 0.036 
1. 7747 0.7526 2.3388 77.50 0.0393 
2.5543 0.7527 2.4218 79 .21 0.039 
3.7508 0.5883 2.6726 83.99 0.0383 
2.8409 -1.2389 2.7747 86.38 0.0376 
2.8911 0.512 2.4515 79 .80 0.0389 
3.1 354 0.345 2.5373 81.66 0.0384 
-0.4149 -1.326 2.3098 75.29 0.0412 
0.3308 0.824 2.3054 75.27 0.0411 
0.07 -0.1486 2.3038 75.18 0.0412 

0.2146 0.3117 2.3042 75.26 0.0411 
0.0593 -0.0298 2.3038 75.15 0.0412 
0.8071 0.9771 2.3104 75.80 0.0406 
0.0509 -0.309 2.3038 75.25 0.0411 
0.2598 0.4084 2.3044 75.30 0.0411 
0.0768 -0.0357 2.3039 75.18 0.0412 

Grid 5 

297 



0q dGCV d"GCV dR d"R q rll! r!f}2 rl.A rl,FJ2 

0 3.1375 -0.0008 0.0021 0.2556 0.0426 
1 5.9314 -0.0008 0.0014 0.2851 0.0575 
2 6.5016 0.0000 0.0001 0.2707 -0.0701 
3 6.358 -0.0005 0.0003 0.2377 -0 .0441 
4 7.9839 -0.001 -0.0007 0.1086 -0.129 
5 6.6073 -0.0002 0.0012 0.2438 0.0436 
6 6.8021 -0.0002 -0 .0007 0.2514 -0.1176 
7 6.5295 -0.0003 0.0007 0.2409 -0.018 
8 7.0512 0.0000 -0.0006 0.236 -0 .0923 
9 7.0132 -0.0001 0.0003 0.2259 -0.031 

10 7.4476 -0.0004 -0.0004 0.1929 -0 .0698 
11 6.5042 -0.0005 0.0006 0.2316 -0.0228 
12 7.458 -0.0005 -0.0012 0.186 -0.148 
13 7.0147 0.0002 0.0012 0.2474 0.0361 
t4 6.8605 -0 .0003 -0.0002 0.2382 -0.0642 
15 5.6466 -0.0008 0.0017 0.2651 0.0417 
16 6.1097 -0.0009 0.0006 0.2583 -0.0134 
17 7.5113 -0.0005 -0.0011 0.1662 -0 .1588 
18 7.1033 0.0003 0.001 0.2516 0.0394 
19 6.8043 -0.0004 -0.0001 0.237 -0.0598 

dTr d"Tr R Tr GCV rl.A rl.A 2 

5.513 -1.3273 1.8866 70 .43 0.0384 
5.9795 -0.5374 1.9882 72.67 0.038 
4.6892 -1.5898 2.1754 75.55 0.0385 
4.7626 -1.2697 2.0751 74 .85 0.0374 
2.7046 -1.25 2.5995 81.48 0.0395 
4.6965 -0 . 7187 2.0847 76.04 0.0364 
4.5042 -1.5307 2.2417 76.90 0.0383 
4.6607 -1.1926 2.1144 75.68 0.0373 
3.9935 -1.1517 2.3147 77.87 0.0386 
4.0777 -1.0652 2.2378 77.82 0.0373 
3.6069 -0 .8539 2.3783 79.47 0.038 
4.7627 -1.1 524 2.0763 75.54 0.0368 
3.5261 -1.2749 2.4587 79 .43 0.0394 
4.1 584 -0.8808 2.2149 77.90 0.0369 
4.4324 -1.0776 2.215 77.20 0.0375 
5.6719 -1.0408 1.9088 71.02 0.0382 
5.5414 -1. 0129 2.0284 73.62 0.0378 

-3.0967 -1.437 2.5078 79.54 0.04 
4.0833 -0.6793 2.2329 78.26 0.0368 
4.5285 -1.1006 2.1926 76.97 0.0374 

Grid 4 

29 



q 0q dGCV d~ccv dR d"'R 
,1 CJ ,1 CJ 2 rl.A rl.A2 

0 6.8043 -0.0079 0.0066 0.3647 0.0148 
1 13.5552 -0 .0042 -0.0005 0.1127 -0.2119 
2 13.4647 -0 .0003 -0.0031 0.0177 -0.2165 
3 13.4391 0.0000 -0.0018 0.0016 -0.1622 
4 13.4613 0.0000 -0 .0009 0.0152 -0.1116 
5 15.1637 0.0006 -0.0003 0.0251 -0 .0696 
6 15.8654 0.0003 -0.0004 0.0238 -0.0295 
7 16.1419 0.0000 0.0001 0.0249 0.0039 
8 16.4685 -0.0001 0.0003 0.0234 0.0245 
9 16.5761 0.0000 0.0004 0.0212 0.0312 

10 16.6051 0.0000 0.0004 0.0185 0.028 
11 16.4926 0.0000 0.0003 0.0166 0.0205 
12 16.2137 0.0001 0.0002 0.0154 0.0131 
13 15.5102 0.0001 0.0001 0.0151 0.0069 
14 12.7135 0.0001 0.0000 0.0152 0.0017 
15 25 .936 0.0001 0.0000 0.0155 -0.001 5 
16 31.0394 0.0001 0.0000 0.015 -0.0018 
17 62.2224 0.0001 0.0000 0.0142 -0 .0005 
18 57.9038 0.0001 0.0000 0.0135 0.0012 
19 56 .1666 0.0001 0.0000 0.0128 0.0027' 

dTr d~Tr R Tr GCV ~ ---;fi:J2 

12.4522 -2.3139 1.5138 59 .1 3 0.0437 
5.6709 -3.5578 1.915 69 .55 0.04 
0.5786 -0 .3164 2.4553 79.98 0.0388 
0.0686 -0.6461 2.7444 81.44 0.0418 
0.1979 -0 .7373 2.9026 82 .48 0.0431 
-0.2007 -0 .6432 2.9893 83 .50 0.0433 
0.0603 -0 .0253 3.0192 84.17 0.043 
0.3772 -0.0335 2.9899 84.68 0.0421 
0.4417 0.0398 2.9383 85.18 0.0409 
0.3626 0.0155 2.8872 85.64 0.0398 
0.2917 -0.0106 2.8484 86 .06 0.0388 
0.2164 -0.0284 2.8224 86.45 0.0381 
0.1796 -0.0083 2.8102 86.81 0.0377 
0.1497 -0.0135 2.8095 87.14 0.0374 
0.1194 -0.0164 2.8178 87.44 0.0372 
0.1133 -0.0144 2.8301 87 .71 0.0372 
0.1098 -0.0047 2.8433 87.98 0.0371 
0.1123 -0.0056 2.855 88.22 0.0371 
0.1165 -0.0035 2.865 88 .44 0.037 
0.1219 -0.0028 2.873 88.65 0.0369 

Grid 3 

299 



A .10 Results generated by the MINGCV al­
gorithm using a dampening factor of 1/2 , 
for t he data set sine.dat 

q 0q dGCV d"GCV dR d L, R 
rl {:/ rf. A2 rf.A rf.A 2 

0 10.14 0.0099 0.021 0.9247 1.6537 
1 9.675 -0.0014 0.0007 0.0619 0.0913 
2 11.8576 0.0008 0.0014 0.1323 0.1028 
3 11.4243 0.0001 0.0034 0.2056 0.256 
4 11.1197 -0 .0005 0.002 0.1556 0.1362 
5 11.3704 0.0001 0.0029 0.185 0.2056 
6 11.2767 -0.0001 0.0026 0.1 826 0.188 

- -7 11.295 0.0000 0.0028 0.1867 0.2029 
8 11.2897 0.0000 0.0028 0.1867 0.2003 
9 11.2935 0.0000 0.0028 0.1876 0.2024 

10 11.2935 -0 .0000 0.0028 0.188 0.2031 
11 11.2936 -0.0000 0.0028 0.1882 0.2032 
12 11.2939 -0 .0000 0.0028 0.1883 0.2035 
13 11.2939 0.0000 0.0028 0.1884 0.2035 
14 11.294 0.0000 0.0028 0.1884 0.2036 
15 11.294 0.0000 0.0028 0.1884 0.2037 
16 11.294 0.0000 0.0028 0.1884 0.2037 
17 11.294 -0.0000 0.0028 0.1884 0.2037 
18 11.2941 -0.0000 0.0028 0.1 884 0.2037 
19 11.2941 -0.0000 0.0028 0.1885 0.2037 

dTr dL,Tr R T r GCV rf.A rf. A2 

1.9288 -0.11 27 3.9351 87.53 0.0519 
2.1374 0.5281 3.4655 86 .96 0.0463 
2.4072 -0.0794 3.5588 89. 28 0.045 1 
2.4453 -0.2605 3.6092 89.94 0.045 1 
2.408 -0.2742 3.587 89 .89 0.0448 

2.3777 -0.3562 3.6084 90 .17 0.0448 
2.3608 -0.371 3.6095 90 .20 0. 0448 
2.3594 -0.3647 3.6119 90 .23 0.0448 
2.3564 -0.3742 3.6125 90.25 0.0448 
2.3556 -0 .3716 3.6132 90.26 0.0448 
2.3545 -0.3741 3.6136 -90.26 0.0448 
2.3541 -0.3742 3.6138 90 .26 0.0448 
2.3538 -0.3746 3.6139 90 .26 0.0448 
2.3537 -0.3748 3.6139 90.27 0.0448 
2.3536 -0.3749 3.614 90.27 0.0448 
2.3536 -0.3749 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90.27 0.0448 
2.3535 -0.375 3.614 90 .27 0.0448 
2.3535 -0.375 3.614 90.27 0.0448 

Grid 6 

300 



q 0q dGCV dL,GCV dR dL,R 
rl.A rl,FJ2 rl.A rf.R2 

0 11.2941 0.0015 0.0032 0.255 0.2348 
1 10.8166 0.0012 0.0032 0.2468 0.2402 
2 10.6732 0.0006 0.0025 0.1984 0.1844 
3 10.615 0.0000 0.0014 0.15 0.0958 
4 10.7669 -0. 0003 0.0006 0.1248 0.0279 
5 11.208 -0.0003 0.0004 0.1141 -0.0043 
6 11. 727 4 0.0000 0.0004 0.1228 0.0005 
7 11.2843 0.0005 0.001 0.1674 0.0377 
8 10.7942 0.0008 0.0018 0.207 0.1148 
9 10.6101 0.0006 0.0023 0.1977 0.1656 

10 10.5722 -0.0001 0.0019 0.1604 0.131 
11 10.6465 -0.0002 0.0011 0.1318 0.0536 
12 10.8819 -0.0003 0.0005 0.122 0.001 
13 11.2896 0.0001 0.0005 0.1258 -0.0004 
14 11.2159 0.0002 0.0009 0.1498 0.0351 
15 10.8924 0.0004 0.001 5 0.1763 0.0904 
16 10.709 0.0004 0.0018 0.1784 0.127 
17 10.6437 -0 .0001 0.0017 0.1591 0.1122 
18 10.6793 -0.0001 0.0012 0.1392 0.0638 
19 10.815 0.0002 0.0008 0.13 0.0238 . 

dTr dL,Tr R Tr GCV rl.R rl A 2 

1.9598 -0.5847 3.0128 90 .27 0.0373 
2.2083 -0.4863 3.0085 89.99 0.0375 
2.264 -0.3257 2.9557 89.68 0.0371 
2.3468 -0.2421 2.9122 89.40 0.0368 
2.2741 -0.3766 2.9121 89 .47 0.0367 
2.0886 -0.5431 2.9441 90.04 0.0367 
1.8235 -0.5848 2.9967 90.84 0.0367 
1.903 -0 .6985 3.0126 90 .67 0.037 

2.1442 -0.6003 2.9851 90.02 0.0372 
2.286 -0.3758 2.9431 89.57 0.037 
2.3309 -0.3496 2.9122 89.32 0.0369 
2.2965 -0.5152 2.9042 89.28 0.0368 
2.2068 -0.6625 2.9202 89.55 0.0368 
2.0356 -0.6898 2.9569 90.16 0.0367 
2.0125 -0.6509 2.9764 90.29 0.0369 
2.1362 -0.5286 2.966 89 .98 0.037 
2.2411 -0.3876 2.9423 89 .65 0.037 
2.2901 -0.3813 2.9206 89.43 0.0369 
2.2796 -0.5044 2.9119 89 .37 0.0368 
2.2271 -0.6241 2.9192 89.51 0.0368 

Grid 5 

· 301 



0q dGCV d,,GCV dR d"R q rlA rl/}2 rlA rJA2 

0 10.815 -0.0000 0.0009 0.1368 0.0398 
1 10.8926 0.0000 0.0009 0.143 0.0346 
2 10.8505 -0.0000 0.0009 0.1402 0.0346 
3 10.8848 0.0000 0.0009 0.1453 0.0324 
4 10.8327 0.0001 0.0009 0.1482 0.031 
5 10.7688 0.0001 0.0009 0.1504 0.0307 
6 10.6992 0.0001 0.0009 0.1534 0.0305 
7 10.6289 0.0001 0.0009 0.1566 0.0306 
8 10.5611 0.0001 0.0009 0.1603 0.031 
9 10.4928 0.0001 0.0009 0.164 0.0316 

10 10.4293 0.0001 0.0009 0.1672 0.0327 
11 10.3745 0.0001 0.001 0.1698 0.0344 
12 10.3315 0.0001 0.001 0.1714 0.0365 
13 10.3048 0.0000 0.001 0.1718 0.0391 
14 10.2967 -0.0000 0.001 0.1709 0.042 
15 10.3085 -0.0000 0.0009 0.1687 0.0449 
16 10.3409 -0.0001 0.0009 0.1654 0.0478 
17 10.3937 -0.0001 0.0009 0.1611 0.0505 
18 10.4657 -0.0001 0.0009 0.156 0.0528 
19 10.5547 -0.0002 0.0009 0.1504 0.0549 

dTr dL,Tr R Tr CCV rlA r!A2 

2.1261 -0.5474 2.8903 89 .60 0.0364 
2.1623 -0.5776 2.9074 89.63 0.0366 
2.1801 -0.6091 2.9029 89.59 0.0365 
2.1953 -0 .6413 2.9004 89 .55 0.0365 
2.1959 -0.6484 2.8991 89 .49 0.0366 
2.2026 -0.6534 2.8963 89 .42 0.0366 
2.233 -0.6711 2.8933 89 .33 0.0366 

2.2767 -0 .6904 2.8874 89 .23 0.0366 
2.3312 -0 .7074 2.8801 89.10 0.0366 
2.3932 -0. 7184 2.8712 88.95 0.0367 
2.4574 -0. 7191 2.8615 88.79 0.0367 
2.5207 -0.7074 2.8511 88.64 0.0367 
2.5786 -0.6813 2.8409 88 .49 0.0366 
2.6259 -0 .6394 2.8314 88.36 0.0366 
2.658 -0.5828 2.8233 88 .27 0.0366 

2.6721 -0.5152 2.8172 88 .22 0.0366 
2.6672 -0.4422 2.8133 88 .23 0.0365 

-
2.6434 -0.3698 2.812 88.28 0.0364 
2.6025 -0.3032 2.8133 88 .38 0.0364 
2.5468 -0 .2462 2.817 88.52 0.0363 

Grid 4 

302 



q 0q dR d-R 
~ 

0 10.5547 -0.0002 0.001 0.146 0.0693 
1 10.7537 -0.0002 0.001 0.1451 0.0704 
2 10.8389 -0.0002 0.001 0.1438 0.071 
3 10.9282 -0.0002 0.001 0.1425 0.072 
4 11.0104 -0.0002 0.001 0.1413 0.0725 
5 11.0933 -0.0002 0.001 0.1402 0.0732 
6 11.1734 -0.0002 0.001 0.1391 0.0738 
7 11.25 -0.0002 0.001 0.1 38 0.0745 
8 11.3243 -0.0001 0.001 0.1367 0.0752 
9 11.397 -0.0001 0.001 0.1 355 0.0759 

10 11.4681 -0.0001 0.001 0.1342 0.0767 
11 11.5373 -0.0001 0.001 0.1329 0.0775 
12 11.6045 -0.0001 0.001 0.1316 0.0782 
13 11.6699 -0.0001 0.001 0.1 304 0.079 
14 11.7336 -0.0001 0.001 0.1291 0.0798 
15 11. 7955 -0.0001 0.001 0.1278 0.0806 
16 11.8559 -0.0001 0.001 0.1266 0.0814 
17 11.9146 -0.0001 0.001 0.1253 0.0821 
18 11.9717 -0.0001 0.001 0.1241 0.0829 
19 12.0271 -0.0001 0.001 0.1229 0.0837 , 

dTr d-Tr R T, GCV 
2.3821 -0.1922 2.9901 88 .74 0.0384 
2.368 -0.1846 2.9859 88.78 0.0383 

2.3459 -0.1645 2.9 97 88 .83 0.0383 
2.3199 -0.1504 2.9909 88 .88 0.0382 
2.29 4 -0.1394 2.9928 88 .94 0.0382 
2.2775 -0.1281 2.9947 89.00 0.0382 
2.2536 -0.1156 2.9965 9.06 0.0382 
2.2305 -0.1041 2.99 5 89 .12 0.03 1 
2.207 -0.092 3.0005 9.19 0.03 1 
2.1 4 -0.0 17 3.0027 9.25 0.03 1 
2.1615 -0.0704 3.0049 89 .32 0.038 
2.13 -0.0592 3.0071 9.3 0.03 

2.1147 -0.04 4 3.0094 89 .45 0.038 
2.0916 -0.037 3.0117 9.51 0.03 
2.06 7 -0.0275 3.0139 9.57 0.0379 
2.0461 -0.0175 3.0162 9.64 0.0379 
2.0237 -0.0077 3.01 6 9.70 0.0379 
2.0013 0.002 3.0209 9.76 0.0379 
1.9791 0.0116 3.0232 9. 0.0379 
1.957 0.0211 3.0255 0.037 

Grid 3 
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0q dGCV dL,GCV dR dL,R 
q rl.R r/{} 2 r/f} r/{} 2 

0 12.0271 -0.0000 0.0000 0.0121 0.0022 
1 50.9255 -0 .0000 0-.0000 0.012 0.0023 
2 46.389 -0.0000 -0.0000 0.0119 0.0024 
3 43.0275 -0.0000 -0.0000 0.0119 0.0025 
4 40.0008 -0.0000 -0.0000 0.0118 0.0026 
5 37.3851 -0.0000 -0.0000 0.0117 0.0026 
6 35.0393 -0.0000 -0.0000 0.0117 0.0027 
7 32.8663 -0.0000 -0.0000 0.0116 0.0027 
8 30.8545 -0.0000 -0.0000 0.0116 0.0028 
9 28.9681 -0.0000 -0.0000 0.0115 0.0028 

10 27.1621 -0.0000 -0.0000 0.0115 0.0028 
11 25.4299 -0.0000 -0 .0000 0.0114 0.0028 
12 23. 7502 -0.0000 -0.0000 0.0114 0.0028 
13 22.1109 -0.0000 -0.0000 0.0113 0.0028 
14 20.5001 -0 .0000 -0.0000 0.0113 0.0028 
15 18.9084 -0.0000 -0.0000 0.0112 0.0028 
16 17.3276 -0.0000 -0.0000 0.0112 0.0027 
17 15.7505 -0.0000 -0.0000 0.0112 0.0027 
18 14.1713 -0.0000 -0.0000 0.0111 0.0027 
19 12.5889 -0.0000 -0.0000 0.0112 0.0025 

dTr dL,Tr R Tr GCV rl.R rl,{} 2 

0.1439 0.0251 2.7782 88.70 0.0357 
0.1452 0.0257 2.7792 88.71 0.0357 
0.1456 0.025 2.779 88.72 0.0357 
0.1458 0.0247 2.7793 88.73 0.0357 
0.146 0.0244 2.7795 88.75 0.0356 

0.1459 0.024 2.7797 88.76 0.0356 
0. 146 0.0236 2.7799 88.77 0.0356 

0.1459 0.0232 2.7801 88 .78 0.0356 
0.1457 0.0229 2.7802 88.79 0.0356 
0.1455 0.0226 2.7804 88.80 0.0356 
0.1453 0.0222 2.7806 88 .82 0.0356 
0.145 0.0219 2.7808 88.83 0.0356 

0.1447 0.0217 2.781 88.84 0.0356 
0.1443 0.0214 2.7812 88.85 0.0356 
0.144 0.0211 2.7814 88 .86 0.0356 
0.1436 0.0209 2.7816 88.87 0.0356 
0.1432 0.0207 2.7819 88 .88 0.0356 

-
0.1428 0.0204 2.7821 88.89 0.0356 
0.1428 0.0199 2.7823 88.90 0.0356 
0.144 0.018 2.7824 88.91 0.0356 

Grid 2 
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q 0q dGCV dL,GCV dR dL,R 
rl/J rf {!2 rl {! rf.A2 

0 13.1278 -0.0001 0.001 0.12 0.0883 
1 13.1525 -0.0001 0.001 0.12 0.0883 
2 13.1768 -0.0001 0.001 0.12 0.0883 
3 13.2014 -0 .0001 0.001 0.12 0.0883 
4 13 .2258 -0.0001 0.001 0.12 0.0883 
5 13.2504 -0.0001 0.001 0.12 0.0883 
6 13.2749 -0.0001 0.001 0.12 0.0883 
7 13.2994 -0.0001 0.001 0.12 0.0884 
8 13.3239 -0 .0001 0.001 0.1199 0.0884 
9 13.3484 -0.0001 0.001 0.1199 0.0884 

10 13.3729 -0.0001 0.001 0.1199 0.0884 
11 13.3974 -0.0001 0.001 0.1199 0.0884 
12 13.4219 -0.0001 0.001 0.1199 0.0884 
13 13.4465 -0.0001 0.001 0.1199 0.0884 
14 13 .471 -0.0001 0.001 0.1199 0.0884 
15 13.4955 -0.0001 0.001 0.1199 0.0884 
16 13.52 -0.0001 0.001 0.1199 0.0884 
17 13.5446 -0.0001 0.001 0.1198 0.0884 
18 13.5691 -0.0001 0.001 0.1198 0.0884 
19 13.5936 -0.0001 0.001 0.1198 0.0885 . 

dTr d-<Tr R Tr GCV rl.A rl,A2 

1.9275 0.0513 2.8983 90.06 0.0361 
1.9279 0.0514 2.8983 90.06 0.0361 
1. 9275 0.0515 2.8984 90 .06 0.0361 
1. 927 4 0.0516 2.8984 90 .06 0.0361 
1.9272 0.0516 2.8984 90 .06 0.0361 
1.9271 0.0518 2.8984 90.06 0.0361 
1.9269 0.0518 2.8984 90.07 0.0361 
1.9268 0.052 2.8984 90.07 0.0361 
1.9266 0.052 2.8985 90 .07 0.0361 
1. 9264 0.0521 2.8985 90.07 0.0361 
1.9263 0.0522 2.8985 90 .07 0.0361 
1.9261 0.0523 2.8985 90.07 0.0361 
1.9259 0.0524 2.8985 90.07 0.0361 
1.9257 0.0526 2.8986 90.07 0.0361 
1.9256 0.0527 2.8986 90.07 0.0361 
1.9254 0.0528 2.8986 90.07 0.0361 
1.9252 0.0529 2.8986 90.07 0.0361 
1.925 0.053 2.8986 90 .07 0.0361 

1.9249 0.0531 2.8986 90.07 0.0361 
1.9247 0.0532 2.8987 90.07 0.0361 

Grid 1 
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Appendix B 

Results for Chapter 11 

The tables in t his appendix are discussed in Chapter 11. They report updates 

of various quantit ies relevant to t he OPTRSS and NIIN GCV algorithn1s 
described in Chapter 8. The notation is explained as follows: 

q: the number of updates perfon11ed on a given grid. 

0: t he logarith1n of t he s1noothing para1neter. 

0q: the qt h update of t he logarit h1n of t he s1noothing parameter. 

R: the esti1nate of t he residual stun of squares . 

T r : t he esti1nate of tr( I - A), where A is t he influe·nce n1atrix. 

GC\ / : the esti1nate of t he generalised cross validation. 
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B.1 Results generated by the MINGCV algo­
rithm , using quadratic B-spline discreti­
sation 

q eq dG C V dL. GCV dR d .. R 
r!A ,UJ 2 -:rti rJA 2 

0 10.1464 0.0034 0.0065 0.3418 0.5938 
1 9.6187 0.0004 0.0003 0.0632 0.0254 
2 8.2639 0.0002 0.0002 0.0447 0.0226 
3 7.1707 -0.0000 0.0002 0.0193 0.0209 
4 7.1897 -0.0000 0.0002 0.0191 0.0211 
5 7.2321 -0.0000 0.0002 0.0198 0.0211 
6 7.2541 -0.0000 0.0002 0.0203 0.0214 

-7 7.2542 -0.0000 0.0002 0.0203 0.0214 
8 7.253 0.0000 0.0002 0.0203 0.0214 
9 7.2525 0.0000 0.0002 0.0203 0.0214 

10 7.2525 0.0000 0.0002 0.0203 0.0214 
11 7.2525 0.0000 0.0002 0.0203 0.0214 
12 7.2525 0.0000 0.0002 0.0203 0.0214 
13 7.2525 0.0000 0.0002 0.0203 0.0214 
14 7.2525 0.0000 0.0002 0.0203 0.0214 
15 7.2525 0.0000 0.0002 0.0203 0.0214 
16 7.2525 0.0000 0.0002 0.0203 0.0214 
17 7.2525 0.0000 0.0002 0.0203 0.0214 
18 7.2525 0.0000 0.0002 0.0203 0.0214 
19 7.2525 0.0000 0.0002 0.0203 0.0214 

dTr dL.Tr R T r GCV rlfi rf A2 

0.4699 -0.0546 3.0588 96.1 9 0.0334 
0.5013 0.0028 2. 8841 95 .93 0.0317 
0.4485 0.0935 2.813 95.28 0.0313 
0.3331 0.1182 2.779 94.85 0.0312 
0.3364 0.119 2.7789 94.85 0.0312 
0.3439 0. 1209 2.7797 94.87 0.0312 
0.3469 0.1 223 2.7801 94.87 0.03 12 
0.3468 0.1222 2.7801 94.87 0.03 12 
0.3466 0.122 2.7801 94.87 0.03 12 
0.3465 0.1219 2.7801 94.87 0.03 12 
0.3465 0.1219 2.7801 94.87 0.03 12 

-

0.3465 0.1219 2.7801 94.87 0.03 12 
0.3465 0.1219 2.7801 94.87 0.03 12 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94 .87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7 01 94. 7 0.0312 
0.3465 0.1219 2.7801 94. 7 0.0312 

Grid 6 
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q 0q dGCV df,GCV dR df,R 
rl.A rf.A2 rlA ---:J752 

0 7.2525 -0.0007 0.0007 0.0684 0.0156 
1 8.3281 -0.0000 0.0005 0.0874 0.015 
2 8.3323 0.0000 0.0006 0.0918 0.0205 
3 8.314 -0.0000 0.0006 0.0904 0.0196 
4 8.3341 0.0000 0.0006 0.0905 0.0189 
5 8.3325 0.0000 0.0006 0.0905 0.0189 
6 8.3322 -0.0000 0.0006 0.0905 0.019 
7 8.3324 0.0000 0.0006 0.0905 0.019 
8 8.3323 0.0000 0.0006 0.0905 0.019 
9 8.3323 0.0000 0.0006 0.0905 0.019 

10 8.3323 0.0000 0.0006 0.0905 0.019 
11 8.3323 0.0000 0.0006 0.0905 0.019 
12 8.3323 0.0000 0.0006 0.0905 0.019 
13 8.3323 0.0000 0.0006 0.0905 0.019 
14 8.3323 0.0000 0.0006 0.0905 0.019 
15 8.3323 0.0000 0.0006 0.0905 0.019 
16 8.3323 0.0000 0.0006 0.0905 0.019 
17 8.3323 0.0000 0.0006 0.0905 0.019 
18 8.3323 0.0000 0.0006 0.0905 0.019 
19 8.3323 0.0000 0.0006 0.0905 0.019 

dTr d~Tr R Tr GCV rl.A r1.H2 

2.238 -0.6422 2.6053 91.60 0.0314 
1.5285 -0 .5079 2.6845 93.66 0.0309 
1.5829 -0.6241 2.686 93.67 0 .0309 
1.5954 -0.5912 2.6829 93.64 0.0309 
1.5769 -0.595 2.6845 93.67 0 .0309 
1.5792 -0.5976 2.6845 93 .67 0.0309 
1.5794 -0.5969 2.6844 93 .67 0.0309 
1.5792 -0 .597 2.6844 93.67 0 .0309 
1.5793 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93 .67 0.0309 
1.5792 -0.59-7 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6 44 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 

Grid 5 
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q 0q dGCV dL.GCV dR dL.R 
rlR rlR'- rlf} rt,H'-

0 8.3323 0.0001 0.0006 0.1252 -0.0013 
1 8.1925 -0 .0000 0.0006 0.1288 -0.0033 
2 8.2021 -0.0001 0.0005 0.1209 -0 .0119 
3 8.3775 0.0000 0.0004 0.1174 -0.0177 
4 8.3331 0.0001 0.0005 0.1285 -0.0106 
5 8.1305 0.0000 0.0008 0.1337 0.0051 
6 8.1313 -0.0001 0.0006 0.1226 -0 .0053 
7 8.325 -0.0000 0.0004 0.1154 -0.0215 
8 8.4156 0.0001 0.0004 0.1233 -0.0191 
9 8.142 0.0001 0.0008 0.1374 0.0045 

10 8.0728 -0 .0001 0.0007 0.1256 0.0012 
11 8.271 -0.0001 0.0004 0.1142 -0 .0217 
12 8.4987 0.0001 0.0003 0.1167 -0.0263 
13 8.1653 0.0001 0.0007 0.14 0.0007 
14 8.0232 -0 .0001 0.0008 0.1289 0.007 
15 8.2176 -0.0001 0.0004 0.1134 -0 .0216 
16 8.5664 0.0001 0.0002 0.1104 -0.032 
17 8.1881 0.0001 0.0007 0.1416 -0 .0041 
18 7.9792 -0 .0002 0.0008 0.1316 0.011 5 
19 8.1746 -0.0002 0.0004 0.1127 -0.0221 

dTr- dL.Tr- R Tr GCV dA ~ 

2.0787 -1.0172 2.6337 92.96 0.0308 
2.2976 -1.0531 2.6081 92.65 0.0307 
2.2756 -1.0054 2.6127 92.67 0.0307 
2.0462 -0.9581 2.6355 93.05 0.0307 
2.1019 -1.0578 2.635 92.96 0.0308 
2.3738 -1.1029 2.6062 92.51 0.0308 
2.3506 -1.0248 2.6023 92.51 0.0307 
2.0904 -0.9735 2.6287 92.94 0.0307 
2.0028 -1.0054 2.6449 93.13 0.0308 
2.3561 -1.1331 2.6102 92.53 0.0308 
2.4381 -1.039 2.5944 92.37 0.0307 
2.1478 -0.9771 2.6208 92.82 0.0307 
1.9061 -0.9462 2.6536 93.29 0.0308 -
2.3205 -1.1672 2.616 92.59 0.0308 
2.5168 -1.0508 2.5877 92.25 0.0307 
2.2077 -0.9795 2.6132 92.70 0.0307 
1.8309 -0.8916 2.6601 93.42 0.0308 
2.2846 -1.1952 2.6214 92.64 0.0308 
2.5 64 -1.0612 2.5819 92.14 0.0307 
2.2565 -0.9802 2.607 92.61 0.0307 

Grid 4 
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q 0q dGCV d"'GCV dR d"'R 
r/.A rJ.A2 rl.A rf.A2 

0 8.1746 -0.0001 0.0003 0.1087 -0.021 
1 9.0554 -0.0001 0.0003 0.0963 -0.0137 
2 9.4306 -0.0001 0.0003 0.0827 -0.0061 
3 9.781 -0.0001 0.0002 0.0725 -0.0017 
4 10.0664 -0.0000 0.0002 0.0656 0 
5 10.271 -0.0000 0.0001 0.0614 -0.0005 
6 10.3755 -0.0000 0.0001 0.0587 -0.0021 
7 10.3688 0.0000 0.0001 0.0572 -0.0045 
8 10.2272 0.0000 0.0001 0.0569 -0.0077 
9 9.888 0.0000 0.0000 0.0593 -0.013 

10 9.1 334 0.0000 0.0000 0.0716 -0.026 
11 7.5054 0.0001 0.0002 0.1496 -0.0808 
12 7.1449 0.0002 0.0005 0.219 -0 .096 
13 6.8008 -0.0001 0.0012 0.2565 -0 .0617 
14 6.8489 -0.0003 0.0015 0.2423 -0.0127 
15 7.0735 -0 .0005 0.0014 0.2038 0.0158 
16 7.4397 -0.0005 0.0012 0.1617 0.0265 
17 7.8798 -0.0005 0.001 0.1 247 0.0322 
18 8.3311 -0 .0004 0.0009 0.0961 0.0387 
19 8.7529 -0.0003 0.0008 0.0758 0.0452 . 

dTr d"'Tr R Tr GCV rl.A rf.A2 

2.158 -0.9297 2.6163 93.12 0.0305 
1.8851 -0.7286 2.6364 93.76 0.0303 
1.6113 -0.5387 2.6588 94.27 0.0302 
1.3793 -0.3892 2.6782 94 .66 0.0302 
1.2138 -0.2975 2.6942 94.96 0.0302 
1.1027 -0. 2498 2.7071 95.17 0.0302 
1.0288 -0.2306 2.7183 95 .33 0.0302 
0.9799 -0.2298 2.728 95.42 0.0303 
0.9571 -0.2487 2.7362 95.44 0.0303 
0.9805 -0. 3064 2.741 95 .32 0.0305 
1.1684 -0.5128 2.7342 94.73 0.0308 
2.4704 -1.7255 2.6438 90 .66 0.0325 
3.5955 -2.5451 2.5377 88 .77 0.0325 
4.6778 -2.9552 2.4361 87.39 0.0322 
4.9029 -2.4895 2.3977 87.74 0.0315 
4 .4965 -1. 839.2 2.4159 88 .76 0.031 
3.7365 -1. 3117 2.4639 90 .1 5 0.0306 
2.9553 -0. 947 2.5168 91.47 0.0304 
2.3138 -0.6738 2.5613 92.53 0.0302 
1.8664 -0.464 2.5942 93.33 0.0301 

Grid 3 
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q 0q dGCV d"G C V dR d"R 
rl() rlA"J. rlA """":i75'T 

0 8.7529 -0 .0003 0.0008 0.0744 0.0461 
1 9.5311 -0.0003 0.0008 0.0722 0.0479 
2 9.9074 -0.0003 0.0008 0.0698 0.0497 
3 10.273 -0.0003 0.0008 0.0675 0.0516 
4 10.6278 -0.0003 0.0008 0.0651 0.0535 
5 10.9724 -0.0003 0.0008 0.0628 0.0554 
6 11.3082 -0.0003 0.0008 0.0606 0.0571 
7 11.6361 -0.0002 0.0008 0.0586 0.0588 
8 11.9572 -0.0002 0.0008 0.0566 0.0603 
9 12.2725 -0.0002 0.0008 0.0548 0.0617 

10 12.5827 -0 .0002 0.0008 0.0532 0.063 
11 12 .8883 -0 .0002 0.0007 0.0516 0.0641 
12 13 .1896 -0.0002 0.0007 0.0502 0.0651 
13 13.4868 -0 .0002 0.0007 0.0489 0.066 
14 13.7799 -0.0002 0.0007 0.0477 0.0668 
15 14.0688 -0 .0002 0.0007 0.0466 0.0675 
16 14.3537 -0.0002 0.0007 0.0456 0.0681 
17 14.6345 -0 .0002 0.0007 0.0447 0.0686 
18 14.9113 -0.0002 0.0007 0.0438 0.069 
19 15.184 -0.0002 0.0007 0.0431 0.0694 

dTr d"Tr R T r CCV d.0 ----:J"Zi"2 

1.8285 -0 .4409 2.5968 93.44 0.03 
1. 7755 -0.403 2.6002 93.60 0.03 
1. 7167 -0 .3589 2.6038 93.76 0.0299 
1.6567 -0.31 34 2.6075 93.92 0.0299 
1.5985 -0.2692 2.6111 94.06 0.0298 
1.5435 -0.2276 2.6147 94.19 0.0298 
1.4921 -0.1889 2.6181 94.29 0.0297 
1.4444 -0.1 534 2.6214 94.39 0.0297 
1.4004 -0.1211 2.6246 94.47 0.0297 
1.3599 -0.0919 2.6277 94.54 0.0297 
1.3226 -0.0653 2.6306 94.61 0.0297 
1.288 -0.0411 2.6334 94.66 0.0297 

1.2558 -0.0189 2.636 94.72 0.0297 -
1.2256 0.0015 2.6385 94.77 0.0297 
1.1974 0.0203 2.6409 94.82 0.0297 
1.171 0.0374 2.6432 94.86 0.0297 

1.1463 0.0531 2.6454 94 .90 0.0297 
1.1233 0.0673 2.6475 94.94 0.0297 
1.1018 0.0801 2.6495 94.98 0.0297 
1.0817 0.0917 2.6514 95.02 0.0297 

Grid 2 
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q 0q dGCV d"GCV dR d"R 
rl.A rlf-1'- rlf-1 -:::i£i2 

0 15 .184 0.0000 0.0006 0.0907 0.0189 
1 8.3323 -0.0002 0.0004 0.1127 -0.022 
2 8.6308 -0.0003 0.0008 0.0758 0.0452 
3 9.1459 -0.0002 0.0007 0.0431 0.0694 
4 15 .4528 -0.0002 0.0007 0.043 0.0694 
5 15.7209 -0.0002 0.0007 0.043 0.0694 
6 15 .9885 -0.0002 0.0007 0.043 0.0694 
7 16.2555 -0 .0002 0.0007 0.043 0.0694 
8 16.522 -0 .0002 0.0007 0.0429 0.0694 
9 16 .7879 -0 .0002 0.0007 0.0429 0.0694 

10 17.0533 -0.0002 0.0007 0.0429 0.0694 
11 17.3181 -0 .0002 0.0007 0.0429 0.0694 
12 17.5824 -0 .0002 0.0007 0.0428 0.0694 
13 17.8462 -0.0002 0.0007 0.0428 0.0695 
14 18 .1095 -0.0002 0.0007 0.0428 0.0695 

' 15 18.3722 -0.0002 0.0007 0.0428 0.0695 
16 18.6345 -0.0002 0.0007 0.0427 0.0695 
17 18.8962 -0.0002 0.0007 0.0427 0.0695 
18 19.1574 -0.0002 0.0007 0.0427 0.0695 
19 19 .4181 -0.0002 0.0007 0.0427 0.0695 

dTr d"Tr R Tr CCV rl f-1 ~ 

1.54 71 0.0924 2.6515 95.02 0.0297 
2.2495 0.093 2.6516 95 .02 0.0297 
1.8657 0.0937 2.6517 95.02 0.0297 
1.0817 0.0943 2.6518 95.02 0.0297 
1.0804 0.095 2.6519 95.03 0.0297 
1.0792 0.0956 2.652 95.03 0.0297 
1.0779 0.0962 2.6522 95.04 0.0297 
1.0766 0.0969 2.6523 95.04 0.0297 
1.0754 0.0975 2.6524 95.04 0.0297 
1.0742 0.0981 2.6525 95.04 0.0297 
1.0729 0.0987 2.6526 95.04 0.0297 
1.0717 0.0993 2.6527 95.05 0.0297 
1.0705 0.0998 2.6528 95.05 0.0297 
1.0693 0.1004 2.6529 95.05 0.0297 
1.0681 0.101 2.653 95.05 0.0297 
1.067 0.1015 2.6531 95.05 0.0297 

1.0658 0.1021 2.6532 95.06 0.0297 
1.0646 0.1026 2.6534 95.06 0.0297 
1.0635 0.1032 2.6535 95.06 0.0297 
1.0623 0.1037 2.6536 95.06 0.0297 

Grid 1 
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B.2 Results generated by the MINGCV algo­
rithm, for a second random vector t 

q 0q dGCV d"GCV dR d"R 
rlA ri.A2 rl.A ,-J(J2 

0 10.1464 0.0026 0.0076 0.3418 0.5938 
1 9.7968 -0.001 0.0005 0.0618 0.0206 
2 11. 7322 0.0031 0.0069 0.3457 0.5555 
3 11.2808 0.0007 0.0028 0.1703 0.2087 
4 11.0147 0.0001 0.0021 0.1285 0.1519 
5 10.9474 -0.0000 0.0019 0.1185 0.1336 
6 10.9456 -0.0000 0.0019 0.1183 0.1334 
7 10.9459 -0.0000 0.0019 0.1183 0.1335 
8 10.9463 -0 .0000 0.0019 0.1183 0.1335 
-9 10.9465 -0.0000 0.0019 0.1183 0.1335 
10 10.9465 0.0000 0.0019 0.1183 0.1335 
11 10.9465 0.0000 0.0019 0.1183 0.1335 
12 10.9465 0.0000 0.0019 0.1183 0.1335 
13 10.9465 0.0000 0.0019 0.1183 0.1335 

. 14 10.9465 0.0000 0.0019 0.1183 0.1335 
15 10.9465 0.0000 0.0019 0.1183 0.1335 
16 10.9465 0.0000 0.0019 0.1183 0.1335 
17 10.9465 0.0000 0.0019 0.1183 0.1335 
18 10.9465 0.0000 0.0019 0.1183 0.1335 
19 10 .9465 0.0000 0.0019 0.1183 0.1335 
dTr d"Tr R Tr GCV rlA rlA2 

1.9649 -0.2636 3.0588 88.84 0.0391 
2.1308 -0 .2374 2.894 88.11 0.0376 
1.2816 -0.4647 3.138 91.69 0.0377 
1.6325 -0.4272 3.0328 90.96 0.037 
1. 7714 -0.3001 2.9938 90.50 0.0369 
1. 7893 -0.3001 2.9849 90.38 0.0369 
1.7918 -0.3007 2.9845 90 .37 0.0369 
1.7921 -0.3008 2.9845 90.37 0.0369 
1.7919 -0 .3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0 .3008 2.9845 90.37 0.0369 -
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0 .3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.791 -0.3008 2.9845 90.37 0.0369 

Grid 6 
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q 0q dGCV dL,GCV dR dL,R 
d0 rl.A'- rlA rl,H'J. 

0 10 .9465 0.0000 0.0018 0.1404 0.119 
1 10.9355 -0 .0000 0.0017 0.133 0.1119 
2 10.96 .0000 0.0017 0.1 33 0.1119 
3 10.946 0.0000 0.0017 0.1349 0.1094 
4 10.9149 0.0001 0.0017 0.139 0.1148 
5 10.908 -0 .0000 0.0017 0.1372 0.1166 
6 10.9267 -0.0000 0.0017 0.1332 0.1097 
7 10.9381 0.0000 0.0016 0.1328 0.1054 
8 10.9276 0.0000 0.0017 0.1355 0.1091 
9 10 .9156 -0.0000 0.0017 0.1368 0.1136 

10 10 .9187 -0.0000 0.0017 0.1352 0.1125 
11 10.9284 -0.0000 0.0017 0.1 338 0.1089 
12 10.9295 0.0000 0.0017 0.1344 0.1084 
13 10.9229 0.0000 0.0017 0.1 356 0.1108 
14 10.9198 -0.0000 0.0017 0.1356 0.112 
15 10.9234 -0.0000 0.0017 0.1347 0.1107 
16 10. 9269 0.0000 0.0017 0.1344 0.1094 
17 10.9256 0.0000 0.0017 0.1349 0.1099 
18 10.9226 0.0000 0.0017 0.1 353 0.111 
19 10.9225 0.0000 0.0017 0.1 351 0.111 

dTr d-,,,Tr R Tr CCV rW ----:J7S2 

2.1 228 -0.4369 2.9412 89.94 0.0367 
2.0786 -0.3697 2.9482 89.92 0.0368 
2.0292 -0.4136 2.95 89 .97 0.0368 
2.0526 -0.4172 2.95 89.94 0.0368 
2.079 -0.4018 2.9456 89 .87 0.0368 

2.0707 -0.4182 2.9439 89.86 0.0368 
2.0492 -0.4335 2.9463 89 .90 0.0368 
2.0456 -0.4313 2.9483 89 .92 0.0368 
2.0605 -0.422 2.9471 89 .90 0.0368 
2.06 7 -0.4182 2.9453 89.88 0.0368 
2.061 -0.4221 2.9455 89.88 0.0368 

2.0523 -0.4258 2.9468 89.90 0.0368 
2.0548 -0.424 2.9472 89 .90 0.0368 
2.0619 -0.4221 2.9463 89.89 0.0368 
2.0626 -0.422 2.9458 89.88 0.0368 
2.057 -0.4238 2.9462 89 .89 0.0368 
2.0556 -0.4244 2.9467 89.90 0.0368 
2.05 2 -0.4234 2.9466 89.90 0.0368 
2.060 -0.4226 2.9462 89 .89 0.0368 
2.0597 -0.423 2.9461 89.89 0.036 

Grid 5 
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0q dGCV dL,GCV dR dL,R 
q rl.f! rf.fi2 rl.R rf.f/ 2 

0 10.9225 0.0000 0.0016 0.1401 0.1055 
1 10.9005 0.0001 0.0016 0.1424 0.1038 
2 10.8687 0.0000 0.0016 0.1431 0.1033 
3 10.8413 0.0000 0.0016 0.144 0.1025 
4 10.819 0.0000 0.0016 0.1442 0.102 
5 10.8056 0.0000 0.0016 0.144 0.1015 
6 10.8021 0.0000 0.0016 0.1433 0.1011 
7 10.8089 0.0000 0.0016 0.1422 0.1009 
8 10.825 -0.0000 0.0016 0.1409 0.1008 
9 10.8484 -0.0000 0.0016 0.1394 0.1007 

10 10.8768 -0.0000 0.0016 0.1379 0.1008 
11 10.9076 -0 .0000 0.0015 0.1365 0.1009 
12 10.9381 -0.0000 0.0015 0.1353 0.101 
13 10.9656 -0.0000 0.0015 0.1344 0.1011 
14 10.9877 -0.0000 0.0015 0.1339 0.1012 
15 11.0027 -0.0000 0.0015 0.1337 0.1012 
16 11.0095 0.0000 0.0015 0.134 0.101 
17 11.0077 0.0000 0.0015 0.1346 0.1008 
18 10.9976 0.0000 0.0016 0.1356 0.1004 
19 10.9801 0.0000 0.0016 0.1368 0.1 

dTr dL,Tr R Tr GCV rl.R rf.()2 

2.0915 -0.4509 2.9401 89.80 0.0368 
2.1114 -0.4616 2.937 89 .74 0.0368 
2.1328 -0.4691 2.9343 89.67 0.0369 
2.1567 -0.4753 2.9313 89 .61 0.0369 
2.1782 -0.4763 2.9288 89 .56 0.0369 
2.195 -0.472 2.9266 89.53 0.0369 

2.2057 -0.463 2.9251 89.52 0.0369 
2.2083 -0.4499 2.9243 89.53 0.0368 
2.2029 -0.4345 2.9244 89.57 0.0368 
2.1 904 -0.4187 2.9252 89.62 0.0368 
2.1721 -0.4041 2.9267 89 .69 0.0368 
2.1498 -0.3918 2.9288 89.75 0.0367 
2.1254 -0.3828 2.9311 89.82 0.0367 
2.1011 -0.378 2.9336 89.88 0.0367 
2.0787 -0.3776 2.9361 89.93 0.0367 
2.0602 -0.3819 2.9382 89.96 0.0367 
2.0468 -0.3906 2.94 89.98 0.0367 
2.0398 -0.4033 2.9412 

-
89.98 0.0367 

2.0395 -0.419 2.9418 89.96 0.0367 
2.0459 -0.4367 2.9418 89.92 0.0367 

Grid 4 
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q 0q dGCV d""GCV dR dL,R 
rl.A rill~ ---;[li """:ici2 

0 10.9801 -0.0000 0.0016 0.1375 0.0994 
1 10.9325 0.0000 0.0016 0.1382 0.0988 
2 10.9062 0.0000 0.0016 0.1387 0.0984 
3 10.8791 0.0000 0.0016 0.1391 0.0981 
4 10.8518 0.0000 0.0016 0.1396 0.0978 
5 10.8252 0.0000 0.0016 0.1401 0.0974 
6 10.7994 0.0000 0.0016 0.1407 0.0969 
7 10.7746 0.0000 0.0016 0.1412 0.0965 
8 10.7508 0.0000 0.0016 0.1418 0.096 
9 10.7281 0.0000 0.0016 0.1425 0.0955 

10 10.7068 0.0000 0.0016 0.1431 0.0949 
11 10.687 0.0000 0.0016 0.1437 0.0944 
12 10.6688 0.0000 0.0016 0.1443 0.0939 
13 10.6525 0.0000 0.0016 0.1449 0.0934 
14 10.6382 0.0000 0.0016 0.1455 0.0929 
15 10.6259 0.0000 0.0016 0.1461 0.0925 
16 10.6158 0.0000 0.0016 0.1466 0.092 
17 10.6079 0.0000 0.0016 0.1471 0.0916 
18 10.6022 0.0000 0.0016 0.1475 0.0913 
19 10.5988 0.0000 0.0016 0.1479 0.091 

dTr dL,Tr R Tr GCV r!ll -:il52 

2.0553 -0.446 2.9411 89 .90 0.0368 
2.0614 -0.4517 2.9404 89.88 0.0368 
2.0674 -0.4569 2.9398 89 .86 0.0368 
2.0741 -0.4624 2.9392 89.83 0.0368 
2.0821 -0.4687 2.9386 89.80 0.0368 
2.0911 -0.4756 2.9379 89.76 0.0368 
2.101 -0.4828 2.9371 89.73 0.0368 

2.1115 -0.4903 2.9362 89.68 0.0369 
2.1227 -0 .498 2.9352 89.64 0.0369 
2.1344 -0.5058 2.9342 89.60 0.0369 
2.1465 -0.5136 2.9331 89 .55 0.0369 
2.159 -0.5214 2.9319 89.51 0.037 

2.1717 -0.529 2.9308 89.46 0.037 
2.1845 -0 .5363 2.9296 89.42 0.037 
2.1972 -0.5433 2.9284 89.38 0.037 
2.2097 -0.5498 2.9272 89.34 0.037 
2.2219 -0.5558 2.926 89.30 0.0371 
2.2337 -0.5612 2.9249 89.27 0.0371 
2.2449 -0.5659 2.9237 89.23 0.0371 
2.2554 -0.5698 2.9226 89.21 0.0371 

Grid 3 
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0q dGCV dL,GCV dR d L, R 
q rJB rlA 2 rl.A ---:ii.J2 

0 10 .5988 0.0000 0.0016 0.1481 0.0908 
1 10 .5969 0.0000 0.0016 0.1482 0.0908 
2 10.5963 0.0000 0.0016 0.1482 0.0907 
3 10 .5958 0.0000 0.0016 0.1483 0.0907 
4 10 .5955 0.0000 0.0016 0.1483 0.0906 
5 10.5952 0.0000 0.0016 0.1484 0.0906 
6 10.595 0.0000 0.0016 0.1484 0.0906 
7 10.5949 0.0000 0.0016 0.1484 0.0905 
8 10.5948 0.0000 0.0016 0.1485 0.0905 
9 10.5948 -0 .0000 0.0016 0.1485 0.0905 

IO 10.595 -0.0000 0.0016 0.1486 0.0905 
11 10.5952 -0.0000 0.0016 0.1486 0.0904 
12 10.5955 -0 .0000 0.0016 0.1486 0.0904 
13 10 .596 -0.0000 0.0016 0.1487 0.0904 
14 10 .5965 -0.0000 0.0016 0.1487 0.0904 
15 10.5972 -0.0000 0.0016 0.1487 0.0903 
16 10.598 -0 .0000 0.0016 0.1487 0.0903 
17 10 .5989 -0 .0000 0.0016 0.1488 0.0903 
18 10 .5999 -0 .0000 0.0016 0.1488 0.0903 
19 10 .6011 -0.0000 0.0016 0.1488 0.0903 

dTr dL,Tr R Tr GCV dB n,r12 

2.2579 -0.5719 2.9225 89 .20 0.0371 
2.2592 -0.5726 2.9224 89.20 0.0371 
2.2603 -0 .5732 2.9223 89.20 0.0371 
2.2613 -0.5736 2.9222 89 .19 0.0371 
2.2622 -0.574 2.9221 89.19 0.0371 
2.2631 -0 .5744 2.922 89.19 0.0371 
2.264 -0.5747 2.9219 89 .19 0.0371 

2.2648 -0.575 2.9218 89.19 0.0371 
2.2657 -0.5753 2.9217 89.19 0.0371 
2.2665 -0.5756 2.9216 89. 18 0.0371 
2.2673 -0.5759 2.9215 89 .18 0.0371 
2.2681 -0.5761 2.9214 89 .18 0.0371 
2.2689 -0.5764 2.9213 89 .18 0.0371 -
2.2696 -0.5766 2.9212 89.18 0.0371 
2.2704 -0.5768 2.9211 89.18 0.0371 
2.2711 -0.577 2.9211 89.17 0.0371 
2.2718 -0.5772 2.921 89.17 0.0371 
2.2725 -0.5774 2.9209 89.17 0.0371 
2.2732 -0.5775 2.9208 89.17 0.0371 
2.2738 -0.5777 2.9207 89.17 0.0371 

Grid 2 

318 



q eq dGCV d 4 GCV dR d 4 R 
rl,A rf.f)2 rf.f) """":J75"2 

0 10.6011 0.0000 0.0016 0.148 0.0908 
1 10.5969 0.0000 0.0016 0 .1481 0.0908 
2 10.5963 0.0000 0.0016 0.1482 0.0908 
3 10.5958 0.0000 0.0016 0.1482 0.0907 
4 10.5955 0.0000 0.0016 0.1483 0.0907 
5 10.5952 0.0000 0.0016 0.1483 0.0906 
6 10.595 0.0000 0.0016 0.1484 0.0906 
7 10.5949 0.0000 0.0016 0.1484 0.0906 
8 10.5948 0.0000 0.0016 0.1484 0.0905 
9 10.5948 -0.0000 0.0016 0.1485 0.0905 

10 10.595 -0.0000 0.0016 0.1485 0.0905 
11 10.5952 -0.0000 0.0016 0.1486 0.0905 
12 10 .5955 -0.0000 0.0016 0.1486 0.0904 
13 10.596 -0.0000 0.0016 0.1486 0.0904 
14 10 .5965 -0.0000 0.0016 0.1487 0.0904 
15 10.5972 -0.0000 0.0016 0.1487 0.0904 
16 10.598 -0.0000 0.0016 0.1487 0.0903 
17 10.5989 -0.0000 0.0016 0 .1487 0.0903 
18 10 .5999 -0.0000 0.0016 0.1488 0.0903 
19 10.6011 -0.0000 0.0016 0.1488 0.0903 

dTr d~Tr R Tr GCV rl f) n .H 2 

2.2579 -0.5719 2.9225 89.20 0.0371 
2.2592 -0.5726 2.9224 89.20 0.0371 
2.2603 -0 .5732 2.9223 89 .20 0.0371 
2.2613 -0.5736 2.9222 9.19 0.0371 
2.2622 -0. 574 2.9221 89.19 0.0371 
2.2631 -0. 5744 2.922 89 .19 0.0371 
2.264 -0.5747 2.9219 89.19 0.0371 

2.264 -0.575 2.9218 89.19 0.0371 
2.2657 -0.5753 2.9217 89 .19 0.0371 
2.2665 -0.5756 2.9216 9.1 0.0371 
2.2673 -0.5759 2.9215 89.1 0.0371 
2.26 1 -0.5761 2.9214 89 .18 0.0371 
2.26 9 -0. 5764 2.9213 89.18 0.0371 
2.2696 -0.5766 2.9212 9.1 0.0371 
2.2704 -0.576 2.9211 9.1 0.0371 
2.2711 -0.577 2.9211 89 .17 0.0371 
2.271 -0.5772 2.921 9.17 0.0371 
2.2725 -0.5774 2.9209 9.17 0.0371 
2.2732 -0.5775 2.920 9.17 0.0371 
2.273 -0.5777 2.9207 9.17 0.0371 

Grid 1 

· 319 



B. 3 R esults generated by the MINGCV algo­
rithm, for a third random vector t 

0q dGCV dL,GCV dR dL,R q rl A rJA 2 rW rlA 2 

0 10 .1464 0.0035 0.0074 0.3418 0.5938 
1 9.6793 -0.0001 0.0004 0.0623 0.0227 
2 9.9558 -0 .0001 0.0003 0.0627 0.0171 
3 10 .1339 -0.0000 0.0004 0.0657 0.0238 
4 10.1404 -0.0000 0.0004 0.0656 0.0235 
5 10.1407 0.0000 0.0004 0.0656 0.0235 
6 10 .1406 -0.0000 0.0004 0.0656 0.0235 
7 10.1407 -0.0000 0.0004 0.0656 0.0235 
8 10.1407 -0 .0000 0.0004 0.0656 0.0235 

-9 10.1407 -0.0000 0.0004 0.0656 0.0235 
10 10 .1407 -0 .0000 0.0004 0.0656 0.0235 
11 10 .1407 -0.0000 0.0004 0.0656 0.0235 
12 10.1407 -0.0000 0.0004 0.0656 0.0235 
13 10.1407 0.0000 0.0004 0.0656 0.0235 

_ 14 10.1407 0.0000 0.0004 0.0656 0.0235 
15 10 .1407 0.0000 0.0004 0.0656 0.0235 
16 10.1407 0.0000 0.0004 0.0656 0.0235 
17 10 .1407 0.0000 0.0004 0.0656 0.0235 
18 10 .1407 0.0000 0.0004 0.0656 0.0235 
19 10.1407 0.0000 0.0004 0.0656 0.0235 

dTr d""Tr R Tr GCV r!A rlA2 

0. 9694 -0.1281 3.0588 89.49 0.0386 
1.0958 -0.146 2.8874 89.00 0.0368 
1.0397 -0 .1687 2.9038 89.30 0.0368 
1.0113 -0.165 2.9152 89 .48 0.0368 
1.0067 -0.1628 2.9162 89.49 0.0368 
1.0063 -0.1 625 2.9162 89.49 0.0368 
1.0062 -0 .1626 2.9162 89 .49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1 626 2.9162 89 .49 0.0368 
1.0062 -0.1 626 2.9162 89.49 0.0368 
1.0062 -0.1 626 2.9162 89.49 0.0368 
1.0062 -0 .1626 2.9162 89.49 0.0368 -
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 

Grid 6 
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q 0q dGCV d.,,GCV dR d.,,R 
rf .R rl,R2 rlR rf.A2 

0 10.1407 0.0001 0.0002 0.0963 0.0104 
1 9.6156 0.0001 0.0001 0.0962 -0.0046 
2 8.9663 0.0000 0.0001 0.1015 0.0016 
3 8.7668 0.0000 0.0002 0.0996 0.0085 
4 8.8082 -0.0000 0.0003 0.0976 0.0094 
5 8.9106 -0.0000 0.0003 0.0973 0.0075 
6 8.9723 0.0000 0.0002 0.098 0.0057 
7 8.9656 0.0000 0.0002 0.0986 0.0054 
8 8.9342 0.0000 0.0002 0.0987 0.006 
9 8.9198 -0.0000 0.0002 0.0985 0.0064 

10 8.9245 -0.0000 0.0002 0.0983 0.0065 
11 8.934 -0.0000 0.0002 0.0983 0.0063 
12 8.938 0.0000 0.0002 0.0984 0.0061 
13 8.9363 0.0000 0.0002 0.0984 0.0061 
14 8.9335 0.0000 0.0002 0.0984 0.0062 
15 8.9325 0.0000 0.0002 0.0984 0.0062 
16 8.9331 -0.0000 0.0002 0.0984 0.0062 
17 8.934 -0.0000 0.0002 0.0984 0.0062 
18 8.9342 0.0000 0.0002 0.0984 0.0062 
19 8.934 0.0000 0.0002 0.0984 0.0062 . 

dTr d;,TT R Tr CCV rt.A rf.A2 

1.3645 -0.1334 2.8525 89.08 0.0363 
1.4483 -0 .2044 2.8041 88.39 0.0362 
1.5777 -0.1788 2.7516 87.43 0.0364 
1.6014 -0.1747 2.7286 87.11 0.0363 
1.5902 -0.1867 2.7292 87.18 0.0363 
1.5705 -0 .2097 2.7379 87.34 0.0362 
1.5595 -0.2236 2.7445 87.44 0.0363 
1.5623 -0.2198 2.7449 87.43 0.0363 
1.5689 -0.2118 2.7422 87 .38 0.0363 
1.5713 -0.2087 2.7405 87.36 0.0363 

1.57 -0.2101 2.7407 87.36 0.0363 
1.5681 -0.2124 2.7415 87.38 0.0363 
1.5675 -0.2132 2.742 87.39 0.0363 
1.5679 -0 .2126 2.7419 87 .38 0.0363 
1.5685 -0.212 2.7416 87.38 0.0363 
1.5686 -0.2118 2.7415 87.38 0.0363 
1.5685 -0.2119 2.7416 87.38 0.0363 
1.5683 -0.2121 2.7416 87 .38 0.0363 
1.5683 -0.2122 2.7417 87.38 0.0363 
1.5683 -0.2121 2.7417 87.38 0.0363 

Grid 5 
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q 0q dGCV dL.GCV dR d 4 R 
rl.A rf.A2 rl.A -:iLi2 

0 8.934 0.0002 0.0001 0.1231 -0.0093 
1 6.8935 0.0001 -0 .0006 0.1293 -0 .0539 
2 6.8935 0.0007 -0.0004 0.1673 -0 .0294 
3 6.8935 0.0006 -0.0005 0.1583 -0.0481 
4 6.8935 0.0006 -0.0005 0.1595 -0.0429 
5 6.8935 0.0006 -0.0005 0.1594 -0.0446 
6 6.8935 0.0006 -0.0005 0.1593 -0.0443 
7 6.8935 0.0006 -0.0005 0.1593 -0.0443 
8 6.8935 0.0006 -0.0005 0.1593 -0.0443 
9 6.8935 0.0006 -0.0005 0.1593 -0.0443 
ro 6.8935 0.0006 -0.0005 0.1593 -0.0443 
11 6.8935 0.0006 -0.0005 0.1593 -0 .0443 
12 6.8935 0.0006 -0.0005 0.1593 -0 .0443 
13 6.8935 0.0006 -0.0005 0.1593 -0.0443 
14 6.8935 0.0006 -0.0005 0.1593 -0.0443 
15 6.8935 0.0006 -0.0005 0.1593 -0.0443 
16 6.8935 0.0006 -0.0005 0.1593 -0.0443 
17 6.8935 0.0006 -0.0005 0.1593 -0.0443 
18 6.8935 0.0006 -0.0005 0.1593 -0.0443 
19 6.8935 0.0006 -0.0005 0.1593 -0.0443 

dTr dL.Tr R Tr GCV r/R -----:iZf2 

1.6871 -0 .34 71 2.709 87.11 0.0361 
2.0358 -0.2634 2.4364 83.28 0.0355 
2.0934 -0.1 923 2.4353 83 .28 0.0355 
2.0472 -0.3693 2.4323 83.28 0.0354 
2.0814 -0.272 2.4338 83.28 0.0354 
2.0742 -0 .3039 2.4341 83 .28 0.0354 
2.0747 -0.2994 2.4339 83 .28 0.0354 
2.0746 -0.2986 2.434 83.28 0.0354 
2.0743 -0.3 2.434 83.28 0.0354 
2.0743 -0.2996 2.434 83.28 0.0354 
2.0743 -0.2998 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 -
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83 .28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83.28 0.0354 
2.0743 -0.2997 2.434 83 .28 0.0354 

Grid 4 
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B.4 R esults generated by the MINGCV algo­
rithm, using the average of 10 different 
random vectors t 

q 0q dGCV dL,GCV dR dL,R 
r/B r/.f:P rl/1 rl.FJ2 

0 10 .1464 0.003 0.0067 0.3418 0.5938 
1 9.6992 -0.0002 0.0002 0.0594 0.0127 
2 10 .693 0.0003 0.0011 0.0947 0.0848 
3 10.4285 0.0000 0.0007 0.0753 0.0465 
4 10.3827 0.0000 0.0006 0.0733 0.0415 
5 10.3808 0.0000 0.0006 0.0732 0.0413 
6 10.3805 0.0000 0.0006 0.0732 0.0412 
7 10.3806 0.0000 0.0006 0.0732 0.0412 
8 10.3806 0.0000 0.0006 0.0732 0.0412 
9 10.3806 0.0000 0.0006 0.0732 0.0412 

10 10.3806 0.0000 0.0006 0.0732 0.0412 
11 10.3806 0.0000 0.0006 0.0732 0.0412 
12 10.3806 0.0000 0.0006 0.0732 0.0412 
13 10 .3806 0.0000 0.0006 0.0732 0.0412 
14 10.3806 0.0000 0.0006 0.0732 0.0412 
15 10.3806 0.0000 0.0006 0.0732 0.0412 
16 10.3806 0.0000 0.0006 0.0732 0.0412 
17 10.3806 0.0000 0.0006 0.0732 0.0412 
18 10 .3806 0.0000 0.0006 0.0732 0.0412 
19 10.3806 0.0000 0.0006 0.0732 0.0412 

dTr d"'Tr R Tr GCV rl.A rl.A2 

1.178 -0.2295 3.0588 94.89 0.0343 
1.308 -0.1319 2.8878 94.32 0.0328 

1.1011 -0.2766 2.9608 95 .53 0.0328 
1.1765 -0 .2162 2.9364 95 .23 0.0327 
1.1869 -0.2178 2.9329 95.18 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0 .2183 2.9328 95.17 0.0327 
1.1873 -0. 2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.21 83 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0 .2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1873 -0.2183 2.9328 95.17 0.0327 
1.1 73 -0.2183 2.9328 95 .17 0.0327 
1.1873 -0 .2183 2.9328 95.17 0.0327 

Grid 6 
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0q dG CV d'"G C V dR d '" R q rl.A rl.A 2 rl.A rl.A 2 

0 10.3806 0.0001 0.0005 0.1016 0.0277 
1 10.2345 0.0000 0.0004 0.0978 0.0092 
2 10.1295 0.0000 0.0004 0.0986 0.0106 
3 10.1004 0.0000 0.0003 0.0975 0.0056 
4 10.121 0.0000 0.0003 0.0978 0.007 
5 10.1148 0.0000 0.0003 0.0978 0.0073 
6 10 .1138 0.0000 0.0003 0.0977 0.0068 
7 10.115 0.0000 0.0003 0.0978 0.007 
8 10.114 7 0.0000 0.0003 0.0978 0.007 
9 10.1147 0.0000 0.0003 0.0978 0.007 

10 10.1147 0.0000 0.0003 0.0978 0.007 
11 10.1147 0.0000 0.0003 0.0978 0.007 
12 10.1147 0.0000 0.0003 0.0978 0.007 
13 10.114 7 0.0000 0.0003 0.0978 0.007 
-14 10.1147 0.0000 0.0003 0.0978 0.007 
15 10.1147 0.0000 0.0003 0.0978 0.007 
16 10.1147 0.0000 0.0003 0.0978 0.007 
17 10.1147 0.0000 0.0003 0.0978 0.007 
18 10.1147 0.0000 0.0003 0.0978 0.007 
19 10 .1147 0.0000 0.0003 0.0978 0.007 

dTr d'"Tr R Tr GCV rl.A rl.A 2 

1.559 -0.3529 2.8753 94.66 0.0324 
1.5545 -0.3927 2.8702 94.44 0.0325 
1.6097 -0.3723 2.8595 94.27 0.0325 
1.6168 -0.3814 2.8562 94.22 0.0325 
1.6093 -0.3922 2.8583 94.26 0.0325 
1.6121 -0.3839 2.8577 94.25 0.0325 
1.6124 -0.3857 2.8576 94.25 0.0325 
1. 6119 -0.3865 2.8577 94.25 0.0325 
1.612 -0.3858 2.8577 94.25 0.0325 
1.612 -0.386 2.8577 94 .25 0.0325 
1.612 -0 .386 2.8577 94.25 0.0325 
1.612 -0 .386 2.8577 94.25 0.0325 
1. 61 2 -0 .386 2.8577 94.25 0.0325 
1.612 -0. 386 2. 8577 94.25 0.0325 
1.612 -0. 386 2. 8577 94.25 0.0325 
1.612 -0.386 2. 8577 94.25 0.0325 
1.612 -0 .386 2.8577 94.25 0.0325 

-1.612 -0.386 2. 8577 94.25 0.0325 
1.612 -0.386 2.8577 94 .25 0.0325 
1.612 -0.3 6 2.8577 94.25 0.0325 

Grid 5 
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q 0q dGCV dL,GCV dR dL,R 
rl IJ rlA '- dA ~ 

0 10.1147 0.0000 0.0003 0.1084 -0.0014 
1 9.967 .0000 0.0003 0.1084 -0.0014 
2 9.8341 0.0000 0.0002 0.1119 -0 .0079 
3 9.8757 0.0000 0.0002 0.112 -0 .0099 
4 9.873 -0.0000 0.0002 0.1111 -0.0078 
5 9.9041 -0.0000 0.0002 0.1102 -0.007 
6 9.9213 -0.0000 0.0002 0.1095 -0.0063 
7 9.922 -0.0000 0.0002 0.1093 -0.0064 
8 9.9121 0.0000 0.0002 0.1095 -0.0072 
9 9.8976 0.0000 0.0002 0.1098 -0.0081 

10 9.886 0.0000 0.0002 0.1101 -0.0089 
11 9.8793 0.0000 0.0002 0.1104 -0.0092 
12 9.8774 -0.0000 0.0002 0.1105 -0.0093 
13 9.8784 -0.0000 0.0002 0.1105 -0 .0091 
14 9.8804 -0.0000 0.0002 0.1105 -0.0089 

' 15 9.8824 -0.0000 0.0002 0.1105 -0.0087 
16 9.8838 -0 .0000 0.0002 0.1104 -0.0086 
17 9.8845 -0.0000 0.0002 0.1104 -0.0085 
18 9.8847 0.0000 0.0002 0.1104 -0.0085 
19 9.8846 0.0000 0.0002 0.1104 -0.0085 

dTr dLTr R T r GCV rl.A -:[iS2 

1. 7295 -0.4846 2. 8453 94.06 0.0325 
1.8129 -0.5152 2.8244 93.80 0.0324 
1.879 -0.5291 2.8086 93.57 0.0324 

1.8484 -0 .4831 2.8123 93.64 0.0324 
1.8443 -0.4586 2.8123 93.64 0.0324 
1.8272 -0.4393 2.8163 93.69 0.0324 
1.8178 -0.435 2.8187 93.73 0.0324 
1.8166 -0 .4419 2.8192 93.73 0.0324 
1.8209 -0.4543 2.8183 93.71 0.0324 
1.8279 -0 .466 2.8167 93.68 0.0324 
1.8339 -0 .4735 2.8154 93.66 0.0324 
1.8376 -0.4764 2.8146 93.65 0.0324 
1.839 -0 .4759 2.8144 93.65 0.0324 
1.839 -0.4739 2.8145 93.65 0.0324 
1.8383 -0.4718 2.8147 93.65 0.0324 
1.8376 -0 .4703 2.8149 93.65 0.0324 
1.8372 -0.4694 2.8151 93.66 0.0324 
1.8369 -0.469 2.8152 93.66 0.0324 
1.8369 -0.4689 2.8152 93.66 0.0324 
1.837 -0.4689 2.8152 93.66 0.0324 

Grid 4 
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q 0q dGCV d:;,GCV dR d:;,R 
rf.A r!R '- dA ~ 

0 9.8846 0.0000 0.0002 0.1119 -0.0099 
1 9.8837 -0.0000 0.0002 0.1129 -0.0107 
2 9.8555 0.0000 0.0002 0.1136 -0 .0114 
3 9.8513 -0.0000 0.0002 0.1137 -0.0116 
4 9.858 -0.0000 0.0002 0.1136 -0 .0115 
5 9.8691 -0 .0000 0.0002 0.1135 -0.0113 
6 9.8747 -0.0000 0.0002 0.1135 -0.0111 
7 9.8759 0.0000 0.0002 0.1135 -0 .011 
8 9.8747 0.0000 0.0002 0.1136 -0.011 
9 9.8729 0.0000 0.0002 0.1137 -0.011 
IO 9.8714 0.0000 0.0002 0.1137 -0.0111 
11 9.8704 0.0000 0.0002 0.1138 -0.0111 
12 9.8698 0.0000 0.0002 0.1138 -0 .011 
13 9.8692 0.0000 0.0002 0.1138 -0 .011 
14 9.8686 0.0000 0.0002 0.1139 -0.011 
15 9.868 -0.0000 0.0002 0.1139 -0.011 
16 9.8674 0.0000 0.0002 0.1139 -0.0109 
17 9.8668 0.0000 0.0002 0.1139 -0.0109 
18 9.8662 0.0000 0.0002 0.1139 -0 .0109 
19 9.8657 0.0000 0.0002 0.114 -0.0109 

dTr d:;,Tr R T r GCV rf.R ---:::it52 

1.8615 -0.4926 2.8136 93 .61 0.0324 
1.8706 -0.5005 2.8124 93 .60 0.0324 
1.8899 -0.5077 2. 8088 93.54 0.0324 
1.8957 -0.5127 2.8082 93.53 0.0324 
1.8949 -0 .5152 2.8089 93.54 0.0324 
1.891 -0. 5154 2.8101 93.56 0.0324 

1.8891 -0.5146 2.8106 93.57 0.0324 
1.8894 -0.5138 2.8106 93 .57 0.0324 
1.8907 -0.5133 2.8104 93.57 0.0324 
1.8922 -0.513 2.81 93 .57 0.0324 
1.8935 -0.5128 2.8098 93.57 0.0324 
1.8944 -0.5127 2.8096 93.56 0.0324 
1.8951 -0.5126 2.8094 93.56 0.0324 -
1.8956 -0.5124 2.8093 93 .56 0.0324 
l. 961 -0.5122 2.8091 93.56 0.0324 
1.8966 -0.5119 2.809 93.56 0.0324 
1. 969 -0.5116 2.8089 93.56 0.0324 
1. 973 -0.5113 2.8088 93.56 0.0324 
1. 976 -0.5111 2. 086 93.56 0.0324 
1. 979 -0.510 2.8085 93.55 0.0324 

Grid 3 
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q 0q dGCV dL,GCV dR dL,R 
ru:J r/(/2 rl (I rf.A 2 

0 9.8657 0.0000 0.0002 0.1142 -0.0111 
1 9.8654 -0.0000 0.0002 0.1142 -0.0111 
2 9.8663 0.0000 0.0002 0.1142 -0.0112 
3 9.8662 -0.0000 0.0002 0.1143 -0 .0112 
4 9.8664 0.0000 0.0002 0.1143 -0.0112 
5 9.8661 0.0000 0.0002 0.1144 -0.0112 
6 9.8655 0.0000 0.0002 0.1144 -0.0113 
7 9.865 0.0000 0.0002 0.1144 -0.0113 
8 9.8643 0.0000 0.0002 0.1145 -0.011 3 
9 9.8638 0.0000 0.0002 0.1145 -0.0114 

10 9.8632 0.0000 0.0002 0.1145 -0.0114 
11 9.8628 0.0000 0.0002 0.1146 -0.0114 
12 9.8623 0.0000 0.0002 0.1146 -0.0114 
13 9.8619 0.0000 0.0002 0.1146 -0.0114 
14 9.8616 0.0000 0.0002 0.1146 -0.0115 
15 9.8613 0.0000 0.0002 0.1146 -0.011 5 
16 9.861 0.0000 0.0002 0.1146 -0.0115 
17 9.8608 0.0000 0.0002 0.1147 -0.011 5 
18 9.8607 0.0000 0.0002 0.1147 -0.011 5 
19 9.8605 0.0000 0.0002 0.1147 -0.0115 ' 

dTr dL,Tr R Tr GCV rl.A rf.A2 

1.9013 -0.514 2.8083 93.55 0.0324 
1.9025 -0.5152 2.8083 93 .55 0.0324 
1.9027 -0 .5159 2.8083 93.55 0.0324 
1.9034 -0.5164 2. 8083 93.54 0.0324 
1.9039 -0.5169 2.8082 93.54 0.0324 
1.9045 -0. 5174 2.8082 93.54 0.0324 
1.9052 -0.5177 2.8081 93.54 0.0324 
1.9058 -0 .518 2.808 93.54 0.0324 
1.9065 -0 .5183 2.8079 93.54 0.0324 
1. 907 -0. 5186 2.8078 93.54 0.0324 

1. 9075 -0.5188 2.8077 93.54 0.0324 
1.908 -0. 519 2.8076 93.53 0.0324 

1. 9084 -0.51 93 2.8075 93.53 0.0324 
1.9088 -0. 5195 2.8075 93.53 0.0324 
1.9092 -0.5196 2.8074 93.53 0.0324 
1.9095 -0. 5198 2.8073 93.53 0.0324 
1.9098 -0 .52 2.8073 93.53 0.0324 
1.9101 -0 .5201 2.8073 93.53 0.0324 
1.9103 -0.5203 2.8072 93 .53 0.0324 
1.9105 -0. 5204 2.8072 93.53 0.0324 

Grid 2 
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0q dGCV d""GCV dR d"'R q dB rf.A2 rl {} n.17 2 

0 9.8605 0.0000 0.0002 0.1147 -0.0115 
1 9.8604 0.0000 0.0002 0.1147 -0.0116 
2 9.8603 0.0000 0.0002 0.1147 -0.0116 
3 9.8603 0.0000 0.0002 0.1147 -0.0116 
4 9.8603 -0 .0000 0.0002 0.1147 -0.011 6 
5 9.8604 -0.0000 0.0002 0.1147 -0 .0116 
6 9.8604 -0.0000 0.0002 0.1147 -0.0116 
7 9.8604 -0.0000 0.0002 0.1147 -0.011 6 
8 9.8605 -0.0000 0.0002 0.1148 -0.0116 
9 9.8605 -0.0000 0.0002 0.1148 -0.0116 

IO 9.8605 -0.0000 0.0002 0.1148 -0.0116 
11 9.8605 -0 .0000 0.0002 0.1148 -0.011 6 
12 9.8605 -0.0000 0.0002 0.1148 -0.0116 
13 9.8605 -0.0000 0.0002 0.1148 -0.0116 
14 9.8605 -0.0000 0.0002 0.1148 -0.0116 
15 9.8606 -0.0000 0.0002 0.1148 -0.011 6 
16 9.8606 -0 .0000 0.0002 0.1148 -0.011 6 
17 9.8606 -0 .0000 0.0002 0.1148 -0.011 6 
18 9.8606 -0 .0000 0.0002 0.1148 -0.011 6 
19 9.8606 -0 .0000 0.0002 0.1148 -0 .0116 

dTr d"'Tr R Tr GCV rl.A ----::i"Zi"2 

1.911 -0.5209 2.8071 93 .53 0.0324 
1.9112 -0.521 2.8071 93 .53 0.0324 
1.9113 -0.5211 2.8071 93.53 0.0324 
1.9114 -0. 5212 2.8071 93.53 0.0324 
1.9115 -0.5213 2. 8071 93.53 0.0324 
1.9115 -0.5214 2.8071 93.53 0.0324 
1.9116 -0.5214 2.8071 93.53 0.0324 
1.9116 -0.5215 2.8071 93 .53 0.0324 
1.9116 -0.5216 2.8071 93.53 0.0324 
1.9117 -0.5216 2.8071 93 .53 0.0324 
1.9117 -0.5216 2.8071 93.53 0.0324 
1.9117 -0.5217 2.8071 93 .53 0.0324 
1.9118 -0.5217 2.8071 93.53 0.0324 -
1.9118 -0.5218 2.8071 93.53 0.0324 
1.9118 -0.5218 2.8071 93.53 0.0324 
1.9119 -0.5218 2.8071 93 .53 0.0324 
1.9119 -0.5218 2.8071 93.53 0.0324 
1.9119 -0.5219 2.8071 93 .53 0.0324 
1.9119 -0.5219 2.8071 93 .53 0.0324 
1.912 -0.5219 2. 071 93.53 0.0324 

Grid 1 
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B.5 Results generated by the MINGCV algo­
rithm, applying a first order correction to 
the solution estimate 

q 0q dGCV d"GCV dR d"R 
rl.A rl.A2 rl.A rl.A2 

0 10.1464 0.0034 0.0065 0.3418 0.5938 
1 9.6187 0.0003 0.0001 0.059 0.0119 
2 7.0928 0.0000 0.0003 0.0218 0.0353 
3 7.0426 0.0000 0.0001 0.0155 0.0172 
4 7.3516 0.0000 0.0002 0.0226 0.0228 
5 7.2503 -0 .0000 0.0002 0.0203 0.0213 
6 7.2527 0.0000 0.0002 0.0203 0.0214 
7 7.2524 -0.0000 0.0002 0.0203 0.0214 
8 7.2525 0.0000 0.0002 0.0203 0.0214 
9 7.2525 0.0000 0.0002 0.0203 0.0214 

10 7.2525 0.0000 0.0002 0.0203 0.0214 
11 7.2525 0.0000 0.0002 0.0203 0.0214 
12 7.2525 0.0000 0.0002 0.0203 0.0214 
13 7.2525 0.0000 0.0002 0.0203 0.0214 
14 7.2525 0.0000 0.0002 0.0203 0.0214 
15 7.2525 0.0000 0.0002 0.0203 0.0214 
16 7.2525 0.0000 0.0002 0.0203 0.0214 
17 7.2525 0.0000 0.0002 0.0203 0.0214 
18 7.2525 0.0000 0.0002 0.0203 0.0214 
19 7.2525 0.0000 0.0002 0.0203 0.0214 

dTr d~Tr R Tr GCV rl.A r1.7f2 

0.4699 -0.0546 3.0588 96 .19 0.0334 
0.4953 -0 .0065 2.8833 95 .93 0.0316 
0.3503 0.1572 2.7784 94.82 0.0312 
0.3174 0.1219 2.7761 94.80 0.0312 
0.3578 0.1154 2.7822 94.91 0.0312 
0.3462 0.1197 2.7801 94.87 0.0312 
0.3465 0.1223 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 
0.3465 0.1219 2.7801 94.87 0.0312 

Grid 6 
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q 0q dGCV d"GCV d R d_,, R 
ri.FJ r!A'- rl.A ~ 

0 7.2525 -0.0007 0.0007 0.0684 0.0156 
1 8.3281 -0.0000 0.0006 0.0887 0.019 
2 8.4107 0.0000 0.0006 0.0918 0.0173 
3 8.3282 -0.0000 0.0006 0.0905 0.019 
4 8.3302 -0.0000 0.0006 0.0905 0.019 
5 8.3323 -0.0000 0.0006 0.0905 0.019 
6 8.3323 -0.0000 0.0006 0.0905 0.019 
7 8.3324 0.0000 0.0006 0.0905 0.019 
8 8.3323 0.0000 0.0006 0.0905 0.019 
9 8.3323 0.0000 0.0006 0.0905 0.019 

iO 8.3323 0.0000 0.0006 0.0905 0.019 
11 8.3323 0.0000 0.0006 0.0905 0.019 
12 8.3323 0.0000 0.0006 0.0905 0.019 
13 8.3323 0.0000 0.0006 0.0905 0.019 
14 8.3323 0.0000 0.0006 0.0905 0.019 
_15 8.3323 0.0000 0.0006 0.0905 0.019 
16 8.3323 0.0000 0.0006 0.0905 0.019 
17 8.3323 0.0000 0.0006 0.0905 0.019 
18 8.3323 0.0000 0.0006 0.0905 0.019 
19 8.3323 0.0000 0.0006 0.0905 0.01 9 

dTr d"Tr R Tr GCV ri.A ~ 

2.238 -0.6422 2. 6053 91.60 0.0314 
1. 6189 -0.549 2.6823 93.66 0.0309 
1.5285 -0. 5868 2. 6913 93.79 0.0309 
1.581 -0 .6059 2.684 93.66 0.0309 

1.5806 -0 .5969 2. 6842 93.66 0.0309 
1.5792 -0.5968 2.6844 93.67 0.0309 
1.5793 -0. 597 2. 6844 93 .67 0.0309 
1.5792 -0.597 2.6844 93.67 0. 0309 
1.5792 -0.597 2.6844 93 .67 0. 0309 
1.5792 -0.597 2.6844 93 .67 0. 0309 
1.5792 -0.597 2.6844 93 .67 0. 0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6 44 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93 .67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6844 93.67 0.0309 
1.5792 -0.597 2.6 44 93.67 0.0309 

Grid 5 
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q 0q dGCV dL,GCV dR dL,R 
rl {I rlA'- rlA "T£i2 

0 8.3323 0.0001 0.0006 0.1252 -0.0013 
1 8.1925 -0.0000 0.0006 0.1257 -0.0084 
2 8.2416 -0.0000 0.0005 0.1227 -0.0114 
3 8.3068 0.0000 0.0005 0.1247 -0.0092 
4 8.2321 0.0000 0.0006 0.1262 -0.0073 
5 8.2184 -0.0000 0.0006 0.1257 -0.0061 
6 8.2308 -0.0000 0.0006 0.1252 -0.0071 
7 8.2381 -0.0000 0.0006 0.1251 -0.0083 
8 8.24 0.0000 0.0006 0.1253 -0.0081 
9 8.2367 0.0000 0.0006 0.1254 -0.0076 

10 8.2351 -0.0000 0.0006 0.1253 -0.0074 
11 8.2356 -0.0000 0.0006 0.1253 -0.0076 
12 8.2362 -0.0000 0.0006 0.1253 -0.0077 
13 8.2363 0.0000 0.0006 0.1253 -0.0077 
14 8.2361 0.0000 0.0006 0.1253 -0.0076 
15 8.2361 0.0000 0.0006 0.1253 -0.0076 
16 8.2361 0.0000 0.0006 0.1253 -0.0076 
17 8.2361 0.0000 0.0006 0.1253 -0.0076 
18 8.2361 0.0000 0.0006 0.1253 -0.0076 
19 8.2361 0.0000 0.0006 0.1253 -0.0076 

dTr dL,Tr R Tr GCV rl.A ----::jJi2 

2.0787 -1.0172 2.6337 92.96 0.0308 
2.2755 -1.0471 2.6076 92.65 0.0307 
2.2216 -1.0074 2.6199 92.76 0.0308 
2.1452 -1.016 2.628 92.90 0.0308 
2.2225 -1.0615 2.6187 92.74 0.0308 
2.2383 -1.0461 2.6169 92.71 0.0308 
2.2239 -1.0377 2.6184 92.74 0.0308 
2.2168 -1.0397 2.6193 92.75 0.0308 
2.2149 -1.0394 2.6196 92.76 0.0308 
2.2183 -1.0406 2.6192 92.75 0.0308 
2.2199 -1.0408 2.6189 92.74 0.0308 
2.2194 -1.0402 2.619 92.75 0.0308 
2.2187 -1.0402 2.6191 92.75 0.0308 
2.2186 -1.0404 2.6191 92.75 0.0308 
2.2188 -1.0404 2.6191 92.75 0.0308 
2.2189 -1.0403 2.6191 92.75 0.0308 
2.2189 -1.0403 2.6191 92.75 0.0308 
2.2188 -1.0403 2.6191 92.75 0.0308 
2.2188 -1.0403 2.6191 92.75 0.0308 
2.2188 -1.0403 2.6191 92.75 0.0308 

Grid 4 

331 



0q dGCV d,,,GCV dR d,,,R q rf.A rf.A2 rl.A -::Ti52 

0 8.2361 -0.0000 0.0006 0.13i7 -0.0131 
1 8.2713 0.0000 0.0006 0.1348 -0.0147 
2 8.2441 -0 .0000 0.0006 0.1358 -0.0145 
3 8.2648 -0 .0000 0.0006 0.1351 -0.0136 
4 8.2731 -0 .0000 0.0006 0.1344 -0 .0126 
5 8.2811 -0.0000 0.0006 0.134 -0.012 
6 8.2826 -0.0000 0.0006 0.1338 -0.0118 
7 8.2842 -0.0000 0.0006 0.1337 -0.0117 
8 8.2851 -0.0000 0.0006 0.1337 -0.0117 
9 8.2867 -0.0000 0.0006 0.1336 -0.0117 
fb 8.289 -0.0000 0.0006 0.1335 -0.0117 
11 8.2918 -0.0000 0.0006 0.1333 -0.0116 
12 8.2945 -0.0000 0.0006 0.1332 -0.011 6 
13 8.2967 -0.0000 0.0006 0.1331 -0 .0115 
14 8.2983 -0 .0000 0.0006 0.133 -0.011 6 

. 15 8.2994 -0.0000 0.0006 0.1329 -0.0116 
16 8.3003 -0.0000 0.0006 0.1329 -0 .0117 
17 8.3011 -0 .0000 0.0006 0.1328 -0. 0118 
18 8.3017 -0 .0000 0.0006 0.1328 -0 .0119 
19 8.3022 -0 .0000 0.0006 0.1328 -0.0119 

dTr- d,,,Tr- R Tr GCV rf.A ~ 

2.363 -1.1763 2.6119 92 .49 0.0308 
2.3646 -1.1921 2.6122 92.56 0.0308 
2.4272 -1.2157 2.6072 92 .49 0.0308 
2.4036 -1.202 2.6099 92 .55 0.0308 
2.3893 -1.1889 2.6113 92 .57 0.0308 
2.375 -1.1758 2.6126 92.59 0.0308 

2.3721 -1.1706 2.6127 92.59 0.0308 
2.3703 -1.1678 2.6128 92.59 0.0308 
2.3702 -1.1 673 2.6127 92.60 0.0308 
2.3693 -1.1 664 2.6128 92 .60 0.0308 
2.3676 -1.1648 2.613 92.61 0.0308 
2.365 -1.1 621 2.6133 92.61 0.0308 

2.3621 -1.1 592 2.6137 92.62 0.0308 -
2.3595 -1.1 566 2.6139 92.62 0.0308 
2.3574 -1.1546 2.6141 92.63 0.0308 
2.3558 -1.1534 2.6143 92.63 0.0308 
2.3543 -1.1 528 2.6144 92.63 0.0308 
2.3532 -1.1 525 2.6145 92.63 0.030 
2.3522 -1.1 525 2.6145 92.64 0.0308 
2.3514 -1.1 525 2.6146 92.64 0.030 

Grid 3 
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q 0q dGCV d'l,GCV dR d'L,R 
dA rlt:12 rl.A -:i"2i2 

0 8.3022 0.0000 0.0006 0.1336 -0.0128 
1 8.3008 -0.0000 0.0006 0.1338 -0 .013 
2 8.3031 -0.0000 0.0006 0.134 -0 .0132 
3 8.3045 -0.0000 0.0006 0.1341 -0.0133 
4 8.3059 -0.0000 0.0006 0.1342 -0.0134 
5 8.3062 -0.0000 0.0006 0.1344 -0 .0135 
6 8.3062 0.0000 0.0006 0.1345 -0.0136 
7 8.3057 0.0000 0.0006 0.1346 -0.0137 
8 8.305 0.0000 0.0006 0.1347 -0.0137 
9 8.3044 0.0000 0.0006 0.1348 -0.0138 

10 8.3038 0.0000 0.0006 0.1349 -0.0139 
11 8.3034 0.0000 0.0006 0.135 -0.0139 
12 8.3032 0.0000 0.0006 0.135 -0.014 
13 8.3031 -0.0000 0.0006 0.1351 -0.014 
14 8.3032 -0.0000 0.0006 0.1351 -0.011 
15 8.3032 -0.0000 0.0006 0.1351 -0.014 
16 8.3034 -0.0000 0.0006 0.1352 -0.0141 
17 8.3035 -0.0000 0.0006 0.1352 -0 .0141 
18 8.3036 -0.0000 0.0006 0.1352 -0 .0141 
19 8.3038 -0.0000 0.0006 0.1352 -0.0141 

dTr d'L,Tr R Tr GCV ---;jJi nH 2 

2.3644 -1.166 2.6138 92.61 0.0308 
2.373 -1.1724 2.6133 92.59 0.0308 
2.3748 -1.1765 2.6134 92.59 0.0308 
2.3768 -1.1796 2.6134 92 .59 0.0308 
2.3782 -1.182 2.6134 92.59 0.0308 
2.3803 -1.184 2.6133 92.59 0.0308 
2.3822 -1.1853 2.6132 92.59 0.0308 
2.3843 -1.1863 2.613 92.59 0.0308 
2.3863 -1.1872 2.6128 92 .58 0.0308 
2.3881 -1.1881 2.6126 92.58 0.0308 
2.3898 -1.189 2.6124 92.58 0.0308 
2.3913 -1.1898 2.6123 92.58 0.0308 
2.3925 -1.1907 2.6122 92.58 0.0308 
2.3936 -1. 1915 2.6121 92.58 0.0308 
2.3944 -1.1 922 2.612 92.58 0.0308 
2.3951 -1.1 928 2.612 92.58 0.0308 
2.3957 -1.1 934 2.6119 92.58 0.0308 
2.3962 -1.1938 2.6119 92.58 0.0308 
2.3966 -1.1 942 2.6119 92.58 0.0308 
2.3969 -1.1944 2.6119 92.58 0.0308 

Grid 2 
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q 0q dGCV dL,GCV dR d"R 
ri.R rl.fJ'- rl.A -::i752 

0 8.3038 0.0000 0.0006 0.1354 -0 .0142 
1 8.3038 0.0000 0.0006 0.1354 -0 .0143 
2 8.3037 0.0000 0.0006 0.1354 -0.0143 
3 8.3037 0.0000 0.0006 0.1355 -0.0143 
4 8.3036 0.0000 0.0006 0.1355 -0.0143 
5 8.3035 -0.0000 0.0006 0.1355 -0.0143 
6 8.3036 -0.0000 0.0006 0.1355 -0 .0144 
7 8.3037 -0.0000 0.0006 0.1355 -0.0144 
8 8.3037 -0.0000 0.0006 0.1355 -0.0144 
9 8.3038 -0.0000 0.0006 0.1355 -0.0144 

10 8.3038 -0.0000 0.0006 0.1355 -0 .0144 
11 8.3039 -0.0000 0.0006 0.1355 -0.0144 
12 8.3039 -0.0000 0.0006 0.1356 -0.0144 
13 8.304 -0.0000 0.0006 0.1356 -0.0144 
14 8.3041 -0.0000 0.0006 0.1356 -0.0144 
15 8.3041 -0.0000 0.0006 0.1356 -0.0144 
16 8.3042 -0.0000 0.0006 0.1356 -0.0144 
17 8.3042 -0.0000 0.0006 0.1356 -0.0144 
18 8.3043 -0.0000 0.0006 0.1356 -0.0144 
19 8.3043 -0.0000 0.0006 0.1356 -0. 0144 

dTr d"Tr R Tr GCV ri.A ~ 
2.3988 -1.1964 2.6118 92.57 0.0308 
2.3998 -1.1972 2.6117 92.57 0.0308 
2.4004 -1.1977 2.6117 92.57 0.0308 
2.4007 -1.198 2.6116 92 .57 0.0308 
2.4011 -1.1982 2.6116 92 .57 0.0308 
2.4015 -1.1985 2.6116 92.57 0.0308 
2.4017 -1.1987 2.6116 92.57 0.0308 
2.4018 -1.1989 2.6116 92.57 0.0308 
2.402 -1.1 991 2.6116 92.57 0.0308 

2.4021 -1.1993 2.6116 92.57 0.0308 
2.4022 -1.1995 2.6116 92.57 0.0308 
2.4024 -1.1996 2.6116 92.57 0.0308 
2.4025 -1.1998 2.6116 92.57 0.0308 -
2.4026 -1.2 2.6116 92.57 0.0308 
2.4027 -1.2001 2.6116 92.57 0.0308 
2.4028 -1.2002 2.6116 92.57 0.0308 
2.4029 -1.2004 2.6116 92.57 0.0308 
2.403 -1.2005 2.6116 92.57 0.0308 

2.4031 -1.2006 2.6116 92.57 0.0308 
2.4031 -1.2007 2.6116 92.57 0.0308 

Grid 1 
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B.6 Results of using the first order correction, 
for a second random vector t 

q 0q dGCV dL,GCV dR dL, R 
rl.A r!,A2 rJ ti ~ 

0 10.1464 0.0026 0.0076 0.3418 0.5938 
1 9.7968 -0.001 0.0005 0.0603 0.0147 
2 12.0607 0.006 0.0107 0.6639 1.0602 
3 11 .4976 0.0016 0.0044 0.2438 0.3567 
4 11.1408 0.0004 0.0026 0.15 0.1933 
5 10 .9718 0.0001 0.0019 0.1 218 0.1408 
6 10.9458 -0.0000 0.0019 0.1182 0.1335 
7 10.9466 0.0000 0.0019 0.1184 0.1336 
8 10 .9465 0.0000 0.0019 0.1184 0.1336 
9 10 .9465 0.0000 0.0019 0.1183 0.1335 

10 10.9465 0.0000 0.0019 0.1183 0.1335 
11 10.9465 0.0000 0.0019 0.1183 0.1335 
12 10.9465 0.0000 0.0019 0.1183 0.1 335 
13 10.9465 0.0000 0.0019 0.1183 0.1 335 
14 10.9465 0.0000 0.0019 0.1183 0.1 33'5 
15 10.9465 0.0000 0.0019 0.1183 0.1 335 
16 10.9465 0.0000 0.0019 0.1183 0.1335 
17 10 .9465 0.0000 0.0019 0.1183 0.1335 
18 10.9465 0.0000 0.0019 0.1183 0.1 335 
19 10.9465 0.0000 0.0019 0.1183 0.1335 
dT, dL,T, R Tr GCV rl.R n.r,2 

1.9649 -0.2636 3.0588 88.84 0.0391 
2.1305 -0 .2456 2.8935 88.11 0.0376 
2.1 654 1.4992 3.3396 92.19 0.0397 
1.6834 -0.3015 3.0775 91.32 0.0373 
1. 7298 -0.298 3.0106 90.72 0.0369 
1.7812 -0. 2894 2.9876 90.42 0.0369 
1.7921 -0.298 2.9844 90.37 0.0369 
1.7918 -0. 3009 2.9845 90.37 0.0369 
1.7918 -0 .3009 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90 .37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0. 3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90 .37 0.0369 
1. 7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 

Grid 6 

335 



q 0q dGCV dL,GCV dR dL,R 
rf.f) rl.fJ'- rl.A ~ 

0 10.9465 0.0026 0.0076 0.3418 0.5938 
1 9.7968 -0.001 0.0005 0.0603 0.0147 
2 12.0607 0.006 0.0107 0.6639 1.0602 
3 11.4976 0.0016 0.0044 0.2438 0.3567 
4 11.1408 0.0004 0.0026 0.15 0.1933 
5 10.9718 0.0001 0.0019 0.1218 0.1408 
6 10.9458 -0.0000 0.0019 0.1182 0.1335 
7 10.9466 0.0000 0.0019 0.1184 0.1336 
8 10.9465 0.0000 0.0019 0.1184 0.1336 
9 10.9465 0.0000 0.0019 0.1183 0.1335 

-10 10.9465 0.0000 0.0019 0.1183 0.1335 
11 10.9465 0.0000 0.0019 0.1183 0.1335 
12 10.9465 0.0000 0.0019 0.1183 0.1335 
13 10.9465 0.0000 0.0019 0.1183 0.1335 
14 10.9465 0.0000 0.0019 0.1183 0.1335 
15 10.9465 0.0000 0.0019 0.1183 0.1335 
16 10.9465 0.0000 0.0019 0.1183 0.1335 
17 10.9465 0.0000 0.0019 0.1183 0.1335 
18 10.9465 0.0000 0.0019 0.1183 0.1335 
19 10.9465 0.0000 0.0019 0.1183 0.1335 
dTr dL,Tr R T r CCV rl,f) ~ 

1.9649 -0.2636 3.0588 88.84 0.0391 
2.1305 -0.2456 2.8935 88 .11 0.0376 
2.1654 1.4992 3.3396 92.19 0.0397 
1.6834 -0.301 5 3.0775 91.32 0.0373 
1.7298 -0. 298 3.0106 90.72 0.0369 
1.7812 -0. 2894 2.9876 90.42 0.0369 
1.7921 -0. 298 2.9844 90.37 0.0369 
1.7918 -0.3009 2.9845 90 .37 0.0369 
1.7918 -0.3009 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90 .37 0.0369 
1.7918 -0.3008 2.9845 90 .37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 -
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.791 -0.300 2.9845 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 
1.791 -0.300 2.9 45 90.37 0.0369 
1.7918 -0.3008 2.9845 90.37 0.0369 

Grid 5 
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q 0q dGCV d~ccv dR d"'R 
rlR ~,. rlA --:J7f'1"° 

0 10.9465 -0.0000 0.0017 0.1404 0.1057 
1 10.898 00.0000 0.0016 0.1396 0.0994 
2 10.8882 -0.0000 0.0016 0.1389 0.0977 
3 10.8894 -0.0000 0.0016 0.1394 0.0978 
4 10.8897 0.0000 0.0016 0.1392 0.098 
5 10.8925 -0.0000 0.0016 0.1393 0.0987 
6 10.8953 -0.0000 0.0016 0.1393 0.0994 
7 10.8979 -0.0000 0.0016 0.1393 0.0999 
8 10.8996 -0.0000 0.0016 0.1394 0.1002 
9 10.9004 -0.0000 0.0016 0.1394 0.1003 

10 10.9008 -0.0000 0.0016 0.1394 0.1002 
11 10.9009 -0.0000 0.0016 0.1393 0.1001 
12 10.901 -0.0000 0.0016 0.1393 0.1 
13 10.901 -0.0000 0.0016 0.1393 0.0999 
14 10.9011 -0.0000 0.0016 0.1392 0.0998 . 
15 10.9011 -0.0000 0.0016 0.1392 - 0.0997 
16 10.9011 -0.0000 0.0016 0.1391 0.0996 
17 10.901 -0.0000 0.0016 0.1391 0.0995 
18 10.901 0.0000 0.0016 0.1391 0.0994 
19 10.9009 0.0000 0.0016 0.139 0.0993 

dTr- d~Tr- R Tr GCV rl.A ---;[p2 

2.0912 -0.4515 2.9403 89.80 0.0368 
2.1161 -0.4606 2.9342 89.72 0.0368 
2.1276 -0.4635 2.9318 89.70 0.0368 
2.1331 -0.4647 2.9311 89.71 0.0368 
2.1363 -0.4632 2.931 89 .71 0.0368 
2.1366 -0.4599 2.9315 89.72 0.0368 
2.1363 -0.4561 2.9321 89.73 0.0368 
2.1352 -0.4519 2.9326 89.73 0.0368 
2.134 -0.448 2.9329 89.74 0.0368 
2.133 -0.4448 2.9331 89.74 0.0368 

2.1322 -0.4424 2.9332 89 .74 0.0368 
2.1316 -0.4406 2.9332 89.74 0.0368 
2.131 -0.4392 2.9332 89.74 0.0368 
2.1304 -0.4383 2.9331 89.74 0.0368 
2.1297 -0.4377 2.9331 89.74 0.0368 
2.129 -0.4373 2.9331 89.74 0.0368 

2.1284 -0.4373 2.9331 89.74 0.0368 
2.1278 -0.4374 2.9331 89.74 0.0368 
2.1272 -0.4377 2.9331 89.74 0.0368 
2.1268 -0.4381 2.9331 89.74 0.0368 

Grid 4 
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(Jq dG C V d ;,GCV dR d;, R 
q r/A rl/J 2 rl.A r/A 2 

0 10.9009 0.0000 0.0016 0.1396 0.0987 
1 .10.9 000 0.0016 0.1396 0.0987 
2 10.8982 0.0000 0.0016 0.1399 0.0978 
3 10.8974 0.0000 0.0016 0.1399 0.0976 
4 10.8973 -0 .0000 0.0016 0.1399 0.0976 
5 10.8976 -0.0000 0.0016 0.1399 0.0976 
6 10.8979 -0.0000 0.0016 0.14 0.0976 
7 10.898 0.0000 0.0016 0.1401 0.0976 
8 10.8979 0.0000 0.0016 0.1401 0.0975 
9 10.8978 0.0000 0.0016 0.1401 0.0975 

10 10.8977 0.0000 0.0016 0.1402 0.0974 
11 10.8976 0.0000 0.0016 0.1402 0.0974 
12 10.8975 0.0000 0.0016 0.1402 0.0974 
13 10.8975 0.0000 0.0016 0.1402 0.0973 
-14 10.8974 0.0000 0.0016 0.1403 0.0973 
15 10.8974 0.0000 0.0016 0.1403 0.0973 
16 10.8973 0.0000 0.0016 0.1403 0.0973 
17 10.8973 0.0000 0.0016 0.1403 0.0972 
18 10.8973 0.0000 0.0016 0.1403 0.0972 
19 10.8972 0.0000 0.0016 0.1403 0.0972 

dTr d;,Tr R Tr GCV rlA rf.A 2 
2.1343 -0.4454 2.9325 89 .73 0.0368 
2.1372 -0.4478 2.9319 89.72 0.0368 
2.1392 -0.4489 2.9315 89 .71 0.0368 
2.1403 -0.4495 2.9313 89 .71 0.0368 
2.1412 -0.4503 2.9312 89.71 0.0368 
2.1419 -0.451 2.9313 89.71 0.0368 
2.1426 -0.4516 2.9312 89.71 0.0368 
2.1431 -0.4521 2.9312 89.70 0.0368 
2. 1437 -0.4525 2.9311 89.70 0.0368 
2. 1442 -0.4528 2.931 89 .70 0.0368 
2.1447 -0.4531 2.931 89.70 0.0368 
2. 1452 -0.4534 2.9309 89.70 0.0368 
2.1456 -0 .4536 2.9309 89.70 0.0368 
2.146 · -0.4539 2.9308 89.70 0.0368 

2.1464 -0.4541 2.9308 89.70 0.0368 
2.1467 -0 .4543 2.9307 89 .70 0.0368 
2.147 -0 .4544 2.9307 89.70 0.0368 

-2.1473 -0. 4546 2. 9306 89.70 0.0368 
2.1476 -0. 4547 2.9306 89.70 0.0368 
2.1478 -0.4548 2.9306 89.70 0.0368 

Grid 3 
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q 0q dGCV d""GCV dR d"'R 
r/A rlA'- rlA -:["§2 

0 10.8932 0.0000 0.0016 0.1404 0.0971 
1 10.8973 0.0000 0.0016 0.1405 0.0971 
2 10.8973 0.0000 0.0016 0.1405 0.0971 
3 10.8973 0.0000 0.0016 0.1405 0.0971 
4 10.8973 0.0000 0.0016 0.1405 0.0971 
5 10.8972 0.0000 0.0016 0.1405 0.097 
6 10.8972 0.0000 0.0016 0.1405 0.097 
7 10 .8971 0.0000 0.0016 0.1405 0.097 
8 10.897 0.0000 0.0016 0.1405 0.097 
9 10.897 0.0000 0.0016 0.1405 0.097 

10 10.8969 0.0000 0.0016 0.1405 0.097 
11 10.8969 0.0000 0.0016 0.1405 0.0969 
12 10.8969 0.0000 0.0015 0.1405 0.0969 
13 10.8968 0.0000 0.0015 0.1406 0.0969 
14 10.8968 0.0000 0.0015 0.1406 0.0969 . 
15 10.8968 0.0000 0.0015 0.1406 0.0969 
16 10.8967 0.0000 0.0015 0.1406 0.0969 
17 10.8967 0.0000 0.0015 0.1406 0.0969 
18 10.8967 0.0000 0.0015 0.1406 0.0969 
19 10.8967 0.0000 0.0015 0.1406 0.0969 

dTr d,!Tr R Tr GCV Ali ---:::i£i2 

2.1491 -0.4561 2.9305 89.70 0.0368 
2.1495 -0.4565 2.9305 89.69 0.0368 
2.1497 -0.4567 2.9305 89.69 0.0368 
2.1499 -0 .4569 2.9305 89 .69 0.0368 

2.15 -0.457 2.9304 89.69 0.0368 
2.1502 -0.4571 2.9304 89.69 0.0368 
2.1503 -0.4572 2.9304 89 .69 0.0368 
2.1504 -0 .4573 2.9304 89 .69 0.0368 
2.1506 -0.4573 2.9304 89.69 0.0368 
2.1507 -0 .4574 2.9303 89.69 0.0368 
2.1508 -0.4575 2.9303 89.69 0.0368 
2.1508 -0. 4575 2.9303 89.69 0.0368 
2.1509 -0. 4576 2.9303 89.69 0.0368 
2.151 -0. 4576 2.9303 89.69 0.0368 

2.1511 -0.4577 2.9303 89.69 0.0368 
2.1512 -0.4577 2.9302 89.69 0.0368 
2.1512 -0.4578 2.9302 89.69 0.0368 
2.1513 -0.4578 2.9302 89 .69 0.0368 
2.1514 -0 .4578 2.9302 89.69 0.0368 
2.1514 -0.4579 2.9302 89 .69 0.0368 

Grid 2 
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q 0q dGCV dL,GCV dR dL,R 
rfA rf.A'- -rf.A """":i75'T 

0 10.8967 0.0000 0.0015 0.1406 0.0968 
1 10.8966 0.0000 0.0015 0.1406 0.0968 
2 10.8966 0.0000 0.0015 0.1406 0.0968 
3 10.8966 0.0000 0.0015 0.1406 0.0968 
4 10.8966 0.0000 0.0015 0.1406 0.0968 
5 10.8966 0.0000 0.0015 0.1406 0.0968 
6 10.8966 0.0000 0.0015 0.1406 0.0968 
7 10.8966 0.0000 0.0015 0.1406 0.0968 
8 10.8966 0.0000 0.0015 0.1406 0.0968 
9 10.8966 0.0000 0.0015 0.1406 0.0968 

10 10.8966 0.0000 0.0015 0.1406 0.0968 
11 10.8966 0.0000 0.0015 0.1406 0.0968 
12 10.8966 0.0000 0.0015 0.1406 0.0968 
13 10.8966 0.0000 0.0015 0.1406 0.0968 
14 10.8966 0.0000 0.0015 0.1406 0.0968 
15 10.8966 0.0000 0.0015 0.1406 0.0968 
16 10.8966 0.0000 0.0015 0.1406 0.0968 
17 10.8966 0.0000 0.0015 0.1406 0.0968 
18 10.8966 0.0000 0.0015 0.1406 0.0968 
19 10.8966 0.0000 0.0015 0.1406 0.0968 

dTr dL,Tr R T r GCV rf.A ~ 

2.1516 -0.458 2.9302 89.69 0.0368 
2.1 516 -0.4581 2.9302 89.69 0.0368 
2.1517 -0. 4581 2.9302 89.69 0.0368 
2.1517 -0 .4581 2.9302 89.69 0.0368 
2.1517 -0 .4582 2.9302 89.69 0.0368 
2.1517 -0. 4582 2.9302 89.69 0.0368 
2.1518 -0.4582 2.9302 89 .69 0.0368 
2.1518 -0.4582 2.9302 89.69 0.0368 
2.1518 -0.4582 2.9302 89.69 0.0368 
2.1518 -0.4582 2.9302 89.69 0.0368 
2.1518 -0.4583 2.9302 89.69 0.0368 
2.1518 -0.4583 2.9302 89.69 0.0368 
2.1519 -0.4583 2.9302 89.69 0.0368 -

2.1519 -0.4,583 2.9302 89.69 0.0368 
2.1519 -0.45 3 2.9302 89 .69 0.0368 
2.1519 -0. 45 3 2.9302 89.69 0.0368 
2.1519 -0.45 3 2.9302 89.69 0.0368 
2.1519 -0.45 3 2.9302 89.69 0.0368 
2.1519 -0.45 3 2.9302 9.69 0.036 
2.1519 -0.45 4 2.9302 89.69 0.036 

Grid 1 
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B.7 Results of using the first order correction, 
for a third ra11dom vector t. 

q 0q dGCV dL.GCV dR d~ R 
rtA rl.('.J°'1 rl.A """:iq2 

0 10.1464 0.0035 0.0074 0.3418 0.5938 
1 9.6793 -0.0001 0.0003 0.0593 0.0124 
2 10.1793 0.0000 0.0004 0.0663 0.0248 
3 10.1481 0.0000 0.0004 0.0658 0.0239 
4 10.1403 0.0000 0.0004 0.0656 0.0235 
5 10.1407 0.0000 0.0004 0.0656 0.0235 
6 10.1407 0.0000 0.0004 0.0656 0.0235 
7 10.1407 0.0000 0.0004 0.0656 0.0235 
8 10.1407 0.0000 0.0004 0.0656 0.0235 
9 10.1407 0.0000 0.0004 0.0656 0.0235 

10 10.1407 0.0000 0.0004 0.0656 0.0235 
11 10.1407 0.0000 0.0004 0.0656 0.0235 
12 10.1407 0.0000 0.0004 0.0656 0.0235 
13 10.1407 0.0000 0.0004 0.0656 0.0235 
14 10.1407 0.0000 0.0004 0.0656 0.023'5 
15 10.1407 0.0000 0.0004 0.0656 0.0235 
16 10.1407 0.0000 0.0004 0.0656 0.0235 
17 10.1407 0.0000 0.0004 0.0656 0.0235 
18 10.1407 0.0000 0.0004 0.0656 0.0235 
19 10.1407 0.0000 0.0004 0.0656 0.0235 

dTr dL.Tr R Tr GCV rl.A ~ 
0.9694 -0.1281 3.0588 89.49 0.0386 
1.0888 -0.1617 2.8867 89.00 0.0368 
0.9995 -0.1615 2.9188 89.52 0.0368 
1.0049 -0.1633 2.9167 89.49 0.0368 
1.0063 -0.1625 2.9162 89.49 0.0368 
1.0062 -0 .1626 2.9162 89 .49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0 .1626 2.9162 89.49 0.0368 
1.0062 -0.1 626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89 .49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89 .49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89.49 0.0368 
1.0062 -0.1 626 2.9162 89.49 0.0368 
1.0062 -0.1626 2.9162 89 .49 0.0368 

Grid 6 
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q 0q dGCV d 2 GCV dR d 2 R 
rl.A rl.A'- rl.R (J.£7,. 

0 10.1407 0.0001 0.0002 0.0963 0.0104 
1 9.6156 0.0001 0.0002 0.0984 -0.0008 
2 9.0153 0.0000 0.0002 0.0998 0.0035 
3 8.9008 -0.0000 0.0002 0.0984 0.0065 
4 8.9119 -0.0000 0.0002 0.0983 0.0068 
5 8.9331 -0.0000 0.0002 0.0984 0.0063 
6 8.9344 0.0000 0.0002 0.0984 0.0062 
7 8.9339 0.0000 0.0002 0.0984 0.0062 
8 8.9338 0.0000 0.0002 0.0984 0.0062 
9 8.9338 0.0000 0.0002 0.0984 0.0062 
ro 8.9338 0.0000 0.0002 0.0984 0.0062 
11 8.9338 0.0000 0.0002 0.0984 0.0062 
12 8.9338 0.0000 0.0002 0.0984 0.0062 
13 8.9338 0.0000 0.0002 0.0984 0.0062 
14 8.9338 0.0000 0.0002 0.0984 0.0062 

. 15 8.9338 0.0000 0.0002 0.0984 0.0062 
16 8.9338 0.0000 0.0002 0.0984 0.0062 
17 8.9338 0.0000 0.0002 0.0984 0.0062 
18 8.9338 0.0000 0.0002 0.0984 0.0062 
19 8.9338 0.0000 0.0002 0.0984 0.0062 

dTr dL,Tr R Tr GCV rl.A ---:ici2 

1.3645 -0.1334 2.8525 89 .08 0.0363 
1.367 -0.3481 2.8077 88.39 0.0363 
1.559 -0.2272 2.7506 87.51 0.0363 

1.5725 -0.2074 2.7385 87.33 0.0363 
1.5726 -0.2045 2.7395 87 .34 0.0363 
1.5685 -0.2103 2.7416 87.38 0.0363 
1.5682 -0.2125 2.7417 87.38 0.0363 
1.5683 -0.2122 2.7416 87.38 0.0363 
1.5684 -0 .2121 2.7416 87.38 0.0363 
1.5684 -0.2121 2.7416 87.38 0.0363 
1.5684 -0.2121 2.7416 87.38 0.0363 
1.5684 -0.2121 2.7416 87.3 0.0363 
1.5684 -0.2121 2.7416 87.38 0.0363 -
1.5684 -0.2121 2.7416 87.3 0.0363 
1.56 4 -0.2121 2.7416 87.3 0.0363 
1.5684 -0.2121 2.7416 87.3 0.0363 
1.56 4 -0.2121 2.7416 7.3 0.0363 
1.56 · 4 -0.2121 2.7416 87 .38 0.0363 
1.56 4 -0.2121 2.7416 7.3 0.0363 
1.56 4 -0.2121 2.7416 7.3 0.0363 

Grid 5 
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q 0q dGCV d 4 GCV dR d 4 R 
,rn rl.A'- rl.A -:i7'i'J: 

0 8.9338 0.0002 0.0001 0.1231 -0 .0093 
1 6.8944 0.0005 -0.0004 0.1454 -0.0454 
2 6.8944 0.0006 -0.0005 0.1615 -0.0386 
3 6.8944 0.0006 -0.0005 0.1593 -0.0453 
4 6.8944 0.0005 -0.0005 0.1592 -0.0442 
5 6.8944 0.0006 -0.0005 0.1594 -0.0442 
6 6.8944 0.0006 -0.0005 0.1592 -0.0443 
7 6.8944 0.0006 -0.0005 0.1593 -0 .0442 
8 6.8944 0.0006 -0.0005 0.1593 -0 .0443 
9 6.8944 0.0006 -0 .0005 0.1593 -0.0443 

10 6.8944 0.0006 -0.0005 0.1593 -0.0443 
11 6.8944 0.0006 -0.0005 0.1593 -0.0443 
12 6.8944 0.0006 -0.0005 0.1593 -0.0443 
13 6.8944 0.0006 -0.0005 0.1593 -0.0443 
14 6.8944 0.0006 -0.0005 0.1593 -0 .0443 

' 
15 6.8944 0.0006 -0.0005 0.1593 -0.0443 
16 6.8944 0.0006 -0.0005 0.1593 -0 .0443 
17 6.8944 0.0006 -0.0005 0.1593 -0.0443 
18 6.8944 0.0006 -0.0005 0.1593 -0 .0443 
19 6.8944 0.0006 -0.0005 0.1593 -0 .0443 

dTr d 4 Tr R Tr GCV rl.A --:J75"2 

1.6871 -0.3471 2.709 87.11 0.0361 
1.8956 -0.4383 2.4396 83.28 0.0355 
2.1019 -0.182 2.4328 83 .28 0.0354 
2.0604 -0 .3396 2.4334 83.28 0.0354 
2.0783 -0.2803 2.4339 83.28 0.0354 
2.0738 -0.3048 2.4342 83.28 0.0354 
2.0744 -0.2984 2.4341 83.28 0.0354 
2.0742 -0.299 2.4341 83.28 0.0354 
2.074 -0.2996 2.4341 83.28 0.0354 
2.074 -0.2994 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83 .28 0.0354 
2.074 -0.2995 2.4341 83 .28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 
2.074 -0.2995 2.4341 83.28 0.0354 

Grid 4 
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B.8 Results generated by the MINGCV algo­
rithm, for the data set bumpy.dat 

q 0q dGCV d.(,GCV dR dL.R 
rlA rlr:J 2 rlA rlA 2 

0 6.6846 0.0471 0.0948 4.288 8.5061 
1 6.0539 0.0026 0.0096 0.3067 0.8877 
2 5.7828 0.0002 0.0004 0.0837 0.0716 
3 5.3752 0.0001 0.0000 0.069 0.0166 
4 5.3752 0.0001 -0.0001 0.066 0.0103 
5 5.3752 0.0001 -0.0001 0.0657 0.0094 
6 5.3752 0.0001 -0.0001 0.0657 0.0094 
7 5.3752 0.0001 -0.0001 0.0657 0.0094 
8 5.3752 0.0001 -0.0001 0.0657 0.0094 
9 5.3752 0.0001 -0.0001 0.0657 0.0094 

10 5.3752 0.0001 -0.0001 0.0657 0.0094 
11 5.3752 0.0001 -0.0001 0.0657 0.0094 
12 5.3752 0.0001 -0.0001 0.0657 0.0094 
13 5.3752 0.0001 -0.0001 0.0657 0.0094 

. 14 5.3752 0.0001 -0.0001 0.0657 0.0094 
15 5.3752 0.0001 -0.0001 0.0657 0.0094 
16 5.3752 0.0001 -0.0001 0.0657 0.0094 
17 5.3752 0.0001 -0.0001 0.0657 0.0094 
18 5.3752 0.0001 -0.0001 0.0657 0.0094 
19 5.3752 0.0001 -0.0001 0.0657 0.0094 

dTr d.(,Tr R Tr GCV rlA rlA2 

0.249 0.1163 20.1473 94.66 0.2271 
0.1974 0.086 18.0753 94.55 0.2042 
0.1774 0.0832 17.9982 94.50 0.2036 
0.1532 0.0488 17.9686 94.43 0.2035 
0.1515 0.0555 17.9684 94.43 0.2035 
0.1488 0.0469 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 -

0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.1488 0.0463 17.9682 94.43 0.2035 
0.14 8 0.0463 17.9682 94.43 0.2035 

Grid 6 
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q 0q dGCV d.,,,GCV dR d.,,,R 
r/A r!A'J. r/A -::i7S2 

0 5.3752 -0.003 0.0033 0.7793 0.3678 
1 6.2884 0.001 0.0022 1.015 0.0923 
2 5.8327 -0.0004 0.0037 0.9397 0.2545 
3 5.9358 -0 .0000 0.0033 0.9587 0.2126 
4 5.9472 0.0000 0.0033 0.9631 0.2149 
5 5.9429 0.0000 0.0034 0.9624 0.2167 
6 5.9426 -0.0000 0.0033 0.9623 0.2165 
7 5.9428 0.0000 0.0033 0.9623 0.2164 
8 5.9428 0.0000 0.0033 0.9623 0.2165 
9 5.9428 0.0000 0.0033 0.9623 0.2165 

10 5.9428 0.0000 0.0033 0.9623 0.2165 
11 5.9428 0.0000 0.0033 0.9623 0.2165 
12 5.9428 0.0000 0.0033 0.9623 0.2165 
13 5.9428 0.0000 0.0033 0.9623 0.2165 
14 5.9428 0.0000 0.0033 0.9623 0.2165 

' 15 5.9428 0.0000 0.0033 0.9623 0.2165 
16 5.9428 0.0000 0.0033 0.9623 0.2165 
17 5.9428 0.0000 0.0033 0.9623 0.2165 
18 5.9428 0.0000 0.0033 0.9623 0.2165 
19 5.9428 0.0000 0.0033 0.9623 0.2165 

dTT dL,TT R Tr GCV r/A ~ 

2.9599 0.3532 14.6721 86.64 0.1974 
2.6832 -0.3401 15.558 89.19 0.1975 
2.8235 -0.1553 15.0828 87.93 0.197 
2.794 -0.211 15.1817 88.22 0.197 

2.7943 -0.2105 15.1927 88.26 0.197 
2.7956 -0.2098 15.1885 88.24 0.197 
2.7956 -0.2091 15.1882 88.24 0.197 
2.7955 -0 .2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0 .2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.1 97 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.1 97 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0 .2094 15.1884 88.24 0.197 

Grid 5 
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q 0q dGCV d CCV dR 
'.t 

0 5.9428 -0.0035 0.0089 1.5324 
1 6.3406 -0.0022 0.0074 1.52 0.0554 
2 6.6358 -0.0002 0.0064 1.5514 -0 .0014 
3 6.6612 0.0002 0.006 1.5191 -0.0643 
4 6.6362 -0.0002 0.0059 1.5033 -0.0639 
5 6.6621 -0.0000 0.0059 1.5104 -0.0475 
6 6.6585 0.0000 0.0059 1.5095 -0.0514 
7 6.6525 -0.0000 0.0059 1.5079 -0.052 
8 6.656 -0.0000 0.0059 1.5091 -0 .0498 
9 6.6561 0.0000 0.0059 1.5091 -0.0507 
ro 6.6552 -0.0000 0.0059 1.5088 -0.0509 
11 6.6556 -0.0000 0.0059 1.5089 -0.0506 
12 6.6557 0.0000 0.0059 1.5089 -0.0507 
13 6.6555 -0.0000 0.0059 1.5089 -0.0507 
14 6.6556 -0.0000 0.0059 1.5089 -0.0507 
15 6.6556 -0.0000 0.0059 1.5089 -0.0507 
16 6.6556 0.0000 0.0059 1.5089 -0.0507 
17 6.6556 0.0000 0.0059 1.5089 -0.0507 
18 6.6556 0.0000 0.0059 1.5089 -0 .0507 
19 6.6556 0.0000 0.0059 1.5089 -0 .0507 

dTr R Tr GCV 
5.2973 -1.8202 14.1279 84 .10 0.2017 
4.9781 -1.623 14.5482 86.20 0.1978 
4.5471 -1.6522 15.0593 87.58 0.1983 
4.3706 -1.7444 15 .1236 87.69 0.1986 
4.4021 -1.7028 15.0696 87 .58 0.1984 
4.3809 -1. 667 15.1007 87 .69 0.1983 
4.3752 -1.6795 15.0979 87.68 0.1984 
4.3848 -1.6782 15.0872 87.65 0.1983 
4.383 2 -1. 674 15.092 87.67 0.1983 
4.3816 -1.6757 15.0927 87.67 0.1983 
4.3827 -1.676 15.0913 87.66 0.1983 
4.3 25 -1.6754 15.0918 87.66 0.1983 
4.3 23 -1. 6756 15.092 87.66 0.1983 
4.3 24 -1. 6756 15.0918 87 .66 0.19 3 
4.3 24 -1. 6756 15.091 87.66 0.19 3 
4.3 24 -1.6756 15.0918 87.66 0.19 3 
4.3 24 -1. 6756 15.091 7. 66 0.19 3 
4.3 24 -1. 6756 15.091 87.66 0.19 3 
4.3 24 -1.6756 15.091 7.66 0.19 3 
4.3 24 -1. 6756 15 .091 7.66 0.19 3 

Grid 4 

346 



q 0q dGCV d~G C V dR d"R 
rl A -;[i.i2 rlA rlA 2 

0 6.6556 -0.0017 0.008 1.5697 -0.0603 
1 6.8693 -0.0009 0.007 1.5114 -0 .0169 
2 6.9999 -0.0009 0.0064 1.4254 -0.0297 
3 7.1454 -0.0003 0.0053 1.3633 -0.0912 
4 7.1979 0.0002 0.0045 1.3548 -0 .1734 
5 7.1529 0.0007 0.0042 1.4174 -0 .2442 
6 6.9937 0.0009 0.0049 1.5485 -0.2644 
7 6.8127 0.0008 0.0065 1.6875 -0.1843 
8 6.6931 0.0002 0.0085 1.7497 -0.0129 
9 6.6739 -0 .0006 0.0097 1.7074 0.1524 

10 6.7406 -0.0012 0.0096 1.6048 0.2196 
11 6.8615 -0.0012 0.0086 1.4969 0.1781 
12 6.9974 -0.0008 0.0071 1.4154 0.0728 
13 7.1074 -0.0003 0.0058 1.3736 -0.0464 
14 7.1522 0.0002 0.005 1.3791 -0.1484 
15 7.1073 0.0006 0.0047 1.4381 -0.2171 
16 6.9877 0.0007 0.0053 1.5405 -0.2334 
17 6.8524 0.0006 0.0064 1.6438 -0.1741 
18 6.7619 0.0002 0.0078 1.6932 -0.0514 
19 6.7425 -0 .0004 0.0087 1.67 0.07li 

dTr d~Tr R Tr GCV rl.A r1,7i 2 

4.9147 -2.0978 14.9865 86.79 0.201 
4.6086 -1.8104 15.0774 87.88 0.1972 
4.3351 -1. 7021 15.2815 88.44 0.1973 
3.9741 -1.6172 15.5159 89 .04 0.1977 
3.8056 -1.6754 15.6965 89.24 0.1991 
3.8562 -1.8226 15.7529 89 .04 0.2007 
4.1812 -2.0549 15.6328 88 .35 0.2023 
4.6359 -2.2133 15.3701 87.52 0.2027 
5.0063 -2.1611 15.0918 86.97 0.2015 
5.1078 -1.9291 14.9342 86.90 0.1997 
4.94 -1.6983 14.9454 87.24 0.1983 

4.6149 -1.5771 15.0911 87.82 0.1976 
4.2656 -1.5606 15.3021 88.43 0.1977 
3.9945 -1.609 15.5084 88.88 0.1 983 
3.8742 -1.7085 15.6496 89.05 0.1993 
3.9493 -1.8638 15.6787 88.85 0.2006 
4.2118 -2.0463 15.5757 88.33 0.2016 
4.5619 -2.1597 15.3761 87.71 0.2019 
4.8392 -2.1178 15.1709 87.30 0.201 
4.926 -1.9508 15.05 87.23 0.1 998 

Grid 3 
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q 0q dGCV d GCV dR 
'2 

0 6.7425 -0.0004 0.0087 1.6811 0.0605 
1 6.8327 -0.0004 0.0087 1.6705 0.0689 
2 6.882 -0.0004 0.0086 1.6571 0.0774 
3 6.9278 -0.0003 0.0085 1.6434 0.0839 
4 6.9641 -0.0002 0.0083 1.6287 0.0896 
5 6.9898 -0.0001 0.0082 1.614 0.0939 
6 7.0057 -0.0001 0.008 1.6002 0.0965 
7 7.0126 0.0000 0.0079 1.5873 0.0977 
8 7.0134 0.0000 0.0078 1.5756 0.0976 
9 7.0114 0.0000 0.0078 1.5651 0.0963 

10 7.0096 0.0000 0.0078 1.5558 0.0939 
11 7.0097 0.0000 0.0077 1.5475 0.0907 
12 7.0124 0.0000 0.0077 1.5399 0.0869 
13 7.0176 -0.0001 0.0077 1.5329 0.0826 
14 7.0246 -0.0001 0.0076 1.5263 0.0779 

. 15 7.0321 -0.0001 0.0076 1.5201 0.0729 
16 7.0389 0.0000 0.0075 1.5145 0.0676 
17 7.0443 0.0000 0.0074 1.5094 0.0619 
18 7.0476 0.0000 0.0074 1.5049 0.0559 
19 7.0488 0.0000 0.0073 1.5012 0.0496 

dTr R Tr GCV 
4.96 -1. 9773 15.0312 87.19 0.1997 

4.9426 -1. 9582 15.0369 87.30 0.1993 
4.9016 -1. 9217 15.0486 87 .45 0.1987 
4. 476 -1. 8782 15.0639 87 .63 0.1981 
4 .7 77 -1. 336 15.0824 7.79 0.1976 
4.7277 -1.7924 15.1025 87.94 0.1973 
4.670 -1.7567 15.1229 .05 0.197 
4.6205 -1. 72 9 15.1428 0.1969 
4.5784 -1.7099 15.162 0.1969 
4.5442 -1.69 6 15.1 .21 0.197 
4.5162 -1.6932 15.1969 .22 0.1972 
4.4924 -1.6916 15.2129 .23 0.1974 
4.470 -1.6919 15.22 4 .25 0.1975 
4.449 -1. 6927 15.2435 .26 0.1976 
4.-12 5 -1. 6931 15.25 4 .29 0.1977 
4.4067 -1. 6932 15.2732 .32 0.197 
-1.3 5 -1. 6933 15 .2 76 .35 0.197 

4.3642 -1. 694 15.3015 .37 0.1979 
-1.3-152 -1. 696 1 15.314 .40 0.19 
4.32 6 -1. 7 15.3273 .41 0.19 

Grid 2 

34 



q 0q dGCV d,!,GCV dR d,!,R 
rlA r!A'- r/A --;:jJj2" 

0 7.0488 0.0000 0.0073 1.503 0.0471 
1 7.0479 0.0000 0.0073 1.5039 0.0455 
2 7.0474 0.0000 0.0073 1.5043 0.0443 
3 7.0465 0.0000 0.0073 1.504 7 0.0432 
4 7.0451 0.0000 0.0073 1.505 0.0423 
5 7.0434 0.0000 0.0073 1.5052 0.0414 
6 7.0415 0.0000 0.0073 1.5054 0.0406 
7 7.0396 0.0000 0.0073 1.5055 0.0398 
8 7.0379 0.0000 0.0073 1.5056 0.039 
9 7.0362 0.0000 0.0073 1.5057 0.0382 

10 7.0346 0.0000 0.0073 1.5059 0.0375 
11 7.0332 0.0000 0.0073 1.506 0.0367 
12 7.032 0.0000 0.0073 1.5061 0.036 
13 7.0311 0.0000 0.0073 1.5062 0.0353 
14 7.0304 0.0000 0.0073 1.5063 0.0346 

' 15 7.0299 0.0000 0.0073 1.5064 0.0339 
16 7.0296 0.0000 0.0073 1.5065 0.0332 
17 7.0295 0.0000 0.0073 1.5065 0.0325 
18 7.0297 0.0000 0.0073 1.5066 0.0319 
19 7.03 0.0000 0.0073 1.5067 0.0312 

dTr d,!,Tr R Tr GCV rl/:1 ~ 

4.3343 -1.707 15.3261 88 .40 0.1981 
4.3361 -1.7105 15.326 88 .40 0.1981 
4.3367 -1.7128 15.3263 88 .39 0.1981 
4.3367 -1.7145 15.3266 88 .39 0.1981 
4.3367 -1.7161 15.327 88.39 0.1981 
4.3369 -1. 7178 15.3275 88 .39 0.1982 
4.3371 -1.7196 15.328 88.39 0.1982 
4.3374 -1.7213 15.3285 88.38 0.1982 
4.3376 -1.7231 15.329 88 .38 0.1982 
4.3379 -1. 7248 15.3295 88.38 0.1982 
4.3382 -1. 7266 15.3301 88.37 0.1982 
4.3386 -1.7283 15.3306 88.37 0.1983 
4.339 -1. 7301 15.3311 88 .37 0.1983 

4.3394 -1.7319 15.3316 88.37 0.1983 
4.3398 -1.7336 15.3321 88.36 0.1983 
4.3401 -1.7353 15.3326 88.36 0.1983 
4.3405 -1.737 15.3331 88 .36 0.1984 
4.3408 -1. 7386 15.3336 88.36 0.1984 
4.341 -1.7402 15.3341 88 .35 0.1984 

4.3413 -1.7417 15.3347 88.35 0.1984 

Grid 1 

349 



B. 9 Results using the first order correction for 
the data set bumpy.dat 

q 0q dGCV d,,.GCV dR dL.R 
rt.A rf.A2 rill rf.f-1 2 

0 6.6846 0.0471 0.0948 4 .288 8.5061 
1 6.0539 0.0009 0.0034 0.1556 0.3387 
2 5.7904 0.000 1 0.0004 0.0797 0.0626 
3 5.3863 0.0001 -0.0001 0.0655 0.0097 
4 5.3863 0.0001 -0.000 1 0.0658 0.0105 
5 5.3863 0.000 1 -0.000 1 0.0658 0.0 104 
6 5.3863 0.0001 -0.0001 0.0658 0.0104 
7 5.3863 0.000 1 -0.0001 0.0658 0.0104 
8 5.3863 0.000 1 -0.0001 0.0658 0.0104 
9 5.3863 0.0001 -0 .0001 0.0658 0.0104 

10 5.3863 0.000 1 -0.0001 0.0658 0.0104 
11 5.3863 0.0001 -0.0001 0.0658 0.0104 
12 5.3863 0.0001 -0.0001 0.0658 0.0104 
13 5.3863 0.0001 -0.0001 0.0658 0.0104 

. 14 5.3863 0.000 1 -0.0001 0.0658 0.0104 
15 5.3863 0.000 1 -0 .0001 0.0658 0.0104 
16 5.3863 0.0001 -0.0001 0.0658 0.0104 
17 5.3863 0.0001 -0.0001 0.0658 0.0104 
18 5.3863 0.000 1 -0.0001 0.0658 0.0104 
19 5.3863 0.0001 -0.0001 0.0658 0.0104 
dTr d,,.Tr R Tr GCV rlA rlA 2 

0.249 0.1163 20.1473 94.66 0.2271 
0.198 0.0 92 18.0355 94.55 0.2038 

0.1754 0.0803 17.9976 94.50 0.2035 
0.1496 0.046 1 17.96 7 94 .44 0.2035 
0.1496 0.0469 17.969 94.44 0.2035 
0.1493 0.0473 17.969 94.44 0.2035 
0.1493 0.0473 17.969 94 .44 0.2035 
0.1493 0.04 73 17. 969 94.44 0.2035 
0.1493 0.0473 17.969 94.44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 -
0.1493 0.04 73 17.969 94 .44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 
0.1493 0.0473 17.969 94.44 0.2035 
0.1493 0.0473 17.969 94.44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 
0.1--193 0.04 73 17.969 94.44 0.2035 
0.1493 0.04 73 17.969 94.44 0.2035 
0.1--193 0.04 73 17.969 94.44 0.2035 

Grid 6 

350 



q 0q dGCV d.,,GCV dR d.,,R 
rf.A rf.A2 rl.A -::iJi2 

0 5.3863 -0.0029 0.0033 0.7847 0.3671 
1 6.2736 0.0009 0.0026 1.0125 0.1304 
2 5.9306 0.0000 0.0034 0.9591 0.2186 
3 5.9451 0.0000 0.0033 0.9628 0.2159 
4 5.9426 0.0000 0.0033 0.9623 0.2165 
5 5.9428 0.0000 0.0033 0.9623 0.2165 
6 5.9428 0.0000 0.0033 0.9623 0.2165 
7 5.9428 0.0000 0.0033 0.9623 0.2165 
8 5.9428 0.0000 0.0033 0.9623 0.2165 
9 5.9428 0.0000 0.0033 0.9623 0.2165 

10 5.9428 0.0000 0.0033 0.9623 0.2165 
11 5.9428 0.0000 0.0033 0.9623 0.2165 
12 5.9428 0.0000 0.0033 0.9623 0.2165 
13 5.9428 0.0000 0.0033 0.9623 0.2165 
14 5.9428 0.0000 0.0033 0.9623 0.2165 . 
15 5.9428 0.0000 0.0033 0.9623 0.2165 
16 5.9428 0.0000 0.0033 0.9623 0.2165 
17 5.9428 0.0000 0.0033 0.9623 0.2165 
18 5.9428 0.0000 0.0033 0.9623 0.2165 
19 5.9428 0.0000 0.0033 0.9623 0.2165 
dTr dL.Tr R Tr GCV rl.A rt.H 2 

2.961 0.3437 14.6817 86 .67 0.1974 
2.7082 -0 .3192 15.5121 89. 15 0.1971 
2.7981 -0. 2094 15.1762 88 .21 0.197 
2.795 -0.2088 15.1906 88.25 0.197 

2.7956 -0.2093 15.1883 88 .24 0.197 
2.7955 -0.2095 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0. 2094 15.1884 88 .24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0. 2094 15.1884 88.24 0.197 
2.7955 -0. 2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88.24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0.2094 15 .1884 88.24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0.2094 15.1884 88 .24 0.197 
2.7955 -0 .2094 15.1884 88.24 0.197 

Grid 5 

351 



q 0q dGCV d;,GCV dR d.t.R 
rl.A rl.A 2 rl.A rf.A2 

0 5.9428 -0.0035 0.0089 1.5324 0.0598 
1 6.3406 -0.0007 0.0064 1.5101 -0.0452 
2 6.5338 -0.0000 0.006 1.5071 -0.0588 
3 6.6486 -0.0000 0.006 1.5094 -0 .0487 
4 6.6535 -0 .0000 0.006 1.5091 -0.0492 
5 6.6512 -0.0000 0.0059 1.5089 -0.0507 
6 6.655 -0. 0000 0.0059 1.5089 -0.0508 
7 6.6556 -0.0000 0.0059 1.5089 -0.0506 
8 6.6556 -0.0000 0.0059 1.5089 -0 .0507 
9 6.6556 -0.0000 0.0059 1.5089 -0.0507 

10 6.6556 0.0000 0.0059 1.5089 -0.0507 
11 6.6556 0.0000 0.0059 1.5089 -0.0507 
12 6.6556 0.0000 0.0059 1.5089 -0.0507 
13 6.6556 0.0000 0.0059 1.5089 -0.0507 
14 6.6556 0.0000 0.0059 1.5089 -0.0507 
15 6.6556 0.0000 0.0059 1.5089 -0.0507 
16 6.6556 0.0000 0.0059 1.5089 -0.0507 
17 6.6556 0.0000 0.0059 1.5089 -0 .0507 
18 6.6556 0.0000 0.0059 1.5089 -0.0507 
19 6.6556 0.0000 0.0059 1.5089 -0.0507 

dTr d.t.Tr R Tr GCV rl.A rf.A2 

5.2973 -1.8202 14.1279 84.10 0.2017 
4.8316 -1. 7141 14.6358 86.20 0.1989 
4.5735 -1.7344 14.905 87.12 0.1984 
4.3859 -1.7044 15 .078 87 .63 0.1983 
4.3814 -1.6894 15.0877 87 .65 0.1983 
4.389 -1.6779 15.0849 87 .64 0.1 983 

4.3833 -1.676 15.091 87.66 0.1983 
4.3823 -1.6756 15.092 87.66 0.1983 
4.3824 -1.6756 15.0918 87.66 0.1983 
4.3824 -1.6756 15.0918 87.66 0.1983 
4.3824 -1.6756 15.0918 87 .66 0.1983 
4.3824 -1.6756 15.0918 87 .66 0.1983 
4.3824 -1. 6756 15.0918 87.66 0.1983 
4.3824 -1.6756 15.0918 87.66 0.1983 
4.3824 -1. 6756 15.0918 87.66 0.1983 
4.3824 -1. 6756 15.0918 87.66 0.1983 
4.3824 -1. 6756 15.0918 87.66 0.1983 

-
4.3824 -1. 6756 15.0918 87.66 0.1983 
4.3 24 -1. 6756 15 .0918 87.66 0.1983 
4.3824 -1.675 6 15.0918 87.66 0.1983 

Grid 4 

352 



q 0q dGCV d-ccv dR d"R 
rl /:I r/r:J2 rl.A r1.fi2 

0 6.6556 -0.0017 0.008 1.5697 -0.0603 
1 6.8693 -0.0000 0.0071 1.5843 -0.0211 
2 6.872 -0.0004 0.0074 1.5699 0.0093 
3 6.9205 -0.0001 0.0071 1.5519 0.0104 
4 6.9353 -0.0000 0.007 1.5386 -0.0082 
5 6.9424 0.0000 0.0067 1.5351 -0.0339 
6 6.9377 0.0000 0.0067 1.5382 -0.053 
7 6.9305 0.0001 0.0067 1.5429 -0.0609 
8 6.9226 0.0000 0.0067 1.5466 -0.0597 
9 6.9174 0.0000 0.0068 1.5483 -0.0542 

10 6.9154 0.0000 0.0069 1.5487 -0.0488 
11 6.9152 0.0000 0.0069 1.5488 -0.0449 
12 6.9152 0.0000 0.0069 1.5491 -0 .0425 
13 6.915 0.0000 0.0069 1.5494 -0 .0409 
14 6.9146 0.0000 0.0069 1.5496 -0.0398 
15 6.9143 0.0000 0.0069 1.5497 -0.039 
16 6.9142 0.0000 0.0069 1.5497 -0 .0386 
17 6.9143 -0 .0000 0.0069 1.5496 -0.0385 
18 6.9144 -0.0000 0.0069 1.5496 -0.0385 
19 6.9145 -0.0000 0.0069 1.5496 -0.038'6 
dTr dL,Tr R Tr CCV r17i ----;[]/2 

4.9147 -2.0978 14.9865 86.79 0.201 
4.5661 -1.855 15.2505 87.82 0.1997 
4.6075 -1.8394 15.2275 87.84 0.1993 
4.489 -1. 7669 15 .301 88.06 0.1993 
4.4319 -1. 7824 15.3344 88.12 0.1994 
4.3995 -1.8079 15.3555 88 .15 0.1996 
4.404 -1.8448 15.3543 88.13 0.1996 
4.4177 -1.8659 15.3452 88.10 0.1997 
4.434 -1.8806 15.3324 88.07 0.1997 

4.4449 -1.8855 15.3233 88.04 0.1997 
4.4495 -1.8845 15.3196 88.03 0.1996 
4.4502 -1.8802 15.3194 88.03 0.1996 
4.4505 -1.8757 15.3196 88.03 0.1996 
4.4511 -1.8722 15.3194 88.03 0.1997 
4.452 -1.8699 15.3187 88.03 0.1997 

4.4527 -1.8683 15.3182 88.03 0.1997 
4.4529 -1.8669 15.3181 88.03 0.1996 
4.4528 -1.8659 15.3182 88.03 0.1996 
4.4527 -1.8652 15.3184 88.03 0.1996 
4.4526 -1.8649 15.3185 88.03 0.1996 

Grid 3 

353 



q 0q dG C V d L. G C V dR d"R 
riA riA 'L- rJ.f) --:i7i"'T 

0 6.9145 0.0000 0.0069 1.5683 -0 .0558 
1 6.9138 -0.0001 0.007 1.5704 -0.0563 
2 6.925 -0.0000 0.0071 1.5711 -0.0554 
3 6.9317 -0.0000 0.0071 1.5729 -0.0555 
4 6.9342 0.0000 0.0071 1.5746 -0.0555 
5 6.936 -0.0000 0.0071 1.5759 -0.0553 
6 6.9372 0.0000 0.0071 1.5772 -0.0551 
7 6.9368 0.0000 0.0071 1.5784 -0 .0548 
8 6.9359 0.0000 0.0071 1.5793 -0.0544 
9 6.9352 0.0000 0.0071 1.58 -0.0539 

IO 6.9348 0.0000 0.0071 1.5806 -0.0533 
11 6.9344 0.0000 0.0071 1.5811 -0.0528 
12 6.9343 · 0.0000 0.0071 1.5814 -0 .0522 
13 6.9344 -0.0000 0.0071 1.5817 -0.0517 
14 6.9347 -0.0000 0.0071 1.5819 -0.051 
15 6.9351 -0.0000 0.0071 1.582 -0.0504 
16 6.9354 -0.0000 0.0071 1.5821 -0.0499 
17 6.9358 -0.0000 0.0071 1.5821 -0.0493 
18 6.9361 -0.0000 0.0071 1.5821 -0.0487 
19 6.9364 -0.0000 0.0071 1.582 -0.0482 

dTr d" Tr R Tr GCV rl /:I ~ 

4.5046 -1.9144 15.2991 87.91 0.1999 
4.5286 -1.9343 15.2945 87.88 0.2 
4.5212 -1.9428 15.3095 87.91 0.2001 
4.5189 -1.9467 15.3166 87.93 0.2001 
4.5225 -1.9488 15.3177 87.94 0.2001 
4.5256 -1.9495 15.3179 87.94 0.2 
4.5273 -1.9484 15.3173 87.95 0.2 
4.5308 -1.9469 15.3143 87.95 0.2 
4.5345 -1.9457 15.311 87.94 0.2 
4.5375 -1.9448 15.3082 87.94 0.1999 

4.54 -1. 9444 15.3059 87.94 0.1999 
4.5422 -1. 9442 15.3038 87.94 0.1 999 
4.5441 -1. 9441 15.3023 87.94 0.1999 -
4.5455 -1. 944 15.3014 87. 94 0.1999 
4.5463 -1.9437 15.3008 87. 94 0.1 998 
4.5469 -1. 9431 15.3004 87. 94 0.1 998 
4.5472 -1. 9424 15.3 87. 94 0.1 998 
4.5474 -1.9415 15 .2998 87 .94 0.1 998 
4.5474 -1.9406 15.2995 7. 94 0. 1998 
4.5474 -1. 9397 15 .2994 87 .94 0. 1998 

Grid 2 

354 



q 0q dGCV dL,GCV dR dL,R 
rl.A r!A2 rlA ~ 

0 6.9364 -0.0000 0.0071 1.5842 -0.0502 
1 6.9374 -0 .0000 0.0071 1.5852 -0.0512 
2 6.9374 0.0000 0.0071 1.5859 -0 .0518 
3 6.9373 0.0000 0.0071 1.5864 -0.0522 
4 6.937 0.0000 0.0071 1.5868 -0.0525 
5 6.9368 -0.0000 0.0071 1.5871 -0.0527 
6 6.9369 -0.0000 0.0071 1.5873 -0.0529 
7 6.9371 -0.0000 0.0071 1.5874 -0.0529 
8 6.9373 -0 .0000 0.0071 1.5875 -0.053 
9 6.9376 -0.0000 0.0071 1.5876 -0.053 

10 6.9378 -0.0000 0.0071 1.5876 -0.053 
11 6.9381 -0.0000 0.0071 1.5876 -0.0529 
12 6.9383 -0.0000 0.0071 1.5877 -0.0529 
13 6.9386 -0.0000 0.0071 1.5877 -0 .0529 
14 6.9389 -0.0000 0.0071 1.5877 -0.0528 . 
15 6.9391 -0.0000 0.0071 1.5877 -0.0528 
16 6.9394 -0.0000 0.0071 1.5878 -0.0527 
17 6.9396 -0.0000 0.0071 1.5878 -0 .0527 
18 6.9398 -0.0000 0.0071 1.5878 -0.0527 
19 6.94 -0.0000 0.0071 1.5878 -0 .0526 
dTr dL,Tr R Tr GCV dA (J,f7 2 

4.5542 -1.9465 15.2975 87.93 0.1998 
4.5559 -1.9495 15.2976 87 .93 0.1998 
4.5576 -1. 951 15.2969 87.93 0.1998 
4.5589 -1.9518 15.2961 87.92 0.1998 
4.5604 -1.9525 15.2951 87.92 0.1998 
4.5616 -1. 9533 15.2945 87.92 0.1998 
4.5624 -1. 954 15.2943 87.92 0.1999 
4.5628 -1. 9546 15.2944 87.92 0.1999 
4.563 -1. 955 15.2946 87.92 0.1999 

4.5631 -1. 9555 15.2948 87.92 0.1999 
4.5632 -1. 9558 15.2951 87.92 0.1999 
4.5633 -1.9562 15.2953 87.92 0.1999 
4.5633 -1.9565 15.2957 87.92 0.1999 
4.5633 -1.9568 15.296 87.92 0.1999 
4.5632 -1.9571 15.2963 87 .92 0.1999 
4.5632 -1.9573 15.2966 87 .92 0.1999 
4.5632 -1. 9575 15.2969 87.92 0.1999 
4.5632 -1.9577 15.2971 87.92 0.1999 
4.5632 -1.9579 15.2973 87.92 0.1999 
4.5632 -1. 9581 15.2975 87.92 0.1999 

Grid 1 

355 



B.10 Differentiating T r with respect to 0 and 
A 

0 dGCV/d0 d:2GCV/ d0:2 dR/d0 d2 R / d0 2 

10.936 0.0007 0.0027 0.1791 0.2054 
10.8534 0.0001 0.0017 0.1361 0.1181 
10.8471 0.0000 0.0015 0.1272 0.0983 
10 .847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 

dTr/d0 d2Tr/d0 R Tr GCV 
l.?'95 -0.3764 3.0002 90 .79 0.0368 
1.9 -0.3967 2.958 90.29 0.0366 

1.9329 -0.401 2.9471 90.13 0.0366 
1.9355 -0.4013 2.9463 90.12 0.0366 
1.9355 -0.4013 2.9463 90.12 0.0366 
1.9355 -0.4013 2.9463 90 .12 0.0366 
1.9355 -0 .4013 2.9463 90.12 0.0366 
1.9355 -0.4013 2.9463 90.12 0.0366 

Table B.1: Results generated by the MINGCV algorithm, differentiating T r 
with respect to 0, for grid no. 6 

0 dGCV/ d0 d:2GCV/d0:2 dR/d0 d:2 R / d0:2 
10.936 0.0007 0.0027 0.1791 0.2054 

10.8534 0.0001 0.0017 0.1361 0.1181 
10.8471 0.0000 0.0015 0.1272 0.0983 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
10.847 0.0000 0.0015 0.1266 0.0969 
dTr/d0 d:2Tr/d0 R Tr GCV 

1.795 -0.3764 51.4591 101.00 0.5095 
1.9 -0.3967 2.8876 89.02 0.0368 

1.9329 -0.401 3.0002 90 .79 0.0368 
1.9355 -0.4013 2.958 90.29 0.0366 
1.9355 -0.4013 2.9471 90.13 0.0366 
1.9355 -0.4013 2.9463 90.12 0.0366 
1.9355 -0.4013 2.9463 90 .1 2 0.0366 
1.9355 -0 .4013 2.9463 90.12 0.0366 

Table B.2: Results generated by the MI GCV algorithm, differentiating Tr 
,vith re pect to ,\ for grid no. 6 
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B.11 Results generated by the MINGCV al­
gorithm for the data set sine.dat, with 
finite difference calculation of d2GCV / d02 

and the convergence criteria emplaced. 

No . of 0 0 dGCV/d0 Finite difference d'2GCV/ d0 2 GCV 
updates x l03 d2 GCV/d0 2 x l03 

x l03 

0 10.309 1.8073 0.1753 0.0323 
1 9.809 0.6021 2.4104 2.4104 0.0313 
2 9.5592 0.5679 0.1367 0.1367 0.0312 
3 5.4049 -0.4968 0.2563 0.2563 0.0315 
4 7.3433 -0 .2027 0.1517 0.1517 0.0305 
5 8.6795 0.4308 0.4741 0.4741 0.0307 
6 7.7709 0.0312 0.4398 0.4398 0.0305 
7 7.7 -0.0081 0.4398 0.5543 0.0305 
8 7.7185 0.0019 0.4398 0.5447 · 0.0305 
9 7.7141 -0 .0004 0.4398 0.5372 0.0305 

10 7.715 0.0001 0.4398 0.5435 0.0305 

Grid 6 

No . of 0 0 dGCV/ d0 Finite difference d'2GCV/ d0'2 GCV 
updates x l03 d2 GCV/ d0 2 

X 103 

X 103 

0 7. 7148 -0 .3427 -0.444 0.03 
1 8.2148 -0 .0656 0.5542 0.5542 0.0309 
2 8.3332 0.0158 0.6878 0.687 0.0308 
3 8.3102 0.0061 0.6878 0.4224 0.0309 
4 8.3013 0.0009 0.6878 0.5919 0.0309 
5 8.3001 -0.0001 0.6878 0. 7602 0.0309 
6 8.3002 -0 .0001 0.6878 0.2096 0.0309 

Grid 5 
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B.12 Results generated by the modified MINGCV 
algorithm for the data set bumpy.dat, 
with the convergence criteria emplaced. 

No. of 0 0 dGCV/ d0 Finite difference d4 GCV/ d0 4 GCV 
updates x l03 d2GCV/ d0 2 x l03 

x l03 

0 10.309 50.4926 4.8979 0.2803 
1 9.809 35 .7445 29.4963 35.4624 0.2577 
2 8.5971 14.8687 17.2267 20.1801 0.2274 
3 7.734 5.4827 10.8745 13.7326 0.2191 
4 7.2298 2.6509 5.6166 6.9181 0.2171 
5 6-:7578 1.0937 3.2993 3.9367 0.2162 
6 6.4263 0.2964 2.4051 2.5639 0.2159 
7 6.3031 0.0266 2.1891 2.19 0.2159 
8 6.2909 -0.0009 2.1891 2.1377 0.2159 
9 6.2914 -0.0007 2.1891 2.1551 0.2159 
10 6.2917 -0.0002 2.1891 2.1 613 0.2159 
11 6.2918 -0.0002 2.1891 2.1613 0.2159 

Grid 6 

o. of 0 0 dGCV/ d0 Finite difference d4 GCV/ d0 4 GCV 
updates X 103 d2GCV/ d0 2 

X 103 

X 103 

0 6.2918 1.8887 0.3002 0.1981 
1 5.7918 -0.2116 4.2006 3.5893 0.198 
2 5.8422 -0.0845 4.2006 3.2069 0.198 
3 5.8623 -0.0181 4.2006 3.0625 0.198 
4 5.8666 -0.0035 4.2006 3.0696 0.198 
5 5.8674 -0.0007 4.2006 3.0576 0.198 

Grid 5 
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No. of 0 0 dGCV/ d0 Finite difference d:2GCV/ d0:2 GCV 
updates X 103 d2 GCV/ d0 2 x l 03 

x l03 ' 

0 5.8676 -9.3486 -1.5933 0.2063 
1 6.3676 -3.3763 11.9446 12.039 0.2016 
2 6.6503 -1.5679 6.3978 9.3063 0.2004 
3 6.8953 -0 .2309 5.4555 7.324 0.2001 
4 6.9376 -0.0616 5.4555 6.6035 0.2002 
5 6.9489 0.1668 5.4555 6.6313 0.2002 
6 6.9184 -0.0068 5.4555 6.6077 0.2002 
7 6.9196 0.0439 5.4555 6.6578 0.2002 
8 6.9116 -0.0361 5.4555 6.6817 0.2002 
9 6.9182 0.0177 5.4555 6.6771 0.2002 

10 6.9149 -0.0172 5.4555 6.6674 0.2002 

Grid 4 
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Appendix C 

Results for Chapter 12 

C.l Results generated by the bivariate MINGCV 
algorithm, for the data set 121.dat 

The tables in this appendix are discussed in Chap er 12. They ·report upda es 

of , arious quantities rele, an to the OPTRSS and I'v1IN GCV algori h1ns 

de cribed in Chap er . The no ation is explained a follows : 

8: he logarit h111 of the n1oothing para1neter. 

R: the e t in1ate of the re id ual su1n of quare . 

Tr: he e in1ate of tr (I - A. )) ·where A i he influence 111a rix. 

GC : he e tin1a e of he generalised cros , alida ion. 

So bolev Nor 111: as di cu ed in Chap er 12 he So bole N orn1 is he quare 

roo of the cur, ature ; J a.T Z a.. 
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No. of e GCV dGCV/d0 d'2GCV/ d0'2 Tr R dR/d0 Sobolev 
upates Nonn 

0 -1 .94 9.67E-02 0.141 0.0000 101 0.26 12.8 14.8 
1 -2.44 8.32E-02 2.18E-02 0.239 98.7 0.235 2.49 14.7 
2 -2.53 8.22E-02 l.39E-02 0.239 98 .1 0.232 1.84 14.7 
3 -2.59 8.llE-02 l.24E-02 0.239 97.8 · 0.23 1.71 14.8 
4 -2.64 8.06E-02 l.18E-02 l.07E-02 97.5 0.229 1. 65 14.8 
5 -3.14 7.63E-02 6.67E-03 l.03E-02 94.4 0.216 1.2 15 .2 
6 -3.64 7.35E-02 4.l0E-03 5.14E-03 91.5 0.205 0.943 15.7 
7 -4.14 7.21E-02 l.80E-03 4.59E-03 88 .8 0.197 0.709 16.3 
8 -4.53 7.18E-02 2.60E-04 3.93E-03 86.8 0.192 0.546 16.9 
9 -4.6 7.18E-02 2.60E-04 3.93E-03 86.8 0.192 0.546 16.9 

10 -4.59 7.18E-02 -3 .22E-05 3.93E-03 86 .5 0.192 0.516 17 
11 -4.52 7.18E-02 -2.81E-04 3.93E-03 86 .7 0.192 0.494 16.9 
12 -4.47 7.l 7E-02 -l.73E-04 3.93E-03 87.l 0.193 0.506 16.8 
13 -4.5 7.16E-02 8.23E-05 3.93E-03 87 .3 0.193 0.527 16.8 

Grid 6 

No. of e GCV dGCV/ d0 d2 GCV/d02 Tr R dR/d0 Sobolev 
upates onn 

0 -4.5 7.60E-02 -8.48E-03 3.93E-03 71 0.162 0.785 17.2 
1 -4.02 7.32E-02 -3.64E-03 9.69E-03 77.l 0.172 0.937 16.3 
2 -3.64 7.26E-02 -5.83E-04 8.14E-03 81.4 0.181 1.07 15.8 
3 -3. 57 7.26E-02 4.56E-05 8.14E-03 82.2 0.183 1.1 15 .7 
4 -3. 58 7.26E-02 5.42E-05 8.14E-03 82.1 0.183 1.1 15.7 
5 -3.58 7.26E-02 -6.51E-06 8.14E-03 82 0.183 1.1 15.7 

Grid 5 

No. of e GCV dGCV/ d0 d'2 GCV/d02 Tr R dR/ d0 Sobolev 
upates orm 

0 -3.58 7.28E-02 -l.15E-04 8.14E-03 77.3 0.172 1. 31 15.8 
1 -3.57 7.27E-02 -6.0lE-06 8.14E-03 77.6 0.173 1.28 15.8 
2 -3.57 7.27E-02 -l.02E-05 8.14E-03 77.6 0.173 1.28 15.8 
3 -3.57 7.27E-02 5.53E-05 8.14E-03 77.6 0.173 1.29 15.8 
4 -3.57 7.28E-02 -2.98E-05 8.14E-03 77.5 0.173 1.28 15.8 
5 -3.57 7.27E-02 5.83E-06 8.14E-03 77.6 0.173 1.2-8 15.8 

Grid 4 
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C.2 Results generated by the bivariate MINGCV 
algorithm, for the data set frankel.dat 

No. of 0 GCV dGCV/d0 d1-GCV/ d01- Tr R dR/d0 Sobolev 
upates Nonn 

0 -5.52 0.222 -l.29E-02 0 81.9 0.385 0.904 14.3 
1 -5.02 0.216 -l.13E-02 3.23E-03 84.2 0.391 0.764 10.7 
2 -4.52 0.211 -7.09E-03 8.38E-03 86.3 0.397 0.843 8.11 
3 -4.02 0.208 -6.19E-03 1.79E-03 88.1 0.401 0.762 6.1 
4 -3.52 0.205 -5.96E-03 4.61E-04 89.6 0.406 0.666 4.62 
5 -3.02 0.202 -5.19E-03 l.55E-03 91.1 0.41 0.592 3.59 
6 -2.52 0.2 -4.16E-03 2.06E-03 92.5 0.413 0.542 2.88 
7 -2 .02 0.198 -2.74E-03 2.84E-03 93.7 0.417 0.557 2.33 
8 -1.52 0.197 -5.35E-04 4.40E-03 94.7 0.42 0.662 1.89 
9 -1.4 0.197 3.24E-04 7.07E-03 94.9 0.422 0.723 1.78 

10 -1.45 0.197 2.68E-05 7.07E-03 94.8 0.421 0.723 1.81 
11 -1.45 0.197 -3.21E-05 7.07E-03 94.8 0.421 0.723 1.81 

Grid 6 

No. of 0 GCV dGCV/d0 d2 GCV/d02 Tr R dR/d0 Sobolev 
upates Nonn 

0 -1.45 0.197 5.llE-05 7.07E-03 94.7 0.421 0.756 1.83 
1 -1.45 0.197 -l.41E-05 7.07E-03 94.6 0.421 0.752 1.84 
2 -1.45 0.197 -5.21E-05 7.07E-03 94.6 0.421 0.754 1.84 
3 -1.44 0.197 -3.43E-05 7.07E-03 94.6 0.421 0.759 1.83 
4 -1.44 0.197 -l.31E-05 7.07E-03 94.6 0.421 0.762 1.83 
5 -1 .44 0.197 4.82E-08 7.07E-03 94.7 0.421 0.762 1.83 

Grid 5 

C.3 Results generated by the bivariate MINGCV 
algorithm, for the data set franke2.dat 

No. of 0 GCV dGCV/ d0 d1-GCV/ d01- Tr R dR/d0 Sobolev 
upates Norm 

0 -5.52 6.63E-03 l.95E-03 0 81.9 6.67E-02 0.184 8.1 
1 -6.02 5.50E-03 1. 72E-03 4.68E-04 79.7 5.91E-02 0.153 9.66 
2 -6.52 4.84E-03 8.90E-04 1.66E-03 76.9 5.35E-02 9.33E-02 11.2 
3 -7.02 4.58E-03 4.28E-04 9.25E-04 74.1 5.0lE-02 6.26E-02 12.5 
4 -7.48 4.47E-03 4.72E-05 8.23E-04 71.5 4.78E-02 3.95E-02 13.7 
5 -7.54 4.45E-03 2.58E-05 8.23E-04 71.3 4.75E-02 3.69E-02 13.9 
6 -7.57 4.45E-03 l.0lE-05 8.23E-04 71.1 4.74E-02 3.57E-02 13.9 
7 -7.58 4.45E-03 -2.74E-07 8.23E-04 71 4.74E-02 3.53E-02 14 

Grid 6 
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No . of e GCV dGCV/ d0 d'2GCV/ d(J'2 Tr R dR/ d0 Sobolev 
upates Tonn 

0 -7. 58 0.451E-02 -0.344E-03 8.23E-04 62 .2 4. 18E-02 4.35E-02 13 .7 
1 -7.17 0.446E-02 -0.883E-04 6. 12E-04 66 4.41E-02 5.28E-02 12.5 
2 -7.02 0.445E-02 0.243E-04 7.80E-04 67.4 4.50E-02 5. 71E-02 12.1 
3 -7.05 0.445E-02 0.652E-05 7.80E-04 67.2 4.48E-02 5.61E-02 12.2 
4 -7.06 0.445E-02 -0.402E-06 7.80E-04 67.1 4.47E-02 5.58E-02 12.2 
5 -7.06 0.445-E-02 0.831E-07 7.80E-04 67 .1 4.47E-02 5.59E-02 12.2 

Grid 5 

No. of e GCV dGCV/ d0 d'2 GCV I d(J'2 T r R dR / d0 Sobolev 
up ates Norm 

0 -7.06 0.453E-02 -0.107E-03 7.80E-04 63.3 4.26E-02 6.38E-02 12.3 
1 -6.92 0.452E-02 0.146E-05 7.91E-04 64.8 4.36E-02 6.60E-02 11.9 
2 -6.92 0.451E-02 0.157E-04 7.91E-04 64.9 4.36E-02 _6.59E-02 11.9 
3 -6.94 0.451E-02 0.628E-06 7.91E-04 64.7 4.34E-02 6.54E-02 12 
4 -6 .95 0.451E-02 0.999E-06 7.91E-04 64.7 4.34E-02 6.55E-02 12 
5 -6.95 0.451E-02 -0.157E-05 7.91E-04 64 .7 4.35E-02 6.54E-02 12 

Grid 4 
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C.4 

No. of 
upates 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Io. of 
upates 

0 
1 
2 
3 
4 
5 

No. of 
upates 

0 
1 
2 
3 
4 
5 

Results generated by the bivariate MINGCV 
algorithm, for the data set franke3.dat 

0 CCV dGCV/d0 dLGCV/ d0£ Tr R dR/d0 Sobolev 
Norm 

-5.52 3.65E-03 2.13E-03 0 81. 9 4.95E-02 0.172 8.13 
-6.02 2.42E-03 1. 92E-03 4.07E-04 79.7 3.92E-02 0.141 9.61 
-6.52 l.64E-03 l.21E-03 l.43E-03 76.9 3.llE-02 8.51E-02 11 
-7.02 l.23E-03 7.llE-04 9.90E-04 74.1 2.60E-02 4.95E-02 12.1 
-7.52 9.64E-04 3.76E-04 6.69E-04 71.2 2.21E-02 2.71E-02 13.2 
-8.02 8.14E-04 2.00E-04 3.53E-04 68.5 l .95E-02 l.56E-02 14.1 
-8.52 7.45E-04 8.81E-05 2.23E-04 65.9 l.80E-02 8.91E-03 14.9 
-8.92 7.28E-04 2.95E-05 l. 49E-04 64 l. 73E-02 5.64E-03 15 .4 
-9.11 7.27E-04 7.63E-06 l.l0E-04 63 .1 l.70E-02 4.50E-03 15 .6 
-9.18 7.27E-04 4.54E-07 l.l0E-04 62 .7 l.69E-02 4.15E-03 15 .7 
-9.19 7.28E-04 2.95E-05 l .49E-04 64 l.73E-02 5.64E-03 15.4 

Grid 6 

0 CCV dGCV/d0 dLGCV/d0£ Tr R dR/d0 Sobolev 
_Iorm 

-9.19 0.170E-03 0.444E-04 l.l0E-04 44.7 5.82E-03 2.57E-03 14 
-9.59 0.152E-03 0.l 72E-04 6.75E-05 41.2 5.07E-03 l.55E-03 14.3 
-9. 5 0.154E-03 -0.322E-05 .0lE-05 3 .5 4.78E-03 l. l lE-03 14.5 
-9.81 0.151E-03 0.329E-05 8.0lE-05 39 .1 4.80E-03 l.18E-03 14.5 
-9. 5 0.152E-03 -0.448E-06 8.0lE-05 3 .6 4.76E-03 l.12E-03 14.5 
-9. 4 0.152E-03 0.144E-06 8.0lE-05 3 .7 4.76E-03 l.13E-03 14.5 

Grid 5 

0 CCV dGCV/ d0 dLGCV/ d0£ Tr R dR/ d0 Sobolev 
Norm 

-9. 4 l.79E-04 -4.15E-05 .0lE-05 27. 3.73E-03 .50E-04 14 
-9.34 l.71E-04 .74E-06 l.00E-04 33.9 4.42E-03 l.56E-03 13.7 
-9.43 l.71E-04 - .1 E-07 l.00E-04 32.7 4.2 E-03 l.39E-03 13.7 
-9.42 l.71E-04 - .70E-07 l.00E-04 32. 4.29E-03 l.39E-03 13. 7 
-9.41 l.71E-04 l.51E-07 l.00E-04 32.9 4.31E-03 l.41E-03 13.7 
-9.42 l.71E-04 6.52E-0 l.00E-04 32.9 4.31E-03 l.41E-03 13.7 

Grid 4 
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C.5 R esults generated by the bivariate MINGCV 
algorithm, for the data set franke4.dat 

No. of 0 CCV dGCV/ d0 d'2GCV/ d0'2 Tr R dR/ d0 Sobolev 
upates Nonn 

0 -5.03 6.33E-03 2.50E-03 0 86 6.84E-02 0.222 6.6 
1 -5.53 4.70E-03 2.86E-03 0 83.8 5.75E-02 0.23 8.3 
2 -5.53 4.75E-03 2.47E-03 7.81E-04 83 .8 5.77E-02 0.203 8.24 
3 -5.78 4.18E-03 2.28E-03 7.72E-04 82.9 5.36E-02 0.183 9.01 
4 -6.03 3.65E-03 1.97E-03 1. 24E-03 81.9 4.95E-02 0.155 9.83 
5 -6.28 3.19E-03 1. 70E-03 1.08E-03 81 4.57E-02 0.132 10 .6 
6 -6.53 2.82E-03 1.37E-03 1. 29E-03 80 4.24E-02 0.1 06 11.4 
7 -6.78 2.51E-03 1.08E-03 1.16E-03 79 3.95E-02 8.36E-02 12.2 
8 -7.03 2.27E_:03 8.22E-04 1.05E-03 78 3.71E-02 6.42E-02 12 .9 
9 -7.28 2.09E-03 5.95E-04 9.07E-04 77 3.53E-02 4.81E-02 13.6 

10 -7.53 1.97E-03 4.14E-04 7.28E-04 76 .1 3.38E-02 3.55E-02 14.2 
11 -7.78 1.89E-03 2.77E-04 5.48E-04 75 .1 3.26E-02 2.62E-02 14.8 
12 -8 .03 l.83E-03 1.79E-04 3.90E-04 74 .2 3.18E-02 1.96E-02 15.3 
13 -8.49 1.77E-03 7.84E-05 2.19E-04 72.8 3.06E-02 1.22E-02 16.1 
14 -8.94 l.75E-03 4.55E-05 9.1 9E-05 71.7 2.98E-02 9.53E-03 17 

Grid 6 

No . of 0 CCV dGCV/d0 d'2GCV/ d0'.2 Tr R dR/ d0 Sobolev 
upates Nonn 

0 -8.94 1.78E-04 7.57E-05 9.19E-05 52 .4 6.99E-03 4.03E-03 14.4 
1 -9.44 l.43E-04 4.19E-05 6.77E-05 49 5.86E-03 2.21E-03 14.8 
2 -9 .94 1.33E-04 1.66E-05 5.07E-05 44.9 5.18E-03 1.29E-03 15 .2 
3 -10.3 1.30E-04 5.46E-06 3.40E-05 42.5 4.79E-03 9.27E-04 15.5 

Grid 5 

o. of 0 CCV dGCV/d0 d'.2GCV/ d0'.2 Tr R dR/ d0 Sobolev 
upates Nonn 

0 -10.3 2.35E-05 2.60E-05 3.40E-05 26 1.26E-03 2.97E-04 14.2 -1 -10.8 1.67E-05 1.64E-05 1.92E-05 20 .4 8.34E-04 1.27E-04 14.3 
2 -11.3 1.06E-05 8.91E-06 1.49E-05 16.5 4.08E-04 4.93E-05 14.4 

Grid 4 
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No. of 0 GCV dGCV/ d0 d2 GCV/ d0 2 Tr R dR/ d0 Sobolev 
upates Norn1 

0 -11.3 l .23E-05 9.35E-06 l. 49E-05 8.74 3.06E-04 l. 98E-05 14. 1 
1 -11.8 l .23E-05 9.35E-06 l. 49E-05 8.74 3.06E-04 l. 98E-05 14.1 
2 -12 .2 1.12E-05 7.21E-06 8.56E-06 7.23 2.42E-04 l. 19E-05 14.1 
3 -12 .5 8.16E-06 7.69E-06 8.56E-06 6.06 l.73E-04 7.15E-06 14.1 
4 -12.7 7.76E-06 6.03E-06 6.64E-06 5.03 l.40E-04 4.47E-06 14.1 
5 -12.8 9.00E-06 1. 98E-06 l.62E-05 4.14 l.24E-04 2.76E-06 14.1 

Grid 3 

o. of 0 GCV dGCV/ d0 d2 GCV/d02 Tr R dR/d0 Sobolev 
upates Norrn 

0 -12 .8 2.13E-06 2.55E-05 l.62E-05 2.28 3.33E-05 l. 53E-06 14 
1 -13.3 9. 71E-06 l. l 7E-05 5.55E-05 1.76 5.47E-05 9.15E-07 14 
2 -1 3.6 8.90E-06 l.03E-05 6.62E-06 1.44 4.29E-05 5.59E-07 14 
3 -13 .8 8.98E-07 2.56E-05 6.62E-06 1.13 l. 07E-05 3.49E-07 14 
4 -14.1 2.27E-06 2.32E-05 9.37E-06 0.884 l. 33E-05 2.l 7E-07 14 
5 -14.3 l. 09E-05 6.91E-06 6.53E-05 0.692 2.28E-05 l. 37E-07 14 
6 -14.4 3.34E-06 1. 90E-05 6.53E-05 0.635 5.03E-05 l. 03E-07 14 

Grid 2 

No. of 0 GCV dGCV/d0 d2GCV/d0 2 Tr R dR/d0 Sobolev 
upates Nonn 

0 -14.4 2.19E-05 8.74E-06 6.53E-05 0.479 2.24E-05 l. 30E-07 13.2 
1 -14.6 5.56E-05 -7.03E-05 5.91E-04 0.434 3.24E-05 8.69E-08 13 .2 
2 -14.5 l.72E-05 -3.50E-07 5.88E-04 0.489 2.03E-05 8.47E-08 13.2 
3 -14.5 9.75E-05 -l.65E-04 5.88E-04 0.494 4.88E-05 8.61E-08 13.3 
4 -14.2 2.66E-05 -l.95E-05 5.18E-04 0.651 3.35E-05 l .47E-07 13.3 
5 -14.2 5.85E-06 2.25E-05 5.18E-04 0.677 l.64E-05 l.58E-07 13 .3 
6 -14.2 4.73E-05 -6.13E-05 5.18E-04 0.652 4.48E-05 l.45E-07 13.3 
7 -14.1 l.61E-05 l.53E-06 5.31E-04 0.732 2.93E-05 l.81E-07 13.3 
8 -14.1 6.06E-06 2.15E-05 5.31E-04 0.731 l.80E-05 l.80E-07 13.3 
9 -14.1 3.32E-05 -3 .29E-05 5.31E-04 0.704 4.05E-05 l.67E-07 13.3 

10 -14.1 2.66E-05 -l.98E-05 5.31E-04 0.749 3.86E-05 l.87E-07 13.3 
11 -14 5.22E-06 2.28E-05 5.31E-04 0.776 l.77E-05 2.00E-07 13.3 
12 -14.1 3.49E-05 -3.65E-05 5.31E-04 0.745 4.41E-05 l.85E-07 13.2 
13 -14 2.24E-05 -l.16E-05 5.31E-04 0.797 3.77E-05 2.l0E-07 13.3 
14 -14 2.23E-05 -l.13E-05 5.31E-04 0.814 3.85E-05 2.19E-07 13.3 
15 -14 6.23E-06 2.06E-05 5.31E-04 0.832 4.45E-05 2.28E-07 13.3 

Grid 1 
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C.6 Results generated by the bivariate MINGCV 
algorithm, for the data set peaks.dat 

No. of 0 GCV dGCV/d0 d'2GCV/d0 2 Tr R dR/d0 Sobolev 
upates Norn1 

0 -0 .552 0.399 8.28E-02 0 168 0.558 15 .6 9 
1 -1.05 0.354 6.63E-02 3.31E-02 165 0.517 12.5 9.79 
2 -1.55 0.336 4.06E-02 5.13E-02 163 0.497 8.41 10 .5 
3 -2.05 0.319 3.0lE-02 2.l0E-02 161 0.477 6.59 11.5 
4 -2.55 0.301 3.02E-02 2.l0E-02 158 0.458 6.22 12.9 
5 -2 .8 0.293 3.16E-02 2.l0E-02 157 0.448 6.23 13 .8 
6 -3 .05 0.286 3.05E-02 4.72E-03 156 0.44 5.91 14.7 
7 -3.3 0.279 2.78E-02 l.05E-02 155 0.432 5.4 15.8 
8 -3.55 0.274 2.46E-02 l.29E-02 154 0.425 4.84 16 .8 
9 -3.8 0.269 2.15E-02 l.23E-02 153 0.419 4.31 18.1 

10 -4.05 0.264 l.90E-02 l.02E-02 153 0.412 3.86 19.4 
11 -4.46 0.259 1.71E-02 7.76E-03 152 0.403 3.5 21.9 

Grid 6 

No. of 0 GCV dGCV/d0 d2 GCV/d02 Tr R dR/ d0 Sobolev 
upates Nonn 

0 -4.46 6.09E-02 l.52E-02 l.13E-02 135 0.175 2.17 20.6 
1 -4.96 6.03E-02 4.83E-03 2.08E-02 130 0.168 1.11 21.3 
2 -5.2 5.66E-02 l.52E-03 l.42E-02 128 0.16 0.776 22.4 
3 -5.3 5.50E-02 2.13E-03 l.42E-02 127 0.157 0.788 23 
4 -5.45 5.42E-02 3.06E-03 l.42E-02 126 0.155 0.822 23 .5 
5 -5.67 5.40E-02 2.21E-03 3.98E-03 125 0.151 0.72 25 

Grid 5 

No. of () GCV dGCV/ d0 d2 GCV/d02 Tr R dR / d0 Sobolev 
upates onn 

0 -5.67 6.23E-02 -l.13E-02 7.38E-02 94 0.123 0.627 23.8 
1 -5.7 5.50E-02 -4.36E-03 4.54E-02 101 0.125 0.635 23.3 

-2 -5 .6 5.55E-02 -4.60E-03 4,54E-02 102 0.126 0.66 22.9 
3 -5.5 5.47E-02 -3.56E-03 1.02E-02 104 0.128 0.703 22.5 
4 -5.15 5.40E-02 -2.02E-03 4.43E-03 109 0.133 0.839 21.2 
5 -4. 7 5.41E-02 6.43E-04 5.85E-03 116 0.141 1.11 19.8 
6 -4. 1 5. 38E-02 l.52E-04 4.47E-03 114 0.139 1.02 20.1 
7 -4.84 5. 38E-02 -2.32E-05 4.47E-03 114 0.139 1 20.2 
8 -4.83 5.38E-02 8.50E-05 4.47E-03 114 0.138 1.01 20.3 

Grid 4 

368 



No. of 0 GCV dGCV/d0 d72GCV/d0 2 Tr R dR/d0 Sobolev 
upates orm 

0 -4.83 5.26E-02 -2.27E-04 4.47E-03 102 0.123 1.15 20.5 
1 -4.8 5.28E-02 1.00E-04 4.47E-03 103 0.124 1.17 20.3 
2 -4.83 5.28E-02 -4.71E-04 4.47E-03 102 0.124 1.13 20.3 
3 -4.72 5.30E-02 4.48E-04 8.72E-03 104 0.126 1.21 20 
4 -4.77 5.29E-02 2.76E-05 8.72E-03 103 0.125 1.17 20.1 
5 -4.77 5.29E-02 -2.23E-05 8.72E-03 103 0.125 1.17 20.1 

Grid 3 

No. of 0 GCV dGCV/d0 d2 GCV/d02 Tr R dR/d0 Sobolev 
upates Norm 

0 -4.77 5.28E-02 2.32E-04 8.72E-03 97.6 0.118 1.3 20.3 
1 -4.8 5.27E-02 -7.49E-05 8.72E-03 97.2 0.117 1.26 20.4 
2 -4 .79 5.27E-02 -6.88E-05 8.72E-03 97.4 0.118 1.26 20.4 
3 -4.78 5.27E-02 -1. 75E-05 8.72E-03 97.6 0.118 1.26 20.3 
4 -4.78 5.28E-02 -5.40E-06 8.72E-03 97.6 0.118 1.26 20.3 
5 -4.78 5.28E-02 -3.08E-05 8.72E-03 97.6 0.118 1.26 20.3 

Grid 2 

C.7 Results generated by the bivariate MINGCV 
algorithm, for the data set peaks15.dat 

No. of 0 GCV dGCV/d0 d2GCV/d0 2 Tr R dR/d0 Sobolev 
upates Norm 

0 -0.552 1.53 0.112 0 168 1.09 29.5 10.9 
1 -1.05 1.51 4.49E-02 0.135 165 1.07 19.2 11.8 
2 -1.39 1.5 1.69E-02 8.41E-02 164 1.06 14.6 12.5 
3 -1.59 1.49 9.41E-03 3.73E-02 163 1.05 13.2 13 
4 -1.84 1.49 7.52E-04 3.43E-02 162 1.04 11.8 13.7 
5 -1.86 1.49 2.97E-03 3.43E-02 162 1.04 12 13.7 
6 -1.95 1.49 -8.86E-04 3.43E-02 161 1.04 11.4 13.9 
7 -1.92 1.49 -2.42E-03 3.43E-02 161 1.04 11.2 13.9 
8 -1.85 1.49 -2.24E-03 3.43E-02 162 1.04 11.2 13.7 
9 -1.79 1.49 9.63E-04 3.43E-02 162 1.04 11.6 13.5 
10 -1.81 1.49 1.29E-03 3.43E-02 162 1.04 11.7 13.6 
11 -1.85 1.49 3.73E-04 3.43E-02 162 1.04 11.6 13.7 

Grid 6 
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No. of 0 GCV dGCV/d0 d'2GCV/ d0'2 Tr R dR/d0 Sobolev 
upates onn 

0 -1.85 1.4 1.55E-02 3.43E-02 155 0.965 19 14.9 
1 -2.31 1.4 -l.30E-02 6.31E-02 152 0.945 15.7 16.8 
2 -2.11 1.4 -2.24E-03 5.22E-02 153 0.955 16.3 15.8 
3 -2.06 1.4 1.14E-03 5.22E-02 153 0.957 16.8 15.6 
4 -2.09 1.4 -l.86E-04 5.22E-02 153 0.956 16.7 15.7 
5 -2.08 1.4 7.54E-06 5.22E-02 153 0.956 16.7 15.7 

Grid 5 

No. of 0 GCV dGCV/ d0 d'2GCV/ d0'2 Tr R dR/ d0 Sobolev 
upates Tonn 

0 -2.08 1.37 -l.51E-02 5.22E-02 149 0.922 19.7 16.2 
1 -1.79 1.38 6.37E-03 7.43E-02 152 0.939 21.3 14.9 
2 -1.88 1.38 -3.30E-03 7.43E-02 151 0.934 20.2 15.3 
3 -1.83 1.38 2.73E-04 7.43E-02 152 0.936 20 .5 15 .1 
4 -1.84 1.38 -l.28E-04 7.43E-02 152 0.936 20.4 15.1 
5 -1.84 1.38 5.30E-06 7.43E-02 152 0.936 20.4 15.1 

Grid 4 

No. of 0 GCV dGCV/ d0 d:LGCV / d0:L Tr R dR/ d0 Sobolev 
upates Nonn 

0 -1 .84 1.38 -4.05E-03 7.43E-02 149 0.924 23.2 15.4 
1 -1.78 1.38 -l.80E-04 7.43E-02 150 0.928 23.5 15.1 
2 -1. 78 1.38 -l.79E-04 7.43E-02 150 0.928 23.3 15.1 
3 -1. 78 1.38 2.25E-05 7.43E-02 150 0.928 23.3 15.1 
4 -1. 78 1.3 -l.08E-04 7.43E-02 150 0.928 23 .2 15.1 
5 -1.7 1.3 -6.98E-05 7.43E-02 150 0.928 23.2 15.1 

Grid 3 
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C.8 Results generated by the bivariate MINGCV 
algorithm, for the data set peaksO.dat 

o. of 0 GCV dGCV/d0 d2 GCV/d0 2 Tr R dR /d0 Sobolev 
upates Norm 

0 -0.552 0.386 8.93E-02 0 168 0.549 16.5 9.05 
1 -1.05 0.343 6.75E-02 4.35E-02 165 0.51 12.6 9.8 
2 -1.55 0.324 4.24E-02 5.03E-02 163 0.488 8.55 10.5 
3 -2.05 0.303 3.45E-02 l.57E-02 161 0.465 7.06 11.6 
4 -2.55 0.283 3.57E-02 l.57E-02 158 0.443 6.81 13 .1 
5 -2.8 0.273 3.71E-02 l.57E-02 157 0.433 6.8 14.1 
6 -3.05 0.265 3.56E-02 6.16E-03 156 0.423 6.42 15 .1 
7 -3.3 0.258 3.25E-02 l. 24E-02 155 0.415 5.84 16.2 
8 -3.55 0.251 2.87E-02 l .49E-02 154 0.407 5.2 17.3 
9 -3.8 0.245 2.52E-02 l .42E-02 153 0.399 4.61 18.6 

10 -4.05 0.239 2.22E-02 l. 19E-02 153 0.392 4. 11 20 
11 -4.46 0.233 l.99E-02 9.32E-03 152 0.382 3.69 22.6 

Grid 7 

No. of 0 GCV dGCV/d0 d2 GCV/d02 Tr R dR /d0 Sobolev 
upates orm 

0 -4 .46 l.54E-02 l.83E-02 9.64E-03 135 8.80E-02 1.93 20 .4 
1 -4.96 1.22E-02 6.98E-03 2.26E-02 130 7.52E-02 0.754 20.8 
2 -5.27 7.59E-03 4.08E-03 9.41E-03 127 5.85E-02 0.434 21.7 
3 -5.71 5.18E-03 2.84E-03 2.87E-03 124 4.58E-02 0.284 23.1 

Grid 6 

No. of 0 GCV dGCV/d0 d~GCV/ d0 2 Tr R dR/d0 Sobolev 
upates Norm 

0 -5.71 2.06E-03 l.98E-03 5.92E-03 94 2.24E-02 0.13 20 .3 
1 -6.18 1.21E-03 l.44E-03 l.61E-03 93 .4 l.71E-02 8.39E-02 20.7 
2 -6.6 .32E-04 7.7 E-04 1.33E-03 86.2 l.31E-02 4.03E-02 21 
3 -7.1 5.55E-04 4.58E-04 6.39E-04 79 .9 9.65E-03 2.09E-02 21.4 

Grid 5 
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No. of 0 CCV dGCV/ d0 d~GCV/ d0~ Tr R dR/ d0 Sobolev 
upates Norm 

0 -7.18 5.09E-04 6.77E-04 6.39E-04 55.2 6.56E-03 l.63E-02 20.5 
1 -7.64 3.72E-04 4.69E-04 4.16E-04 47 4.77E-03 8.37E-03 . 20 .7 
2 -8.14 2.71E-04 3.40E-04 2.59E-04 39.8 2. 72E-03 4.41E-03 21 

Grid 4 

No. of 0 CCV dGCV/ d0 d2 GCV/ d0 2 Tr R dR/ d0 Sobolev 
upates onn 

0 -8.14 2.34E-04 5.55E-04 2.59E-04 19.3 l.56E-03 l.69E-03 20.6 
1 -8.57 2.31E-04 4.87E-04 2. 71E-04 16.6 l.33E-03 l.13E-03 20.6 
2 -9.02 2.18E-04 4.45E-04 l.68E-04 14.2 l.llE-03 7.72E-04 20.7 
3 -9.37 2.00E-04 4.16E-04 l.16E-04 12.1 9.0lE-04 5.22E-04 20.7 
4 -9. 62 l.92E=04 3.74E-04 l.69E-04 10.3 7.53E-04 3.51E-04 20.7 
5 -9.87 l.79E-04 3.51E-04 9.13E-05 8.77 6.50E-04 2.39E-04 20.7 

Grid 3 

No . of 0 CCV dGCV/ d0 d2 GCV/d02 Tr R dR/ d0 Sobolev 
upates Norm 

0 -9 .87 l.63E-04 8.55E-04 9.1 3E-05 5.16 3.47E-04 l.62E-04 20.8 
1 -10.3 l.45E-04 8.83E-04 9.13E-05 4.19 2.66E-04 1.06E-04 20.8 
2 -10 .5 2.03E-05 l.13E-03 9.13E-05 3.35 2.75E-04 6.89E-05 20.8 

Grid 2 

No. of 0 CCV dGCV/d0 d~GCV/ d0~ Tr R dR / d0 Sobolev 
upates orm 

0 -10.5 7.36E-05 l.56E-03 9.13E-05 2.13 9.60E-05 4.09E-05 23.2 
1 -11 l.62E-04 l.30E-03 l.04E-03 1.75 l .l 7E-04 2.63E-05 23.2 
2 -11. 3 6.14E-04 3.61E-04 3. 75E-03 1.41 l.84E-04 l.68E-05 23.1 
3 -11.4 2.36E-04 l.07E-03 3. 75E-03 1.29 l.04E-04 l.35E-05 23.1 
4 -11. 6 2.19E-03 -2.81E-03 l.36E-02 0.996 2.45E-04 8.14E-06 23.2 
5 -11.4 l.56E-03 -l.65E-03 5.59E-03 1.18 2.45E-04 l.13E-05 23.2 
6 -11.1 4.52E-04 5.90E-04 7.59E-03 1.57 l.76E-04 l.96E-05 23.2 
7 -11.2 l.23E-04 l.25E-03 7.59E-03 1.47 8.59E-05 l.71E-05 23 .2 
8 -11.4 5.40E-04 4.03E-04 5.13E-03 1.27 1.55E-04 r.26E-05 23.1 
9 -11.5 2.12E-04 l.07E-03 5.13E-03 1.18 9.02E-05 l.09E-05 23.2 

10 -11.7 3.00E-03 -4.48E-03 2.66E-02 0.971 2.80E-04 7.40E-06 23.2 
11 -11.5 l.33E-04 l.29E-03 3.42E-02 1.12 6.77E-05 l.02E-05 23.2 
12 -11 .5 2.64E-03 -3.77E-03 3.42E-02 1.09 2.94E-04 9.57E-06 23.2 
13 -11.4 l.87E-03 -2.23E-03 l.39E-02 1.2 2.74E-04 l.18E-05 23.2 
14 -11.3 4.12E-04 7.16E-04 l.84E-02 1.4 l .50E-04 l.60E-05 23.2 
15 -11. 3 4.50E-06 l.52E-03 l.84E-02 1.36 l.52E-05 1.49E-05 23.2 
lG -11.4 3.l 7E-04 8.97E-04 l.84E-02 1.26 l.18E-04 l.28E-05 23.2 
17 -11.4 7.49E-05 l.39E-03 l.84E-02 1.2 5.48E-05 1.l 7E-05 23.2 
1 -11.5 7.49E-05 l.39E--03 l.84E-02 1.12 l.48E-04 l.l 7E-05 23.2 
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I o. of e GCV dGCV/d0 d'2 GCV / d0'2 T r R dR/ d0 Sobolev 
upates Iorm 

0 -1 1.5 3.09E-03 -4.49E-03 7.79E-02 0.977 2.86E-04 1.25E-05 46.5 
1 -11.5 2.68E-03 -3.66E-03 7.79E-02 1.04 2.84E-04 l.31E-05 46 .5 
2 -11.4 9.75E-04 l.26E-04 7.79E-02 1.1 l.81E-04 l.45E-05 46 .9 
3 -11.4 l. 86E-03 - l.81E-03 7.79E-02 1.11 2.52E-04 l. 45E-05 46.4 
4 -11.4 2.35E-03 -2.90E-03 7.79E-02 1.14 2.91E-04 l.50E-05 46.5 
5 -11.3 2.13E-03 -2.38E-03 7.79E-02 1.18 l.93E-04 l.64E-05 46.7 

Grid 0 
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Appendix D 

Results for Chapter 13 

The tables in this appendix are discussed in Chapter 12. They report updates 

of various quantities relevant to the OPTRSS and NIINGCV algorithms 

described in Chapter 8. The notation is explained as follows: 

0: the logarithrn of the sn1oothing para111eter. 

0q: the qth update of the logarithm of the s111oothing parameter. 

R: the estin1ate of the residual sun1 of squares . 

Signal: the estin1ate of tr (A), ·where A is the influence matrix. 

GCV: the estimate of the generalised cross validation. 

Sobolev N on11: as discussed in Chapter 12 the Sobolev onn is the square 

root of the curvature J a,T Z a.. 
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D.l Results generated by the bivariate MINGCV 
algorithm, for the African temperature 
data set. 

No. of 0q GCV dGCV/d0 d2 GCV/d0:;, 
updates 

0 3.24 3.77 0.447 0 
1 2.74 3.55 0.215 0.464 
2 2.28 3.42 0.22 0.464 
3 1.8 3.34 0.168 0.109 
4 1.55 3.31 0.146 8.90E-02 
5 1.3 3.27 0.13 6.35E-02 
6 1.05 3.24 0.114 6.46E-02 -· 
7 0.804 3.21 9.66E-02 6.87E-02 
8 0.554 3.19 8.03E-02 6.53E-02 
9 0.304 3.17 6.54E-02 5.97E-02 

10 5.38E-02 3.15 5.20E-02 5.33E-02 
11 -0 .196 3.14 4.05E-02 4.62E-02 
12 · -0.446 3.13 3.07E-02 3.90E-02 
Tr R dR/d0 So bolev norm Signal 

1.49E+03 4.31 0 0 0.806 
l.47E+03 1.91 687 6.15 24.3 
l.47E+03 1.85 342 6.92 25.7 
1.46E+03 1.81 344 7.94 27.1 
l.46E+03 1.79 266 8.9 28 .9 
1.46E+03 1.78 232 9.47 29.7 
1.46E+03 1.77 208 10.1 30.5 
1.46E+ 03 1.76 183 10.9 31.3 
1.46E+ 03 1.75 157 11.6 32.1 
1.46E+ 03 1.75 133 12.4 32.8 
1.46E+ 03 1.74 110 13.2 33.5 
1.46E + 03 1.74 90.3 14.1 34.2 
1.46E+ 03 1.73 72.7 15 34.8 

Grid 6 
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No. of 0q CCV dGCV/ d0 d'2GCV/ d0'2 
updates 

0 -0.446 2.32 0.11 3.90E-02 
1 -0.919 2.27 0.106 l.39E-02 
2 -1.17 2.24 8.93E-02 6.76E-02 
3 -1.42 2.21 7.49E-02 5.77E-02 
4 -1.67 2.19 6.37E-02 4.48E-02 
5 -1.92 2.17 5.16E-02 4.82E-02 

Tr R dR/ d0 So bolev norm Signal 
l.46E+03 1.72 57.7 16.4 35.4 
l.42E+03 1.45 186 25.1 75.9 
1.41E+03 1.43 176 27.5 78 
l.41E+ 03 1.42 150 29.2 79.3 
l.41E+ 03 1.41 127 31.4 80.4 
l.41E+03 1.4 110 33.8 81.7 

Grid 5 

No. of 0q CCV dGCV/d0 d'2GCV/ d0'2 
updates 

0 -1.92 1.76 9.02E-02 4.82E-02 
1 -2.31 1.72 8.25E-02 3.llE-02 
2 -2.56 1.7 6.77E-02 5.92E-02 
3 -2. 81 1.68 5.76E-02 4.0lE-02 
4 -3.06 1.67 5.09E-02 2.70E-02 
5 -3.31 1.66 4.34E-02 3.0lE-02 

Tr R dR/d0 So bolev norm Signal 
l.41E+03 1.39 92.2 37.1 83 
l.30E+03 1.15 191 46 193 
l.30E+ 03 1.14 165 49 .2 195 
1.29E+ 03 1.13 138 52.7 198 
1.29E+03 1.12 122 56.9 203 
1.28E+ 03 1.11 110 61.6 208 

Grid 4 

No. of 0q CCV dGCV/d0 d'2GCV/ d0 2 

updates 
0 -3.31 1.53 -7.47E-02 3.0lE-02 
1 -3.19 1.49 -3.61E-02 0.154 
2 -2.96 1.48 -l.82E-02 7.65E-02 
3 -2.72 1.48 2.50E-03 8.70E-02 
4 -2.75 1.48 -l.06E-03 8.70E-02 
5 -2.74 1.48 6.45E-04 8.70E-02 

Tr R dR/ d0 So bolev nonn Signal 
l.28E+03 1.1 97.7 69 212 
l.05E+03 0.873 118 81.5 440 
l.08E+03 0.883 124 75.3 412 
l.10E+03 0.894 145 70.8 397 
1.11E+03 0.907 170 66 379 
1.11E+03 0.905 166 66.5 382 

Grid 3 
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D.2 

No . of 0q CCV dGCV/ d0 d},GCV/ d0 2 

updates 
0 -2.74 1.42 -1.63E-02 8.70E-02 
1 -2.56 1.42 6.62E-03 0.122 
2 -2.61 1.42 1.15E-03 0.122 
3 -2 .62 1.42 -4.37E-04 0.1 22 
4 -2.62 1.42 -1.51E-04 0.1 22 
5 -2.62 1.42 -1.31E-04 0.1 22 

Tr R dR/ d0 So bolev norm Signal 
1.11E+ 03 0.906 167 66.4 381 

981 0.782 251 74.3 511 
1.01E+ 03 0.802 267 69 .5 487 

999 0.796 261 70 .9 493 
997 0.795 260 71.1 495 
998 0.796 260 71 494 

Grid 2 

Results generated by the bivariate MINGCV 
algorithm for the African temperature data 
set, with an initial grid resolution of 25.6°. 

No . of 0q CCV dGCV/d0 d2 GCV/d02 

updates 
0 4. 18 4. 99 0. 812 0 
1 3.68 4.5 3 0.41 0. 804 
2 3. 18 4.41 0. 207 0.405 
3 2.68 4.34 0.108 0.1 98 
4 2.18 4.27 7. 16E-02 7. 28E-02 
5 1.68 4.2 5.60E-02 3. 13E-02 _ 
6 1.18 4.15 4. 13E-02 2.94E-02 
7 0.683 4.1 2 2.59E-02 3.0SE-02 

Tr R dR/ d0 So bolev norm Signal 
l .48E+03 4.31 0 0 0.875 
l.46E+03 2.21 1.20E+03 5.56 13.5 
1.46E+03 2.11 614 6.08 15.2 
1.46E+03 2.08 317 6.59 16.2 
l.46E+03 2.06 170 6.97 16.9 
1.46E+03 2.04 115 7.45 17.5 
1.46E+03 2.03 91 8.11 18. 1 
1.46E+ 03 2.01 68.7 8.86 18.7 

Grid 8 
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No . of 0q GCV dGCV/d0 d1 GCV/d0 1 

updates 
0 0.6 3 2.83 0.18 3.08E-02 
1 .102 2.77 0.136 0.1 75 
2 -0.229 2.75 9.78E-02 0.152 
3 -0.479 2.75 6.16E-02 0.145 
4 -0.905 2.73 3.06E-02 7.29E-02 

Tr R dR/d0 Sobolev norm Signal 
l.46E+03 2 45.6 9.98 19.2 
l.44E+03 1.64 274 18 37.8 
l.44E+03 1.62 212 19.1 41 
l .43E+03 1.61 158 19.8 42.5 
l .43E+03 1.61 107 20 43.7 

Grid 7 

No. of 0q GCV dGCV/d0 dLGCV/d0 2 

upda es 
0 -. 905 2.1 9 6.39E-02 7.29£-02 
1 -1.37 2.17 5.68E-02 2.81E-02 
2 -1.62 2.1 5 4.72E-02 3.87E-02 
3 -1. 7 2.13 4.62E-02 3.83E-03 
4 -2.12 2.12 4.33E-02 1.1 E-02 
5 -2.37 2.11 3. 7E-02 1. 2E-02 

Tr R dR/d0 So bolev norm Signal 
l.43E+03 1.6 61 21.7 44.9 
1.3 E+03 1.3 139 27.4 99 .3 
1.3 E+03 1.37 123 2 .4 102 
l.37E+03 1.36 104 30 103 
l.37E+03 1.36 97.4 32.3 105 
l.37E+03 1.35 90.5 34. 107 

Grid 6 

No. of 0q GC - dGCV/d0 d£,GCV/d0L 
update 

0 -2. 37 1.68 4.77E-02 l.82E-02 
1 -2. 5 1.65 4.31E-02 1. 4£-02 
2 -3 1.63 3.97E-02 l.34E-02 
3 -3 ? -__ Q 1.63 3.05E-02 3. 71E-02 
4 -3.5 1.62 2.26E-02 3.14E-02 
5 -3. 5 1.62 1.5 E-02 2.73E-02 

Tr R dR/ d0 So bolev norm Signal 
1.37E+03 1.34 2 39 109 
1.22E+03 1.07 166 54. 261 
1.21E+03 1.05 137 0 .3 264 
1.21E+03 1.04 122 63 ?- 0 _ ( 

1.20E+03 1.04 105 67.4 277 
l.19E+03 1.03 90.6 72.2 2 4 

Grid 5 

3 9 



No. of 0q CCV dGCV/ d0 d'l,GCV/ d0'l, 
updates 

0 -3.75 1.63 -0.164 2. 73E-02 
1 -3.64 1.54 -0.115 0.195 
2 -3.14 1.5 -7.66E-02 7.66E-02 
3 -2.64 1.48 -5.35E-02 4.62E-02 
4 -2.14 1.49 -0 .121 4.62E-02 
5 -1.89 1.51 -0.211 4.62E-02 
6 -1.64 1.54 -0.429 4.62E-02 

Tr R dR/ d0 So bolev norm Signal 
l.19E+03 1.02 78.4 80.1 290 

918 0.793 111 95.3 559 
953 0.802 111 88.6 524 
998_ 0.828 148 76 .8 479 

l.05E+03 0.862 175 66.4 429 
l.10E+03 0.907 130 58.8 379 
l.12E+03 0.934 53 .1 56 .3 354 

Grid 4 

No . of 0q CCV dGCV/ d0 d'l,GCV/ d0'l, 
updates 

0 -1.64 1.57 -1.12 4.62E-02 
1 -1.14 1.67 -2.51 4.62E-02 
2 -0.888 1.83 -5.43 4.62E-02 

Tr R dR/d0 So bolev norm Signal 
l.15E+03 1.01 -143 59.2 329 
l.12E+03 0.952 -636 60.3 357 
l.15E+03 1.01 -l.93E+ 03 68.2 327 

Grid 3 

o. of 0q CCV dGCV/d0 d'2GCV/d0'l, 
updates 

0 -0.888 2.1 3 -1 2.3 4.62E-02 
1 -0.388 2.63 -26.6 4.62E-02 
2 -0.138 3.45 -56.8 4.62E-02 

Tr R dR/d0 So bolev nonn Signal 
l.18E+03 1.18 -4.75E+03 104 299 
1.1 E+03 1.16 -l.11E+ 04 104 299 
l.19E+03 1.31 -2.49E+ 04 134 2 5 

Grid 2 

380 



No. of 0q GCV dGCV/ d0 d:2GCV/ de:2 
updates 

0 0.1 38 4.91 -149 4.62E-02 
1 0.362 7.35 -320 4.62E-02 
2 0.612 11.4 -687 4.62E-02 

Tr R dR/d0 So bolev nonn Signal 
1.21E+03 1.81 -5.49E+04 251 271 
1.21E+03 1.81 -l. 46E+05 251 270 
l.21E+03 2.22 -3.14E+05 324 267 

Grid 1 

No . of 0q GCV dGCV/ d0 d'.2GCV/ d0'2 
updates 

0 0.612 11.4 -6 7 4.62E-02 
1 -0.693 13.2 -3.30E+03 4.62E-02 

Tr R dR/ d0 So bolev norm Signal 
l.21E+03 2.99 -6.79E+ 05 906 264 
1.21E+ 03 1.15 -3.2 E + 06 251 264 

Grid 0 

3 1 



D.3 Results generated by the bivariate MINGCV 
algorithm, for the Australian temperature 
data set. 

No. of 0q GCV dGCV/ d0 d:2.GCV/de:2. 
updates 

0 1.86 1.2 0.257 0 
1 1.36 1.14 9.42E-02 0.326 
2 1.07 1.11 6.43E-02 0.103 
3 0.567 1.08 5.42E-02 2.03E-02 
4 6.74E-02 1.05 4.81E-02 l.21E-02 
5 -0.433 1.02 4.46E-02 7.08E-03 
6 -0.933 0.998 4.24E-02 4.35E-03 - -
7 -1.43 0.978 4.03E-02 4.27E-03 
8 -1.93 0.959 3.90E-02 2.60E-03 

Tr R dR/ d0 So bolev nonn Signal 
l.13E+03 4.96 0 0 1.12 
1.11E+ 03 1.07 294 6.5 21.6 
1.11E+ 03 1.05 112 6.7 23 .2 
1.11E+03 1.03 79 .1 7.23 24.3 
l.11E+03 1.01 67.2 8.37 26.2 
l.11E+03 0.998 59.7 9.79 28.2 
l.10E+ 03 0.984 55 11.6 30 
l.10E+ 03 0.971 51.8 13.9 31.7 
l.10E+03 0.96 48.7 16.7 33 .3 

Grid 6 

No. of 0q GCV dGCV/d0 d2 GCV/d0 2 

updates 
0 -1.93 0.960 4.00E-02 2.60E-03 
1 -2.06 0.79 3.19E-02 2.60E-03 
2 -2.5 6 0.775 2.33E-02 l.70E-02 
3 -3.06 0.766 l. 42E-02 1.83E-02 

Tr R dR/ d0 So bolev nonn Signal 
l.10E+ 03 0.947 46.7 21.2 34.8 
l.06E+ 03 0.831 46. l 24 73.5 
l.06E+ 03 0.819 34.4 27.9 79 

Grid 5 

382 



No . of 0q GCV dGCV/ d0 d2 GCV/ d0 2 

updates 
0 -3.06 0.606 6.51E-03 l.83E-02 
1 -3.56 0.6 4.68E-03 5.13E-03 
2 -4.0 0.598 7.70E-04 7.83E-03 
3 -4.4 0.598 -3.llE-04 7.83E-03 
4 -4.36 0.597 -8.73E-04 7.83E-03 
5 -4.24 0.597 2.28E-04 9.87E-03 
6 -4 .27 0.597 3.90E-04 9.87E-03 
7 -4.31 0.597 2.98E-04 9.87E-03 

Tr R dR/ d0 Sobolev norm Signal 
l.05E+03 0.809 23 .3 34 .1 81.8 

962 0.661 36 .8 42.7 172 
955 0.652 29.5 46 .5 179 
945 0.645 22.9 52 .9 189 
944 0.643 21.3 53.8 190 
945 0.644 20 .7 53.1 189 
947 0.645 21.9 51.6 187 
947 0.645 22 51.9 187 

Grid 4 

No . of 0q GC dGC1 / d0 d:..GCV/ d0-
updates 

0 -4.31 0.552 -l.99E-02 9. 7E-03 
1 -4 .09 0.542 -9. 76E-03 4.05E-02 
2 -3. 5 0.539 -4 .91E-03 2.02E-02 
3 -3.6 0.539 -5.40E-05 l.99E-02 
4 -3.6 0.53 1.0 E-04 l.99E-02 
5 -3.61 0.53 -3. 70E-06 l.99E-02 

Tr R dR / d0 Sobolev norm Signal 
9 6 0.644 21. 53 1 

20 0.53 34.6 64 .7 314 
3 0.544 37. 59.5 296 
50 0.55 42.3 55.2 2 4 
6-J 0.559 47 .3 50 . ?-o - ( 

6-J 0.559 4 . 2 50 . 270 

Grid 3 

3 3 



No. of 0q GCV dGCV/d0 d'2GCV/d0'2 
updates 

0 -3.61 0.528 8.85E-05 l.99E-02 
1 -3.61 0.529 4.37E-04 l.99E-02 
2 -3.63 0.529 -5.15E-04 l.99E-02 
3 -3.61 0.529 l.82E-04 l.99E-02 
4 -3.61 0.529 -l.61E-04 l.99E-02 
5 -3.61 0.529 2.63E-05 l.99E-02 

Tr R dR/d0 So bolev nonn Signal 
864 0.559 47 50.9 270 
798 0.512 68.7 56.3 336 
798 0.511 67.9 56.4 336 
796 0.51 67.1 56.8 338 
798 0.512 67.6 56.2 336 
797 0.511 67.4 56.4 337 

Grid 2 

384 
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