Finite Element Approximation of
Minimum Generalised Cross Validation
Bivariate Thin Plate Smoothing Splines

PENELOPE HANCOCK BAppSc(HONS)

T'he Centre for Resource and Environmental Studies

A thesis submitted for the degree of Doctor of Philosophy of
the Australian National University
October 2002






Acknowledgements

Throughout the course of this project I have received help from many generous
people. Thanks firstly to Michael Hutchinson, for consistently and extensively
supporting me throughout this project. Through our lengthy weekly meet-
ings, I have been able to greatly advance my understanding of and interest in
computational mathematics. Without this help, the project would not have
been nearly so satisfying or so successful. Thanks also to Frank deHoog, for
monitoring the project and providing constructive advice throughout the last
3 years. The quality of this thesis has greatly improved as a result of this
imteraction.

[ am also extremely grateful to Karl Nissen, whose assistance was vital in many
a IFTEX saga, and Barry Croke, who has been helpful for just about anything.
Thanks to John Stein for help with GIS matters. And thanks to Ole Neilson,
for answering rather vague questions about mathematics in general, and to
David Young, for generously providing XX wisdom.

My experience at CRES has been most enjoyable thanks to the many friendly
people here, particularly the bunch that hang out in the tea room. My PhD has
been all the more fun thanks to my friends Ryan and Megan and people from
the ANU Mountaineering Club. Thanks also to my family for your support.
Finally I would like to thank the ANU and CSIRO Division of Mathematics
and Information Sciences for PhD scholarships. Thanks also to Rob Vertessy,
for giving me a work experience opportunity with the CRC for Catchment

Hydrology.






to deliver a user specified residual sum of squares from the data. This smooth-
ness criterion is appropriate in the context of interpolating topography, where
an estimate of the data error is known. This study modifies the methods in
Hutchinson [67], to iteratively obtain finite element approximations to mini-
mum GCV thin plate smoothing splines.

The procedure involved discretising the thin plate smoothing spline equations,
and using a nested grid multigrid iterative strategy to solve the discretised
system. The nested grid framework facilitates iteration on grids of varying
resolution, starting at a coarse resolution and sequentially refining the grids.
To optimise smoothness, the solution process incorporated a double iteration
to simultaneously update both the estimate of the discretised solution, and
the estimate of the minimum GCV smoothing parameter. A Taylor series
expansion was used to estimate the value of A corresponding to the minimum
GOV, A stochastic approximation to the GCV was used to estimate the GCV
for given A values.

The investigations in this study led to an understanding of the process of double
iteration for the case of the thin plate smoothing spline problem. It was found
that the iteration converged efficiently, except when the thin plate smoothing
spline system was poorly conditioned. Conditioning generally deteriorated as
the grid resolution was refined, particularly when the smoothing parameter was
large. Poor conditioning resulted in degradation of the efficiency of the iterative
processes. This caused the double iteration to become poorly synchronised,
in that the solution estimate could not be efficiently adjusted in response to
changes in the smoothing parameter estimate. In these circumstances the
double iteration did not always converge.

Throughout extensive testing of the procedure, a number of strategies for over-
coming the above problems were identified. Firstly, the type of discretisation
was varied, Discretisation of the spline system using basis elements composed
of quadratic B-splines was found to stabilise the double iteration considerably
i comparison to a simpler, piecewise constant discretisation. The improve-
ment was attributed to the first order continuity of the quadratic B-spline
approximation, which allowed continuous, broadscale funections to be accu-
rately approximated at coarse grid resolutions. Accurate methods of transfer-
ring quadratic B-splines from coarse to fine grid resolutions also improved the

efficiency of the algorithm.
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Chapter 1

Introduction

1.1 Overview and motivation

The techniques involved in this study are designed to estimate spatially de-
pendent processes throughout a given region by spatially interpolating large
numbers of noisy point observations of the process. The principal intended
application is the prediction of spatial processes that occur in natural ecolog-
ical systems. Many natural processes, such as climate, topography, soil and
vegetation, have underlying spatial coherence, in that two observations that
are close together are more likely to have similar values than two observations
that are far apart. The interpolation procedure is designed to describe this
coherence, by finding spatially dependent trends in data observations taken
at particular locations in the study area. Interpolation of these trends allows
prediction at locations where measurements have not been taken. Interpolated
values are used to create regular two dimensional grids of predictions, known
as surfaces, which can be incorporated into geographic information systems
to visualise spatial patterns and detect spatial relationships. The appropriate
resolution of the interpolated grid depends on the complexity of the process
and the density of the data.

Research on the prediction of surface climate provided the underlying motiva-
tion for further investigation of the thin plate smoothing spline methodology
in this study. Studies by Mackey [86] and Mackey et al. [87, 88] emphasise the
need for information about the spatial variation of ecosystem characteristics

as input to landuse decision making. Given that vegetation communities are

3



1.1. OVERVIEW AND MOTIVATION

generally inadequately sampled and mapped, climate variables that are known
to be correlated with plant and animal distributions are often used to predict
vegetation characteristics. Bioclimatic indices such as rainfall, temperature
and solar radiation are widely known to discriminate between different veg-
ctation types, as demonstrated by Nix [93] and Mackey et al. [88]. Spatial
interpolation of climate data has been shown to effectively predict spatial pat-
terns in vegetation and agriculture [71]. The use of interpolated surfaces to
detect spatially varying trends also provides much needed spatially predictive,
as well as descriptive capacity. In this way they are more informative than
other techniques of spatially mapping vegetation, such as aerial photography
and remote sensing. Furthermore, ecosystem attributes do not always form

distinctive and recognizable photographic patterns or spectral signatures [86].

Spatial interpolation of surface climate variables is also an integral part of
temporal climate prediction via stochastic generation of climate data [64].
Flevation dependent spatially interpolated surfaces are used to predict long
term spatial climate variability . These techniques are linked to the develop-
ment of space-time stochastic weather models through the process of spatially
extending the parameters of point simulation models. Methodologies for con-
structing such models are discussed in Hutchinson [63, 64] and Guenni and
Hutchinson [43].

The thin plate smoothing spline method of spatial interpolation used in this
study can be motivated by the following data model. Consider data obser-
vations (z;, r14, Tg;, ..., 7)) measuring a dependent variable z and a set of d
predictor variables @1,...,z4. For example, surface climate is often well pre-
dicted using latitude, longtitude and elevation. If it is assumed that z has
both continuous long range variation as well as short range variation that is

discontinuous and random, then we can propose the following model
2= G\ Bui; i Tag) + 6 d=Livivym (1.1)

where n are the number of data observations, ¢ is a slowly varying continuous
tunction and ¢; are realisations of a random variable e. The function g repre-
sents the spatially continuous long range variation in the process measured by
zi. The errors ¢; are assumed to be independent with mean zero and variance

a?. They are assumed to be due to measurement error, and short range mi-



CHAPTER 1. INTRODUCTION

croscale variation that occurs over a range smaller than the resolution of the
data set. The microscale variation may be spatially continuous, but the data
is not spatially dense enough to represent it, so it is usually assumed to be

discontinuous noise.

We aim to estimate the process ¢ by a suitably continuous function f. The
function f must be able to separate the continuous signal ¢ from the discon-

tinuous noise €. This function can be estimated by minimising

] | W
= (% = f)? + AJ( ) (1.2)
f=]

over functions f € A, where &' is a space of functions whose partial derivatives
of total order m are in £L2(E) [113]. The f; are values of the fitted function at
i" data point, \ is a fixed smoothing parameter, and J2(f) is a measure
th

the
of the roughness of the function f in terms of m'* order partial derivatives.
The form of J%(f) depends on m and the number of independent variables d.

T

For example, if m = 2, which is a typical value, and d = 2, then

00
J2(f) = / P+ 2f2 . F 2, deides (1.3)
W —00

[113]. Expression (1.2) represents a trade off between fitting the data as
closely as possible whilst maintaining a degree of smoothness. The smoothing
parameter A controls the separation of signal and noise. If A = 0 the function
[ exactly interpolates the data, implying zero noise, where as if A is very large
the function approaches a hyperplane. It is shown in Craven and Wahba [24]
that the A corresponding to the spline function f that best represents the
underlying process g can be accurately estimated by minimising the generalised
cross-validation, or GCV, The GCV is a measure of predictive error, and will

be discussed in Chapter 2.

The solution to this minimisation problem is well known to be a thin plate
smoothing spline function (99, 31, 92, 113]. Multivariate thin plate splines
are not piecewise polynomial functions like the traditional univariate splines.
They are termed ‘splines’ because the solution to (1.2) for the univariate case,

with m = 2, is a natural cubic spline.

The application of thin plate smoothing splines to the representation of broad-



1.1. OVERVIEW AND MOTIVATION

scale trends in noisy data is well documented in past studies over the last 20
vears, in a wide variety of fields. The thin plate smoothing spline methodol-
ogy is often an integral part of spatial modelling of environmental processes,
including surface climate processes [49, 63, 118], topography [58], remote sens-
ing [10], pollutant dispersion [73] and plankton distributions [116]. They are
also commonly used in other fields such as image analysis [11], medical re-
search [83] and data mining [54, 53).

Smoothing splines have several attractive characteristics that explain their
popularity across such a wide range of disciplines. They are robust in that
accurate predictions can be achieved in the presence of significant data error.
They are global, in that they use information from all the data observations
to calculate a prediction at any given location in the study area. Furthermore,
the algorithms associated with smoothing spline computation are now effi-
cient and operationally straightforward. Smoothing splines are also directly
associated with a statistical framework that allows calculation of pointwise
standard errors [113], as well as summary statistics such as the generalised
cross-validation (GCV) and the degrees of freedom of the fitted model. This
facilitates quantitative assessment of the ability of the function to represent

the underlying data generation process [63].

To put thin plate smoothing splines in the context of other methods of spatial
interpolation of noisy data, we can think of two approaches to smoothing noisy

data. A penalty term, such as AJ%(f), can be added to the residual sum of

m
- g : T i 3 i : . o . g
squares term = 3" (z; — f;)? to impose smooth interpolation, or the space of
functions that make up f can be restricted so that exact interpolation is not

possible. For example, we could solve

1

1

Minimise — » (z — fi)* (1.4)
i i=1
where
N M
flzy,20) = Z Z Cjk Sin Jxq 8in kxs (1.5)
j=1 k=1

where ¢;; are the fitted coefficients and N x M << n, to achieve a low dimen-

sional bivariate Fourier sine series fit that smooths the data.

There are also a number of local techniques for smooth spatial interpolation,

6
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T ey

which constrain the form of f(z) by considering only certain portions of the
data to generate predictions in a certain area. Techniques such as Thiessen
polygons [109] and deLauny triangulations [1] paritition the study area into
small elements and fit simple functions on each element. The data are exactly
interpolated on each element. These methods are not easily extended to higher
dimensions [60]. There are also inverse distance weighting [101] and moving
average methods [26, 91, 82]. These methods involve a subjective choice of
weighting function, which is usually defined in terms of a radius of influence

beyond which data points are ignored [60)].

The geostatistical method known as kriging is regarded as the main competi-
tor to thin plate splines as a method for spatial interpolation [25, 60]. Kriging
originated in the mining industry, to help improve spatial estimation of ore
reserves [111], Like splines, kriging is based on the model in (1.1), but as-
sumes g is a realisation of a spatially correlated random function [74]. Both
splines and kriging have been shown by Kimeldorf and Wahba [79], Math-
eron [90] and Duchon [29, 30] to be formally equivalent, although they are
operationally different. Both generally provide higher predictive capacity than
the simpler interpolation methods mentioned above, and require fewer guid-
ing covariates [63, 75]. They are also easily extended to higher dimensions,
although there are natural restrictions on the dimensions of the fitted surfaces
if they are to be robustly determined from observed data [22]. Splines tend
to be operationally simpler than kriging, because the kriging method requires

separate fitting and calibration of a spatial covariance structure [65].

As an example of thin plate smoothing spline interpolation of climate processes,
consider the cases of temperature and precipitation. Thin plate smoothing
spline functions of latitude, longtitude and elevation have been shown to accu-
rately describe long term annual and monthly mean surface temperature and
precipitation [57, 60, 118, 119, 63, 77]. Temperature is the simpler of the two
spatial processes, and has a roughly linear dependence on elevation that is
independent of location [60]. Hutchinson [60] demonstrated that the following

partial spline model is a sensible model for temperature
zi = (i, i) + Bhs + € (1.6)
where z; is the longtitude, y; is the latitude and h; is the elevation at data

7
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computation. This corresponds to an O(/NV) algorithm, where /N is the number
of unknowns. There are methods described in recent literature for fast compu-
tation of analytic thin plate smoothing splines for large data sets. Techniques
utilizing conjugate gradient preconditioning techniques [102] and ideas from
multipole expansions and Lagrangian junctions [8, 9, 7] calculate the analytic
thin plate smoothing spline solution to (1.2). These methods achieve O(n)
workload, but involve complex data structures and algorithins,
Finite element approaches have also been used in a number of studies, in-
cluding those by Terzopoulos [108], O’Sullivan [94] and Szeliski [106]. Ear-
lier methods discuss discretisation of the roughness penalty, denoted above as
J4(f), from the perspective of interpolation with minimum curvature 18, 105]
Hegland et al. [53] also present a methodology for calculating discrete thin
plate smoothing splines based on first order techniques similar to mixed finite
element techniques for the biharmonic equation [23, 50]. Similar techniques
were adopted by Ramsay [97], who presents an approach for bivariate spline
smoothing over complex domains.
All of these methods tend to focus on the numeric-analytic properties of thin
plate smoothing splines rather than their statistical properties, and therefore
do not incorporate an automatic mechanism for optimising smoothness. For
practical spatial interpolation problems, surface smoothness is a central issue
given that the data observations contain a significant noise component. The
amount of smoothing will affect the predictive accuracy of the fitted surface,
so clearly it should be optimised. The smoothness of the fitted spline directly
corresponds to the ratio of the signal, or the effective number of parameters of
the fitted model, and the noise, or the degrees of freedom of the error [61]. Esti-
mates of the noise due to measurement error and microscale variation therefore
depend on the smoothness of the fitted surface. Optimising smoothness also
provides insight into the variability of the data, and the scale and coherence
of the underlying data generation process.
The minimum GCV criterion previously mentioned is generally appropriate for
optimising the smoothness of thin plate smoothing spline fits to noisy data [24,
113, 62]. The GCV has been used to optimise smoothness for most thin plate
smoothing spline applications to climate, eg. [57, 63, 118, 96, 77]. Minimising
the GCV provides an objective criterion for comparing the predictive capacity

of different spline models [65, 66]. The signal corresponding to the minimum
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GOV surface can also be used to assess the reliability of the surface and its
associated statistics [62]. For example, if the signal is equal to n, the spline
has exactly interpolated the data and therefore has not separated the signal
from the noise.

The primary objective of this study was therefore to construct a simple, fast,
grid-based algorithm for calculating numerical approximations of thin plate
smoothing splines, incorporating procedures to minimise GCV. The intention
was to make the process of optimising smoothness as efficient as possible. A
double iteration was therefore used to simultaneously produce increasingly ac-
curate estimates of the minimum GCV smoothing parameter and the smooth-
ing spline solution. Such a process would be considerably faster than fully
solving the spline equations for a number of different levels of smoothness in
order to find the optimal solution.

Hutchinson (58, 67] developed a simple multigrid based strategy which calcu-
lates finite element approximations to thin plate smoothing splines for elevation
data in O(N) operations, where N is the number of grid points. This method
emphasises the statistical framework of thin plate smoothing splines [61], and
optimises smoothness to yield a user specified residual sum of squares. This
criterion is appropriate in the context of interpolating topography, where an
estimate of the amount of noise is available [58]. A study by Altas et al. [2]
showed that multigrid methods are very efficient for solving a finite difference
discretisation of the biharmonic equation, whilst standard iterative methods
such as Jacobi and Gauss-Seidel exhibit very slow convergence. The diseretised
thin plate smoothing spline equations have a similar structure to the discre-
tised biharmonic equation, as discussed in Chapter 6. The results of Altas et
al. [2] therefore indicate that the success of the Hutchinson [58, 67] method is
largely due to the use of multigrid techniques.

The methodology on which this study is based is a variation on the Hutchin-
son [67] method, in that it seeks to minimise the GCV rather than achieve a
prescribed residual sum of squares. Quadratic B-splines were used as the basis
elements for the discretised solution, incorporating the favourable properties
of first order continuity into the solution estimate. No more than two dimen-
sions were considered, given that is the minimum number required for spatial
interpolation. Other dimensions can then be incorporated using additive mod-

els [113, 72]. A conceptual overview of the method developed during the course
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of this study is given below. Hancock and Hutchinson [48|, a publication re-
sulting from this study, presents results of implementing the methodology to

approximate minimum GCV univariate smoothing splines.

1.2  Summary of the research process

The process undertaken to obtain the discretised minimum GCV thin plate
smoothing splines is shown in Figure 1.1. The thin plate smoothing spline
equations were first discretised to allow the solution to be approximated by a
series of discrete elements. Various multigrid iterative schemes were then tested
with the aim of selecting an optimal method for solving for the coefficients
of the discretised system. Additional procedures were then incorporated to
allow simultaneous solution of the system and optimisation of smoothness by
minimising GCV.

Although this study is interested in bivariate thin plate smoothing splines,
much of the early algorithm analysis and development was done for the univari-
ate case. This was because the process of testing and optimising the methodol-
ogy was much simpler and more transparent in one dimension. The results of
the univariate testing provided guidelines for the development of the bivariate
algorithm.

The methods involved in the three stages in Figure 1.1 were continually re-
fined throughout the preliminary univariate analysis. A number of different
approaches were investigated and optimal strategies were selected. The most
important progression was the type of discretisation. The system was origi-
nally discretised using piecewise constants. Further analysis indicated that a
quadratic B-spline discretisation was better suited to the thin plate smoothing
spline equations, due to its ability to represent smooth processes at coarse grid

resolutions. This progression explains the chapter organisation for this thesis.

1.3 Summary of each chapter

1. . ,‘ ! . . ) . A L ' [ i . , X ¥
['he following summary of each chapter is intended to be a non-technical
overview of the processes used in this study. The aim is to give the reader

a conceptual grasp of the more important features of the analysis before the

11
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tull procedures are explained in detail.

PART 1: METHODS

The first part of the thesis presents the technical details of the methods used

1. Discretisation
Using piecewise constants and

quadratic B-splines.

2. Iterative solution

Using multigrid methods.

3. Optimisation

Using a double iteration to
simultaneously solve the discretised
system and converge to a

M‘“a.,a minimum GCV solution.

Figure 1.1: Stages in developing the algorithm to iteratively solve for discre-
tised minimum generalised cross-validation thin plate smoothing splines.
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in this study, from the underlying thin plate smoothing spline model to meth-
ods of discretising the spline system, to the iterative algorithm for solving the

equations and optimising smoothness.

Chapter 2 - Smoothing splines.

The necessity of optimising the smoothness of spline functions fitted to noisy
data is easily depicted in the univariate case, Assume we want to estimate a
process X that has both smooth, broadscale variation and short range varia-
tion, as shown in Figure 1.2. We collect data measuring the phenomenon X,
shown in Figure 1.3. The data set contains significant noise due to measure-
ment error. Smoothing spline functions are ideal for representing the process
X from such data, as they can be used to detect broadscale trends that can
be reliably interpolated into data sparse regions.

The smoothing parameter A in equation (1.2) provides a lot of flexibility in
the way smoothing splines fit noisy data. A very small value of A produces a
spline function that exactly interpolates the data, as shown in Figure 1.4. This
s clearly a poor representation of the process X because it incorporates the
errors in the data. Conversely, if the A value is too large, we can oversmooth
the data, as shown in Figure 1.5,

One method of optimising the smoothness of the fitted spline to estimate the
process X is to minimise the GCV. The GCV measures the predictive capacity
of the fitted spline by essentially determining how well the function predicts
withheld data. The GCV calculation implicitly involves removing each data
point in turn and summing, with appropriate weighting, the square of the dis-
crepancy ol each omitted data point from a surface fitted to all other data
points. A plot of the GCV as a function of the logarithm of the smoothing
parameter for the data set in figure 1.3 is shown in Figure 1.6. Figure 1.7
shows the result of minimising the GCV to optimise smoothness for this data
set. The numerical methods in this study aim to approximate this optimal

smoothing spline function in the bivariate case.
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Figure 1.2: The process X.
2 T T
16F " + + .
e
* +
1 + % his
I . o i 1
+
++ ++|-l- + e +
05F . K i |
+ A
18 i + P + +* +1‘ 4
* & 4
-+
0F N i i A
+4| + +
& b v L
-04 i ¢ + s ]
+
+ h
&
1k K3 + hy * "
+ 4
A
&
-1
§ L . * 1
-4 ++
* &
_25 i 1 i i i i A
Q 50 100 150 200 260 300 R ]

Figure 1.3: Noisy data observations of the process X.
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Figure 1.4: Smoothing spline fit to data observations using a small
smoothing parameter,
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Figure 1.5: Smoothing spline fit to data observations using a large
smoothing parameter.
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Figure 1.6: The GCV as a function of the smoothing parameter,
for the data set in Figure 1.3.
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Figure 1.7: Smoothing spline fit to data observations using the
minimum GCV smoothing parameter.
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Piecewise constant discretisation on the coarse grid

Piecewise constant discretisation on the fine grid

Figure 1.8: Piecewise constant discretisation on coarse and fine
arids.
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Figure 1.9: A quadratic B-spline basis element.
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Figure 1.10: The process of constructing a quadratic spline by summing a
linear combination of the basis elements.

1 | |
I i 1

Figure 1.11; The multigrid process of transferring the solution estimate to and
from grids of varying coarseness.
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Chapter 5 - Prolongation and restriction of univariate quadratic
B-splines.

Prolongation and restriction are multigrid processes for transferring the so-
lution estimate to and from grids of different resolution. Prolongation, the
process of transferring a solution estimate from a coarse grid to a fine grid, is
performed in standard multigrid algorithms by interpolating the coarse grid
solution. However, it was realised during the course of the univariate analysis
that these transfer techniques are not needed for the discretised smoothing
spline problem, because a coarse grid solution can be exactly represented on
the fine grid by refining the B-spline basis elements. This refinement process
does not change the solution estimate. Thus issues associated with errors intro-
duced by interpolating the solution estimate to a finer grid are avoided. This
chapter presents a B-spline refinement process, using a hierarchial B-spline
framework.

The opposite process of transferring from a fine grid to a coarse grid, known as
restriction, is commonly done by taking local weighted averages of grid values,
or simply by taking every second grid point. This study obtains a coarse grid
representation that is a least squares estimate of the fine grid solution. The
advantage of restricting in this way is that a quantitative measure of the ad-
ditional variation explained by the finer grid can be obtained. This technique

makes use of the quadratic B-spline framework.

Chapter 6 - Discretisation of the bivariate thin plate stmoothing
spline equations.

The bivariate thin plate smoothing spline solution was discretised using tensor
product quadratic B-splines. These basis elements are depicted in Figure 1.12.
The discretisation process is more technically complex for the hivariate system
than for the univariate case, and involves caleulating integrals of products of

unidimensional B-splines on a 2 dimensional grid.

Chapter 7 - Prolongation and restriction of bivariate quadratic B-
splines.

Prolongation and restriction operations for bivariate quadratic B-splines are
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Figure 1.12: A bivariate quadratic B-spline basis element.

combinations of the univariate operations discussed in Chapter 5. The bi-
variate operations can be expressed as Kronecker, or ‘tensor’, products of the

matrices for the univariate transfer operations.

Chapter 8 - Optimisating the smoothing parameter.

After establishing the iterative solution framework for the discretised thin plate
smoothing spline system, the methods of Hutchinson [67] were extended to
construct a procedure for optimising the smoothing parameter A. This involved
a double iteration to produce increasingly accurate estimates of the minimum
GOV smoothing parameter A and update the solution estimate accordingly.
The algorithm therefore produced two sequences of updates for the solution u
and the smoothing parameter A, converging to the discretised minimum GCV
smoothing spline solution. A conceptual demonstration is given in Figure 1.13.
The vector ug is an estimate of the discretised smoothing spline solution cor-
responding to the initial smoothing parameter A\g. As the estimates of u get
more accurate, the approximations of the smoothing parameter approach the
minimum GCV value.
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Figure 1.13: The process of double iteration, obtaining increasingly accurate
estimates of the solution u and the minimum GCV smoothing parameter A

PART II: RESULTS

The second part of this thesis documents the behaviour of the techniques
described above when they were applied to the thin plate smoothing spline

problem, for both the univariate and bivariate case.

Chapter 9 - Multigrid testing.

As mentioned above, the design of an optimal multigrid scheme for a partic-
ular system is an empirical process that involves testing to understand the
behaviour of the procedures for the specific problem considered. Testing was
performed for the univariate smoothing spline system using simulated data.
The results emphasised the fact that, for fine discretisations, the equations
are poorly conditioned, especially if A is large. This meant that the multi-
grid schemes that relied on fine grids performed poorly. It became clear that a
nested grid multigrid algorithm was an efficient iterative solver for the smooth-
ing spline equations. The nested grid algorithm starts with a very coarse grid
and periodically refines the grids. By developing an initial solution estimate
on coarse grids the algorithm avoids visiting unnecessarily fine grids, where

the smoothing spline system is slow to converge.

Chapter 10 - Minimising GCV for the univariate piecewise con-
stant smoothing spline system.

After deciding on a suitable multigrid solver, procedures to optimise the smooth-
ing parameter A were incorporated. Before optimising the GCV, a preliminary

algorithm, which optimises A to give a prescribed residual sum of squares from
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the data, was implemented. This algorithm is similar in structure to the pro-
cedure for minimising the GCV, but it is simpler and has been well tested
by past studies [68, 67]. It was used in this preliminary analysis to test the
optimisation framework, and understand its behaviour in the context of the
smoothing spline problem.

While the algorithm converged on coarse grids, the initial results revealed the
damaging effects of poor conditioning on fine grids. Due to the slowness of
the iterative solution process on the fine grids, the double iteration procedure
became poorly synchronised. This resulted in the development of an oscilla-
tory pattern in the A updates, as shown in Figure 1.14. The A updates kept
overshooting the optimal value, because the solution estimate represented old
A updates more strongly than current updates. For particularly poorly condi-

tioned systems, divergence patterns such as those in Figure 1.15 were observed.

HANANNS
UV

No. of updates

Figure 1.14: The oscillatory behaviour of A updates.

When the optimisation framework was modified to minimise GCV, similar be-
haviour to the above was observed on fine grids. It was also found that the
piecewise constant discretisation disturbed the solution structure such that a
unique local minimum GCV value did not exist on some grids. These fac-
tors made the algorithm unstable. This problem was largely solved by the

quadratic B-spline discretisation.
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Figure 1.15: Divergent oscillatory behaviour of A updates.

Chapter 11 - Minimising GCV for the univariate quadratic B-
spline smoothing spline system.

Replacing the piecewise constant discretisation with the quadratic B-spline
discretisation allowed a more accurate approximation to the solution to be
obtained on coarse grids. This also stabilised the algorithm considerably, al-
lowing faster convergence on coarse grids, and convergence on fine grids where
the algorithm had diverged using piecewise constants. Interestingly, a unique
minimum GCV could always be found using the quadratic B-spline discreti-
sation, demonstrating that this discretisation gives a better representation of
the true structure of the smoothing spline solution. The iterative algorithm,
termed the MINGCV algorithm, was found to be stable, efficient and accu-
rate at grid resolutions that matched the scale of the data generation process,
Thus the univariate testing provided a promising framework on which to base
development of the bivariate MINGCV algorithm.

The efficiency of the MINGCV algorithm was further improved by making a
simple first order correction to the solution estimate after each smoothing pa-
rameter update. This allowed the solution estimate to respond more quickly to
the smoothing parameter updates, avoiding the oscillatory patterns discussed

above.
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ture data set was obtained in this way using the MINGCV algorithm. For the
Australian continent, which is more rectangular in shape, the algorithm con-
verged efficiently despite the fine resolution of the final grid, and the clumped,
sparse distribution of the data. The results presented in this chapter indicate
that the MINGCV algorithm is suitable for application to environmental data

sSets.
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where N is the number of knot intervals, or ‘spans’. Typically, 79 = a and
vy = b, An example grid is shown in Figure 2.1. A function is a spline if two
conditions are satisfied. Firstly, a spline function of degree k is specified within
individual spans [¥,, ¥-+1] by polynomials of degree at most k. Secondly, the
function is in C*~'[a,b], the space of all functions that are continuous, and
have continuous derivatives of order up to £ — 1, on the interval |a,b]. Note
that in the general case spline functions can have coincident knot points. This
breaks this continuity property, but such cases will not be considered in this
study. Note also that in Figure 2.1 the knots are regularly spaced, but this

need not be the case.

Figure 2.1: Knot positions for a univariate smoothing spline.

The polynomial piece on each span can be expressed as

k
Skr(T) = Z Agr(z —7,)° (2.2)
d=0

where
<2< ¥4, ref0... N-1} (2:3)

The coefficients Ay, are constrained to meet the continuity conditions at the
knot points, so that

(m) _ (m)

() = 5™ () (2.4)

where r € {1,..., N =1}, m € {0,...,k — 1} and the superscript m denotes
differentiation of order m.

The collection of spline functions of degree k& with a given knot sequence =
form a vector space, S . The dimension of Sk~ 15 easy to calculate. A single
polynomial curve of degree k belongs to a space that has dimension k + 1. A
spline function is made up of N polynomial pieces. The polynomial in the
first span [vo,v1] has dimension & + 1. Polynomials in the remaining spans
are constrained by £ continuity conditions at the knot points, and therefore
contribute only 1 dimension each. The dimension of the spline space Sj - is
therefore k + V.
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2.1.1 Smoothing splines
Roughness penalties

The use of splines as a smooth interpolant can be rationalised by the roughness
penalty approach. The ‘roughness’ of a twice differentiable curve f defined on

a, bl is often measured by its integrated squared second derivative
, ¥ g 8|

b
/ [f"(z))*dx (2.5)

This quantity is known as the ‘roughness penalty’. There are various motiva-
tions for this measure of roughness, some of which are discussed in [40]. For
example, if a thin piece of flexible wood, termed a ‘spline’, is constrained to
pass through the points (z;, z;), then the leading term in the strain energy is
proportional to [ g"*dz, where g is the graph of the spline 140]. This was a
common method of drawing smooth curves before the age of computer graph-
ics. The quantity in (2.5) is also a natural measure of smoothness as it is an
approximation to the curvature of g, and the addition of a constant or a linear
function does not change the curvature [40]. It was shown by Schoenberg [99]
that, among all curves f in C?[a, b] interpolating the points in (z;, z;), the one
minimising the roughness (2.5) is a natural cubic spline.

A cubic spline is given by sy -(2), 7 € 0,..., N—=1, with k = 3. A natural cubic

spline is a cubic spline f(z) with the following ‘natural’ boundary conditions

f'a) = f"(b) =0
fm(ﬂ) fm(b) -0

(2.6)
These conditions result in f(z) being linear on the two extreme intervals [a, ;]
and ["}’N_l, b]

Smoothing

When modelling environmental phenomena it is usual to encounter noisy data
sets. In this case it is logical to choose not to interpolate the data exactly. The

following statistical framework is generally proposed. The n data observations
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z;, measured at positions z;, are decomposed into
z = g(zy) + ¢, i= Lo (2:7)

where g(z) is a smooth continuous process [113, 63]. The ohservations incor-

porate the error term ¢;, which is modelled by

(2.

where el = (€1,...,€6,), V is a known, positive definite n x n matrix, and o2

1s unknown.

The errors are usually assumed to be independent from one location to the next
and thus V' is assumed to be diagonal. Provided this is the case, the model
effectively decomposes the observed data into two components - a coherent
signal and spatially discontinuous noise [61]. This operates under the assump-
tion that the phenomenon being interpolated has an underlying continuous
component that can be sensibly represented by a smooth function [61]. The
discontinuous noise is assumed to be due to measurement error or microscale
effects below the resolution of the data network. The aim is to estimate g(z),
the signal or the smooth broadscale component of the continuous phenomenon,

and remove the discontinuous noise,

The roughness penalty approach can be applied to obtain a suitable estimate
for g(z), using the penalised sum of squares [40]. The penalised sum of squares
fp(_f') 1s defined as

o)
P(f) = (= £"V 'z - )+ A | [f"(2)]da (2.9)

where z is a vector containing the data values z and f is a vector of the values
of f at the data point locations x;. The curve g(z) is estimated by the function
J that minimises P(f). The first term is the sum of the square of the residuals
of the data values from the values of the function f at the data point locations.
The minimiser represents a tradeoff between fidelity to the data, as represented

by the weighted residual sum of squares, and smoothness of the solution, as
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represented by the roughness penalty [113]. The relative importance of each
of these components is controlled by the smoothing parameter A, which is
determined by the method discussed in section 2.2.1. It was again shown by
Schoenberg [99] that the minimiser of P(f) over C?*[a,b] is a natural cubic
spline fy(z). A demonstration of this is also given in [40],

Unless the smoothing parameter A is zero, the function f\(z) no longer inter-
polates the data exactly. It is designed to represent smooth, broadscale trends
that can be reliably interpolated into data sparse regions, rather than repre-
senting localised trends that are heavily reliant on individual data points. An

example of how the function fy(z) smooths noisy data is shown in Figure 2.2 .

0 50 100 160 200 250 300 350

Figure 2.2: Smoothing spline fit to noisy data.

2.2 Thin plate smoothing splines

The generalisation of the smoothing spline problem to higher dimensions begins
by stating the underlying model (2.7) in terms of the set of coordinates in

multidimensional space, t;, as follows:

zi = g(t;) + €, t= Ly iy (e 10)
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The penalised sum of squares (2.9) in higher dimensions is then expressed as
P(f) = (a— £)TV""(z - £) + ML() (2.11)

R
where JZ,

of independent variables and m is the order of the partial derivatives of [ in

(f) is the thin plate ‘roughness’ penalty functional, d is the number

the expression for J2 (f) [113, 61]. For example, if m = 2, which is a commonly

used value, and the t; represent bivariate coordinates x and g, then
(=
2 = 2 - N T .
JE(f) = / Faw + 2fay + i dady (2.12)
o= 00

[113]. The thin plate penalty function measures the roughness of the multi-
dimensional function f.

Duchon [31] and Meinguet [92] obtained the function f that minimises expres-
sion (2.11) over &, where X is a space of functions whose partial derivatives
of total order m are in £2(E?) [113]. The solution is a multivariate function
known as a thin plate spline, denoted fy(t). This group of functions includes
univariate splines as a special case. A demonstration of how a bivariate thin

plate smoothing spline smooths noisy data is shown in Figure 2.3.

The thin plate smoothing spline solution, first obtained by Duchon [31], can

be expressed as
M

fa(t) =D aip(t) + > biap(dy) (2.13)

j=1 j==]
where a; and b; are the coefficients, ¢ ; are a set of M low order monomials
forming a basis for the null space of the roughness penalty and #(d;) are the
natural scalar radial basis functions, where d; is the euclidean distance between
t and t; [61]. Both M and the function ¢ depend on the dimension of t and
the order of the derivative m [113, 61]. For the bivariate case with m = 2, ¢

are 1,z and y, and ¢(d;) = ed?Ind; where ¢ is a constant.

A necessary condition for obtaining the thin plate smoothing spline solution
1s that 2m — d = 0 [113]. This ensures that the space X endowed with the

seminorm J7 (f) is a reproducing kernal Hilbert space. It can then be shown

Tri
that the vector f is

f=Ta- Kb (2.14)
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where a” = (ay,...,ap) and bT = (b;,...,b,) are vectors of coefficients.
The matrix A is a symmetric matrix containing values of the natural scalar
radial basis functions at the data point locations., Thus K is given by K;; =
(||t; = t;]|). The matrix T' is the n x M matrix defined by T3; = ¢;(t;) [61].
The roughness penalty term in (2.11) also contains the matrix K, and can be
expressed as

‘]rﬂ

T

(f)=b"Kb (2.15)
The minimisation problem (2.11) is thus
W7 (3~ Ta ~ Kb)|? + AT Kb (2.16)
where W results from the Cholesky decomposition of V ie.
V=wTw (2.17)

The coefficients b are restricted to satisfy the boundary conditions 77b = 0,
which ensures the function f is a plane at infinity. Minimising (2.16) with this

boundary condition gives the following system of n + M equations

Il
™

(K 4+ AV)b+Ta
TTh = 0
(2.18)

[113].  An efficient procedure for solving equations (2.18) is given in [61].

Solution requires O(n®) operations.

2.2.1 Optimisation using generalised cross validation
(GCV)

[t can be seen from equation (2.11) that the thin plate spline solution to the
minimisation problem will depend on the smoothing parameter A. The next
step is therefore to determine the value of A that produces the best approxima-
tion by the thin plate spline to the actual continuous surface g that the spline
is attempting to represent [113]. Craven and Wahba [24], in their analysis of

the case where the t; are unidimensional, argue that the ideal solution would
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1.4

1.2

Figure 2.3: Thin plate smoothing spline fit to bivariate noisy data.

be to minimise the true error, given in [24] as

RO) = = S (fa(ti) = g(60)’ (2.19)

i=1

It is shown in [24] that, using mathematical expectation and assuming that

the errors are independent, an unbiased estimate of R(A) is given by

~ ] 259 G.'E ;
R(A) = Il = ANzl = —tr(I = A(A)) + —trA*(A) (2.20)
where
E(C-r.f:_j) — ﬁ"zfj,;j, and E(CT) = () (221)

Here 0% is the variance of the noise, §;; is the Kronecker delta and A()) is an
n x n matrix, known as the ‘influence’ matrix. The influence matrix takes the

vector of data values to the vector of fitted values. It is thus defined by

f = A(\)z (2.22)
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where f is the vector containing the values of the fitted spline at the data point
locations. The value of A that minimises expression (2.20) is difficult to ascer-
tain because ¢? is generally unknown [24]. The optimal A value is therefore
chosen to be that which minimises a function known as the generalised cross
validation (GCV) [24, 113, 39].

The GCV is a measure of the predictive error of the fitted surface and is
effectively calculated by removing each data point in turn and summing, with
appropriate weighting, the square of the discrepancy of each omitted data point
from a surface fitted to all other data points [63]. This is a relatively common
concept in statistical analysis [74]. It is shown in [24] that, using the ‘leaving
out one’ lemma [113] the generalised cross validation for the multidimensional

case can be calculated implicitly and hence efficiently by

(z— AN)z2)"V—Hz - A(\)z)/n
[or(l — A\ /P

GCV(A) = (2.23)
It is demonstrated in Hutchinson [61], following a once only O(n?) tridiag-
onalisation of an (n — M) x (n — M) positive definite matrix, the value of
expression (2.23) for a given A can be calculated in O(n) operations. A the-
oretical justification for using the GCV to determine the optimum thin plate
spline function is given in [24], where it is shown that, if \ is the minimiser of

the true error and A" is the minimiser of the GCV, then

, _/f(:\)
; =1 2 Ly
T!1_1_11 R(,«\*) = (H.Hl)

I 1 . i 1 ' L ¥ '
I'hus, in theory, as the number of data points increases, the minimiser of the

GOV approaches the minimiser of the true error.
2.2.2 Estimating the variance of the noise
According to Wahba [113], determining the optimum surface by minimising

the GCV also yields an estimate of o2, the variance of the noise. The estimate

Is given by

0 _ (2= AN2)TV " (z - A(\)z) 5 o
s tr(1 — A(N) .20,

Hutchinson [61] explains that t7(/ — A())) may be interpreted as the degrees of

freedom of the residual sum of squares, and thus equation (2.25) is analogous
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to the estimate of o obtained in linear regression [113, 98]. It follows that
the effective number of parameters of the fitted model, known as the signal, is

given by tr(A(A)) [62].

2.2.3 Interpretation of the signal

Hutchinson and Gessler [62] present evidence to show that the value of the
signal is a useful diagnostic in its own right. They state that, in most ap-
plications, if the signal exceeds n/2, it is likely that the data are too sparse
to adequately support spline interpolation. In the extreme case, exact inter-
polation corresponds to a signal equal to the number of data points. This
implies that there is no measurement, error and no microscale variation, which
is generally an unrealistic assumption. It may indicate that the optimisation
procedures have failed due to insufficient data [62], short range correlation in
the data values [65], or autocorrelation in the error structure that has been
unaccounted for by the model [28]. On the other hand, when the signal reaches
its minimum value, a number which depends on the number of independent
variables and the order of the derivative [68], the fitted spline is equivalent to
a least squares regression of the data on the M monomials ¢; [62]. This results
in complete global smoothing of the data. Extreme signal values can indicate

a lack of spatial structure in the data.

2.2.4 Standard error estimates

According to Wahba [112] and Hutchinson [61], it can be shown using the
multivariate prior distribution which gives rise to splines that the posterior
covariance of the vector of the fitted values is given by the symmetric matrix
A(A)V e This result allows the estimation of the pointwise standard errors of
the fitted spline estimate of ¢, as shown by Hutchinson [61]. The same result
can be obtained for the kriging method. This involves using the multivariate

prior distribution which underlies the kriging equations [63].

2.2.5 Geostatistical models

A useful interpretation of the process of fitting a thin plate smoothing spline to

HI)H-t-iH-l, C‘]l\'iI'i)lll'l](‘]ll.c'll (]E]l.ﬂ 18 ])1‘(Jvi(]u(l ])_y {-'.,'{‘-'()Hiet'-l-l'ui-“it-.i(.fﬂ-l 11‘1({)(1“15 [251 ]'l']’ 74]
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Geostatistical models are statistical models designed to incorporate, and take
advantage of, the spatial dependencies inherent in environmental data [25].
Thin plate smoothing splines achieve essentially the same goal as geostatisti-
cal methods, and have a close association with the geostatistical framework.
Certain aspects of geostatistical models of spatial data are therefore discussed

below.

The variogram model

Starting with the model in equation (2.10), geostatistical methods model the
process g as a spatially correlated random function. According to Wacker-
nagel [111], the concept of a random function can be understood as follows,
Take the data locations t; and construct at each of the n locations a random
variable Z(t;). Now assume that these random variables are a subset of an
infinite collection of random variables called a random function Z(t) defined
at any location t throughout the domain of interest. The data are assumed to
be realisations of the random function at each data point location.
The random function is assumed to have ‘intrinsic stationarity’, which requires
the stationarity of the first two moments of the difference of a pair of values
at two points ie,

ElZ(t+h) - Z(t)] =0, (2.26)

var[Z(t + h) — Z(t)] = 2v(h) (22T

where h is the displacement away from t and v(h) is known as the variogram
function. This assumes that the relationship between all pairs of random
variables Z(t;), Z(t;) is the same joint probability distribution. The underlying
implication is that the relationship between Z(t) and Z(t+h) depends only on
the length and orientation of h, but not on the position of h. In other words,
the spatial trends depend only on the covariance structure of the random
function Z(t). In practice, the orientation of h is often not incorporated into
the models of v(h), and then the measure of spatial dependence varies only

with the length of h.,

Using this geostatistical model, the method of kriging is used to predict the

value of Z(t) at a certain location t,. This is done by constructing a weighted
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linear combination of the realisations at the sample locations as follows

Z(to) = > wiZ(t:) (2.28)
=1

where E(tm) is the prediction of Z(ty). The weights w; are chosen such that
i (tp) is an unbiased, minimum error variance estimate. The importance of
the covariance structure of Z(t;) is in determining the weights. The estima-
tion of the w; requires calibration of a covariance function C(h), which is the

covariance between random variables separated by a displacement h:
C(h) =Cov{Z(t),Z(t+h)} = E[Z(t)Z(t+h)] = E[Z(t)|E[Z(t+h)] (2.29)

The covariance decreases with separation distance, and becomes zero at sep-
aration distances large enough so that realisations of Z(t) are unrelated. In
geostatistics, the variogram function in (2.29) is more commonly used as a
measure of spatial continuity [111]. The variogram function can be deduced

from a covariance function by the formula
v(h) = C(0) — C(h) (2.30)

but the reverse is not true, because the variogram is not necessarily bounded,
The variogram is clearly the opposite of the covariance function, in that it
generally increases with separation distance until a further increase no longer
causes a corresponding increase in the average squared difference between pairs
of values. At this point, known as the range, the variogram reaches a plateau.
The value associated with the plateau the variogram reaches at the range is
called the si/l. In terms of the covariance function the sill for the process Z(t)

s given by C'(0), and is thus denoted by o2 [25, 74].

The scale of variation

The variogram model is useful for analysing the spatial variation in the random
process Z(t). Cressie [25] presents the following decomposition of the random
process Z(t):

Z(t) = p(t) + W(t) + n(t) + e(t) (2.31)
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Chapter 3

Discretisation of the univariate

smoothing spline equations

There are a number of possible approaches to discretising equation (2.9) to ob-
tain a series of equations suitable for numerical solution. A standard method
would be piecewise constant discretisation. However smooth basis elements
offer a better structure for approximating smooth functions, particularly when
used in conjunction with the multigrid method of numerical solution, as will
be discussed in later chapters. This study has adopted the B-spline framework
for approximating the thin plate smoothing spline function [27]. The simplest
first order B-spline representation is to represent functions by piecewise con-
stants. Such functions do not have continuous derivatives, but derivatives can
be approximately represented by taking finite differences of the piecewise con-
stant values. Third order B-splines represent functions by piecewise quadratic
elements. These functions have continuous first derivatives and piecewise con-
stant second derivatives, This study has developed procedures for discretising
the thin plate smoothing spline problem using both piecewise constants and
quadratic elements, or third order B-splines. These formulations are discussed
below. A comparison of the results for both forms of discretisation is discussed
in the Part 2 of this thesis.

While this project is directed towards smooth bivariate spatial interpolation,
a thorough analysis of univariate interpolation was first conducted. It was
found that the simplicity of the univariate case allowed empirical analysis to

be conducted in a transparent and detailed fashion. This was ideal given that
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existing theory relating to the methods used in this project is not comprehen-
sive, and user experimentation is required to understand the algorithms and
optimise their performance. Note, however, that O(n) algorithms, where n
is the number of data points, already exist for calculating analytic univariate

thin plate smoothing splines [69).

3.1 Discretisation with piecewise constants

Consider an approximation f(z) to the natural cubic spline minimising ex-
pression (2.9). In the case of piecewise constants, f(z) will be a discrete
approximation represented on a grid labelled as in Figure 3.1 where g, ..., vn
are knot points and fy, ..., fy—1 are the values of the discretised function in

each grid cell.

Figure 3.1: The unidimensional grid.

['here are N + 1 grid points or ‘knot points’ and N grid cells. The integral
term in equation (2.10) was approximated across the N grid cells using second

differences to give

.0 | N- .
.-'\ / (fﬁ()) (}! — x }— [Z f{.;.] — 2/;’ +_/'!--I)d- (‘31)

==

Note that the discretised integral only covers the interval [vo,7n], not the
infinite line. This does not affect the system, due to the natural boundary
conditions in (2.6). Using (3.1), the minimisation problem can be expressed
in fully discretised form as

A
+ 5 lIQEI’ (3.2)

Minimise | Pf — z||?

where f is a vector of length N containing the values of the fitted function f
across the grid cells. The vector z contains values of the data points. It has

components z;, ¢ = 1,...,n. The matrix @ is an (N — 2) x N matrix of the

iq ,
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(1 -2 1 \

1 =2 1

\ '1—21)

This matrix operates on f to calculate finite difference second derivatives. The

form

(3.3)

matrix /7 selects from f the grid values at grid cells containing data points, so
[Pf); = fr (3.4)

where f; is the value of f in the I'" grid cell, which contains data point i. Each
row of I? has exactly one non-zero element. If data point ¢ is in grideell 7, the
clement [P];; will be 1. If there is no data point in grid cell  the /** column

of P will be zero,

Differentiating expression (3.2) with respect to the vector f gives and equating

to zero for minimisation gives the system
.‘J(h - .-}\ FIP " "r' i
(PTP + 5Q"Q)f = Pz (3.5)
1

The matrix PP P is the N x N diagonal matrix
myyp (d (.))

where my; is the number of data points in the I*" grid cell. This can be seen
by considering the example of three data points in the first grid cell, which
makes the first three elements of the first column of the matrix P equal to 1
and the remaining elements in the first column equal to zero. Thus [PT P
equals 3. The right hand side ‘data’ term P7z effectively sums the values of
the data points occurring in the same grid cell, The " entry of vector PTz is
zero if there are no data points in the I'* grid cell. Thus data points occurring
in the same grid cell are effectively averaged, with the sums on the right and

side and the counts in the diagonal matrix on the left hand side. The matrix
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Q7 () is a symmetric, non-negative definite N x N matrix of the form

[ 1 -2 1 \

1 -4 6 —4 1 (3.7)

| 5 9
\ 1 -2 1)

[t can be seen that, assuming there are no data points in the first and last grid
cells, the second differences at the endpoints are set to zero. This is a result of
the minimisation condition enforcing zero second derivatives at the boundary.
The rank deficiency of QT is 2. The addition of the matrix PTP prevents
this from being a rank deficient system. However, the system will approach

rank deficiency if the value of A/h® is large.

3.2 Discretisation with quadratic B-splines

3.2.1 B-spline formulation
B-spline definition

As an alternative to piecewise constants, spline functions known as quadratic,
or third order B-splines, were used as the building blocks to approximate the
function fy(z). The B-spline framework was developed by Schoenberg [l[)(]]
and is extensively documented by de Boor [27]. It incorporates piecewise
constants as a special case. B-splines allow efficient and flexible representation
of spline functions, and are used in a variety of multivariate function estimation
problems (3, 34, 52, Hl]. A practical introduction to B-splines is given in the
following paragraphs.

1

[n one dimension, the v normalised B-spline of degree k, and ‘order’ k + 1,

with knots 4,, ..., Vrerss is defined as

/j‘f',»’\'ll |(.’I') — ('-:Y?"{"f[\:""'I ﬁfr‘) &:‘! ] (ﬂ}"r‘a R a’-)/“r‘-i-k-}-l)(l({l o :“)ﬁ-- (3'8)
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where &i""” is the k" divided difference operator. The above expression takes

"_‘I'_ evaluated at the points ¥, ..., Yrsks1-

the k" divided difference of (t — z)
The subscript ¢ is used to indicate that the divided difference of the function
(t = T)f; of two variables is to be taken by fixing z and considering (¢ — T)ﬁ_ to

be a function of t alone [27].

The rationale behind definition (3.8) given in de Boor [27]. The essential
clement of this definition is the truncated power function, which is itself a

simple spline function [27]. It is given by

(t—=z)f ift>e
t—z)k = 3.9
(£ =) {U ift<ao G

The fact that the k' derivative of this function is zero on the left side of the

discontinuity means that the B-spline (3.8) ‘has small support’ ie

Br,k+] (-—E) = 0 for z % ['.}"r'a "}'r-l-k'il-l] (‘-1’10)

27]. As an example of how this arises, consider the case of second order

B-splines, where k£ = 1. This gives
Bra(z) = (Yr42 = %) Af (s Vres Yra2) (E — 2) & (3.11)
Letting v, = 3, with knot intervals of length 1, gives
2402 (8,4,5)(t=z), (3.12)

As t — z is linear, the second difference A? is always zero, except inside the
interval [3, 5], where the discontinuity comes into effect. This can be seen by

setting « = 4, which gives
B,2(4)=2(04+0+5-4)=2 (5,13

This is not zero because (3 —4), is zero, as t is less than z.

[t is also shown in de Boor [27] that a B-spline is always non-negative. Thus
a visual concept of B-splines can be developed, looking at first, second and

third order B-splines, as seen in Figure 3.2. It is shown in de Boor [27] that
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B-splines are spline functions ie.

Bi,k+l e ‘Sk+1,"r= all (3.14)

First order B-spline

2 T I T 1 I I 1 I |
1F ,
0 | | | | | | ]
-2 -1 () 1 2 3
Second order B-spline
2 T I T I 1 I I 1
= -
0 ] ] | ] | | | | ]
-2 -] 0 | 2 3
Third order B-spline
2 1 1 1 T 1 I I I 1
1k ¥
0 ] ] | i | i | ]
-2 0 1 2 3

Figure 3.2: B-splines of varying orders.
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Quadratic B-splines splines were selected for this analysis for practical reasons.

Firstly, third order is the minimum order required for a visually ‘smooth’
function, because its first derivatives are continuous. It is desirable to choose
functions of small order, to maintain small compact support. This allows the
associated system of equations to be solved simply and efficiently by numerical
methods. It is also shown in Marsden [89] that quadratic splines produce
better fits to continuous functions than do cubic splines. Further favourable

properties of quadratic B-splines are discussed in the following sections.

Fortunately, the formula for quadratic B-splines functions does not have to
be derived from equation (3.8), thanks to a recursive formulation given in de
Boor [27]. This is given by

Bz T — .,
?,R-l-l( ) i 77 BT,'k(:L')
Yraktt = ¥ (Yrak = ) rthrr = %)
Yr4k4l — T
+ — B?“+'l,kr(3¥')

(’Yw+k+1 o ’)’-:*+1)("Yr+£:-+-1 = ’}’r)
(3.15)

Thus the expression for third order, or quadratic B-splines, can be derived

from first order B-splines. A first order B-spline is simply

B 'I(T) e 1 if Ir i: £ E Yr4+1 (3 ]_6)
" 0 otherwise |

Using equation (3.15), the expression for third order B-splines is

=" T — Yp +1 — &
B, & i [ _B.i(g) 4 Lt By 1.1(-’1?)}
Traz = Ve LVr+1 = W Tr48 = el

Tr+3 — T L= Yr41 - Tr43 — T
= | Brs1,1(z) +
Yr+3 = Vr+1 | Vr+2 — Vr+l V43 = Vrs42

+ Br+9,1(-’ﬂ)]

(3.17)

This can be clarified by considering the polynomial piece over each knot interval
of the quadratic B-spline basis element. Assume we have equally spaced knot
intervals of length h. We can then represent the quadratic B-spline in terms

of w, = (z — 7,)/h, the proportion of the distance along the r** knot interval.
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For the basis element B, 3(z), the polynomial pieces are

2

%" Yr -c_:: T < Yr+1
P Y 1 v
B-r',ﬁ(l) = wwl-l(l — Wry 1) = 5 Tre41 ST < Vrg2 (‘318)
. 2
'('MU—QIH)_ Yr42 ST < Vr43

These polynomial pieces are depicted in figure 3.3.

1
we(l = w,) + =
e m)+2

Figure 3.3: Polynomial pieces of a quadratic B-spline, with w, ranging from 0
to 1 on each knot interval,

B-splines as a vector space basis

The spline vector space was discussed in Chapter 2. It is shown in de Boor [27]
that a sequence of B-splines By ji1,. .., Byik—14+1 18 a basis for the space S -,
defined in Chapter 2. De Boor [27] presents the definition of a spline function
in terms of B-splines, stating that a spline function of order k + 1 with knot
sequence v is any linear combination of B-splines of order £ + 1 for the knot
sequence 5. The advantage of representing splines in terms of B-spline basis
elements is that the spline can be constructed over all knot intervals by simply
calculating the coefficients of the basis vectors for the spline space. The basis
vectors are themselves splines and have the desired continuity properties. This
ensures that all the other vectors of the space, which are linear combinations

of the basis, have the same properties.
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Any spline function of degree k defined on [v, yv4x] can be represented as

N+k-1

fl@)= ) arBprp(z) (3.19)

re=()

where o, are called the B-spline coefficients of f(z). There are N 4 1 knot

mtervals and N spans. Note that the B-spline basis is normalised, so

N4+k—1

Y Brislg) =1 (3.20)

r=()

A piecewise constant representation corresponds to a construction of f(z) using
B-splines of order 1. The B-spline coefficients correspond to the values of
the piecewise constant function on the knot interval [v,,7,41]. Clearly the
dimension of the space of first order B-splines is N, while the dimension of
the space of third order B-splines is N 4 2. This means that, in the case of
third order B-splines, there are more basis elements than spans. In order to
represent a third order spline in terms of a quadratic spline basis we included
two extra basis elements, centered a distance h/2 outside the first and last
spans, as can be seen from Figure 3.4. Note that f(z) is not defined on the

exterior regions [y, 7] and [Yni2, Vv 44

ALY

IJIU !.‘Il !5‘2 !'}N IJ,N-|]
v

T T Ve N+2 TN+ TN+4

Figure 3.4: Positions of quadratic B-spline basis elements 5, on the unidimen-
sional grid.
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3.2.2 B-spline approximation of smoothing splines

Starting with the minimisation problem (2.9) a quadratic B-spline approxi-

mation f(z) is formulated as

f(i'ﬁ') e Yy B?-,:%(iﬂ} (3.2 1 )

Thus [ is a spline function composed of quadratic B-splines, and is defined on
the interval [yz, Yy42]. We substitute the approximation f into the minimisa-
tion expression (2.9) and choose the coefficients o, to minimise. This requires
differentiating (3.21). The derivative of a B-spline B, ,(z) is given in page 138

of De Boor [27] as

(_ﬂﬂ,.,;,:(:z.:) = (k=1) <_Br+l'k_](:l:) -+ Bri-1(2) ) (3.22)
i Yrtk = Yr4l Vr+k=1 — Vr
which implies that
d ("3 i, k(a, — qpa1) | L
s Z? G Bt | = Z} o Bre-a() (3.23)

127]. Tt can be seen from this expression that the first derivative of a spline
function f can be found simply by differencing its B-spline coefficients. For

quadratic splines with knots equally spaced at intervals of length A this gives

N+l o
fz) = (ar ;}—czf_l)- B, o(z) (3.24)
re=] :
N41
r — 208 + Qpd . ‘
fﬁ(.f') o Z (1;“ = (};}3] (Y, "[j’r,rI(‘-;‘) (‘335)

Thus the second derivative of a quadratic B-spline is given by taking the second
difference of its coefficients. The simplicity of this formulation further moti-

vates the choice of quadratic B-splines for use in this study. The roughness




































4.2. THE MULTIGRID METHQOD

Prolongation

Transfer of approximations from a coarse grid to a fine grid is known as pro-
longation. A common method of prolongation is by a linear interpolation
operator. The linear interpolation operator 7;,1; maps from grid [+ 1 to grid

[ and is of the form

= b

e L

Tiga1 = (4.22)

b =

2
\ y
If there are N/2 grid cells on grid level [ + 1 then T}411f41 gives the following

expression for the components of f;, ignoring the end conditions

froi = fie, (4-23)

| L, | . ‘ r
fizie1 = 5(f'f+11z + freri41)s 1 <i< N/2-1 (4.24)

Clearly, linear interpolation will be more accurate when f; is smooth. Other
forms of interpolation, such as quadratic interpolation, may improve interpo-

lation accuracy [46].

Restriction

The second class of intergrid transfer functions involves moving vectors from
fine grids to coarse grids. They are known as restriction operators, denoted by
Ti 5. A common form of restriction is called full weighting, where T;; is of the

form

Tio= 1 ; (4.25)
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e

120]. T} 2651 gives the following expression for the components of f

Jri==(ficr2i-1+ 2fic120 + fim1,2i41), l€i=< (4.26)

1
4
There are, however, many possible choices of restriction operators. It is the-
oretically convenient to have Tz?.e = T}, although in practice similar results
are observed when 7j, is the adjoint of a prolongation operator different from
131 [46]. Some guidelines for choosing appropriate intergrid transfer operators

are discussed in section 4.2.5.

It is shown in Wesseling [115] that, for a two grid multigrid procedure, if r; is

the residual z; — Aif; after the coarse grid correction,
’Tg,gl‘z = () (427)

This relation implies that, on the fine grid, the residual after a coarse grid
correction is ‘rough’, in that it consists only of oscillatory components. This

explains why multigrid convergence is independent of A [115].

The coarse grid operator

There is some flexibility in what is used for A;y; ,the operator A on grid level
[ 4+ 1. There are two common alternatives for the coarse grid operator. The
first is the discretisation coarse grid operator, that is simply the operator that
results from discretising the problem on the coarse grid [115]. Secondly there

is the Galerkin coarse grid operator
Ay = Tl.'.‘.!AJTZ,] (4.28)

where T{f.; = 1j1. This alternative has some theoretical advantages in calcu-
lation of relative consistency [46] and convergence analysis [115]. In practice,
however, similar results are achieved for both operators and the Galerkin form
generally does not warrant the extra computation involved [46]. It is further
stated in Brandt [17] that in principle, the coarse grid operator may be any

reasonable difference operator approximating the fine grid operator.
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The algorithm

There are a number of multigrid algorithms which combine the above elements.
This review will discuss two multigrid algorithms known as v-cycle and nested
grid, which form the basic building blocks for more complex multigrid algo-
rithms.

V-cycle
The v-cvcle algorithm is an extension of the coarse grid correction, or two-grid
algorithm, discussed in section 4.2.4. The v-cycle algorithm is

forl=1to L -1
f, = 8" (fi,z)
r; =z — Aif]
Zi+1 = 1) 21y

end

fi =S " (f,21)

forl=L—-1tol
fi = + 1111814
f = 5" (fi, )

end

£ = S (f 7)

where v; is the number of ‘pre-smoothing’ operations, or the number of re-
laxations per grid level before the correction process begins (the first half of
the cyvele) and vy is the number of ‘post-smoothing’ operations, or the number
of relaxations per grid level during the correction process, L is the number of
orid levels, and S is the iteration matrix for the basic iterative method chosen.
In multigrid terminology, relaxation on a given grid level is called ‘smoothing’
and S is called the smoothing iteration matrix. The notation S*(f,z) corre-
sponds to performing v; smoothing iterations on a generic system Af = z.

The ‘multigrid schedule’ for this algorithm, which dictates the order in which
the grids are visited, is shown in Figure 4.3. V-cycle is used to replace the two
arid algorithim not to improve convergence, but to avoid expensive computa-

tion of the exact solution of the coarse grid equation [46]. The idea is that
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4.2.5 Guidelines for optimising the multigrid

algorithm

From the above discussion it is clear that there are a lot of ‘parameters’ in
the multigrid process that must be set by the practitioner, ranging from the
type of algorithim chosen to the number of relaxations performed at each grid
level [103]. Some theoretical principles that help guide the choice of multigrid
parameters are outlined below. Despite these guidelines, multigrid is far from

being a fixed method, and some experimentation is desirable [103].

a) Let m, be the order of the prolongation operator and m, be the order of the
restriction operator, where the order is defined as the order of the polynomial
that would be exactly approximated by the given interpolation technique. For

differential equations of order m, the following relation should hold:
My +my =>m (4.30)

For example, piecewise linear interpolation and full weighting restriction gives
my = my = 2, which is adequate for a differential equation of no more
than third order. The necessity of the above conditions has been shown by
Hemker [55]. In the case of two grid multigrid, the explanation relates to en-
suring that the coarse grid correction does not amplify the oscillatory part of
the error in the process of annhilating the smooth part [115]. Wesseling [115]
attributed the failure of a v-cycle algorithm to a breach of this relation.

b) The optimal number of smoothing operations per grid level is 3, or 2 for
very efficient cycles [17].

¢) The optimal coarsening ratio, or the ratio of the number of grid points on
grid level [ to the number of grid points on grid level [+ 1, is normally 2. Large
ratios will not save significantly more work, but will significantly degrade the
smoothing rates [17].

d) Basic relaxation methods with fast overall convergence rates do not necessar-
ily have low smoothing rates. Jacobi relaxation often has superior smoothing
properties to Gauss-Seidel, even it is slower to converge as a basic iterative
method. In the case of SOR, overrelaxation results in a better convergence
rate but underrelaxation improves the smoothing rate, so it is often preferred

in multigrid schemes [103].
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Chapter 5

Prolongation and restriction of

univariate quadratic B-splines

5.1 Hierarchial B-splines

Using B-splines for approximating the solution of the discretised smoothing
spline system has some advantages from a multigrid perspective. Using the
hierarchial B-spline framework, intergrid transfer can be made with greater
efficiency and accuracy in comparison to the standard multigrid prolongation
and restriction techniques [34, 80]. A hierarchial spline space can be defined as
a linear span of B-splines with nested knot sequences [80]. Consider the knot

scquences
i . |r i F i i
Hy'f"]f — ({' -I- , ‘;‘) /?" IIlr = (.)’ LI I | ‘N‘( -l_ }l‘-’ + l.-i), z — [:]Il‘ J § 3 P (‘E-)l l )

where a is the first knot in the sequence, [ is the grid level, h is the width
of the knot intervals on the finest level and N, is the number of spans on
level [. The width of the knot intervals doubles as [ is incremented. The B-
spline B, of level [ is the B-spline to the knot sequence %, ..., Yrirs1, With
supp Hf.‘;{ = Y1, Yr4k+1]. Consider the spaces S = .‘1‘})1‘:‘!!.{”,:’.’;‘,} = {ste S :
st = ZT,I o, Bl i € R}, where d; is the dimension of level [. These spaces

form a sequence of nested subspaces such that

] ]
i
e

SIC81G,...,8 C& (5.
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coarse grid basis element and B;,.(z) is the 7" fine

where By ,(z) is the ¢t

grid element. This concept is illustrated in Figure 5.1. The coefficients [, are
chosen to obey this equality. This is done by setting 4 conditions requiring
that the second derivative of Zr—;aq-—z G By () equals that of By ,(x), and
that the values of these two functions are equal at the knot intervals of the

coarse grid function. Setting g = 1, the conditions can be stated as

Bo—261+ 0= — 262+ Fa (5.4)
1 1 1
5% =t Eﬁl = 5 (5.5)
1 /o 3 ;
Eﬁl = 5!32 = ; (5-(3)
1 1 1
ghat+ 5P =3 (5.7)

This uses the fact that the values of a quadratic B-spline basis element at the
middle two knot intervals within its support are 1/2 and 1/2, and the value
at the centre point is 3/4. This gives 8" = (1/4,3/4,3/4,1/4). From this,
the coarse grid quadratic B-spline solution can be ‘converted’ to a fine grid
solution using the above relationship to change the basis. Let a, be the B-
spline coefficients on grid level [ and b, be the B-spline coefficients on grid level
[ + 1. Substituting (5.3) into

N{+l N}+1+l
Z Gy Bt,r(m) - Z br}BHl,q(m) (58)
Trmm() g=0
gives
a=Pb (5.9)
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To solve for b, the vector of coarse grid coefficients, the equations for k =

0,..., Ny + 1 can be written as

Xb=Ya (5.14)

where ;
[(X]ok = / Bii1,q(z) Biy i (z)d (5.15)

b
Ve = | Busl@)Buosaa)da (5.16)

Integrals of this form often arise in applications where B-splines are used as ba-
sis functions, such as the finite element method and least squares fitting [110].
Vermeulen et al. [110] present a general method, based on integration by parts,

for integrating

o
/ EyBuilt) | [ 32 FyBouy(t) ) di (5.17)
ol I q

‘" B-spline of order k defined over the knots x. Fortu-

where B, is the r
nately the matrices X and Y are simple cases. Calculation of these matrices

is discussed in the following sections.

5.3.1 The matrix X

Figure 5.2 shows that all basis elements B, ,, except the first two and the last
two on the grid, overlap with only 5 others, which means that the matrix X is
5-banded. It is also shown that the first and last basis elements overlap with
J other basis elements and the second and second last basis elements overlap
with 4 other basis elements.

1o calculate the value of the above integrals, the polynomial representation of
a quadratic B-spline in equation (3.18) is used. For simplicity of notation we
write u = w,. Values of the integrated products in the matrix X for elements

away from the endpoints are

) L i
U 1
/ Biir k—2(u) Bryy p(u)du = / —(1 = u)du = — (5.18)
o0 o0 3 14:‘2()
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Away from the edges

Near the edges

0

At the edges

Figure 5.2: Overlaps of coarse grid basis elements with surrounding coarse grid
basis elements.
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'] 1 | :
Biiy2(u) Bryrn(u)du = ol (u(u — 1)+ 1_) I
Jo 1 g ;

_ G-wr(o 1% .. g8

- 5 u(u—1) + 5 du = B
(5.25)

I i il

E , e (L= L ] o
/o Biy1,a(u) B (u)du = ./n —r—i-du = 758 (5.26)

The identical situation occurs for the basis element By n,,, (u). For By o(u)

the integrals are

|] |
/ Bg.i-l,()(’u)ﬁu1,U(w.)d7_,«=/

0 J 0

L= 1 1
/ Briyi(u) B plu)du = / { > e/ (n(l —u) + —) du = j‘_‘?’__ (5.28)
Jo Jo

) 120
'l ‘1 B8
1 —u)*u |
Biiia(u) Bt olu du=/ (— —du = — 0.29
| BraaBuotd= [ S50 = (529

The situation is again the same for Biy1,ng,+1(2).

Given our scaling u, we have to multiply all the above integrals by h. Thus
the matrix X is an (N + 2) x (N + 2) matrix of the form

[ 6 13 1 \

13 60 26 1
1 26 66 26 1
I 26 66 26 1

—
-

1 26 60 13

\ 1 13 6 )

5.3.2 The matrix YV

Figure 5.3 shows that basis elements By, ,, except the first two and the last
two on the grid, overlap with 8 elements from &;. The matrix Y is therefore

8-banded. To calculate the integrated products in this matrix, the difference
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in the width of the knot intervals must be accounted for. Given that the knot

intervals in 5; are half the width of those in 5,4, the basis element from 8.,
must be represented as shown in Figure 5.4. The total range of integration is
now twice that considered in section 5.3.1, because we take the fine grid knot

intervals to be 1. Now the elements of ¥ away from the endpoints are

Away from the edges

AN

Near the edges

At the edges

Figure 5.3: Overlap of coarse grid basis elements with surrounding fine grid
basis elements.
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0] 1 W 2
/ Bpok(w) By g(u)du = / iidu 4 / (u(l — ) + %) (u+1) o
Jo Jo

1 1,2 132 i :
: u (u+1
/ Be,:ek:-aw(’”f)ﬁu1,&(%)65’“'=/ L(f”f ) du+/ u(l —u) + l
1) J0 2 E) 0 2
| ; a ; 2 5 N
Ll — T 303
+ [ 85 (__“_ iy = 302
Jo 2 4 4 480

.1 ol
; 303
/ B ogyo(uw) By (u)du = Bioks1(w) By g(u)du = — (5.32)
Jo 0 480
: " 147
/ By ogya(w) By p(u)du = / Biak(w) By p(u)du = (5.33)
0 Jo 480
+ . '] ) 29
/ BLQ&.’.;‘I(T.L)B.{.'_|‘A:(’H:)(..lqla = Hg,g;c_](’H;)Bg.;.]ﬁ(u)dﬂ | — (534)
] S .
|
/ By okis(w) By x(u)du = / B ok—2(u)Bry x(u)du = — (5.35)
0 Jo 480

For Biy11(x) the integrals are

3 =) (u u 1 48
13 .-I B .-|l !’. — e —— T i - 1 —— =i i ‘, p—h E\-’l:. |
/o 1o(w) Bryaa(u)du 4 : (B( 2)—1—2)(@3 P (5.36)

|
1 U, 1 1
/U Bii(u)Brg(u)du = /[ 2) (E(l - E) -+ E) du
+ /] _2.,_ X R E { — E
2 1 )" T R0

,-—"'_"\.
|_..|
|

(5.37)
: ‘ 303
/r; By o(u) B (u)du = /ﬁ (u) By k(u)du = 180 (5.38)
! 147 :
_Bz ; H BHI H dH = B,‘ _g;._ U Bi’+1 ;L(N)dh' B —— (51_';9)
0 480
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| |
29

/ Bia(u)Biy11(u)du = / By oj—1(uw) By (u)du = (5.40)
J0 0 480

/ B{F N BZ+1 I M (,i’H = / f.)’; ) . ‘g U H“ 1 A(H)H’H = L (5“)
: 480

For Biyio(z) they are
] e g
(1 =u)? (2 —u)? 31
B olu)B w)du = i = 5,492
/0 Lo(w) By o(u)du /0 5 g U= 7o (5.42)

I o] o _ 9
/ EU (T.L)J_",?;_-HI(I')(?.L)(JE’H, = / (’t.t(l - ?1.) | l) (JTH)(I!?_L
40

<0 2
ST 9 :
(1 —u)? (1 —u) 99
+ e ———
/” 2 s TR0
(5.43)
) 14,2 (2 = 44)2
Bio(u)Bypolu)du = / E’“,,,,_(__L)d” n
410 Jo 9 S
l | ’
1\ (1 —u)* 20
= l . o~ okl _
/[; ( ( u) + 2) H-—du i
(5.44)

1] T wi® i
. ?an ?.{1 J!L ]_ I
By a(u) By o(w)du = / e [ i ). et o =) iy = 5 45
I/“ M( ) Bi,0(u) ], 2 (2( 2)-{- 5 du 180 (5.45)

Due to doubling of the total range of integration, we have to divide all these
integrals by 2 to stay consistent with our transformation v = w,. The matrix
Y is therefore

(31 99 20 1 \
48 272 303 147 29 1
1 29 147 303 303 147 29 |

h |
| 29 147 303 303 147 29 ]

96()

1 29 147 303 272 48
\ 1 29 99 31/

[n fact, both matrices X' and Y can be derived by the representation in equa-
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tion (5.3). The matrix X, containing the inner products of the elements Bl
can be transformed into the matrix X, using the relation in equation (5.3) to
turn fine grid quadratic B-spline elements into coarse grid elements. Consider

the product P]X,P, | given by

[ 6 13 1 (3 1 )
(3 1 V| 13 60 26 1 1 3
1 3 31 1 26 66 26 1 3 1
I 26 66 26 1 1 3
1 331
\ 1 3 1 26 60 13 31
1 13 cs) 1 3 )

The matrices FQT and [ contain the coefficients f;, and therefore convert the
products By, By, to coarse grid inner products By Bi1% Multiplying the
first two matrices of the above product gives FfXg, which contains the inner
products By 4,8 k. This produces the matrix Y, in a much more efficient way
than that presented at the start of this section. Multiplying all three matrices

gives the matrix X;.;.

5.3.3 The restricted solution

[t would be expected that a function f; that is in the space S; and is also
in the subset &, € & would be the same before and after restriction from
level [ to level [ + 1. This means that a function that is prolongated and then
restricted should not change. If the function is not in Sy € & then f; will
contain components that cannot be represented on the coarser grid. These
components can be obtained by calculating the orthogonal distance between
the solution estimate on grid [ and its least squares fit to grid [ + 1, denoted

by g;. This is given by
g=>_ GB() (5.46)
where ¢ = ({o,...,Cnv+1)T are the B-spline coefficients, given by
(=a-Fb (5.47)
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recalling that b is given by equation (5.14). The £? norm of g; is given by

lgill = \/h¢TXC (5.48)

This norm is a useful measure of the effect the information lost when a func-
tion transferred from a fine grid to a coarser grid. The results in Part II
will show this to be an effective criterion for deciding the grid resolution for

representation of the final solution,
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Chapter 6

Discretisation of the bivariate
thin plate smoothing spline

equations

T'he techniques for discretising univariate smoothing spline systems using the
B-spline framework can be generalised to the bivariate case. As discussed in

Chapter 2, the exact solution to the bivariate minimisation problem

| o po0 : i

Minimise H(;ﬁ —£)T(z = £) + A / _ / _ fi + Qlj'l,f,y + [y, dxdy  (6.1)
1s given by a thin plate smoothing spline. The bivariate thin plate smoothing
spline solution was approximated using tensor product quadratic B-splines
composed of the quadratic B-splines used in the univariate problem. Tensor
product quadratic B-splines are conforming finite elements, in that they are in

1

the space A" in which the bivariate thin plate spline problem is solved [13].

Tensor product splines are commonly used to approximate bivariate functions,
and fit smooth surfaces to data observations [42, 3, 33, 94, 81, 21, 44]|. De
Boor [27] states that tensor product methods should be used where applicable
because they are extremely efficient compared to other surface approximation
techniques. They are, however, generally only suited to rectangular domains,

which is the case considered in this study.
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6.1 Tensor product splines

The theory of univariate B-splines can be generalised to bivariate splines using
tensor products. The tensor product w(z,y) of two functions u(z) and v(y) is
given by

w(z,y) =u(z)vly) z,9€R (6.2)

[27]. To construct a bivariate B-spline, or tensor product spline, the tensor
product of unidimensional quadratic B-splines can be used as the basis element,

Thus a tensor product spline is given by

N+1 M+1

(2,y) =Y > aBi(z)By(y) (6.3)

I=0 J=0

f(z,y) is defined on a finite region [a, b] % [c,d], shown in Figure 6.1 . There

are two independent, strictly increasing knot sequences:
NI I=0,...;N+4 where 45 = a and Yy = b (6.4)

Iy, J=0,...,M +4, where fs = ¢ and pun4o = d (6.5)

Thinking in univariate terms, - is the knot sequence for the quadratic B-spline
clements B (x) and g is the knot sequence for the quadratic B-spline elements
Ej(y). The coefficient oy, corresponds to the basis element centered in the
middle of grid cell 7.J,

A visual depiction of the bivariate basis element, B;(xz)B,(y) is given in Fig-
ure 6.2. Clearly, Bi(z)B,(y) = 0if 2 & [y;,vr43) or ¥ € [y, f1743). The basis
is still normalised, so that,

\v:‘l M1 N4+1 M1
By (z = > Bi(a )Y Bily) (6.6)
=0 J=0 1=0 J=0

Lhe properties of quadratic tensor product splines are analogous to those of
the univariate quadratic B-splines splines previously discussed. They are con-
tinuous, and have continuous first partial derivatives 9s(z, y)/0x, 8s(z, y)/dy.
The dimension of the tensor product space is obtained by multiplying the di-
mensions of the two univariate spaces in the tensor product [27]. In the case

of quadratic tensor product splines, this is (N 4 2) x (M +2). Note that, as in
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SMOOTHING

THIN PLATE

SPLINE EQUATIONS
R b R w ('Y?I-l r.u.d.d) ................................................................. ey
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| | |
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Figure 6.1: Two dimensional grid for the bivariate smoothing spline.

the univariate case, the tensor product spline is not defined on the 2 x 4N M

‘exterior’ knot intervals shown in Figure 6.1. The region of definition covers

the N x M spans within the shaded region.

6.2 Roughness penalty calculation

The discretisation process in 2 dimensions once again involves substituting the

discretised approximation to the thin plate smoothing spline into the minimisa-

tion expression (2.11). A more involved process must be followed to calculate

the discretised bivariate roughness penalty. As in the unidimensional case,

the expression for f(z,y) in equation (6.3), is substituted into the roughness

penalty expression

8

5

= s !
/ / foa + 2fzy + fyydady
=0

(6.7)



6.2. ROUGHNESS PENALTY CALCULATION

0.7 -
0.6
0.5+
0.4
0.3
0.2 -

0.1+

0.

Figure 6.2: Bivariate quadratic B-spline basis element.

Once again, given that our discretised approximation is defined only on a set
region, we no longer integrate over the whole 2 dimensional plane. Roughness is
minimised only on the defined region. Denoting the basis element B;(z)B,(y)

as Bpy, the substitution process gives firstly

o) il b pdd
Z Xy / / ./Ir.t:.':: -!3f.f:r.':'::(-£3:d'.’f i Z rJ / / f-.'!:y B!med:r:d:‘:’
I.J L 7 Ja o oJde
b d
T (L AT
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b

and then
il
/ B[J.Ty Bki:‘r:y dﬂ:d:{f
£

b pd
Z Z QrJ el ( / / B-’l.f:x-'-'t-'Bki;c:cdmd?/ +2
Lid Ll il e [ & AV i

b pd
o} / / 5 Bmwd:ﬂdy)
L T * A

(6.8)
ropb opd b pd
= af B;_,r,-,-”.J_?k.gw;,;rﬁ:r;dy} a+ 2a’ { / / B1zyBrlzydzdy | o
LS SO A
IF b : il ¢ :
o a*‘r / / Bf-f‘y:yﬁkl]jydmdy:l Y
Ja Je
= chElC.t + CrTE;gﬂ! - {'ITE;gﬂﬂ (69)
=a'Za (6.10)

where Zy, Z,, Z3 and Z are matrices of dimension (M + 2)(N + 2) x (M +
2)(N 4 2). We now calculate these matrices.

Firstly, consider e’ Zex, the first term of (6.9). The elements of a row of Z,
o0 OO g : . .

are -f—m J oo BriceBrizadady, for k=0,...,N+land [ =0,...,M + 1, We

need to consider all non-zero overlaps with the element B;;. Figure 6.3 shows

the centre position of all basis elements that overlap with 5;,.

b pd
JJI.-:. B.".f:‘:.‘:r.‘Bﬁ::f:r::f:d:-rdy s

Now we write [

b pd b b
/ / BY(z)B{(z)B(y)B(y)dxzdy = (/ B}'(:C)Bif(n:)d:x) (/ B,;(y)ﬁg(y)dy)
i o o
(6.11)
so we can work with the unidimensional components. Figure 6.3 corresponds

to the 5 x 5 matrix

e o i =T u - Bopadi i T i

‘ﬁ ByBipady \ ([, BYB{_pdz [} B{Bj_,dz [!BYBidz ['ByBj dz [bByBy, ,dz)
[ BBy dy

[ By Bydy

[¥ByBi_dy

J

il
g,
S B B ady

Q

(6.12)

We now follow a similar procedure to that described in Chapter 5, whereby
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................................................................

............................................................

1 J ' '
-----------------------------------------------------------------------

1 ' 1 '
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............................................................
|||||||||||

Figure 6.3: Centre positions of basis elements that overlap with By ;.

the non-zero overlap between the unidimensional basis element 5, (z) or B, (y)
and other basis elements By (z) or B;(y) is calculated by integrating from 0 to
1 across each knot interval within the overlapping region. We again use the
transformation v = w, for knot intervals in the z direction, and v = w, for knot
intervals in the y direction. Values of ]01 Bi(u)By(u)dz or J;; Bi(v) By (v)dy can
be obtained from Chapter 5, but now we need corresponding values for the first
and second derivatives of the basis elements as well. The derivatives of the
quadratic B-spline are shown in Figure 6.4, once again using the polynomial
expressions for each knot interval given in equation (3.18). Calculation of the

imtegrated products .[n By (u) By (u)du away from the endpoints gives

1
/ Br_o(u)Bl(u)du=1x1=1 (6.13)
0
1
/ By 1(u)Bi(u)du==2x14+1x-2=—4 (6.14)
i
]
/ By(u)By(u)du=1x14+-2x —2+1x1=6 (6.15)
J0
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B-spline

u(l —u) + %

First derivative

Second derivative

Figure 6.4: Polynomial pieces for a quadratic B-spline and its first and second
derivatives, with u ranging from 0 to 1 over each knot interval.
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SMOOTHING SPLINE EQUATIONS

DISCRETISATION OF THE BIVARIATE

THIN PLATE

The values

! 1
/ By y1(u) By (u)du = / Bi._,(u) By (u)du = —
0 0

x
3

I 2
/ By...o(u)Bj(u)du = / B o(u) B (w)du = _é
0

( B, (v)B)(v du) (/n] Bj(*u,)i:-’jﬁ(*:.f,)ri*u) are therefore

(1 -2

6 —2 1) [ 1 2 —6
,1 2 4 —12

= | =8 =12 . 36

2 4 =12

\ 1 2 =6

(6.24)

(6.25)

(6.26)

For the final term of expression (6.9), corresponding to the matrix 75, the

calculation is similar to that for the first term. The values of

(.]E]l [35(7-])]3;/(?1)”{"’) (J;)‘ B!(U)-Bk(u)d?t) are &,]VLll hy the transpose of ( 1(3)

e,

which gives

The total of the values

1
12(

L) (1 26
: —ﬁl
190 ¥
—4
\ 1)
[ 1 26 66
-4 —104 -264
6 156 396
-4 —104 —264
\ 1 2 66

for all three terms is

[ 26 106 96
106 —544 —564
96 —564 3096
106 —544 —564

\ 26 106 96
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26 1)

26 1)
~104 —4

156 6
104 —4

2% 1)

106 26 \
~544 106
~564 96
544 106
106 26 /

(6.27)

(6.28)
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The above calculations apply to basis elements that are away from the edges
of the region in Figure 6.1 , and are not influenced by edge effects. Separate
calculations are required at the endpoints and near the endpoints, as for the
unidimensional case discussed in Chapter 1. For the bivariate case, this cor-
responds to a number of different possible positions, as shown in Figure 6.5.
The following procedures demonstrate that there is high symmetry in the left,
right, top and bottom positions. It turns out the matrices for the right, top
and bottom positions are simple rearrangements of the numbers for the left

bottom positions B-F, shown in Figure 6.6,

B. At the corners

At the endpoints, the first and last basis elements overlap with 3 other basis
elements, as discussed in Chapter 5. At the corners both sequences B (z) and
B;(y) are at the end points. For the first term of expression (6.9), the values
of ]0] B;(v)By(v)dv at the end points were calculated in Chapter 5. The values

X X X X
X X X X
g x ............... : :
. S S e S x ......... x

Figure 6.5: Centre points of basis elements in positions at or near the edges.
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-------------------------------------------------------------

--------------------------------------------------------------

............................................................

.......................................................................

.....
.......................................................................

..............................................................

..............................................................

Figure 6.6: Edge and near edge positions for the lower left corner.

. ml : '
of [, BY(u)B}(u)du at the endpoints are given by

1
/ Bl(w) B! (Wdu=1x1=1 (6.30)
Jo
1

/ Bl(w)Bj(u)du=1x =2 = -2 (6.31)

Jo

g
/ By(u)Bj(u)du=1x1=1 (6.32)
0

Values of (‘ﬁ}l BJ(*U)!3;(*:.:)(5*:.1) (‘]E)I B;’(*zf,)Bg(*u,)riu) at the left bottom corner are

given by

[0\ (001 =2 1) (00 0 0 0)

; 0 o0 0 00
0| © =5 00 6 -12 6 (6.33)

13 0 0 13 -26 13

., \0 0 1 -2 1)
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The values of (j;]] Bf(v}ﬂ’(w)dv) (ﬁ; h’}('u,)f_?ju(u)du) in the lower left corner

are therefore

( 0\ (0 0 2 -1 -1)

; 0
% f (6.40)

which gives

— | 00 4 -2 -2 (6.41)
00 -2 1 1
\0 0 -2 1 1)/

Values for the other corners are given by shifting the zeros in the same manner
as in (6.34), (6.35) and (6.36). The final term,

<. , i1 ) J— :
(‘[“ /.Ef}('U)Bf’(*:.f)dﬂ) (Ju f.)’j(“H.)B;c(’(.&)d“!.!,) is again just the transpose of the ma-

trices for ('];)] B,;('U)B;(*u)dv) (_[;Jl !3’,’(21,)Bjc’('u;)d?.a).

The total of the values for all three terms for the left bottom corner is

[0 0 0 0 0\
00 0 0 0
0 0 116 =37 —19 (6.42)
0 0 —37 —136 53

\0 0 -19 5 2 )

- - %y s ; ’ : . Ll ; . : i
I'he total values for the other corners are the same but, as the above procedure

shows, the position of the zeros differs for each template.

C. Edges, away from corners
At the edges, away from corners, one quadratic B-spline sequence is at an end
pomnt and the other is unchanged by edge effects. Using the numbers calcu-

lated above, the values of ( _[;)l B J(zJ)B;(w)dv) (‘[;)] Bf (u)B} (-u,)d*u.) at the left
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edge are

[ 1Y (001 =2 1)

| %
n | B8 (6.43)
26
\ 1/
which gives
/00 1 =2 1\
| 0026 -52 2
5| 0 0 66 —132 66 (6.44)
0 0 26 —52 26
\00 1 -2 1)

Using the same process involved in changing corners, the right edge is given
by

/[ 1 =2 10 0)
26 =52 26 0 0
66 —132 66 0 0 (6.45)
26 =52 26 0

0
\'1 -2 100/

[he top edge is clearly the transpose of the matrix for the right edge, and the

|_"—"‘

(%)
o

bottom edge is the transpose of the matrix for the left edge. For

(‘[l'}l f_?,’(v)fj”(:.':)rh.a) (“]1 ny('f!)ﬁi_(u)d'?.&): the left edge is

-2
1 :
%6 § (6.46)
\ 1)
which gives
[0 0 2 -1 —1)
0 0 —4 2 2
=] 00 12 -6 (6.47)
0 0 -4 2 2
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SMOOTHING SPLINE EQUATIONS

The right, top and bottom Ldgoq are obtained in the same fashion as for the

first term. The matrix for ( fu

(v)By(v) rz'u) (jo B (u)B)( u)du) is no longer

the transpose of the matrix for L]w. first term, l)c?c,ﬂ.z,mc.-z the quadratic B-spline

series in the x direction is in a different position to the series in the y direction.

The matrix at the left edge is

which gives

r.—.-i
2| =
e W
[ —

0
\ 0

0 06 13 1)

6

—24
36
—24

§

13
52
78

=

—52

-

13

L}

—4
§

_?)

and the other edges are once again calculated as above.

Values for the total, again in the left bottom position, are

( 0 0
0 0
g 0 0

\ 0 0

D. Near edges, away from corners

26
106
96
106
26

53
—272
—282
—272

53

~19
4

|

546

19 )

(6.48)

(6.49)

.50)

Near the endpoints, the second and second last basis elements overlap with

A 1 B b . x L. I L] | ‘.I
4 other basis elements, as discussed in Chapter 5. Values of jo

Br(v)By(v)dv

near the endpoints were calculated in Chapter 5. For [; B7(u)Bj(u)du the

corresponding calculations are

/ By(u)B (u)du=1x -2 = -2
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1 § .
/ Bi(u) B (u)du = / u(l—2u)+ (1 = 2u)(u— 1du = —% (6.59)
0 t

J 0

¥ y
/ Biy(u) By (u)du = / u(u — 1) = —% (6.60)
0

S0

The matrix for (_];)l 13{(2))13’('0)&0) ([nl B}(-u.)f;a’;:(u)du) near the left edge is

( 1\ 0 -1 4 -2 1) [0 -1 4 -2 1)
| -2 0 2 -8 4 2
o § 0 -6 24 -12 -6 (6.61)

9 0 >
\ 1) 0 -1 & -% -1/

The matrices for positions near the right, top and bottom edges are then

derived in the same manner as for the first term. The matrices for

(‘];)l B"j(w)ﬂ{’(v)dv) (_ﬂ)l B;(*{.L)Bk(fz.f,)cm) near the left edge are given hy

( 1\ (0 13 60 26 1) ( 0 13 60 26 1)
. [ 4 L | 0 52 -240 -104 -4
120 § - 120 0 78 360 156 6
—4 0 —52 —240 -104 —4

\ 1/ \0 13 60 26 1)

(6.62)
and the other positions are again calculated by shifting the position of the

ZCroes as Ifl.l')f')\)(-?.

The total of the values for all three terms near the left edge is

/() 53 115 106 26
0 —272 —490 —5d44 106
oG | 0 —282 2650 —564 96 (6.63)

0 —272 —490 —544 106
\0 53 115 106 26

. At one edge and near one edge

Using the numbers obtained above, the matrix for
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(J;: h’_;(-z:)/5’;(11)(.!1;) (.j;f B}'(H)B;;('r.ﬂ)('ﬂ'u,) at the left bottom position is

|

(0 13 60 26 1)

o e
120

[0

0
0
0

\ 0

()

()

13
—26
13

0

60
-120
60

0 0 \
0 0
26 1
52 —92

(6.64)

The matrix for the right bottom position is once again given by shifting the

columns of zeros, as follows.

120

(13 60 26 1 0)

For the left top position, we have

l
120

( 0
0
1

.

=

\ 1)

(13 60 26 1 0)

and for the right top position,

120

Moving on to the second term. the values of

(13

o
120

100

—26

—-26

0
13

13

|3
—26
13

()

13

0

—120

—120

GO

GO

GO
=120
60

0

GO

GO

() 0 0
2% 10
52 —2 0
2% 1 0 )

26 1)
—52 -2
26 1
0 0
0 0)
(6.66)

26 1 0 )

52 —2 0

26 1 0

0 00

0 00/
(6.67)
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tion,we have

( 0 (0 =2 5 —4 1) [0 0 0 0

: 13 { 0 =26 65 =52
= : = — ~120 : — 9/
o | 60 T (.) 120 300 —240
26 0 -—-52 130 -104

\ 1 \0 -2 5 —4

Near the right bottom corner, we have

( 0\ (=2 5 =4 1 0) [ 0 0 0 0

| 13 i —-26 65 =52 13
: ooty | cdgs BRh itk e

55 | 60 o 120 300 —240 60

o ,
\ 1/ L =2 B el 1

For the right top corner, the matrix is

/ —26 65 —52 13 0 )
~120 300 —240 60 0O
—52 130 -104 26 O

R
120

and for the left top corner the matrix is

[0 -26 65 -52 13 )

] 0 =120 300 =240 60
— —52 130 -104 26
150 () 02 150 104 26

0 —2 5 -4 1

—
—
o
e

0 0 0)

(6.73)
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The matrix for (‘];)I B{(W)H’(w)dw) (_];)l .[3}(u)ﬁfc(’a.a)du) is

/ 0N @ <1 4 =g 1) [0 0 0 0 0)
b =4 0 1 =4 2 =1

— | 4 ==—|0 -4 16 -8 4 (6.75)
= 3 0 2 -8 4

\ 1) \0 -1 4 -2 _I/

The other positions are again calculated in the same way as they were for the

first term.

Values for the third term, (] B (v) B} (v) du) (ju Br(u Bk(u)du), are given
by the transpose of the matrices for the first term, because both the B;(z) and
B;(y) series are in the same position.

The total of the values for all three terms is

[0 0 0 0 0
0 53 115 106 26
o0 | 0 272 490 -544 106 (6.76)
0 —245 2120 —490 115
\ 0 —136 —245 —272 53 )

6.3 The total roughness penalty

As explained in section 6.2, the above templates give the rows of the roughness

penalty matrix Z. The elements in matrix (6.12) appear in row [,/ in the

order

B1r8k=g -2 BroBraai-g: s+ s BraBr=gpciyiuis i yBryBr_sit2,. .., BryBriaiso
(6.77)

Using the templates for the total derivative calculations, given at the bottom
of each of the above sections, the full roughness penalty matrix Z is of the form
shown in Figure 6.7. We have to divide the matrix by A% due to our scalings
u = wy/h and v = w,/h. The plot in Figure 6.7 shows that the matrix Z
s ‘block-banded’, in that it has 5 bands surrounding the main diagonal, with
each band consisting of blocks of 5 banded matrices. Each block is symmetric,

as is the total matrix Z. Its repetitive nature stems from the fact that it is the
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sum of three tensor product matrices. The dimensions of Z are (M 4 2)(N +

2) x (M +2)(N +2).

6.3.

20

"
-
_ ---------------
IIIII - TR
T aamae meeas s
EEEE mmEEE EmEEw
R ] -
e mEsss B e
- " -
- - -
- - - - - -
ERE S RS Ry -
iiiii - LR -
A mmeEs mmeEw -
llllllllll - RO
I I I N A - ER
llllllllllllllllllll
llllllllllllllllllll
- - -
- - -
— - - -
- - - EEEES -
R L L N T Y -
L L T L S N T
iiiiiiiiiiiiiiiiiiiiiiiii
lllllllllllllllllllllllll
!!!!!!!!!!!!!!!!!!!!!!!!!
llllllllll - - P
- - - EEE Y
- RN LR L
- - - —
-
lllllllllllllllllllllllll
lllllllllllllllllllllllll
lllllllllllllllllllllllll
lllll - N I -
----- LY FEEEE I R
llllllllll - L - ..
- -
-
— - —
-
llllllllll - EEmE- -
EEmmE 000 mEmmms mmaae mEEmE 0 mEsmEw
lllllllllllllll . -
lllllllllllllll - -
llllllllll CEER EEEE EEEm.
lllllllllllllllllllllllll
- -
-
L - - —
- - -
WEEEE mmmEs 0 meEsEsEs 00 smsee -
- FEEEE 0 EsEEE 0 sEEes -
EEmE EEEeEw FEmE mEsss mmEew
llllllllll - CEIL RN -
llllllllll " e -
llllllllll - - -
- - - -
- ey - -
- - - - - —-
- - - -
||||||||||||||| - -
lllllllllllllllllllllllll
L T T e -
!!!!!!!!!!!!!!!!!!!!!!!!!
iiiiiiiiiiiiiiiiiiii -
aw L EE EE
- - - - -
- - - -
— - . - - - -
" - - - -
- - CEE R I T T
#amEs mmmEs mmmes mmEEs aaaaE
!!!!! - - - - EEEE S EE Y
llllllllllllllllllll CEE T
!!!!!!!!!!!!!!!!!!!! -
llllllllll “-aw EEEE - "
EREES - - "
- CEE
— " - -
- -
llllllllll - I
llllllllllllll - I
. L L] L
mammE ssmes 0 sssms 000 mmaae
llllllllllllllllllll
llllllllllllllllllll
e
.
— - —
LN
lllllllllllllll
aMmen 000 mmmEs 0 mmmas
admaE 0 smmss 00 smsss
mammm smmmm ammes
lllllllllllllll
lllllllllllllll
- LI
CE

0
10K
20F
30f
40
50
60
70t
80+
90k

100

(6.78)
(6.79)

80 80 100

70

- flrj.;’:ﬂ

A
h?

i) i

60

g

=

50
104

40
| Pax — z

1
'

Hiind = /jf(!,) BJ(."’H)

30

Minimise

10

Figure 6.7: Position of non-zero entries in the roughness penalty matrix Z.
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We now have the discretised minimisation problem

data point locations (z;,;), so that









Chapter 7

Prolongation and restriction of

bivariate quadratic B-splines

Prolongation and restriction processes for the bivariate case involves the uni-
dimensional processes discussed in Chapter 5. These processes act on both
quadratic B-spline series in the z direction and the quadratic B-spline series
in the y direction. Any prolongaton or restriction that occurs in one direction
will not affect the bivariate basis element in the other direction. This means
that the result of prolongation is independent of the order in which the two

univariate prolongation operations are performed.

7.1 Prolongation

The process of prolongating the bivariate solution estimate to a finer egrid is
shown in Figure 7.1. The rows are prolongated first, giving an intermediate
set of coeflicients corresponding to the refinement of the resolution in the z
direction. The procedure is completed by refining the columns.

Pease [95] demonstrates a general method which can be used to look at the two
univariate operations simultaneously. We can apply the process in Pease [95]
by considering a bivariate quadratic spline that is zero on the entire grid except

for one basis element that has a coeflicient of 1,
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This spline is

s(zy)= D > byyBi(2) By s(y) (7.1)

Te=i) J=0

where

by = 0 [£ K, J#8
I=K,J=85

o
o
Ly

Il

—3

(7.2)

so the spline s(z,y) is

s(z,y) = Bg(z)Bs(y) (7.3)

To prolongate s(z,y) down to grid [ we only have to prolongate one basis ele-
ment, which involves prolongating each univariate basis element in the tensor

product. The two univariate processes are

|

I Pr

P = Qp
(7.4)

where p and v are the coefficients for the B-spline series in the z direction, for
the fine grid and the coarse grid respectively, ¢ and ¢ are the corresponding
coefficients for the B-spline series in the y direction, and P and Q are prolon-
gation matrices for each direction. The vectors v and ¢ clearly have v, and
¢s as their only non-zero elements, For notation simplicity, set the lengths of

the vectors u, v, ¢ and ¢ to ny, ny, my and mg respectively.

We know that the non-zero part of s(z,y) on grid { will be

1 3 3 l 1 3 3 1
(EBE,I\’—'E + aBz.f\-‘ -1 EBE,I{ + EBLN-H)(EB{,S—Q + ZLBI.S—l + EB:.,S - Eﬁz,.ﬁﬂ)

(7.5)
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e e

The fine grid coeflicients for s(z,y), denoted by a;;, are therefore

S T T A B

1 1
daK —225-2 i X7
”’I‘H"\r' ].|2r".'l' 2 H i H

A2K,25-2 % X l|

- 11

Q2K +1,28-2 1%

I B

2K -2,25-1 :x 8

- 8. 2

QR —128=-1 3x3

rom ooy 5 Q

2K,25-1 3 x 3

K : 1y 8

Q2K +1,25-1 x 2
\ gtc / \ ete /

Knowing this, we write a and b in terms of products of the univariate coeffi-

cients p, 1, ¢ and ¢.

( [Py \ ( 11 \

Hay 2401

a = l)_

/
\ Hny Py ) K Vo @i /

Now to find the relationship between these two vectors, look at the individual
components

mer = (puvs+ -+ Pringtn,y ) (qurter + .. . (s Crria )
= Pugqu1@r + praqritee; + - + prigratnes + .. ete
= qulpn p2... Ping) b1+ quzlp11 P12 Pima)ba + .. ete
(7.6)

i

4 Y -~ - A~ ’I'" . ; g ; ] * s iy &
where by = [19; @i . 1,7, the coefficients corresponding to the it* row

of the coarse grid. We now see a relationship between a and b which can be
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written symbolically as

/(-IHF Q2P ... fIlv-n.zF\

(21 P {f22 =i (J2my P b (7 7)

2
\ QWHIJ co ca Q*mym.gp /

This matrix is a Kronecker product, also called a direct product or a tensor
product [95, 85]. It is denoted
@F (7.8)

sO we can write

a=Q®Pb (7.9)

In general, the Kronecker product of an (m x n) matrix A = [a;;] and a (p % ¢)

matrix B = [b;j] is an (mp x ng) matrix given by

(LIIB doe e (L]“B
ARB =
Am1 B nn B

Now that we have considered the simple case of a spline with bgxg = 1 being
the only non-zero coefficient, we generalise the result to any spline. This
follows by considering the spline as a linear combination of single basis elements
and the linearity of the transformation represented by the Kronecker product
matrix. Clearly in the case of prolongation the Kronecker product corresponds
to prolongating first the rows of coefficients then the columns. Each row,
b;, is operated on by the prolongation matrix P. The prolongated rows are
then added together in an appropriate linear combination to prolongate the
columns. The Kronecker product matrix for prolongating biquadratic B-splines

1s depicted in Figure 7.2.
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s50F \\ i
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\
\

200 |- \
250 \\\"\ .
A\
so0 :& :
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350 | \\ -
A\
s 50 1 l\c?

SRR . A : : , i T e L ! : ; A e sl s
Figure 7.2: Position of the non-zero entries in the tensor product matrix for
prolongation of a bivariate quadratic B-spline.

7.2 Restriction

I'he bivariate restriction process is analogous to the prolongation process

above. The bivariate restriction minimisation problem is

Af.‘.;.l"l' | NH |+l

Minimise //( Z Z bryBiy,i(x) By, (y)
J [=0

J=0
Mi+1 Nj+1

2
- 3. 3 “v.;'Bz,f.(-’U)Bf,.y(:U)) dady

=0 4=0
(7.10)
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Differentiating with respect to coefficients by g gives

>3 b [ Buas@Buiss ) B () B s(w)dady
Ji=() JmD gl
N1 Mp+1

= Z (i / / Byi(2) By (y) B,k (2) By, s (y) dady

i=0 j=0
(7.11)
Separating out the integrals gives
Mig14+1 Npp1++1 : )
¥, N b!.f] HHI,I(m)B.’.-i-l,.’\'(-'I:)dm/BH-I,J(:U)BHl,-‘s‘(?/)d?f
I=0  J=0 ;
Mi+1 Ni+1 : :
=3 > ay / Byi(2) Biy,k (z)dx / By (y) Bir,s(y)dy
=0 jmb '
(7.12)

Looking at the left hand side, we can see that [ By s(y)Biy,s(y)dy will stay
constant for each row, and on the right hand side j By j(y) By, s(y)dy will stay

constant for each row. We can write (7.12) as
Xo@Xib=Y,®Ya (TH)

where X and X, are restriction matrices X, discussed in Chapter 5, for the x

and y directions respectively and Y] and Y5 are matrices Y for each direction.

Both these Kronecker product matrices are depicted in Figures 7.3 and 7.4.
LThese operations can also be seen to act first on the rows and secondly on the
columns. On the right hand side, for example, the matrix Y] acts on each row,
then the rows are multiplied by elements of the matrix Y5 and added together

to restrict the columns. This process is shown in Figure 7.5.

The least squares restriction has been used in this study to determine the differ-
ence between fine grid and coarse grid bivariate quadratic B-spline functions.

For the bivariate case the orthogonal distance between the solution estimate
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Figure 7.4: Positions of non-zero entries in the tensor product matrix Y, ® ¥5.

recalling that b is given by (7.13). The norm of this function is

il = \/}?-ECTXQ ® X1 (7.16)






Chapter 8

Optimising the smoothing

parameter

The techniques used in this study for optimising the parameter A for the uni-
variate discretised system in equations (3.5) and (3.29) or the bivariate dis-
cretised system in equation (6.80) are based on an adaptive iterative strategy
described in Hutchinson [67]. The process involves double iteration to attain
mcreasingly accurate estimates of both the solution and the smoothing param-
eter. The method uses the nested grid method to iteratively solve the system
whilst periodically updating the estimate of A using the current solution esti-
mate. This is designed to be more efficient than converging completely to the
solution for a given estimate of A before obtaining a more accurate update.
However, it does compromise the multigrid process by repeatedly altering the
discretised system, changing the target solution and adding new error compo-
nents to the existing solution estimate.

The Hutchinson [67] study optimised the smoothness by iteratively updating
the smoothing parameter A to deliver a user specified residual sum of squares.
This method is modified here to optimise the smoothness by minimising GCV.

Both of these iterative processes are outlined in the following paragraphs.

8.1 The OPTRSS algorithm

As the name suggests, the OPTRSS algorithm optimises the smoothing pa-

rameter to yield a prescribed residual sum of squares from the data. The
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8.1. THE OPTRSS ALGORITHM

algorithm, detailed in Hutchinson [67], uses an iterative Newton procedure
to produce smoothing parameter estimates that converge to the prescribed
residual sum of squares. Such a method is useful in terrain modelling where
some information about data errors is known [58]. The OPTRSS algorithm
was used in this study to understand and test the double iteration framework
before applying it to minimisation of the GCV, given that it is a simpler, well-
tested algorithm. The OPTRSS procedure is based on constructing a Newton
increment in the smoothing parameter, denoted 460, from the residual sum of

squares as follows:

00 = (5 - R) s (8.1)

dt)
where S is the prescribed residual sum of squares, R is the residual sum of
squares for the current solution estimate and 6 = [nA. This scheme is used
to obtain updates to the @ estimate that lead to convergence of I to S. The
logarithm of the smoothing parameter is used to ensure that the smoothing pa-
rameter estimate does not become negative in the initial stages of the iterative

]')I'(.)C:(‘.(']HI'(?.

The Newton scheme requires calculation of diR/df. From Chapters 3 and 6,
covering both piecewise constant and quadratic B-spline discretisation for the
univariate case, and biquadratic B-spline discretisation for the bivariate case,
we write the generic system of discretised thin plate smoothing spline equations
as

(PP + AB)u= PTz (8.2)

where z is the vector of data values. Both P and u depend on whether piecewise
constants or quadratic B-splines are used to approximate the thin plate spline
solution f. For piecewise constant discretisation, u is a vector of coefficients
for first order B-splines as in equation (3.5), where u; = f;. For univariate
quadratic B-spline discretisation u stores the coefficients in cquation (3,25)), S0
u; = . For the bivariate case, u; = oy, as in equation (6.80). The vector Pu
gives the values of the function f at the data point locations. The matrix P is
given by (3.4) for piecewise constants, (3.28) for univariate quadratic B-splines
and (6.79) for biquadratic B-splines. The matrix B is the generic roughness
penalty matrix, which is given by Q7Q/h* for the univariate case and Z/h°

for the bivariate case. Now we can write the residual sum of squares for any
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CHAPTER 8 OPTIMISING THE SMOOTHING PARAMETER

of the cases above as
R=|Pu=z|®=u"P"Pu-2uTPz + 27z (8.3)

Applying the chain rule to equation (8.3) gives

diR  dR du

i

= W —_— 1
P P A5 BA
where
vl = PTPu— PTz = PT(Pu - 2) (8.5)
Differentiation of the discretised system in (8.2) with respect to A gives
(PP + AB)%‘ . (8.6)
Converting to differentiation with respect to @ gives
!
(PTP + AB)% = —\Bu = v! (8.7)
given that
dA 9 2

Thus du/df satisfies the same system of equations as u, but with the data
vector P'z replaced by the vector v'. It is therefore possible to simulta-
neously solve both (8.2) and (8.7) numerically with a relatively low storage
requirement.

Having established the Newton method procedure, the OPTRSS algorithm is
given by modifying the nested grid algorithm given in section 4.2.4. Conver-
gence of the smoothing parameter estimate on a given grid was determined
by a criterion ), and the resolution refinement process was terminated by a
criterion 1. Assuming that we start on a grid of coarseness 2! and refine the

resolution by a factor of 2, the algorithm can be written as follows:
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8.1. THE OPTRSS ALGORITHM

while 12 = toll
q=10
while () = tol2
w(0,) = S5 (u

Ogp1 = 6, + 66
g=q+1
end
-1 = Ty
.y = 71
l=1-1
end
g =0
while Q) = tol2
w = 5" (wy, %)
u = 5% (uy, vy)
g=q+1

end

The process in the above algorithm is to perform v; smoothing iterations on
the discretised system on grid level [, to solve for u;, the solution on level
[, and its derivative with respect to @, uj. The estimate of u; is then used
to update f,, the ¢" update of 6, to converge to the smoothing parameter
corresponding to the prescribed residual S. The procedure is repeated until
the ¢ updates converge, as determined by the criterion ). The value of Q) was
set to the sum of the absolute differences between 4 consecutive 0 updates.
The appropriateness of this tolerance is discussed in Chapter 12. When the 6
updates converge, the estimates of the discretised solution and its derivative
are prolongated to grid level [—1. The prolongation operator is denoted 7;. For
the piecewise constant univariate discretised system, the prolongation operator
17 15 the linear interpolation operator given in (4.22), and for the quadratic
B-spline univariate discretised system the prolongation operator corresponds

to hierarchial B-spline refinement and is given by (5.10). For the biguadratic
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CHAPTER 8. OPTIMISING THE SMOOTHING PARAMETER

B-spline discretised system, 7T; is the tensor product prolongation in (7.9).
This process continues until the criterion D prevents further grid refinement.
The value of D is given by

- ||Qz\| ;
[) = =il i
17 (8.9

where g, comes from the least squares restriction discussed in section 5.3.3. The
value of ||g||, normalised by | f;]|, is a measure of the fine scale information
contributed by the finer grid. If this measure was less than an experimentally
determined tolerance, it was considered unnecessary to consider refinement.
This is discussed further in Chapter 11. However, during the initial testing
phases reported in Chapters 10 and 11 the number of # updates and the number
of grids was often allowed to go beyond the tolerance to observe the behaviour

of the algorithm.

8.2 The MINGCYV algorithm

The objective of this study was to develop a procedure to iteratively solve for
minimum GCV bivariate finite element thin plate smoothing splines. The min-
imum GCV criterion is used to optimise the predictive accuracy of the fitted
surface, as discussed in Chapters 1 and 2. The algorithm developed during
this study to converge to a minimum GCV solution is termed the MINGCV
algorithm. The MINGCV algorithm has the same design as the OPTRSS algo-
rithm, but A is optimised to achieve a minimum GCV rather than a prescribed
residual sum of squares. This is done using the following second order taylor

series expansion

dGCV (6,) d2GCV(6,) (6 - 6,)*
/g5 = GCV i2(8 — 8, d i 8.
GCV(6) = GCV (6,) + =10 — 6,) + 7 ; (8.10)
Differentiating with respect to @ gives
dGCV (6) R
—_— = L s t'; :
7 b+ cf (8.11)
e IGCV(9,) d*GCV(6,)
c'. T (Ir : .:f ’f
2 — i q _ 2
’ 0 T aE Hde)
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8.2. THE MINGCV ALGORITHM

EGCV(6,) |
o 313
: 107 (8.13)

Thus the value of € that minimises GCV is estimated by

0 =-b/c (8.14)

This procedure requires estimates for the first and second derivatives of GC'V(8,).

The expression for the GCV in equation (2.23) can be expressed as

nli

p:["r?_,_:a (8'15)

where T'r = tr(I — A) and A is the influence matrix defined in (2.22). Differ-

entiating equation (2.23) gives

dGCV n [(dR dl'r
= — [ =77 = 2Tr——1}
Ao~ Ty (clé? T ?) e
I*GCvV n [(d*R o d1T'r dTr\*
dg* Ty (rsz ( i (W) ) H)
dn dl'r [ dR dl'r

“Tr5 df (d() T QT’WH>

(8.17)

g & i R , i [=0 of'n 1y i T R F - 1 - s 3 - LF ]
['hese derivatives require an estimate of the second derivative of 1 in addition
to the first derivative required by the OPTRSS algorithm. This is obtained by
differentiating equation (8.4) to give

d*R o1 du
= (N T 22 2P p 5. 18
dor = AL gy T (dﬁ) (8.18)

An estimate of d*u/d6” is obtained by differentiating equation (8.7) to give

o “u du .
}")fj? h? ( S el = 3T 1 (i 2 1¢
( A )_(/()3 vi4 Pt p__ = (8.19)

I'hus d*u/d0 is obtained by solving the same system of equations as those
that give du/d6 and u.

[he equations for the GCV and its derivatives also involve T, dT'r/df and
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CHAPTER 8 OPTIMISING THE SMOOTHING PARAMETER

d*T'r/d9?. Calculation of the trace and its derivatives requires some knowl-
edge of the influence matrix A. Given that this matrix is not involved in
the previous calculations of the discretised system, Hutchinson [59] proposes a
computationally efficient approximate method that yields a stochastic estimate

of T'r. This method 1s discussed below.

8.2.1 A stochastic estimate for the trace of the influence

matrix

The stochastic estimator developed by Hutchinson [59] is motivated by the
relation :
tr(A) = > el Ae (8.20)
j=1
where {e),...,e,} are the n linearly independent columns of the n x n iden-
tity matrix. This summation is numerically impractical, since it requires n
solutions {Aey,..., Ae,} of the smoothing spline. Hutchinson [59] therefore
suggests replacing the n linearly independent vectors by a single vector with

stochastically independent entries. It is shown in Hutchinson [59] that
E(tTAt) = o’trA (8.21)

where t = (f1,...,1,)7 is a vector of n independent samples from a random
variable 7' with mean zero and variance 0. This follows immediately from the
expansion

tTAt = ) tiayt, (8.22)
?I|j

The value of E(T?) is 0*, and the value of E(T)E(T) is zero, so the only
non-zero terms in the sum are those in which 7 = j.

Thus t* At is an unbiased estimator of ¢trA if 2 = 1. This relation has been
recognised by both Girard [36] and Hutchinson [59]. Girard [36] takes 7" to be a
standard normal random variable. Hutchinson [59] proposes a minimum vari-
ance estimator, obtained by chosing t to be a vector of n independent samples
from the discrete random variable 7" which takes the values 1,-1 each with prob-
ability 1/2 [59]. This estimator has been employed in a wide range of numerical

problems, including calculation of the trace and determinant of symmetric pos-
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8.2. THE MINGCV ALGORITHM

itive definite matrices, and general Tikhonov regularization problems and as-
sociated applications, as documented by [38, 37, 4] and [114]. Hutchinson [59]
also shows that, with this choice of t, the relative standard error of t* (I — A)t

in estimating tr(/ — A) is bounded by
(2/n)'/? (8.23)

It is further shown in [59] that this is a conservative bound, so the actual
standard error could be expected to be considerably less.
An estimate of T'r at any point in the iterative procedure can be obtained by

applying the MINGCV procedure to the equation
(PTP+ AB)b=PTt =w° (8.24)

FEquation (8.24) is the same as the discretised system for the smoothing spline,
but it has Pt as the right hand side instead of PTz. The vector At is then
estimated by Pb. With this implicit estimate of the influence matrix, the trace
estimate is given by

trA = ti (8.25)

where t = PPb. The first and second derivatives of the vector b are given by

- /b
[Jf P r_ — w! .26
( +AB)— =W (8.26)
where
w! = PTph — pT¢ (8.27)
and .
;- I“b .
PTP 4+ \B 5 = wwrd i
( + AE )(K(:W W (8.28)
where
B T 0b 2¢
w w' +2F Fn{() (8.29)

[he first and second derivatives of 7' are then calculated by

dTl'r dt,

d*Tr d*t .
a0 T T apt i554)
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8.2.2 The algorithm

The MINGCV algorithm is given on the next page, where v} is P72 and
u™ is the m* derivative of u with respect to #. The MINGCV algorithm
proceeds in a similar manner to the OPTRSS algorithm. This time, smoothing
iterations are performed to solve for m derivatives of the solution estimate ancd
n derivatives of the vector b, These estimates are all needed to update b, to
converge to the minimum GCV smoothing parameter. All these vectors need

to be prolongated when refinement occurs.

8.2.3 Differentiation of 7'r

The above process for obtaining the derivatives of 7' can be made considerably
more efficient by differentiating with respect to A instead of 0. Equations (8.26)
and (8.28) can be written as

b

(PTP + AB)d = —Bb = w! (8.32)
T 1 d*h oy e @ o )
(PTP + AB)W = 213(m (8.33)

Note that the right hand side of expressions (8.32) and (8.33) has been ex-
pressed in terms of the solution vector b rather than the data vector t. Rear-

ranging (8.33) gives
db
ff.ﬁ\

Differentiating t* Pb with respect to A and using (8.34) and (8.24) gives

—(PTP 4+ AB)"'Bb (8.34)

d1'r

= b’ Bt 3.35
I Bb (8.35)
and g2
dIl'r
il SR, T g
7 Ab* Bh (8.36)
Differentiating again gives
d*T'r yd*T'r dT'r 2/ 7 b - -
7T A Vi + A - - —-2A*(Bb) 0 + Ab* Bb (8.37)
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while D = toll
g=0
while () = tol2
w(6,) = S* (W (6,), v}
wy(0,) = S, (vy(6,), v;

forn=0to 2
bg(ﬂ) (ﬁ)q) - ng (bf“) (@q): W?)

b (0,) = S (b (,), w})

end

: — _ b

f?Qﬁ'l S 20

g=q+1
end

for m =0 to 2
o) = T
end
forn=0to 2
bi™) = Tib™
end
[=1-1
end
g =20
while ) = tol2
for m=10to 2
u™ (0) = S (u™ (8,), V")
end
forn =0 to 2
bi™ (65) = St (b{™ (8), w})

end

b
()r,t 1 = T
qg=q-+1
end
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Note that the expression for d7'r/df does not involve db/dA and d*Tr /d6? only
requires the first derivative of b with respect to A. This cuts v; smoothing
iterations out of each @ update procedure in the MINGCV algorithm. The
modified MINGCV algorithm is given on the next page.

8.2.4 An alternative for the bivariate case

Most of the exploratory analysis for the MINGCV algorithm was done using
the univariate processes. The design of the bivariate algorithm was therefore
more structured, and it was decided to use a consistent formulation for the
above systems of equations. Given the above results for 7' and its derivatives,
it was decided to differentiate both the vectors u and b with respect to A. This

gives the following equations for the bivariate solution and its derivatives.

(PTP + AB)u = PTy (8.38)
1
(PTP + AB)% = —Bu (8.39)
e d*u du -
(PTP + ,\B)W - -‘BBH (8.40)

Note that the right hand sides for (8.39) and 8.40 have now been expressed in
terms of the solution vector u rather than the data vector z. This was done
to be consistent with the equations for b. The equations for the derivatives of
R in terms of du/d\ and d*u/d\? are

dR A2 du ,

bt SN 5 LI Uy 8.41

0 TEA Y (8.41)
d*R .- du . du. . du : d*u .
o) R B oy 4 G D1 0 M 3.42
10? WBos —2X(33) By — W B (8:42)
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while D = toll
g=10
while () = tol2
for m=10to 2
u™ (6) = Si* (uf™(6,), vi")
end
forn=0tol

bgm) (Oq) = §v (bgﬁ-) (Qq): wz*)

end
Og+1 = —%
¢g=q+1
end
form =0 to 2
ug(TR _ ,Iluz(m)
end

forn=0to1l
bi") = Tib;"
end
l=1-1
end
g={0
while () = tol2
for m =0 to 2
u{™ (6,) = S (u{™ (6,), v
end
forn=20tol
bi™(6,) = "1 (b™ (6,), w})

end

I
Og+1 = =5
qg=q-+1

end
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8.2.5 Variation in solution characteristics with changes
in A

There are some basic relationships between the statistics and parameters de-
scribed in the previous sections that are useful in analysing the output of the
MINGCV algorithm. Standard output descriptors include the smoothing pa-
rameter A, the residual sum of squares R, the GCV and the signal, or tr(A).
These quantities are produced by the programs in ANUSPLIN [68], that cal-
culates analytic minimum GCV thin plate smoothing splines. It was useful to
this study to consider the variation in R, the GCV and the signal with changes
in A,

The typical structure of the GCV curve is shown in Figure 8.1 [68]. The GCV
normally has a unique local minimum value for a smoothing parameter value
A = A, unless there are significant errors in the data or the model has been
significantly misspecified [68], Using the GCV curve, the expected shapes of
the curves for dGCV/dA and d*GCV/dN? were derived, as shown in Figure 8.2.
A close up of the interval containing the A values close in magnitude to A, is

shown in Figure 8.3. The curves show that, for the region in the vicinity of

0.25F
02 =
0.15%¢
GCV

01 T
0.05F

0 I l : i I

-5 0 5 10 15 20

log A

Figure 8.1: Plot of the GCV as a function of the logarithm of the smoothing
parameter,

129



8.2, THE MINGCV ALGORITHM

Am, the value of dGCV/dA should be negative if A < A\, positive if A = A,
and zero at the minimum. Near the endpoints of the GCV curve dGCV /dA
will clearly approach zero, at a slow rate. The second derivative, d*GCV/A?,
should always be positive near A,,, although at the endpoints its value may be

negative or zero.

0.4 1 1 I ! | I | I
D3 §
Goy 02r |
01 5
e Sl
| | | | i 1 | | |
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log A
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logA
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log A

Figure 8.2; Plot of the GCV and its derivatives as a function of the logarithm
of the smoothing parameter.

The curves for R are shown in Figure 8.4. As the smoothing parameter in-
creases, the fitted curve becomes smoother and the data are not fitted as
closely, so R increases, The value of dR/d\ should therefore always be pos-
itive, leveling off at the endpoints. The value of d?R/d\? can be positive,

zero or negative. The signal and its derivatives behave in the reverse manner,

130









CHAPTER 8. OPTIMISING THE SMOOTHING PARAMETER
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Figure 8.5: Plot of the signal and its derivatives as a function of the logarithm

of the smoothing parameter.
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Chapter 9
Testing of multigrid algorithms

As discussed in Chapter 1, the initial method of discretisation was to use
a piecewise constant approximation, with a constant value in each grid cell.
Preliminary analysis of the v-cycle and nested grid multigrid schemes applied
to the univariate piecewise constant smoothing spline system in equation (3.5)
was conducted. These multigrid algorithms were investigated here on the
basis of the review in Chapter 4. The nested grid and v-cycle algorithms are
described in section 4.2.4. The aim was to assess the performance of multigrid
as a method of iteratively solving the univariate piecewise constant smoothing
spline problem without the additional complications associated with optimising
smoothness. The optimal, or minimum GCV, smoothing parameter A\ was
therefore determined separately using the analytic procedures incorporated in
the programm ANUSPLIN [68]. The ANUSPLIN program calculates analytic
thin plate spline fits to data, with the option of minimising GCV, and produces
diagnostic statistics, such as the GCV, the residual sum of squares /2, and the
signal, or tr(A).

The analyses in this chapter were designed to identify the key influences on
the performance of multigrid algorithms when applied to piecewise constant
smoothing splines, and to assist in the design of an optimal multigrid algorithm
for solution of this system. It was emphasised in Chapter 4 that, while multi-
grid literature provides guidance and recommendations, multigrid schemes are
very flexible in their design, allowing the user to experiment with different al-
gorithms and settings to optimise convergence properties. The initial settings

chosen for nested grid and v-cycle in this analysis are summarised in Table
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1. The sensitivity of the multigrid algorithm to changes in these settings is

discussed in this chapter.

Setting V-cycle Nested grid
No. of grid levels (L) 6 6
No. of smoothing iterations (v;) 2 B 10
per grid level
Coarsening ratio 2 2
Type of smoothing iteration SOR SOR
Relaxation parameter (w) 1.6 148
Coarse grid operator discretisation discretisation
Type of prolongation linear interpolation | linear interpolation
Type of restriction Full weighting Full weighting
No. of grid points on 361 361
the fine grid
[nitial guess (up) Ze10 2610
Data set sine.dat sine.dat

Table 9.1: Initial multigrid settings.

The significance of these settings has been discussed in Chapter 4, however
some further points require clarification. Several settings, including the num-
ber of grid levels, the type of smoothing iteration, the coarse grid operator, the
number of grid points on the fine grid and the initial guess were set arbitrarily
and optimised experimentally. The relaxation parameter for SOR smoothing
was also optimised experimentally for both algorithms, as is commonly done
for multigrid algorithms [2]. It is stated in Brandt [16] that the smoothing
factor is generally insensitive to the relaxation parameter, and its value is not
significantly increased if w is not optimal. Interestingly, the value of w = 1.6
was also obtained experimentally for SOR by Hutchinson [58] and Atlas [2].
For v-cycle, it is recommended by Brandt [17] to choose 3 presmoothing and
3 postsmoothing iterations. Nested grid, however, is not a cyclic algorithm,
s0 the number of smoothing iterations is determined by the desired accuracy.
The results in this chapter indicate that there is an advantage in having more
smoothing iterations on some grids than on others.

With regard to the transfer operators, both are second order, and are standard
choices for multigrid algorithms [20]. The order of these transfer operators is
slightly too small to be consistent with the recommendation in equation (4.30),

as the smoothing spline equations are fourth order. Preliminary investigation
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showed that this did not significantly influence the results presented here.

The following sections describe the process undertaken to understand multigrid
and optimise its performance. To make the analysis as transparent as possible,
only the univariate case was considered and the initial data set was designed to
be small and simple. This allowed the analytic solution to be calculated easily
using ANUSPLIN. The analytic solution has been used extensively throughout
this study to assess the accuracy of the solution estimates, estimates of the
GCV, R and the signal, and to provide an optimal smoothing parameter.

For the analyses described below, the error is measured by the deviation be-
tween the analytic solution determined from ANUSPLIN and the solution es-
timate. Deviations from the analytic values of the GCV and the signal due to
the piecewise constant discretisation were found to be negligible in comparison
to other sources of error. The dominant influence on the accuracy of the these
statistics for the data sets considered in this chapter was found to be stochastic
error in the estimate of the trace of the influence matrix. This can be seen

from the following analysis.

9.1 Performance of v-cycle and nested grid

The v-cycle and nested grid algorithms described in Chapter 4, with the set-
tings from Table 9.1, were applied to equation (3.5) using data set sine.dat.
This data set, shown in Figure 9.1, consists of 101 noisy data points randomly
perturbed from a single sine curve by values from a zero mean normal variable
with standard deviation 0.2. The data points are equally spaced at intervals of
3.6. The optimal smoothing parameter for this data set, obtained from ANUS-
PLIN, was found to be 25500. This value is large enough to cause the second
term of equation (3.5) to dominate the system. Both multigrid algorithms
produced accurate estimates of the analytic solution, as shown in Figures 9.2
and 9.3. The analytic solution shows good agreement with the true sine curve
from which the data was obtained, demonstrating the appropriateness of the
cubic smoothing spline for this data set. Note that, for the plots of the piece-
wise constant discretisation in the results chapters of this thesis, the centre
points of each grid cell are joined by straight lines. This was deemed to be an

appropriate representation of piecewise constant discretistations of smoothing
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splines.
15 ' T T
Al
+
+o*
1 T ++ +++
bt § + *y,
+y, $4
¥ T,
oaR **+++ ‘+ ]
¢ B i
+ i
1R il RS
oft . ' + |:':F
2o * o+ o i
¥ w T
05k ¢-++ _‘_'l' 4
LT i s 1'4_
& *
- N . I-+ +
o i + ++ 2 ¢.++
+ + 4
15 ' : ' ' : : '
0 Lo 100 150 200 250 300 aho

Figure 9.1: The data set sine.dat.

Accurate estimates

tised solution were also obtained, as shown in Table 9.2, These estimates
were obtained from equation (8.15) using the stochastic estimate of T'r in
equation (8.21). The low signal reflects the smooth nature of the underlying
process, and explains the large smoothing parameter. Figure 9.4 shows how
the smoothing parameter varies with the signal for this data set. If, rather
than minimising the GCV, a smoothing parameter of 50 is enforced, the solu-
tion in Figure 9.5 is produced, which is clearly a much poorer reflection of the

underlying process from which the data was ereated.

of the GCV, I and signal corresponding to the discre-

[ Analytic Solution | Nested Grid V-cycle
Signal 8.4 9.8 0.1
Generalised Cross 0.034 0.035 0.034
Validation
Residual Sum of 2.85 2.86 2.83
Squares

T ' : ol . i
lable 9.2: A comparison of output statistics for nested grid, v-cycle and the

analytic solution.

['he stochastic error in the estimate of the trace of the influence matrix, tr(A),

was found to have a considerable influence on other solution characteristics,
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150 . :

_1 5 i i i i i L 1
0 50 100 150 200 250 300 450

Figure 9.2: The analytic solution and the piecewise constant approximation
obtained using the v-cycle algorithm.
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Figure 9.3: The analytic solution and the piecewise constant approximation
obtained using the nested grid algorithm.
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Signal

Figure 9.4: The signal versus the smoothing parameter for the data set
sine.dat.
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Figure 9.5: The smoothing spline solution corresponding to a smoothing pa-
rameter of A = 50.
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including the GCV. A sample of 50 spline fits using 50 different random vectors
gave the results in Figure 9.6, where we now present 7'r, or tr(I—A), instead of
tr(A). The extent of the stochastic variability induced in the GCV estimates
becomes especially noticeable after considering the analyses in Chapters 11

and 12, which show that the GCV is usually extremely stable.

According to formula (8.23) the relative standard error in the 7 estimate for
this problem is bounded by (2/n)1/2 = 0.14, giving an absolute standard error
of 12.97. The standard error of the sample in Figure 9.6 was found to be 3.08

which is significantly lower than this upper bound, demonstrating that the

tion of the bound on the standard error. This makes reasonable assumptions
on the distribution of the magnitude of the eigenvalues of the influence matrix
A, and involves making integral approximations for 7' and 7r?. Using these
calculations, the bound on the standard error of T'r for this case was calculated
to be 2.97. This is an accurate estimate of the observed standard error. This
standard error must be considered as a significant source of inaccuracy in the
solution for this data set. However, for large data sets the error in the T'r

estimation will be insignificant.

'lo compare the stochastic error with the discretisation error in the trace, the

trace of / — A for the piecewise constant system was calculated as
T A AT A\-1pT
tr(I — P(P'P + E;;CQ' Gl ) (9.1)

This formula was derived by recalling from section 2.2.1 that Az = Pf and

using the expression for f given by the discretised system (3.5) ie.

(I-Az = z-Pf
= z-P(PTP+ %c;)’fg)—‘ﬂz
= (I-P(PTP+ %cg'fcg)-lp”")z
tr(I—-A) = tr(I-P(PTP+ %Q”‘c‘g)“lp’f‘)
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Figure 9.6: Values of tr(I — A) and the GCV for different random vectors t.

The multigrid algorithms would converge to this trace in the absence of stochas-
tic error. Using this formula, the T'r was calculated to be 92.6. The discretisa-
tion error, calculated as the magnitude of the difference between the analytic
trace obtained from ANUSPLIN, and the trace obtained from equation (9.2),
is therefore zero to 3 significant figures. This is insignificant in comparison to
the stochastic error,

The GOV, R and signal estimates were also evaluated after each SOR iteration
tor the nested grid algorithm. These results are shown in Tables 9.3, 9.4
and 9.5, The estimates on the coarse grid are initially quite variable, but they
settle down and converge to 4 decimal places on the 2 finest grids. Interestingly,
the T'r estimates on the coarsest grid are not much different to those on the
fine grid, indicating that little fine scale structure has developed as a result of
the finer discretisation, Also, the trace estimates change very little after grid
number 3. This implies that further iteration of the solution on grids finer

than the resolution of grid number 3 makes little change to the solution.
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grid iteration number
number 1 2 3 4 b § 7 3 9 10
1 95.22 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21
2 95.20 | 95.20 | 95.21 | 95.20 | 95.20 | 95.21 | 95.21 | 95.21 | 95.21 | 95.21
3 95.08 | 95.12 | 95.12 | 95.12 | 95.14 | 95.14 | 95.16 | 95.16 | 95.16 | 95.17
A 95.27 | 95.24 | 95.19 | 95.08 | 94.93 | 94.81 | 94.78 | 94.75 | 94.74 | 94.71
5 95.00 | 95.14 | 94.30 | 93.65 | 93.86 | 94.13 | 94.37 | 94.41 | 94.41 | 94.42
§ 92.27 | 96.10 | 94.84 | 95.10 | 95.12 | 95.04 | 95.14 | 95.03 | 95.13 | 95.05

Table 9.3: tr(I — A) values after each iteration, for the nested grid algorithm.

grid iteration number
number 1 2 3 4 5 6 7 8 9 10
1 2.84 | 284 | 2.84 | 2.84 | 284 | 2.84 | 2.84 | 2.84 | 2.84 | 2.84
2 288 | 288 | 2.88 | 2.88 | 2,88 | 2,88 | 2,88 | 2.88 | 2.88 | 2.88
3 208 | 297|297 |297|297 (297|297 | 297|297 | 2.97
4 278 | 2.83 1280 | 282|280 281|280 281280280
5] 2.87 | 293 (279|290 (281|285 |2_84|284 | 2234 | 2.83
§) 13.54 | 5.75 | 3.94 | 3.64 | 3.55 | 3.48 | 3.49 | 3.48 | 3.48 | 3.48

Table 9.4: R values after

- each iteration, for the nested grid algorithm.

grid iteration number

number 1 2 3 2 5 § 7 8
1 0.0316 | 0.0316 | 0.0316 | 0.0316 | 0.0316 | 0.0316 | 0.0316 | 0.0316
2 0.0320 | 0.0321 | 0.0320 | 0.0321 | 0.0320 | 0.0321 | 0.0320 | 0.0321
3 0.0333 | 0.0331 | 0.0332 | 0.0331 | 0.0332 | 0.0331 | 0.0331 | 0.0331
4 0.0310 | 0.0316 | 0.0313 | 0.0316 | 0.0314 | 0.0315 | 0.0315 | 0.0316
5 0.0321 | 0.0327 | 0.0317 | 0.0334 | 0.0323 | 0.0325 | 0.0323 | 0.0322
§ 0.1606 | 0.0629 | 0.0442 | 0.0395 | 0.0396 | 0.0389 | 0.0389 | 0.0390
9 10

0.0316 | 0.0316

0.0320 | 0.0320

0.0331 | 0.0331

0.0315 | 0.0315

0.0322 | 0.0321

0.0389 | 0.0389

Table 9.5: GCV values after each iteration, for the nested grid algorithm.




9.2, APPLICATION OF THE MULTIGRID PRINCIPLE

It was found that v-cycle required 1724 SOR iterations to converge to the set
tolerance, the level of accuracy reached by nested grid in 60 SOR iterations.
The nested grid scheme was clearly a successful algorithm. V-cycle, however,
reduced the error by an average of only 8.1% per cycle, a much slower perfor-
mance than that of an optimal multigrid algorithm. It was therefore neces-
sary to further investigate the behaviour of the v-cycle in order to understand
its poor performance. As discussed in Chapter 4, multigrid theory does not
facilitate straightforward analysis and evaluation of multigrid practice. The

following sections therefore experimentally explain the observed behaviour.

9.2 Application of the multigrid principle

As described in section 4.2, the multigrid principle makes iteration highly
efficient at reducing all components of the error by transferring the problem
to and from grids of varying coarseness. To verify that this phenomenon is
occuring in the case of the v-cycle, the error after & cycles was represented as

the following expansion of the eigenvectors of the matrix PTP + ngTQ.

8 e > (9.9

where w; are the eigenvectors of the matrix PTP + quTQ and ¢; are the
coefficients. The effectiveness of v-cycle at eliminating these modes is shown in
Figure 9.7. The power of multigrid is clearly seen by comparing this behaviour
with the poor result given by basic SOR iteration, shown in Figure 9.8. The
ineffectiveness of basic iteration implies that the dominant modes of the error
are highly smooth. Figure 9.9 shows that this is indeed the case. This is a
direct reflection of the smoothness of the solution. These results confirm that
the multigrid procedures are effective in targeting components of the error that
could not be reduced by basic iteration. The slow convergence of the SOR
iteration on the fine grid could be expected considering the eigenvalues for
this smoothing spline problem. The spectral radii of the smoothing iteration

matrices for each grid are shown in Table 9.6. Corresponding condition
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Figure 9.7: The coeflicient for each error mode VS the number of cycles for
the v-cycle algorithm, for the data set sine.dat.

10 T — e G 1 M T e f T T T T T

0 60 100 150 200 250 300 50 400 450 500

No. of SOR iterations

Figure 9.8: The coefficient for each error mode VS the number of SOR itera-
tions for SOR iteration on the fine grid, for the data set sine.dat.
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Figure 9.9: Modes of e corresponding to the 3 highest coefficients ¢; for the
data set sine.dat.

numbers are shown in Table 9.7. The spectral radius of 1 on the fine grid
demonstrates the inability of basic iteration to eliminate smooth modes. The
coarser the grid, the more efficient a basic iterative method will be.

For multigrid algorithms, the smoothing factor is used as a performance mea-
sure, as discussed in Chapter 4. Here it was suggested that fast iterative
methods do not necessarily make good smoothers, and that the weighted Ja-
cobi iterative method may be a better smoother than SOR. It was found that
this was not the case for the smoothing spline problem. When weighted Jacobi
was used as the smoother in the v-cycle algorithm it required 4125 iterations
to converge to the tolerance, more than twice as slow as SOR. When weighted
Jacobi was used in the nested grid algorithm, 300 iterations were required for

convergence to the same tolerance as that achieved in 60 iterations using SOR.

The poor conditioning of this system on the fine grid is a result of the high
smoothing parameter, which causes the rank deficient matrix Q7Q to dom-
inate the system. Conditioning improved significantly on coarser grids, as a
result of increasing h. However, in the case of the v-cycle algorithm, the data
are only accessed on the fine grid. An initial hypothesis was therefore that,
for v-cycle, iterations on coarser grids were ineffective because they relied on
information from the fine grid, were relaxation is very slow to yield accurate

approximations,
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Grid | Spectral radius of SOR
number iteration matrix
1 1.000
2 0.998
3 0.996
4 0.974
5 0.889
6 ().736

Table 9.6: Spectral radius of SOR iteration matrix for the data set sine.dat.

Grid number | Condition number
1 1 486 000
v, 91 745
3 G321
4 796
B 09.71
| § 56.22

Table 9.7 Condition number of the matrix P7P + ;L'-)};QTCQ for the data set
sine.dat.

Equation (3.5) can be rearranged to give the following expression for the fitted

values

S a2 = ¢
gtheell =9 — B3 %y
T
Mg + 530y

fo = (9.4)
where f, is the value of f in the ¢'" grid cell, m, are the diagonal elements
of the diagonal matrix P" P, a, are the diagonal elements of the matrix Q7(Q
and ¢, are the sums of the contributions from the off-diagonal elements of the
g*" row of QTQ acting on the vector f ie. f,_o —4f,—1 —4f,1 + fo+2-

As h becomes large and the number of data points per grid cell increases, the
function values approach the local averages of the data points in each grid cell.
The similarity is shown in Figure 9.10. Thus on the coarse grid the solution is
contained almost entirely in the data points, and little smoothing is required,
so the system is well conditioned. The nested grid algorithm quickly attains
this solution on the first grid, and has a good solution estimate to pass down
to finer grids. Figures 9.11 - 9,16 show that, in the case of nested grid, little
contribution is required from the fine grids as the solution for this data set

is estimated accurately by iteration on coarser grids. This progression from
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9.2. APPLICATION OF THE MULTIGRID PRINCIPLE

coarse to fine grids demonstrates that the grids chosen in this analysis are
unnecessarily fine, as the solution for this data set can be represented with
far fewer grid points. Clearly there has been little alteration in the solution
after grid number 4. The inclusion of unnecessarily fine grids in the multigrid
algorithms has caused a deterioration in their performance, particularly in the
case of the v-cycle algorithm.

In order to further understand how poor conditioning affects the v-cycle al-
porithm, and verify that the transfer procedures were working correctly, the
algorithm was modified to solve the equations directly on the coarsest grid.
This is a common version of the v-cycle algorithm [115]. The number of grids
was set to 2, and increased to 4 and then 6 grids. The results are shown in
Table 9.8. Convergence was fast for the two-grid algorithm, and deteriorated
as the number of grids was increased. When 6 grids were used the convergence

rate was no improvement on that obtained when the equations were not solved

directly.
1.6 T T T T A — e
— pincowise constant solution
= Inr_.'nl AvDrages
1 o o
W
06
n -
=04
i
1.8 — L i E— & = i i i i
0 50 100 150 200 250 a00 450 400

Figure 9.10: The piecewise constant solution on the coarsest grid and the local
averages of the data points in each grid cell, for the data set sine.dat.
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Figure 9.11: The piecewise constant solution on grid no. 6.
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Figure 9.12: The piecewise constant solution on grid no. 5.
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Figure 9.13: The piecewise constant solution on grid no. 4.
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Figure 9.14: The piecewise constant solution on grid no. 3.
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9.3. DIFFERENT DATA SETS

These results are not surprising, since direct solution on the second grid gives
a very accurate initial guess on the fine grid. There is clearly an efficiency
gradient in the SOR process, meaning that if the solution is not solved directly
on grids close to the final grid, high accuracy cannot be achieved because
the SOR process becomes more inefficient as the grids get finer. The fast
performance of the v-cycle for schemes with fewer grid levels implies that the

v-cycle procedure, particularly the transfer processes, are functioning properly.

SOR iterations
required to reach
the tolerance

No. of grid levels

2 231
3 627
§ 1853

Table 9.8: Direct solution on coarsest grid, with different numbers of grid levels
in the v-cycle algorithm.

9.3 Different data sets

Given that many of aspects of multigrid performance observed above are a
direct result of the nature of the data set, it was important to investigate the
performance of both algorithms on other data sets. Considering the above
results, it would be expected that a larger data set would lessen the impact of
the term Q7@ and improve the conditioning of the system. This should result
in faster convergence of the v-cycle. A data set with the same properties as
sine.dat was constructed, but 360 points were generated instead of 101. This
data set, 360.dat, is shown in Figure 9.17.

Using ANUSPLIN, the smoothing parameter was calculated to be 110 000. For
this data set, the v-cycle algorithm converged to the tolerance in 2211 SOR
iterations, slower than for sine.dat. This result is shown in Figure 9.18, The
slow convergence indicates that conditioning has not improved by increas-
ing the number of data points. However comparison is complicated by the
minimum GCV smoothing parameter, which increased significantly with the
addition of more data points even though the underlying process from which

the data were generated did not change. When the analysis for 360dat.mat
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Figure 9.17: The data set 360.dat.

was rerun with the smoothing parameter set to 25500, v-cycle converged in
1254 iterations, faster than for sine.dat. This was the result expected.

The condition number of the system should also be reduced by increasing the
fine scale structure of the data generation process, which should lower the
smoothing parameter. This would be expected to improve the convergence of
the v-cycle, but may require more iterations on the finer grids of the nested grid
algorithms as these grids are important in developing the fine scale structure,
In order to test these assertions, the 101 point data set bumpy.dat, shown in

Figure 9.19, was constructed from the function
sin 272 /180 + 0.5 cos 4wz /180 (9.5)

Random noise of 0.2 was again added. The smoothing parameter was cal-
culated using ANUSPLIN to be 733, reflecting the fine scale patterns in the
data. Comparisons of the piecewise constant approximation with the analytic
solution is shown in Figure 9.20. The v-cycle algorithm converged in 666 SOR
iterations, over 50% faster than for sine.dat. The nested grid algorithm re-
quired 210 SOR iterations, approximately 3 times as many as required for
sine.dat. Most of these iterations were performed on finer grids, further reduc-

ing the computational speed of the algorithm. In fact, the two coarsest grids
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Figure 9.20: The analytic solution and the piecewise constant approximation
obtained using the v-cycle algorithm, for the data set bumpy.dat.

had only 5 iterations per grid where as all other grids had 50 iterations. These
results further emphasise the importance of the scale of the data generation
process. To give an optimal performance the multigrid algorithms have to be
tailored to suit the scale of the solution, so the dominant modes of the error
can be targeted effectively on grids of suitable coarseness.

The results presented thus far show that the above numerical methods for esti-
mating piecewise constant thin plate smoothing splines collapse for extremely
large values fo the smoothing parameter. In the case of data that represents
zero mean random noise or a global linear trend, ANUSPLIN reduces to linear
regression and estimates the smoothing parameter to be a number approach-
ing infinity. Clearly this corresponds to the matrix PT P + ngT'C? having an
infinite condition number, rendering numerical solution by the above methods

impossible.

9.4 Conclusion

The analyses in this chapter demonstrate the value of empirical testing in the
design of a multigrid algorithm for a given system of equations. The perfor-

mance of the algorithm clearly depends on the characteristics of the problem
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9.4. CONCLUSION

to be solved. In this study, the scale of the solution was found to be a major
issue influencing performance, in that representation of a smooth problem on
fine grids lead to systems that were poorly conditioned. This problem was
overcome by choosing the nested grid algorithm, which incorporated a grid
schedule that began on a coarse grid where the system was well conditioned.
The nested grid results showed that there was little difference between solu-
tion representations on fine grids for the smooth data set. It was therefore
only necessary to solving the smoothing spline problem on coarse grids for
this data set. The incorporation of unnecessarily fine grids slowed down the
solution process considerably.

Stochastic error in the estimate of the trace of the influence matrix was found
to be the dominant source of error in the approximation of the signal and
the GCV corresponding to the discretised solution. Discretisation error in
these statistics was found to be negligible in comparison to the stochastic
error. However, the magnitude of the stochastic error greatly reduces as the
size of the data set increases [59]. This source of error should therefore not
significantly influence the performance of the algorithm developed during this
study when it is applied to the large data sets for which it was intended. The
findings from the procedures reported in this chapter were used as a platform
on which to base further investigation of the algorithms developed during this

study:.

158



A test of the v-cycle algorithm
The copy of this thesis originally submitted for examination had
a sign error in the pseudo-code for the v-cycle algorithm, given in

Chapter 3.

This sign error did not occeur in the code developed
to implement this algorithm. The table below shows the perfor-
mance of the v-cycle algorithm for systems of the form " + auy —

This system is identical to the univariate smoothing spline system

with one data point in each grid cell, except that the boundary

conditions, smoothing parameter /¢ and right hand side

have

been varied. The results show that the performance of the v-cycle
algorithm is slowed down by the conditioning of the system. not
by errors in the code,
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Chapter 10

Minimising GCYV for the
univariate piecewise constant

smoothing spline system

10.1 Performance of the OPTRSS algorithm

After determining that nested grid was the appropriate choice of multigrid
algorithm for use in this analysis, the OPTRSS algorithm, described in sec-
tion 8.1, was implemented. As discussed in Chapter 8, the OPTRSS algorithm
was constructed as a preliminary step towards minimising GCV. The objective
was to test the underlying adaptive iterative framework. This was intended to
be the basis of the MINGCV algorithm. These processes were carried out in
the early stages of the univariate analysis and therefore used only the piece-
wise constant discretisation of the univariate smoothing spline problem, given
in equation (3.5).

As with the analyses in Chapter 9, there are a number of initial settings for
the OPTRSS algorithm that were prescribed to intuitively sensible values, and
then optimised experimentally during the course of the investigation. The ini-
tial settings in Table 9.1 were again used for the nested grid framework. As

discussed in section 8.1, the convergence criteria in the OPTRSS algorithm,
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10.1. PERFORMANCE OF THE OPTRSS ALGORITHM

determining the resolution of the final grid and the number of updates per-
formed on each grid, were not used during this testing phase. Instead, the
number of grids, the final grid resolution, and the number of updates per grid
were prescribed in the same manner as for the analysis in the previous chap-
ter. The initial value of 0 was set to the minimum GCV value obtained from
ANUSPLIN. The @ estimate then was updated every 3 SOR iterations using
the Newton method in equation (8.1), and 10 updates were performed on a
given grid before prolongation, giving a total of 30 SOR iterations per grid.
Thus for the purposes of this chapter, the OPTRSS algorithm from section 8.1

is simplified to

for [ =6 to 2
for g =0to 9
w(6,) = 353(111(0,}), 71
w(0y) = SIR(“;(Gq): Vi)
080 = (S — R) %
Og+1 = 0, + 80
end
. = Ty
u,_, = Ty
end
=11
forgq=01to9
w, = S (g, )
w, = 5% (uy, vy)

encd

For the initial implementation of the OPTRSS algorithm, a different value
of the prescribed residual sum of squares S was set for each grid. The S
values were set by fixing the smoothing parameter to the minimum GCV value
obtained from ANUSPLIN and solving the piecewise constant system on each
grid. The values of § on each grid are therefore the values of the residual sum
of squares corresponding to the solution to the piecewise constant discretised
system on each grid, with a fixed smoothing parameter. Prescribing the S

values in this way is the simplest test of the iterative framework, because the
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CONSTANT SMOOTHING SFPLINE SYSTEM

solution on grid [ + 1 is an accurate approximation to the solution on grid [.
The prescribed S values on each grid are shown in Table 10.1, with corre-
sponding stochastic estimates of the signals and GCV values. The smoothing
parameter is fixed on all grids to the analytic minimum GCV value of § =
10.14. There is considerable variation in the statistics in Table 10.1 between
the grids, demonstrating that the fundamental characteristics of the solution
change when it is represented on different grids, even though the smoothing
parameter is the same.

It might be expected that the residual sum of squares would decrease and
the signal would increase as the grids get finer and the solution develops fine
scale structure. However, after the transition from coarsest grid, there are
no consistent trends in the solution characteristics. The statistics imply that
representation on finer grids has not induced strong changes in the smoothing

spline solution for this data set.

grid no. S GCV | signal
1 2.8208 | 0.0313 | 5.5915

2 2.8577 | 0.0317 | 5.5842
3 2.9489 | 0.0327 | 5.6123
4 2.7817 | 0.0313 | 6.2487
5 2.8376 | 0.0322 | 6.7007

6 3.4815 | 0.0389 | 5.9134

Table 10.1: Prescribed residuals on each grid level, with GCV and signal values.

The results of running the OPTRSS algorithm with the prescribed S values in
Table 10.1 are shown in section A.1 with summary results in Table 10.2. In the
tables in this chapter, the algorithm is said to have converged on a particular
grid if the 6 updates converge to 2 decimal places. To fully appreciate the
convergence behaviour of the algorithm it is necessary to examine the more
detailed results in the appendices. On grid number 6, the # estimate settled
down and actually agreed to almost 4 decimal places after 10 updates. As the
grids got finer the € estimate became less likely to converge. On the 3 finest
grids the estimate shows no sign of converging, although it changes very little
with each update. The superior performance of the algorithm on the coarse
grids compared to the finer grids would be expected, given the results of the

analyses in Chapter 9 which showed that the conditioning of the smoothing
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PERFORMANCE OF THE OPTRSS ALGORITHM

spline system deteriorates as the grid resolution is refined.

Grid no. | No. of Converged Converged Converged
updates 0 value S — R value dR/df value
6 6 10.14 0.000 0.068
D 8 10.14 0.000 0.14
4 o1 convergence
3 non convergence
2 non convergence
1 non CONVErgence

Table 10.2: Results generated by the OPTRSS algorithm for the data set
sine.dat.,

A clearer picture of the behaviour of the # estimate can be shown by plotting
its behaviour throughout the solution process, as seen in Figures 10.1- 10.6.
On the coarsest grid, convergence is almost direct. On grid number 5, @ os-
cillates towards the optimal value. This means that the solution estimate,
and estimates of du/df and dR/df are not reacting to changes in @ as quickly
as on the coarse grid. As a result, the process becomes poorly synchronised.
The estimates of the solution and its derivatives reflect old @ updates more
than recent ones. The 0 estimate ‘overshoots’ the optimal value that would be
obtained from Newton’s method if the derivative estimates were accurate for
that 6 value. The finer the grid, the more of a problem this becomes.

Clearly on the finest grid solution estimates are so slow to reflect changing @
that its value keeps increasing, and will probably continue to do so until 6 is
so large that it will be impossible to recover by updating on any grid. This
is demonstrated by looking at the S — R values in Table A.1.6, which shows
that the residual sum of squares on the fine grid is very slow to increase to
the prescribed value. Techniques to overcome this problem are discussed in
following chapters.

Further insights were gained by varying some of the initial settings chosen.
Those factors that were found to have a considerable influence on the behaviour

of the algorithm are discussed below.
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Figure 10.1: Successive smoothing parameter updates on grid no. 6 generated
by the OPTRSS algorithm, for the data set sine.dat.
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Figure 10.2: Successive smoothing parameter updates on grid no. 5 generated
by the OPTRSS algorithim, for the data set sine.dat.
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Figure 10.3: Successive smoothing parameter updates on grid no. 4 generated
by the OPTRSS algorithm, for the data set sine.dat.
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Figure 10.4: Successive smoothing parameter updates on grid no. 3 generated
by the OPTRSS algorithm, for the data set sine.dat.
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Figure 10.5: Successive smoothing parameter updates on grid no. 2 generated
by the OPTRSS algorithm, for the data set sine.dat.
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Figure 10.6: Successive smoothing parameter updates on grid no. 1 generated

by the OPTRSS algorithm, for the data set sine.dat.
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10.1.1 The starting value of 0

Experiments varying the starting value 0y on the coarsest grid showed that
some care must be taken when choosing the initial estimate. In the case of
this problem, the analytic value of the smoothing parameter is known to be
25500, which corresponds to a @ value of 10.1464. Starting values in a range
two orders of magnitude smaller than the analytic smoothing parameter, 500
and 100, were chosen. The results for Ay = 500 are shown in section A.2. The
0 estimates are clearly much more unstable than those in section A.2. When
the starting value was set to 100, the procedure diverged even faster. However,
it was found that if starting values around 2 orders of magnitude larger are
chosen (Mg = 5000000), the estimates were much more stable (section A.3).
smaller values of 6 are likely to cause instability because they result in very
small values of A/h?, particularly on the coarse grid. This will cause the system
of equations (3.5) to become dominated by the PT P term, making the solution
and its derivatives relatively insensitive to changes in #. This means that @
can deviate from the optimum value by a large amount before the derivatives

adjust in response to this change.

These results show that it is clearly advantageous to chose a starting value of
¢ in the smooth end of the spectrum. This makes intuitive sense as the nested
grid algorithm ascertains the smooth, broadscale trends first by starting on a
very coarse grid, then gradually builds up fine scale structure in the solution
estimate as the process is transferred to finer grids. The obvious question is
how to calculate this starting estimate of . It was not an issue in this case
because the full spectrum of A values and corresponding signal values could he
calculated analytically, as was done in Figure 9.4. However, one method is to

set the starting value of A, given by Ag, as

GAg
10 = — 10.1
3 (10.1)
This is designed to set the two terms in the left hand side of equation (3.5) to
have approximately equal influence, assuming there are around 10 data points
in each grid cell on the coarsest grid. This avoids putting particular emphasis

put on smoothing or close fitting of the data.
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10.1.2  The prescribed residual sum of squares

The above analysis prescribed different values of the residual sum of squares
for different grids in such a way that the optimal value of A would not change
from grid to grid. It was not the original intention of the algorithm to prescribe
S5 values in this manner, as information about the effect of discretisation on
grids of differing coarseness is obviously unknown in practice. The algorithm
was therefore modified to prescribe an S value of 2.8208 on all grids. This was
the value obtained by solving the piecewise constant smoothing spline system
on the fine grid with the smoothing parameter set to the minimum GCV value
calculated from ANUSPLIN. The Newton method should therefore converge
to this smoothing parameter,

The effect of this modification was quite disastrous for the algorithm, as indi-
cated by the results in section A.4. The immediate divergence of  to negative
values occurred because the prescribed R was too small to be achieved on the
coarse grid. The smallest possible residual sum of squares on the coarse grid
can be calculated by prescribing a smoothing parameter of zero. The resulting
I was found to be 3.4201 on the coarse grid, larger than the fine grid value
of 2.8208. The 6@ estimate quickly became very small on the coarse grid in an
attempt to achieve the fine grid S value, and eventually become infinitesimal.
T'his emphasises the fact that exact interpolation cannot be achieved on grids
too coarse to allow each data point to have a separate grid cell. In the case
of this problem, there is more than one data point per grid cell until grid 2
because the data occur at regularly spaced intervals of 3.6.

One way to combat this problem is to put a lower limit on the 8 update, so it
does not diverge past the point of recovery on grids for which the prescribed
residual sum of squares is too small. A condition was set so that, if a @
update was lower than a certain threshold, the update would be set to that
threshhold. Threshold values were chosen to give a value of A/Ah* that would
not cause equation (3.5) to be dominated by one particular term. Requiring a
lower limit on A/h?* allows the minimum @ value to decrease as the resolution is
refined, as A/Ah? will be larger on finer grids for a given @ because h decreases.
The results for a chosen threshold value of A/h?* = 0.5 are shown in Table 10.3
and section A.5.

Clearly the 6 estimate is fixed at the threshold value for all coarse grid up-
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| Grid no. | No. of Converged Converged Converged
updates 0 value S — I value dI7/df value
6 1 9.70 -0.64 0.046
5 9 10.02 0.000 0.14
4 1non CONVErgence
3 norn convergence
2 1on CONvergence
1 ~ non convergence

Table 10.3: Results generated by the OPTRSS algorithm, with a lower thresh-
old on A updates of A\/h? = 0.5, for the data set sine.dat.

dates. Extreme negative updates have been avoided, stabilising the algorithm
somewhat. The algorithm does converge on grid number 5, although the @ esti-
mates in section A.5 are still not as stable as those produced by the procedure
in section 10.1. Convergence on the grid number 5 is slower, and the estimates
clearly diverge on grids 1 and 2 to a greater extent than in section A.1. These
problems are a result of the fact that, in order to achieve the same prescribed
residual sum of squares on all grids, the required smoothing parameter must
change from grid to grid. This means that the solution must change on every
grid to adjust for the new # required to meet the prescribed S value. The
analyses in Chapter 9 demonstrated the slow rate at which solution estimates
change on fine grids, a manifestation of the poor conditioning of the system.
[t is clear that, in this case, the solution on finer grids cannot be corrected for
the changing @ estimate. The @ estimate keeps increasing due to the continual
discrepancy between the prescribed residual sum of squares and the residual
sum of squares of the current solution. The problem of ‘synchronising’ the
0 update with the changing solution is fundamental to the use of these tech-
niques on systems that are not well conditioned, Further methods of dealing

with this phenomenon are discussed in Chapter 11.

10.1.3  The number of iterations per update

I'he number of SOR iterations performed between updates of @ is fundamen-
tal to the synchronisation issues previously discussed. It might be expected
that the process of updating # could be stabilised if the number of iterations

per update was increased to allow the solution to change in response to the
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previous update. This was confirmed by studying the rate of convergence on
grid number 4 when the number of iterations per update was increased from
3 to 10. Convergence of # to four decimal places was achieved in a total of
180 SOR iterations with 10 iterations per update, where as a total of 306 SOR
iterations were required with 3 iterations per update. These results suggest
that the process is at its most efficient with fewer iterations per update on
coarse grids and more on fine grids. This is a logical conclusion considering
that on the coarse grid the solution can be changed by the required amount

after each update in a very short time, and further iterations are wasteful.

10.1.4 The effect of fixing the smoothing parameter to
a lower value

Many characteristics of the above results depended heavily on the scale of
variation of the chosen solution. It was insightful to run the procedure on the
data set sine.dat with a prescribed smoothing parameter of A = 5 or 0 = 1.61.
The analytic spline solution corresponding to a smoothing parameter of 5 is
shown in Figure 10.7. While this solution is not optimal, it has much greater
fine scale structure and is therefore be better suited to the scale of the grids
chosen for this algorithm.

The procedure used at the start of this chapter, where S values on each grid
were prescribed to correspond to a smoothing parameter that did not vary
between the grids, was again employed here, where A was fixed at 5. The
lower threshold on @ updates given by A/h* = 0.5 was again emplaced. This
was necessary to maintain the stability of the algorithm on coarse grids, where
exact interpolation was required to estimate the spline solution corresponding
to this lower smoothing parameter. The results are shown in Table 10.4 and
section A.G.

On finer grids the 0 estimates show a lot more stability than the results for
the higher smoothing parameter. On the 2 coarsest grids, the results show the
forcing of the 0 estimate to its lower threshold. Convergence to 4 decimal places
was achieved on grid numbers 4 and 3. However, convergence was quite slow
on the finest grid. Figures 10.8 and 10.9 show that the grids in this algorithm
are again too fine compared to the scale of the solution. The solution clearly
changes very little between grid numbers 2 and 1, implying that grid number

2 is fine enough to represent the variability in the solution. This raises the
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Figure 10.9: OPTRSS solution on grid no. 1 for a fixed smoothing parameter
of 5, for the data set sine.dat.

Grid no. | No. of “Converged Converged Converged
updates ¢ value S — R value dR/df value
§ 0 5.09 0.000 0.00
5 4 3.02 0.000 0.00
1 7 1.61 0.000 0.00
3 4 1.61 0.000 0.33
2 8 1.61 0.000 0.44
1 14 1.61 0.000 0.44

able 10.4: Results of the OPTRSS algorithm, with residuals prescribed to
correspond to a fixed smoothing parameter of 5, for the data set sine.dat.

fundamental question of when to stop refining the grids, an issue which is

addressed in following chapters.

10.2 Performance of the MINGCYV algorithm

This section describes the results produced by the MINGCV algorithm de-
scribed in Chapter 8, applied to the piecewise constant discretised system.

The results of this process led to the incorporation of the quadratic B-spline
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framework. The initial settings for the following analysis were the same as
those used for the OPTRSS algorithm, as discussed in the second paragraph
of this chapter, except that 20 iterations were performed per grid instead of
10 to give more information about the behaviour of the # estimation process.
The simplified MINGCV algorithm used in this chapter is shown on the next
page.

Details of the results of the MINGCV algorithm are shown in Table 10.5 and
section A.7. The patterns are similar to those observed for the OPTRSS
algorithm, which is not surprising considering that the two algorithms are very
similar in structure. Convergence to 4 decimal places was relatively fast on
the two coarsest grids. This is also reflected in the dGCV/df estimates, which
quickly approach zero. The minimum GCV estimate of 8 was different on these
grids, demonstrating that discretising on grids of different coarseness affects the
measured smoothness of the solution. Convergence deteriorated on the finer
grids. On fine grids the solution is clearly non-responsive to changes in #, to an
apparently worse degree than that demonstrated by the OPTRSS algorithm.
There is reason to expect the OPTRSS method to be more robust given that
the Newton correction to @ in equation (8.1) is based on the difference between
the current residual sum of squares and the prescribed residual sum of squares.
It therefore always has the right sign, provided 0 values are not in the extreme
range of Figure 8.1. The correction to 6 for the MINGCV algorithm, given in
equation (8.14), is dependent on a greater number of estimated values, and is

not so robust in sign or magnitude.

Table 1(
sine.dat.

Grid | No. of Converged |  Converged Converged Converged
no. | updates 0 value R value signal GOV
o value value
§ a) 10.10 3.48 0.0 0.0389
5 9 8.54 2.59 10.2 0.0317
q 1non convergence
3 non convergence
P non convergence
] 11011 Ol IV(_,‘.]"}._’I"(_?]_]_('.(,‘,

).o: Results generated by the MINGCV algorithm, for the data set
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for [ = 6 to 2
for ¢ =0 to 19
for m =0 to 2
u™(8,) = S (™ (6,), vi)
end
forn=0to1
by™ (8,) = S (b{"™ (6,), wp)

end
Ogy1 = j—i
g=qg+1
end
for m =0 to 2
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end

forn=0to1l
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end
end
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for g = 0 to 19
for m =0 to 2
u™(6,) = S (ui™(8,), vi")
end
for n =0to 1
bi™ (6) = 5" (bi" (6,), wp)

end
. b
9:;+1 T
end

An initial test of whether the algorithm is working correctly is to check whether
the results are consistent with the analytic trends in Figures 8.1- 8.5, According
to Figures 8.4 and 8.5, dR/df and dT'r/df estimates should always be positive,
provided @ is not in the extreme low or high regions. The results in section A.7
show that this is always the case on the three coarsest grids. On finer grids the

results deviate from analytic behaviour. According to Figure 8.3, the dGC'V /d0
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estimate can be negative or positive, depending on whether € is greater than
or less than the value corresponding to the minimum GCV. However, the
d*GCV/dO* estimate should not be negative unless @ is in the extreme high or
low ranges. If the d*GC'V/d6? estimate is negative, the MINGCV algorithm
will be unable to converge to a minimum GCV. The estimates of d*GCV/db?
in section A.7 are always positive on the three coarsest grids, which is an
indication that the algorithm is stable on these grids. The process clearly did
not converge on the finer grids.

The plots of the @ estimate in Figures 10.10 - 10.15 give insight into the be-
haviour of the algorithm. The @ estimate clearly converges on grid numbers 6
and 5, but looks unlikely to do so on grid number 4, and clearly diverges on
the finer grids. There could be a number of reasons for this. Based on the
results of the OPTRSS algorithm, it seems logical that the inefficiency of basic
iteration is responsible for the divergence. On fine grids, the system is poorly
conditioned and SOR is very slow to adjust to the required changes in the
smoothness of the solution. This appears to be the problem on grid number
3, where the inaccuracy of the solution is reflected in the dGC'V/df value. As
0 decreases to values clearly below the optimal level, dGCV/df decreases in
magnitude and eventually becomes negative is response to the small @ value,
but it is very slow to do so. The 6 estimate then increases to values that are
too large, and dG'CV/dO does not respond in time, creating a pattern of os-
cillatory divergence. Eventually @ becomes extreme and d2GCV /df* becomes
negative, which destroys any chance of convergence.

Further investigation of the GCV revealed another possible reason for the
divergence observed in Tables 10.5 and section A.7. Table 10.6 shows GCV
values corresponding to the piecewise constant solution for the 3 coarsest grids,
for different smoothing parameter values. The GCV trends deviate from the
analytic pattern in Figure 8.3. On grid number 6 there is a clear minimum
at 25500 as would be expected, but the GCV also appears to have a local
minimum at 70000, an anomaly that did not oceur in the analytic case. The
results in section A.7 are consistent with this scenario, converging to a € value
corresponding to A = 24416 on grid number 6. On grid number 5 there appears
to be a local minimum at A = 5000 and again at A = 30000 and A = 500000.
The MINGCV algorithm clearly targets the smaller optimum. However, on

grid number 4, where there are minima at A = 5000 and \ = 500000, the
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Figure 10.12: Successive smoothing parameter updates on grid 4 generated by
the MINGCV algorithm, for the data set sine.dat.
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Figure 10.15: Successive smoothing parameter updates on grid 3 generated by
the MINGCV algorithm, for the data set sine.dat.
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Figure 10.14: Successive smoothing parameter updates on grid 2 generated by
the MINGCYV algorithm, for the data set sine.dat,
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Figure 10.15: Successive smoothing parameter updates on grid 1 generated by

the MINGCYV algorithm, for the data set sine.dat.

L



10.2. PERFORMANCE OF THE MINGCV ALGORITHM

A GCV

grid 6 | grid 5 | grid 4

1000 | .0396 | 0.0329 | 0.0320
5000 0393 | 0.0318 | 0.0308
10000 | .0391 | 0.0319 | 0.0309
25500 | .0389 | 0.0322 | 0.0313
30000 | .0389 | 0.0318 | 0.0329
40000 | 0390 | 0.0325 | 0.0316
H0000 | .0409 | 0.0317 | 0.0305
70000 | .0394 | 0.0329 | 0.0323
100000 | .0399 | 0.0335 | 0.0330

Table 10.6: GCV wvalues for the piecewise constant approximation to the
smoothing spline on each grid, for different prescribed smoothing parameters,
where local minima are emphasised.

algorithm appears to oscillate between the two. Initially the numbers tend
towards the smaller optimum, although there is some oscillation, which would
be expected as this grid is relatively fine. At 12 updates the numbers jump
towards higher values close to that of the larger optimum. This is followed hy
a sharp dive towards lower values.

The behaviour of the @ estimate is clearly reliant on the underlying structure
of the GCV estimate. The errant behaviour of the GCV estimate could be due
to discretisation error introduced by the piecewise constant approximation or
stochastic error in the estimate of 7'r. This is discussed further in Chapter 11.
[t was also interesting to note the resilience of the GCV to changes in the
smmoothing parameter in the above analysis. Increasing A by a factor of 10
changes the GCV only around 2%. This implies that a high degree of accuracy
in the 0 estimate is not necessary to obtain a solution that represents the data
i an optimal way, Further analysis revealed a number of factors that explain

more about the behaviour of the algorithm. These findings are discussed below.

10.2.1 Stochastic error in the trace estimate

The MINGCV algorithm has a fundamental dependence on the trace estimate
T'r, due to its presence in the caleulation of the GCV and all its derivatives.
This factor distinguishes the MINGCV algorithm from the OPTRSS algorithm,

which did not involve the trace estimate in the optimisation process. The
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piecewise constant system was again solved for different smoothing parameter
values and GCV values were calculated, as shown in Table 10.8. These trends
are different to those that would be expected for this problem, in that there
is no minimum GCV value on grid number 5. Instead, the GCV continues
to decrease as f gets smaller. This implies that the optimal solution is too
fine in structure to be represented on a grid of 24 points, and @ is forced to
zero in an attempt to represent this solution. If this was the case, the optimal
signal must be greater than 24. This is considerably larger than the analytic
value of 8.2, Thus this particular random vector t is clearly associated with
particularly high stochastic error in the trace estimate.

The results for a third random vector are shown in Tables 10.9 and section A.9.
The estimates are again stable on the coarse grid but behave erratically on all
other grids. The results in Table 10.10 indicate that the GCV structure is
analytic in its behaviour, with a single minimum on all grids. However, it can
be seen from section A.9 that, following an update to a large € value on grid
number 5, d*GCV/d0? becomes negative. This is a sign that the 6 estimate
is in the extreme range of the GCV curve in Figure 8.1. The optimisation
procedure would be expected to perform poorly in this region. A procedure
involving dampening the update to # was found to improve this situation. This

15 discussed further in the next section.

Grid | No. of Converged Converged Converged Converged
no. | updates 0 value R value signal GOV
— value value
6 8 11.29 3.61 10.7 0.0448
5 non convergence
g o1 convergence
3 notn convergence
2 non CONVErgence
| nomn convergence

Table 10.9: Results generated by the MINGCV algorithm for the data set
sine.dat, for a third random vector t.

['he difference in the results in Tables 10.5, 10.7 and 10.9 show that the trace
estimate is clearly an important issue in this algorithm, particularly when it
is used on small data sets such as sine.dat. One possible solution is to use

several random vectors, and take the average of the result. For example, to
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Grid | No. of Converged Converged Converged Converged
no. | updates 0 value R value signal GCV
value value
6 8 11.29 3.61 10.7 0.0448
5 non convergence
4 non convergence
3 101 convergence
2 1non convergence
1 non convergence

Table 10.11: Results generated by the MINGCYV algorithm for a dampening
factor of 1/2, for the data set sine.dat.

fundamental to its success. If the required change is smaller, basic iteration is
powerful enough to make the algorithm stable. On the coarse grid, dampening
is clearly wasteful, as SOR can keep up with the full update. However, coarse
grid updates are not computationally expensive. As soon as the grids get finer,
SOR is only capable of making very small changes to the solution with each
iteration in response to changing #. Clearly the requirement of a different level
of smoothness resulting from updating 6 introduces error components with a

frequency too low to be reduced on fine grids.

10.3 Conclusion

The analysis so far has characterised, at a preliminary level, the behaviour
of the MINGCV algorithm, or the algorithm for estimating minimum GCV
smoothing splines, developed in Chapter 8. At this point, the algorithm has
only been tested on the piecewise constant discretised system in (3.5). It
appears that the MINGCV algorithm will converge efficiently on grids of an
appropriate resolution, not too coarse to represent the complexity in the pro-
cess, and not too fine to render the system poorly conditioned. Thus for an
extremely smooth process such as a single sine curve, the algorithm will only
converge on the coarser grids. Divergence on finer grids occurs due to poor
conditioning, which leads to poor synchronisation of the two iterative pProcess
updating both the smoothing parameter estimate and the corresponding so-
lution estimate. SOR iteration cannot respond efficiently to larger changes in

¢ for a poorly conditioned system, so the updates of # diverge away from the
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optimal value. For a finer scale process, the algorithm will converge efficiently
on finer grids, because the conditioning improves as the smoothing parameter
is decreased. This was the case for the fine scale process corresponding to the
smoothing spline fit to the data set sine.dat with the smoothing parameter
fixed at A = b.

The above results have identified two potential difficulties associated with the
MINGCV algorithm. Firstly, due to the small size of the test data sets, stochas-
tic error in the 7' estimate was found to have a considerable influence on the
resulting smoothing spline solution, and the convergence behaviour of the al-
gorithm. Using different random vectors t, it is possible to get convergence to
an accurate solution estimate, convergence to a less accurate estimate, diver-
gence, or a GOV structure which does not have a local minimum. This can be
overcome by averaging results from multiple simulations of the random vector
t, as discussed in the next chapter. Secondly, it was found that the GCV
structure corresponding to the discretised smoothing spline solution may have
multiple minima, or maxima. This deviation from analytic behaviour could
be due to either stochastic error in the estimate of 7', and the corresponding
GOV estimate, or the effect of the piecewise constant discretisation. These

issues will be addressed in following chapters.
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Chapter 11

Minimising GCYV for the

univariate quadratic B-spline

smoothing spline system

The MINGCYV algorithim defined in section 8.2 can deliver an accurate solution
to the piecewise constant discretised system in equation (3.5) with a good es-
timate of the optimal smoothing parameter. However, it clearly has problems
adjusting to the required corrections on finer grids. It therefore has a tendency
to be slow and unstable. The quadratic B-spline approximation discussed in
section 3.2 has clear potential to overcome the difficulties of reducing errors
on finer grids by allowing a more accurate estimate of the analytic solution
on coarse grids, and a smoother transition between the grids. The MINGCV
algorithm was therefore applied to the quadratic B-spline discretised system in
equation (3.29), still maintaining the initial settings used in the previous chap-
ter, and beginning with the data set sine.dat. The results from this chapter
have been published in Hancock and Hutchinson [48).

As in Chapter 10, the convergence criteria limiting updates of the smoothing
parameter on a given grid and further refinements of the grid resolution were
not emplaced for the investigations presented in this chapter. This allowed a
clearer understanding of the convergence process. The results for the quadratic

B-spline discretised system were a significant improvement on those obtained
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for the piecewise constant system. Summary results are shown in Table 11.1,
but the effect is best seen by looking at more detailed results in section B.1.
Convergence to 4 decimal places is achieved on grids 6 and 5. Section B.1
shows that divergence occurs on grids 4 and finer. Figures 11.1, 11.2 and 11.3
shows rapid convergence on the two coarsest grids, but a pattern of oscillatory
divergence sets in on grid 4. However, the divergence on fine grids is much
slower than that observed for the piecewise constant system, and dGCV/df is
very small, implying that the estimates are not far from the minimum.

The performance of the algorithm for the quadratic B-spline system verifies the
previous argument that divergence occurs on fine grids because basic iteration
cannot respond to large changes in the smoothing parameter, particularly when
the smoothing parameter is very high. This is a result of the poor conditioning
of fine grid discretisations of smoothing spline systems corresponding to smooth
processes. When a quadratic B-spline discretisation was used, the solution was
very accurately represented on the coarse grid so little change was required on
finer grids. Figure 11.4 clearly shows the superior representation given by
B-spline representation on the coarse grid.

An important benefit of using the quadratic B-spline approach is that the
underlying GCV structure appears to be more stable. Values of the GCV
for different smoothing parameter values were again calculated, by solving the
quadratic B-spline discretised system for fixed smoothing parameters. The
results in Table 11.2 show that the GCV structure is consistent with analytic

behaviour on all grids. The fact that a change of discretisation has led to

Grid | No. of Converged Converged Converged Converged
no. | updates 0 value R value signal GCV
_ value value
6 6 7.25 2.78 6.1 0.0312
5 4 8.33 2.68 T3 0.0309
] non CONVErgence
3 non convergence
2 101N convergence
| non convergence

Table 11.1: Results generated hy the MINGCV algorithm, using quadratic
[3-spline discretisation,
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Figure 11.1: Successive smoothing paramater updates on grid no.
6, generated by the MINGCYV algorithm, for the data set sine.dat.
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Figure 11.2: Successive smoothing paramater updates on grid no.

5, generated by the MINGCV algorithm, for the data set sine.dat.
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Figure 11.3: Successive smoothing paramater updates on grid no.
4, generated by the MINGCV algorithm, for the data set sine.dat.
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Figure 11.4: Quadratic B-spline approximation to the smoothing

spline solution on grid 6, generated by the MINGCV algorithm for
the data set sine.dat.
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this improvement suggests that stochastic error in the trace estimate was not
responsible for the erroneous GCV structure observed for the MINGCV algo-

rithm with piecewise constant discretisation, discussed in section 10.2.

To test this further, ANUSPLIN was used to calculate Tr(A) = tt analyti-
cally for a sample of 9 random vectors and 7 prescribed smoothing parameters,
where t is the vector of fitted values corresponding to the analytic spline fit to
the data vector t. This allowed the calculation of the stochastic GCV estimate
tor each random vector in the absence of discretisation error or error due to
the numerical solution not having converged exactly. These results are shown
in Table 11.3. Although there are considerable differences in the estimates of
the GCV for each random vector, the GCV structure seems consistent across
the random vectors. The GCV always increases monotonically either side of a
single minimum, even if the minimum corresponds to a smoothing parameter
much smaller than the analytic value. It therefore seems that, while stochastic
error in the T'r estimate does shift the position of the GCV curve in Figure 8.1
considerably, it does not cause the structure to behave in the anomalous way
observed in Table 10.6, 10.8 and 10.10, which feature multiple minima. In-
stead, it is concluded that discretisation error was largely responsible for the
errors observed for the piecewise constant discretisation. The higher continu-
ity of quadratic elements gives accuracy to the solution and the corresponding

statistical characteristics that piecewise constant discretisation does not allow.

A GOV
=6 | I=5 | =4 | =3 [=2 =1

1000 | 0.0314 | 0.0314 | 0.0314 | 0.0313 | 0.0316 | 0.0312
2000 | 0312 | .0311 | .0309 | .0309 | .0309 | .0309
4000 0313 | .0309 | .0308 | .0308 | .0308 | .0308
5000 | .0313 | .0309 | .0308 | .0308 | .0308 | .0308
8000 | .0315 | .0310 | .0309 | .0309 | .0309 | .0309
25500 | 0318 0315 0314 0314 0314 0314
40000 | 0321 0318 0317 0317 Aalt 817

Table 11.2:

ima are emphasised.
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11.1. STOCHASTIC ERROR IN THE TRACE ESTIMATE
" T e

t to ts ty ts tg t-
5000 0.03568 | 0.0344 | 0.0389 | 0.0319 | 0.0323 | 0.0361 | 0.0320
10000 | 0.0352 | 0.0342 | 0.0376 | 0.0318 | 0.0322 | 0.0352 | 0.0320
20000 | 0.0349 | 0.0339 | 0.0365 | 0.0318 | 0.0321 | 0.0343 | 0.0322
20000 | 0.0349 | 0.0338 | 0.0362 | 0.0319 | 0.0321 | 0.0342 | 0.0323
40000 | 0.0348 | 0.0338 | 0.0357 | 0.0319 | 0.0321 | 0.0339 | 0.0325
60000 | 0.0351 | 0.0339 | 0.0354 | 0.0323 | 0.0324 | 0.0340 | 0.0329
100000 | 0.0356 | 0.0344 | 0.0356 | 0.0329 | 0.0331 | 0.0345 | 0.0330
s tg
0.0336 | 0.0320
0.0337 | 0.0320
0.0338 | 0.0322
0.0339 | 0.0323
0.0339 | 0.0325
0.0341 | 0.0329
0.0347 | 0.0337

Table 11.3: Stochastic GCV estimates calculated using analytic thin plate
splines, for 9 different random vectors t and for different smoothing parameters.

11.1 Stochastic error in the trace estimate

While the results in Tables 11.1 and section B.1 are more stable than those in
Chapter 10, they are still susceptible to disruption due to stochastic error in
the 7'r estimate. The two different random vectors t used in Chapter 11 were
again used to investigate the effect of stochastic error on the performance of the
MINGCV algorithm. Table 11.4 and section B.2 shows that a different random
vector causes the 0 estimate to be considerably different. These estimates
are much closer to the analytic optimum of 10.1464 than the estimates in
Table 11.1, indicating that this particular random vector is likely to be giving
a more accurate trace estimate. The results are consistent with the GCV
structure shown in Table 11.5. The presence of a single minimum is evident on
all grids, at approximately A = 60000, This agrees well with the value reached
by the minimum GCV algorithm.

Table 11.6 and section B.3 shows the results for yet another random vector.
The # estimate is very stable on the coarse grid, and close to the optimum.

['he estimate becomes more unstable as the grids get finer, eventually becoming
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Grid | No. of Converged Converged ‘Converged Converged
no. | updates 0 value R value signal GCV
value value
§ 5 10.95 2.98 10.6 0.0369
5 13 10.92 2.95 131 0.0368
4 non convergence
3 non convergence
2 noun convergence
| non convergence
Table 11.4: Results generated by the MINGCV algorithm, for a second random
vector t.
A GCV
=6 j= B [=3 [=2 [=1
1000 | 0.0411 | 0.0392 | 0.0392 | 0.0392 | 0.0393 | 0.0407
5000 | 0.0392 | 0.0383 | 0.0383 | 0.0383 | 0.0384 | 0.0388
10000 | 0.0383 | 0.0378 | 0.0378 | 0.0378 | 0.0378 | 0.0380
25500 | 0.0373 | 0.0371 | 0.0371 | 0.0371 | 0.0371 | 0.0372
40000 | 0.0370 | 0.0368 | 0.0368 | 0.0368 | 0.0369 | 0.0369
60000 | 0.0369 | 0.0368 | 0.0368 | 0.0368 | 0.0368 | 0.0368
80000 | 0.0370 | 0.0369 | 0.0369 | 0.0369 | 0.0369 | 0.0370
100000 | 0.0373 | 0.0372 | 0.0372 | 0.0372 | 0.0372 | 0.0372

Table 11.5:

GCV values for the quadratic B-spline approximation to the

smoothing spline on each grid, for different prescribed smoothing parameters,
for a second random vector t. Local minima are emphasised.

too small and causing d*G'CV/df* to become negative. This could possibly be

corrected using the dampening procedure described in section 10.2.2. However,

the GCV structure in Table 11.7 shows that the problem is likely to be similar

to that identified in section 10.2.1. There is no local minima on grids 5-2.

This analysis demonstrates that the stochastic error in the trace estimate has

an enormous impact on the performance of the MINGCV algorithm for small

data sets.

point of exact interpolation.

In this case the stochastic error has distorted the solution to the

In order to resolve this fundamental difficulty, the algorithm was modified to

calculate 10 different random vectors t and work out the vectors b correspond-

ing to each random vector. Estimates of T'r, dTr/df and d*T'r/df were then

calculated for each t. The averages of these estimates across all random vectors

were used in the calculation of the GCV and its derivatives. As discussed in
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11.1. STOCHASTIC ERROR IN THE TRACE ESTIMATE
Grid | No. of Converged Converged Converged | Converged
no. | updates 0 value R value signal GCV
value value
6 | 3 10.14 2.92 11.5 0.0368
5 13 8.94 2.74 13.6 0.0363
4 1ot COLVergence
3 1non convergence
2 o1 convergence
1 non convergence

Table 11.6: Results generated by the MINGCV algorithm for a third random

vector t.

A GCV
[=6 [=5 =4 [=3 [=2 [=1
1000 0.0378 | 0.0353 | 0.0353 | 0.0353 | 0.0355 | 0.0369
5000 | 0.0371 | 0.0358 | 0.0358 | 0.0359 | 0.0359 | 0.0363
10000 | 0.0369 | 0.0360 | 0.0360 | 0.0360 | 0.0361 | 0.0363
25500 | 0.0368 | 0.0363 | 0.0363 | 0.0363 | 0.0363 | 0.0364
40000 | 0.0368 | 0.0365 | 0.0365 | 0.0365 | 0.0365 | 0.0366
60000 | 0.0370 | 0.0368 | 0.0368 | 0.0368 | 0.0368 | 0.0368
30000 | 0.0374 | 0.0371 | 0.0371 | 0.0371 | 0.0371 | 0.0372
100000 | 0.0378 | 0.0376 | 0.0376 | 0.0376 | 0.0376 | 0.0376

Table 11.7: GOV values for the quadratic B-spline approximation to the
smoothing spline on each grid, for different prescribed smoothing parameters,
for a third random vector t. Local minima are emphasised.

section 10.2.1, this reduces the upper bound on the variance in the T'r estimate

by a factor of 10. The results are shown in Table 11.8 and section B.4.

Grid

0.

No. of Converged Converged
updates 0 value R value
| 10.38 2.93
5] 10.11 2.86
10 9.88 2.86
8 9.87 2.80
8 9.86 2.80
1 9.86 2.80

m—ar r—

Converged Jonverged
signal GCV
value value

5.8 0.0327

6.7 0.0325
7.3 0.0324
7.5 0.0324
7.5 0.0324
7.5 0.0324

Table 11.8: Results generated by the MINGCV algorithm, using the average
of 10 different random vectors to calculate stochastic estimates of the signal

and the

GCV,
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Convergence occurs on all grids, and the numbers are close to the analytic
optimum. The improvement in stability achieved by reducing the stochas-
tic error in this way indicates that stochastic error in the 7'r estimate does
considerably hamper the performance of the MINGCV algorithm. While the
above procedure clearly reduces the computation efficiency of the algorithm
considerably, the minimum GCV algorithm was originally designed for large
data sets, which reduces the standard error in 77 to at most (2/n)'/2. 1t was
therefore anticipated that measures such as the above would not be Hecessary

for very large data sets.

11.2 A first order correction

The oscillatory behaviour of the  estimate suggested a form of correction to
help the solution estimate keep up with the @ updates. The first derivative
estimate, du/df, can be used to correct the solution after the calculation of a

¢ update, using

du

u(lg41) = u(f,) + EE(QW)(QU-H — 8;) (11:1)

The results of adding this correction after each update, using only the original

random vector t, are shown in Table 11.9 and section B.5. The performance

of the algorithm has improved considerably compared to that demonstrated in
“able 11.1.

“Grid [ No. of Converged Converged Converged Converged
no. | updates 6 value R value signal GOV
value value
6 | 5 7,25 2.78 5.1 0.0312
5 ! 8.33 2.68 pgee 0.0309
1 7 8.24 2.62 8.3 0.0308
3 13 8.30 2.01 8.3 0.0308
2 1 8.30 2.61 8.4 0.0308
1 1 8.30 2.61 8.4 0.0308

Table 11.9: Results generated by the MINGCV algorithm, applying a first
order correction to the solution after each @ update.
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Figure 11.5: Successive smoothing parameter updates on grid no.

3, using a first order correction to the solution estimate following
each @ update, for a second random vector.
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Convergence to 4 decimal places occurs on grids 6, 5 and 4, and convergence
to 2 decimal places occurs on all grids. Thus the correction has allowed con-
vergence on 4 additional grids in comparison to the results before applying the
correction, from Table 11.1.

The correction was also tried using the other 2 random vectors t, shown in
section B.6 and B.7. In section B.6, the improvement was also significant, with
convergence on all grids. Figures 11.5 and 11.6 show that the correction has
removed oscillatory behaviour on grid number 3. In section B.7, *GCV/db?
still became negative on the grid number 4, a problem associated with stochas-
tic error not poor convergence. However, convergence on the grid number 5 is
much faster, and gets to four decimal places accuracy in 7 updates. This was
not achieved in 20 updates without the correction.

The correction has been very helpful because it has helped overcome one of
the main problems in the design of the MINGCV algorithm and the OPTRSS
algorithm. It reduces the extent to which the solution must be re-estimated
when a new smoothing parameter is specified. If large changes to the solution
are required in response to the updates, the implementation of the multigrid
principle is disrupted because the updates introduce error into the solution

estimate that may not have a frequency suitable to the current grid.

11.3 Different data sets

The MINGCV algorithm was run on a data set with a lower smoothing pa-
rameter, to see to what extent the above characteristics were particular to the
data set sine.dat. The data set bumpy.dat, described in section 9.3, was used.
The results are shown in Table 11.10 and section B.8. The value of d*GCV/d6?
quickly became negative on the coarse grid, because there were not enough co-
efficients to make the solution sufficiently complex. This problem is resolved on
the grid number 5, and convergence to four decimal places is achieved quickly,
on both grid numbers 4 and 5. On grid number 3 the estimate oscillates, but
Figure 11.7 shows that the behaviour is convergent. On the two finest grids
the estimate is again very slow to ch&nge, and appears to be ccnm'erging OI1
orid 2.

The pattern in the above results is similar to that observed for sine.dat, though
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11.3. DIFFERENT DATA SETS

[ Grid [ No. of Converged Jonverged Converged Converged

no. | updates f value R value signal GCV
value value

6 | non convergence
5 5 5.94 15.19 12:7 0.197
4 8 6.66 15.09 13.3 0.198

3 1non convergence

2 1non convergence

1 1non convergence

Table 11.10: Results generated by the MINGCV algorithm, for the data set
bumpy.dat.

it appears to have shifted to finer grids, as would be expected. Convergence
is faster on the middle grids, but the coarsest grid is too coarse to allow opti-
misation. The finest grids are still finer than is necessary to explain the true
variation in the data.

Applying the correction in equation (11.1) to this analysis gave a marked im-
provement, as shown in Table 11.11 and section B.9. Convergence is faster on
the coarser grids. On grid 3, Figure 11.8 shows that the correction has removed
the oscillatory behaviour from the 0 estimate, speeding up convergence consid-
erably. On the two finest grids, the estimates do not change significantly. The
success of the correction indicates that the estimate of du/d@ is itself quite
accurate, in that it can provide a helpful correction to the current solution

estimate, particularly on the fine resolution grids.

Grid | No. of Converged Converged Converged Converged
no. | updates 0 value R value signal GOV
value value
G non convergence %
5 4 5.94 15.19 12.8 0.197
! § (.66 15.09 13.3 0.198
3 10 6.92 15.32 13.9 0.200
2 1B 6.94 15.32 13 0.200
1 ! 694 15.30 13.1 0.200

lable 11.11: Results generated by the MINGCV algorithm, for the data set
bumpy.dat, applying the first order correction to the solution after each 0

update.
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Figure 11.7: Successive smoothing parameter updates for grid 3, for
the data set bumpy.dat, without using the first order correction.
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Figure 11.8: Successive smoothing parameter updates for grid 3,
for the data set bumpy.dat, using the first order correction,
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11.4. THE CONVERGENCE CRITERIA

11.4 The convergence criteria

The restriction procedure described in section 5.3 was applied to the above
data sets to produce a measure of how the solution changes between the grids.
This technique was used to determine when the resolution was fine enough to
represent accurately represent the spline solution. The value of D = ||g/[|/|| /il
measuring orthogonal distance between the fine grid solution and the restricted
coarse grid solution, is shown for consecutive grids in Table 11.12. Clearly the
differences between solutions before and after restriction are much smaller for
the smooth data set, sine.dat, than for the more complex data set, bumpy.dat.
The tolerance on ), denoted in the MINGCV algorithm stated in section 8.2
as toll, was calculated by choosing the value below which no visible change
could be seen in the solution estimate before and after restriction to a coarse
resolution. For D values below this tolerance, it was considered inappropriate
to continue refinement. For the data set sine.dat, no change could be seen
between any of the grids, setting the cutoff on D to at least 0.5 x 1071, For
bumpy.dat, changes in the solution estimate could be seen until the transition
between grid 4 and grid 3, which corresponds to a D value of approximately
0.7 % 10"%. This is of the same order of magnitude as 0.5 x 10~*, implying that
the coarsest grid is not too fine for the data set sine.dat. This is consistent
with the fact that a grid coarser than approximately 8 grid points is too coarse
to deliver the optimal signal value of 8.2. Based on these observations the

value of toll was set conservatively to 0.5 x 1071,

data set D % 107
i (=5 | =4 =3 /=2 =5
sine.dat | 0.455 | 0.113 | 0.000656 | 0.000000 | 0.000000
bumpy.dat | 222 | 6.73 | 0.725 | 0.00902 | 0.000000

Table 11.12: D wvalues for different grids, for the data sets sine.dat and
bumpy.dat,

11.5 Improving the efficiency

he above analysis served the purposes of verifying that the MINGCV al-

gorithm was working correctly, understanding the procedures involved, and
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11.6. A MODIFIED, IMPROVED ALGORITHM

TE—

not proceed past grid 5, as would be expected from the results deseribed in
section 11.4, The MINGCV algorithm was therefore very fast for this data set,
because it is extremely smooth. More iterations were required on the coars-
est grid because no initial information was available. The data set bumpy.dat
required an extra grid to represent the additional complexity, refining to grid
number 4. Convergence was slightly slower on this grid, but was still much
more efficient than the convergence patterns for the poorly conditioned sys-
tems observed in previous analyses. Overall the sets of results in sections B.11
and B.12 represent an efficient and direct path to an optimal solution on a

resolution suitable to the complexity of the data set.

11.6 A modified, improved algorithm

As a result of the above analysis, it is recommended that the MINGCV algo-

rithm, stated in section 8.2, be implemented with the following specifications.

e A quadratic B-spline is used as the diserete approximation to the natural

cubic spline minimiser fy(z) of equation (2.9).

e The basis element prolongation operator described in Chapter 5 is used to

transfer the solution estimate to finer grids.

T ] ' % . ' i s F, .
e ['r is differented by the method described in section &.2.3, which reduces the

number of systems that require iterative solution,

1" ] L 3 : I"}: gLr .2 ! ) \'1-' . . .l : S s .l - - : .
e lhe value of &*GCV/dO® is estimated by finite differences, according to the
process recommended by the results in section 11.5.2, rather than by estimation

using equation (8.17).

e A first derivative correction to the solution estimate u, described in sec-

tion 11.2, is added to the solution estimate after each 6 update.

Lhe algorithm in section 8.2 can now be rewritten as shown on the next page.
Note that we now require only one derivative of 1 with respect to the smooth-

ing parameter, and no derivatives of by,






11.7. CONCLUSION

11.7 Conclusion

Chapters 10 and 11 have documented the process of developing an algorithm
for calculating minimum GCV finite element univariate sinoothing splines, de-
noted the MINGCV algorithm. In the initial phases of construction of the
algorithm, the smoothing spline solution was approximated using a piecewise
constant discretisation. Using this discretisation, the MINGCV algorithm con-
verged to an accurate estimate of the analytic minimum GCV solution on grid
resolutions where the smoothing spline system was well conditioned. On those
resolutions where the system was poorly conditioned, the algorithm sometimes
diverged. However, these grid resolutions were usually finer than necessary to
represent both broadscale and finescale trends in the solution. For the piece-
wise constant smoothing spline system there were further difficulties associated
with multiple minima in the GCV as a function of the smoothing parameter.
This erroneous feature has been determined to be due to discretisation error.
Due to these problems with piecewise constant discretisation, a quadratic B-
spline discretisation was used in the later stages of algorithm development.
This stabilised the behaviour of the algorithm considerably on all grids. Stochas-
tic GOV structures associated with this discretisation also featured single min-
ima. The quadratic B-spline discretisation is clearly better suited to approxi-
mating smoothing splines, due to the higher order continuity allowing accurate
approximation of smooth functions on coarse grids. Further improvements
were achieved by applying a first order correction to the solution estimate
alter each smoothing parameter update. This allowed the solution estimate
to respond more quickly to updates to the smoothing parameter. Using this
correction, MINGCV algorithm converged on all grids for both test data sets,
even grids which were unnecessarily fine and therefore associated with poorly
conditioned systems. The average of multiple 7'r estimates was taken to re-
duce stochastic ervor, and improve the accuracy of the solution estimate for
small data sets,

In the final stages of algorithm development, the efficiency was further im-
proved by replacing the expensive estimation of d*?GCV/d@* with a finite dif-
ference estimate. The convergence criteria for ceasing the updating process
on a given grid, and for preventing further refinement of the grid resolution,

were also emplaced. The resulting algorithm is a robust, efficient method for
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calculating finite element approximations to minimum GCV smoothing splines

at a resolution appropriate for the scale of the data set.
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Chapter 12

Minimising GCV for the
bivariate quadratic B-spline thin

plate smoothing spline system

Using the guidelines developed in Chapter 11, the iterative procedure for cal-
culating minimum GCV bivariate finite element thin plate smoothing splines
was constructed, from the methods described in Part 1. The univariate anal-
ysis gave an understanding of the behaviour of the individual processes that
make up the MINGCV algorithm, and the key factors that influence its per-
formance. This led to the development of design specifications that resulted
in fast convergence to an accurate representation of the analytic solution for a
range of simulated data sets of varying complexity.

Construction of the univariate MINGCV algorithm hinged upon maintaining
a reasonably well-conditioned system of equations. The univariate analysis
developed a series of techniques to avoid poor synchronisation of the double
iteration, a direct result of a deterioration in conditioning. The bivariate anal-
ysis has involved more extensive testing of the algorithm on a larger and more
diverse range of data sets, including sparse data sets with irregularly positioned
data points. This has led to more refined modifications of the MINGCV proce-
dure. This chapter demonstrates that the resulting algorithm gives an accurate

representation of the analytic solution for all test data sets. Certain data set
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characteristics that may cause poor conditioning are also identified.
This chapter starts by outlining the specifications of the final bivariate MINGCV
algorithm. The algorithm is the same as that defined in section 11.6, with the

followine conditions incorporated.
&

. The initial value of the smoothing parameter A was set so that

2 12,1

ERTl GaL
This setting weights the two terms in equation (6.80) approximately equally,
given that the diagonal elements of the roughness penalty matrix R have mag-
nitude of around 10. The even weighting prevents the rank deficient term 2
from dominating the system, avoiding the problem of ill-conditioning, whilst
still maintaining a smooth setting so as not to require fine scale structure in

the initial phases of the iteration.

2. When iteration begins on a new grid, twice the number of smoothing itera-
tions (2v1) are performed before the smoothing parameter is updated. This is
helpful because the right hand side of the equation for du/df (equation (8.7))
is dependent on the solution estimate u. The algorithm therefore performs v,
smoothing iterations to get an estimate of u, and then performs v, iterations
to update the estimate of du/df. Without this procedure, the first smooth-
ing parameter update would be performed with no information regarding the

solution derivatives.

3. The finite difference estimate of d*GCV/d6*

s only updated if the Af used to calculate this derivative is greater than 0.1.

, introduced in section 11.5.2,
This prevents numerical inaccuracies from being exacerbated by division by
a very small number. This condition introduces a self correction behaviour
into the algorithm, in that if the d*GCV/df? estimate is small, 8 updates are
likely to be large, which can result in a significant update of the d*GC'V/do?
estimate. I'hus when the smoothing parameter estimate is not accurate, second
derivative estimates will be improved. But when the solution process is close
to convergence and 6 updates are small, the d*GCV/d6?* estimate will not be
changed, and the stable behaviour of the algorithm will not be disrupted.

4. The magnitude of the § updates is not allowed to exceed 0.5. It was found

to be important to avoid large smoothing parameter updates as they often
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occur in the early stages of iteration, when the estimates of the solution and
its derivatives still contain significant error. A large change in the smoothing
parameter can disrupt the synchronisation of the process, and the algorithm
will not converge, as discussed in Chapter 11.

=

5. It is important that the @ estimate does not become too small or too large,
because the relationship between the smoothing parameter and the GCV de-
teriorates in the extremal regions of the GCV curve, as discussed in Chapter 8.
To prevent the 6 estimate from entering these regions, the following approxi-
mate bounds were imposed.

Amaz = 50R® (12.2)
Amin = 0.002h° (12,8)

These bounds have been determined experimentally to be appropriate. They
allow A to differ from the ‘even’ weighting in equation (12.1) by no more than
a factor of 500,

6. If @ reaches the minimum limit, no more iterations are performed and the
solution estimate is transferred to a finer grid. Minimal values of 6 are a sign
that the current basis elements are not flexible enough to represent the optimal
solution, and further iteration is likely to be detrimental to the performance of
the algorithm. Maximal values indicate that that the 6 estimates are diverging

away from the optimal solution, at which point the algorithm is terminated.

7. It was considered sensible to emplace a minimum number of # updates on
each grid, to ensure that the solution estimate has a chance to stabilise. The
minimum number of updates was set to 5. A maximum number of 16 updates,
corresponding to 80 SOR iterations, was also emplaced. This is necessary if
convergence on a particular grid is slow and oscillatory. This can sometimes
occur for extremely smooth data sets, where the A value makes little difference

to the solution.

8. The restriction procedure, determining whether further refinement should
occur, is not performed if the maximum iteration limit is reached or if the
f estimate hits its maximum or minimum limit. In these cases. the solution
estimate has not converged on the current grid, so it cannot be assumed to

reflect the structure of the optimal solution.
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9, If the estimate of d*GCV/d0? is negative then the previous d*GCV/d6?
estimate is used to update 6. This allows the dGCV/df estimate to continue
to improve the 0 estimate. If this condition is not imposed, the algorithm is
unable to sensibly update #. Negative estimates of d*GCV/d0? are usually
avoided by the limits in condition 5, but they can still erroneously occur in
the early stages of iteration when the estimates of the solution characteristics

are still inaccurate.

10.  If the d*GCV/db? estimate is negative, the magnitude of the 0 updates
is limited to 0.25. The process must clearly be poorly synchronised if the
d*GCOV/dO? estimates are negative, so it is likely to be unable to respond

correctly to large ¢ updates.

11. If there are more than 3 consecutive negative d*GCV/d0? updates,
iteration terminates on the current grid and the resolution is refined. This
condition and the two conditions above are necessary to control the difficult
situation of negative d*G'C'V/df?. When this occurs, the algorithm is unable
to update accurately, and the constraints on its behaviour must be made more
severe until the process stabilises. This situation usually occurs if the solution
1s approaching exact interpolation, as discussed in the following analysis. It
can also occur if the system is poorly conditioned, which cannot be avoided
for some data sets even though the algorithm is designed to maintain good

conditioning. This is discussed in Chapter 13.

12, In some cases it was found to be necessary to update the estimate of
d*GCV/dB* even if A was less than 0.1, contrary to condition 3. When the
d*GCV/d6? estimate is quite inaccurate, and also quite large, it can be difficult
to update, because a large value of d*GCV/df? causes a small § update. An
additional condition was therefore incorporated, specifying that d*GCV/do?
will be updated if # has changed by more than 0.2 since the last d*GOV /do?
update. This is still unlikely to be overly affected by numerical error, as Af

must still be not significantly smaller than 0.1.
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12.1 Results for different test data sets

The bivariate MINGCV algorithm described above was tested on a wide range
of data sets, in order to vary the noise and complexity, as well as the distri-
bution of the data point positions. The results below show that the MINGCV
algorithm produced good estimates of the analytic spline solution for all data
sets. Note that, for the following analyses, estimation of Tr was performed
by averaging 10 different random vectors, as was done in section 11.1. This
was done to reduce the stochastic error in the 7' estimate, which has been
shown in previous chapters to have a major influence on the accuracy of the
MINGCV solution estimate, as well as convergence behaviour, for small data

sets,

12.1.1 12l.dat

The data set 121.dat consists of 121 points on the bivariate function
T4 -+ = 2 (12.4)

The positions of the data points were obtained from a uniform random dis-
tribution on the region [=3,3] x [—3,3]. The data values were perturbed by
normally distributed random noise with standard deviation of 0.2, introduc-
ing small errors into the data. The data set, along with the analytic thin
plate smoothing spline fit obtained from ANUSPLIN, is shown in Figure 12.1.
Clearly the process is very simple, smooth and broadscale.

The spline solution is an accurate recreation of the parabolic function, thanks
to the good cover of data points and the low noise level. The statistics for
the analytic solution are shown in Table 12.1. The signal is less than half
the number of data points, indicating a reliable fit, but it is not much less
due to the low noise in the data. For the analyses in this chapter, the RMS
(root mean square) residual is reported in the summary tables, instead of the
residual sum of squares R, in order to show more clearly how closely the data
are fitted. The minimum GCV estimate of the standard deviation of the noise
discussed in section 2.2.2, denoted &, is also shown.

Summary results of the MINGCV algorithm for 121.dat are shown in Ta-
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Figure 12.1: Analytic thin plate smoothing spline fit to the data set 121.dat.

R Signal | RMS residual | GCV o
1 0.0134 | 56.6 0.151 0.0805 | 0.207

lable 12.1: Summary statistics for the analytic thin plate spline fit to 121.dat.

ble 12.2. The algorithm terminates at a relatively coarse grid, giving a solution
estimate that is slightly smoother than the analytic solution. However, the es-
timate of & is not greatly different for the two solutions. It therefore appears
that both solutions have correctly identified the underlying data generation
process. The difference in the signal values between the fine grid MINGCV fit
and the analytic spline in this case is likely to be a consequence of choosing a
very smooth underlying process with very low noise. In this situation, smooth-
ness can be maintained with a relatively low RMS residual, so the signal value
can be higher for a given smoothness.

The results in Table 12.2 do show how the discretisation constraints affect
the solution estimate. The smoothing parameter consistently increases as the
grid resolution is refined, and the RMS residual decreases. This is a sign that
the coarse discretisation forced excessive smoothing, and the solution estimate

benefited from the additional flexibility of the finer elements.
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Grid no. h No. of A Signal | RMS | GCV g
updates residual
§) 1.20 13 0.0109 | 33.7 0.193 0.0717 | 0227
5 0.600 5 0.0278 | 39.0 0.183 | 0.0726 | 0.222
4 0.300 5 0.0281 | 43.4 0.173 | 0.0727 | 0.216

Table 12.2: Results generated by the bivariate MINGCV algorithm for the
data set 121.dat.

No. of iterations | Sobolev norm
performed
1 40.6
2 20.9
3 25.6
4 22.8
5 18.5
§) 16.8
i 13.1
8 14.8

Table 12.3: Sobolev norm values after each iteration for 121.dat, before the
first 0 update is performed.

The MINGCV solution is shown in Figure 12.2. It appears to be an accurate
representation of the analytic solution, and Figures 12.3 and 12.4 show that
there is little difference, except in the edge regions. Differences between the
analytic solution and the finite element approximation at data sparse regions
such as the edge regions can related to the calculation of the roughness penalty
for the discretised bivariate smoothing spline equations. The analytic bivariate
smoothing spline equations minimise roughness over the infinite plane (see
equations (2.11) and (2.12)).

approximation of the bivariate roughness penalty, which minimises roughness

This is a source of error in the finite element

only over the grid surrounding the data points and ignores the surrounding
infinite region. This was not an issue for the univariate case because the
second derivative of the natural cubic spline reduces to zero beyond the data
points. For bivariate splines the second derivative does not reduce to zero
beyond the data points. It could be argued in principle that minimisation over
all R? is not necessary, given that the aim is to best approximate the region
in the vicinity of the data points. Nonetheless, we can expect less agreement

between the MINGCYV solution and the analytic solution for bivariate splines
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Figure 12.2: Biquadratic B-spline fit to the data set 121.dat.

Figure 12.3: Overlay of the biquadratic B-spline solution and the analytic
solution for the data set 121.dat.
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Figure 12.4: Difference between the biquadratic B-spline solution and the an-
alytic solution for the data set 121.dat.

than univariate splines.

Furthermore, the localised minimisation of roughness for the bivariate MINGCV
algorithm contributes to ‘local poor conditioning’ in data sparse regions and
edge regions. If there is a relatively large patch with no data points, the rough-
ness penalty term will dominate the system, and the MINGCV algorithm must
effectively solve the biharmonic equation on that patch, with boundary infor-
mation from the rest of the surface surrounding the patch. This was discussed
in section 6.3, The biharmonic system is poorly conditioned on fine grids, and
cannot be solved effectively by basic iteration, but the MINGCV algorithm is
designed so that smooth components are mostly solved before fine grids are
reached. However, on the edges the discretised minimum GCV solution is more
likely to change with refinement because there is no condition on how the sur-
face extends to infinity. The trends that are extrapolated to the edge regions
depend on the solution values in the interior, which may change from grid to
erid, particularly if there is a lot of fine scale structure in the solution. The
MINGCV algorithm cannot solve for these changes to the edge regions on fine
grids. The edge regions are therefore likely to contain higher numerical error,

especially if there are no data point near the edge regions. This phenomenon
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will be further demonstrated in Chapter 13.

Further details of the performance of the MINGCV algorithm are shown in
Table 12.3 and section C.1. Table 12.3 shows the benefit of extra iteration
before updating the smoothing parameter estimate at the start of the first
resolution. A measure of the curvature of the solution estimate, given by the
Sobolev norm vVaT Ze, has been included in the bivariate analysis. This is the
square root of the bivariate roughness penalty, as was shown in equation (6.78).
The Sobolev norm has proven to be the most stable of the solution descriptors
measured in this analysis. It takes around 5 iterations to settle down to a
stable value, after which there are no significant further deviations on any grid.
[t therefore appears that a reasonable solution estimate has been reached at
about this point, and further iteration makes only fine scale alterations.

[t is beneficial to the performance of the algorithm to have some stabilisa-
tion of the solution estimate before updating the smoothing parameter, as the
derivative estimates will be more likely to produce an accurate smoothing pa-
rameter update. This avoids smoothing parameter estimates that are in the
end regions of the GCV curve in Figure 8.1, where the updating procedure is
less effective.

On the coarsest grid, Table A.1.1 shows convergence is quite fast, with the
dG'CV /dO estimate being reduced by 4 orders of magnitude in 13 updates. Fast
convergence on the coarse grid would be expected given that the system is well
conditioned. Some instability is evident at the fifth update, which is a point
where the d*GCV/df? estimate is updated. The initial *GCV/df? estimate
was clearly quite inaccurate, given the final value of 0.004 corresponding to the
converged solution estimate. This demonstrates the importance of condition
12, The initial value of d*GCV/d0? was so large that the change in the ¢
estimate was unlikely to be greater than 0.1, so the d*GC'V/d6? estimate would
have taken a long time to update without a condition considering cumulative
changes in 6.

However, the sudden, large change in d*GCV/d#? caused an unstable situ-
ation, where the d*GCV/d0? estimate was relatively small in comparison to
the dGC'V/df estimate. This is a case where the criterion 4, preventing # up-
dates from exceeding 0.5, becomes important. Table A.1.1 shows that there
are two updates of 0.5 before the dGC'V/df estimates became smaller, the 6

updates became smaller, and the algorithm stabilised, eventually converging
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Figure 12.6: Analytic thin plate spline fit to the data set
frankel.dat.

1.4~

Figure 12.7: Biquadratic B-spline fit to the data set frankel.dat.
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Figure 12.8: Overlay of the biquadratic B-spline solution and the
analytic solution for the data set frankel.dat.
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Figure 12.9: Difference between the biquadratic B-spline solution
and the analytic solution for the data set frankel.dat.

218



CHAPTER 12. MINIMISING GCV FOR THE BIVARIATE QUADRATIC
B-SPLINE THIN PLATE SMOOTHING SPLINE SYSTEM

and Figures 12.7, 12.8 and 12.9, The MINGCYV surface differs very little from

the analytic function. The algorithm terminates on a very coarse grid, clearly

indicating the lack of fine scale structure in the data set. There is therefore
good agreement between the analytic and finite element surfaces at the edge
regions, as there is no need to solve edge regions at a fine resolution. There is
little difference between the statistics associated with the analytic spline and

the finite element representation, with the exception of the A value.

Grid no. h No. of A Signal | RMS | GCV | ¢
updates residual

6 0200 | 11 [0.236| 5.20 | 0.421 |0.197 | 0.433

5 0.100 5 0.238 | 5.30 0.421 ]0.197 | 0.432

Table 12.5: Results generated by the bivariate MINGCV algorithm for the
data set frankel.dat.

This is likely to be an artifact of the coarse discretisation at which the solution
s estimated. In the case of this data set, an appropriate smoothness can
be achieved at a coarse discretisation, but A does not need to be precisely
optimised because a certain amount of smoothness is enforced by the coarse
basis elements.

Detailed results are shown in section C.2. The algorithm converges quickly on
both grids. The fact that 8 increases so much from the starting value shows
that the roughness penalty term clearly dominates this system. We would
not expect the algorithm to work for this data set if it had started on a fine
grid. The solution estimate again changes very little between the two grids,
as can be seen from the Sobolev norm and the estimate of 7. This shows
that that the solution estimate was accurate on the coarse grid, even though
the dGCV/dO estimate at the end of grid number 5 is quite different to that
at the end of grid number 6. It has been generally the case for the analyses
i this study that derivative estimates are far more sensitive to iteration than

fundamental solutions characteristics like the norm, 7'r, R and the GCV.

Franke2.dat

Franke2.dat, the data set with a noise level of 1/16, and the analytic spline fit
are shown in Figure 12.10. The signal value, given in Table 12.6, is in the ideal

range of values slightly less than half the number of data points. This is likely to
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give a well conditioned system, associated with a reliable solution with a well-
defined optimum. The MINGCV summary results for franke2.dat, shown in
Table 12.7, show that all analytic solution characteristics are well estimated by
the MINGCV algorithm. Good agreement is also shown in Figures 12.11, 12.12
and 12.13.

GCV x10° f
0.450

RMS residual
0.0427

A\ x 10°
0.956

signal
36.3

Table 12.6: Summary statistics for the analytic thin plate smoothing spline fit
to the data set franke2.dat.

The trend of increasing signal and decreasing RMS residual as the grids are
refined is evident, indicating the gradual development of fine scale structure.
The full results in section C.3 show that convergence is very fast on all grids.
On the coarsest grid dGC'V/dO is reduced by 4 orders of magnitude in 7 up-
dates, on grid number 5 there is a reduction of 4 orders of magnitude in 5
updates, and convergence is similar on the final grid. This is an example of an
optimal performance of the MINGCV algorithm, with fast convergence to an

accurate estimate of the analytic solution.

Grid no. | % No. of | A x 10° | Signal | RMS [ GCV x10° | 4
_ updates residual
§ 0.200 7 C0.508 | 29.0 | 0.0474 0.445 | 0.0562
5 0.100 5 0.858 | 32.9 | 0.0447 0.445 0.0546
4 0.0500 5 0.964 | 35.3 | 0.0435 0.451 0.0540

lable 12.7: Results generated by the bivariate MINGCV algorithm for the
data set franke2.dat,

[t is interesting to note that, according to the GCV, the predictive capacity
doesn’t necessarily improve with refinement. The coarser grid solutions have
a lower GCV than the fine grid solution, although the fine grid solution is a
more accurate representation of the analytic solution. It certainly possible for
a function to have a lower GCV than the analytic spline fit. It seems that
in this case the coarse grid finite element approximation is a slightly better

predictor than the analytic solution.
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0 o

Figure 12.10:  Analytic thin plate spline fit to the data set
franke2.dat.

1.5«
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0 o

Figure 12.11: Biquadratic B-spline fit to the data set franke2.dat.
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Figure 12.12: Overlay of the biquadratic B-spline solution and the
analytic solution for the data set franke2.dat.

Figure 12.13: Difference between the biquadratic B-spline solution
and the analytic solution for the data set franke3.dat.
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Franke3.dat

Reducing the noise to 1/128 gives franke3.dat, shown in Figure 12.14, along
with the analytic spline fit. The results of the MINGCV algorithm, in Ta-
ble 12.9, are in good agreement with the analytic results in Table 12.8, although
they

are not as close as for the previous data set. This could be due to the higher
curvature of this function at end regions, as shown in Figure 12.14. Both
franke2.dat and franke3.dat only required two refinements to represent the
final solution. Convergence results are also similar for these two data sets.
T'his is understandable given that the underlying function is the same and the
signal values are in middle regions rather than the extremal regions of exact

interpolation or flat plane regression.

[ A x 107 | signal [ RMS residual x10% | GCV x10° | & x 10?
| 0.0702 | 73.8 0.359 0.188 0.702

Table 12.8: Summary statistics for the analytic thin plate spline fit to the data
set franke3.dat.
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Figure 12.15: Biquadratic B-spline fit to the data set franke3.dat.
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Figure 12.16: Overlay of the biquadratic B-spline solution and the analytic
solution for the data set franke3.dat.
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Figure 12.17: Difference between the biquadratic B-spline solution and the
analytic solution for the data set franke3.dat.

Grid no. | h | No. of | Ax10° | Signal | RMS [ GCV x107 [ & x 10
updates residual

§ 0.2 10 0.102 30 0.0169 0.726 0.213

0 0.1 5 0.0530 | 61.3 | 0.00476 0.152 0.0765

4 0.056 5 0.0813 | 67.1 | 0.00431 0.171 0.0750

Table 12.9: Results generated by the bivariate MINGCV algorithm for the
data set franke3.dat.

Franke4.dat

The 0

estimate will be forced to its minimum on several grids, so we can determine

The case of zero noise is a good test for the MINGCV algorithm.

whether the updates are able to respond correctly to constant visits to the
extreme region of the GCV curve. However, poor conditioning should not
The

summary statistics for the analytic solution in Table 12.10, and the graph in

be a problem as the rank deficient component will be virtually zero.

Figure 12.18, show that the analytic spline exactly interpolates the data. The
MINGCYV results in Table 12.11 show five refinements of the grid, at which

point the signal estimate shows that exact interpolation has essentially

o
2
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occurred. The difference between the analytic and finite element solution is
small, as shown in Figures 12.19, 12.20 and 12.21, even though the approximate
A and RMS residual values do not get as small as the analytic values.

Looking at section C.5 for further detail, we see that the @ estimate has hit
the minimum possible value on all grids except the final grid. Some instability
is evident at the third update of grid number 3, in that there is a decrease
in consecutive f updates combined with an increase in consecutive positive
dGCV/df updates. This contradicts the analytic relationship between the
GOV and the smoothing parameter A, shown in Figure 8.1, which is an indi-
cation that the process is poorly synchronised at this point, and the algorithm

does not recognise the point of minimum GCV.

A % 10 | Signal | RMS residual x10'Y | GCV %10 | & x 10°
0.577 100 0.209 0.148 0.284

Table 12.10: Summary statistics for the analytic thin plate spline fit to the
data set franked.dat.
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Figure 12.19: Biquadratic B-spline fit to the data set franked.dat.
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Figure 12.20: Overlay of the biquadratic B-spline solution and the analytic
solution for the data set franked.dat.
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Figure 12.21: Difference between the biquadratic B-spline solution and the

analytic solution for the data set franked.dat.

Grid no. h No. of | Ax10% | Signal | RMS | GCV x10% | & x 10
updates residual
B x103

§ 0.256 14 0.131 28.3 (0.306 0.177 0.352

5 0.128 3 0.0328 57.5 0.0479 0.0130 0.0735

1 0.0640 2 0.00519 83.5 0.00408 0.00106 0.0100

3 0.0320 5 0.00205 96.2 | 0.000647 | 0.000571 | 0.00331

2 0.0160 § 0.000512 | 99.4 | 0.000503 | 0.000334 | 0.00631

) 1 0.00800 15 (0.000815 99.2 0.000445 0.000623 0.00488

Table

12,11

Results generated by the bivariate

MINGCV algorithm for the

data set franked.dat.

This would have resulted in a negative estimate of d*GCV/d#?, so condition 9
1s activated. This situation also occurs on grid number 2 at the third and fifth
updates. The negative d°GCV/d6? estimates are a sign that the minimum
possible @ value has been set too low in this case, because the @ estimate is al-
ready at the point where its relationship with the GCV has broken down. The
hinal grid delivers the required flexibility, and the smoothing parameter esti-
mate increases. This recovery is a sign that the synchronisation of the updates

was not destroyed on previous grids, indicating that the conditions preventing
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iteration from lingering at extremal values of 0 are working effectively.

On the final grid, convergence is quite slow, and the Tr, R and GCV esti-
mates do not settle down even though the @ estimate barely changes. This
is understandable considering that the GCV curve for exact interpolation will
not have a local minimum. Also, the plots of R and T'r versus A in Chapter 2
show that, for extremal values of A, both R and T'r are relatively insensitive
to changes in A, It is therefore not surprising that, for the case of zero noise,
the MINGCV algorithm cannot stabilise. It does, however, give an estimate

that is not significantly different from the optimal result.

12.1.3 The peaks function

Further testing of the MINGCV algorithm was aimed at creating data sets that
more closely resembled the environmental data sets for which this algorithm
was intended. This involved generating a data set with areas of clumped
data points, which might correspond to more heavily populated areas in a
spatial region such as the Australian continent, and also large arcas where
data measurements are very sparse. This could cause the conditioning of the
finite element equations to deteriorate, even at coarse resolutions, because
there are large areas of the surface where smoothing is the only priority, as
discussed in section 12.1.1.

The generating function was chosen to be the peaks function obtained from [51].
The peaks function is obtained by scaling and translating Gaussian distribu-

tions, and is given by

¥ 2= =22 _ 1 (% _ 3 _ 5 ety _ L —(zr1)ip
f(@,y) = 3(1 - 2)’% 10 (- =) e - e
o . .
(12.11)
This function is shown in Figure 12.22. Although environmental processes are
unlikely to behave in such a regular manner, this function was deemed to be

a good test function because of its Gaussian nature and its spatial anisotropy.

Peaks.dat

The data set peaks.dat was created by sampling 190 points from the peaks

function and adding Gaussian random noise with standard deviation of 0.2.
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Figure 12.22: The peaks function.

This is a very small amount of noise compared to the magnitude of the data
values. The data point positions are shown in Figure 12.23. They were chosen
by eye to be clumped, with large areas of sparsity. The data set peaks.dat,
along with the analytic spline fit, is shown in Figure 12.24. The analytic spline
does not capture all the peaks in Figure 12.22, because they are not represented
y data. The MINGCYV results depicted in Figures 12.25, 12.26 and 12.27
show larger disagreement with the analytic solution than previous data sets.
[t can be seen that the regions where deviations are large in comparison to
the rest of the surface correspond to areas where there are little or no data
points, particularly at edge regions. This is a result of the roughness penalty
Issues discussed in section 12.1.1. However, these deviations do not necessarily
indicate high error, considering that the analytic spline is not accurate
recreating the generating function in data sparse regions.

Table 12.12 shows that the analytic spline fit has a signal slightly less than half

the number of data points. The MINGCV algorithm required four refinements
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Figure 12.23: Data point positions for the data set peaks.dat.

Figure 12.24: Analytic smoothing spline fit to the data set
peaks.dat.,
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Figure 12.27: Difference between the biquadratic B-spline solution and the
analytic solution for the data set peaks.dat.

| A x 107 [ Signal | RMS residual | GCV a
0.754 87.2 0.113 0.0435 | 0.154

Table 12.12: Summary statistics for the analytic smoothing spline fit to the
data set peaks.dat,

Grid no. | h No. of | A x 10 | Signal | RMS | GCV o
updates residual
§ 2.40 11 1.15 38.0 0.412 0.264 | 0.451
5 1.20 5 0.288 (5.0 0.151 | 0.0540 | 0.186
4 0.600 o (0.780 76.0 0.138 | 0.0638 | 0.179
3 (0.300 D 0.847 87.0 0.125 0.0529 | 0.170
2 0.150 5 0.843 92.4 0.118 | 0.0528 | 0.165

Table 12.13: Results generated by the bivariate MINGCV algorithm for the
data set peaks.dat.

to represent this solution, as shown in Table 12.13. This can be attributed
to the clumped distribution of the data set, as fine basis elements would be
required to isolate the trends in the data clumps.

The full results in section C.6 show that the @ estimate hits the minimum
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Figure 12.28: Analytic thin plate spline fit to the data set
peaksl5.dat.
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Figure 12.29: Biquadratic B-spline fit to the data set peaksl5.dat.
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Figure 12.30: Overlay of the biquadratic B-spline solution and the
analytic solution for the data set peaksl5.dat.
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Figure 12.31: Difference between the biquadratic B-spline solution
and the analytic solution for the data set peaksl5.dat.
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Gridno. | h | No.of [ A [Signal | RMS [GCV | &
updates residual
O 2.40 11 0.155 28, 1.04 1.49 | 1.13
5 1.20 5 0.125 | a7. 0.956 | 1.40 | 1.06
1 0.600 5 0.159 | 38. 0.936 1.38 | 1.05
J 0.300 5 0.169 40. 0.928 1.38 | 1.04

lable 12.15: Results generated by the bivariate MINGCV algorithm for the
data set peaksl5.dat.

Convergence is quite fast and stable on all remaining grids. The RMS residual
shows that the data are fitted more closely as the grids are refined. According
to previously observed trends we would expect the smoothing parameter esti-
mate to increase with refinement, but this is not the case for the grid numbers
6 and 5. This is further evidence that the coarse grid solution was not an
accurate representation,

The results for both peaks.dat and peaksl5.dat indicate that, for data sets
with a clumped distribution more refinement will be necessary to represent
the trends in the clumps, even though the underlying process might be quite

smooth.

Peaks0.dat

As the name suggests, peaksO.dat is the data set peaks.dat with no noise.
Although this is unrealistic, it was chosen to test the algorithm by combining
very fine scale trends with large areas of data sparsity. This could force the
algorithm to have to solve poorly conditioned equations. The data set and
analytic spline fit are shown in Figure 12.32.

The results of running the MINGCYV algorithm in Tables 12.16 and section C.8
show similar behaviour to that observed for franked.dat, the other data set fea-
turing zero noise. The @ estimate hits the minimum possible value on all grids
except the last two grids, on which it fails to optimise. Although the algorithm
does not converge, there are no signs that poor conditioning on fine grids is
affecting the performance. Tables 12.17 and 12.16 and Figures 12.33, 12.34
and 12.35 show that the MINGCV estimate of the analytic solution is accu-

rate away from the end regions.
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Figure 12.32: Analytic thin plate smoothing spline fit to the data
set peaks0.dat.
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Figure 12.33: Biquadratic B-spline fit to the data set peaks(.dat.
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Figure 12.34: Overlay of the biquadratic B-spline solution and the
analytic solution for the data set peaks0.dat.
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Figure 12.35: Difference between the biquadratic B-spline solution
and the analytic solution for the data set peaks0.dat.
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[ Grid no. h No. of | A x 107 | Signal RMS [ GCV x107[ 6 x 10
updates residual

T 2.40 11 115 38 0.382 2390 0.428
§ 1.20 3 28.8 GO 0.0458 51.8 0.0567
5 0.600 3 .20 110 0.00965 5.553 0.0149
1 0.300 2 1.80 150 0.00272 2Tl 0.00594
3 0.150 5 0.450 181 | 0.000650 1.79 0.00303
2 0.075 2 0.213 187 | 0.000275 0.203 0.00207
| 0.0375 17 0.100 189 0.00014s 0.749 0.00193
0 0.0187 5 0.122 189 | 0.000193 0.213 0.00244

Table 12.16: Results generated by the bivariate MINGCV algorithm for the
data set peaks(O.dat.

a x 10°
0.816

GCV x10°
0.195

RMS residual x10'Y
0.476

% % 10~
0.492

Signal
190

Table 12.17: Summary statistics for the analytic thin plate spline fit to the
data set peaks(O.dat.

12.2 Conclusions

The bivariate MINGCV algorithm has been tested on a number of data sets,
with varying complexity, spatial distribution and noise level. As a result of
this testing, a number of controls on the behaviour of the algorithm were
emplaced, to maintain stability in the face of difficult situations presented by
some types of data sets. The resulting MINGCV algorithm gave an accurate
representation of the analytic solution for all test data sets at a resolution
appropriate to the scale of the data generation process, Convergence was
efficient for all data sets, although for the situation of exact interpolation the
minimum GCV is poorly defined and the algorithm cannot fully settle. The
solution estimates generated in this case are still accurate representations of
the analytic solution.

The typical behaviour of the bivariate MINGCV algorithm for smooth pro-
cesses 1s to converge quickly on the coarse grid and not refine the resolution,
For fine scale processes, the optimum solution cannot be obtained on the coarse

grid, as smoothness is enforced by the coarse basis elements. On finer grids,
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the discretisation has less control on smoothness, and the influence of the
roughness penalty term increases. This is often reflected by an increase in the
smoothing parameter on finer grids, in order to maintain some of the smooth-
ness that was passed down from the coarse discretisation.

Issues did arise with regions of data sparsity, especially at the edges of grids. In
these regions, there was less agreement between the MINGCV approximation
and the analytic solution. The MINGCYV solution is not as accurate in these
regions, because, although the smoothing parameter estimate converges, the
solution may not have converged to the analytic solution in these particular ar-
eas. 'T'his is because the roughness penalty term is dominant for the subsystem
corresponding to these areas of the grid, and the subsystem is therefore poorly
conditioned on fine grids. The optimal solution at the edge regions may well
change considerably from grid to grid, because there are no conditions on the
smoothness of the solution beyond the grid boundary. The algorithm therefore
has to solve for smooth changes in the solution on fine grids, a situation which
is known from previous analysis to cause instability. This phenomenon will be

further discussed in the following chapter.
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Chapter 13

Performance of the MINGCV
algorithm for large temperature

data sets

Previous chapters have documented the development and refinement of the
bivariate MINGCV algorithm. The final algorithm was shown to yield an ac-
curate approximation to the analytic solution for a wide range of simulated
data sets with varying noise, spatial distribution and spatial complexity. How-
ever, sinulated data sets are limited in their ability to recreate the features of
a ‘real’ environmental data set consisting of noisy observations of an environ-
mental process. The simulated data sets used in Chapter 12 were all generated
from a relatively simple functions, so that only a limited amount of data are
required to capture all the variability. Environmental processes often feature
complex interactions both at the regional scale and the microscale. A denser
data set can therefore give rise to quite a different interpolated surface than a
sparser data set. The implications of this are demonstrated in the examples
below, which consider temperature data for both the African and Australian
continents. Temperature was chosen because, once an accurate estimate of
the elevation lapse rate is known, past research shows that annual tempera-
ture can be accurately spatially interpolated with a bivariate thin plate spline

with independent variables latitude and longitude [84, 60].
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Maximum and minimum temperatures at various scales are known to be in-
fluenced by a variety of factors. Jarvis and Stuart [75] describe both surface
and topographic controls on temperature. Features of surface type include
the effects of absorbed solar radiation, surface roughness, internal boundary
layers and urbanisation. The latter two tend to be microscale effects. Effects
of internal boundary layers are difficult to incorporate into interpolated sur-
faces because the digital land cover and soils data that affect such processes
are often not available at fine scales. Urban heating effects are also localised
in that the influence on temperature declines steeply at the edge of suburban
areas [75].

These effects interact with topographic controls. At a broader scale, tempera-
ture declines roughly linearly with increasing elevation, at a typical ‘standard’
lapse rate of —6.5°C' per kilometre, though this does vary with season and
location. However, cold air drainage on slopes operates on cold nights to pro-
duce local lapse rate inversions [60]. Other influences include the evaporation
rate on slopes, given that damp soils create a cooling effect. This is one factor
that lowers the temperature at valley bottoms. It has been incorporated into
daily temperature interpolation models hy Jarvis and Stuart [75] by repre-
senting the distance to nearest rivers. Changes in slope also affect the depth
of the surface-cooled atmostpheric layer, which is greater on concave rather
than convex surfaces, leading to lower minima on concave slopes. The height
of a point relative to the valley floor has also been considered as a measure
of susceptibility to frost [107]. Further effects include adiabatic warming as a
result of the descent of air from mountains and plateaus by fohn winds, as well
as coastal shape and situation [75, 76].

Temperature is therefore driven by many different processes that operate to
varying extents on different spatial scales. From a spatial interpolation per-
spective, the ability of the fitted surface to detect these different levels of
variation depends on the density of the data network. and the time scale at
which the interpolation is required. Averaging the data to represent long term
monthly mean or annual mean temperature removes significant variability from
the system. Studies by Hutchinson [60] and Price et al. [96] fitted thin plate
smoothing splines to monthly mean maximum and minimum temperature us-
ing latitude, longitude and elevation as explanatory variables. Both reported

standard errors of around 0.5°C' for minimum temperature, and smaller er-






13.1. SPATIAL INTERPOLATION OF TEMPERATURE DATA FOR
THE AFRICAN CONTINENT
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Figure 13.1: Data point locations for the African temperature data set.

1498 points is too many for efficient computation of the analytic spline, so the
SPLINB routine within ANUSPLIN was used to calculate an approximation
using a subset of 1000 knots [68]. The SPLINB results are shown in Table 13.1.
The elevation lapse rate was estimated to be —6.22° per kilometre, close to

the standard rate.

A |Signal| RMS |GCV ] o2
- r-v.f-f.ic.h.lel,l
0.0925 | 469.1 | 0.829 | 1.46 | 1.00

Lable 13.1: Summary statistics generated by SPLINB for the African temper-
ature data set.

The results for the MINGCV algorithm are shown in Table 13.2, with full
results in section D.1. The results are very close to those obtained for the
partial spline fitted by SPLINB using three independent variables, latitude,
longitude and elevation.

The final grid resolution of 1° is quite fine, implying local scale spatial trends
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2000 0 2000 4000 Kilometers
____

Figure 13.2: Minimum GCV biquadratic B-spline surface representing annual
mean maximum temperature, standardised to sea-level, for the African conti-
nent.

(Gridno. | h | No. of | A | Signal| BRMS |GGV ] &
updates residual
3 | 256 7 1.31 | 19.2 [ 200 | 412 | 2.02
7 12.8 1 0.328 | 44.9 1.60 | 2.73 | 1.63
§ 6.40 5 0.0819 | 109. 1.34 | 2.11 | 1.40
5 3.20 5 0.0205 | 290. 1.02 | 1.62 | 1.14
| 1.60 § 0.249 | 329. 1.01 | 1.54 | 1.14
3 0.800 2 0.528 | 299, 1.18 | 1.83 | 1.32
2 0.400 2 1.12 | 271. 1.81 | 3.45 | 2.01
1 0.200 2 200 | 2064, 2.99 | 114 |3.30
() 0.100 1 0.500 | 264, .18 | 182 | 1.97

Table 1330 Results gencrated by the bivariate MINGCV algorithm for the
Alfrican temperature data set. with an initial grid resolution of 25.67,

the GCV begins to increase markedly and so does R, This indicates that

the derivative estimates were unable to detect a minimum GCV when # was
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in the vicinity of the optimal value. Once again this is typical behaviour of
the MINGCV algorithm on fine grids where the system is poorly conditioned,
and was observed many times during the unidimensional analysis described in
Chapter 11. Poor conditioning causes slow convergence of the SOR iterations,
which results in poor synchronisation of the 6 updates and the updates of the
solution and its derivatives,

The errant solution estimate is shown in Figure 13.3. This figure clearly shows
the cause of the problem. The large area of ocean in the lower left corner of the
grid has produced a poorly conditioned system. The problem of poor conver-
gence in data sparse areas near boundaries was discussed in Chapter 12, The
algorithm essentially has to solve the biharmonic equation at a fine resolution,
with little help from coarse resolutions due to lack of fixed specification of the
solution values beyond the grid boundaries. The solution estimate has there-
fore diverged in this region of the grid, which then introduced error into the
calculation of the solution estimate and corresponding derivatives on the rest
of the grid. The reason why this occurred for the initial resolution of 25.62 ancd
not the initial resolution of 16 has not been attributed to any particular pro-
cess. It is assumed that, for this data set, chances of divergence are significant,
so small changes in the resolution of each grid may trigger divergence,

A practical solution to this problem is to reduce the areas of data sparsity
by dividing the continent up into 2 sections and solving for splines on the
two grids separately. Two sections which avoid empty space are shown in
Figure 13.4. With this subdivision we have eliminated virtually all the empty
space that was problematic in the above analysis. The disadvantage of this
approach is clearly that less data and therefore less information is available
for the interpolation on each section. Summary results for the two halves are

shown in Tables 13.5 and 13.6.

Grid no. | h No. of | A Signal | RMS | GCV | &
updates residual
§ 8.00 10 0.128 54.6 1.46 2.42 | 1.51
5] 4.00 al 0.0320 | 151 1L 2.04 | 1.29
8! 2.00 8 0.135 216. 1.00 Lid | 116
3 1.00 i 0.164 254, 0.942 106 | 1i12

Table 13.4: Results generated by the MINGCV algorithm for African temper-

ature data set, for the top section of the African continent.
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Figure 13.3: Surface produced by the bivariate MINGCV algorithm for the
£ "” :

African temperature data set, with initial grid resolution 25.6° instead of 16°

Comparing these Tables with Table 13.2, it can be seen that both halves

converged to solutions with similar GCV. R and resolution to the MINCGCV
solution for the full data set. The surface produced by combining these two
halves is shown in Fieure 13

3.2,

The patterns and trends are similar to those in

Figure with some fine scale differences, In general the surface generated

by combining two sections predicts slightly cooler temperatures in the top half

Grid no. | A No. of A Signal | RMS [GCV | & |
updates residual
§ 16.0 ) 0.512 | 17.3 1.69 | 3.03 | 1.71
0 &.00) O 0.128 39.1 .42 2.23 .45
| g 1.00 4 0.0320 | 97.1 110 Loe | 147
3 | 2.00 T 0.0310 206. ().859 .29 | 0.987
2 1.00 fi 0.0077 | 267. U0 .26 | 0.930
Table 13.5: Results generated by the MINGCV algorithm for the African

temperature data set, for the bottom half of the African continent.
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Figure 13.4: The two grids used to cover the African continent and avoid large
arcas ol ocean.

of the continent. Given that the differences are relatively minor, this option is

still an efficient alternative to analytic methods for a large data set.

13.2 Spatial interpolation of temperature data

for the Australian continent

As a second test, the MINGCV algorithm was run on annual mean maximum
temperature data, standardised to sea-level, for the Australian continent. The
data set, consisting of 1134 data observations, is mapped in Figure 13.6. The
distribution is clumped and uneven, with a strong bias towards coastal regions.
However, the shape of the continent is more rectangular than that of the
African continent, so there is less of a problem with large data sparse holes af

the grid boundary. According to previous analysis, particularly that with the
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Figure 13.5: Combination of temperature surfaces produced by the bivariate
MINGCV algorithm for the top and bottom segments of the African continent .

peaks.dat data set in Chapter 12, we would expect the MINGCOV algorithm to
converge for this data set.

This time, SPLINA was used to caleulate the analytic partial spline solution,
instead of using the SPLIND knot based approximation as was done for the
African data set. The data set was regarded as just small enough for a single
SPLINA run. The results are shown in Table 13.6.

A Signal | RMS | GCV | o2
resicual
(.0335 | 358.5 0.497 | 0.527 | 0.600

Table 13.6: Summary statistics generated by SPLINA for the Australian tem-
perature data set.

The partial spline estimate of the lapse rate was —7.67% per kilometer, higher

than that for Africa. After using this lapse rate to standardise the data to
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Figure 13.6: Data point locations for the Australian temperature data set.

sea level, the bivariate MINGCV algorithm was run to produce the results in
Table 13.7 and section D.3. The statistical characteristics of the MINGCV
solution agree well with those of the analytic solution. Estimates of the GCV
and ¢ are almost identical. The signal is well below half the number of data
points, which indicates the processes are broadscale. This is demonstrated in
Figure 13.8, which shows a gradual inland gradient.

The results are similar to those for the Africa data set in Table 13.2. If any-
thing, the statistics indicate less noise for the Australian data than for the
African data, given that the final resolution is finer, and the & estimate is
lower, for the Australian data set. This could be expected, as the Australian
data is of higher quality than the African data set, with fewer errors in the

recorded station locations and data values.

The more detailed results for the MINGCV algorithm in section D.3 indicate
that the # estimate hit the minimum possible value on the 3 coarsest grids. On

the two final grids, convergence was reasonably fast. The # estimate does not

253



13.3. THE COMPUTATIONAL SAVING

Grid no. | & No.of [ A [Signal| RMS [GCV ] &
updates residual

6 8.00 8 0.128 | 34.8 | 0.947 |0.959 | 0.962

5 4.00 3 0.0320 | 81.8 | 0.809 |0.766 | 0.840

4 2.00 7 0.0131 188, 0.644 0.597 | 0.705

3 1.00 5 0.0272 | 270. | 0.559 | 0.538 | 0.640

2 0.500 9 0.0271 330. 0.512 0.529 | 0.610

Table 13.7: Results generated by the bivariate MINGCV algorithm, for the
Australian temperature data set.

increase markedly on these finer grids, but the signal increases significantly.
This shows the inability of the coarser grid to represent the trends in this data
set.

I'he solution produced by the MINGCV algorithm, shown in Figure 13.7, shows
no signs of instability at the grid boundaries. Testing of the algorithm using
different initial grid resolutions was performed to see whether the process suf-
fered from similar instability to that observed for the African temperature data.
As anticipated, the algorithm converged for all the tests. Given the rectan-
gular shape of the Australian continent, and observing the stable behaviour
at the boundaries in Figure 13.7, we would expect the MINGCV algorithm to

converge efficiently for this data set.

13.3 The computational saving

To give a practical perspective on the computational efficiency of the MINGCV
method, we compare the number operations required by this method to that
required for a non-automated procedure for approximating finite element min-
imum GOV thin plate smoothing splines. The automised minimisation of the
GOV has two main sources of computational workload:; the solution of the
equations for du/df and the extra iteration required to adjust to periodic
changing of the smoothing parameter. The first source doubles the workload
in comparison to that required to solve the system for a fixed smoothing pa-
rameter, and we estimate that the second source triples the workload. Most
of the work in finding the structure of the optimal solution is done on the

coarse grids, and iteration on fine grids serves as a fine funing process. So
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the cost of updating the smoothing parameter is kept to a minimum. In total

this estimate means that the automated minimisation of the GCV makes the
solution process 6 times as slow as the process for solving for a fixed smooth-
ing parameter. To manually minimise the GCV, we estimate that the finite
element system would have to be solved around 30 times in order to converge
to an accurate estimate of the minimum GCV smoothing parameter. This is
O times more work than the automated procedure.

Another advantage of the MINGCV algorithm is that it determines an appro-
priate grid resolution for representation of the optimal solution. By simulta-
neously solving for the optimal smoothing parameter whilst solving the spline
system, the MINGCV algorithm has a reasonably accurate estimate of the
optimal solution by the time the finer resolutions are reached, so a suitable
resolution for the final grid can be accurately determined. To solve the system
for several fixed smoothing parameters, one would have to determine an ap-
propriate final resolution each time. As many of the trial parameters will not
be close to the optimal value, the solution process may involve visiting grids

that whose resolution is unnecessarily fine.

13.4 Conclusion

Accurate approximation of analytic bivariate thin plate smoothing spline so-
lutions were obtained for real environmental data sets using the MINGCV
algorithm. The algorithm converged for sea-level temperature data for both
the African and the Australian continent. The problems associated with lower
accuracy at grid boundaries noted in Chapter 12 were more extensive for the
African temperature data set. For some initial grid resolutions, the MINGCV
algorithm failed to converge to a solution for this data set, due to divergence
at the lower left grid boundary. This phenomenon was discussed in previous
chapters, although African temperature presented the only data set so far for
which the bivariate MINGCV algorithm did not converge to a solution. The
unstable behaviour occurs when the algorithm has to represent a process with
fine scale variability with data empty regions surrounding grid boundaries.
The subsystem of equations corresponding to the data empty regions is ill-

conditioned, resulting in poor synchronisation of the double iteration. One
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option in this situation is to subdivide the region and solve for the spline so-
lution on each section, avoiding data empty ‘holes’. This was demonstrated in
the above analysis to be an efficient alternative for the African temperature
data set, although it is clearly not as accurate in approximating the analytic
solution,

Temperature data from the more rectangular shaped continent of Australia
presented no problem for the MINGCV algorithm. The algorithm was found
to be stable, efficient and accurate in approximating the analytic solution for
this data set. This result emphasises the robustness of the MINGCV algo-
rithm, considering that the coverage of the data throughout the Australian
continent is clumped and sparse. The above analysis demonstrates that thin
plate smoothing spline interpolation of environmental data can be performed
efficiently using the MINGCV algorithm. The algorithm is therefore useful in

environmental modelling and management applications.
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Figure 13.7: Minimum GCV biquadratic B-spline surface for mean
annual temperature, standardised to sea level, for the Australian
continent.
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Figure 13.8: Map showing the surface in 13.7
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Chapter 14

Conclusion

This project developed an efficient, accurate, robust algorithm for generating
finite element approximations to minimum GCV bivariate thin plate smooth-
ing splines for large data sets. A diverse range of simulated data sets was
used to test the algorithm, representing processes of varying spatial scales,
from smooth, broadscale processes to those with more fine scale trends. The
distribution of the data points was varied, so that the data sets included large
data sparse areas and dense clumps of data points. The algorithm generated
accurate approximations to the analytic solution for all test data sets. Testing
on continental temperature data sets also produced accurate surfaces, demon-
strating that the algorithm is suitable for application to large environmental
data sets.

The algorithm presented in this thesis builds on past research of techniques for
fast computation of thin plate smoothing splines for large data sets using finite
element discretisations, including studies by Terzopoulos [108], O’Sullivan [94],
Szeliski [106] and Hutchinson [67]. This study adopted a simple finite element
discretisation using biquadratic splines, and presented an efficient iterative
scheme for optimising the smoothing parameter in the thin plate smoothing
spline equations to minimise the GCV, Optimising smoothness by minimising
GCV is well known to be a suitable way of minimising the prediction error
of the fitted surface, and is therefore important in many applications of thin
plate smoothing splines. In this case, the primary motivation was the spatial

interpolation of surface climate data, which often require fitting minimum



GCV thin plate smoothing splines to thousands of data points corresponding
to a continent wide network of weather stations [70)].

During the course of this project, a number of approaches to discretising the
thin plate smoothing spline system and numerically solving for the optimal
solution were investigated. Initial testing of different multigrid approaches
for numerically solving the univariate discretised system emphasised the ad-
vantages of choosing a simple nested grid algorithm to solve for discretised
smoothing splines. This testing showed that the smoothing spline equations
are poorly conditioned on fine grid resolutions. When fitted to noisy data,
smoothing spline solutions inherently contain smooth broad scale components,
which means that the underlying structure cannot be efficiently obtained by it-
erating on fine grid resolutions. The v-cycle multigrid algorithm, which begins
the solution process at the finest resolution, therefore performed poorly for
the smoothing spline system. The nested grid algorithm, which starts at the
coarsest, resolution, is ideal for efficiently obtaining the underlying broadscale
trends in the spline solution. Finer scale structure can then be developed by
refining the grid resolution.

The efficiency and robustness of the algorithm developed by this project is
largely due the implementation of the quadratic B-spline framework. Com-
parison of the results of discretising the system using piecewise constants with
those generated using quadratic B-splines demonstrated many advantages of
the quadratic B-spline basis for approximating thin plate smoothing spline
solutions. The first order continuity of the quadratic B-spline approximation
significantly improved the accuracy of the discretised solution on coarse grids,
i comparison to the piecewise constant approximation. This meant that the
smooth components of the solution were accurately estimated before transfer
to finer grids, The lower discretisation error of the quadratic B-spline solution
had further advantages when optimising the GCV, because the approximation
was better able to reflect the properties of the analytic solution, especially with
regard to the variation of the GCV with the smoothing parameter.

The techniques developed during this study for transferring quadratic B-spline
functions between grids of varying coarseness allowed for efficient, accurate in-
tergrid transfer. Preliminary testing of the algorithm showed that this was im-
portant in maintaining a well conditioned system, in that accurate prolongation

of a smooth coarse grid estimate avoided the introduction of error components
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that could not be efficiently reduced on fine resolutions. Quadratic B-spline
restriction techniques were also used to develop an effective criterion for de-
termining the final grid resolution. Least squares projection of the fine grid
solution onto a coarser grid allowed the change in fine scale variability between
the two discretisations to be quantified. The use of this process for deciding
when to stop refinement prevented the grids from becoming unnecessarily fine,
and thus allowed maintenance of a well conditioned system throughout the
solution process. The resolution of the final grid, as determined by the least
squares restriction, also provided insight into the scale of the data generation
Process.

The construction of a method for numerically minimising the GCV required
extending the methods in Hutchinson [67]. This involved deriving formulae
for calculating the derivatives of the GCV, the residual sum of squares and
the trace of the influence matrix with respect to the smoothing parameter.
Relationships identified between these derivatives, the solution estimate and
derivatives of the solution estimate with respect to A, led to the derivation
of expressions that could be evaluated in a computationally efficient manner,
A second order Taylor series expression for the GCV as a function of the
smoothing parameter could then be evaluated in order to estimate the point of
minimum GCV, This procedure was central to the functioning of the algorithm,
and it was found to converge efficiently and accurately.

To estimate GCV values corresponding to different smoothing parameters for
the finite element approximation to the thin plate spline solution, it was nec-
essary to use the stochastic estimate of the trace of the influence matrix devel-
oped by Hutchinson [59]. Testing of the trace approximation showed that its
observed standard error agreed with the bounds published in [59]. The suit-
ability of this estimate for application to large data sets was also confirmed,
Empirical analysis of the behaviour of the algorithm has established the he-
haviour of the process of double iteration. In the case of this study, double
iteration was performed to update two interdependent quantities, the solution
estimate and the estimate of the optimal smoothing parameter. It was found
that, for poorly conditioned systems, basic iteration was not fast enough to
allow the solution estimate to respond to the smoothing parameter updates. It
was also observed that, as the difference between current A estimates and the

minimum GCV smoothing parameter increased, the estimates of the deriva-
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tives of the GCV were less effective at producing accurate estimates of the
minimum GCV smoothing parameter,

The results of this testing led to the identification of appropriate controls on
the initial value of A, the maximum amount by which A can be updated, and
lower and upper bounds on the A estimate. Convergence was improved by
making first order correction to the solution estimate after each A update.
This allowed the solution estimate to respond more quickly to the changes in
the smoothing parameter, avoiding inefficient oscillatory patterns in the double
iteration. The result was a significant improvement in convergence rates on
finer grids.

The production of the bivariate algorithm for application to large data sets in-
volved vector FORTRAN 90 coding. The roughness penalty calculations were
efficiently incorporated, taking advantage of the sparseness, bandedness and
repetition in the bivariate thin plate smoothing spline system. The computa-
tional efficiency of tensor product systems was also exploited. These factors
optimised computational speed and storage.

When the final algorithm was tested on ‘real’” environmental data sets, includ-
ing temperature data from the Australian and African continents, accurate
approximations to the analytic solution were achieved. However, some diffi-
culty was presented by the geometry of the African continent. A large area
of ocean in the lower left corner of the grid produced a gap in data coverage
extending inland from the lower grid boundary. This part of the solution corre-
sponded to particularly poorly conditioned components in the spline system,
and led to instability on fine grids. Further developments of this algorithm
could be aimed at addressing this difficulty. To overcome this problem here,
the African region was subdivided into two parts to avoid fitting over areas of
ocean. The procedure then converged efficiently. For the Australian continent,
convergence to an accurate approximation was highly efficient.

I conclusion, this project has addressed thin plate smoothing spline modelling
from a number of different perspectives, including numerical discretisation and
solution, statistical modelling using thin plate smoothing splines, and practical
aspects of spatially interpolating environmental data. This study also demon-
strates the process of implementing a numerical algorithm. Each technical
component of the algorithm was tested on a wide range of trial data sets.

Optimal techniques were selected and combined into procedures for solving
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the discretised thin plate smoothing spline system. The technical complexity
of the procedures was gradually increased by varying the smoothing require-
ments, to eventually achieve the aim of minimum GCV smoothing. As a result
of this process, the behaviour of these procedures, when applied to the thin
plate smoothing spline system, is now well understood. The resulting algo-
rithm was designed for spatially interpolating noisy environmental data sets,
and has been found to be suitable for this purpose. The relevance of this pro-
cedure to environmental modelling is in the efficient optimisation of the finite
clement approximations to thin plate smoothing splines by minimising GCV.

This is the key contribution of this study.
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Appendix A

Results for Chapter 10

The tables in this appendix are discussed in Chapter 10. They report updates
of various quantities relevant to the OPTRSS and MINGCV algorithms

described in Chapter 8. The notation is explained as follows:

q: the number of updates performed on a given grid.

¢: the logarithm of the smoothing parameter.

0, the ¢"* update of the logarithm of the smoothing parameter.

5 the prescribed residual on a given grid, for the OPTRSS algorithm.
[ the estimate of the residual sum of squares.

I'r: the estimate of tr(l = A), where A is the influence matrix.

GCOV: the estimate of the generalised cross validation.
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Results generated by the OPTRSS algo-
rithm, with a starting \ value of \; =

r-

5000000, for the data set sine.dat

q B dR/d8 | S =R q | & dR/d0 | S - R
0 13.12 | -7.198 | -39.98 0| 10.15 | 0.156 | 0.042
1(10.14 | 1.228 -0.51 11042 0.133 | -0.047
21 9.46 0.060 0.03 2|1 10.06 | 0.149 0.011
3 | 10.00 | 0.068 0.01 G | 19.13 | 0.128 0.009
4 1 10.09 | 0.068 0.00 4 | 10.20 | 0.131 | -0.011
51 10.14 | 0.062 0.00 511012 | 0,142 0.006
6| 10.17 | 0.070 0.00 6 10.16 | 0.138 | -0.003
71 10.14 | 0.068 0.00 71 10.14 | 0.136 0.001
g [ 10.15 | 0.068 0.00 8| 10.15 | 0.136 0.000
91 10,15 | 0.068 0.00 9| 10.15 | 0.137 | -0.001
Grid 6 Grid 5
q| 8, |dR/dAO] SR ] q] 6, [dR/d8 ] S-R
0] 10.15 | 0.137 | -0.019 | 01022 | 0127 | -0.014
1 1 10.00 | 0.152 | -0.020 1 | 10.06 | 0.128 | -0.008
21 9.88 | 0.154 | -0.003 | 2 | 10.00 | 0.129 | -0.009
3| 986 | 0.162 | 0.014 | 31 993 | 0.131 | -0.006
! 9.95 0.161 0.019 | | 0,20 0.133 | -0.003
51 10.06 | 0.155 | 0.017 | 5| 9.86 | 0.135 | -0.001
6 | 10.17 | 0.148 | 0.009 6| 9.86 | 0.137 | 0.002
| 10.23 | 0.141 | 0.002 | 71 9.87 | 0.138 | 0.004
= 10.25 | 0.137 | -0.004 | 8| 9.90 | 0.138 | 0.005
9]10.22 | 0.135 | -0.007 | 19 ] 9.93 | 0.139 | 0.006
Grid 4 Grid 3
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q| 0, [dR/d8 ] S§—R g 0, [dR/dd | S—R
0] 9.93 | 0.139 | 0.006 0] 10.29 | 0.131 | 0.004
1] 10.01 | 0.133 | 0.006 1| 10.34 | 0.132 | 0.004
2 [ 10,05 | 0.132 | 0.005 2| 10.37 | 0.132 | 0.004
3 110,00 | 0.132 | 0.005 3 (1039 | 0.132 | 0.003
4 11012 | 0.132 | 0.005 4 | 10.42 | 0.132 | 0.003
511016 | 0.132 | 0.005 5| 10.44 | 0.132 | 0.003
G | 10.19 | 0.132 | 0.005 G| 10.47 | 0.132 | 0.003
7 110.23 | 0.132 | 0.004 71 10.49 | 0.132 | 0.003
8] 10.26 | 0.132 | 0.004 8 | 10.52 | 0.132 | 0.003
9 10,29 | 0.131 | 0.004 9 | 10.54 | 0.132 | 0.003
Grid 2 Grid 1

A.4  Results generated by the OPTRSS algo-
rithm, with prescribed S values of 2.8208
on each grid, for the data set sine.dat

e E—

q 8. dR/df | S— R
'. 10.14 7.20 -40.6
9 8.89 1.38 1.5

3 0.90 7.78E-02 | -0.622
A -06.32 6.18E-03 | -0.600
5 | -1569.10 | 4.07E-04 | -0.599

0 NaN NaN -0.599
7 NalN NaN NalN
8 NaN NaN NaN
0 NaN NaN NaN
10 NalN NaN NaN

Grid 6

o
Qo
g



A.5 Results generated by the OPTRSS algo-
rithm, with a lower threshold on A\ up-

dates of \/h?, for the data set sine.dat

rrrrrr

q 0, dR/df | §— ]?._ q f)q dR/df | S — R
0 | 10.14 | 0.055 | -0.634 0 9.70 | 0.160 | 0.097
1| 9.70 | 0.050 | -0.637 11031 | 0.122 | -0.064
2 .70 0.050 -0.637 2 9.79 0,155 ().039
31 970 |-0.042 | -0.635 31 10.04 | 0.125 | -0.002
41 9.70 | 0.047 | -0.636 4| 10.02 | 0.144 | -0.004
51 970 | 0.046 | -0.636 51 9.99 | 0.143 | 0.008
6 9.70 | 0.046 | -0.636 6 | 10.05 | 0.137 | -0.005
71 970 | 0.046 | -0.636 7 110,01 | 0.139 | 0.004
8| 9.70 | 0.046 | -0.636 81 10.03 | 0.138 | -0.002
91 9,70 | 0.046 | -0.636 9 | 10.02 | 0.140 | 0.000
Grid 6 Grid 5
q| 0, |dR/dI]S—R q| 0, [dR/d9|S—-R
) | 10.02 | 0.137 | 0.037 0| 10.27 | 0.150 | -0.144
10.29 | 0.138 | 0.015 1| 9.07 | 0.188 | -0.092
10.40 | 0.129 | 0.008 2| 811 | 0.241 | -0.009
311046 | 0.131 | 0.005 31 7.62 | 0.276 | 0.061
411050 | 0.130 | -0.003 4| 7.58 | 0.285 | 0.008
5 | 10.48 0.129 -0.008 5 7.80 0.272 ().104
6 10.42 0,131 -0.010 G 8.15 0.247 0.090
711034 | 0.134 | -0.008 7| 853 | 0.221 | 0.067
811028 | 0.139 | -0.002 8| 889 | 0.197 | 0.043
91027 | 0143 | 0.004 9 | 9.20 | 0.137 | 0.037 |

(Grid 4 Grid 3
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q| 0, |dR/dO | S-R
0] 9.20 [ 0.182 | 0.119
1| 10.07 | 0.179 | 0.114
2 | 10.71 | 0.176 | 0.112
301134 | 0.174 | 0.108
411196 | 0.171 | 0.105
511258 | 0.169 | 0.102
6| 13.18 | 0.167 | 0.099
7| 13.77 | 0.165 | 0.096
8 | 14.35 | 0,163 | 0.093
0 | 14,93 | 0.161 | 0.001
Girid 2
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q| 0 |dR/df | S~ R
0| 14.93 | 0.161 0.128
1 16.28 | 0.162 | 0.128
2| 17.07 | 0.162 | 0.128
3] 17.86 | 0.162 | 0.128
4 | 18.65 | 0.162 | 0.127
5| 19.44 | 0.161 | 0.127
6 20.23 | 0.161 | 0.127
71 21.01 | 0.161 | 0.127
8| 21.80 | 0.161 U127
9| 22.59 | 0.161 | 0.127
Grid 1




Results generated by the OPTRSS algo-
rithm, with the smoothing parameter fixed
at A = 5, for the data set sine.dat

q | 0, [dR/dO|S~R q | 0, | dR/d0| S —R
0 [5.10 | 5.448 | -2.240 0 | 5.10] 0.020 |-0.013
1 | 510 | 0.504 | -0.104 1 | 4.66 | 0.015 | -0.005
2 | 5.10 | 0.035 | -0.005 2 | 4.31 | 0.001 | -0.001
3 5.10 0.002 -0.000 3 3.39 0.000 -0.000
B a..0 0.000 0.000 4 3.02 0.000 0.000
b 5.10 (0.000 0.000 0 3.02 0.000 0.000
6 | 510 | 0.000 | 0.000 6 | 3.02 | 0.000 | 0.000
7 1 5.10 | 0.000 | 0.000 71 3.02 | 0.000 | 0.000
8 | 5.10 | 0.000 | 0.000 8 | 3.02 | 0.000 | 0.000
9 0.10 0.000 (0.000 9 3.02 ().000 0.000
10| 5.10 0.000 0.000 10 | 302 0.000 0.000
[1 | 5.10 (0.000 0.000 11 | 3.02 0.000 0.000
12 | 5.10 0.000 0.000 12 | 3:.02 0.000 0.000
13 | 5.10 0.000 0.000 L3 | 802 (0.000 0,000
14 | 5.10 (.000 0.000 14 | 3.02 (.000 0.000
1 | 5.10 0.000 0.000 15 | 3.02 0.000 (.000
16 | 5.10 (0,000 0.000 16 | 3.02 0.000 0,000
17 | 8.10 0.000 0.000 17 | 3.02 0.000 (.000
18 | 5.10 | 0.000 | 0.000 18 | 3.02 | 0.000 | 0.000
_"1_5,1 .10 0.000 0.000 19 | 3.02 (.000 (0.000
Grid 6 Grid 5
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q | 0, [dR/dO] S—R
0 | 3.02 [ 0.025 | -0.010
1 | 2.61 | 0.031 | -0.013
2 [ 2,10 | 0.006 | -0.002
3| L84 | 0.004 | -0.001
4 | 1.69 | 0.003 | -0.000
5 | 1.64 | 0.003 | -0.000
6 | 1.63 | 0.003 | -0.000
7 1.62 0.003 0.000
8 | 1.62 | 0.003 | 0.000
0 | 1.62 | 0.003 | 0.000
10 | 1.62 | 0.003 | 0.000
11| 1.62 | 0.003 | 0.000
12 | 1.62 | 0.003 | 0.000
13 | 1.62 | 0.003 | 0.000
14 | 1.62 | 0.003 | 0.000
15 | 1.62 | 0,003 | 0.000
16 | 1.62 0.003 0.000
17 | 1.62 | 0.003 | 0.000
18 | 1.62 | 0.003 | 0.000
19 | 1.62 | 0.003 | 0.000

Grid 4
q 0, r![?/r!() | 8§-R
0 | 1.61 | 0.479 | -0.054
1 .50 0.451 0.077
2 | 1.52 | 0.467 | 0.075
3 | 1.63 ] 0.414 | -0.049
4 .60 0.442 -0.012
5 | 1.60 | 0.436 | 0.002
6 | 1.61 | 0.439 | -0.004
7 | 1.60 | 0.436 | 0.005
8 | 1.61 | 0.436 | 0.004
9 | 1.61 | 0.438 | -0.002
10 | 1.61 | 0.437 | 0.000
11| 1.61 | 0.437 | 0.000
12 | 1.61 | 0.436 | 0.000
13 | 1.61 | 0.437 | 0.000
14 | 1.61 0.437 0.000
15 | 1.61 | 0.437 | 0.000
16 | 1.61 | 0.437 | 0.000
17 | 1.61 | 0.437 | 0.000
18 | 1.61 | 0.437 | 0.000
19 | 1.61 | 0.437 | 0.000
Grid 2
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q | 0, | dR/dO | 5 - R
0 | 1.62 | 0.352 | 0.007
1 | 1.64 | 0318 | 0.012
2 | 1.63 | 0.340 | -0.010
3 | 1.60 | 0.330 | 0.004
4 | 1.61 | 0.025 | -0.010
5 | 1.61 | 0.333 | -0.002
6 | 1.61 | 0.332 | 0.001
7 | 1.61 | 0.333 | -0.001
8 | 1.61 | 0.332 | 0.000
9 | 1.61 | 0.333 | 0.000
10 | 1.61 | 0.333 | 0.000
11| 1.61 | 0.333 | 0.000
12 | 1.61 | 0.333 | 0.000
13 | 1.61 | 0.333 | 0.000
14 | 1.61 | 0.333 | 0.000
15 | 1.61 | 0.333 | 0.000
16 | 1.61 | 0.333 | 0.000
17 | 1.61 | 0.333 | 0.000
18 | 1.61 | 0.333 | 0.000
|19 | 1.61 | 0.333 | 0.000
Grid 3
q | 0, |dR/d0| S —R
0 | 1.61 | 0.427 | -0.012
1 | 1.58 | 0.438 | -0.005
2 | 1.57 | 0.445 | 0.004
3 | 1.58 | 0.449 | 0.009
4 | 1.60 | 0.448 | 0.000
5 | 1.62 | 0.446 | 0.005
6 | 1.63 | 0.444 | 0.001
7 | 1.63 | 0.442 | -0.002
8 | 1.63 | 0.441 | -0.004
9 | 1.62 | 0.441 | -0.003
10 | 1.61 | 0.442 | -0.002
11 | 1.61 | 0.443 | -0.001
12 | 1.60 | 0.444 | 0.000
13 | 1.60 | 0.444 | 0.001
14 | 1.61 | 0.445 | 0.00]
16 | 1.61 | 0.445 | 0.001
16 | 1.61 | 0.445 | 0.000
17 | 1.61 | 0.445 | 0.000
18 | 1.61 | 0.445 | 0.000
19 | 1.61 | 0.445 | 0.000

Grid 1




A.7 Results generated by the MINGCYV algo-

rithm,for the data set sine.dat

Grid 6

q 0 dGCV AGLV dR d* R
q dp di? di 07

0 10.14 0.0097 | 0.0187 | 0.9391 | 1.7095

| 0.6302 | -0.0002 | 0.0004 | 0.0423 | 0.047

2 10.2243 | 0.0001 0.0007 | 0.0744 | 0.0595

3 10.0849 | 0.0000 | 0.0006 | 0.0671 | 0.054

4 10.0606 | -0.0000 | 0.0006 | 0.0622 | 0.0544

5 10,1293 | 0.0000 | 0.0006 | 0.0675 | 0.0571

6 10.0999 | -0.0000 | 0.0006 | 0.0656 | 0.0555

7 10,1049 | 0.0000 | 0.0006 | 0.0659 | 0.0561

8 10,1032 | 0.0000 | 0.0006 | 0.0659 | 0.056

¢ 10.1026 | -0.0000 | 0.0006 | 0.0658 | 0.0559

10 10,1031 | 0.0000 | 0.0006 | 0.0658 | 0.0559

11 10.103 0.0000 | 0.0006 | 0.0658 | 0.0559

12 10.103 0.0000 | 0.0006 | 0,0658 | 0.0559

13 10.103 0.0000 | 0.0006 | 0.0658 | 0.0559

14 10.103 0.0000 | 0.0006 | 0.0658 | 0.0559

15 10,103 0.0000 | 0.0006 | 0.0658 | 0.0559

16 10.103 0.0000 | 0.0006 | 0.0658 | 0.0559

17 10.103 0.0000 | 0.0006 | 0.0658 | 0.0559

18 10,103 0.0000 | 0.0006 | 0.0658 | 0.0559

19 10.103 0.0000 | 0.0006 (].[)(i.gf:l 0.0559
@ | @r | R | Tr [ GCV
0.9203 | 0.0473 3.9351 05.03 0.044
0.8423 | 0.2033 3.4519 94.58 0.039
0.9004 | -0.0174 | 3.4894 95.10 0.039
().8984 0.042 3.4806 94.97 0.039
0.8972 | 0.0497 3.4743 94.95 [ 0.0389
0.8996 | 0.0231 3.48006 95.01 0.0389
0.8988 | 0.0351 3.4784 94.99 | 0.0389
0.899 0.0329 3.4787 94.99 | 0.0389
0.8989 [ 0.0336 3.4786 94,99 | 0.0389
0.8989 [ 0.0338 3.4786 94,99 [ 0.0389
0.8989 | 0.0336 3.4786 94.99 | 0.0389
0.8989 | 0.0337 3.4780 94,99 | 0.0389
0.8989 | 0.0336 3.47806 094,99 | 0.0389
0.8989 | 0.0337 3.4786 04.99 | 0.0389
0.8989 | 0.0337 3.4786 94.99 | 0.0389
0.8989 | 0.0337 3.4786 94.99 | 0.0389
0.8989 | 0.0337 3.4786 94.99 0.0389
0.8989 | 0.0337 3.4786 94.99 (0.0389
0.8989 | 0.0337 3.4786 94.99 | 0,0389
0.8989 | 0.0337 3.4786 94,99 | 0.0389




L

4 Yy %;_V i(;f}(';‘j % r:;_n}ﬂi

0 10.103 | 0.0006 | 0.0005 | 0.1465 | 0.0092
L | 88597 | 0.0000 | 0.0004 | 0.1495 | -0.0148
2 | 87341 | 0.0001 | 0.0005 | 0.1638 | -0.0006
3| 84695 | -0.0000 | 0.0007 | 0.1597 | 00111
4 | 85414 | -0.0000 | 0.0006 | 0.1603 | 0.0071
5 | 8553 | 0.0000 | 0.0006 | 0.1618 | 0.0079
6 | 85249 | -0.0000 | 0.0006 | 0.1602 | 0.0077
7| 85491 | 0.0000 | 0.0006 | 0.1611 | 0.0071
8 | 8538 |-0.0000 | 0.0006 | 0.1608 | 0.0075
9 | 85406 | -0.0000 | 0.0006 | 0.1607 | 0.0073
10| 85424 | 0.0000 | 0.0006 | 0.1609 | 0.0073
L1 | 85399 | -0.0000 | 0.0006 | 0.1608 | 0.0074
12| 85415 | 0.0000 | 0.0006 | 0.1608 | 0.0073
13| 85409 | 0.0000 | 0.0006 | 0.1608 | 0.0074
14 | 85409 | -0.0000 | 0.0006 | 0.1608 | 0.0073
15 | 85411 | 0.0000 | 0.0006 | 0.1608 | 0.0073
16| 85409 | -0.0000 | 0.0006 | 0.1608 | 0.0073
17 | 8541 | -0.0000 | 0.0006 | 0.1608 | 0.0073
18 | 8541 | -0.0000 | 0.0006 | 0.1608 | 0.0073
10 | 8541 | -0.0000 | 0.0006 | 0.1608 | 0,0073
fr | L R Tr | GCV

1.5694 | -0.6597 | 2.7886 | 94.27 | 0.0317

2.5278 | -0.8794 | 2.6395 | 91.69 | 0.0317

2.6507 | -0.8530 | 2.6285 | 91.36 | 0.0318

2.8751 | -0.8566 | 2.5793 | 90.63 | 0.0317

2.8175 | -0.8511 | 2.5028 | 90.84 | 0.0317

2.8067 | -0.8539 | 2.5052 | 90.87 | 0.0317

2.8304 | -0.854 | 2.5899 | 90.79 | 0.0317

2.8102 | -0.8533 | 2.5046 | 90.86 | 0.0317

2.8193 | -0.8541 | 2.5024 | 90.83 | 0.0317

2.8173 | -0.8537 | 2.5029 | 90.83 | 0.0317

2.8157 | -0.8538 | 2.5033 | 90.84 | 00317

2.8178 | -0.8538 | 2.5028 | 90.83 | 0.0317

2.8165 | -0.8538 | 2.5031 | 90.84 | 0.0817

2.817 | -0.8538 | 2,503 | 90.84 | 0.0317

2.817 | -0.8538 | 2.503 | 90.84 | 0.0317

2.8168 | -0.8538 | 2.503 | 90.84 | 0.0317

2.817 | -0.8538 | 2.503 90.84 | 0.0317

2.8169 | -0.8038 | 2.593 90.84 | 0.0317

2.8169 | -0.8538 | 2.503 | 90.84 | 0.0317

2.8169 | -0.8538 | 2.503 | 90.84 | 0.0317

Girid 5
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q f dGiC V. d GOV ah d° i
q e dp? dfl 4o’
0 8.541 0.0001 | 0.0011 | 0.2045 0.025
1 8.4897 0.0001 | 0.0011 | 0.1825 | 0.0057
2 8.4245 | -0.0002 | 0.0008 | 0.1734 | -0.016
3 8.6555 | -0.0002 | 0.0006 | 0.1451 | -0.0337
il 9.0265 | -0.0001 | 0,0004 | 0.1266 | -0,0362
5 0,2708 0.0001 | 0.0003 | 0.1278 | -0.0347
6 9.0632 0.0003 | 0.0005 | 0.1667 | -0.0213
7 8.4544 0.0004 | 0.0013 | 0.2241 0.04
8 8.1751 | -0.0002 | 0.0011 | 0.,1977 | -0.0053
2] 8.3261 | -0.0005 | 0.0007 | 0.1562 | -0.0407
10 9.0137 | -0.0003 | 0.0004 | 0.1057 | -0.0423
11 9.7391 | -0.0001 | 0.0002 | 0.081 | -0.0361
12 10,5455 | 0.0000 | 0.0001 0.061 | -0.0267
13 10.9408 | 0.0001 | 0.0000 | 0.0585 | -0.0252
14 9.5177 0.0008 | 0.0002 | 0.1899 | -0.0374
19 6.3829 | -0.0028 | 0.0014 | 0.201 | -0.0479
16 8.3358 0.0008 | 0.0033 | 0.2723 | 0.1736
17 8.111 0.0001 | 0.0016 | 0.2259 | 0.0437
18 8.0293 0.0000 | 0.0011 | 0.2293 | -0.0048
19 8.0255 0.0000 | 0.,0011 | 0.2293 | -0.0048
e o R Tr | GCV
3.0024 | -1.379 2.5653 01.27 | 0.0311
3.1658 | -1.7138 | 2.5380 91.13 | 0.0309
3.3875 | -1.5801 | 2.5354 90.92 0.031
2.9463 | -1.6556 | 2.5451 91.65 | 0.0306
2.414 -1.3096 | 2.5905 02.67 | 0.0305
2.1681 | -1.1316 | 2.6329 93.25 | 0.0306
2.5172 | <1.1704 2.686 02.76 | 0.0309
3.4361 | -1.4575 | 2.5605 91.01 0.0312
3.8102 | -1.8104 | 2.4927 90,02 | 0.0311
3.5037 | -1.7472 | 2.4978 90.58 | 0.0307
2.3453 | -1.3878 | 2.5754 92.64 | 0.0303
1.6437 | -0.9077 | 2.6454 94.21 0.0301
1.1115 | -0.5864 2.723 95.38 | 0.0302
0.9069 | -0.5151 | 2.7869 95.79 | 0.0307
2.0936 | -1.1417 | 2.7619 93.71 0.0318
T.4782 | -2.1294 | 2.0234 79.90 0.032
3.5047 | -1.9274 | 2.7302 90.64 | 0.0336
3.901 -1.7642 | 2.4778 29.78 0.031
4.0684 | -1.878 2.5169 89.45 | 0.0318
_-I.(l(_jT‘B -1.88092 | 2.4715 89.44 0.0312
Grid 4




d GV

dR

d- R

g 04 BT R - 40 qor
0 8.0255 | -0.0001 | 0.0007 0.1339 0.0037
1 8.5097 0.0000 0.0005 0.1294 | -0.0049
2 8.4796 0.0001 0.0004 | 0.1365 | -0.0139
3 8.2439 0.0001 0.0005 0.1563 | -0.0266
4 7.9745 0.0002 | 0.0006 | 0.1831 | -0.0366
5 7.6971 0.0002 | 0.0007 | 0.2136 | -0.0406
§ 7.4038 0.0003 | 0.,0008 | 0.2476 | -0.0376
7 7.0838 0.0003 | 0,0009 | 0.2844 | -0.0249
) 6.7467 0.0003 | 0.0011 0.3168 | -0.0036
9 6.4701 0.0001 | 0.0012 | 0.3232 | 0.0059
10 6.4132 | -0.0004 | 0.0011 0.2824 | -0.0213
11 6.7985 | -0.0008 | 0.0008 | 0.1931 | -0.0507
12 7.8523 | -0.0008 | 0.0005 | 0.0842 -0.02
13 9.3352 | -0.0006 | 0.0004 | 0.0274 0.0152
14 10,9293 | -0.0005 | 0.0003 | 0.0126 | 0.0227
15 12.8368 | -0.0004 | 0.0002 | 0.0084 | 0.0166
16 15.5323 | -0.0004 | 0.0001 | 0.0043 | 0.0103
17 19.3192 | -0.0004 | 0.0001 | 0.0009 | 0.0062
18 24.8494 | -0.0003 | 0.0000 | -0.0012 | 0.0034
19| 38.0293 | -0.0003 | -0.0000 | -0.0024 | 0,001
dbv | L R Tr | GCV
2.4913 | -0.9962 | 2.7023 02.28 0.032
2.1966 | -0.8552 | 2.7079 92.80 0.0318
2.1753 | -0.9539 | 2.7209 02.84 0.0319
2.455 | -1.2782 | 2.7191 02.35 0.0322
2.8559 | =1.6224 | 2.7031 91.58 0.0326
3.3224 | -1.8759 | 2.6723 90,64 0.0329
3.8629 | -1.9891 | 2.6267 89.55 0.0331
4.4839 | -1.9483 | 2.5649 88.23 0.0333
0.1484 | -1.8201 2.485 86.67 0.0334
0.6623 | -1.7993 | 2.3966 85.25 0.0333
5.6599 | <2.0002 | 2.3381 84,93 0.0327
4.7098 | -2.0324 2.3581 86,99 0.0315
2.7718 | -1.1237 | 2.4535 90.91 0.03
.4655 | -0.2921 | 2.5656 03.40 0.0297
1.0034 | 0.0178 2.6609 04.58 0.03
0.8444 | 0.0466 | 2.7302 95.18 0.0304
0.7207 | 0.0198 2.7743 95.50 0.0307
0.5921 | 0.0129 2.7972 95.71 0.0308
0,479 0.0276 | 2.8053 05.87 0.0308
0.3976 0,047 2.8058 06.01 0.0307
+rid 3
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A.8 Results generated by the MINGCYV algo-
rithm for the data set sine.dat, using a
second random vector t

Girid 6
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g 0, dGCvV | daov || dR | dR |
{ () df? dfl di?
0 10.14 0.0114 | 0.0215 | 0.9247 | 1.6537
1 9.6155 | 0.0000 | 0.0011 | 0.0535 | 0.1141
2 0.5792 | 0.0000 | 0.0005 [ 0.0452 | 0.0585
3 9.6476 0.0000 | 0.0004 [ 0.0468 | 0.0588
a'l 9.7373 | -0.0001 | 0.0001 | 0.044 | 0.0311
5 10.7158 | 0.0005 | 0.0008 | 0.106 | 0.0874
6 10.1483 | 0.0001 | 0.0005 | 0.0711 | 0.0605
7 9.9521 | 0.0000 | 0.0003 | 0.0571 | 0.0514
8 0.9888 0.0000 | 0.0004 | 0.0603 | 0.0541
0 9.9048 | -0.0000 | 0.0003 | 0.0553 | 0.0502
10 9.9437 | 0.0000 | 0.0004 | 0.0571 | 0.0505
11 9.9287 | 0.0000 | 0.0004 | 0.056G6 | 0.0508
12 9.9281 | -0.0000 | 0.0004 | 0.0565 | 0.0506
13 9.9305 | 0.0000 | 0.0004 | 0.0567 | 0.0508
14 9.9269 | -0.0000 | 0.0004 | 0.0565 | 0.0507
15 9.9287 | 0.0000 | 0.0004 | 0.0565 | 0,0507
LG 0.9279 | -0.0000 | 0.0004 | 0.0565 | 0.0507
L 9.9281 | -0.0000 | 0.0004 | 0.0565 | 0.0507
18 0.0282 0.0000 | 0.0004 | 0.0565 | 0.0507
19 0.928 0.0000 | 0.0004 | 0.0565 | 0.0507
| 4r | L R Tr | GCV

0.6553 | -0.038 | 3.9351 | 87.54 | 0.0519

0.6382 | 0.4019 | 3.4513 | 87.14 | 0.0459

0.6017 | 0.2742 3.4524 &87.12 | 0.0459

0.6284 | 0.3187 | 3.4548 | 87.16 | 0.0459

0.6519 | 0.2912 | 3.4575 | 87.22 | 0.0459

0.8634 | 0.2561 | 3.5312 | 87.98 | 0.0461

0.7939 | 0.2419 3.4829 87.52 | 0.0459

0.7304 | 0.3294 3.4684 87.37 | 0.0459

0.7256 | 0.2799 3.4717 827.40 | 0.0459

0.7091 | 0.3059 3.4664 87.34 | 0.0459

0.7139 | 0.2934 | 3.4688 | RB7.36 | 0.0459

0.7128 | 0.2974 3.4068 87.35 | 0.0459

0.7118 | 0.2976 | 3.4679 | 87.35 | 0.0459

0.7124 | 0.2968 | 3.468] 87.35 | 0.0459

0.7117 | 0.2976 3.4678 87.35 | 0.0459

0.7119 | 0.2971 3,468 87.35 | 0.0459

0.7119 | 0.2073 3.4679 87.05 | 0.0459

0.7118 | 0.2973 3.4679 87.35 | 0.0459

0.7119 | 0.2973 3.4679 87.35 | 0.0459

0.7119 | 0.2973 | 3.4679 | 87.35 | 0.0459




0,

d&cV

il

d R

{q N il - H qgs
0 9.928 | -0.0002 | 0.0004 | 0.1576 | -0.0081
1 9.9301 | 0.0002 | -0.0004 | 0.1494 | -0.0024
9 4.9566 | 0.0005 | 0.0001 | 0.1486 | -0.0581
3 4.6357 | 0.0005 | 0.0014 | 0.0311 | 0.0866
4 4.6680 | 0.0000 | 0.0005 | 0.0151 | 0.0503
5 3.4910 | -0,0002 | -0.0002 | 0.0024 | 0.0015
G 4.5727 | 0.0000 | 0.0000 | 0.0001 | 0.0002
7 3.1888 | -0.0002 | -0.0001 | 0.0055 | 0.0132
8 3.3101 | 0.0000 | 0.0001 | 0.0000 | 0.0000
9 2.6235 | -0.0001 | -0.0001 | 0.0006 | 0.0019
10 4.971 | 0.0000 | 0.0000 | 0.0000 | -0.0001
11 -21.5137 | -0.0002 | 0.0000 | 0.0119 | 0.028
12 | -21.7763 | 0.0001 | 0.0004 | 0.0012 | 0.0056
13 | -21.9450 | 0.0000 | -0.0001 | 0.0001 | 0.0006
14 | -22.0642 | 0.0000 | 0.0000 | 0.0000 | 0.0001
15 | -22.1663 | 0.0000 | 0.0000 | 0.0000 | 0.0000
16 | -22.2315 | 0.0000 | 0.0000 | 0.0000 | 0.0000
17 | -22.2951 | 0.0000 | 0.0000 | 0.0000 | 0.0000
18 | -22.3502 | 0.0000 | 0.0000 | 0.0000 | 0.0000
19 | -22.3088 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
a elr R Tr | GCV

2.2512 | -0.7586 | 2.7603 | 88.50 | 0.0356

21217 | 0.4124 | 2.7281 | 87.28 | 0.0362

1.65561 | -1.1155 | 2.8371 | 88.23 | 0.0368

0.0293 | -0.0912 | 2.315 | 80.98 | 0.0357

0.2813 | 0.3573 | 2.3089 | 80.92 | 0.0356

0.2511 | 0.2053 | 2.3055 | 80.93 | 0.0355

0.0453 | -0.0371 | 2.3039 | 80.75 | 0.0357

0.275 | 0.3613 | 2.3063 | 80.91 | 0.0356

0.0144 | -0.1171 | 2.3038 | 80.73 | 0.0357

0.0834 | 0.1386 | 2.304 | 80.74 | 0.0357

0.0252 | -0.0123 | 2.3038 | 80.70 | 0.0357

0.3999 | 0.5008 | 2.3092 | 81.02 | 0.0355
-0.0908 | -0.3245 | 2.3041 | 80.66 | 0.0358

00196 | 0.1178 | 2.3038 | 80.67 | 0.0358
-0.0042 | -0.0358 | 2.3038 | 80.67 | 0.0358

0.0009 | 0.01 2.3038 | 80.67 | 0.0358
-(.0002 -0.0026 2.3038 =20.67 0.0358

0.0000 | 0.0007 | 2.3038 | 80.67 | 0.0358

0.0000 | -0.0002 | 2.3038 | 80.67 | 0.0358

0.0000 | 0.0000 | 2.3038 | 80.67 | 0.0358 |

Grid 5



A.9 Results generated by the MINGCYV algo-
rithm for the data set sine.dat, for a third
random vector t

Grid 6

290

7 : dGOV A GGV d it T d°R
q 04 i do? a0 Pl
() 10,14 (0.0099 0.021 0.9247 | 1.6537
I 0.675 -0.0014 | 0.0007 | 0.0547 | 0.1083
2 11.665 0.0051 | 0.0134 | 0.6247 | 1.1255
3 11.2802 | 0.0004 0.0032 | 0.2105 | 0.2083
4 11.1669 | =0.0003 | 0.0029 | 0.1649 | 0.2093
i 11.2757 | -0.0002 | 0.0023 | 0.1773 | 0.1624
6 11.3451 | 0.0002 | 0.0031 0.204 | 0.2301
-7 [1.2818 [ 0.0000 | 0.0028 | 0.1854 | 0.1984
8 11.2918 | 0.0000 | 0.0029 | 0.1883 | 0.2068
9 11.2938 | 0.0000 | 0.0028 | 0.1879 | 0.2012
10 11.2962 | 0.0000 | 0.0029 | 0.1891 | 0.2051]
11 11.2931 | 0.0000 | 0.0028 | 0.1882 | 0.2032
12 11.2942 | 0.0000 | 0.0028 | 0.1885 | 0.2039
13 11.294 0.0000 | 0.0028 | 0.1884 | 0.2036
14 11.2941 | 0.0000 | 0.0028 | 0.1885 | 0.2038
15 11.294 0.0000 | 0.0028 | 0.1884 | 0.2037
LG 11.2941 | 0.0000 | 0.0028 | 0.1885 | 0.2037
L7 11.2941 | 0.0000 | 0.0028 | 0.1885 | 0.2037
18 11,2941 | 0.0000 | 0.0028 | 0.1885 | 0.2037
19 11.2941 | 0.0000 | 0.0028 | 0.1885 | 0.2037
g e | R Tr | GCV
1.9288 | -0.1127 | 3.9351 87.53 | 0.0519
2.0012 | 0.7696 34537 86.46 | 0.0467
2.3788 | -0.2806 3.8594 91.13 0.0469
2.208] -().60684 3.6286 90.24 0.045
2.3853 | -0.3264 | 3.5877 £9.96 | 0.0448
2.3785 | -0.3521 | 3.6088 90,22 | 0.0448
2.3421 -0.37 3.6266 90.39 | 0.0448
2.3443 | -0.4006 3.6116 90.24 0.0448
2.3577 | -0.3657 | 3.6133 90.26 | 0.0448
2.3541 | -0.3746 | 3.6139 90.27 | 0.0448
2.353 -(.3752 3.6145 90.27 0.0448
2.3032 =().376 3.6138 90.26 0.0448
2.3537 | -0.3743 3.G14 00.27 0.0448
235385 | -0.3752 3.614 90.27 0.0448
2.3538 -0.375 3.014 90.27 0.0448
2.3035 (.3751 3.614 G90.27 0.0448
2.3035 =0).375 3.614 90,27 0.0448
2.3535 -0.375 3.614 90,27 0.0448
23030 -0.375 3.614 90.27 0.0448
| 2.8535 -0.375 3.614 g0.27 0.0448




207

0 11.2941 | 0.0032 | 0.255 | 0.2348

| 10.8166 | 0.0009 0.0029 0.2323 0.2097
2 10.4876 | 0.0001 | 0.0014 | 0.1679 | 0.1002
3 10.439 | -0.0005 | 0.0003 | 0.1217 | 0.0019
4 11.911 | -0.0005 | -0.0001 | 0.0431 | -0.0221
5 6.4411 | -0.0008 | 0.001 | 0.0618 | 0.1003
G 7.2415 | -0.0005 | 0.0003 | 0.1224 | 0.0681
7 8.8233 | -0.0005 | 0.0007 | 0.2026 | 0.0892
8 9.5832 | -0.0007 | -0.0003 | 0.1321 | -0.104
9 7.4672 | 0.0005 | 0.0007 | 0.2026 | 0.0892
10 8.0882 | 0.0007 | -0.0003 | 0.1321 | -0.104
11 4.0659 | -0.0004 | -0.0007 | 0.151 | 0.077
12 3.7561 | -0.0006 | -0.0001 | 0.1574 | 0.0139
13 3.1951 | -0.0008 | 0.0026 | 0.0197 | 0.0634
14 3.6801 | -0.0003 | -0.0005 | 0.0059 | 0.0248
15 2.9043 | -0.0001 | 0.0002 | -0.0001 | -0.0003
16 5.0858 | -0.0002 | -0.0003 | 0.0011 | 0.0037
17 3.6949 | -0.0001 | 0.0000 | 0.0000 | -0.0002
18 3.8651 | -0.0006 | -0.0004 | 0.0145 | 0.0336
19 3.1375 | -0.0001 | 0.0003 | -0.0001 | 0.0000
iy L R T GOV

1.9597 | -0.5847 | 3.0128 | 90.27 | 0.0373

2.3771 | -0.4407 | 2.9665 | 89.45 | 0.0374

2.497 | -0.2711 | 2.8885 | 88.80 | 0.037

2.4883 | -0.3834 | 2.8671 | 88.71 | 0.0368

1.2926 | -0.2025 | 3.0192 | 91.97 | 0.036

1.7747 | 0.7526 | 2.3388 | 77.50 | 0.0393

2,5543 | 0.7527 | 2.4218 | 79.21 | 0.039

3.7508 | 0.5883 | 2.6726 | 83.99 | 0.0383

2.8400 | -1.2389 | 2.7747 | 86.38 | 0.0376

2.8011 | 0.512 | 2.4515 | 79.80 | 0.0389

3.1354 | 0.345 | 2.5373 | 81.66 | 0.0384
-0.4149 | -1.326 | 2.3098 | 75.29 | 0.0412

0.3308 | 0.824 | 2.3054 | 75.27 | 0.0411

0.07 | -0.1486 | 2.3038 | 75.18 | 0.0412

0.2146 0.3117 2.3042 75.26 0.0411

0.0593 | -0.0208 | 2.3038 | 75.15 | 0.0412

0.8071 | 09771 | 2.3104 | 75.80 | 0.0406

0.0509 | -0.309 | 2.3038 | 75.25 | 0.0411

0.2598 (0.4084 2.3044 75.30 0.0411

0.07G8 | -0.0357 | 2.3039 | 75.18 | 0.0412

Grid 5




q 0, dGeV | dGov di d It

di do? di Pl
0 3.1375 | -0.0008 | 0.0021 | 0.2556 | 0.0426
1 5.9314 | -0.0008 | 0.0014 | 0.2851 | 0.0575
2 6.5016 | 0.0000 | 0.0001 | 0.2707 | -0.0701
3 6.358 | -0.00056 | 0.0003 | 0.2377 | -0.0441
4 7.9839 -0.001 -0.0007 | 0.1086 | -0.129
5 6.6073 | -0.0002 | 0.0012 | 0.2438 | 0.0436
6 6.8021 | -0.0002 | -0.0007 | 0.2514 | -0.1176
i 6.5295 | -0.0003 | 0.0007 | 0.2409 | -0.018
a 7.0512 | 0.0000 | -0.0006 | 0.236 | -0.0923
0 7.0132 | -0.0001 | 0.0003 | 0.2259 | -0.031
10 7.4476 | -0.0004 | -0.0004 | 0.1929 | -0.0698
11 6.5042 | -0.0005 | 0.0006 | 0.2316 | -0.0228
12 7.458 | -0.0005 | -0.0012 | 0.18G | -0.148
13 7.0147 | 0.0002 | 0.0012 | 0.2474 | 0.0361
14 6.8605 | -0.0003 | -0.0002 | 0.2382 | -0.0642
1o 5.6466 | -0.0008 | 0.0017 | 0.2651 | 0.0417
16 6.1097 | -0.0009 | 0.0006 | 0.2583 | -0.0134
17 7.5113 | -0.0005 | -0.0011 | 0.1662 | -0.1588
18 7.1033 | 0.0003 0.001 | 0.2516 | 0.0394
19 6.8043 | -0.0004 | -0.0001 | 0.237 | -0.0598
Ei-"[;“ %}- R Tr GCV
5513 | -1.3273 | 1.8866 70,43 | 0.0384
5.9795 | -0.5374 | 1.9882 72.67 0.038
4.6892 | -1.5898 | 2.1754 75.65 | 0.0385
4.7626 | -1.2697 | 2.0751 74.85 | 0.0374
2.7046 | -1.25 2.5995 81.48 | 0.0395
4.6965 | -0.7187 | 2.0847 76.04 | 0.0364
4.6042 | -1.5307 | 2.2417 76,90 | 0.0383
4.6607 | -1,1926 | 2.1144 75.68 | 0.0373
3.898356 | -1.1517 | 2.3147 77.87 | 0.0386
4.0777 | -1.0652 | 2.2378 77.82 0.0373
3.6069 | -0.8539 | 2.3783 79.47 0.038
4.7627 | -1.1524 | 2.0763 75.54 | 0.0368
3.5261 | -1.2749 | 2.4587 79.43 | 0.0394
4.1584 | -0.8808 | 2.2149 77.90 | 0.0369
4.4324 | -1.0776 | 2.215 77.20 | 0.0375
5.6719 | -1.0408 1.9088 71.02 0.0382
0.0414 | -1.0129 | 2.0284 73.02 0.0378
3.0967 | -1.437 2.5078 79.54 0.04
4.0833 | -0.6793 | 2.2329 78.26 | 0.0368
4.5285 | -1.1006 | 2.1926 76.97 0.0374

Grid 4

298




0,

A\

GOV

dl

d*R

4 . di ) o PrE
§] 6.8043 | -0.0079 | 0.0066 | 0.3647 | 0.0148
1 13.55562 | -0.0042 | -0.0005 | 0.1127 | -0.2119
2 13.4647 | -0.0003 | -0.0031 | 0.0177 | -0.2165
3 13.4391 | 0.0000 | -0.0018 | 0.0016 | -0.1622
il 13.4613 | 0.0000 | -0.0009 | 0.0152 | -0.1116
5 15.1637 | 0.0006 | -0.0003 | 0.0251 | -0.0696
§ 15,8654 | 0.0003 [ -0.0004 | 0.0238 | -0.0295
4 16.1419 | 0.0000 0.0001 | 0.0249 | 0.0039
3 16.4685 | -0.0001 | 0.0003 | 0.0234 | 0.0245
9 16.5761 | 0.0000 | 0.0004 | 0.0212 | 0.0312
10 16.6051 | 0.0000 | 0.0004 | 0.0185 0.028
11 16.4926 | 0.0000 | 0.0003 | 0.0166 | 0.0205
12 16,2137 | 0.0001 | 0.0002 | 0.0154 | 0.0131
13 15.5102 | 0.0001 0.0001 | 0.0151 | 0.0069
L4 12,7135 | 0.0001 | 0.0000 | 0.0152 | 0.0017
15 25,936 | 0.0001 | 0.0000 | 0.0155 | -0.0015
16 31.0394 | 0.0001 0.0000 0.015 | -0.0018
17 62.2224 | 0.0001 0.0000 | 0.0142 | -0.0005
18 57.9038 | 0.0001 | 0.0000 | 0.0135 | 0.0012
19 | 56.1666 | 0.0001 | 0.0000 | 0.0128 | 0.0027
ar | o R Tr | GCV

12.4522 | -2.3139 | 1.5138 59.13 0.0437

5.6709 | -3.5578 1.915 69.55 0.04

0.5786 | -0.3164 | 2.4553 79,98 0.0388

0.0686 | -0.6461 | 2.7444 81.44 0.0418

0.1979 | -0.7373 | 2.9026 82.48 0.0431

-0.2007 | -0.6432 | 2.9893 83.50 0.0433

0.0603 | -0.0253 | 3.0192 84,17 0.043

0.3772 | -0.0335 | 2.9899 84.68 0.0421

0.4417 0.0398 | 2.9383 85.18 0.0409

0.3626 0.0155 2.8872 85.64 0.0398

0.2917 | -0.0106 | 2.8484 =26.06 0.0388

0.2164 | -0.0284 | 2.8224 86.45 0.0381

0.1796 | -0.0083 | 2.8102 86.81 (0.0377

0.1497 -().013% 2.8095 87.14 0.0374

0.1194 -0,0164 | 2.8178 87.44 0.0372

0.1133 | -0.0144 | 2.8301 87.71 0.0372

0.1098 -0.0047 2.8433 87.98 0.0371

0.1123 -(.0056 2.855 88,22 0.0371

0.1165 -0.0035 2.865 88.44 0.037

0.1219 | -0.0028 2.873 88.65 h().(]!ﬁﬂ@

Grid 3

299




A.10 Results generated by the MINGCV al-
gorithm using a dampening factor of 1/2,

for the data set sine.dat

q A, fff ;;;}E Filelel OV dn AL
(0 10.14 0.0099 0.021 | 0.9247 | 1.6537
| 0.675 -0.0014 | 0.0007 | 0.0619 | 0.0913
2 L1.8576 | 0.0008 | 0.0014 | 0.1323 | 0.1028
3 11.4243 | 0.0001 | 0.0034 | 0.2056 | 0.256
4 11.1197 | -0.0005 | 0.002 | 0.1556 | 0.1362
5 11.3704 | 0.0001 0.0029 0.185 0.20506
§] 11.2767 | -0,0001 | 0.0026 | 0.1826 | 0.188
7 11,295 | 0.0000 | 0.0028 | 0.1867 | 0.2029
8 11.2897 | 0.0000 | 0.0028 | 0.1867 | 0.2003
0 11.2935 [ 0.0000 | 0.0028 | 0.1876 | 0.2024
L0 11.2935 | -0.0000 | 0,0028 | 0.188 | 0.2031
11 11.2936 | -0.0000 | 0.0028 | 0.1882 | 0.2032
12 11.2939 | -0.0000 | 0.0028 | 0.1883 | 0.2035
13 11.2939 | 0.0000 | 0.0028 | 0.1884 | 0.2035
14 11.294 | 0.0000 | 0.0028 | 0.1884 | 0.2036
15 11.294 | 0.0000 | 0.0028 | 0.1884 | 0.2037
16 11.294 0.0000 | 0.0028 | 0.1884 | 0.2037
17 11.294 | -0,0000 | 0.0028 | 0.1884 | 0.2037
18 11.2941 | -0.0000 | 0.0028 | 0.1884 | 0.2037
19 ll.'EUﬂ-fH -0.0000 | 0.0028 | 0.1885 | 0.2037

| G | @r | R Ir | GCV

1.9288 | -0.1127 | 3.9351 87.53 | 0.0519

2.1374 | 0.5281 3.4655 86.96 | 0.0463

24072 | -0.0794 3.0088 89,28 0.0451

2.4453 | -0.2605 3.6092 89.94 (0.0451

2,408 | -0.2742 3.587 89.89 | 0.0448

2.3777 | -0.3562 3.6084 90.17 0.0448

2.3608 | -0.371 3.6095 90.20 0.0448

2.3594 | -0.3647 | 3.6119 90.23 0.0448

2.3564 | -0.3742 | 3.6125 90.25 0.0448

23556 | -0.3716 | 3.6132 90,26 0.0448

2.3545 | -0.3741 | 3.6136 90.26 | 0.0448

2.3041 | -0.3742 | 3.6138 90.26 | 0.0448

2.3538 | -0.3746 3.6139 90.26 0.0448

2.3537 | -0.3748 3.6139 90.27 0.0448

2.3536 | -0.3749 3.614 J90.27 0.0448

2.3536 | -0.3749 3.614 90.27 0.0448

2.3035 -().375 3.614 90.27 0.0448

23030 -().375 3.614 90.27 0.0448

2.3535 | -0.375 3.614 90.27 | 0.0448

Rujiiﬁ -0.375 3.614 90.27 | 0.0448

Grid 6

300




q 0 dGeV GOV Al 7 o
q do BT ] di
0 11.2941 | 0.0015 | 0.0032 | 0.2565 | 0.2348
1 10,8166 | 0.0012 | 0.0032 | 0.2468 | 0.2402
2 10,6732 | 0.0006 | 0.0025 | 0.1984 | 0.1844
3 10.615 | 0.0000 | 0.0014 | 0.15 0.0958
1 10.7669 | -0.0003 | 0.0006 | 0.1248 | 0.0279
5 11.208 | -0.0003 | 0.0004 | 0.1141 | -0.0043
G L1.7274 | 0.0000 | 0.0004 | 0.1228 | 0.0005
7 11.2843 | 0.0005 | 0.001 | 0.1674 | 0.0377
8 10,7942 | 0.0008 | 0,0018 | 0.207 | 0.1148
9 10.6101 | 0.0006 | 0.0023 | 0.1977 | 0.1656
10 10.5722 | -0.0001 | 0.0019 | 0.1604 | 0.131
11 10.6465 | -0.0002 | 0.0011 | 0.1318 | 0.0536
12 10.8319 | -0.0003 | 0.0005 | 0.122 0.001
13 11.2896 | 0.0001 | 0.0005 | 0.1258 | -0.0004
14 11.2159 | 0.0002 | 0.0009 | 0.1498 | 0.0351
15 10.8924 | 0.0004 | 0.00156 | 0.1763 | 0.0904
16 10.709 | 0.0004 | 0.0018 | 0.1784 | 0.127
1 10,6437 | -0.0001 | 0.0017 | 0.1591 | 0.1122
18 10.6793 | -0.0001 | 0.0012 | 0.1392 | 0.0638
19 10.815 | 0.0002 | 0.0008 0.13 0.0238
dr | 4fr R Tr | GCV
1.9598 | -0.5847 | 3.0128 | 90.27 | 0.0373
2.2083 | -0.4863 | 3.0085 | 89.99 | 0.0375
2.264 | -0.3257 | 2.9557 | RO.G8 | 0.0371
2.3468 | -0.2421 | 2.9122 | 89.40 | 0.0368
2.2741 | -0.3766 | 2.9121 | R9.47 | 0.0367
2.0886 | -0.5431 | 2.9441 90.04 | 0.0367
1.8235 | -0.5848 | 2.9967 | 90.84 | 0.0367
1.903 | -0.6985 | 3.0126 | 90.67 0.037
2.1442 | -0.6003 | 2.9851 90.02 | 0.0372
2.286 | -0.3768 | 2.9431 | 89.57 | 0.037
2.3309 | -0.3496 | 2.9122 | 89.32 | 0.0369
2.29656 | -0.51562 | 2.9042 | 89.28 | 0.0368
2.2068 | -0.6625 | 2.9202 | 89.55 | 0.0368
2.0356 | -0.6898 | 2.9569 | 90.16 | 0.0367
2.0125 | -0.6509 | 2.9764 | 90.29 | 0.0369
2.1362 | -0.5286 | 2.966 80.98 0.037
2.2411 | -0.3876 | 2.9423 | 89.65 0.037
2.2901 | -0.3813 | 2.9206 | 89.43 | 0.0369
2.2796 | -0.5044 2.9119 89.37 0.036G8
2.2271 | -0.6241 | 2.9192 | 89.51 | 0.0368

Grid 5

301




Girid 4

) q 0 diy 'V d‘l."f-l.';-' v dit _r?:{z_?_
y il il il dl
0 10.815 -0.0000 | 0.0009 | 0.1368 | 0.0398
| 10.8926 | 0.0000 0.0009 0.143 0.0346
2 10.8505 | -0.0000 | 0.0009 | 0.1402 | 0.0346
3 10.8848 | 0.0000 | 0.0009 | 0.1453 | 0.0324
4 10,8327 | 0.0001 | 0.0009 | 0.1482 | 0.031
o 10.7688 | 0.0001 | 0.0009 | 0.1504 | 0.0307
6 10,6992 | 0.0001 | 0.0009 | 0.1534 | 0.0305
T 10,6289 | 0.0001 | 0.0009 | 0.1566 | 0.0306
g 10.5611 | 0.0001 | 0.0009 | 0,1603 | 0.031
9 10.4928 | 0.0001 | 0.0009 | 0.164 | 0.0316
10 10,4293 | 0.0001 | 0.0009 | 0.1672 | 0.0327
11 10,3745 | 0.0001 0.001 | 0.1698 | 0.0344
12 10.3315 | 0.0001 0.001 | 0.1714 | 0.0365
13 10.3048 | 0.0000 | 0.001 | 0.1718 | 0.0391
14 10.2967 | -0.0000 | 0.001 | 0.1709 | 0.042
15 10.3085 | -0.0000 [ 0.0009 | 0.1687 | 0.0449
16 10.3409 | -0.0001 | 0.0009 | 0.1654 | 0.0478
17 10.3937 | -0.0001 | 0.0009 | 0.1611 | 0.0605
18 10,4657 | -0.0001 | 0.0009 | 0.156 | 0.0528
19 10.5547 -0.0002 1 0.0009 | 0.1504 | 0.0549
G| G it Tr | GCV
2.1261 | -0.5474 | 2.8903 | 89.60 | 0.0364
2.1623 | -0.5776 | 2.9074 | 89.63 | 0.0366
2.1801 | -0.6091 [ 2.9029 80.50 | 0.0365
2.1953 | -0.6413 | 2.9004 89.50 | 0.0365
2.1959 | -0.6484 | 2.8991 829.49 | 0.0366
2.2026 | -0.6534 | 2.8963 | 89.42 | 0.0366
2.233 | -0.6711 | 2.8933 | 89.33 | 0.0366
2.2767 | -0.6904 | 2.8874 | 89.23 | 0.0366
2.3312 | -0.7074 | 2.8801 89.10 | 0.0366
2.3932 | -0.7184 | 2.8712 88.95 | 0.0367
24574 | -0.7191 | 2.8615 | 88.79 | 0.0367
2.5207 | -0.7074 | 2.8511 88.64 | 0.0367
25786 | -0.6813 | 2.8409 | 88.49 | 0.0366
2.6259 | -0.6394 2.8314 88.306 0.0366
2.658 | -0.5828 | 2.8233 88.27 | 0.0366
2.6721 | -0.5152 | 2.8172 | 8R.22 | 0.0366
2.6672 | -0.4422 | 2.8133 88.23 | 0.0365
2.6434 | -0.3698 2.812 88.28 | 0.0364
2.6025 | -0.3032 | 2.8133 | 88.38 | 0.0364
| 2.5468 | -0.2462 2.817 88,52 | 0.0363



q 0 dGev | &GOV i TR
i di dil? dé ‘ .
0 10.5547 | -0.0002 [ 0.001 0.146 | 0.0693
1 10,7537 | -0.0002 | 0.001 0.1451 | 0.0704
2 10.8389 | -0.0002 | 0.001 | 0.1438 | 0.071
3 10.9282 | -0.0002 [ 0.001 0.1425 | 0.072
4 11.0104 | -0.0002 | 0.001 0.1413 | 0.0725
5 11.0933 | -0.0002 | 0.001 | 0.1402 | 0.0732
8 11,1734 | -0.0002 | 0.001 0.1391 | 0.0738
7 11.25 -0.0002 | 0.001 0.138 | 0.0745
8 11.3243 | -0.0001 | 0.001 | 0.1367 | 0.0752
9 11.397 | -0.0001 0.001 | 0.1355 | 0.0759
10 11.4681 | -0.0001 | 0.001 | 0.1342 | 0.0767
11 11,5373 | -0.0001 | 0.001 0.1329 | 0.0775
12 11.6045 | -0.0001 | 0.001 0.1316 | 0.0782
13 11.6699 | -0.0001 0.001 0.1304 | 0.079
14 11.7336 | -0.0001 | 0.001 | 0.1291 | 0.0798
15 11.7955 | -0.0001 | 0.001 | 0.1278 | 0.0806
16 11.8559 | -0.0001 | 0.001 0.1266 | 0.0814
g 11.9146 | -0.0001 | 0.001 0.1253 | 0.0821
18 11.9717 | -0.0001 | 0.001 | 0.1241 | 0.0829
19 12.0271 | -0.0001 | 0.001 0.1229 | 0.0837
gF | 4l R Tr | GCV
2.3821 | -0.1922 | 2.9901 88.74 | 0.0384
2.368 | -0.1846 | 2.9859 88.78 | 0.0383
2.3459 | -0.1645 | 2.9897 88.83 | 0.0383
2.3199 | -0.1504 | 2.9909 88.88 | 0.0382
2.2984 | -0,1394 | 2.9928 88.94 | 0.0382
2.2775 | -0.1281 | 2.9947 89.00 | 0,0382
2.2536 | -0.1156 | 2.9965 29.06 | 0.0382
2.2305 | -0.1041 | 2.9985 89.12 | 0.0381
2.2078 | -0.0928 | 3.0005 89.19 | 0.0381
2.1848 | -0.0817 | 3.0027 89.25 | 0.0381
2.1615 | =0.0704 | 3.0048 89.32 0.038
2.138 | -0.0592 | 3.0071 89,38 0.038
2.1147 | -0.0484 | 3.0094 89.45 0.038
2.0916 | -0.0378 | 3.0117 89.51 0.038
2.0687 | -0.0275 | 3.0139 89.57 | 0.0379
2.0461 | -0.0175 | 3.0162 89.64 | 0.0379
2.0237 | -0.0077 | 3.0186 £9.70 | 0.0379
2.0013 0.002 3.0209 89.76 | 0.0379
1.9791 | 0.0116 3.0232 89.82 | 0.0379
1.957 0.0211 3.0255 89.87 | 0.0378
Grid 3
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AGCV GV Al AT
g | 6 df do® L do | _dp?
0 [ 12,0271 | -0.0000 | 0.0000 | 0.0121 | 0.0022
L | 50,9255 | -0.0000 | 0-.0000 | 0.012 | 0.0023
2 46.389 | -0.0000 [ -0.0000 | 0.0119 | 0.0024
3| 43.0275 | -0.0000 | -0.0000 | 00119 | 0.0025
4| 40,0008 | -0.0000 | -0.0000 | 0.0118 | 0.0026
5 | 37.3851 | -0.0000 | -0.0000 | 0.0117 | 0.0026
G | 35.0393 | -0.0000 | -0.0000 | 0.0117 | 0.0027
7 | 32,8663 | -0.0000 | -0.0000 | 0.0116 | 0.0027
8 | 30.8545 | -0.0000 | -0.0000 | 0.0116 | 0.0028
0 | 28,9681 | -0.0000 | -0.0000 | 0.0115 | 0.0028
10| 27.1621 | -0.0000 | -0.0000 | 0.0115 | 0.0028
11| 25.4299 | -0.0000 | -0.0000 | 0.0114 | 0.0028
12| 23.7502 | -0.0000 | -0.0000 | 0.0114 | 0.0028
13 | 22,1109 | -0.0000 | -0.0000 | 0.0113 | 0.0028
14 | 20.5001 | -0.0000 | -0.0000 | 0.0113 | 0.0028
15 | 18,9084 | -0.0000 | -0.0000 | 0.0112 | 0.0028
16 | 17.3276 | -0.0000 | -0.0000 | 0.0112 | 0.0027
17 | 157505 | -0.0000 | -0.0000 | 0.0112 | 0.0027
18 | 14,1713 | -0.0000 | -0.0000 | 0.0111 | 0.0027
19 | 12,5889 | -0.0000 | -0.0000 | 0.0112 | 0.0025
K &1L R Tr | GCV
0.1430 | 0.0251 | 2.7782 | 88.70 | 0.03567
0.1452 | 0.0257 | 2.7792 | 88.71 | 0.0357
0.1456 | 0.025 | 2.779 | 88.72 | 0.0357
0.1458 | 0.0247 | 2.7793 | 88.73 | 0.0357
0.146 | 0.0244 | 2.7795 | 88.75 | 0.0356
0.1459 | 0.024 | 2.7797 | 88.76 | 0.0356
0.146 | 0.0236 | 2.7799 | 88.77 | 0.0356
0.1459 | 0.0232 | 2.7801 | 88.78 | 0.0356
0.1457 | 0.0229 | 2.7802 | 88.79 | 0.0356
0.1455 | 0.0226 | 2.7804 | 88.80 | 0.0356
0.1453 | 0.0222 | 2.7806 | 88.82 | 0.0356
0.145 | 0.0219 | 2.7808 | 88.83 | 0.0356
0.1447 | 0.0217 | 2.781 | 88.84 | 0.0356
0.1443 | 0.0214 | 2.7812 | 88.85 | 0.0356
0.144 | 0.0211 | 2.7814 | 88.86 | 0.0356
0.1436 | 0.0209 | 2.7816 | 88.87 | 0.0356
0.1432 | 0.0207 | 2,7819 | 88.88 | 0.0356
0.1428 | 0.0204 | 2.7821 | 88.80 | 0.0356
0.1428 | 0.0199 | 2.7823 | 88.90 | 0.0356
| 0.144 | 0,018 | 2.7824 | 88.91 | 0.0356
Grid 2
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dts eV

ak

d= R

q Oq 10 0 07
0 13.1278 | -0.0001 0.001 0.12 0.0883
1 13.1525 | -0.0001 | 0.001 0.12 0.0883
2 13.1768 | -0.0001 [ 0.001 0.12 0.0883
3 13.2014 | -0.0001 | 0.001 0.12 0.0883
1 13.2258 | -0.0001 | 0.001 0.12 00,0883
5 13.2504 | -0.0001 | 0.001 0.12 0.0883
) 13.2749 | -0.0001 0.001 0.12 0.0883
7 13.2994 | -0.0001 | 0.001 0.12 0.0884
8 13.3239 | -0.0001 [ 0.001 | 0.1199 | 0.0884
9 [3.3484 | -0.0001 | 0.001 | 0.1199 | 0.0884
10 13.3729 | -0.0001 | 0.001 0.1199 | 0.0884
11 13.3974 | -0.0001 | 0.001 | 0.1199 | 0.0884
1% 13.4219 | -0.0001 | 0,001 | 0.1199 | 0.0884
13 13.4465 | -0.0001 | 0.001 | 0.1199 | 0.0884
14 13.471 | -0,0001 | 0.001 | 0.1199 | 0.0884
15 13.4955 | -0.0001 0.001 | 0.1199 | 0.0884
16 13:92 -0.0001 | 0.001 | 0.1199 | 0.0884
17 13.5446 | -0.0001 | 0.001 | 0.1198 | 0.0884
18 13.5691 | -0.0001 | 0.001 | 0.1198 | 0.0884
19 13.5936 | -0.0001 | 0.001 | 0.1198 | 0.0885
dir | i R Tr | GCV
1.9275 | 0.0513 2.8083 90.06 | 0.0361
1.9279 | 0.0514 | 2.8983 90.06 | 0.0361
1.9275 | 0.0515 2.8084 90.06 | 0.0361
1.9274 | 0.0516 2.8084 90.06 | 0.0361
1.9272 | 0.0516 | 2.8084 90.06 | 0.0361
1.9271 | 0.0518 | 2.8984 90,06 | 0.0361
1.9269 | 0.0518 | 2.8984 90.07 | 0.0361
1.9268 | 0.052 2.8084 90.07 | 0.0361
1.9266 0.0562 2.8985 90.07 | 0.0361
1.9264 | 0.05621 2.8985 90.07 | 0.0361
1.9263 | 0.0522 2.8985 90.07 0.0361
1.9261 | 0.0523 | 2.8985 90.07 | 0.0361
1.9259 | 0.0524 | 2.8985 90.07 | 0.0361
1.9257 | 0.0626 | 2.8986 90.07 | 0.0361
1.9256 | 0.0527 | 2.8936 090.07 | 0.0361
1.9254 | 0.0528 | 2.8986 90.07 | 0,0361
1.9252 | 0.0529 | 2.8986 90,07 | 0.0361
1.925 0.053 2.8980 | 90.07 | 0.0361
1.8249 | 0.05631 2.8086 90.07 | 0.0361
1.9247 | 0.0532 | 2.8987 90.07 | 0.0361
irid 1
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Appendix B

Results for Chapter 11

T'he tables in this appendix are discussed in Chapter 11. They report updates
of various quantities relevant to the OPTRSS and MINGCV algorithms

described in Chapter 8. The notation is explained as follows:

¢: the number of updates performed on a given grid.
¢: the logarithm of the smoothing parameter.

th yupdate of the logarithm of the smoothing parameter,

0, the ¢
R: the estimate of the residual sum of squares.
1'r: the estimate of tr(/ — A), where A is the influence matrix.

GCOV: the estimate of the generalised cross validation,
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Results generated by the MINGCYV algo-

rithm, using quadratic B-spline discreti-

sation
q 0, dotl | eV | 4 T
0 10.1464 | 0.0034 | 0.0065 | 0.3418 | 0.5938
1 9.6187 0.0004 | 0.0003 | 0.0632 | 0.0254
2 3.2639 0.0002 | 0.0002 | 0.0447 | 0.0226
3 7.1707 | -0.0000 | 0.0002 | 0.0193 | 0.0209
| 7.1897 | =0.0000 | 0.0002 | 0.0191 | 0.0211
5 7.2321 | -0.0000 | 0.0002 | 0.0198 | 0.0211
8] 7.2541 -0,0000 | 0.0002 | 0.0203 | 0.0214
T 7.2542 | <0.0000 | 0.0002 | 0.0203 | 0,0214
8 7.253 0.0000 | 0,0002 | 0.0203 | 0.0214
Y 7.2020 0.0000 | 0.0002 | 0.0203 | 0.0214
10 T. 280 0.0000 | 0.0002 | 0,0203 | 0.0214
11 T.2525 0.0000 | 0.0002 | 0.0203 | 0.0214
L 12025 0.0000 | 0.0002 | 0.0203 | 0.0214
13 i) 0.0000 | 0.0002 | 0.0203 | 0.0214
14 7.2626 0.0000 | 0.0002 | 0.0203 | 0.0214
15 T.2525 0.0000 | 0.0002 | 0.0203 | 0.0214
16 T.2528 0,0000 | 0.,0002 | 0.0203 | 0.0214
Ly 1.2025 0.0000 | 0.0002 | 0.0203 | 0.0214
| 8 T. 2025 0.0000 | 0.0002 | 0,0203 | 0.0214
19 ?.%525 0.0000 | 0.0002 | 0.0203 | 0.0214
T oF | R | T | Gov
0.4699 | -0.0546 | 3.0588 96.19 | 0.0334
0.5013 | 0.0028 2.8841 95.93 | 0.0317
0.4485 | 0.0935 2.813 05,28 | 0.0313
0.8331 0.1182 2.779 04 .85 0.0312
0.3364 0.119 2.7789 04.85 0.0312
(0.3439 0,1209 2.7797 94,87 0.0312
().3469 0.1223 2.7801 094,87 0.0312
(0.3468 (0.1222 2. 7801 94.87 0.0312
0.3466 ;122 2.7801 94.87 | 0.0312
0.3465 0.1219 2.7801 04,87 (0.031%2
().3465 0.1219 2.7801 04 .87 0.0312
0.3465 | 0.1219 2.7801 04.87 0.0312
(), 3465 0.1219 2.7801 04 .87 0.0312
(0.3465 J.1219 2.7801 D4.87 0.0312
(.3465 0.1219 2.7801 04 .87 0.0312
0.3465 | 0.1219 2.7801 94,87 | 0.0312
(0.3465 | 0.1219 2.7801 04,87 0.0312
0.3465 0.1219 2.7801 94,87 0.0312
().3465 0.1219 2.7801 04.87 0.0312
0.3465 0.1219 2.7801 U4.87 0.0312






310

2 0 dGCV | &°GCV dlt i
q df di? dil. di?
0 8.4323 | 0.0001 | 0.0006 | 0.1252 | -0.0013
1 8.1925 | -0.0000 | 0.0006 | 0.1288 | -0.0033
2 8.2021 | -0.0001 | 0.0005 | 0.1209 | -0.0119
3 8.3775 | 0.0000 | 0.0004 | 0.1174 | -0.0177
A 8.3331 | 0.0001 | 0.0005 | 0.1285 | -0.0106
5 8.1305 | 0.0000 | 0.0008 | 0.1337 | 0.0051
6 8.1313 | -0.0001 | 0.0006 | 0.1226 | -0.0053
7 8.325 | -0.0000 | 0.0004 | 0.1154 | -0.0215
8 8.4156 [ 0.0001 | 0.0004 | 0.1233 | -0.0191
g 8.142 0.0001 | 0.0008 | 0.1374 | 0.0045
10 8.0728 | -0.0001 | 0.0007 | 0.1256 | 0.0012
i | 8.271 | -0.0001 | 0.0004 | 0.1142 | -0.0217
12 8.4987 | 0.0001 | 0.0003 | 0.1167 | -0.0263
13 8.16563 | 0.0001 | 0.0007 | 0.14 0.0007
14 8.0232 | -0.0001 | 0.0008 | 0.1289 | 0.007
15 8.2176 | -0.0001 | 0.0004 | 0.1134 | -0.0216
16 8.5664 | 0.0001 | 0.0002 | 0.1104 | -0.032
17 8.1881 | 0.0001 | 0.0007 | 0.1416 | -0.0041
18 7.9792 | -0.0002 | 0.0008 | 0.1316 | 0.0115
19 Hl?f}(i -0.0002 | 0.0004 | 0.1127 | -0.0221

A | 4 R | Tr | GCV

2.0787 | -1.0172 | 2.6337 | 92.96 | 0.0308

2.2976 | -1.0531 | 2.6081 92.65 | 0.0307

2.2756 | -1.0064 | 2.6127 | 92.67 | 0.0307

2.0462 | -0.9581 | 2.6355 | 93.05 | 0.0307

21019 | -1.0578 | 2.635 92.96 | 0.0308

2.3738 | -1.1029 | 2.6062 | 92.51 | 0.0308

2.3506 | -1.0248 | 2.6023 | 92.51 | 0.0307

2.0904 | -0.9735 | 2.6287 | 92.94 | 0.0307

2.0028 | -1.0054 | 2.6449 | 93.13 | 0.0308

2.3561 | -1.1331 | 2.6102 | 92.53 | 0.0308

2.4381 | -1.039 | 2.5944 | 92.37 | 0.0307

2.1478 | -0,9771 | 2.6208 | 92.82 | 0.0307

1.9061 | -0.9462 | 2,6536 | 93.29 | 0.0308

2.3205 | -1.1672 | 2.616 92.59 | 0.0308

2.5168 | -1.0508 | 2.5877 | 92.25 | 0.0307

2.2077 | -0.9795 | 2.6132 | 92.70 | 0.0307

1.8309 | -0.8916 | 2.6601 | 93.42 | 0.0308

2.2846 | -1.1952 | 2.6214 | 92.64 | 0.0308

2.0864 | -1.0612 | 2.5819 | 92.14 | 0.0307

| 2.2565 | -0.9802 | 2.607 | 92.61 | 0.0307

(arid 4




0

diiCV

a GOV

di

d* R

q 0 407 P s
() 8.1746 | -0.0001 | 0.0003 | 0.1087 | -0.021
| 9.0554 | -0.0001 | 0.0003 | 0.0963 | -0.0137
2 9.4306 | -0.0001 | 0.0003 | 0.0827 | -0.0061
% 9.781 -0.0001 | 0.0002 | 0.0725 | -0.0017
4 10.0664 | -0.0000 [ 0.0002 | 0.0656 0
O 10,271 | -0.0000 | 0.0001 | 0.0614 | -0.0005
§ 10,3755 | -0.0000 [ 0.0001 | 0.0587 | -0.0021
T 10.3688 | 0.0000 | 0.0001 | 0.0572 | -0.0045
8 10,2272 | 0.0000 | 0.0001 | 0.0569 | -0.0077
9 0.888 0.0000 | 0.0000 | 0.0593 | -0.013
10 0.1334 0.0000 | 0.0000 | 0.0716 | -0.026
11 7.5054 0.0001 | 0.0002 | 0.1496 | -0.0808
12 7.1449 0.0002 | 0.0005 | 0.219 -0,096
13 6.8008 | -0.0001 | 0.0012 | 0.2565 | -0.0617
14 6.8489 | -0,0003 | 0.0015 | 0.2423 | -0.0127
15 7.0735 | -0.0005 | 0.0014 | 0.2038 | 0.0158
16 7.4397 | -0.0005 | 0.0012 | 0.1617 | 0.0265
17 7.8798 | -0.0005 | 0.001 | 0.1247 | 0.0322
1= 8.3311 | -0.0004 | 0.0009 | 0.0961 | 0.0387
19 8.7529 | -0.0003 | 0.0008 | 0.0758 | 0.0452 |
drr Lo R Tr | GCV

2.158 | =0.9297 | 2.6163 93.12 | 0.0305

1.8851 | <0.7286 | 2.6364 93.76 | 0.0303

1.6113 | -0.5387 | 2.6588 94,27 | 0.0302

1.3793 | -0.3892 | 2.6732 94.66 | 0.0302

1.2138 | -0.2975 | 2.6942 94.96 | 0.0302

1.1027 | -0.2498 | 2.7071 95.17 | 0.0302

1.0288 | -0.2306 | 2.7183 95.33 | 0.0302
0.9799 | -0.2208 2.728 95.42 | 0.0303
0.9571 | -0.2487 | 2.7362 95.44 | 0.0303
0.9805 | -0.3064 2.741 95.32 | 0.0305

1.1684 | -0.5128 | 2.7342 94.73 | 0.0308

2.4704 | -1.72565 | 2.6438 90.66 | 0.0325

3.5055 | -2.5451 | 2.5377 B8.77 | 0.0325
4.6778 | -2.9552 | 2.4361 87.39 | 0.0322
4.9029 | -2.4895 | 2.3977 87.74 | 0.0315
4,4965 | -1.8392 | 2.4159 H8.76 0.031

3.7365 | -1.3117 | 2.4639 90.15 | 0.0306

2.9563 | -0.947 2.5168 91.47 | 0.0304

2.3138 | -0.6738 2.5013 02.53 0.0302

1.8664 -0.464 2.0942 03.33 0.0301

Grid 3
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Girid 2

312

¢ | o6, [ WV TGV g T 4R
0 &8.7529 | -0.0003 | 0.0008 | 0.0744 | 0.0461
1 9.5311 | -0.0003 | 0.0008 | 0.0722 | 0.0479
2 9.9074 | -0.0003 | 0.0008 | 0.0698 | 0.0497
3 10,273 | -0.0003 | 0.0008 | 0.0675 | 0.0516
4 10.6278 | -0.0003 | 0.0008 | 0.0651 | 0.0535
5 10.9724 | -0.0003 | 0.0008 | 0.0628 | 0.0554
§) 11.3082 | -0.0003 | 0.0008 | 0.0606 | 0.0571
7 11.6361 | -0.0002 | 0.0008 | 0.0586 | 0.0588
) 11.9572 | -0.0002 | 0.0008 | 0.0566 | 0.0603
) 12,2725 | -0.0002 | 0.0008 | 0.0548 | 0.0617
10 12.5827 | -0.0002 | 0.0008 | 0.0532 | 0.063
L1 12.8883 | -0.0002 | 0.0007 | 0.0516 | 0.0641
12 13.1896 | -0.0002 | 0.0007 | 0.0502 | 0.0651
13 13.4868 | -0.0002 | 0.0007 | 0.0489 | 0.066
14 13.7799 | -0,0002 | 0.0007 | 0.0477 | 0.0668
15 14.0688 | -0.0002 | 0.0007 | 0.0466 | 0.0675
16 14.3537 | -0.0002 | 0.0007 | 0.0456 | 0.0681
i 14.6345 | -0.0002 | 0.0007 | 0.0447 | 0.0686
18 14,9113 | -0.0002 | 0.0007 | 0.0438 | 0.069
19 15.184 | -0.0002 | 0.0007 | 0.0431 | 0.0694

| G | R [ T TGOV

1.8285 | -0.4409 | 2.5968 | 93.44 0.03

1L.7755 | -0.403 | 2.6002 | 93.60 0.03

L7167 | -0.3589 | 2.6038 | 93.76 | 0.0299

L6567 | -0.3134 | 2.6075 | 93.92 | 0.0299

[.5985 | -0.2692 | 2.6111 94.06 | 0.0298

1.5435 | -0.2276 | 2.6147 | 94.19 | 0.0298

1.4921 | -0.1889 | 2.6181 94.20 | 0.0297

l.4444 | -0.1534 | 2.6214 94,39 | 0.0297

1.4004 | -0.1211 2.6246 94,47 0.0297

1.3599 | -0.0919 | 2.6277 94.54 0.0297

1.3226 | -0.0653 | 2.6306 94.61 0.0297

1.288 | -0.0411 | 2.6334 94.66 | 0.0297

1.2508 | -0.0189 | 2.636 94.72 | 0.0297

1.2256 | 00016 | 2.6385 94.77 | 0.0297

11974 | 0.0203 2.6409 94.82 | 0.0297

1.171 0.0374 2.6432 94.86 | 0.0297

1.1463 | 0.0531 2.6454 94.90 | 0.0297

1.1233 | 0.0673 | 2.6475 | 94.94 | 0.0297

1.1018 | 0.0801 2.6495 94,98 0.0297

_I.()Hl?‘ 0.0917 2.6514 95.02 0.0297







B.2 Results generated by the MINGCYV algo-
rithm, for a second random vector t

Grid 6

314

q 0 dGCV | dPGLV AR d* T
q i di? dfl 407
0 10.1464 | 0.0026 | 0.0076 | 0.3418 | 0.5938
1 9.7968 | -0.001 | 0.0005 | 0.0618 | 0.0206
9 11.7322 | 0.0031 | 0.0069 | 0.3457 | 0.5555
3 11.2808 | 0.0007 | 0.0028 | 0.1703 | 0.2087
4 11.0147 | 0.0001 | 0.0021 | 0.1285 | 0.1519
5 10.9474 | -0,0000 | 0.0019 | 0.1185 | 0.1336
6 10,9456 | -0.0000 | 0.0019 | 0.1183 | 0.1334
7 10,9459 | -0.0000 | 0.0019 | 0.1183 | 0.1335
8 10.9463 | -0.0000 | 0.0019 | 0.1183 | 0.1335
9 10.9465 | -0.0000 | 0.0019 | 0.1183 | 0.1335
10 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0,1335
11 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
12 | 10,9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
13 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
14 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
15 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
16 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
17 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
18 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
19 | 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
| GF | 4gr R | Tr | GCV |
1.9649 | -0.2636 | 3.0688 | 88.84 | 0.0301
2.1308 | -0.2374 | 2.804 | 88.11 | 0.0376
1.2816 | -0.4647 | 3.138 | 091.60 | 0.0377
1.6325 | -0.4272 | 3.0328 | 90.96 | 0.037
1.7714 | -0.3001 | 2.9938 | 90.50 | 0.0369
1.7893 | -0.3001 | 2.9849 | 90.38 | 0.0369
1.7918 | -0.3007 | 2.9845 | 90.37 | 0.0369
1.7921 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.,7919 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0360
L7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369
L7918 | -0.3008 | 29845 | 90.37 | 0.0369




: dGCV GGV dit d It
q . 0‘? dli) di? df di
0 10.9465 | 0.0000 | 0.0018 | 0.1404 | 0.119
1 10.9355 | -0.0000 | 0.0017 | 0.133 | 0.1119
2 10.96 0000 0.0017 | 0.133 | 0.1119
3 10.946 | 0.0000 | 0.0017 | 0,1349 | 0.1094
4 10.9149 | 0.0001 | 0.0017 | 0.139 | 0.1148
5 10.908 | -0.0000 | 0.0017 | 0.1372 | 0.1166
6 10.9267 | -0.0000 | 0.0017 | 0.1332 | 0.1097
7 10.9381 | 0.0000 | 0.0016 | 0.1328 | 0.1054
8 10.9276 | 0.0000 | 0.0017 | 0.1355 | 0.1091
0 10.9156 | -0.0000 | 0,0017 | 0.1368 | 0.1136
10 10.9187 | -0.0000 | 0.0017 | 0.1352 | 0.1125
11 10,9284 | -0.0000 | 0.0017 | 0.1338 | 0.1089
12 10.9295 | 0.0000 | 0.0017 | 0.1344 | 0.1084
13 10.9229 | 0.0000 | 0.0017 | 0.1356 | 0.1108
14 10.9198 | -0.0000 | 0.0017 | 0.1356 | 0.112
15 10.9234 | -0.0000 | 0.0017 | 0.1347 | 0.1107
16 10.9269 | 0.0000 | 0.0017 | 0.1344 | 0.1094
17 10.9256 | 0.0000 | 0.0017 | 0.1349 | 0.1099
18 10,9226 | 0.0000 | 0.0017 | 0.1353 | 0.111
19 10.9225 | 0.0000 | 0,0017 | 0.1351 | 0.111
dr | 4Ir R Tr | GCV |
2.1228 | -0.4369 | 2.9412 | 89.94 | 0.0367
2.0786 | -0.3697 | 2.9482 | 89.92 | 0.0368
2.0292 | -0.4136 2.95 89.97 | 0.0368
2.0526 | -0.4172 2.95 89.94 | 0.0368
2.079 | -0.4018 | 2.9456 | 89.87 | 0.0368
2.0707 | -0.4182 | 2.9439 | 89.86 | 0.0368
2.0492 | -0.4335 | 2.9463 | 89.90 | 0.0368
2.0456 | -0.4313 | 2.9483 | 89.92 | 0.0368
2.06056 | -0.422 2.9471 89.90 | 0.0368
2.0687 | -0.4182 | 2.9453 | 89.88 | 0.0368
2.061 | -0.4221 | 2.9455 | 89.88 | 0.0368
2.0523 | -0.4268 | 2.9468 | 89.90 | 0.0368
2.0548 | -0.4248 | 2.9472 | 89.90 | 0.0368
2.0619 | -0.4221 | 2.9463 | 89.89 | 0.0368
2.0626 | -0.422 2.9458 | 89.88 | 0.0368
2.0578 | -0.4238 | 2.9462 | 89.89 | 0.0368
2.0066 | -0.4244 2.9467 89.90 0.0368
2.0582 | -0.4234 | 2.9466 | 89.90 | 0.0368
2.0608 | -0.4226 | 2.9462 | 89.89 | 0.0368
2.0597 | -0.423 2.9461 89.89 | 0,0368

Grid 5
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Grid 4

316

q 0, dGCV [ GOV | dR T
, s S0 di do? df) ETER

0 10,9225 | 0.0000 | 0.0016 | 0.1401 | 0.1055

1 10.9005 | 0.0001 | 0.0016 | 0.1424 | 0.1038

2 10.8687 | 0.0000 | 0.0016 | 0.1431 | 0.1033

3 10.8413 | 0.0000 | 0.0016 | 0.144 | 0.1025

4 10.819 | 0.0000 | 0.0016 | 0.1442 | 0.102

5 10.8056 | 0.0000 | 0.0016 | 0.144 | 0.1015

§ 10.8021 | 0.0000 | 0.0016 | 0.1433 | 0.1011

7 10.8089 | 0.0000 | 0.0016 | 0.1422 | 0.1009

& 10.825 | -0.0000 | 0.0016 | 0.1409 | 0.1008

0 10.8484 | -0.0000 | 0.0016 | 0.1394 | 0.1007

10 10.8768 | -0.0000 | 0.0016 | 0.1379 | 0.1008

11 10.9076 | -0.0000 | 0.0015 | 0.1365 | 0.1009

12 10.9381 | -0.0000 | 0.0015 | 0.1353 | 0.101

13 10.9656 | -0.0000 | 0.0015 | 0.1344 | 0.1011

14 10,9877 | -0.0000 | 0.0015 | 0.1339 | 0.1012

15 11.0027 | -0.0000 | 0.0015 | 0.1337 | 0.1012

16 11.0095 | 0.0000 | 0.0015 | 0.134 | 0.101

17 110077 | 0.0000 | 0.0015 | 0.1346 | 0.1008

18 10.9976 | 0.0000 | 0.0016 | 0.1356 | 0.1004

- 10.9801 | 0.0000 | 0.0016 | 0.13G8 [

alr | R R Tr | GCV
2.0915 | -0.4509 | 2.9401 | 89.80 | 0.0368
2.1114 | -0.4616 | 2.937 89.74 | 0.0368
2.1328 | -0.4691 | 2.9343 | 89.67 | 0.0369
2.1567 | -0.4753 | 2.9313 | 89.61 | 0.0369
2.1782 | -0.4763 | 2.9288 | 89.56 | 0.0369
2,195 | -0.472 | 2.9266 | 89.53 | 0.0369
2.2057 | -0.463 | 2.9251 | 89.52 | 0.0369
2.2083 | -0.4499 | 2.9243 | 89.53 | 0.0368
2.2029 | -0.4345 | 2.9244 | 89.57 | 0.0368
2.1904 | -0.4187 | 2.9252 | 89.62 | 0.0368
2.1721 | -0.4041 | 2.9267 | 89.69 | 0.0368
2.1498 | -0.3018 | 2.9288 89.75 | 0.0367
2.1254 | -0.3828 | 2.9311 | 89.82 | 0.0367
2.1011 -0.378 2.9336 29.88 | 0.0367
2.0787 | -0.3776 | 2.9361 | 89.93 | 0.0367
2.0602 | -0.3819 | 2.9382 89.96 | 0.0367
2.0468 | -0.3906 2.94 89.98 | 0.0367
2.0398 | -0.4033 | 2.9412 89.98 | 0.0367
2.0395 | -0.419 2.9418 89.96 | 0.0367
2.0459 | -0.4367 | 2.9418 89.92 | 0.0367



o [ 6 [V [TV & T &
0 10.9801 | -0.0000 | 0.0016 | 0.1375 | 0.0994
| 10.9325 | 0.0000 | 0.0016 | 0.1382 | 0.0988
2 10.9062 | 0.0000 | 0.0016 | 0.1387 | 0.0984
3 10,8791 | 0.0000 | 0.0016 | 0.1391 | 0.0981
4 10.8518 | 0.0000 | 0.0016 | 0.1396 | 0.0978
5 10,8262 | 0.0000 | 0.0016 | 0.1401 | 0.0974
G 10.7994 | 0.0000 | 0.0016 | 0.1407 | 0.0969
7 10.7746 | 0.0000 | 0.0016 | 0.1412 | 0.0965
8 10.7508 | 0.0000 | 0.0016 | 0.1418 | 0.096
9 10,7281 | 0.0000 | 0.0016 | 0.1425 | 0.0955
10 10.7068 | 0.0000 | 0.0016 | 0.1431 | 0.0949
11 10.687 | 0.0000 | 0.0016 | 0.1437 | 0.0944
12 10.6688 | 0.0000 | 0.0016 | 0.1443 | 0.0939
13 10.6525 | 0.0000 | 0.0016 | 0.1449 | 0.0934
14 10.6382 | 0.0000 | 0.0016 | 0.1455 | 0.0929
L5 10.6259 | 0.0000 | 0.0016 | 0.1461 | 0.0925
16 10.6158 | 0.0000 | 0.0016 | 0.1466 | 0.092
17 10,6079 | 0.0000 | 0.0016 | 0.1471 | 0.0916
18 10.6022 | 0.0000 | 0.0016 | 0.1475 | 0.0913
19 10.5988 | 0.0000 | 0.0016 | 0.1479 | 0.091
o fﬂ,ir IR Tr GCV
2.0563 | -0.446 | 2.9411 | R9.90 [ 0.036%
2.0614 | -0.4517 | 2.9404 | 89.88 | 0.0368
2.0674 | -0.4569 | 2.9398 | 89.86 | 0.0368
2.0741 | -0.4624 | 2.9392 | 89.83 | 0.0368
2.0821 | -0.4687 | 2.9386 | 89.80 | 0.0368
2.0011 | -0.4756 | 2.9379 | 89.76 | 0.0368
2,101 | -0.4828 | 2.9371 | 89.73 | 0.0368
2.1115 | -0.4903 | 2.9362 | 89.68 | 0.0369
2.1227 | -0.498 | 2.9352 | R89.64 | 0.0369
2.1344 | -0.5058 | 2.9342 | 89.60 | 0.0369
21465 | -0.5136 | 2.9331 | 89.55 | 0.0369
2,159 | -0.5214 | 2.9319 | 89.51 | 0.037
21717 | -0.529 | 2.9308 | 89.46 | 0.037
2.1845 | -0.5363 | 2.9206 | 89.42 | 0.037
2.1972 | -0.5433 2.9284 89,38 0.037
2.2097 | -0.5498 2.9272 89,34 0.037
2.2219 | -0.5558 | 2.926 | 89.30 | 0.0371
2,2337 | -0.5612 | 2.9249 | 89.27 | 0.0371
2,2449 | -0.5659 | 2.9237 | 80.23 | 0.0371
2.25564 | -0.5698 | 2.9226 | 89.21 | 0.0371
Grid 3
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q a, ity TGV %g %g
() 10,5988 | 0.0000 | 0.0016 | 0.1481 | 0.0908
1 10.5969 | 0.0000 | 0.0016 | 0.1482 | 0.0908
2 10.5963 | 0.0000 | 0.0016 | 0.1482 | 0.0907
3 10.5958 | 0.0000 | 0.0016 | 0.1483 | 0.0907
z| 10,5955 | 0.0000 | 0.0016 | 0.1483 | 0.0906
5 10.59562 | 0.0000 | 0.0016 | 0.1484 | 0.0906
§ 10.595 | 0.0000 | 0.0016 | 0.1484 | 0.0906
T 10.65949 | 0.0000 | 0.0016 | 0.1484 | 0.0905
8 10.5948 | 0.0000 | 0.0016 | 0.1485 | 0.0905
0 10.5948 | -0.0000 | 0.0016 | 0.1485 | 0.0905
10 10.595 | -0.0000 | 0.0016 | 0.148G | 0.0905
11 10.5952 | -0.0000 | 0.0016 | 0.1486 | 0.0904
12 10,5955 | -0.0000 | 0.0016 | 0.1486 | 0.0904
13 10.596 | -0.0000 | 0.0016 | 0.1487 | 0.0904
14 10.5965 | -0.0000 | 0.0016 | 0.1487 | 0.0904
15 10,5972 | -0.0000 | 0.0016 | 0.1487 | 0.0903
16 10.508 | -0.0000 | 0.0016 | 0.1487 | 0.0903
17 10.5989 | -0.0000 | 0.0016 | 0.1488 | 0.0903
18 10.5999 | -0.0000 | 0.0016 | 0.1488 | 0.0903
19 10.6011 | -0.0000 | 0.0016 | 0.1488 | 0.0903
gr | ZFF | R_| Tr | GGV
2.2579 | -0.6719 | 2.9225 | 89.20 | 0.0371
2.2592 | -0.5726 | 2.9224 89.20 | 0.0371
2.2603 | -0.5732 | 2.9223 | 89.20 | 0.0371
2.2613 | -0.5736 | 2.9222 | 89.19 | 0.037]
2.2622 | -0.574 | 2.9221 | 89.19 | 0.0371
2.2631 | -0.5744 | 2.922 89.19 | 0.0371
2.264 | -0.5747 | 2.9219 | 89.19 | 0.0371
22648 | -0.575 | 2.9218 | 89.19 | 0.0371
2.2657 | -0.5753 | 2.9217 | 89.19 | 0.0371
2.2665 | -0.5756 | 2.9216 | 89.18 | 0.0371
2.2673 | -0.57569 | 2,9215 | 89.18 | 0.0371
2.2681 | -0.5761 | 2.9214 | 89.18 | 0.0371
2.2689 | -0.5764 | 2.9213 | 89.18 | 0.0371
2.2696 | -0.5766 | 2.9212 | 89.18 | 0.0371
22704 | -0.5768 | 2.9211 | 89.18 | 0.0371
22711 | -0.577 | 2.9211 | 89.17 | 0.0371
2.2718 | -0.5772 2.921 89.17 | 0.0371
2.2725 | -0.5774 | 2.9209 | 89.17 | 0.0371
22732 | -0.6775 | 2.9208 | 89.17 | 0.0371
22738 | -0.5777 | 2.9207 | 89.17 | 0.0371

Girid 2
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o [ o, [ TGP TEGVT o T 28
L L [#1z
0 10.6011 | 0.0000 | 0.0016 | 0.148 | 0.0908
1 10.5969 | 0.0000 | 0.0016 | 0.1481 | 0.0908
2 10.5963 | 0.0000 | 0.0016 | 0.1482 | 0.0908
3 10.5958 | 0.0000 | 0.0016 | 0.1482 | 0.0907
4 10.6955 | 0.0000 | 0.0016 | 0.1483 | 0.0907
5 10.5952 | 0.0000 | 0.0016 | 0.1483 | 0.0906
G 10.595 | 0.0000 | 0.0016 | 0.1484 | 0.0906
7 10.5949 | 0.0000 | 0.0016 | 0.1484 | 0.0906
8 10.5948 | 0.0000 | 0.0016 | 0.1484 | 0.0905
0 10.5948 | -0.0000 | 0.0016 | 0.1485 | 0.0905
10 10.595 | -0.0000 | 0.0016 | 0.1485 | 0.0905
11 10.5852 | -0.0000 | 0.0016 | 0.1486 | 0.0905
12 10.5955 | -0.0000 | 0.0016 | 0.1486 | 0.0904
13 10.596 | -0.0000 | 0.0016 | 0.1486 | 0.0904
14 10,5965 | -0.0000 | 0.0016 | 0.1487 | 0.0904
15 10,5972 | -0.0000 | 0.0016 | 0.1487 | 0.0904
16 10.598 | -0.0000 | 0.0016 | 0.1487 | 0.0903
s 10.5989 | -0.0000 | 0.0016 | 0.1487 | 0.0903
18 10.5999 | -0.0000 | 0.0016 | 0.1488 | 0.0903
19 10.6011 | -0.0000 | 0.0016 | 0.1488 | 0.0903
ar | 4fr R Tr | GCV
2.2579 | -0.5719 | 2.9225 | 89.20 | 0.0371
2.2502 | -0.5726 | 2.9224 | 89.20 | 0.0371
2.2603 | -0.6732 | 2.9223 | 89.20 | 0.0371
2.2613 | -0.5736 | 2.9222 | 89.19 | 0.0371
2.2622 | -0.574 | 2.9221 | 89.19 | 0.0371
2.2631 | -0.5744 | 2.922 | 89.19 | 0.0371
2.264 | -0.6747 | 2.9219 | 89.19 | 0.0371
2.2648 | -0.575 | 2.9218 | 89.19 | 0.0371
2.2657 | -0.5753 | 2.9217 | 89.19 | 0.0371
2.2665 | -0.5756 | 2.9216 | 89.18 | 0.0371
2.2673 | -0.5759 | 2.9215 | 89.18 | 0.0371
2.2681 | -0.5761 | 2.9214 | 89.18 | 0.0371
2.2680 | -0.5764 | 2.9213 | 89.18 | 0.0371
2.2696 | -0.5766 | 2.9212 | 89.18 | 0.0371
2.2704 | -0.5768 | 2.9211 | 89.18 | 0.0371
2.2711 | -0.577 | 2.9211 | 89.17 | 0.0371
2.2718 | -0.5772 | 2.92] 89.17 | 0.0371
2.2725 | -0.5774 | 2.9209 | 89.17 | 0.0371
2.2732 | -0.57756 | 2.9208 | 89.17 | 0.0371
2.2738 | -0.5777 | 2.9207 | 89.17 | 0.0371
Grid 1
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B.3 Results generated by the MINGCYV algo-
rithm, for a third random vector t

R

Girid 6

320

% A GO dR AR
q Oy g0 | dar do di
0 10.1464 | 0.0035 | 0.0074 | 0.3418 | 0.5938
1 9.6793 | -0.0001 | 0.0004 | 0.0623 | 0.0227
2 9.9558 | <0.0001 | 0.0003 | 0.0627 | 0.0171
3 10.1339 | -0.0000 | 0.0004 | 0.0657 | 0.0238
4 10.1404 | -0,0000 | 0.0004 | 0.0656 | 0.0235
5 10,1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
6 10,1406 | -0.0000 | 0,0004 | 0.0656 | 0.0235
s 10.1407 | -0.0000 | 0.0004 | 0.0656 | 0.0235
o) 10.1407 | -0.0000 | 0.0004 | 0.0656 | 0.0235
9 10,1407 | -0.0000 | 0.0004 | 0.065G | 0.0235
10 10.1407 | -0.0000 | 0.0004 | 0.0656 | 0.0235
11 10.1407 | -0.0000 | 0.0004 | 0.0656 | 0.0235
12 10.1407 | -0.0000 | 0.0004 | 0.0656 | 0.0235
13 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
14 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
15 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
16 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
17 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
18 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
19 10,1407 | 0.0000 _{}.(J(J()r’] 0.0656 | 0.0235
W | G@F | R | Tr [ Gov_
0.9694 | -0.1281 3.0588 89.49 0.0386
1.0958 -0.146 2.8874 89.00 0.03068
1.0397 | -0.1687 | 2.9038 | 89.30 | 0.0368
1.0113 -0.165 2.9152 829,48 (0.0368
1.00G7 | -0.1628 | 2.9162 89.49 0.0368
1.0063 | -0.1625 | 2.9162 59,49 0.0368
L.0062 | <0.1626 2.9162 89.49 0.0368
1.0062 | -0.1626 | 2.9162 =29.49 0.0368
1.0062 | -0.1626 | 2.9162 89.49 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 2.9162 20.49 0.0368
1.0062 | -0.1626 2.9162 89.49 0.0368
1.0062 | -0.1626 2.9162 89.49 0.0368
L0062 | =0.1626 2.9162 29.49 0.0368
[.0062 ().1626 2.9162 89,49 0.036G8
1.0062 | -0.1626 | 2.9162 89.49 0.0368
1.0062 | -0.1626 2.9162 &89.49 00,0368
1.0062 | -0.1626 2.9162 89,49 0.0368
1.0062 | -0.1626 2.9162 89.49 0.0368
1.0062 | -0.1626 2.9162 89,49 0.0368




q 0 deiCV GOV dni d* I

) di d0? 40 do?
0 10.1407 | 0.0001 | 0.0002 | 0.0963 | 0.0104
1 9.6156 | 0.0001 | 0.0001 | 0.0962 | -0.0046
2 8.9663 | 0.0000 | 0.0001 | 0.1015 | 0.0016
3 8.7668 | 0.0000 [ 0.0002 | 0.0996 | 0.0085
4 8.8082 | -0.0000 | 0.0003 | 0.0976 | 0.0094
0 8.9106 | -0.0000 | 0.0003 | 0.0973 | 0.0075
§ 8.9723 | 0.0000 | 0.0002 | 0.098 | 0.0057
7 8.9656 | 0.0000 | 0.0002 | 0.0986 | 0.0054
5 8.9342 | 0.0000 | 0.0002 | 0.0987 | 0.006
9 8.9198 | -0.0000 | 0.0002 | 0.0985 | 0.0064
10 8.9245 | -0.0000 | 0.0002 | 0.0983 | 0.0065
11 8.934 | -0.0000 | 0.0002 | 0.0983 | 0.0063
12 8938 | 0.0000 [ 0.0002 | 0.0984 | 0.0061
13 8.9363 | 0.0000 | 0.0002 | 0.0984 | 0.0061
14 8.9335 | 0,0000 | 0.0002 | 0.0984 | 0.0062
15 8.9325 | 0,0000 | 0.0002 | 0.0984 | 0.0062
16 8.9331 | -0.0000 | 0.0002 | 0.0984 | 0.0062
17 8.934 | -0.0000 | 0.0002 | 0.0984 | 0.0062
18 8.9342 | 0.0000 | 0.0002 | 0.0984 | 0.0062
19 8.934 0.0000 | 0,0002 | 0.0984 [ 0.0062
eft | edr R Tr | GCV
1.3645 | -0.1334 | 2.8525 89.08 | 0.0363
1.4483 | -0.2044 | 2.8041 | 88.39 | 0.0362
L5777 | -0.1788 | 2.7516 | 87.43 | 0.0364
1.6014 | -0.1747 | 2.7286 87.11 | 0.0363
1.5902 | -0,1867 | 2.7292 | 87.18 | 0.0363
1.5705 | -0.2097 | 2.7379 87.34 | 0.0362
1.5595 | -0.2236 | 2.7445 87.44 | 0.0363
1.6623 | -0.2198 | 2.7449 | 87.43 | 0.036¢
1.5689 | -0.2118 | 2,7422 | 87.38 | 0.0363
1.5713 | -0.2087 | 2.7405 87.36 | 0.0363
1.57 -0.2101 | 2.7407 | 87.36 | 0.0363
1.6681 | -0.2124 | 2.7415 | 87.38 | 0.0363
1.6675 | -0.2132 2.742 87.39 | 0.0363
1.5679 | -0.2126 | 2.7419 87.38 | 0.0363
1.5685 | -0.212 | 2.7416 | 87.38 | 0.0363
1.5686 | -0.2118 | 2.7415 87.38 | 0.0363
1.5685 | -0.2119 | 2.7416 | 87.38 | 0.0363
1.5683 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5683 | -0.2122 | 2.7417 | 87.38 | 0.0363
1.5683 | -0.2121 | 2.7417 | 87.38 | 0.0363

Grid 5
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B.4 Results generated by the MINGCYV algo-
rithm, using the average of 10 different

random vectors t

Grid 6

q 0 dGCV GV dR d” It
q d di? dg prE
0 10.1464 0.003 0.0067 | 0.3418 | 0.5938
1 9.6992 | -0.0002 | 0.0002 | 0.0594 | 0.0127
2 10.693 0.0003 | 0.0011 | 0.0947 | 0.0848
3 10,4285 | 0.0000 | 0.0007 | 0.0753 | 0.0465
4 10.3827 | 0.0000 | 0.0006 | 0.0733 | 0.0415
0 10.3808 | 0.0000 | 0.0006 | 0.0732 | 0.0413
0 10,3805 | 0.0000 | 0.0006 | 0.0732 | 0.0412
7 10,3506 | 0.0000 | 0.0006 | 0.0732 | 0.0412
3 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
9 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
10 10.3806 | 0.0000 | 0,0006 | 0.0732 | 0.0412
11 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
12 10,3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
13 10,3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
14 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
15 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
16 10,3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
17 10,3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
18 10.3806 | 0.0000 | 0.0006 | 0.0732 | 0.0412
19 1(]‘38(:]&'_ 0.0000 | 0.0006 | 0.0732 | 0.0412
%’Dx_ d.‘c’}f‘-r‘ R T GCV 1
1.178 | -0.2295 | 3.0588 94.89 | 0.0343
1.308 | -0.1319 | 2.8878 94.32 | 0.0328
1.1011 | -0.2766 | 2.9608 95.53 | 0.0328
1.1765 | -0.2162 | 2.9364 95.23 | 0.0327
1.1869 | -0.2178 | 2.9329 95.18 | 0.0327
1.1873 | -0.2183 | 2.9328 ©90.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 095.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 05.17 | 0.0327
1.1873 | -0.2183 | 2.9328 05.17 | 0.0327
1.1873 | -0.2183 | 2.9328 85.17 | 0.0327
1.1873 | -0.2183 | 2.9328 956.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 05.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327
1.1873 | -0.2183 | 2.9328 95.17 | 0.0327




o | 6 [ZgPTERVT o T oF
() 10,3500 | 0.0001 | 0.0005 | 0.1016 | 0.0277
| 10.2345 | 0.0000 | 0.0004 | 0.0978 | 0.0092
2 10,1295 | 0.0000 | 0.0004 | 0.0986 | 0.0106
3 10.1004 | 0.0000 | 0.0003 | 0.0975 | 0.0056
4 10.121 | 0.0000 | 0.0003 | 0.0978 | 0.007
5 10.1148 | 0.0000 | 0.0003 | 0.0978 | 0.0073
6 10,1138 | 0.0000 | 0.0003 | 0.0977 | 0.0068
T 10.115 | 0.0000 | 0.0003 | 0.0978 | 0.007
8 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
9 10,1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
10 | 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
11 10.1147 | 0,0000 | 0.0003 | 0.0078 | 0.007
12 10,1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
13 | 10.1147 | 0,0000 | 0.0003 | 0.0978 | 0.007
14 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
15 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
16 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
17 | 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
18 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
19 10.1147 | 0.0000 | 0.0003 | 0.0978 | 0.007
o R Tr | GCV

1.559 | -0.3520 | 2.8753 | 94.66 | 0.0324
1.5545 | -0.3027 | 2.8702 | 94.44 | 0.0325

1.6097 | -0.3723 | 2.8595 | 94.27 | 0.0325
1.6168 | -0.3814 | 2.8562 | 94.22 | 0.0325
1.6093 | -0.3922 | 2.8583 | 94.26 | 0.0325
1.6121 | -0.3839 | 2.8577 | 94.25 | 0.0325

1.6124 | -0.3857 | 2.8576 | 94.25 | 0.0325
1.6119 | -0.3865 | 2.8577 | 94.25 | 0.0325

1.612 | -0.3858 | 2.8577 | 94.25 | 0.0325

1.612 | -0.386 | 2.8577 | 94.25 | 0.0325

1.612 | -0.386 | 2.8577 | 94.25 | 0.0325

1.612 | -0.386 | 2.8577 | 94.25 | 0.0325

1.612 | -0.386 | 2.8577 | 94.25 | 0.0325

1.612 -().3806 2.8577 94,25 0.0325

1.612 -0.3806 2.8577 04.25 0.0325

1.612 -(). 3806 2.8577 94.25 00,0325

1.612 | -0.386 | 2.8577 | 94.25 | 0.0325

1.612 -().386 2.8077 94,25 0.0325

1.612 -0.3806 28577 04.25 00,0325

| 1612 | -0.386 | 2.8577 | 94.25 | 0.0325

Grid 5




L2
L2
m

0 10.1147 | 0.0000 | 0.0003 | 0.1084 | -0.0014
| 9.967 | .0000 | 0.0003 | 0.1084 | -0.0014
2 9.8341 | 0.0000 | 0.0002 | 0.1119 | -0.0079
3 90,8757 | 0.0000 | 0.0002 | 0.112 | -0.0099
4 9.873 | -0.0000 | 0.0002 | 0.1111 | -0.0078
5 9.9041 | -0.0000 | 0.0002 | 0.1102 | -0.007
G 9.9213 | -0.0000 | 0,0002 | 0.1095 | -0.0063
7 0.922 | -0.0000 | 0.0002 | 0.1093 | -0.0064
8 9.9121 | 0.0000 | 0.0002 | 0.1095 | -0.0072
g 9.8976 | 0.0000 | 0.0002 | 0,1098 | -0.0081
10 9.886 | 0.0000 | 0.0002 | 0.1101 | -0.0089
11 9.8793 | 0.0000 | 0.0002 | 0.1104 | -0.0092
12 9.8774 | -0.0000 | 0.0002 | 0.1105 | -0.0003
13 9.8784 | -0.0000 | 0.0002 | 0.1105 | -0.0091
14 9.8804 | -0.0000 | 0.0002 | 0,1105 | -0.0089
15 9.8824 | -0.0000 | 0.0002 | 0.1105 | -0.0087
16 0.8838 | -0.0000 | 0.0002 | 0.1104 | -0.0086
17 9.8845 | -0.0000 | 0.0002 | 0.1104 | -0.0085
18 9,8847 | 0.0000 | 0.0002 | 0.1104 | -0.0085
19 0.8846 | 0.0000 | 0.0002 | 0.1104 | -0.0085
afr | olr R Tr | GCV
1.7205 | -0.4846 | 2.8453 | 94.06 | 0.0325
1.8129 | -0.5152 | 2.8244 | 93.80 | 0.0324

1.879 -0.6291 2.80806 93.07 0.0324
1.8484 | -0.4831 | 2.8123 | 93.64 | 0.0324

1.8443 | -0.4586 | 2.8123 | 93.64 | 0.0324

1.8272 | -0.4393 | 2.8163 | 93.69 | 0.0324
1.8178 | -0.435 | 2.8187 | 93.73 | 0.0324
1.8166 | -0.4419 | 2.8192 | 93.73 | 0.0324

1.8200 | -0.4543 | 2.8183 | 93.71 | 0.0324
1.8279 | -0.466 | 2.8167 | 93.68 | 0.0324
1.8339 | -0.4735 | 2.8154 | 93.66 | 0.0324
1.8376 | -0.4764 | 2.8146 | 93.65 | 0.0324

1.839 -0.4759 2.8144 93.65 0.0324

1.839 -0.4739 2.8145 93.65 0.0324

1.8383 | -0.4718 | 2.8147 | 93.65 | 0.0324

1.8376 | -0.4703 | 2.8149 | 93.65 | 0.0324
1.8372 | -0.4694 | 2,8151 | 93.66 | 0.0324

1.8369 | -0.469 | 2.8152 | 93.66 | 0.0324

1.8369 | -0.4680 | 2.8152 | 93.66 | 0.0324

1.837 -0.4689 2.8152 93.66 0.0324

aricd 4




| o, | GV TIRVT g T
0 | 9.8846 | 0.0000 [ 0.0002 | 01119 | -0.0099
1| 9.8837 | -0.0000 | 0.0002 | 0.1129 | -0.0107
2| 9.8555 | 0.0000 | 0.0002 | 0.1136 | -0.0114
3 | 9.8513 | -0.0000 | 0.0002 | 0.1137 | -0.0116
4 0.858 | -0.0000 | 0.0002 | 0.1136 | -0.0115
5 | 9.8691 | -0.0000 | 0.0002 | 0.1135 | -0.0113
6 | 9.8747 | -0.0000 | 0.0002 | 0.1135 | -0.0111
7 | 9.8759 | 0.0000 | 0.0002 | 01135 | -0.011
8 | 9.8747 | 0.0000 | 0.0002 | 0.1136 | -0.011
9 | 9.8729 | 0.0000 | 0.0002 | 0.1137 | -0,011
10| 9.8714 | 0.0000 | 0.0002 | 0.1137 | -0.0111
11| 9.8704 | 0.0000 | 0.0002 | 0.1138 | -0.0111
12| 9.8698 | 0.0000 | 0.0002 | 0.1138 | -0.011
13| 9.8692 | 0.0000 | 0.0002 | 0.1138 | -0.011
14| 9.8686 | 0.0000 | 0.0002 | 0.1139 | -0.011
15 | 9.868 | -0.0000 | 0.0002 | 0.1139 | -0.011
16| 9.8674 | 0.0000 | 0.0002 | 0.1139 | -0.0109
17 | 9.8668 | 0.0000 | 0.0002 | 0.1139 | -0.0109
18 | 9.8662 | 0.0000 | 0.0002 | 0.1139 | -0.0109
19 | 9.8657 | 0.0000 | 0.0002 | 0.114 | -0.0100
e | Ly R Tr | QCV
L8615 | -0.4926 | 2.8136 | 93.61 | 0.0324
1.8706 | -0.5005 | 2.8124 | 93.60 | 0.0324
1.8899 | -0.5077 | 2.8088 | 93.54 | 0.0324
1.8957 | -0.5127 | 2.8082 | 93.53 | 0.0324
1,849 | -0.5152 | 2.8089 | 93.54 | 0.0324
1.891 | -0.5154 | 2.8101 93.56 | 0.0324
1.8801 | -0.5146 | 2.8106 | 93.57 | 0.0324
1.8894 | -0.5138 | 2.8106 93.57 | 0.0324
1.8907 | -0.5133 | 2.8104 | 93.57 | 0.0324
1.8922 | -0.613 2.81 93.57 | 0.0324
1.8935 | -0.5128 | 2.8098 93.57 | 0.0324
1.8044 | -0.5127 | 2.8096 | 93.56 | 0.0324
1.8951 | -0.6126 | 2.8094 93.56 | 0.0324
1.8956 | -0.5124 | 2,8093 93.56 | 0.0324
1.8961 | -0.5122 | 2.8091 | 93.56 | 0.0324
1.8066 | -0.5119 | 2.809 | 93.56 | 0.0324
1.8969 | -0.5116 | 2.8089 93.56 | 0.0324
1.8973 | -0.5113 | 2.8088 | 93.56 | 0.0324
L8976 | -0.5111 | 2.8086 93.56 | 0.0324
1.8979 | <0.5108 | 2.8085 0.0324

Grid 3

93.55




_ docV | &Gov AR d° R
4 0 di 07 do_ | di?
0 9.8657 | 0.0000 | 0.0002 | 0.1142 | -0.0111
| 9.8654 | -0.0000 | 0.0002 | 0.1142 | -0.0111
2 9.8663 | 0.0000 | 0.0002 | 0.1142 | -0.0112
3 9.8662 | -0.0000 | 0.0002 | 0.1143 | -0.0112
4 9.8664 | 0.0000 | 0.0002 | 0.1143 | -0.0112
5 9.8661 | 0.0000 | 0.0002 | 0.1144 | -0.0112
6 9.8655 | 0.0000 | 0.0002 | 0.1144 | -0.0113
7 9.865 | 0.0000 | 0.0002 | 0.1144 | -0.0113
8 9.8643 | 0.0000 | 0.0002 | 0.1145 | -0.0113
9 9.8638 | 0.0000 | 0.0002 | 0.1145 | -0.0114
10 9.8632 | 0.0000 | 0.0002 | 0.1145 | -0.0114
11 9.8628 | 0.0000 | 0.0002 | 0.1146 | -0.0114
12 9.8623 | 0.0000 | 0.0002 | 0.1146 | -0.0114
13 9.8619 | 0.0000 | 0.0002 | 0.1146 | -0.0114
14 9.8616 | 0,0000 | 0.0002 | 0.1146 | -0.0115
15 9.8613 | 0.,0000 | 0.0002 | 0.1146 | -0.0115
16 9.861 0.0000 | 0.0002 | 0.1146 | -0.0115
17 9.8608 | 0.0000 | 0.0002 | 0.1147 | -0.0115
18 9.8607 | 0.0000 | 0.0002 | 0.1147 | -0.0115
19 9.8605 | 0.0000 | 0.0002 | 0.1147 | -0.0115
Lo LA R Tr GCV
1.9013 | -0.514 | 2.8083 | 93.55 | 0.0324
1.9025 | -0.51562 | 2.8083 | 93.55 | 0.0324
1.9027 | -0.5159 | 2,8083 | 93.55 | 0.0324
1.9034 | -0.5164 | 2.8083 | 93.54 | 0.0324
1.9039 | -0.5169 | 2.8082 | 93.54 | 0.0324
1.9045 | -0.5174 | 2.8082 | 93.54 | 0.0324
1.9052 | -0.5177 | 2.8081 | 93.54 | 0.0324
1.9058 | -0.618 | 2.808 | 93.54 | 0.0324
1.9065 | -0.5183 | 2.8079 | 93.54 | 0.0324
1.907 | -0.5186 | 2.8078 | 93.54 | 0.0324
1.9075 | -0.5188 | 2.8077 | 93.54 | 0.0324
1.908 | -0.519 | 2.8076 | 93.53 | 0.0324
1.9084 | -0.5193 | 2.8075 | 93.53 | 0.0324
1.9088 | -0.5195 | 2.8075 | 93.53 | 0.0324
1.9092 | -0.5196 | 2.8074 | 93.53 | 0.0324
1.9095 | -0.5198 | 2.8073 | 93.53 | 0.0324
1.9098 | -0.52 2.8073 | 93.53 | 0.0324
1.9101 | -0,6201 | 2.8073 | 93.53 | 0.0324
1.9103 | -0.5203 | 2.8072 | 93.53 | 0.0324
1.9105 | -0.5204 | 2.8072 | 93.53 | 0.0324
Grid 2




T AGOV A2GCV dR d* I
q L - | T | 9 407
0 9.8605 | 0.0000 | 0.0002 | 0.1147 | -0.0115
1 9.8604 | 0.0000 | 0.0002 | 0.1147 | -0.0116
2 9.8603 | 0.0000 | 0.0002 | 0.1147 | -0.0116
3 9.8603 | 0.0000 | 0.0002 | 0.1147 | -0.0116
il 9.8603 | -0.0000 | 0.0002 | 0.1147 | -0.0116
b 9.8604 | -0.0000 [ 0.0002 | 0.1147 | <0.0116
6 9.8604 | -0.0000 | 0.0002 | 0.1147 | -0.0116
7 9.8604 | -0.0000 | 0.0002 | 0,1147 | -0.0116
8 9.86G05 | -0.0000 | 0.0002 | 0.1148 | -0.0116
9 9.8605 | -0.0000 | 0.0002 | 0.1148 | -0.0116
10 9.8605 | -0.0000 [ 0.0002 | 0.1148 | -0.0116
11 9.8605 | -0.0000 | 0.0002 | 0.1148 | -0.0116
12 9.8605 | -0.0000 | 0.0002 | 0.1148 | -0.0116
13 9.8605 | -0.0000 | 0.0002 | 0.1148 | -0.0116
14 9.8G05 | -0.0000 [ 0.0002 | 0.1148 | -0.0116
15 9.8606 | -0.0000 | 0.0002 | 0.1148 | -0.0116
16 9.8606 | -0.0000 | 0.0002 | 0.1148 | -0.0116
17 9.8606 | -0.0000 | 0.0002 | 0.1148 | -0.0116
18 9.8606 | -0.0000 [ 0.0002 | 0.1148 | <0.0116
19 9.8606 | -0.0000 | 0.0002 | 0.1148 -0.0116
il & LT R | Tr | GCV
1.911 | -0.5209 | 2.8071 93.53 0.0324
1.9112 | -0.521 2.8071 93.53 | 0.0324
1.9113 | -0.5211 | 2.8071 93.53 | 0.0324
1.9114 | -0.5212 | 2.8071 | 93.53 | 0.0324
1.9115 | -0.5213 | 2.8071 93.53 | 0.0324
1.9115 | -0.5214 | 2.8071 93.53 | 0.0324
1.9116 | -0.5214 | 2.8071 93.53 | 0.0324
1.9116 | -0.5215 | 2.8071 03.53 0.0324
1.9116 | -0.5216 | 2.8071 93.53 | 0.0324
1.9117 | -0.5216 | 2.8071 93.53 | 0.0324
LOLIT7 | -0.5216 | 2.8071 | 93.53 | 0.0324
1.9117 | -0.5217 | 2.8071 93.53 | 0.0324
1.9118 | -0.5217 | 2.8071 03.53 0.0324
1.9118 | -0.5218 | 2.8071 03.53 | 0.0324
1.9118 | -0.5218 | 2.8071 93.53 | 0.0324
1.9119 | -0.5218 | 2.8071 93.53 | 0.0324
1.9119 | -0.5218 | 2.8071 93.53 | 0.0324
1.9119 | -0.5219 | 2.8071 03.53 | 0.0324
1.9119 | -0.5219 | 2.8071 93.53 0.0324
1912 | -0.6219 | 2.8071 93.53 | 0.0324
Girid 1
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B.5 Results generated by the MINGCYV algo-
rithm, applying a first order correction to
the solution estimate

. 0 dGCV A GV dir d R

't i 4o 07 di dar
0 10.1464 | 0.0034 0.0065 | 0.3418 | 0.5938

| 9.6187 0.0003 | 0.0001 0.059 | 0.0119
s 7.0928 0.0000 | 0,0003 | 0.0218 | 0.0353
3 7.0426 0.0000 | 0.0001 | 0.0155 | 0.0172
4 T.90186 0.0000 | 0.0002 | 0.0226 | 0.0228
i 7.2003 | -0.0000 | 0.0002 | 0.0203 | 0.0213

6 7.25627 | 0.0000 | 0.0002 | 0.0203 | 0.0214
T 7.2524 | -0,0000 [ 0,0002 | 0.0203 | 0.0214
8 7.2525 | 0.0000 | 0.0002 | 0.0203 | 0.0214
9 7.2525 | 0.0000 | 0.0002 | 0.0203 | 0.0214
10 7.2525 | 0.0000 | 0.0002 | 0.0203 | 0.0214
11 7.2525 | 0.0000 | 0.0002 | 0.0203 | 0.0214
12 7.2525 | 0.0000 | 0.0002 | 0.0203 | 0.0214 |

13 T.20625 0.0000 | 0.0002 | 0.0203 | 0.0214

14 T.202% 0.0000 | 0.0002 | 0.0203 | 0.0214

15 2625 0.0000 | 0.0002 | 0.0203 | 0.0214

16 7.2025 | 0.0000 | 0.,0002 | 0.0203 | 0.0214

17 7.256256 0.0000 | 0.0002 | 0.0203 | 0.0214

18 T.2025 0.0000 | 0.0002 | 0.0203 | 0.0214

19 T.2025 0.0000 | 0.0002 | 0.0203 | 0.0214
G [ fF [ R | Tr | GOV
0.4699 | -0.0546 | 3.0588 96.19 | 0.0334
0.4953 | -0.0065 | 2.8833 05.93 | 0.0316

0.3503 | 0.1572 | 2.7784 94.82 | 0.0312
0.3174 | 0.1219 | 2.7761 94.80 | 0.0312
0.3578 | 0.1154 | 2.7822 94.91 | 0.0312
0.3462 | 0.1197 | 2.7801 94.87 | 0.0312
0.3465 | 0.1223 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312
0.3465 | 0.1219 | 2.7801 94.87 | 0.0312

Grid 6




q 0. dGCV d-GCV dR d* R
- q de di? i di7
0 7.2525 | -0.0007 | 0.0007 | 0.0684 | 0.0156
1 8.3281 | -0.0000 | 0.0006 | 0.0887 | 0.019
2 8.4107 | 0.0000 | 0.0006 | 0.0918 | 0.0173
3 8.3282 | -0.0000 | 0.0006 | 0.0905 | 0.019
4 8.3302 | -0.0000 | 0.0006 | 0.0905 | 0.019
5 8.3323 | -0.0000 | 0.0006 | 0.0905 | 0.019
6 8.3323 | -0.0000 | 0.0006 | 0.0905 | 0.019
i 8.3324 | 0.0000 | 0.0006 | 0.0905 | 0.019
8 8.3323 | 0.0000 | 0,0006 | 0.0905 | 0.019
0 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0,019
10 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
11 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
12 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
13 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
14 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
15 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
16 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
17 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
18 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
19 8.3323 | 0.0000 | 0.0006 | 0.0905 | 0.019
o | S | R [ Tr | Gov
2.238 | -0.6422 | 2.6053 91.60 | 0.0314
1.6189 | -0.549 2.6823 93.66 | 0.0309
1.5285 | -0.5868 | 2.6913 893.79 0.0309
1.581 -0.6059 2.684 93.66 | 0.0309
1.5806 | -0.5969 | 2.6842 93.66 | 0.0309
1.5792 | -0.50G8 | 2.6844 93.67 | 0.0309
1.5793 | -0.697 2.6844 93.67 0,0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 03.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 03.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.6792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
1.5792 | -0.597 2.6844 93.67 | 0.0309
Grid 5
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q 0 dGCV [ diGoV At d° R
- q df di? d 4o?
() 8.2361 | -0.0000 | 0.0006 | 0.1317 | -0.0131
1 8.2713 | 0.0000 | 0.0006 | 0.1348 | -0.0147
2 8.2441 | -0.0000 | 0.0006 | 0.1358 | -0.0145
3 8.2648 | -0.0000 | 0.0006 | 0.13561 | -0.0136
l 8.2731 | <0.0000 | 0.0006 | 0.1344 | -0.0126
5 8.2811 | -0.0000 | 0.0006 | 0.134 | -0.012
G 8.2826 | -0.0000 | 0.0006 | 0.1338 | -0.0118
7 8.2842 | -0.0000 | 0.0006 | 0.1337 | -0.0117
8 8.28561 | -0.0000 | 0.0006 | 0.1337 | -0.0117
g §.2867 | -0.0000 | 0.0006 | 0.1336 | -0.0117
10 8.289 | -0.0000 | 0.0006 | 0.1335 | -0.0117
11 8.2918 | -0.0000 | 0.0006 | 0.1333 | -0.0116
12 8.2045 | -0.0000 | 0.0006 | 0.1332 | -0.0116
13 8.2067 | -0.0000 | 0.0006 | 0.1331 | -0,0115
14 8.2083 | -0.0000 | 0.0006 | 0.133 | -0.0116
15 §.2004 | -0.0000 | 0.0006 | 0.1329 | -0.0116
16 8.3003 | -0.0000 | 0.0006 | 0.1329 | -0.0117
L7 83011 | -0.0000 | 0.0006 | 0.1328 | -0.0118
18 8.3017 | -0.0000 | 0.0006 | 0.1328 | -0.0119
19 8.3022 | -0.0000 | 0.0006 | 0.1328 | -0.0119
dhr | ddr R Tr | GCV
2.363 | -1.1763 | 2.6119 | 92.49 | 0.0308
2.3646 | -1.1921 | 2.6122 | 92.56 | 0.0308
2.4272 | -1.2157 | 2.6072 | 92.49 | 0.0308
2.4036 | -1.202 | 2.6099 | 92.55 | 0.0308
2.3893 | -1.1889 | 2.6113 | 92,57 | 0.0308
2375 | -1.1758 | 2.6126 | 92.59 | 0.0308
2.3721 | -1.1706 | 2.6127 | 92.59 | 0.0308
2.3703 | -1.1678 | 2.6128 | 92.59 | 0.0308
2.3702 | -1.1673 | 2.6127 | 92.60 | 0.0308
2.3693 | -1.1664 | 2.6128 | 92.60 | 0.0308
2.3676 | -1.1648 | 2.613 92.61 | 0.0308
2.365 | -1.1621 | 2.6133 | 92.61 | 0.0308
2.3621 | -1.1592 | 2.6137 | 92.62 | 0.0308
2.3595 | -1.1566 | 2.6139 | 92.62 | 0.0308
2.3574 | -1.1546 | 2.6141 | 92.63 | 0.0308
2.3558 | -1.1534 | 2,6143 | 92.63 | 0.0308
2.3543 | -1.1528 | 2.6144 | 92.63 | 0.0308
2.3532 | -1.1525 | 2.6145 | 92.63 | 0.0308
2.3522 | -1.1525 | 2.6145 | 92.64 | 0.0308
2.3514 | -1.1525 | 2.6146 | 92.64 | 0.0308

Grid 3

332




0,

dl/ eV

a* GV

dit

1T d*R

q . do 402 o do7
0 | 83022 [ 0.0000 | 0.0006 | 0.1336 | -0.0128
L | 8.3008 | -0.0000 | 0.0006 | 0.1338 | -0.013
2 | 83031 | -0.0000 | 0.0006 | 0.134 | -0.0132
3| 83045 | -0.0000 | 0.0006 | 0.1341 | -0.0133
4| 83059 | -0.0000 | 0.0006 | 0.1342 | -0.0134
5 | 83062 | -0.0000 | 0.0006 | 0.1344 | -0.0135
6 | 83062 | 0.0000 | 0.0006 | 0.1345 | -0.0136
7| 83057 | 0.0000 | 0.0006 | 0.1346 | -0.0137
8 8.305 | 0.0000 | 0.0006 | 0.1347 | -0.0137
0 | 83044 | 0.0000 | 0.0006 | 0.1348 | -0.0138
10| 8.3038 | 0.0000 | 0.0006 | 0.1349 | -0.0139
11| 83034 | 0.0000 | 0.0006 | 0.135 | -0.0139
12| 8.3032 | 0.0000 | 0.0006 | 0.135 | -0.014
13 | 8.3031 | -0.0000 | 0,0006 | 0.1351 | -0.014
14 | 8.3032 | -0.0000 | 0.0006 | 0.1351 | -0.014
15 | 8.3032 | -0,0000 | 0.0006 | 0.1351 | -0.014
16 | 8.3034 | -0.0000 | 0.0006 | 0.1352 | -0.0141
17 | 8.3035 | -0.0000 | 0.0006 | 0.1352 | -0.0141
18 | 8.3036 | -0.0000 | 0.0006 | 0.1352 | -0.0141
19 | 8.3038 | -0.0000 | 0.0006 | 0.1352 | -0.0141
der | Agr R Tr | GCV
2.3644 | -1.166 2.6138 92.61 | 0.0308
2.373 | -1.1724 | 2.6133 | 92.59 | 0,0308
2.3748 | -1.1765 | 2.6134 | 92.59 | 0.0308
23768 | -1.1796 | 2.6134 | 92.59 | 0.0308
23782 | -1.182 | 2.6134 | 92.59 | 0.0308
2.3803 | -1.184 | 2.6133 | 92.59 | 0.0308
2.3822 | -1.1853 | 2.6132 | 92.59 | 0.0308
2.3843 | -1.1863 | 2.613 | 92.59 | 0.0308
2.3863 | -1.1872 | 2.6128 | 92.58 | 0.0308
2.3881 | -1.1881 | 2.6126 | 92.58 | 0.0308
2.3898 | -1.189 | 2.6124 | 92.58 | 0.0308
2.3913 | -1.1898 | 2.6123 92.58 | 0.0308
2.3925 | -1.1907 | 2.6122 92.58 | 0.0308
2.3936 | -1.1915 | 2.6121 92.58 | 0.0308
2.3944 | -1.1922 2.612 92.58 | 0.0308
2.3951 | -1.1928 2.612 02.58 | 0.0308
2.3057 | -1.1934 | 2.6119 | 92.58 | 0.0308
2,3962 | -1.1038 | 2.6119 | 92.58 | 0.0308
2.3966 | -1.1942 | 2.6119 | 92.58 | 0.0308
2.3969 | -1.1944 | 2.6119 | 92.58 | 0.0308

Grid 2
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Grid 1

334

q o, AtV d GOV dir d” It
/ de —dor d0 dg

0 8.3038 | 0.0000 | 0.0006 | 0.1354 | -0.0142

1 8.3038 | 0.0000 | 0.0006 | 0.1354 | -0.0143

P 8.3037 | 0.0000 | 0.0006 | 0.1354 | -0.0143

3 8.3037 | 0.0000 | 0.0006 | 0.1355 | -0.0143

4 8.3036 | 0.0000 | 0.0006 | 0.1355 | -0.0143

D 8.3035 | -0.0000 | 0.0006 | 0.1355 | <0.0143

6 8.3036 | -0.0000 | 0.0006 | 0.1355 | -0.0144

7 8.3037 | -0.0000 | 0.0006 | 0.1355 | -0.0144

8 8.3037 | -0.0000 | 0.0006 | 0.1355 | -0.0144

9 8.3038 | -0.0000 | 0.0006 | 0.1355 | -0,0144

10 8.3038 | -0.0000 | 0.0006 | 0,1355 | -0.0144

11 8.3039 | -0.0000 [ 0.0006 | 0.1355 | -0.0144

12 8.3039 | -0.0000 | 0.0006 | 0.1356 | -0.0144

13 8.304 | -0.0000 | 0.0006 | 0.1356 | -0.0144

14 8.3041 | -0.0000 | 0.0006 | 0.1356 | -0.0144

10 8.3041 | -0.0000 | 0.0006 | 0.1356 | -0.0144

16 8.3042 | -0.0000 | 0.0006 | 0.1356 | -0.0144

17 8.3042 | -0.0000 | 0.0006 | 0.1356 | -0.0144

18 8.3043 | -0.0000 [ 0.0006 | 0.1356 | -0.0144

e 1 9 8.3043 | -0.0000 | 0.0006 | 0.1356 | -0.0144
ar | 4fr R | Tr | GCV
2.3988 | -1.1964 | 2.6118 92.57 | 0.0308
2,.3008 | -1.1972 | 2.6117 92.57 | 0.0308
2.4004 | -1.1977 | 2.6117 92.57 | 0.0308
24007 | -1.198 | 2.6116 02.57 | 0.0308
2.4011 | -1.1982 | 2.6116 92.57 | 0.0308
2.4015 | -1.1985 | 2.6116 92.57 | 0.0308
24017 | -1.1987 | 2.6116 92.57 | 0.0308
24018 | -1.1989 | 2.6116 92.57 | 0.0308
2402 | -1.1991 | 2.6116 92.57 | 0.0308
2.4021 | -1.1993 | 2.6116 02.57 | 0.0308
2.4022 | -1,1995 | 2.6116 92.57 | 0.0308
2.4024 | -1.1996 | 2.6116 92.57 | 0.0308
2.4025 | -1.1998 | 2.6116 02.57 | 0.0308
2.4026 -1.2 2.6116 92.57 | 0.0308
24027 | -1,2001 | 2.6116 92.57 | 0.0308
2.4028 | -1.2002 | 2.6116 92.57 | 0.0308
2.4029 | -1.2004 | 2.6116 92.57 | 0.0308
2.403 1.2005 | 2.6116 02.57 | 0.0308
2.4031 | -1.2006 | 2.6116 92.57 | 0.0308
2.4031 1.2007 | 2.6116 92.57 0.0308




B.6  Results of using the first order correction,
for a second random vector t

i q 0 dGCV | &G0V df d°R
q df! Az df) r

0 10.1464 | 0.0026 | 0.0076 | 0.3418 | 0.5938
1 9,7968 -0.001 | 0.0005 | 0.0603 | 0.0147
2 12.0607 | 0.006 | 0.0107 | 0.6639 | 1.0602
3 11.4976 | 0.0016 | 0.0044 | 0.2438 | 0.3567
il 11.1408 | 0.0004 | 0.0026 | 0.15 | 0.1933
5 10.9718 | 0.0001 | 0.0019 | 0.1218 | 0.1408
§ 10.9458 | -0.0000 | 0.0019 | 0.1182 | 0.1335
7 10,9466 | 0.0000 | 0,0019 | 0.1184 | 0.1336
& 10.9465 | 0.0000 | 0.0019 | 0.1184 | 0.1336
9 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
10 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
11 10,9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
18 10.9465 | 0.0000 | 0.0019 | 0,1183 | 0.1335
13 10,9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
14 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
15 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
16 10,9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
17 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
18 10.9465 | 0.0000 | 0.0019 | 0,1183 | 0.1335
19 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335

" T4 [ R | Tr | GOV

1.9649 | -0.2636 | 3.0588 | 88.84 | 0.0391

2.1305 | -0.2456 | 2.8935 | 88.11 | 0.0376

2.1654 | 1.4992 | 3.3396 | 92.19 | 0.0397

L.6&834 | -0.3015 | 3.0775 91.32 0.0373

1.7298 | -0.298 | 3.0106 | 90.72 | 0.0369

1.7812 | -0.2894 | 2.9876 | 90.42 | 0.0369

1.7921 | -0.298 | 2.9844 | 90.37 | 0.0369

1.7918 | -0.3009 | 2.9845 90.37 | 0.0369

1.7918 | -0.3009 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 90.37 | 0.0369

1,7918 | -0.3008 | 2.9845 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

1.7918 | -0.3008 | 2.9845 | 90.37 | 0.0369

Grid 6




dG OV A6V d It d R
q b, di | g o do7
0 10.9465 | 0.0026 | 0.0076 | 0.3418 | 0.5938
1 0.7968 -0.001 | 0.0005 | 0.0603 | 0.0147
2 12.0607 0.006 0.0107 | 0.6639 | 1.0602
: 11.4976 | 0.0016 | 0.0044 | 0.2438 | 0.3567
! 11.1408 [ 0.0004 | 0.0026 0.15 0.1933
3] 10.9718 | 0.0001 | 0.0019 | 0.1218 | 0.1408
§ 10.9458 | -0.0000 | 0.0019 [ 0.1182 | 0.1335
7 10,9466 | 0.0000 | 0.0019 | 0.1184 | 0.1336
8 10.9465 | 0.0000 | 0.0019 | 0.1184 | 0.1336
Y 10,9465 | 0.0000 [ 0.0019 | 0.1183 | 0.1335
10 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
11 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
12 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
13 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
14 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
15 10,9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
16 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
L7 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
18 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
19 10.9465 | 0.0000 | 0.0019 | 0.1183 | 0.1335
i i R Tr | GCV |
1.9649 | -0.2636 | 3.0588 88.84 0.0391
2.1305 | -0.2456 | 2.8935 88.11 0.0376
2.1054 | 1.4992 3.3396 92.19 | 0.0397
1.6834 | -0.3015 | 3.0775 91.32 | 0.0373
1.7298 | -0.298 3.0106 90.72 | 0.0369
1.7812 | -0.2894 | 2.9876 90.42 | 0.0369
1.7921 -(0.298 2.9844 90.37 | 0.0369
1.7918 | -0.3009 | 2.9845 90.37 | 0.0369
1.7918 | -0.3009 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 80.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369
1.7918 | <0.3008 | 2.9845 90.37 | 0.0369
1.7918 | -0.3008 | 2.9845 90,37 | 0.0369
1.7918 | -0.3008 | 2.9845 90.37 | 0.0369

CGirid 5

336




¢ 0, dGCV GOV [ dR TR ]
| di do? di d0%

0 [ 10,9465 | -0.0000 | 0.0017 | 0.1404 | 0.1057
| 10.898 | 00.0000 | 0.0016 | 0.1396 | 0.0994
2 | 10.8882 | -0.0000 | 0.0016 | 0.1389 | 0.0977
3| 10.8894 | -0.0000 | 0.0016 | 0.1394 | 0.0978
4| 10.8897 | 0.0000 | 0.0016 | 0.1392 | 0.098
5 10.8925 | -0.0000 | 0.0016 | 0.1393 | 0.0087
6| 10.8053 | -0.0000 | 0.0016 | 0.1393 | 0.0994
7 | 10.8079 | -0.0000 | 0.0016 | 0.1393 | 0.0999
8 10.8996 | -0.0000 | 0.0016 | 0.1394 | 0.1002
9 | 10.9004 | -0.0000 | 0.0016 | 0.1394 | 0.1003
10| 10.9008 | -0.0000 | 0.0016 | 0.1394 | 0.1002
11| 10.9009 | -0.0000 | 0.0016 | 0.1393 | 0.1001
12 10.901 | -0.0000 | 0.0016 | 0.1393 | 0.1
13 10,901 | -0.0000 | 0.0016 | 0.1393 | 0.0999
14 | 10.9011 | -0.0000 | 0.0016 | 0.1392 | 0.0998
15 | 10,9011 | -0.0000 | 0.0016 | 0.1392 | 0.0097
16 | 10.9011 | -0.0000 | 0.0016 | 0.1391 | 0.0996
17 | 10.901 | -0.0000 | 0.0016 | 0.1391 | 0.0995
13 10,901 | 0.0000 | 0.0016 | 0.1391 | 0.0994
19 | 10.9009 | 0.0000 | 0.0016 | 0.139 | 0.0993
4r | 4 R_| Tr | GCV

2.0012 | -0.4515 | 2.0403 | 80.80 | 0.0368

2.1161 | -0.4606 | 2.9342 | 89.72 | 0.0368

2.1276 | -0.4635 | 2.9318 | 89.70 | 0.0368

2.1331 | -0.4647 | 2.9311 | 89.71 | 0.0368
2.1363 | -0.4632 | 2.931 | 80.71 | 0.0368
92,1366 | -0.4590 | 2.9315 | 80.72 | 0.0368

2,1363 | -0.4561 | 2.9321 | 89.73 | 0.0368

2.1352 | -0.4519 | 2.9326 | 89.73 | 0.0368

2134 | -0.448 | 2.9329 | 89.74 | 0.0368

2.133 | -0.4448 | 2.9331 | 89.74 | 0.0368

2.1322 | -0.4424 | 2.9332 | 89.74 | 0.0368
21316 | -0.4406 | 2.9332 | 89.74 | 0.0368

2,131 | -0.4392 | 2.9332 | 89.74 | 0.0368

92,1304 | -0.4383 | 2.9331 | 89.74 | 0.0368

2.1297 | -0.4377 | 2.9331 | 89.74 | 0.0368

2.129 | -0.4373 | 2.9331 | 89.74 | 0.0368

2.1284 | -0.4373 | 2.9331 | 89.74 | 0.0368

2.1278 | -0.4374 | 2.9331 | 89.74 | 0.0368

2.1272 | -0.4377 | 2.9331 | 89.74 | 0.0368

2.1268 | -0.4381 | 2.9331 | 89.74 | 0.0368

Grid 4
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Grid 3
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q (] deiCV d- iV dk AR
{q bl L d/ do*

0 10.9009 | 0.0000 | 0.0016 | 0.139G | 0.0987

1 10.9 000 0.0016 | 0.139G | 0.0087

a 10.8982 | 0.0000 | 0.0016 | 0.1399 | 0.0978

3 10.8974 | 0.0000 | 0.0016 | 0.1399 | 0.0976

4 10.8973 | -0.0000 | 0.0016 | 0.1399 | 0.0976

H 10,8976 | =0.0000 | 0.0016 | 0.1399 | 0.0976

6 10.8979 | -0.0000 | 0.0016 0.14 0.0976

T 10.898 0.0000 | 0.0016 | 0.1401 | 0.0976

8 10.8979 | 0.0000 | 0.0016 | 0.1401 | 0.0975

9 10.8978 | 0.0000 | 0.0016 | 0.1401 | 0.0975

10 10,8977 | 0.0000 | 0.0016 | 0.1402 | 0.0974

11 10.8976 | 0.0000 | 0.0016 | 0.1402 | 0.0974

12 10.8975 | 0.0000 | 0.0016 | 0.1402 | 0.0974

13 10,8975 | 0.0000 | 0.0016 | 0.1402 | 0.0973

14 10.8974 | 0.0000 | 0.0016 | 0.1403 | 0.0973

55 10.8974 | 0.0000 | 0.0016 | 0.1403 | 0.0973

16 10,8973 | 0.0000 | 0.0016 | 0.1403 | 0.0973

17 10.8973 | 0.0000 | 0.0016 | 0.1403 | 0.0972

18 10.8973 | 0.0000 | 0.0016 | 0.1403 | 0.0972

19 10.8972 | 0.0000 | 0.0016 | 0.1403 | 0.0972
T | @ | R | Tr | Gov
2.1343 | -0.4454 | 2.9325 89.73 | 0.0368
2.1372 | -0.4478 | 2.9319 89.72 | 0.0368
2.1392 | -0.4489 | 2.9315 89.71 0.0368
2.1403 | -0.4495 | 2.,9313 #9.71 0.03068
2.1412 | -0.4503 | 2.9312 80.71 0.0368
2.1419 | -0.451 2.0313 89.71 0.0368
2.1426 | -0.4516 | 2.9312 89.71 0.0368
2.1431 | -0.4521 | 2.9312 £29.70 | 0.0368
2.1437 | -0.4525 | 2.9311 89.70 | 0.0368
2.1442 | -0.4528 2.931 89.70 | 0.0368
2.1447 | -0.4531 2.931 89.70 | 0.0368
2.1452 | -0.4534 | 2.9309 89.70 0.0368
2.1456 | -0.4536 | 2.9309 89.70 | 0.0368
2.146 | -0.4539 | 2.9308 89.70 | 0.0368
2.1464 | -0.4541 2.9308 80.70 | 0.0368
2.1467 | -0.4543 | 2.9307 89.70 [ 0.0368
2.147 | -0.4544 | 2.9307 89.70 | 0.0368
2.1473 | -0.4546 | 2.9306 89.70 | 0.0368
2.1476 | -0.4547 | 2.9306 89.70 0.0368
_'.3. l--IT:ﬁ_ﬂI_EfIH 2.9306 &89.70 | 0,0368




q 0, ALV [ d2aov AR d* I
g 1 do I i e

0 10,8932 | 0.0000 | 0.0016 | 0.1404 | 0.0971

1 10,8973 | 0.0000 | 0.0016 | 0.1405 | 0.0971

2 10.8973 | 0.0000 | 0.0016 | 0.1405 | 0.0971

3 10.8973 | 0.0000 | 0.0016 | 0.1405 | 0.0971

4 10.8973 | 0.0000 | 0.0016 | 0.1405 | 0.0971

5 10.8972  0.0000 | 0.0016 | 0.1405 | 0.097

6 10.8972 | 0.0000 | 0.0016 | 0.1405 | 0.097

fi 10.8971 | 0.0000 | 0.0016 | 0.1405 | 0.097

8 10.897 | 0.0000 | 0.0016 | 0.1405 | 0.097

9 10.897 | 0.0000 | 0.0016 | 0.1405 | 0.097

10 10.8969 | 0.0000 | 0.0016 | 0.1405 | 0.097

11 10.8969 | 0.0000 | 0.0016 | 0.1405 | 0.0969

12 10.8969 | 0.0000 [ 0.0015 | 0.1405 | 0.0969

13 10,8968 | 0.0000 | 0.0015 | 0.1406 | 0.0969

14 10.8968 | 0.0000 | 0.0015 | 0.1406 | 0.0969

15 10.8968 | 0.0000 | 0.0015 | 0.1406 | 0.0969

16 10.8967 | 0.0000 | 0.0015 | 0.1406 | 0.0969

17 10.8967 | 0.0000 | 0.0015 | 0.1406 | 0.0969

18 10,8967 | 0.0000 [ 0.0015 | 0.1406 | 0.0969

19 10.8967 | 0.0000 | 0.0015 | 0.1406 | 0.0969
dlr a1r R Tr | GCV
2.1491 | -0.4561 | 2.9305 | 89.70 [ 0.036G8
2.1495 | -0.4565 | 2.93056 | 89.69 | 0.03G68
2.1497 | -0.4567 | 2.9305 89.69 0.0368
2.1499 | -0.4569 | 2.9305 | 89.69 | 0.0368
2.15 -0.457 2.9304 29.69 0.0368
2.1502 | -0.4571 | 2.9304 | 89.69 ).0368
2.1503 | -0.4572 | 2.9304 | 89.69 [ 0.0368
2.1504 | -0.4573 | 2.9304 | 89.69 | 0.0368
2.1506 | -0.4573 | 2.9304 | 89.69 | 0.0368
2.1507 | -0.4574 | 2.9303 | 89.69 | 0.0368
2.1508 | -0.4575 | 2.9303 | 89.69 | 0.0368
2.1508 | -0.4575 | 2.9303 | 89.69 | 0.0368
2.1509 | -0.4576 | 2.9303 | 89.69 | 0.0368
2.151 | -0.4576 | 2.9303 | 89.69 | 0.0368
2.1511 | -0.4577 | 2.9303 89.69 0.0368
2.1512 | -0.4577 | 2.9302 | 89.69 | 0.0368
2.1512 | -0.4578 | 2.9302 | 89.69 | 0.0368
2.1613 | -0.4578 | 2.89302 =9.69 0.0368
2.1514 | -0.4578 | 2.9302 | 89.69 | 0.0368
2.1514 | -0.4579 | 2.9302 | 89.69 | 0.0368

Grid 2
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0

dtr eV

A=V

i It
o

AR

1 q 4o d40? ; 07
0 10.8967 | 0.0000 | 0.0015 | 0.1406 | 0.0968
1 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
2 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
3 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
4 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
5 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
§ 10,8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
7 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
8 10,8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
9 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
10 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
11 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
12 10.8966 | 0.0000 | 0.,0015 | 0.1406 | 0.0968
13 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
14 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
15 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
16 10,8966 | 0.0000 [ 0.0015 | 0.1406 | 0.0968
LT 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
18 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
19 10.8966 | 0.0000 | 0.0015 | 0.1406 | 0.0968
dir gt R Tr | GCV
2.1516 | -0.458 | 2.9302 | 89.69 | 0.0368
2.1516 | -0.4581 | 2.9302 | 89.69 | 0.0368
2.1517 | -0.4581 | 2.9302 | 89.69 | 0.0368
2.1517 | -0.4581 | 2.9302 | 89.69 | 0.0368
21517 | -0.4582 | 2.9302 | 89.69 | 0.0368
2.1517 | -0.4582 | 2.9302 | 89.69 | 0.0368
2.1518 | -0.4582 | 2.9302 | R89.69 | 0.0368
2.1518 | -0.4582 | 2.9302 | 89.69 | 0.0368
2.1518 | -0.4582 | 2.9302 | 89.69 | 0.0368
2.1518 | -0.4582 | 2.9302 | 89.69 | 0.0368
2.1518 | -0.4583 | 2,.9302 | 89.69 | 0.0368
2.1518 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.03G8
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.15189 | -0.4583 | 2.9302 | 89.69 | 0.0368
2.1519 | -0.4584 | 2.9302 | 89.69 | 0.0368
Grid 1
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B.7 Results of using the first order correction,
for a third random vector t.

q 6, | depv |SGRV] 4R T &R
() 10,1464 | 0.0035 | 0.0074 | 0.3418 | 0.5938
1 9.6793 | -0.0001 | 0.0003 | 0.0693 | 0.0124
2 10.1793 | 0.0000 | 0.0004 | 0.0663 | 0.0248
3 10.1481 | 0.0000 | 0.0004 | 0.0658 | 0.0239
4 10.1403 | 0.0000 | 0.0004 | 0.0656 | 0.0235
5 10,1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
G 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
7 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
g 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
9 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
10 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
11 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
12 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
13 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
14 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
15 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
16 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
17 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0,0235
18 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
19 10.1407 | 0.0000 | 0.0004 | 0.0656 | 0.0235
e 41r R Tr | GCV
0.9694 | -0.1281 | 3.0588 | R9.49 | 0.0386
1.0888 | -0.1617 | 2.8867 | 829.00 | 0.0368
0.9995 | -0.1615 | 2.9188 | 89.52 | 0.0368
1.0049 | -0.1633 | 2.9167 | 89.49 | 0.0368
1.0063 | -0.1625 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1,0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368
1.0062 | -0.1626 | 2.9162 | 89.49 | 0.0368

arid 6
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q 0, g(%_ti ”"Jc.-",c_"'v % ecti‘h".
0 10.1407 | 0.0001 | 0.0002 | 0.0963 | 0.0104
1 9.6156 | 0.0001 | 0.0002 | 0.0984 | -0.0008
2 9.0153 | 0.0000 | 0.0002 | 0.0998 | 0.0035
3 8.9008 | -0.0000 | 0.0002 | 0.0984 | 0.0065
i 8.9119 | -0.0000 | 0.0002 | 0.0983 | 0.0068
5 8.9331 | -0.0000 | 0.0002 | 0.0984 | 0.0063
§ 8.9344 | 0.0000 | 0.0002 | 0.0984 | 0.0062
7 8.9339 | 0.0000 | 0.0002 | 0.0984 | 0.0062
8 $.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
9 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
10 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.006:
11 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
12 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
13 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
14 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
15 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
16 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
17 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
18 8.0338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
19 8.9338 | 0.0000 | 0.0002 | 0.0984 | 0.0062
E | S R Tr | GCV
1.3645 | -0.1334 | 2.8525 89.08 | 0.0363
1.367 | -0.3481 | 2.8077 | 88.39 | 0.0363
1.559 | -0.2272 | 2.7506 87.51 | 0.0363
1.6725 | -0.2074 | 2.7385 87.33 | 0.0363
1.6726 | -0.2045 | 2.7395 87.34 | 0.0363
1.5685 | -0.2103 | 2.7416 | 87.38 | 0.0363
1.5682 | -0.2125 | 2.7417 | 87.38 | 0.0363
1.5683 | -0.2122 | 2,7416 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.0684 | -0.2121 | 2.7416 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 87.38 | 0.0363
1.5G84 | -0.2121 | 2.7416 87.38 | 0.0363
1.o6s4 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.5684 | -0.2121 | 2.7416 57.38 | 0.0363
1.5684 | -0.2121 | 2.7416 | 87.38 | 0.0363
1.o684 | -0.2121 | 2.7416 | 87.38 | 0.0363
Grid 5
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q 0 dGOV | &GV di 2R
q do dor do do?
0 §8.9338 | 0.0002 | 0.0001 | 0.,1231 | -0.0093
1 6.8944 | 0.0005 | -0.0004 | 0.1454 | -0.0454
2 6.8944 | 0.0006 | -0.0005 | 0.1615 | -0.0386
3 6.8944 | 0.0006 | <0.0005 | 0.1593 | -0.0453
1 6.8944 | 0.0005 [ -0.0005 | 0.1592 | -0.0442
3] 6.8944 | 0.0006 | -0.0005 | 0.1594 | -0.0442
G 6.8944 | 0.0006 | -0.0005 | 0.1592 | -0.0443
T 6.8944 | 0.0006 | -0.0005 | 0,1593 | -0.0442
8 6.8944 | 0.0006 | -0.0005 | 0,1593 | -0.0443
b 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
10 6.8944 | 0.0006 | -0,0005 | 0.1593 | -0.0443
11 6.8944 | 0,0006 | <0.0005 | 0.1593 | -0.0443
12 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
13 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
14 6.88944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
15 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
16 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
1T 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
18 6.8944 | 0.0006 | -0.0005 | 0.1593 | -0.0443
19 6.8944 | 0.0006 -O,I(J(JOS 0.1593 | -0.0443
dhr | 4fr R Tr | GCV
1.6871 | -0.3471 | 2.709 87.11 | 0.0361
1.8956 | -0.4383 | 2.4396 83.28 | 0.0355
2.1019 | -0.182 | 2.4328 83.28 0.0354
2.0604 | -0.3396 | 2.4334 | 83.28 | 0.0354
2.0783 | -0.2803 | 2.4339 | 83.28 | 0.0354
2.0738 | -0.3048 | 2.4342 | 83.28 | 0.0354
2.0744 | -0.2984 | 2.4341 83.28 0.0354
2.0742 | -0.299 | 2.4341 | 83.28 | 0.0354
2.074 -0.2996 | 2.4541 83.28 0.0354
2.074 | -0.2994 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.03564
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 | 0.0354
2.074 | -0.2995 | 2.4341 83.28 I().():&S«'l.

Grid 4
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B.8 Results generated by the MINGCYV algo-
rithm, for the data set bumpy.dat

Grid 6

T : AV Fulelel' AR R |

q 0 q —dg_ | deT di 407
0 6.6846 | 0.0471 | 0.0948 | 4.288 | 8.5061
] 6.0539 | 0.0026 | 0.0096 | 0.3067 | 0.8877
2 5.7828 | 0.0002 | 0.0004 | 0.0837 | 0.0716
3 5.3752 | 0.0001 | 0.0000 | 0.069 | 0.0166
1 5.3752 | 0.0001 | -0.0001 | 0.066 | 0.0103
b 53752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
0 5.4752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
7 04752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
8 5.4752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
0 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
10 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
11 5.4752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
12 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
13 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
14 54752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
15 53752 | 0.0001 | -0,0001 | 0.0657 | 0.0094
16 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
17 5.4752 | 0.0001 | -0.0001 | 0,0657 | 0.0094
|8 5.3752 | 0.0001 | -0.0001 | 0.0657 | 0.0094
19 06.3762 | 0.0001 | -0.0001 | 0.0657 | 0.0094

0.249 | 0.1163 | 20.1473 | 94.66 | 0.2271

0.1974 | 0,086 | 18.0753 | 94.55 | 0.2042

0.1774 | 0.0832 | 17.9982 | 94.50 | 0.2036

0.1532 | 0.0488 | 17.9686 94,43 0.2035

0.1515 | 0.0665 | 17.9684 | 94.43 | 0.2035

0.1488 | 0.0469 | 17.9682 094.43 0.2035

0.1488 | 0.0463 | 17.9682 | 94.43 | 0.2035

0.1488 | 0.0463 | 17.9682 | 94.43 | 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 (:2038

0.1488 | 0.0463 | 17.9682 94,43 0.2035

0.1488 | 0.0463 | 17.9682 04.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0,2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

0.1488 | 0.0463 | 17.9682 94.43 0.2035

01458 | 0.0463 | 17.9682 04.43 0.2035




Grid 5

o | 6 [ 4G7 TTEVT of T 47
0 5.3752 | -0.003 | 0.0033 [ 0.7793 | 0.3678
1 6.2884 | 0.001 | 0.0022 | 1.015 | 0.0923
2 5.8327 | -0.0004 | 0.0037 | 0.9397 | 0.2545
: 5.9358 | <0.0000 | 0.0033 | 0.9587 | 0.2126
i 5.9472 | 0.0000 | 0.0033 | 0.9631 | 0.2149
5 5.9429 | 0.0000 | 0.0034 | 0.9624 | 0.2167
§ 5.9426 | -0.0000 | 0.0033 | 0.9623 | 0.2165
7 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2164
8 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
9 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
10 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
11 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
12 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
13 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
14 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
15 59428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
16 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
17 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
18 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165

19 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
drr | Ll R | Tr | GCV

2.9599 | 0.3532 | 14.6721 | 86.64 | 0.1974

2.6832 | -0.3401 | 15.558 | 89.19 | 0.1975

2.8235 | -0.1553 | 15.0828 | 87.93 | 0.197

2,704 | -0.211 | 15.1817 | 8&8.22 | 0.197

2.7043 | -0.2105 | 15.1927 | 88.26 | 0.197

2.7956 | -0.2098 | 15.1885 88.24 0.197

97056 | -0.2001 | 15.1882 | 88.24 | 0.197

2.7055 | -0.2004 | 15.1884 | 88.24 | 0.197

2.7955 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7055 | -0.2004 | 15.1884 | 88.24 | 0.197

2.7055 | -0.2004 | 15.1884 | 88.24 | 0.197

2.7955 | -0.2094 | 15.1884 88.24 0.197

92,7955 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7055 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7056 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7055 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7055 | -0.2094 | 15.1884 | 88.24 | 0.197

2.7955 | -0.2094 | 15.1884 | 88.24 | 0.197

9.7055 | -0.2004 | 15.1884 | 88.24 | 0.197

2.7955 | -0.2094 | 15.1884 88.24 0.197







0 6.6556 | -0.0017 | 0.008 | 1.5697 | -0.0603
| 6.8693 | -0.0009 | 0.007 | 1.5114 | -0.0169
2 6.9999 | -0.0009 | 0.0064 | 1.4254 | -0.0207
3 7.1454 | -0.0003 | 0.0053 | 1.3633 | -0.0912
4 7.1979 | 0.0002 | 0.0045 | 1.3548 | -0.1734
5 7.1529 | 0.0007 | 0.0042 | 1.4174 | -0.2442
6 6.9937 | 0.0009 | 0.0049 | 1.5485 | -0.2644
7 6.8127 | 0.0008 | 0.0065 | 1.6876 | -0.1843
8 6.6931 | 0.0002 | 0.0085 | 1.7497 | -0.0129
9 6.6739 | -0.0006 | 0.0097 | 1.7074 | 0.1524
10 6.7406 | -0,0012 | 0.0096 | 1.6048 | 0.2196
11 6.8615 | -0.0012 | 0.0086 | 1.4969 | 0.1781
12 6.9974 | -0.0008 | 0.0071 | 1.4154 | 0.0728
13 7.1074 | -0.0003 | 0.0058 | 1.3736 | -0.0464
14 7.1522 | 0.0002 | 0.005 | 1.3791 | -0.1484
15 7.1073 | 0.0006 | 0.0047 | 1.4381 | -0.2171
16 6.9877 | 0.0007 | 0.0063 | 1.5405 | -0.2334
17 6.8524 | 0.0006 | 0.0064 | 1.6438 | -0.1741
18 6.7619 | 0.0002 | 0.0078 | 1.6932 | -0.0514
19 6.7425 | -0.0004 | 0.0087 | 1.67 | 0.0711
ar &L R Pr GCV
49147 | -2.0978 | 14.9865 | 86.79 | 0.201
4.6086 | -1.8104 | 15.0774 | 87.88 | 0.1972
4.3351 | -1.7021 | 15.2815 | 88.44 | 0.1973
3.9741 | -1.6172 | 15.5159 | 89.04 | 0.1977
3.8056 | -1.6754 | 15.6965 | 89.24 | 0.1991
3.8562 | -1.8226 | 15.7529 | 89.04 | 0.2007
4,1812 | -2.0649 | 15.6328 | 88.35 | 0.2023
4.6359 | -2.2133 | 15.3701 | 87.52 | 0.2027
5.0063 | -2.1611 | 15.0918 | 86.97 | 0.2015
5.1078 | -1.9291 | 14.9342 | 86.90 | 0.1997

494 | -1.6983 | 14.9454 | 87.24 | 0.1983
4.6149 | -1.5771 | 15.0911 | 87.82 | 0.1976
4.2656 | -1.5606 | 15.3021 | 88.43 | 0.1977
3.9945 | -1.609 | 15.5084 | 88.88 | 0.1983
3.8742 | -1.7085 | 15.6496 | 89.05 | 0.1993
3.9493 | -1,.8638 | 15.6787 | 88.85 | 0.2006
4,2118 | -2.0463 | 15.6757 | 88.33 | 0.2016
4.5619 | -2.1597 | 15.3761 | 87.71 | 0.2019
4.8392 | -2,1178 | 15.1709 | 87.30 | 0.201

4,926 | -1.9508 | 15.05 87.23 | 0.1998

Grid 3
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349

" 0 dGCV [ POV Akt d° R

o q do do? df df?
0 7.0488 | 0.0000 | 0.0073 | 1.503 | 0.0471
1 7.0479 | 0.0000 | 0.0073 | 1.5039 | 0.0455
2 7.0474 | 0.0000 | 0.0073 | 1.5043 | 0.0443
3 7.0465 | 0.0000 | 0.0073 | 1.5047 | 0.0432
4 7.0451 | 0.0000 | 0.0073 | 1.505 | 0.0423
i 7.0434 | 0.0000 | 0.0073 | 1.5052 | 0.0414
6 7.0415 | 0.0000 | 0.0073 | 1.5054 | 0.0406
7 7.0396 | 0.0000 | 0.0073 | 1.5065 | 0.0398
8 7.0379 | 0.0000 | 0.0073 | 1.5056 | 0.039
9 7.0362 | 0.0000 | 0.0073 | 1.5057 | 0.0382
10 7.0346 | 0.0000 | 0.0073 | 1.5059 | 0.0375
11 7.0332 | 0.0000 | 0.0073 | 1.506 | 0.0367
12 7.032 0.0000 | 0.0073 | 1.5061 | 0.036
13 7.0311 | 0.0000 | 0.0073 | 1.5062 | 0.0353
14 7.0304 | 0.0000 | 0.0073 | 1.5063 | 0.0346
15 7.0299 | 0.0000 | 0.0073 | 1.5064 | 0.0339
16 7.0296 | 0.0000 | 0.0073 | 1.5065 | 0.0332
L7 7.0295 | 0.0000 | 0.0073 | 1.5065 | 0.0325
18 7.0297 | 0.0000 | 0.0073 | 1.5066 | 0.0319
19 7.03 0.0000 | 0.0073 | 1.5067 | 0.0312
die | e R Tr | GOV

4.3343 | -1.707 | 15.3261 | H8.40 | 0.1981

4.3361 | -1.71056 | 15.326 | 88.40 | 0.1981

4.3367 | -1.7128 | 15.3263 | 88.39 | 0.1981

4.3367 | -1.7145 | 15.3266 | 88.39 | 0.1981

4.3367 | -1.7161 | 15.327 88.39 | 0,1981

4.3369 | -1.7178 | 15.3275 | 88.39 | 0.1982

4.3371 | -1.7196 | 15.328 | 88.39 | 0.1982

4.3374 | -1.7213 | 15.3285 | 88.38 | 0.1982

4,3376 | -1.7231 | 15.329 88.38 | 0.1982
4.3379 | -1.7248 | 15.3205 | 88.38 | 0.1982

4.3382 | -1.7266 | 15.3301 | 88.37 | 0.1982

4.3386 | -1.7283 | 15.3306 | 88.37 | 0.1983

4.339 | -1.7301 | 15.3311 | 88.37 | 0.1983

4,3394 | -1.7319 | 15.3316 | 88.37 | 0.1983

4,3398 | -1.7336 | 15.3321 | 88.36 | 0.1983

4.3401 | -1.7353 | 15.3326 | 88.36 | 0.1983

4.3405 | -1.737 | 15.3331 | 88.36 | 0.1984

4.3408 | -1.7386 | 15.3336 | 88.36 | 0.1984

4.341 | -1.7402 | 15.3341 | 88.35 | 0.1984

4.3413 | -1.7417 | 15,3347 | 88.35 | 00,1984

Grid 1




B.9 Results using the first order correction for
the data set bumpy.dat

q 0 A7V d GOV d it as R
] | \ df di? dt) (lf

0 6.6846 | 0.0471 | 0.0948 | 4.288 | 8.5061

1 6.05639 | 0.0009 | 0.0034 | 0.1556 | 0.3387

2 5.7904 | 0.0001 | 0.0004 | 0.0797 | 0.0626

3 5.3863 | 0.0001 | -0.0001 | 0.0655 | 0.0097

4 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0105

5 5,3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

6 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

T 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

8 5.4865 | 0.0001 | -0.0001 | 0.0658 | 0.0104

0 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

10 5.3865 | 0.0001 | -0.0001 | 0.0658 | 0.0104

11 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

12 5.386G3 | 0.0001 | -0.0001 | 0.0658 | 0.0104

13 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0,0104

14 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

15 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

16 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

17 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

18 5.3863 | 0.0001 | -0.0001 | 0.0658 | 0.0104

19 5.386G3 | 0.0001 | -0.0001 | 0.0658 | 0.0104
| Ll R Tr | GCV
0.249 | 0.1163 | 20.1473 | 94.66 | 0.227]
0.198 | 0.0892 | 18.0355 | 94.55 | 0.2038
0.1754 | 0.0803 | 17.9976 | 94.50 | 0.2035
0.1496 | 0.0461 | 17.9687 | 94.44 | 0.2035
0.1496 | 0.0469 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.960 04.44 0.2035
0.1493 | 0.0473 17.969 94.44 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 17.969 94.44 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 0.2035
0.1493 | 0.0473 | 17.969 94.44 | 0.2035
0.1493 | 0.0473 | 17.969 04.44 | 0.2035
0.1493 | 0.0473 | 17.969 94.44 0.2035
0.1493 | 0.0473 17.969 94.44 0.2035
| 0.1493 0.0473 | 17.969 94.44 0.2035

Grid 6

350




q [ o [ @GV &G T 4 T 27
0 5.3863 | -0.0029 [ 0.0033 | 0.7847 | 0.3671
1 6.2736 | 0.0009 | 0.0026 | 1.0125 | 0.1304
2 5.9306 | 0.0000 | 0.0034 | 0.9591 | 0.2186
3 5.9451 | 0.0000 | 0.0033 | 0.9628 | 0.2159
4 5.9426 | 0.0000 | 0.0033 | 0.9623 | 0.2165
5 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
§ 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
7 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
8 5.0428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
9 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
10 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
11 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
12 59428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
13 5.0428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
14 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
15 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
16 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
17 59428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
18 5.9428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
19 5.0428 | 0.0000 | 0.0033 | 0.9623 | 0.2165
dr | Lir R Tr | GCV

2.961 | 0.3437 | 14.6817 | 26.67 | 0.1974
2.7082 | -0.3192 | 15.5121 | 89.15 | 0.1971
2.7981 | -0.2094 | 15.1762 88.21 0.197

2.795 | -0.2088 | 15.1906 | 88.25 | 0.197
2.7056 | -0.2003 | 15.1883 | 88.24 | 0.197
2.7955 | -0.2095 | 15.1884 | 88.24 | 0.197
0.70556 | -0.2004 | 15.1884 | 88.24 | 0.197
2.7055 | -0.2004 | 15.1884 | 88.24 | 0.197
27955 | -0.2094 | 15.1884 | 88.24 | 0.197
2.7955 | -0.2094 | 15.1884 | 88.24 | 0.197
27955 | -0.2004 | 15.1884 | 88.24 | 0.197
2.7955 | -0.2094 | 15.1884 | 88.24 | 0.197
9.7055 | -0.2094 | 15.1884 | 88.24 | 0.197
9.7055 | -0.20094 | 15.1884 | 88,24 | 0.197
2.7955 | -0.2004 | 15.1884 | 88.24 | 0.197
2.7055 | -0.2004 | 15.1884 | 88.24 | 0.197
2.7955 | -0.2094 | 15.1884 88.24 (0.197
2.7955 | -0.2004 | 15.1884 | 88.24 | 0.197

2.7955 | -0.2094 | 15.1884 88.24 0.197

2.7955 | -0.2004 | 15.1884 | 88.24 | 0.107

Grid 5




p 0 de: 'V dioo dlt d” it

: q de) di? d0 7
0 5.9428 | -0.0035 | 0.0089 | 1.5324 | 0.0598
1 6.3406 | -0.0007 | 0.0064 | 1.5101 | -0.0452
2 6.5338 | -0.0000 | 0.006 | 1.5071 | -0.0588
3 6G.6486 | -0.0000 | 0.006 | 1.5094 | -0.0487
3 6.6535 | -0.0000 | 0.006 | 1.5091 | -0.0492
5 6.6512 | -0.0000 | 0.0059 | 1.5089 | -0.0507
G 6.655 | -0.0000 | 0.0059 | 1.5089 | -0.0508
7 6.6556 | -0.0000 | 0.0059 | 1.5089 | -0.0506
8 6.6556 | -0.0000 | 0.0059 | 1.5089 | -0.0507
9 6.6556 | -0.0000 | 0.0059 | 1.5089 | -0.0507
10 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
11 6.6556 | 0.0000 | 0.0059 | 1.5089 | <0.0607
12 6.65656 | 0.0000 | 0.0059 | 1.5089 | -0.0507
13 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
14 6G.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
15 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
16 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
17 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
18 6.6556 | 0.0000 | 0.0059 | 1.5089 | -0.0507
19 6.6656 | 0.0000 | 0.0059 | 1.5089 | -0.0507
e | L R Tr | GCV

5.2973 | -1.8202 | 14,1279 | 84.10 | 0.2017

4.8316 | -1.7141 | 14.6358 | 86.20 | 0.1989

4.5735 | -1.7344 | 14.905 87.12 | 0.1984

4.3859 | -1.7044 | 15.078 87.63 | 0.1983

4.3814 | -1.6894 | 15.0877 | 87.65 | 0.1983

4.389 | -1.6779 | 15,0849 | 87.64 | 0.1983

4,3833 | -1.676 15.091 87.66 | 0.1983

4.3823 | -1.6756 | 15.092 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.67566 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15,0918 | 87.66 | 0.1983

4.5824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

4.3824 | -1.6756 | 15.0918 | 87.66 | 0.1983

- 4.3824 | -1.6756 15.0918 | 87.66 | 0.1983

Grid 4




Grid 3

il 0y - e & o
0 6.6556 | -0.0017 | 0.008 | 1.5697 | -0.0603
l G.8693 | -0.0000 | 0.0071 | 1.6843 | -0.0211
2 6.872 | -0.0004 | 0.0074 | 1.5699 | 0.0093
3 6.9205 | -0.0001 | 0.0071 | 1.55619 | 0.0104
4 6.9353 | -0.0000 | 0.007 | 1.5386 | -0.0082
5 6.9424 | 0.0000 | 0.0067 | 1.5351 | -0.0339
6 6.9377 | 0.0000 | 0.0067 | 1.5382 | -0.053
s 6.9305 | 0.0001 | 0.0067 | 1.5429 | -0,0609
8 6.9226 | 0.0000 | 0.0067 | 1.5466 | -0.0597
9 6.9174 | 0.0000 | 0.0068 | 1.5483 | -0.0542
10 G.9154 | 0.0000 | 0.0069 | 1.5487 | -0.0488
11 6.9152 | 0.0000 | 0.0069 | 1.5488 | -0.0449
12 6.9152 | 0.0000 | 0.0069 | 1.5491 | -0.0425
13 6.915 0.0000 | 0.0069 | 1.5494 | -0.0409
14 6.9146 | 0.0000 | 0.0069 | 1.5496 | -0.0398
15 6.9143 | 0,0000 | 0.0069 | 1.5497 | -0.039
LG 6.9142 | 0.0000 | 0.0069 | 1.5497 | -0.0386
(4 6.9143 | -0.0000 | 0.0069 | 1.5496 | -0.0385
18 | 6.9144 | -0.0000 | 0.0069 | 1.5496 | -0.0385
19 | 6.9145 | -0.0000 | 0.0069 | 1.5496 | -0,0386

G | G R Tr | GCV

4.9147 | -2.0978 | 14.9865 | 86.79 0.201

4.5661 | -1.855 | 15.2505 | 87.82 | 0.1997

4.6075 | -1.8394 | 15.2275 | 87.84 | 0.1993

4.489 | -1.7669 | 15.301 88.06 | 0.1993

4.4319 | -1.7824 | 15.3344 | 88.12 | 0.1994

4,3995 | -1.8079 | 15.3555 | 88.15 | 0.1996

4,404 | -1.8448 | 15.3543 | 88.13 | 0.1996

4.4177 | -1.8659 | 15.3452 | 88.10 | 0.1997

4.434 | -1.8806 | 15.3324 | 88.07 | 0.1997

4.4449 | -1.8855 | 15.3233 | 88.04 | 0.1997

4.4495 | -1.8845 | 15.3196 | 88.03 | 0.1996

4.4502 | -1.8802 | 15.3194 | 88.03 | 0.1996

4.4505 | -1.8757 | 15.3196 | 88.03 | 0.1996

4.4511 | -1.8722 | 15.3194 | 88.03 | 0.1997

4.452 | -1.8699 | 15.3187 | 88.03 | 0.1997

4.4527 | -1.8683 | 15.3182 | 88.03 | 0.1997

4.4529 | -1.8669 | 15.3181 | 88.03 | 0.1996

4.4528 | -1.8659 | 15,3182 | 88.03 | 0.1996

4.4527 | -1.8652 | 15.3184 | 88.03 | 0.1996

4.4526 | -1.8649 | 15.3185 | 88.03 | 0.1996




Grid 2

i q 0 dGCV &GOV dR d R
: q di do? du do7
0 6.9145 | 0.0000 | 0.0069 | 1.5683 | -0.0558
1 6.9138 | -0.0001 | 0.007 | 1.5704 | -0.0563
2 6.925 | -0.0000 | 0.0071 | 1.5711 | -0.0554
3 6.9317 | -0.0000 | 0.0071 | 1.5729 | -0.0555
1 6.9342 | 0.0000 | 0.0071 | 1.5746 | -0.0555
5 6.936 | -0.0000 | 0.0071 | 1.5759 | -0.0553
6 6.9372 | 0.0000 | 0.0071 | 1.5772 | -0.0551
T 6.9368 | 0.0000 | 0.0071 | 1.5784 | -0.0548
8 6.9359 | 0.0000 | 0.0071 | 1.5793 | -0.0544
0 6.9352 | 0.0000 | 0.0071 1.568 | -0.0539
10 6.9348 | 0.0000 | 0.0071 | 1.5806 | -0.0533
11 6.9344 | 0.0000 | 0.0071 | 1.5811 | -0.0528
12 6.9343 | 0.0000 | 0.0071 | 1.5814 | -0.0522
13 6.9344 | -0.0000 | 0.0071 | 1.5817 | -0.0517
14 6.9347 | -0.0000 | 0.0071 | 1.5819 | -0.051
15 6.9351 | -0.0000 | 0.0071 | 1.582 | -0.0504
16 6.9354 | -0.0000 | 0.0071 | 1.5821 | -0.0499
17 6.9358 | -0.0000 | 0.0071 | 1.5821 | -0.0493
18 6G.9361 | -0.0000 | 0.0071 | 1.5821 | -0.0487
19 | 6.9364 | -0.0000 | 0.0071 | 1.582 | -0.0482

- & | R | Tr | GOV

4.5046 | -1.9144 | 15.2991 | 87.91 | 0.1999

4.5286 | -1.9343 | 15.2945 | 87.88 0.2

4.5212 | -1.9428 | 15.3005 | 87.91 | 0.2001

4.5189 | -1.9467 | 15.3166 | 87.93 | 0.2001

4.5225 | -1.9488 | 15.3177 | 87.94 | 0.2001

4.5256 | -1.9495 | 15.3179 | 87.94 0.2

4.5273 | -1.9484 | 15.3173 | R7.05 0.2

4.5308 | -1.9469 | 15.3143 | 87.95 0.2

4.5345 | -1.9457 | 15.311 87.94 0.2

4.5375 | -1.9448 | 15.3082 | 87.94 | 0.1999

4.54 | -1,9444 | 15.3059 | 87.94 | 0.1999

4.5422 | -1,9442 | 15.3038 | 87.94 | 0.1999

4.5441 | -1.9441 | 15.3023 | R7.94 0.1999

4.5455 | -1.944 15.3014 | 87.94 | 0.1999

4,5463 | -1.9437 | 15.3008 | 87.94 | 0.1998

4.5469 | -1,9431 | 15.3004 | 87.94 | 0.1998

4.5472 | -1.9424 15.3 87.94 | 0.1998

4.5474 | -1,9415 | 15,2998 | 87.94 | 0.1998

4.5474 | -1.9406 | 15.2005 B7.94 0.1998

4.5474 | <1.9397 | 15.2994 87.94 0.1998




q '0” dogV rt"(.TE"C.-'V % %!!g
0 6.9364 | -0.0000 | 0.0071 | 1.5842 | -0.0502
1 6.9374 | -0.0000 | 0.0071 | 1.5852 | -0.0512
2 6.9374 | 0.0000 | 0.0071 | 1.5859 | -0.0518
3 6.9373 | 0.0000 | 0.0071 | 1.5864 | -0.0522
1 6.937 | 0.0000 | 0.0071 | 1.5868 | -0.0525
5 6.9368 | -0.0000 | 0.0071 | 1.5871 | -0.0527
G 6.9369 | -0.0000 | 0.0071 | 1.5873 | -0.0529
7 6.9371 | -0.0000 | 0.0071 | 1.5874 | -0.0529
8 6.9373 | -0.0000 | 0.0071 | 1.5875 | -0.053
9 6.9376 | -0.0000 | 0.0071 | 1.5876 | -0.053
10 6.9378 | -0.0000 | 0.0071 | 1.5876 | -0.053
11 6.9381 | -0.0000 | 0.0071 | 1.5876 | -0.0529
12 6.9383 | -0.0000 | 0,0071 | 1.5877 | -0.0529
13 6.9386 | -0.0000 | 0,0071 | 1.5877 | -0.0529
14 6.9389 | -0.0000 | 0.0071 | 1.5877 | -0.0528
15 6.9391 | -0.0000 | 0.0071 | 1.5877 | -0.0528
16 6.9394 | -0.0000 | 0.0071 | 1.5878 | -0.0527
17 6.9396 | -0.0000 | 0.0071 | 1.5878 | -0.0527
18 6.9398 | -0.0000 | 0.0071 | 1.5878 | -0.0527
19 6.94 -0.0000 | 0,0071 | 1.5878 | -0.0526
dir | b R Tr | GCV
4.5042 | -1.9465 | 15.2975 | 87.93 | 0.1998
4.5559 | -1.9495 | 15.2976 | 87.93 | 0.1998
4.5576 | -1.951 | 15.2969 | 87.93 | 0.1998
4.5689 | -1.9518 | 15.2061 | 87.92 | 0.1998
4.5604 | -1.9525 | 15.2951 | 87.92 | 0.1998
4.5616 | -1.9533 | 15.2945 | 87.92 | 0.1998
4.5624 | -1.954 | 15.2043 | 87.92 | 0.1999
4.5628 | -1.9546 | 15.2944 | 87.92 | 0.1999
4.563 | -1.955 | 15.2946 | 87.92 | 0.1999
4.5631 | -1.9555 | 15,2948 | 87.92 | 0.1999
4.5632 | -1.9558 | 15.2051 | 87.92 | 0.1999
4.5633 | -1.9562 | 15.2953 | 87.92 | 0.1999
4.5633 | -1.9565 | 15.2957 | 87.92 | 0.1999
4.5633 | -1.9568 | 15.296 | 87.92 | 0.1999
4.5632 | -1.9571 | 15.2963 | 87.92 | 0.1999
4.5632 | -1.9573 | 15.2966 | 87.92 | 0.1999
4.5632 | -1.9575 | 15,2969 | 87.92 | 0,1999
4.5632 | -1.9577 | 15,2971 | 87.92 | 0.1999
4.5632 | -1.9579 | 15,2973 | 87.92 | 0.1999
4.5632 | -1.9581 | 15.2975 | 87.92 | 0.1999
Grid 1

(] |




B.10 Differentiating 7'r with respect to § and

A

0 [ dGCV/dl | PGOV]d™ | dR/d0 | d°R]d0°
10.936 | 0.0007 0.0027 0.1791 | 0.2054
10.8534 | 0.0001 0.0017 0.1361 | 0.1181
10.8471 | 0.0000 0.0015 0.1272 | 0.0983
10.847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 | 0.0969
dTr/d0 | d*Tr/df i d'r GCV

T 1.795 -0.3764 3.0002 90.79 | 0.0368

1.9 -0.3967 2.958 90.20 | 0.0366
1.9329 -0.401 2.9471 90.13 | 0.0366
1.9355 | -0.4013 2.9463 90.12 | 0.0366
1.9355 | -0.4013 92,9463 90.12 | 0.0366
1.9355 | -0.4013 2.9463 00.12 | 0.0366
1.9355 | -0.4013 2.0463 90.12 | 0.0366
1.9355 | -0.4013 92,9463 00.12 | 0.0366

Table B.1: Results generated by the MINGCV algorithm, differentiating T'r
with respect to 0, for grid no. 6

T dGCV/d | *GCV]de | dR/d6 | d2R]do>
10.936 0.0007 0.0027 0.1791 | 0.2054
10.8534 | 0.0001 0.0017 0.1361 | 0.1181
10.8471 | 0.0000 0.0015 0.1272 | 0.0983
10,847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 | 0.0969
10.847 0.0000 0.0015 0.1266 0.0969
10.847 0.0000 0.0015 0.1266 0.0969
10.847 0.0000 0.0015 0.1266 0.0969
dTr/d0 | d*Tr/do R Tr GCV
1.795 -0.3764 51.4591 | 101.00 | 0.5005
1.5 =().3967 2.8876 89.02 0.0368
1.9329 -0.401 3.0002 00.79 | 0.0368
1.9355 | -0.4013 2,958 90.29 | 0.0366
1.9355 -0.4013 2.9471 090,13 0.0366
1.9355 | -0.4013 9.9463 90.12 | 0.0366
1.9355 | -0.4013 2.9463 90.12 | 0.0366
lﬁﬁﬁ -0.4013 2.9463 E%(J. 12 0.0366

Table B.2: Results generated by the MINGCV algorithm, differentiating 7'r
with respect to A, for grid no. 6
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B.l1

Results generated by the MINGCV al-
gorithm for the data set sine.dat, with
finite difference calculation of d*G'C'V/db?
and the convergence criteria emplaced.

No. of 0 0 | dGCV/dO | Finite difference | d?GCV/d6? | GCV
updates x10? d*GCV/do* % 10°
%104
0 10.309 1.8073 0.1753 0.0323
1 9.809 | 0.6021 2.4104 2.4104 0.0313
2 0.5592 | 0.5679 0.1367 0.1367 0.0312
3 5.4049 | -0.4968 0.2563 0.2663 0.0315
4 7.3433 | -0.2027 0.1517 0.1517 0.0305
5 8.6795 | 0.4308 0.4741 0.4741 0.0307
§ 7.7709 | 0.0312 0.4308 0.4398 0.0305
7 7.7 -0.0081 0.4398 0.5543 0.0305
8 7.7185 | 0.0019 0.4398 0.5447 | 0.0305
0 7.7141 | -0.0004 0.4398 0.5372 0.0305
10 T.TLa 0.0001 0.4398 0.5435 0.0305
Grid 6
No. of 0 0 dGCV/dO | Finite difference | &°GCV/dO® | GCV |
updates x10% d*GCV/do? % 10%
x 10°
0 7.7148 | -0.3427 -0.444 0.03
1 82148 | -0.0656 0.5542 0.5642 0.0309
2 83332 | 0.0158 0.G878 0.687 0.0308
3 8.3102 | 0.0061 0.6878 0.4224 0.0309
3! 8.3013 0.0009 0.6G878 0.5919 (0.0309
5 8.3001 | -0.0001 0.6878 0.7602 0.0309
§ 8.3002 | -0.0001 0.6878 0.2006 0.0309

Grid 5



Results generated by the modified MINGCV
algorithm for the data set bumpy.dat,
with the convergence criteria emplaced.

B.12

No. of # () dGCV /db Finite difference | d2GC V/(i():. TGOV
updates x10° d*GCV/db? % 107
x 103
0 10.309 | 50.4926 4.8979 0.2803
1 9.809 35.7445 29.4963 35,4624 0.2577
2 8.5071 14.8687 17,2267 20.1801 0.2274
3 T.7a4 5.4827 10.8745 13.7326 0.2191
4 7.2298 2.6509 5.6166 6.9181 0.2171
5 G.7578 1.0937 3.2993 3.9367 0.2162
6 6.4263 0.2964 2.4051 2.5639 0.2159
7 6,3031 0.02606 2.1891 2.19 0.2159
8 6.2909 -0.0009 2.1891 2.1377 0.2159
9 6.2914 -0.0007 2.1891 21551 0.2159
10 6.2917 -0.0002 2.1891 2.1613 0.2159
11 (3.291%‘_3 _-U.(.J(JU? '.2.18{]1 2.1613 (}.'.:’Iﬂfu
Grid 6
No.ofg | 0 dGCV/dd | Finite difference | &2 GCV/dd® | GCV
updates %104 d*GCV/d? %104
- % 10°
0 | 62018 1.8887 0.3002 | 0.1981
I 5.7918 -0.2116 4.2006 3.5893 0.198
2 0.8422 -(0.0845 4.2006 3.2069 (0.198
3 5.8623 -0.0181 4.20006 3.0625 ().198
N 5H.86606 -0.0035 4.2006 3.0696 0.198
. -r.l_ _iHUT-'] -0.0007 4.20006 3.0576 0.198

Grid 5

308




No. of 0 dGCV/df | Finite difference | d*GCV/d@® | GCV
updates x 10? d*GCV/do? %104
% 10°
0 5.8676 | -9.3486 -1,.5933 0.2063
1 6.3676 -3.3763 11.9446 12.039 0.2016
2 G.6503 | -1.5679 G.3978 9.3063 0.2004
3 6.8953 | -0.2309 5.4555 7.324 0.2001
4 6.9376 -0.0616 5.4555 6.6035 (0.2002
5 6.9489 0.1668 5.4555 6.6313 0.2002
G 6.9184 | -0.0068 5.4565 6.6077 0.2002
7 6.9196 0.0439 5.4555 6.6578 0.2002
8 6.9116 | -0.0361 5.4555 6.6817 0.2002
9 6.9182 0.0177 5.4555 6.6771 0.2002
10 6.9149 -0.0172 5.4555 G.6674 0.2002
Grid 4










No. of | @ GCV | dGCV/de | d*GCV/do* | Tr R | dR/df | Soboley
upates . , Norm |
0 [-1.94 | 9.67E-02 | 0.141 0.0000 101 | 0.26 | 128 14.8
1 -2.44 | 8.32E-02 | 2.18E-02 0.239 98.7 | 0.235 | 2.49 14.7
2 -2.63 | 822E-02 | 1.39E-02 0.239 98.1 [ 0.232 | 1.84 14.7
3 -2.69 | 8.11E-02 | 1.24E-02 0.239 97.8 | 0.23 1.71 14.8
4 -2.64 | 8.06E-02 | 1.18E-02 1.07E-02 97.5 | 0.229 | 1.65 14.8
5 -3.14 | 7.63E-02 | 6.67TE-03 1.03E-02 94.4 | 0.216 L2 15.2
§ -3.64 | 7.35E-02 | 4.10E-03 5.14E-03 91.5 [ 0.205 | 0.943 15.7
T -4.14 | 7.21E-02 | 1.80E-03 4.59E-03 88.8 | 0.197 | 0.709 16.3
8 -4.53 | 7.18E-02 | 2.60E-04 3.93E-03 86.8 | 0.192 | 0.546 16.9
9 -4.6 | 7.18E-02 | 2.60E-04 3.93E-03 86.8 | 0.192 | 0.546 16.9
10 -4.59 | 7.18E-02 | -3.22E-05 3.93E-03 86.5 | 0.192 | 0.516 17
11 -4.52 | 7.18E-02 | -2.81E-04 3.93E-03 | 86.7 | 0.192 | 0.494 16.9
12 -4.47 | T.1TE-02 | -1.73E-04 3.93E-03 87.1 | 0.193 | 0.506 16.8
13 -4.5 | 7.16E-02 | 8.23E-05 3.93E-03 87.3 | 0.193 | 0.527 16.8
Grid 6
No, of | @ GCV [ dGCV/de | d*GCV/do* | Tr R | dR/dA | Sobolev
npates Norm
0 -4.5 | 7.60E-02 | -8.48E-03 3.93E-03 71 | 0.162 | 0.785 17.2
1 -4.02 | 7.32E-02 | -3.64E-03 9.69E-03 77.1 | 0.172 | 0.937 16.3
2 -3.64 | 7.26E-02 | -5.83E-04 8.14E-03 | 81.4 | 0,181 | 1.07 15.8
3 -3.57 | 7.26E-02 | 4.56E-05 8.14E-03 82.2 | 0.183 1.1 15.7
1 -3.58 | 7.26E-02 | 5.42E-05 8.141-03 82.1 | 0.183 1:1 La. T

5 -3.58 | 7.26E-02 | -6.51E-06 8.14E-03 82 | 0.183 1.1 15.7
Grid 5
No.of | 6 GCV | dGCV/dA | d*GCV/d6® | Tr R | dR/dO | Sobolev
| upates i Norm
0 -3.58 | 7.28E-02 | -1.15E-04 | 8.14E-03 | 77.3 | 0.172 | L.31 15.8
1 3.67 | T.2TE-02 | -6.01E-06 8.14E-03 77.6 | 0.173 | 1.28 15.8
2 -3.57 | 7.27E-02 | -1.02E-05 8.14E-03 77.8 | 0.173 1.28 15.8
3 -3.57 | 7.27E-02 | 5.53E-05 8.141-03 776 0173 | 1.29 15.8
4 -3.57 | 7.28E-02 | -2,98E-05 8.141-03 775 [ 0173 | 1.28 15.8
5 -3.57 | 7.27E-02 | 5.83E-06 8.14E-03 7.6 | 0.173 1.28 15.8

Grid 4
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C.2 Results generated by the bivariate MINGCV

algorithm, for the data set frankel.dat

No. of [ GCV [ dGCV]dd | d°GCV/de™ | Tr R [ dR/d0 | Sobolev

ll[JiLtL(!H : . Ni]l’l’l’l
0 -5.52 | 0.222 | -1.20E-02 0 81.0 [ 0.385 | 0.904 14.3
1 -5.02 | 0.216 | -1.13E-02 | 3.23E-03 | 84.2 | 0.391 | 0.764 10.7
2 -4.52 | 0.211 | -7.09E-03 | 8&.38E-03 | 86.3 | 0.397 | 0.843 8.11
3 -4.02 | 0.208 | -6.19E-03 | 1.79E-03 | 88.1 | 0.401 | 0.762 6.1
4 -3.52 | 0.205 | -5.96E-03 | 4.61E-04 | 89.6 | 0.406 | 0.666 | 4.6
5 -3.02 | 0.202 | -5.19E-03 1.56K-03 01.1 0.41 0.592 3.9
§ 2.52 | 0.2 | -4.16E-03 | 2.06E-03 | 92.5 | 0.413 | 0.542 288
7 -2.02 | 0.198 | -2.74E-03 | 2.84E-03 | 93.7 | 0.417 | 0.557 | 2.33
8 -1.52 | 0.197 | -5.35E-04 | 4.40E-03 | 94.7 | 0.42 | 0.662 1.89
9 -1.4 | 0.197 | 3.24E-04 | 7.07E-03 | 94.9 | 0.422 | 0.723 1.78
10 | -1.45 | 0.197 | 2.68E-05 | 7.07E-03 | 94.8 | 0.421 | 0.723 1.81
11 | -145] 0197 | -3.21E-05 | 7.07E-03 | 94.8 | 0.421 | 0.723 1.81

CGirid 6

No. of "GCV | dGCV/de | d&2GCV/da® | Tr R | dR/dd | Sobolev

upates Norm
0 -1.45 | 0.197 | 5.11E-05 | 7.07E-03 | 94.7 | 0.421 | 0.756 1.83
1 -1.45 | 0.197 | -1.41E-05 | 7.07E-03 | 94.6 | 0.421 | 0.752 1.84
2 -1.45 | 0.197 | -5.21E-05 | 7.07TE-03 | 94.6 | 0.421 | 0.754 1.84
3 -1.44 | 0.197 | -3.43E-05 | 7.07TE-03 | 94.6 | 0.421 | 0.759 1,83
4 -1.44 | 0.197 | -1.31E-05 | 7.07E-03 | 94.6 | 0.421 | 0.762 1.83
5 -1.44 | 0.197 4 .82E-08 7.07E-03 94.7 | 0.421 0.762 1.83

Grid 5

C.3 Results generated by the bivariate MINGCV
algorithm, for the data set franke2.dat

No. of | 0 GCV [ dGCV/de | &*GCV/do® | Tr R dR/d0 | Sobolev
upates ) - - N(IJI'I 3|
0 -5.52 | 6.63E-03 | 1.95E-03 0 81.9 | 6.67TE-02 | 0.184 8.1
| -6.02 | 5.50E-03 1.72E-03 4,.68E-04 79.7 | 5.91E-02 0.153 9.66
2 -6.52 | 4.84E-03 | 8.90E-04 1.66E-03 | 76.9 | 5.35E-02 | 9.33E-02 | 11.2
3 -7.02 | 4.58E-03 | 4.28E-04 | 9.25E-04 | 74.1 | 5.01E-02 | 6.26E-02 | 12.5
4 -7.48 | 4.47E-03 | 4.72E-05 | 8.23E-04 | 71.5 | 4.78E-02 | 3.95E-02 | 13.7
& -7.54 | 4.45E-03 2.58E-05 8.23E-04 71.3 | 4.75E-02 | 3.69E-02 13.9
0 -7.57 | 4.45E-03 1.01E-05 8.23E-04 71.1 | 4.74E-02 | 3.5TE-02 13.9
7 .7.58 | 4.45E-03 | -2.74E-07 | 8.23E-04 71 | 4.74E-02 | 3.53E-02 14

Girid 6
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No. of | 0 GCV [ dGCV/da | d*GCV]do? | Tr R dR/d0 | Sobolev
upates Norm
0 -7.58 | 0.451E-02 | -0.344E-03 | 8.23E-04 | 62.2 | 4.18E-02 | 4.35E-02 13.7

1 -7.17 | 0.446E-02 | -0.883E-04 | 6.12E-04 66 | 4.41E-02 | 5,28E-02 12.5

2 -7.02 | 0.445E-02 | 0.243E-04 7.80E-04 | 67.4 | 4.60E-02 | 5.71E-02 12.1

3 -7.05 | 0.445E-02 | 0.652E-05 7.80E-04 | 67.2 | 4.48E-02 | 5.61E-02 12.2

1 -7.06 | 0.445E-02 | -0.402E-06 | T7.80E-04 | 67.1 | 4.47E-02 | 5.58E-02 12.2

5 -7.06 | 0.445E-02 | 0.831E-07 7.80E-04 | 67.1 | 447E-02 | 5.59E-02 12.2

Grid 5

No. of [0 GCV dGCV/d | d*GCV/de* | Tr R dR/df | Sobolev
upates Norm
0 -7.06 | 0.453E-02 | -0.107E-03 | 7.80E-04 | 63.3 | 4.26B-02 | 6.38E-02 | 12.3

1 -6.92 | 0.452E-02 | 0.146E-05 7.91E-04 | 64.8 | 4.36E-02 | 6.60E-02 11.9

2 -6.92 | 0.451E-02 | 0.157E-04 7.91E-04 | 64.9 | 4.36E-02 | 6.59E-02 11.9

3 -6.94 | 0.451E-02 | 0.628E-06 7.91E-04 | 64.7 | 4.34E-02 | 6.54E-02 12

4 -6.95 | 0.451E-02 | 0,999E-06 7T.O1E-04 | 64.7 | 4.34E-02 | 6.55E-02 12

5 | -6.95| 0451E-02 | -0.157E-05 | 7.91E-04 | 64.7 | 4.35E-02 6.54E-02 12

Grid 4
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C.4 Results generated by the bivariate MINGCV

algorithm, for the data set franke3.dat

No, of | 6 GCV | dGCV/dE | &*GCV/do? | Tr R dR/dé | Sobolev
upates Norm
0 -2.52 | 3.65E-03 | 2.13E-03 0 81.9 | 4.95E-02 0,172 8.13
1 -6.02 | 2.42E-03 | 1.92E-03 4.07E-04 79.7 | 3.92E-02 0.141 9.61
2 -6.52 | 1.64E-03 | 1.21E-03 1.43E-03 76.9 | 3.11E-02 | 8.51E-02 11
3 -7.02 | 1.23E-03 | T7.11E-04 9.90E-04 74.1 | 2.60E-02 | 4.95E-02 12,1
4 -7.02 | 9.64E-04 | 3.76E-04 6.69E-04 71.2 | 2.21E-02 | 2.71E-02 13.2
5 -8.02 | 8.14E-04 | 2.00E-04 3.53E-04 68.5 | 1.95E-02 | 1.56E-02 14.1
6 |-852 | 7.45E-04 | 8.81E-05 | 2.23E-04 | 65.9 | 1.80E-02 | 8.91E-03 | 14.9
7 | -8.92 | 7.28E-04 | 2.95E-05 | 149E-04 | 64 | 1.73E-02 | 5.64E-03 | 15.4
8 |-9.11|7.27E-04 | 7.63E-06 | 1.10E-04 |63.1 | 1.70E-02 | 4.50E-08 | 15.6
9 |.0.18|7.27E-04 | 4.54E-07 | 1.10E-04 | 62.7 | 1.69E-02 | 4.15E-03 | 15.7
10 | -9.19 | 7.28E-04 | 2.95E-05 | 1.49E-04 | 64 | 1.73E-02 | 5.64E-03 | 15.4
Grid 6
No. of f GCV dGCV/df | d*GCV/df* | Tr R dR/df | Soholev
upates Norm
0 -9.19 | 0.170E-03 | 0.444E-04 1.10E-04 44.7 | 5.82E-03 | 2.57E-03 14
1 -9.59 | 0.152E-03 | 0.172E-04 6.75E-05 41.2 | 5.07E-03 | 1.55E-03 14.3
2 -9.85 | 0.154E-03 | -0.322E-05 8.01E-05 38.5 | 4.78E-03 | 1.11E-03 14.5
3 -9.81 | 0.151E-03 | 0.329E-05 8.01E-05 39.1 | 4.80E-03 | 1.18E-03 14.5
4 -9.85 | 0.152E-03 | -0.448E-06 8.01E-05 38.6 | 4.76E-03 | 1.12E-03 14.5
2 -9.84 | 0.152E-03 | 0.144E-06 8.01E-05 38.7 | 4.76E-03 | 1.13E-03 14.5
Grid 5
No. of f GCV dGCV/dE | d*GCV/d8= | Tr R dR/df | Sobolev
upates Norm
0 -9.84 | 1.79E-04 | -4.15E-05 8.01E-05 27.8 | 3,73E-03 | 8.50E-04 14
1 -9.34 | 1.71E-04 | 8.74E-06 1.00E-04 33.9 | 4.42E-03 | 1.56E-03 13.7
2 -0.43 | 1.71E-04 | -8.18E-07 1.00E-04 32.7 | 4.28E-03 | 1.39E-03 13.7
3 -9.42 | 1.71E-04 | -8.70E-07 1.00E-04 32.8 | 4.29E-03 | 1.39E-03 13.7
1 -9.41 | 1.71E-04 | 1.51E-07 1.00E-04 32.9 | 4.31E-03 | 1.41E-03 13.7
5 -0.42 | 1.71E-04 | 6.52E-08 1.00E-04 32.9 | 4.31E-03 | 1.41E-03 13.7
Grid 4




C.5 Results generated by the bivariate MINGCV
algorithm, for the data set franke4.dat
No, of [ 0 GCV [ dGCV/do | d*GCV]de* | Tr R dR/d0 | Sabolev |
upates Norm
0 -5.03 | 6.33E-03 | 2.50E-03 0 86 | 6.84E-02 | 0.222 6.6
1 -5.53 | 4.70E-03 | 2.86E-03 0 83.8 | 5.75E-02 0.23 8.3
2 -5.53 | 4.75E-03 | 2.47E-03 7.81E-04 | 83.8 | 5.77E-02 | 0.203 8.24
3 -5.78 | 4.18E-03 | 2.28E-03 7.72E-04 | 82.9 | 5.36E-02 | 0.183 9.01
4 -6.03 | 3.65E-03 | 1.97E-03 1.24E-03 | 81.9 | 4.95E-02 | 0.155 9.83
5 -6.28 | 3.19E-03 | 1.70E-03 1.08E-03 81 | 4.57E-02 | 0.132 10.6
6 -6.53 | 2.82E-03 | 1.37E-03 1.29E-03 80 | 4.24E-02 | 0.106 11.4
7 -6.78 | 2.51E-03 | 1.08E-03 1.16E-03 79 | 3.95E-02 | 8.36E-02 | 12.2
8 -7.03 | 2.27E-03 | 8.22E-04 1.05E-03 78 | 3.71E-02 | 6.42E-02 | 12.9
9 -7.28 | 2.09E-03 | 5.95E-04 9.07E-04 77 | 3.53E-02 | 4.81E-02 | 13.6
10 | -7.53 | 1.97E-03 | 4.14E-04 7.28E-04 | 76.1 | 3.38E-02 | 3.55E-02 | 14.2
1] -7.78 | 1.80E-03 | 2.77E-04 5.48E-04 | 75.1 | 3.26E-02 | 2.62E-02 | 14.8
12 | -8.03 | 1.83E-03 | 1.79E-04 3.90E-04 | 74.2 | 3.18E-02 | 1.06E-02 | 15.3
13 | -8.49 | 1.77E-03 | 7.84E-05 2.19E-04 | 7T2.8 | 3.06E-02 | 1.22E-02 | 16.1
14 | -8.94 | 1.75E-03 | 4.55E-05 9.19E-05 | 71.7 | 2.98E-02 | 9.53E-03 17
Grid 6
No.of [ 8 | GCV [dGCV/de | EGCV]de® | Tr Iz dR/d0 | Soboley |
upates Norm
0 -8.94 | 1.78E-04 | 7.57E-05 9.19E-05 | 52.4 | 6.99E-03 | 4.03E-03 | 14.4
1 -9.44 | 1.43E-04 | 4.19E-05 6.77E-05 49 | 5.86E-03 | 2.21E-03 | 14.8
2 -9.94 | 1.33E-04 | 1.66E-05 | 5.07E-05 | 44.9 | 5.18E-03 | 1.20E-03 | 15.2
3 -10.3 | 1.30B-04 | 546E-06 | 3.40E-05 | 42,5 | 4.79E-03 9.27E-04 | 155
Girid 5
No. of [ @ GCV [ dGCV/do | d*GCV/do® | Tr It dR/df | Soboley
| upnt.cr:a- B N'f.’.r."“
0 -10.3 | 2.35E-05 | 2.60E-05 3.40E-05 26 | 1.26E-03 | 2.97E-04 | 14.2
1 -10.8 | 1.67E-05 | 1.64E-05 1.92E-05 | 20.4 | 8.34E-04 | 1.27E-04 14.3
|2 11.3 | 1.06E-05 | 8.91E-06 1.49E-05 | 16.5 | 4.08E-04 | 4.93E-05 14.4

Girid 4
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No. of | @ GCV | dGCV/dO | d*GCV/de* | Tr R dR/d0 | Sobolev
~upates Norm
0 -11.3 | 1.23E-05 | 9.35E-06 1.49E-05 8.74 | 3.06E-04 | 1.98E-05 14.1
1 -11.8 | 1.23E-05 | 9.35E-06 1.49E-05 8.74 | 3.06E-04 | 1.98E-05 14.1
2 -12.2 | 1.12E-05 | 7.21E-06 8.56E-06 7.23 | 2.42E-04 | 1.19E-05 14.1
3 -12.5 | 8.16E-06 | 7.69E-06 8.56E-06 6.06 | 1.73E-04 | 7.15E-06 14.1
4 -12.7 | 7.76E-06 | 6.03E-06 6.64E-06 5.03 | 1.40E-04 | 4.47E-06 14.1
5 |-12.8 | 9.00E-06 | 1.98E-06 | 1.62E-05 | 4.14 | 1.24E-04 | 2.76E-06 | 14.1
Grid 3
No. of | @ GCV | dGCV/de | d*GCV/de* | Tr R dR/df | Sobolev
upates Norm
0 -12.8 | 2.13E-06 | 2.55E-05 1.62E-05 2.28 | 3.33E-05 | 1.53E-06 14
1 -13.3 | 9.71E-06 | 1.17E-05 5.55E-05 1.76 | 5.47E-05 | 9.15E-07 14
2 -13.6 | 8.90E-06 | 1.03E-05 6.62E-06 1.44 | 4.29E-05 | 5.59E-07 14
3 -13.8 | 8.98E-07 | 2.56E-05 6.62E-06 1.13 | 1.07E-05 | 3.49E-07 14
! -14.1 | 2.27E-06 | 2.32E-05 9.37E-06 0.884 | 1.33E-05 | 2.17E-07 14
5 -14.3 | 1.09E-05 | 6.91E-06 6.53E-05 0.692 | 2.28E-05 | 1.37E-07 14
6 -14.4 | 3.34E-06 | 1.90E-05 6.53E-05 0.635 | 5.03E-05 | 1.03E-07 14
Grid 2
No.of | @ GCV | dGCV/dE | d&*GCV/do* | Tr R dR/d0 | Sobolev
upates Norm
0 -14.4 | 2.19E-05 | 8.74E-06 6.53E-05 0.479 | 2.24E-05 | 1.30E-07 13.2
1 -14.6 | 5.56E-05 | -7.03E-05 5.91E-04 0.434 | 3.24E-05 | 8.69E-08 13.2
2 -14.5 | 1.72E-05 | -3.50E-07 5.88E-04 0.489 | 2.03E-05 | 8.47E-08 13.2
3 -14.5 | 9.75E-056 | -1.65E-04 5.88E-04 0.494 | 4.88E-05 | 8.61E-08 13.3
A -14.2 | 2.66E-05 | -1.95E-06 5.18E-04 0.651 | 3.35E-05 | 1.47E-07 13.3
5 -14.2 | 5.85E-06 | 2.25E-05 5.18E-04 0.677 | 1.64E-05 | 1.58E-07 13.3
6 -14.2 | 4.73E-05 | -6.13E-05 5.18E-04 0.652 | 4.48E-05 | 1.45E-07 13.3
7 -14.1 | 1.61E-05 | 1.53E-06 5.31E-04 0,732 | 2.,93E-05 | 1.81E-07 13.3
8 -14.1 | 6.06E-06 | 2.15E-05 5.31E-04 | 0.731 | 1.80E-05 | 1.80E-07 | 13.3
g -14.1 | 3.32E-05 | -3.29E-05 5.311-04 0.704 | 4.05E-05 | 1.67E-07 13:8
10 -14.1 | 2.66E-05 | -1.98E-056 5.31E-04 0.749 | 3.86E-05 | 1.87E-07 13.3
Ll -14 | 5.22E-06 | 2.28E-05 5.31E-04 0.776 | 1.77E-05 | 2.00E-07 13.3
12 -14.1 | 3.49E-05 | -3.65E-05 5.31E-04 0.745 | 4.41E-05 | 1.85E-07 13.2
13 -14 | 2.24E-05 | -1.16E-05 5.31E-04 0.797 | 3.77E-05 | 2.10E-07 13.3
14 -14 | 2.23E-05 | -1.13E-05 5.31E-04 0.814 | 3.85E-05 | 2.19E-07 13.3
15 -14 | 6.23E-06 | 2.06E-05 5.31E-04 0.832 | 4.45E-05 | 2.28E-07 13.3
Grid 1
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C.6 Results generated by the bivariate MINGCV

algorithm, for the data set peaks.dat

No. of 0 GCV [ dGCV]de d*GCV/de* | Tr R | dR/dO | Sobolev
upates Norm
0 |-0.552 ] 0.399 | 8.28B-02 0 168 | 0.558 | 15.6 9 |
1 -1.05 | 0.354 | 6.63E-02 3.31E-02 | 165 | 0.5617 | 12.5 9.79
2 -1.55 | 0.336 | 4.06E-02 | 5.13E-02 | 163 | 0.497 | &.41 10.5
3 -2.05 | 0.319 | 3.01E-02 | 2.10E-02 | 161 | 0.477 | 6.59 11.5
4 2,55 | 0.301 | 3.02E-02 2.10E-02 | 158 | 0.458 | 6.22 12.9
5 -2.8 | 0.293 | 3.16E-02 | 2.10BE-02 | 157 | 0.448 | 6.23 13.8
G -3.05 | 0.286 | 3.05E-02 | 4.72E-03 | 156 | 0.44 | 5.91 14.7
7 3.3 | 0.279 | 2.78E-02 1.05E-02 | 155 | 0.432 | 5.4 15.8
8 -3.55 | 0.274 | 2.46E-02 1.20E-02 | 154 | 0.425 | 4.84 16.8
9 3.8 ] 0.269 | 2.15E-02 1.23E-02 | 153 | 0.419 | 4.31 18.1
10 -4.05 | 0.264 | 1.90E-02 1.02E-02 | 163 | 0.412 | 3.86 19.4
11 | -4.46 | 0.250 | 1.71E-02 7.76E-03 | 152 | 0.403 | 3.5 21.9
Grid 6
[No. of [ @ GOV | dGOV/dO | d*GCV/dOT | Tr | R | dR/d6 | Soholev
| upates Norm
0 -4.46 | 6.09E-02 | 1.52E-02 1.13E-02 [ 135 | 0.176 | 2.17 20.6
| -4.96 | 6.03E-02 | 4.831-03 2.08E-02 | 130 | 0.168 | 1.11 21.3
2 -5.2 | 5.66E-02 | 1.52E-03 1.42E-02 | 128 | 0.16 | 0.776 22,4
3 -5.3 | 5.50E-02 | 2.13E-03 1.42E-02 | 127 | 0.157 | 0.788 23
4 -5.45 | 5.42E-02 | 3.06E-03 1.42E-02 | 126 | 0.155 | 0,822 23.5
5 | -5.67 | 5.40E-02 | 2.21E-03 3.98E-03 | 125 | 0.151 | 0.72 26 |
(Girid 5
| No. of | @ GCV | dGCV/d0 | d*GCV/d? | Tr | R | dR/dd | Sobolev |
upates B NIIH'[II
0 -5.67 | 6.23E-02 | -1.13E-02 | 7.386-02 | 94 | 0123 | 0657 | 238 |
1 -5.7 | 5.50E-02 | -4.36E-03 | 4.54E-02 | 101 | 0.125 | 0.635 23.3
2 -5.6 | 5.55E-02 | -4.60E-03 | 4.54E-02 | 102 | 0.126 | 0.66 22.9
3 -5.5 | 547E-02 | -3.56E-03 | 1.02E-02 | 104 | 0.128 | 0.703 22.5
4 -0.15 | 5.40E-02 | -2.02E-03 4.43E-03 109 | 0.133 ().839 212
5 L7 | 5.41E-02 | 6.43F-04 5.85E-03 | 116 | 0.141 | 1.11 19.8
§ -4.81 | 5.38E-02 | 1.52E-04 4.47E-03 | 114 | 0.139 | 1.02 20,1
7 -4.84 | 5.38E-02 -2.32E-05 4.47E-03 114 | 0.139 | 20.2
_ 8 [ -483|538E-02 | 8.50E-05 | 4.47E-03 | 114 | 0.138 | 1.01 20.3

Garid 4
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No. of | 6 GCV [ dGCV/de | d*GCV/de® | Tr R | dR/d0 | Soholev
upates B Norm
0 |-4.83 | 5.26E-02 | -2.27E-04 | 4.47E-03 | 102 | 0.123 | L.15 20.5
1 -4.8 | 5,28E-02 | 1.00E-04 4.47E-03 103 | 0.124 | 1.17 20.3
Y, -4.83 | 5.28E-02 | -4.71E-04 4.4715-03 102 | 0.124 1.13 20.3
3 -4.72 | 5.30E-02 | 4.48E-04 8.72E-03 104 | 0.126 12l 20
1 -4.77 | 5.20E-02 [ 2.76E-05 8.72E-03 103 | 0.125 L.1F 20.1
5 -4.77 5_:@?1'*:-02 -2.23E-05 8.72E-03 103 | 0.125 117 20.1
Grid 3
No.of [ @ GCV [ dGCV/dd | d&°GCV]de® | Tr | di/do | Sobolev
upates Norm
() -4.77 | 5.28E-02 | 2.32E-04 872E-03 | 97.6 | 0.118 Lid 20.3
I -4.8 | 5.27E-02 | -7.49E-05 8.72E-03 97.2 1 0117 | 1.26 20.4
2 -4.79 | 5.27E-02 | -6.88E-05 8.72E-03 97.4 | 0.118 | 1.26 20.4
3 -4.78 | 5.27E-02 | -1.75E-05 8.72E-03 97.6 | 0.118 | 1.26 20.3
A -4.78 | 5.28E-02 | -5.40E-06 8.72E-03 97.6 | 0.118 | 1.26 20.3
0 -4.78 | 5.2815-02 | -3.08E-05 8.72E-03 g7.6 | 0.118 | 1.26 20.3
Grid 2
C.7 Results generated by the bivariate MINGCV

algorithm, for the data set peakslb.dat

No. of t GCV
upates
0 | -0.552 | 1.53
1 -1.05 1.51
2 -1.39 1.5
3 -1.69 1.49
4 -1.84 | 1.49
5 -1.8G 1.49
6 -1.95 1.49
7 -1.92 1.49
5 -1.85 | 1.49
9 -1.79 1.49
10 -1.81 1.49
L1 -1.85 1.49

dGCV/de | d*GCV/de* | Tr | R | dR/d0 | Sobolev
Norm
0.112 0 168 | 1.09 | 29.5 10.9
4.49E-02 0.135 165 | 1.07 | 19.2 11.8
1.69E-02 8.41E-02 164 | 1.06 141.6 12.6
0.41E-03 3.73E-02 | 163 | 1.05 | 13.2 13
7.52E-04 3.43E-02 | 162 | 1.04 | 11.8 13.7
2,97E-03 3.43E-02 | 162 | 1.04 12 13.7
8.86E-04 | 3.43E-02 | 161 | 1.04 | 11.4 13.9
29.42E-03 | 3.43E-02 | 161 | 1.04 | 11.2 13.9
294E-03 | 3.43E-02 | 162 | 1.04 | 11.2 13.7
9.6315-04 3.43E-02 | 162 | 1.04 | 11.6 13.5
1.29E-03 3.43E-02 | 162 | 1.04 | 11.7 13.6
3.73E-04 3.43E-02 | 162 | 1.04 | 116 13,7
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No.of [ 0 [GCV [dGCV/d0 | BGCV/de® | Tr | R | dE/d0 | Sobolev |
upates Norm
0 -1.85 | 1.4 | L55E-02 | 3.43E-02 | 155 | 0.965 19 14.9
1 -231 | 14 | -1.30E-02 | 6.31E-02 | 152 | 0,945 | 15.7 16.8
2 -211 | 1.4 | -2.24E-03 | 5.22E-02 | 153 | 0.955 | 16.3 15.8
3 206 | 14 | 1.14E-03 | 5.22E-02 | 153 | 0.957 | 16.8 15.6
4 209 | 14 | -1.86E-04 | 5.22E-02 | 153 | 0.956 | 16.7 15.7
f -2.08 | 14 | 7.54E-06 | 5.22E-02 | 153 | 0.956 | 16.7 18.7
Grid 5
No.of | 0 | GCV | dGCV/de | S*GCV/dO? | Tr R | dR/d0 | Sobolev
upates Norm
0 -2.08 | 1.37 | -1.51E-02 5.22E-02 149 | 0.922 19.7 16.2
1 -1.79 | 1.38 | 6.37TE-03 7.43E-02 152 | 0,939 | 21.3 14.9
2 -1.88 | 1.38 | -3.30E-03 7.43E-02 151 | 0934 | 20.2 15.3
: -1.83 | 1.38 | 2.73E-04 | 7.43E-02 | 152 | 0.936 | 20.5 15.1
4 -1.84 | 1.38 | -1.28E-04 | 7.43E-02 | 152 | 0.936 | 20.4 15.]
5 [ -1.84] 1.38 | 530E-06 | 7.43E-02 | 152 | 0.936 | 20.4 15.1
Grid 4
[ No.of [ @ [GCV | dGCV/dE | PGCVIde? | Tr | R dR/df | Sobolev
H|:El.t.t‘.‘-i a Norm
0 [-1.84| 1.38 | -4.05E-03 | 7.43B-02 | 140 | 0.024 | 23.0 15.4
| -1.78 | 1.38 | -1.80E-04 7.43E-02 150 | 0.928 23.0 LEl
2 -1.78 | 1.38 | -1.79E-04 | 7.43E-02 | 150 | 0.928 | 23.3 15.1
3 -1.78 | 1.38 | 2.25E-05 7.43E-02 | 150 | 0.928 | 23.3 15.1
| -1.78 | 1.38 | -1.08E-04 | 7.43E-02 | 150 | 0,928 | 23.2 15.1
5 |-178] 138 | -6.98E-05 | 7.43E-02 | 150 | 0.928 | 23.2 | 15.1

Grid 3
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C.8 Results generated by the bivariate MINGCV
algorithm, for the data set peaks0.dat

"No.of [ 0 [GCV [dGCV/dd | &°GCV/deT | Tr | R | dR/d0 | Sobolev
upates Norm
0 -0.562 | 0.386 | 8.93E-02 0 168 | 0.549 | 16.5 9.05
1 -1.05 | 0.343 | 6.75E-02 4.35E-02 165 | 0.51 12.6 9.8
2 -1.56 | 0.324 | 4.24E-02 5.03E-02 163 | 0.488 | 8.55 10.5
3 -2.05 | 0.303 | 3.45E-02 1.57E-02 161 | 0.465 | 7.06 11.6
1 -2.55 | 0.283 | 3.57E-02 1.67E-02 158 | 0.443 | 6.81 13.1
5 -2.8 | 0.273 | 3.T1E-02 1.57E-02 157 | 0.433 6.8 14.1
G -3.06 | 0.265 | 3.56E-02 6.16E-03 156 | 0.423 | 6.42 15.1
7 -3.3 | 0.258 | 3.25E-02 1.24E-02 155 | 0.415 | 5.84 16.2
8 -3.55 | 0.251 | 2.87E-02 1.49E-02 154 | 0.407 5.2 17.3
9 -3.8 | 0.245 | 2.52E-02 1.42E-02 153 | 0.399 | 4.61 18.6
10 -4.06 | 0.239 | 2.22E-02 1.19E-02 153 | 0.392 | 4.11 20
11 -4.46 | 0.233 | 1.99E-02 9.32E-03 152 | 0.382 | 3.69 22.6
Grid 7
No.of | 6 GCV | dGCV/dE | d*GCV/de* | Tr R dR/df | Sobolev
upates Norm
0 -4.46 | 1.54E-02 | 1.83E-02 9.64E-03 135 | 8.80E-02 | 1.93 204
i -4.96 | 1.22E-02 | 6.98E-03 2.26E-02 130 | 7.52E-02 | 0.754 20.8
2 -0.27 | 7.508E-03 | 4.08E-03 9.41E-03 127 | 5.85E-02 | 0.434 21.7
3 | -5.71 | 5.18E-03 | 2.84E-03 | 2.87E-03 | 124 | 4.58E-02 | 0.284 | 23.1
Grid 6
No. of | @ GCV | dGCV/dE | d&*GCV/de* | Tr R dR/df | Sobolev
upates Norm
0 -3.71 | 2.06E-03 | 1.93E-03 3.92E-03 94 | 2.24E-02 0.13 20.3
1 -6.18 | 1.21E-03 | 1.44E-03 1.61E-03 93.4 | 1.71E-02 | 8.39E-02 20.7
2 -6.68 | 8.32E-04 | 7.78E-04 1.33E-03 86.2 | 1.31E-02 | 4.03E-02 21
3 -7.18 | 5.55E-04 | 4.58E-04 6.39E-04 79.9 | 9.65E-03 | 2.09E-02 214

Girid 5

371




No. of | @ GCV | dGCV/dO | d*GCV/dR* | Tr R dR/df | Soboley
upates Norm
0 -7.18 | 5.09E-04 | 6.77E-04 G.39F-04 95.2 | 6.56E-03 | 1.63E-02 20.5
1 -7.64 | 3.72E-04 | 4.69E-04 4.16E-04 47 | 4.77E-03 | 8.37E-03 20.7
2 | -8.14 | 2.71E-04 | 3.40E-04 | 2.59E-04 | 30.8 | 2.79E-03 | 4.41E-03 | 91
Grid 4
No. of [ @ GCV [ dGCV/dg | d*GCV/do® | Tr R dR/df | Sobolev
upates Norm
0 -8.14 | 2.34E-04 | 5.55E-04 2.59E-04 19.3 | 1.56E-03 | 1.69E-03 20.6
| -8.57 | 2.31E-04 | 4.87TE-04 2.71E-04 16.6 | 1.33E-03 | 1.13E-03 20.0
2 -9.02 | 2.18E-04 | 4.45E-04 1.68E-04 14.2 | 1.11E-03 | 7.72E-04 20.7
3 -9.37 | 2.00E-04 | 4.16E-04 1.16E-04 12.1 | 9.01E-04 | 5.22E-04 20.7
4 -9.62 | 1.92E-04 | 3.74E-04 1.691-04 10.3 | 7.563E-04 | 3.51E-04 20.7
5 -9.87 | 1.79E-04 | 3.51E-04 9.13E-05 8.77 | 6.50E-04 | 2.39E-04 20.7
Grid 3
No. of | 8 GCV | dGCV/dO | d*GCV/de* | Tr I dRR/df | Sobolev
upates Norm
0 -9.87 | 1.63E-04 | 8.55E-04 9.13E-05 5.16 | 3.47E-04 | 1.62E-04 20.8
1 -10.3 | 1.45E-04 | 8.83E-04 9.13E-05 4.19 | 2.66E-04 | 1.06E-04 20.8
| 2 -10.5 | 2.03E-05 | 1.13E-03 9.13E-05 3.35 | 2.75E-04 | 6.89E-05 QU.S_‘
Grid 2
No. of | 0 GCV | dGCV/d | d*GCV/de* | Ty R dR/df | Sobolev
upates Norm
0 -10.5 | 7.36E-05 | 1.56E-03 9.13E-05 2.13 | 9.60E-05 | 4.09E-05 23.2
1 -11 1.62E-04 | 1.30E-03 1.04E-03 1.75 | 1.17E-04 | 2.63E-05 23.2
2 -11.3 | 6.14E-04 | 3.61E-04 3.75E-03 1.41 | 1.84E-04 | 1.68E-05 23.1
3 -11.4 | 2.36E-04 | 1.07E-03 3.75E-03 1.29 | 1.04E-04 | 1.35E-05 23.1
1 -11.6 | 2.19E-03 | -2.81E-03 1.36E-02 0.996 | 2.45E-04 | 8.14E-06 23.2
9 -11.4 | 1.56E-03 | -1.65E-03 5.00E-03 1.18 | 2.45E-04 | 1.13E-05 23.2
§ -11.1 | 4.52E-04 | 5.90E-04 7.59E-03 1.57 | 1.76E-04 | 1.9GE-05 23.2
7 -11.2 | 1.23E-04 | 1.25E-03 7.59E-03 1.47 | 8.59E-05 | 1.71E-05 23.2
8 -11.4 | 5.40E-04 | 4.03E-04 5.13E-03 1.27 | 1.65E-04 | 1.26E-05 23.1
9 -11.5 | 2.12E-04 | 1.07E-03 5.13E-03 1.18 | 9.02E-05 | 1.09E-05 23.2
10 -11.7 | 3.00E-03 | -4.48E-03 2.66E-02 0.971 | 2.80E-04 | 7.40E-06 23.2
11 -11.5 | 1.33E-04 | 1.29E-03 3.42E-02 1.12 | 6.77E-05 | 1.02E-05 23.2
12 -11.5 | 2.64E-03 | -3.77E-03 3.42E-02 1.09 | 2.94E-04 | 9.57E-06 23.2
13 -11.4 | 1.87E-03 | -2.23E-03 1.39E-02 | . 2.741£-04 | 1.18E-056 23.2
14 -11.3 | 4.12E-04 | 7.16E-04 1.84E-02 1.4 1.50E-04 | 1.60E-05 23.2
15 -11.3 | 4.50E-06 | 1.52E-03 1.84E-02 1.36 | 1.52E-05 | 1.49E-05 23.2
LG -11.4 | 3.17E-04 | 8.97E-04 1.84E-02 1,26 | 1.18E-04 | 1.28E-05 23.2
L -11.4 | 7.49E-05 | 1.39E-03 1.84FE-02 1.2 | 5.48E-05 | 1.17E-05 23.2
18 | -11.5 7.49E-05 | 1.39E-03 1.84E-02 1.12 | 1.48E-04 | 1.17E-05 23.2
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No.of | # GCV | dGCV/dE | d*GCV/de* | Tr R dR/df | Sobolev

upates Norm
0 -11.5 | 3.09E-03 | -4.49E-03 7.79E-02 0.977 | 2.86E-04 | 1.25E-05 46.5
1 -11.5 | 2.68E-03 | -3.66E-03 7.79E-02 1.04 | 2.84E-04 | 1.31E-05 46.5
2 -11.4 | 9.756E-04 | 1.26E-04 7.79E-02 1.1 | 1.81E-04 | 1.45E-05 46.9
3 -11.4 | 1.86E-03 | -1.81E-03 7.79E-02 1.11 | 2.52E-04 | 1.45E-05 46.4
il -11.4 | 2.35E-03 | -2.90E-03 7.79E-02 1.14 | 2.91E-04 | 1,50E-05 46.5
5 -11.3 | 2.13E-03 | -2.38E-03 7.79E-02 1.18 | 1.93E-04 | 1.64E-05 46.7

Grid 0
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Appendix D

Results for Chapter 13

The tables in this appendix are discussed in Chapter 12. They report updates
of various quantities relevant to the OPTRSS and MINGCV algorithms

described in Chapter 8. The notation is explained as follows:

0: the logarithm of the smoothing parameter.

¢, the r'/”’ update of the logarithm of the smoothing parameter.
R: the estimate of the residual sum of squares.

Signal: the estimate of ¢r(A), where A is the influence matrix.
GCV: the estimate of the generalised cross validation.

Sobolev Norm: as discussed in Chapter 12, the Sobolev Norm is the square

root of the curvature, va? Z«a.
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D.1 Results generated by the bivariate MINGCV
algorithm, for the African temperature

data set.

Cirid 6

376

No. of 0, GCV dGCV]do | d2GCV]do™ |
updates |
0 508 | BT 0.447 0o |
1 2.74 2.09 0.215 0.464
2 2.28 3.42 0.22 0.464
3 1.8 3.34 0.168 0.109
4 1.55 3.31 0.146 8.90E-02
B 1.3 3.27 0.13 6.35E-02
§ 1.05 3.24 0.114 6.46E-02
7 0.804 3.21 9.66E-02 6.87E-02
8 0.554 3.19 8.03E-02 6.53E-02
9 0.304 1 7 6.54E-02 5.97E-02
10 5.38E-02 315 5.20E-02 5.33E-02
11 -0.196 3.14 4.05E-02 4.62E-02
12 -0.446 3.18 | 3.07E-02 3.90k-02
Tr R dR/df | Sobolev norm Signal
149E+03 | 4.31 0 | 0 0.806
1.47TE+03 1,91 68T G.15 24.3
1.47TE+403 1.85 342 6.92 25.7
1.46E4-03 1.81 344 7.94 27.1
1. 461+03 1.79 2606 8.9 28.9
1.46E+03 1.78 232 9.47 20.7
1.46E+403 L 208 10,1 30.5
L. 461+03 .76 183 10.9 31.3
|.46+03 LiTo 157 1L 32.1
1.46E+403 1.75 133 12.4 32.8
1. 46E403 .74 110 152 33.5
1.46E+03 |.74 90,3 14.1 34.2
L46E+03 | 173 | 72.7 15 34.8







No, of t, GCV dGCV /do rlEC;C?V/MO"E
updates
0 -2.74 | 1.42 -1.63E-02 8.70E-02
! -2.56 1.42 6.62E-03 0.122
2 -2.61 1.42 L.15E-03 0.122
3 -2.62 1.42 -4.37E-04 0.122
4 -2.62 1.42 -1.51E-04 0.122
5 -2.62 1.42 -1.31E-04 0.122
L R rlfﬂ/d(f Sobolev norm Signal
LIIE+03 1 0906 | 167 | 66.4 381
981 (0.782 251 74.3 611
L.O1IE+03 | 0.802 267 69.5 487
299 0.796 201 70.9 493
097 0.795 260 Tl 495
998 0.796 260 7l 494 .
Grid 2

D.2  Results generated by the bivariate MINGCV
algorithm for the African temperature data
set, with an initial grid resolution of 25.6°.

| No. of 0, GCV | dGCV/do | dPGCV]de? |
_l:pdn.l.t_\h‘
0 4.18 4.99 0.812 0
| 3.68 4.53 0.41 0.804
2 3.18 4.41 0.207 0.405
3 2.68 4,34 0.108 0.198
4 2.18 4.27 7.16E-02 7.28E-02
5 1.68 4,2 5.60E-02 3.13E-02
§ 1,18 4.15 4.13E-02 2,04E-02
T 0.683 4.12 2.50E-02 3.08E-02
T R | dR/d@ | Sobolev norm Signal
1.48E403 | 4.31 () 0 ~ 0.875
L.46E+03 | 2.21 | 1.20E+03 5.56 13.5
1.46E4+03 | 2.11 614 6.08 15.2
1.46E+403 | 2.08 317 (.59 16.2
L46E403 | 2.06 170 6.07 16.9
1.A6E+03 | 2.04 115 7.45 17.5
L46E+03 | 2.03 01 .11 18.1
LAGE+03 | 2.0 68.7 8.86 18.7
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No. of 0, GCV dGCV/dO | d*GCV/db?
updates
0 -3.75 | 1.63 -0.164 2.73E-02
1 -3.64 | 1.54 -0.115 0.195
2 -3.14 1.6 -7.66E-02 7.66E-02
3 -2.64 | 1.48 -5.35E-02 4.62E-02
1 -2.14 | 1.49 -0.121 4.62E-02
§ -1.89 [ 1.51 -0.211 4.62E-02
6 -1.64 | 1.54 -0.429 4.62E-02
Tr R | dR/d0 | Sobolev norm Signal
1.19E<403 | 1.02 78.4 80.1 290
918 0.793 111 95.3 559
053 0.802 111 88.6 524
998 0.828 148 76.8 479
1.06E403 | 0.862 175 66.4 429
1.1I0E+03 | 0.907 130 58.8 379
1.12E4-03 | 0.934 | 53.1 5G.3 354
Grid 4
No. of i, GCV dGCV/do d* GOV /di*
updates
0 -1.64 1.57 -1.12 4.621-02
1 -1.14 187 -2.51 4.62E-02
2 -().888 1.83 -5.43 4.62E-02
i R dR/db Sobolev norm Signal
LISE+03 | 1.01 -143 59.2 329
L12E+03 | 0.952 6306 60.3 357
1.16E403 | 1.01 | -1.93E+03 (8.2 327
Grid 3
No. of 0, GCV AGCV/]de | d*GCV]do?
updates
0 -0.888 213 -12.3 1.625-02
1 -().388 2.63 -26.6 4.62E-02
2 -0.138 3.45 -00.8 4.62E-02
- R d i/ df) Sobolev norm Signal |
L18E4+03 | 1.18 | -4.75E+03 104 2099
L18E+03 | 1.16 | -1.11E404 104 299
| LIOE+03 | 1.31 | -2.49E+404 134 285

Grid 2
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No. of Og GCV dGCV/de | d*GCV/db?
updates
0 0.138 4.91 -149 4.62E-02
1 0.362 7.35 =320 4.62E-02
2 0.612 11.4 -687 4.62E-02
Tr I dl/do Sobolev norm Signal
1.21E+403 | 1.81 | -5.49E+404 251 271
1.21E403 | 1.81 | -1.46E+05 251 270
1.21E403 | 2.22 | -3.14E+405 324 267
Grid 1
No. of 04 GCV dGCV/do | &*GCV]de?
updates
0 0.612 11.4 -G87 4.62E-02
1 -0.693 13.2 -3.30E+03 4.62E-02
i R dR/db Sobolev norm Signal
1.21E+403 | 2.99 | -6.79E+05 906 264
1.21E403 | 1.15 | -3.28E+4-06 251 264
Grid 0
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D.3 Results generated by the bivariate MINGCV
algorithm, for the Australian temperature

data set.

No. of | 4, GCV [ dGCV/do | d*GCV/do*
updates o
0 1.86 1.2 0.257 0
| 1.36 1.14 9.42E-02 0.326
2 1.07 1.11 6.43E-02 0.103
3 0.567 1.08 5.42E-02 2.03E-02
4 6.74E-02 1.05 4.81E-02 1.21E-02
5 -0.433 1.02 4.46E-02 7.08E-03
6 -0.933 0.998 4,24E-02 4,351-03
7 -1.43 0.978 4.03E-02 4.27E-03
8 -1.93 0.959 3.90E-02 2.60E-03
Tr I dh‘./ df | Sobolev norm Signal |
1.13E+03 | 4.96 0 0o 1.12
L11E+403 1.07 294 6.5 21.6
1.11E403 1.05 112 OuT 28,2
1.11E+403 1.03 79.1 i 24.3
1.11E-403 1.01 67.2 8.37 26.2
1.111£+03 ().998 59.7 9.79 28.2
1.L1I0E4-03 | 0.984 55 11.6 30
1.10E+4-03 0.971 al.8 13.9 oL
| LI0E+03 | 0.96 | 487 |  16.7 33.3
Giricl 6
No. of 0, | GCV | dGCV/de | d&2GCV/de*? |
updates
0 [ -1.93 | 0.960 1.00E-02 2.60E-03 |
1 22,06 | 0.79 3.19E-02 2.60E-03
2 -2.56 | 0.775 2.33E-02 .70k-02
3 -3.06 | 0.766 .42E-02 1.83E-02
Tr R | dR/do | Sobolev norm | Signal |
.1I0E+03 | 0.947 | 46.7 D12 ~ 34.8
1.OGE+03 | 0.831 | 46.1 2] 73.5
1LOGE+03 | 0.819 | 34.4 27.9 79

Grid 5

382



No. of b, GCV dGCV /db d*GCV/db?
updates
0 -3.06 | 0.606 6.51E-03 1.83E-02
1 -3.56 0.6 4.68E-03 5.13E-03
2 -4.0 | 0.598 7.70E-04 7.83E-03
3 -4.4 | 0.598 -3.11E-04 7.83E-03
1 -4.36 | 0.597 -8.73E-04 7.83E-03
5 -4.24 | 0.597 2.28E-04 9.87E-03
§ -4.27 | 0.597 3.90E-04 9.87E-03
7 -4.31 | 0,597 2.98E-04 9,87E-03
A g R dR/df | Sobolev norm Signal
1.05E403 | 0.809 | 23.3 34.1 81.8
962 0.661 | 36.8 42.7 172
955 0.652 | 29.5 46.5 179
945 0.645 | 229 52.9 189
944 0.643 | 21.3 53.8 190
945 0.644 | 20.7 53.1 189
047 0.645 | 21.9 51.6 187
947 0.645 22 51.9 187
Grid 4
No. of 0, GCV dGCV/db d=GCV/db*
updates
0 -4.31 | 0.552 -1.99E-02 9.87E-03
1 -4.09 | 0,542 -9.76E-03 4,05E-02
2 -3.85 | 0.539 -4.91E-03 2.02E-02
3 -3.6 | 0.539 -5.40E-05 1.99E-02
4 -3.6 | 0.538 1.08E-04 1.99E-02
5 -3.61 | 0.538 -3.7T0E-06 1.99E-02
i g R | dR/df | Sobolev norm Signal
946 0.644 | 21.8 53 183
820 0.537 | 34.6 64.7 314
838 0.544 | 37.8 59.5 296
850 0.55 42.3 55.2 284
864 0.559 | 47.3 50.8 270
864 0.559 | 47.2 50.8 270
Grid 3

383




No. of o, GCV dGCV /db d*GCV/do*
updates |
0 -3.61 | 0.628 |  8.85E-05 1.99E-02
1 -3.61 | 0.529 4.37E-04 1.99E-02
2 -3.63 | 0.529 -5.15E-04 1.99E-02
3 -3.61 | 0.529 1.82E-04 1.99E-02
l -3.61 | 0.529 -1.61E-04 1.99E-02
5 -3.61 | 0.529 2.63E-05 1.99E-02
g I dR/df | Sobolev norm Signal
864 0.559 47 50.9 270
798 0.512 | 68.7 56.3 336
798 0.511 | 67.9 06.4 330
796 0.51 6G7.1 56.8 338
798 0.512 | 67.6 56.2 330
797 0.511 | 67.4 06.4 337

Grid 2

384
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