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Abstract

The central objective of the research is the development of virtual leaf surfaces as

components in structural plant models. The developed surfaces are used to accurately

model the deposition of a droplet spray on cotton, chenopodium and wheat plants.

This work is presented as a series of six papers that systematically describe the process

undertaken to digitise plant leaves, reconstruct the virtual leaf surfaces, include the

reconstructed plant leaves into the structural plant model and simulate the movement

of large droplets on the leaf surface. The motivation for this work is provided by

an ARC Linkage project, supported by the Australian Research Council, Syngenta,

Dow AgroSciences, Croplands/NuFarm, Plant Protection Chemistry NZ Ltd. and Bill

Gordon Consulting, which aims to model spray interaction with plant leaves.

Digitisation of plant leaves is necessary to produce accurate virtual reconstructions

of the physical leaves. A number of digitisation devices, including the Roland LPX-250,

Microsoft Kinect, Picoscan and Artec S, were tested for their applicability at digitising

plant leaves with a resolution of 200 µm. In addition to the desired resolution, the

portability and ease of use of the device was considered. Each device was assessed

against its ability to overcome difficulties associated with scanning plants, in particular

the environmental conditions that affect the plant, such as wind, light and temperature.

Consideration was also given to overcoming generic digitisation difficulties, including

sharp corners and thin leaf edges. The Artec S was identified as the most suitable

device of those tested for digitising plants under controlled conditions, due to its high

resolution, portability and digitisation technique.

The digitised data was then used with surface fitting algorithms to reconstruct the

digitised leaves. As a result of the error introduced through the digitisation process, it

was found that regularisation was required for fitting a smooth surface to the data. The

surface fitting techniques that were tested were the radial basis function Clough-Tocher

method, thin plate spline finite element method and discrete smoothing D2-splines.

Each of these techniques was assessed by its ability to represent the physical leaf as

a mathematical function. It is shown that discrete smoothing D2-splines, when used

in conjunction with reduced Hsieh-Clough-Tocher finite elements, produce virtual leaf

surfaces that best represent the geometric shape for cotton and chenopodium leaves.

Furthermore, this approach was found to be computationally efficient and the simplest
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to implement of the all the methods considered.

The thin plate spline finite element method requires the solution of large, sparse

poorly conditioned linear systems for the saddle point problem. An investigation into

preconditioning techniques, in particular the use of block preconditioners and con-

straint preconditioners, was conducted in order to accelerate convergence of the itera-

tive method used to compute an approximate solution of the linear system. Constraint

preconditioners, in conjunction with the Hestenes–Stiefel Conjugate Gradient method,

are shown to improve the rate of convergence of the solution procedure.

The structure of wheat leaves, in particular the bends and twists, requires additional

processing stages before discrete smoothing D2-splines can be applied to the data set.

The underlying idea is to use a non-linear mapping of a family of reference planes,

constructed in the least squares sense, to a single reference plane, where the discrete

smoothing D2-spline is constructed. In the parametric space, the discrete smoothing

D2-spline technique is able to reproduce virtual representations of physical wheat leaves.

The virtually constructed cotton, chenopodium and wheat leaves are then used in

a horizontal orientation to model spray-canopy interactions on horizontal leaves. This

model combines work from other components of the Linkage project to analyse the

effect of the different spray droplet formulations on the retention of the spray on the

plant leaves. The mechanisms of shatter, bounce and retention have been incorporated

into this model for horizontal leaves. It is shown that the droplet properties, spray

formulation and leaf surface characteristics all affect the proportion of spray retained

by the plant.

A secondary objective of this thesis is to simulate the motion of large droplets

on leaves. An investigation has been conducted on the model introduced by Oqielat

et al. [126], which assumed that the only force changing the velocity of the droplet

is gravity. A comparison of the computed droplet trajectory using a continuously

differentiable surface with the solution technique by Oqielat et al. is performed. Further

investigation using the shallow water equations to model the height of the droplet is also

conducted to compare the accuracy of the height of the droplet proposed by the original

model. It is shown that numerically solving the trajectory model with a continuous

surface, in conjunction with the shallow water equations for modelling the height of

the droplet, produces a model that is more computationally efficient than the existing

model, but retains the features of a gravity driven model.
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Notation and Definitions

The following notation and definitions are introduced which will be used throughout

this thesis.

u = [u1, u2, · · · , un]T
An n dimensional vector with real compo-
nents.

β = (β1, β2, · · · , βp)
A p dimensional multi-index with positive in-
teger components.

Hm(Ω) Hilbert Space of order m over Ω.

Cm(Ω)
The space of continuous functions with m
continuous partial derivatives over Ω.

N (A) The nullspace of the matrix A.

A ∩B The intersection of the sets A and B.

A ∪B The union of the sets A and B.

ρ(n)f = [f(x1), f(x2), · · · , f(xn)]T
Evaluate the function f at all of the elements
of the set {xi}ni=1.

Let β be a p dimensional multi-index, x be a p dimensional vector and f ∈ C|β|.

|β| =
p∑
i=1

βi Multi-index absolute value

β! =

p∏
i=1

βi Multi-index factorial

xβ =

p∏
i=1

xβii Multi-index power(
k

β

)
=
k!

β!
Multinomial coefficient, k = |β|

∂βf =
∂|β|f

∂xβ11 ∂x
β2
2 · · · ∂x

βp
p

Partial derivative with multi-index notation

Let u and v be vectors with the same dimension.

〈u,v〉 = uTv Standard Euclidean inner product

‖u‖2 = 〈u,u〉 Standard Euclidean norm
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Let Ω ⊂ Rd, f, g ∈ Hm(Ω), u,v ∈ Hm(Ω)n and β be a d-dimensional multi-index.

(f, g)L2(Ω) =

∫
Ω
fg dx Inner product on the Lebesgue space L2(Ω)

(f, g)Hm(Ω) =
∑
|β|=m

∫
Ω
∂βf ∂βg dx

Standard Sobolev semi-inner product of or-
der m

|f |2Hm(Ω) = (f, f)Hm(Ω) Standard Sobolev semi-norm of order m

(u,v)L2(Ω)n =
n∑
i=1

(ui, vi)L2(Ω) Vector L2(Ω) inner product
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CHAPTER ONE

INTRODUCTION

The application of pesticides are important in agriculture. They are used to control

pests that limit the growth of the plants to which they are applied. Recently, studies

have been undertaken which attempt to model the movement of these mixtures on the

plants. Realistic virtual plant models are required to be developed to accurately model

the behaviour of these mixtures.

Many known species of plants are able to be distinguished from their leaves alone [165].

For this reason, the plant model for a particular species should have a foliage structure

appropriate to that species. Furthermore, if the plant model is to be used in future

studies for modelling droplet motion on the surface or some other biological process,

then a realistic representation of the plant under consideration will provide more reli-

able results. This can only occur if an accurate and realistic model of the foliage for

the particular species is used, as the foliage of the plant performs many vital functions.

An individual leaf blade has detail at many scales. The most easily visible are the

morphology and venation structure. The morphology is the general shape of the leaf

blade and describes the ‘bumps’ on the surface, which is smooth for the leaves under

consideration. The venation structure is the arrangement of the veins on the blade.

Many other features are available under magnification and vary between plant species.

Some of these features include hairiness, slipperiness and fragrance. The collection of

individual leaf blades make up the foliage. A realistic virtual representation of a leaf’s

morphology will be the focus of this aspect of the project.

The research presented in this thesis, presented by published papers, forms part

of the Australian Research Council Linkage Project LP100200476 and was conducted

under an Australian Postgraduate Award - Industry Scholarship. The overall aim of the

Linkage Project was to develop mathematical models at multiple scales to help quantify,
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optimise and predict the complexities of agrichemical spray retention by plants, such as

identifying environmentally friendly technologies and cost effective spray formulations

for the plant species of interest. The nine specific objectives for the Linkage Project

were:

1. Development of leaf surface models;

2. Development of whole plant architectural models;

3. Modelling interception of spray droplets by plants;

4. Modelling the impaction behaviour of spray droplets on leaves;

5. Modelling the retention behaviour of spray droplets on single leaves;

6. Development of deposited droplet behaviour models on single leaves

based on thin-film theory;

7. Simulation of the agrichemical spray retention on single plant and small-scale

crop canopies;

8. Visualisation and graphics;

9. Experimental calibration and validation of the developed models.

This PhD research project addressed objectives 1, the development of leaf surface

models, and 6, the development of deposited droplet behaviour models on single leaves

based on thin-film theory.

The Linkage Project is of importance as the complexity of the challenges facing

agrichemical users have increased over recent years. This is caused by the conflicting

demands of consumers, who require the highest quality of produce, and regulators who

insist on safety and risk reduction to the consumer, operator and environment [192].

Biological efficacy, economic viability and detrimental environmental effects must all

be considered if optimal crop canopy penetration and coverage is the objective [192].

The use of models that could reliably predict total plant retention, within canopy

distribution, leaf coverage and solution run-off, based on spray formulation, spray

droplet and plant parameters, would provide a much better approach. Models for

spray deposition from aerial application do exist [171], however the focus has been on

spray drift, not retention. Models of spray deposition through the plant canopy [40], or

impaction onto the plant [13], also exist. However, these models assume, incorrectly,
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Figure 1.1: Graphical representation of the major components of the Linkage Project.
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that if a plant intercepts a droplet, it is retained. The innovation in the current Linkage

Project is on developing process-driven models for droplet interactions with the plant

at impaction and post-impaction times, as depicted in Figure 1.1. The model inputs

will include formulation, droplet and plant parameters, so the model will be able to pre-

dict the best formulation and droplet size spectrum to be used for a given plant/crop.

These inputs will need to be based on intelligent operational options to avoid excessive

spray drift while maximising retention.

Previous studies have resulted in empirical models for initial adhesion [48] and spray

retention [49, 132] by individual plants. These models utilise parameters that describe

solution properties, spray droplet physical properties, leaf surface characteristics and

the whole plant character. Progress has been made through individual efforts by re-

searchers on various elements of the spray retention processes. However there is a lack

of a coherent over-arching simulation package that is based on process driven principles

instead of empirical chemical-crop-environment specific scenarios. Considerable effort

has gone into understanding the effects of formulants [14, 44, 168] that can modify the

physical properties of the bulk spray solution, the spray droplet size, droplet adhesion

and uptake processes.

An important aspect of this research is the generation of a leaf surface representation

that acts as a component of the entire structural plant model and most importantly,

acts as the foundation for the droplet behaviour models. A large number of three-

dimensional data points must be captured from an actual leaf surface to generate these

surface representations. The best method for this is by using a laser scanner [93].

A number of pre-processing steps are required before the surface can be constructed,

which include the determination of a reference plane for the data and the subsequent

triangulation of the leaf surface to facilitate the surface fitting algorithm. After the

identification of the leaf surface boundary, a set of internal points is chosen over which

a triangulation of the surface is constructed. A novel hybrid approach was developed by

Loch [92,93] and Oqielat et al. [124,125] for leaf surface fitting over this triangulation,

which harnesses Clough-Tocher [85] and radial basis function methods [137] to achieve

a surface with a continuously turning normal. The hybrid method produced good

representations of Frangipani and Anthurium leaves. The work of Loch [92, 93] and

Oqielat et al. [124,125] is extended by investigating and developing alternative surface

fitting algorithms that are less computationally demanding and can be readily applied

to a wide variety of plant species.
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The model for simulating large droplets, having minimum diameter of 1 mm, in-

troduced by Oqielat et al. [126] was also investigated. This involved analysis of the

underlying model for the position of the droplet, based on a solid object rolling on

a surface under the force of gravity, and understanding the model for droplet height

using thin film theory. The original solution technique [126] uses a piecewise analytical

solution over a triangulation of the domain. This requires that the surface is treated

as piecewise linear, which may be a poor approximation to the leaf surface when a

coarse mesh is employed for the discretisation. This approach is extended by solving

the original evolution equations presented in Oqielat et al. [126] using numerical tech-

niques with a continuously differentiable surface, so that the assumption of a piecewise

linear surface is no longer required. The new model allows complex geometries to be

more accurately represented, as well as allowing the well researched area of numerical

solution techniques for solving differential equations to be employed. Further, the one

dimensional shallow water equations [169,193] are compared with the existing method

based on thin film theory for representing the height of the droplet.

1.1 Research Objectives

This thesis details the research undertaken for the development of leaf surface models

for cotton, chenopodium and wheat plants and the improvements made in the droplet

model of Oqielat et al. [126]. The first objective required investigation of data collec-

tion techniques to digitise full plants and individual leaves. The second objective was

to simulate large droplet (diameter greater than 1 mm) motion after adhesion to the

leaf surface. Visualisation techniques were also required to determine their effective-

ness at displaying virtually reconstructed leaf surfaces and droplet simulations. The

relationships between these objectives are shown in Figure 1.2.

An important aspect of this research is the generation of leaf surface representations

that act as components of entire structural plant models that can be used in a Linden-

mayer System (L-System) [138,140]. Most importantly, the Linkage Project utilises the

developed surfaces for droplet behaviour models. The continuity requirements imposed

on the surface by the droplet models resulted in the investigation of discrete smoothing

D2-spline techniques. This new technique for modelling leaf surfaces is a smoothing

method, which allows for errors introduced during digitisation to be reduced in the

resulting surface. Reduced Hsieh-Clough-Tocher finite element basis functions were

used, in conjunction with leaf surface data obtained from 3D digitisation techniques, to
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produce a function of the leaf amenable for integration into the droplet models. A fine

triangulated mesh was used to discretise the function of the leaf surface for visualisation

purposes.

It is a requirement of this objective that the surface model is suitable for integration

into the spray droplet model embedded within the L-Studio environment [140]. This is

achieved through the use of the tsurface function, which allows triangulated surfaces in

a rayshade-like file format to be included into the L-System representing the structural

plant model.

The second objective of simulating the motion of large droplets on a leaf surface

is based on improving the work presented in Oqielat et al. [126]. The leaf surfaces

produced from the first objective are used as the surfaces for the droplet simulation.

The requirement of the surface to be continuously differentiable allows the model for

the position of the droplet to be solved using numerical differential equation methods.

This allows the well researched area of numerical methods for the solution of differential

equations to be employed for application to the problem at hand. The simplified thin

film model is compared with the shallow water equations [169, 193] for determining

the height of the droplet. Through the use of the shallow water equations, additional

features such, as the profile of the droplet, can be accessed without the computational

expense of solving a full thin film model.

1.2 Research Methodology

The primary objective of the research in this thesis is the development of leaf surface

models for cotton, chenopodium and wheat plants. The unique contribution of this

work is the application of discrete smoothing D2-splines for reconstructing individual

cotton and chenopodium leaves. A new technique was developed for parameterising a

single wheat leaf, in order that discrete smoothing D2-spline techniques could be used

for reconstructing the surface.

Several approaches were considered for digitisation of the leaf surfaces. The initial

digitisation approach considered used the Microsoft Kinect [108]. This device was tested

on several leaf types, but having a resolution of approximately 1mm at close range was

not sufficiently accurate for the purposes of the project. Following this, a Roland

LPX-250 [149] was used to successfully digitise several cotton plants. The availability

of chenopodium and wheat plants for digitisation revealed that this device was not

appropriate for these plant species due to their fragile stems and leaves. Picoscan [1,2]
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was then tested on a chenopodium plant, before an Artec S [157] was purchased for use

in the project to digitise all plant species.

The techniques investigated for surface reconstruction are based on finding a func-

tion f in the Sobolev space of order s, Hs(Ω), that minimises the functional

f = argmin
f∈Hs(Ω)

n∑
i=1

(yi − f (xi))
2 + α |f |2Hs(Ω) , (1.1)

where α is a smoothing parameter which controls the relative significance of each of

the two terms and s is chosen so that the number of bounded derivatives required by

the application is enforced. The first term measures the distance between the surface

and the fitted function, while the second term is a penalty term used to control the

smoothness of the fitted function. The two techniques that were investigated in detail

were the thin plate spline finite element method described in Roberts et al. [147],

which finds a non-conforming function f in H1(Ω); and a discrete smoothing D2-spline

approach in Arcangéli [3], which finds a function f in H2(Ω).

The thin plate spline finite element method technique described in Roberts et

al. [147] was the first technique thoroughly investigated to solve (1.1). It was initially

used with non-conforming triangular linear finite elements, however, this technique did

not provide the required continuity of the gradient, so the technique was extended

to be used with reduced Hsieh-Clough-Tocher finite elements. The implementation of

this technique required the action of a reflexive generalised inverse of a matrix. New

theory was developed to provide a mathematical representation of the pseudoinverse

(see Chapter 4), which was then applied to this problem. Preconditioning techniques

which exploited the saddle point structure of the resulting linear system were investi-

gated to accelerate the iterative procedure used for computing an approximate solution

(see Chapter 5), whereby for some symmetric, semi-definite matrix A ∈ Rm×m, any

B ∈ Rm×n and appropriately sized vectors b1 and b2, a saddle point problem has the

form  A B

BT 0

x1

x2

 =

b1

b2

 . (1.2)

The matrices A and B that result from the thin plate spline finite element method

are large and sparse, thus requiring iterative techniques to determine a solution to the

linear system.

The second technique investigated was the use of discrete smoothing Dm-splines [3],

in particular discrete smoothing D2-splines, where the spline is an element in the

Sobolev space Hm(Ω). This technique uses conforming finite element techniques to
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solve (1.1). The primary advantage of using discrete smoothing D2-splines instead of

TPSFEM is the problem size, which is four times smaller for the same set of basis

functions and has no equivalence constraints required to be imposed. Several precondi-

tioning techniques were investigated for this linear system, but none of the techniques

considered were more efficient than using an incomplete Cholesky factorisation with

some specified fill-in allowed. The discrete smoothing D2-spline technique is used for

the reconstruction of cotton and chenopodium leaves.

The application of discrete smoothing D2-spline techniques require a single reference

plane, which is appropriate for both cotton and chenopodium plants. This assumption

is not appropriate for wheat plants, where a typical leaf may bend and/or twist. A

parameterisation must therefore be introduced based on the data set of the leaf, so that

a discrete smoothing D2-spline approach can be applied in the parameterised space.

The parameterisation is based on using B-splines to reconstruct the two edges and a

centre line along the leaf blade. It is shown in Chapter 6 that this technique is able to

generate a realistic representation of a wheat leaf from its digitised point cloud.

The leaf surface models are used in other research within the Linkage project for

spray droplet modelling. This requires the integration of the constructed surfaces with

L-Studio, the development environment for the spray droplet model. The tsurface

function is used to achieve this requirement, as it allows triangulated surfaces to be used

in the L-System under consideration. Chapter 7 describes a model for spray-canopy

interactions and utilises the leaf surfaces that have been developed in this work.

The requirement of a continuously differentiable surface allows the droplet model

presented in Oqielat et al. [126] to be solved using the Dormand-Prince pair of the

explicit Runge-Kutta (4, 5) order method [17]. A preliminary investigation into the

model for predicting the droplet radius is conducted to compare the prior technique

based on thin film theory and the shallow water equations [169,193]. This investigation

is detailed in Chapter 8 and indicates that numerically solving the necessary differential

equations along with the shallow water equations produces behaviour that appears to

better capture the physical situation, in the absence of any uptake or evaporation

effects.

1.3 Thesis Outline

This thesis is presented as a series of publications. The contribution to the literature

is presented in six papers, which makes up the content of this thesis. The outlines of
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each of these papers is given in the following subsections.

1.3.1 Outline of Chapter 2

This chapter includes a literature review of digitisation and surface fitting techniques

which were used throughout the research. Additional consideration is given to tech-

niques which have been applied to plant leaves. A preliminary literature review of

gravity driven droplet motion is also presented.

1.3.2 Outline of Chapter 3 for the Paper published in the Proceedings

of the Engineering Mathematics and Applications Conference

2013

The work on digitising the plants for use in developing plant models has was published

in the paper:

Kempthorne, D.M.; Barry, M.; Zabkiewicz, J.A. and Young, J. Three di-

mensional digitisation of plant leaves, in Proceedings of Engineering Math-

ematics and Applications Conference, Eds: Nelson, M.; Hamilton, T.; Jen-

nings, M. and Bunder, J. EMAC 2013, 2014, ANZIAM J 55, C138–C152.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/

7850/1792. [76]

Statement of Joint Authorship

Daryl M. Kempthorne (Candidate) Responsible for digitisation of all plant

species using the devices provided, wrote manuscript, corresponding author.

Mark Barry Provided assistance for using scanning hardware and computer soft-

ware, produced 3D prints of model leaves, proofreading and revision of the manuscript.

Jerzy A. Zabkiewicz Assistance for developing reliable scanning technique for

Artec S scanner, proofreading and revision of the manuscript.

Joseph Young Assistance with digitisation techniques, proofreading and revision

of the manuscript.

Abstract

Realistic plant models are important for leaf area and plant volume estimation,

reconstruction of growth canopies, structure generation of the plant, reconstruction

of leaf surfaces and agrichemical spray droplet modelling. This article investigates
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several different scanning devices for obtaining a three dimensional digitisation of plant

leaves with a point cloud resolution of 200− 500µm. The devices tested were a Roland

mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of

each of these devices for scanning plant leaves is discussed. The most suitable tested

digitisation device for scanning plant leaves is the Artec S scanner.

1.3.3 Outline of Chapter 4 for the Paper published in SIAM Journal

on Scientific Computing 2014

The work on developing virtual leaf surfaces has been is under final revision in the

paper:

Kempthorne, D.M.; Turner, I.W. and Belward, J.A. A comparison of

techniques for the reconstruction of leaf surfaces from scanned data. 2014,

SIAM Journal on Scientific Computing 36, B969–B988. Available online at

http://dx.doi.org/10.1137/130938761. [78]

Statement of Joint Authorship

Daryl M. Kempthorne (Candidate) Development of Matlab code to produce

reconstructions, investigation of techniques to improve the efficiency of the algorithm,

wrote the manuscript, corresponding author.

Ian W. Turner Assistance in finding resources to improve the efficiency of the

algorithms, suggestion of surface fitting techniques to investigate, provided feedback

and assistance on issues regarding the implementation of the algorithms, proofreading

and revision of the manuscript.

John A. Belward Provided assistance understanding the regularisation of the

techniques, proofreading and revision of the manuscript.

Paper Abstract

The foliage of a plant performs vital functions. As such, leaf models are required to

be developed for modelling the plant architecture from a set of scattered data captured

using a scanning device. The leaf model can be used for purely visual purposes or as

part of a further model, such as a fluid movement model or biological process. For

these reasons, an accurate mathematical representation of the surface and boundary is

required. This paper compares three approaches for fitting a continuously differentiable

surface through a set of scanned data points from a leaf surface, with a technique
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already used for reconstructing leaf surfaces. The techniques which will be considered

are discrete smoothing D2-splines [R. Arcangeli, M. C. Lopez de Silanes, and J. J.

Torrens, Multidimensional Minimising Splines, Springer, 2004.], the thin plate spline

finite element smoother [S. Roberts, M. Hegland, and I. Altas, Approximation of a

Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions, SIAM,

1 (2003), pp. 208–234] and the radial basis function Clough-Tocher method [M. Oqielat,

I. Turner, and J. Belward, A hybrid Clough-Tocher method for surface fitting with

application to leaf data., Appl. Math. Modelling, 33 (2009), pp. 2582-2595]. Numerical

results show that discrete smoothing D2-splines produce reconstructed leaf surfaces

which better represent the original physical leaf.

1.3.4 Outline of Chapter 5 for the Paper published in the Proceedings

of the Computational Techniques and Applications Conference

2012

The work on preconditioning the linear systems which result from applying the thin

plate spline finite element method was published in the paper:

Kempthorne, D.M.; Turner, I.W. and Belward, J.A. Computational

strategies for surface fitting using thin plate spline finite element methods,

in Proceedings of the 16th Biennial Computational Techniques and Appli-

cations Conference, Eds: McCue, S.; Moroney, T.; Mallet, D. and Bunder,

J. CTAC 2012, 2013, ANZIAM J 54, C56–C71. http://journal.austms.

org.au/ojs/index.php/ANZIAMJ/article/view/6337/1665. [77]

Statement of Joint Authorship

Daryl M. Kempthorne (Candidate) Development of Matlab code to test saddle

point preconditioning, interpretation and synthesis of the results to determine the effec-

tiveness of the considered preconditioner forms, wrote the manuscript, corresponding

author.

Ian W. Turner Recommended previous research to investigate to find effective

techniques, provided feedback and assistance on issues regarding the implementation

of the algorithms, proofreading and revision of the manuscript.

John A. Belward Recommended previous research to investigate to find effective

techniques, proofreading and revision of the manuscript.

Paper Abstract
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Thin Plate Spline Finite Element Methods are used to fit a surface to an irregularly

scattered data set [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate

Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208–234,

2003]. The computational bottleneck for this algorithm is the solution of large, ill-

conditioned systems of linear equations at each step of a generalised cross validation

algorithm. Preconditioning techniques are investigated to accelerate the convergence

of the solution of these systems using Krylov subspace methods. The preconditioners

under consideration are block diagonal, block triangular and constraint preconditioners

[M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.

Acta Numer., 14:1–137, 2005]. The effectiveness of each of these preconditioners is

examined on a sample data set taken from a known surface. From our numerical

investigation, constraint preconditioners appear to provide improved convergence for

this surface fitting problem compared to block preconditioners.

1.3.5 Outline of Chapter 6 for the Paper published in Functional

Plant Biology 2014

The work on developing a model for wheat leaves has been submitted in the paper:

Kempthorne, D.M.; Turner, I.W.; Belward, J.A.; McCue, S.W.; Barry,

M; Young, J.; Dorr, G.; Hanan, J.; and Zabkiewicz, J.A. Surface recon-

struction of wheat leaf morphology from three-dimensional scanned data.

2015, Functional Plant Biology 42, 444–451. Available online at http:

//dx.doi.org/10.1071/FP14058. [79]

Statement of Joint Authorship

Daryl M. Kempthorne (Candidate) Development of technique to parameterise

the surface, wrote manuscript, proofreading of manuscript.

Ian W. Turner Assistance with conceptualisation of the ideas, proofreading and

revision of manuscript.

John A. Belward Assistance with conceptualisation of the ideas, proofreading

and revision of manuscript.

Scott W. McCue Proofreading of manuscript, assisted with writing of manuscript.

Mark Barry Proofreading of manuscript, provided assistance with the use of Ge-

omagic and scanning technology.

Joseph Young Assistance with digitisation techniques, proofreading of manuscript.
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Gary J. Dorr Growing of plants to digitise, proofreading and revision of manuscript.

Jim Hanan Proofreading and revision of manuscript, assistance with advanced

edge detection techniques.

Jerzy A. Zabkiewicz Assisted with developing scanning technique for wheat

plants, proofreading of manuscript.

Paper Abstract

Realistic virtual models of leaf surfaces are important for a number of applications in

the plant sciences, such as modelling agrichemical spray droplet movement and spread-

ing on the surface. In this context, the virtual surfaces are required to be sufficiently

smooth to facilitate the use of the mathematical equations that govern the motion of

the droplet. While an effective approach is to apply discrete smoothing D2-spline algo-

rithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties

arise when dealing with wheat leaves that tend to twist and bend. To overcome this

topological difficulty, we develop a parameterisation technique that rotates and trans-

lates the original data, allowing the surface to be fitted using the discrete smoothing

D2-spline methods in the new parameter space. Our algorithm uses finite element

methods to represent the surface as a linear combination of compactly supported shape

functions. Numerical results confirm that the parameterisation, along with the use of

discrete smoothing D2-spline techniques, produces realistic virtual representations of

wheat leaves.

1.3.6 Outline of Chapter 7 for the Paper published in Ecological Mod-

elling 2013

The collaborative work on developing models for spray-canopy interactions was pub-

lished in the paper:

Dorr, G.J.; Kempthorne, D.M.; Mayo, L.C.; Forster, W.A.; Zabkiewicz,

J.A.; McCue, S.W.; Belward, J.A.; Turner, I.W.; Hanan, J. Towards a

model of spray-canopy interactions: Interception, shatter, bounce and re-

tention of droplets on horizontal leaves. 2014, Ecological Modelling, 290:94–

101. Available online at http://dx.doi.org/10.1016/j.ecolmodel.2013.

11.002. [41]

Statement of Joint Authorship
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Gary J. Dorr Development of simulation within L-Studio environment, investi-

gation of interception and retention models for droplets, wrote the manuscript, corre-

sponding author.

Daryl M. Kempthorne (Candidate) Development of virtual leaf surface models

and representation of the virtual leaves in an appropriate format to be used in the

droplet simulations performed by Gary Dorr within the L-Studio environment, proof-

reading of manuscript.

Lisa C. Mayo Investigation of shatter and bounce models, proofreading of manuscript.

W. Alison Forster Estimation of leaf parameters for use as inputs into the simu-

lation, proofreading of manuscript.

Jerzy A. Zabkiewicz Provided assistance to verify the simulation model, estima-

tion of leaf parameters for use as inputs into the simulation, proofreading of manuscript.

Scott W. McCue Assistance with investigation of shatter and bounce models,

proofreading of manuscript.

John A. Belward Assistance with developing leaf surface models, proofreading of

manuscript.

Ian W. Turner Assistance with developing leaf surface models, proofreading of

manuscript.

Jim Hanan Provided assistance with development within the L-Studio environ-

ment, proofreading of manuscript.

Paper Abstract

Pesticides used in agricultural systems must be applied in economically viable and

environmentally sensitive ways, and this often requires expensive field trials on spray

deposition and retention by plant foliage. Computational models to describe whether

a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding

parent or shatter daughter droplets are recaptured, would provide an estimate of spray

retention and thereby act as a useful guide prior to any field trials.

Parameter-driven interactive software has been implemented to enable the end-user

to study and visualise droplet interception and impaction on a single, horizontal leaf.

Living chenopodium, wheat and cotton leaves have been scanned to capture the surface

topography and realistic virtual leaf surface models have been generated. Individual

leaf models have then been subjected to virtual spray droplets and predictions made of

droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of

the droplets and the subsequent behaviour of any daughter droplets, up until re-capture,
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are simulated to give the predicted total spray retention by the leaf. A series of critical

thresholds for the stick, bounce, and shatter elements in the impaction process have

been developed for different combinations of formulation, droplet size and velocity, and

leaf surface characteristics to provide this output.

The results show that droplet properties, spray formulations and leaf surface char-

acteristics all influence the predicted amount of spray retained on a horizontal leaf

surface. Overall the predicted spray retention increases as formulation surface tension,

static contact angle, droplet size and velocity decreases. Predicted retention on cotton

is much higher than on chenopodium. The average predicted retention on a single

horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18,

30 and 85% for chenopodium, wheat and cotton, respectively.

1.3.7 Outline of Chapter 8 for the planned Paper to be submitted to

Computational Techniques and Applications Conference 2014

The work on improving the model for simulating large droplets is planned for submission

to the Computational Techniques and Applications Conference, 2014.

Kempthorne, D.M.; Turner, I.W.; Belward, J.A. and McCue, S.W. Mod-

elling large droplets on plant leaves. For submission to the Computational

Techniques and Applications Conference, 2014.

Statement of Joint Authorship

Daryl M. Kempthorne (Candidate) Implementation of the technique into Mat-

lab, investigation into techniques to improve the computational efficiency of the algo-

rithm, wrote the manuscript.

Ian W. Turner Assistance understanding existing work by Oqielat et al., sugges-

tion of using shallow water equations, proofreading and suggestions to the manuscript.

John A. Belward Assistance understanding existing work by Oqielat et al., proof-

reading and suggestions to the manuscript.

Scott W. McCue Assistance with ensuring that the simplifying assumptions to

the fluid mechanics were sound.

Paper Abstract

Agrichemical spray retention simulations require a model that realistically simulates

the trajectory of droplets on the leaf surface is required. A reliable spray retention sim-

ulation requires a large number of droplets, which can cause complex models to be
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computationally prohibitive. The simple droplet model proposed by Oqielat et al. [126]

is used as a foundation of this work, which is extended by using a continuously differ-

entiable surface and the shallow water equations for determining the droplet trajectory

and height. These extensions significantly improve the wall time required to perform

the simulation and provide the facility for the profile of the droplet in the direction of

motion to be determined.

1.3.8 Outline of Chapter 9

Conclusions and discussion for constructing virtual leaf surfaces and simulating large

droplets are made based on the techniques presented in this thesis. Future research for

improving the current techniques is also discussed.
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CHAPTER TWO

LITERATURE REVIEW

This work required investigation into three distinct fields, namely digitisation, surface

fitting and droplet motion. Section 2.1 provides a brief survey of the digitisation tech-

niques available for capturing plant leaves. This section also provides a description

of the digitisation devices that were used in the project. Surface reconstruction tech-

niques are reviewed in §2.2. A description of techniques appropriate for reconstructing

digitised data sets is detailed in §2.2.1. The simulation of droplets on plant leaves, in

particular large droplets with a diameter greater than 1mm, is discussed in §2.3.

2.1 Digitisation Techniques

Reverse engineering of physical components has been recognised as an important com-

ponent of manufacturing for some time [141,180]. The improved access and reliability of

Computer Aided Engineering, in conjunction with a significant increase in the number

of digitisation devices and techniques, has caused reverse engineering to be introduced

into the manufacturing process [71]. Three dimensional digitisation technology is now

used in a number of disciplines and our interest is in applying this technology for

capturing 3D plant data for reconstructing virtual leaf models.

Three dimensional digitisation techniques are used widely for analysis of the ecosys-

tem, the whole plant and sub-cellular features [22, 63, 82, 86, 122, 123, 159, 163]. This is

due to the 3D structure of the objects playing a critical role in plant functions, such

as photosynthesis and transpiration [122, 165]. Current research topics using 3D plant

data include estimating the leaf surface area and volume of the plant [110], reconstruct-

ing plant canopies [122,135,156], estimating wax growth [81] and analysing chlorophyll

fluorescence on a single leaf [123], structure generation of the plant [20, 128, 185] and
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reconstruction of the leaf surfaces [40, 41, 48, 126, 171]. The choice of the digitisation

device must be appropriate given the nature of the application.

There are two fundamentally different types of digitisation techniques, namely con-

tact and non-contact digitisation [33]. Contact digitisers extend a probe which makes

contact with the surface of the object [150]. This form of digitisation is not appropriate

for plants as the probe may penetrate or move the leaf blade, and therefore non-contact

digitisation is necessary. Additional requirements influence the choice of digitisation

technique, such as the environment, as these can affect the plants and impact the digi-

tisation process [146]. The non-contact digitisation techniques that are considered are

laser scanners in §2.1.1, structured light scanners in §2.1.2 and photographic recon-

struction in §2.1.3.

2.1.1 Laser scanners

A laser scanner operates by rapidly moving a laser beam across the surface of an

object [99, 109]. The distance between the laser source and the object is calculated

using the time of flight or change in amplitude [16, 33]. This method of digitisation is

capable of producing high accuracy, but is susceptible to slow capture rates [16]. Laser

scanning has been used for the digitisation of beech trees [23], calculation of crown

leaf area [110], understanding the canopy structure [122] and characterising plant leaf

properties [95].

Roland LPX-250 device specifications

The Roland LPX-250, shown in Figure 2.1, is a class 1 laser scanner that is able to

produce a full rotary or planar scan. The maximum object size is 254 mm diameter ×

406.4 mm height for a rotary scan and 230 mm width × 406.4 mm height for a planar

scan. This device synchronises the movement of the rotary table and vertical height of

the laser to identify the scanned position. The highest scanning resolution possible is

200 µm in both the horizontal and vertical directions. The object to be digitised must

be taken to the device, as the scanner is not portable due to its size and mass. This

information has been taken from the Roland LPX-250 User Manual [149].

2.1.2 Structured light scanners

Structured light scanners operate by projecting a known pattern onto an object that is

then captured by a camera [46] and is useful in a number of applications [80,130,188].
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Figure 2.1: Roland LPX-250 laser scanner.

Structured light scanners have a speed advantage over other techniques as multiple

points can be captured at once [16]. Fofi et al. [47] investigate the use of infra-red

structured light, imperceptible structured light and filtered structured light to evaluate

the relative performance and efficiency of each technique. They conclude that infra-red

structured light provides a good compromise between resolution and adaptability.

Microsoft Kinect device specifications

The Microsoft Kinect uses an infra-red emitter and sensor [108, 130] to produce a

point cloud of the scene. The field of view of the device is 57◦ horizontally and 43◦

vertically, with an angular resolution of 0.8◦ [130]. A possible issue using this device

is the absorption of infra-red light rays by the plant [106]. The infra-red signal from

the Microsoft Kinect emits with a wavelength of 830 nm [27], which is within the range

780− 900 nm that will not be significantly absorbed in healthy leaves [106].

Khoshelham and Elberink [80] perform theoretical and experimental accuracy and

resolution tests for indoor mapping applications. The authors show that the error in

depth measurement increases quadratically up to 7 cm at a distance of 5 m from the

object and state that data should be acquired within 1− 3 m of the target object. The

authors also state that the error obtained when scanning a planar door from 0.5 m is of

the order of a few millimetres. This excludes this device from reliably digitising plant

leaves as the error is far too large when the scale of the plant is considered.
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Figure 2.2: Microsoft Kinect device.

Picoscan device specifications

Picoscan is a structured light phase measuring profilometry scanner which uses a Canon

EOS1000 D/Rebel XS camera in conjunction with a Pico projector to digitise an object

with 0.1 mm point accuracy [1, 2]. This device requires a time-consuming calibration

phase for each unique placement to ensure data integrity. This causes unreasonably

long setup times (up to 30 minutes per configuration), inhibiting the use of this device

for scanning a number of plants.

Figure 2.3: Picoscan 3D scanner.

Artec S device specifications

The Artec S scanner uses structured white light to capture 3D data with high resolution

and accuracy. The resolution of this device is 0.2 mm with an accuracy of 0.05 mm. The

scanner is able to capture up to 288, 000 points per second. The field of view (H×W)

is 30 × 21◦, with the near clipping plane at 80 mm. The device operates by taking a

number of small scans which are automatically aligned to produce a full scan. This

approach means that there is no limit on the size of the object. This information has

been taken from the Artec S specifications [157].
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Figure 2.4: Artec S 3D scanner.

2.1.3 Photogrammetry

Photogrammetry consists of reconstructing three-dimensional data from a set of pho-

tographs [20, 129, 135, 160]. This approach was introduced by Idesawa [68] to generate

a three-dimensional reconstruction of a solid on a computer and digitising objects has

since received significant research interest, for example [20, 128, 129, 135, 143, 155, 160,

184]. This method usually requires some form of image segmentation [62] and visual

hull reconstruction [87]. Figure 2.5 shows the effect of a different view on the captured

photograph, which allows the object being photographed to be reconstructed.

Image 1
Camera 1

Image 2
Camera 2

Figure 2.5: Reconstruction of Figure 2 from Shlyakhter et al. [160] to illustrate the

effect of a different viewpoint to capture additional information about the object to be

reconstructed.

A number of techniques using this approach have been developed with an application

towards plants. Shlyakhter et al. [160] use this approach to construct a feasible model

23



Literature Review

of the skeleton of a tree. Based on the skeleton and edge information, the authors

reconstruct leaves by solving Laplace’s equation with Dirichlet boundary conditions

for visualisation of a plant. Phattaralerphong and Sinoquet [135] reconstruct a tree

crown to estimate the volume by taking a set of eight photographs. The approach

taken treats the scene as a set of voxels, where each additional photograph provides

information about whether a voxel is occupied or empty. The volume is then estimated

by the number of occupied voxels. Cai and Miklavcic [20] present an approach to extract

the skeleton of three-dimensional cereal plants from a set of orthographic photographs.

Three photographs of each plant are taken; one from above and two from the side

at a 90◦ angle. The structure of the plant is then used in future research for surface

reconstruction [21].

2.2 Surface reconstruction techniques

Surface fitting belongs to the more general class of approximation problems. Approx-

imation arises when it is required to determine, from a particular space of functions,

one function which best approximates a given data set. This problem can be de-

scribed as the determination of a function f such that fi ≈ f(xi) for a set of points

(xi, fi), i = 1, . . . , n. If a function f can be found that satisfies fi = f(xi), i = 1, . . . , n,

then f is an interpolating function of the data set [17, 34]. However, if it is sufficient

for fi ≈ f(xi), i = 1, . . . , n, then f can be chosen to minimise

n∑
i=1

(fi − f(xi))
2. (2.1)

The function f that minimises (2.1) is named the least squares function of best fit.

Although the choice of minimising a sum of squares has practical and theoretical ad-

vantages, more general choices are possible [181]. After a criterion to determine the

best approximation is chosen, the space of functions from which the best approximant

is to be determined should be defined. An approximant can then be constructed as a

linear combination of linearly independent basis functions that span the chosen space.

Throughout this section, it will be assumed that a set of n data points are given at

spatial locations {xi}ni=1 with corresponding function values {fi}ni=1. The data points

are contained in the domain Ω ⊂ Rd. It will also be assumed that the data set contains

at least d + 1 data points that are not contained within a d− 1 dimensional subspace

of Ω.

Least squares and penalised least squares methods find the function f ∈ V, which
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minimises the functional equation

J(f) =
n∑
i=1

(fi − f(xi))
2 + αp(f), (2.2)

where p(f) is a positive semi-definite penalty function, α is a parameter which controls

the relative importance of the two terms and V is the function space defining the

chosen properties the approximate function f must satisfy. The first term measures

the fit of the function to the data set and the second term penalises the function based

on the criterion required [186]. For example, taking p(f) = |f |H2(Ω) discourages non-

smooth functions. Standard least squares methods take p(f) to be identically 0. Least

squares methods have been extensively studied for a number of different applications,

including regression [26, 31], astronomy and geodesy [119], ocean interpolation [144]

and robotics [131,177]. Two penalised least squares methods will be discussed, namely

the thin plate spline finite element method [147, 148, 164] and the discrete smoothing

Dm-spline [3]. Generalised cross validation is then discussed as an automated technique

for determining the optimal value of α [67, 181], which is required as the variance of

any error in the data set is unknown [59].
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Figure 2.6: The point cloud of a single cotton leaf highlights some of the difficulties

faced when reconstructing the leaf surface. It can be observed that there exist a number

of regions with sparsely distributed data points. A 3D model of this point cloud can

be viewed in Adobe Reader.

The point cloud that results from the digitisation of a single cotton leaf is shown in

Figure 2.6. This figure highlights the shape of a three-lobed cotton leaf, as well as the

regions of the leaf surface that have no corresponding data points. The areas of the

surface with no data causes the reconstruction problem to be ill-posed, in the form of

a non-unique surface, if no regularisation is used with particular discrete sets of basis

functions [15,17,85].
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20131204
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+='  END\n';
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')||
    scene.nodes.getByName('Clipping Plane')){
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();
    }
  }
  restoreTrans(curTrans);
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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Nearest neighbour interpolation

Okabe et al. [121] define the nearest neighbour interpolating function as

f(x) = fi, where ‖x− xi‖ ≤ ‖x− xj‖ ∀j = 1, 2, . . . , n.

This definition assigns the fixed value fi to the Voronoi cell containing xi. The in-

terpolation function has jump discontinuities on the boundaries of each Voronoi cell,

unless the corresponding function values are equal. This approach is used in image

analysis in medical [32, 64] and remote sensing [24] contexts, where execution speed is

more important than accuracy.

Spline interpolation

A spline interpolation function is piecewise defined over the domain. This is expressed

as [34,121]

f(x) = gi(x),x ∈ Ωi,

where

Ω =

m⋃
i=1

Ωi and Ωi ∩ Ωj = ∅.

The function over each region of the domain is usually chosen as a low degree poly-

nomial. Continuity conditions for the function and partial derivatives are required to

be enforced on the boundaries of adjacent regions to ensure that f satisfies the desired

constraints. To ensure that f ∈ Cp, the necessary conditions are

g
(k)
i (x) = g

(k)
j (x), x ∈ ∂Ωi ∩ ∂Ωj for i, j = 1, 2, . . . ,m and k = 0, 1, . . . , p, (2.3)

where g
(k)
i (x) is the kth derivative of gi and ∂Ωi is the boundary of Ωi. In nearest

neighbour interpolation, gi(x) = fi which results in a discontinuous surface. The

choice of gi as a linear polynomial permits a solution such that f ∈ C0.

Spline interpolation does not suffer from Runge’s phenomenon, which causes oscilla-

tion in the interpolating function when high order polynomials are used to interpolate a

large number of points [17]. A major disadvantage of spline interpolation over polyno-

mial interpolation is handling the constraints imposed on the problem by the continuity

conditions (2.3).

Radial basis function interpolation

Interpolation using radial basis functions assumes the function is of the form [19]

f(x) = ϕ(x) +

n∑
i=1

ciφ (‖x− xi‖) ,
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where ϕ(x) is a low degree polynomial, the coefficients ci, i = 1, . . . , n are to be deter-

mined and φ(r) is a known function [9]. Some typical choices for φ(r) are shown in Ta-

ble 2.1. The Gaussian, multiquadric, inverse quadratic and inverse multiquadric require

estimation of the parameter c, which can strongly influence the accuracy of the interpo-

lation [54,125,145]. Polyharmonic splines, where the thin plate spline is a special case,

do not require this parameter estimation and have the property of scale-invariance [70].

Obtaining the coefficients ci is computationally prohibitive for large data sets, as the

coefficient matrix is typically large, dense and poorly conditioned [19,107,125].

Gaussian φ(r) = e−(cr)2

Multiquadric φ(r) =
√

1 + (cr)2

Inverse quadratic φ(r) =
1

1 + (cr)2

Inverse multiquadric φ(r) =
1√

1 + (cr)2

Polyharmonic spline φ(r) =


rk, k = 1, 3, 5, . . .

rk ln r, k = 2, 4, 6, . . .

Thin plate spline φ(r) = r2 ln r

Table 2.1: Definitions for commonly used radial basis functions.

Let ϕ(x) = a1p1(x) + . . . + akpk(x) for known polynomials pi(x), i = 1, . . . , k.

Applying this radial basis function technique to a data set results in the system of

linear equations [9]  Φ P

P T 0

c

a

 =

f

0

 , (2.4)

where Φij = φ (‖xi − xj‖) and Pij = pj(xi) denote the blocks of the coefficient matrix

A in (2.4). This form of linear system (2.4) is known as a saddle point problem and

preconditioning for use with an iterative technique to determine its solution has been

the subject of a large body of research [11,12,35,38,60,61,88]. Two such preconditioning

approaches are block preconditioning and constraint preconditioning.

Here the block diagonal PD and block triangular PT preconditioners, are given

by [11]

PD =

Φ 0

0 −S

 and PT =

Φ P

0 S

 (2.5)

respectively, where S = −P TΦ−1P is the Schur complement of the coefficient ma-

trix A. Each of these preconditioners is applied on the left of the linear system.

The complete eigendecomposition of P−1
D A is given in de Sturler and Liesen [35].
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The interesting point to note is the clustering of eigenvalues around the three points

1, 1
2

(
1 +
√

5
)
, and 1

2

(
1−
√

5
)

(see also Murphy et al. [116]). Benzi et al. [11] show

that P−1
T A has 1 as its distinct eigenvalue.

The second type of preconditioning strategy used is a constraint preconditioner [11].

This type of preconditioner takes the form

PC =

 Z P

P T 0

 ,
which is the same as A with the (1, 1) block modified. The matrix Z can be chosen

implicitly based on the Schilders factorisation [12], namely

PC =


P T1 0 M1

P T2 M2 E

0 0 I



D1 0 I

0 D2 0

I 0 0



P1 P2 0

0 MT
2 0

MT
1 ET I

 , (2.6)

where P = [P1|P2]. Benzi and Wathen [12] comment that any choice of D1, E and M1

and any nonsingular choice of D2 and M2 provide a suitable preconditioner.

Thin plate spline finite element method

The thin plate spline was formulated by Duchon [42] as an interpolation technique.

This technique uses the analogy that the points lie on a thin metal sheet, which is

twisted and bent to fit the data. The quality of the surface is measured in terms of

the error between the fitted surface and the known value at the data points, as well as

a smoothing term, which is introduced so that the amount of bending and twisting of

the plate can be controlled. This is formulated as minimising J(s) over all s ∈ H2(Ω),

where

J(s) = ‖ρ(n)s− y‖2 + α|s|2H2(Ω), (2.7)

and Ω ⊂ Rd. The following discussion assumes that α is fixed. Techniques for optimally

choosing α are discussed in the context of generalised cross validation.

Radial basis functions can be used to represent s as an analytic solution to (2.7)

by assuming the optimal function f ∈ H2(Ω) (i.e. J(f) ≤ J(s) ∀s ∈ H2(Ω)) is of the

form

f(x) =
M∑
i=1

akϕk(x) +
n∑
i=1

wiφ(‖x− xi‖), (2.8)

where the ϕk are order one monomials and φ is a suitable radial basis functions [7,148].

The unknown coefficients a = [a1, a2, · · · , aM ]T and w = [w1, w2, · · · , wn]T can be

28



Surface reconstruction techniques

obtained by solving the linear systemA+ αI P

P T 0

w

a

 =

y

0

 , (2.9)

where Aij = φ(xi,xj) and Pij = ϕ(‖xi − xj‖). This linear system has the form of a

saddle point problem [11, 12] and is difficult to solve as the coefficient matrix is large

and dense [10,161].

Roberts et al. [147] propose a technique for overcoming the computational expense

associated with calculating the solution in the original formulation by using mixed

finite element methods. This is done by reformulating the problem to include first

derivatives only that introduces the new variable u to be the gradient of s. This

technique formulates the minimisation in terms of the new variable u.

Let u = H1(Ω)d be the gradient of s, so that the solution to (2.7) is determined

up to a constant. For a general u ∈ H1(Ω)d, it cannot be expected to find an s

which satisfies ∇s = u. However, a unique solution for s can be found for a general u

satisfying

(∇s,∇v)L2(Ω)n = (u,∇v)L2(Ω)n , (2.10)

for all v ∈ H1(Ω). Noting that the variational form of (2.7) is

∀v ∈ H2(Ω), 〈ρ(n)s,ρ(n)v〉+ α(s, v)H2(Ω) = 〈y,ρ(n)v〉,

it follows that for v = 1, ρ(n)v = e and

〈ρ(n)s, e〉 = 〈y, e〉, (2.11)

where e = (1, . . . , 1)T . The unique s satisfying (2.10) and (2.11) is denoted Φ(u,y).

The function s also satisfies the Neumann boundary value problem

∆s = ∇ · u in Ω,

∇s · ν = u · ν on ∂Ω,

where the constant is determined by (2.11) and ν is the outward pointing normal to

the boundary of Ω.

This leads to the following formulation. Find u ∈ H1(Ω)d which minimises the

functional

J(u) = ‖ρ(n)Φ(u,y)− y‖2 + α|u|2H1(Ω)d . (2.12)

The formulations (2.7) and (2.12) are not equivalent. Equivalence can be enforced

by ensuring that u has zero curl (i.e. ∇ × u = 0). Roberts et al. [147] recommend
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dropping this condition and prove uniqueness and regularity results for the resulting

surface. This reduces the problem to essentially a H1(Ω) minimisation problem.

Simple polynomial spaces V ⊂ H1(Ω) are used to discretise (2.12). A mesh T

is associated with the finite element space V consisting of a set of elements with m

vertices. A basis must be introduced for V to obtain an explicit representation of s and

u. Let

h(x) =


h1(x)

h2(x)
...

hm(x)

 (2.13)

be a vector of basis functions for V. This allows s and u to be expressed in the form

s(x) = cTh(x) + y and u(x) = GTh(x), (2.14)

where c ∈ Rn, G = [g1,g2, · · · ,gd] ∈ Rm×d represent the coefficients of the functions

relative to the basis h and y = 〈y, e〉/n is the mean response.

Relation (2.10) can then be written as [148,164]

Lc =
d∑
i=1

Digi, (2.15)

where Lij = (∇hi,∇hj)L2(Ω) is a matrix approximation to−∆ andDkij = (∂xkhi, hj)L2(Ω)

is an approximation to −∂xk for k = 1, 2, . . . , d.

Defining Hij = li(xj), H ∈ Rm×n, (2.11) becomes in discrete form

cTHe + y eTe = yTe =⇒ cTHe = 0. (2.16)

Equation (2.15) can also be written as

c = L†
d∑
i=1

Digi, (2.17)

where L† is a reflexive, generalised inverse of L satisfying L†He = 0 due to (2.16).

Let

D =
[
D1 D2 · · · Dd

]
, K = HTL†D, L =


L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L

 and g =


g1

g2

...

gd

 .

The discretised form of (2.12) is given by

min
g
‖y −Kg‖2 + αgTLg (2.18)
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and c = L†Dg. The optimal solution of the minimisation problem (2.18) is equivalent

to finding the solution of the system of linear equations

(KTK + αL)g = KTy, (2.19)

where the coefficient matrix KTK + αL is symmetric and positive definite [147] and

dense due to the presence of L† in K. For large meshes, iterative methods are required

to solve (2.19) as the coefficient matrix cannot be stored in computer memory. These

large systems also require an iterative technique to determine their solution, such as a

Krylov subspace method [153], which only requires matrix-vector products to determine

the solution. For small meshes, direct methods can be used to solve (2.19) that exploit

the dense nature of the coefficient matrix.

This discussion has assumed a fixed value for α. The discussion for the optimal

choice of α is deferred to the section on generalised cross validation.

Discrete smoothing Dm-spline

Through the process of minimisation of a quadratic functional of order m in a Hilbert

space, the Dm-splines are obtained [3]. The current discussion will be concerned with

the Hilbert space L2(Ω) and discrete smoothing Dm-splines for the approximation of

functions over a bounded domain Ω ⊂ Rd on the finite element space V ⊂ Hm(Ω). A

mesh T consisting of a set of elements with k vertices is associated to V. A discrete

smoothing Dm-spline is an optimal solution, if it exists, to the problem

min
s∈V
‖y − ρ(n)f‖2 + α|f |2Hm(Ω), (2.20)

where α is a parameter that is required to be chosen. As was the case in the previous

section, the following discussion assumes that α is fixed. Techniques for optimally

choosing α are discussed in the context of generalised cross validation.

The equivalent variational problem to (2.20), where f is the optimal solution to

(2.20), is

∀v ∈ V, 〈ρ(n)f,ρ(n)v〉+ α(f, v)Hm(Ω) = 〈y,ρ(n)v〉. (2.21)

The Lax-Milgram Lemma ensures that both (2.20) and (2.21) admit the same solu-

tion [28]. Utreras [179] shows that the error can be bounded when ∂Ω is Lipschitz

and Arcangéli et al. [4] extend this result to show that discrete smoothing Dm-splines

converge almost surely.
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It is necessary to introduce a basis for V in order to solve (2.21). Letting {h1(x), . . . , hk(x)}

be a basis for V and writing

h(x) =


h1(x)

h2(x)
...

hk(x)

 , (2.22)

f ∈ V can be expressed as

f(x) =

k∑
i=1

cihi(x) = h(x)T c,

where c = [c1 · · · ck]T is a vector of unknown coefficients. Substituting h(x)T c for f

and hj(x) for v, j = 1, 2, . . . , k in (2.21) leads to the system of linear equations

(HHT + αR)c = Hy, (2.23)

where Hij = hi(xj) and Rij = (hi, hj)Hm(Ω). The solution of this problem is equivalent

to the minimisation of (2.20). Arcangéli et al. [3] notes that the coefficient matrix

HHT + αR is symmetric and positive definite with dimension k.

Generalised Cross Validation

Penalised least squares methods require a value to be assigned to α, which is the case

for both the thin plate spline finite element method and discrete smoothing Dm-spline

techniques previously discussed. One technique for optimally determining α is gener-

alised cross validation (GCV), as suggested by both Roberts et al. [147] and Arcangéli

et al. [3] for their respective techniques. The GCV method involves determining the

value of the parameter α that minimises

V (α) =
1
n ‖(In −Qα)y‖2(

1
n tr(In −Qα)

)2 ,
where In is the n × n identity matrix, Qα is the influence matrix [3, 147, 181] and n

is the number of data points. The influence matrix for each of the penalty methods

considered is given by

Qα = HT (HHT + αR)−1H

for the discrete smoothing D2-spline [3] and by

Qα = K(KTK + αL)−1KT
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for the thin plate spline finite element method [147]. For these two influence matri-

ces, the calculated optimal value for α is required to be scaled by 1/n in order for a

comparison to be made between different data sets.

A number of authors (e.g. [67]) note that evaluation of V (α) is impractical for large

data sets, as it becomes intractable to compute t(α) := tr(In − Qα). Hutchinson [67]

shows that an unbiased estimator for t(α) is given by

t̃(α) = n− uTQαu, (2.24)

where u is a vector with n elements, each being either −1 or 1 with probability 1/2.

Golub and Von Matt [59] note that the accuracy of the trace estimator t̃(α) can be

improved using several independent random vectors ui, so that

t̃(α) = n− 1

nu

nu∑
i=1

uTi Qαui. (2.25)

Bai et al. [8] indicate minimal gain by choosing a large value for nu, so that nu = 1

appears to be the best compromise between accuracy and computational cost [59]. This

gives the approximate GCV function

V (α) = n
‖(In −Qα)y‖2

(n− uTQαu)2 . (2.26)

Golub and Von Matt [59] provide upper U(α) and lower L(α) bounds for V (α), where

the influence matrix is of the form Qα = K(KTK + αI)KT , using Gauss quadrature.

The bounds are given by

U(α) = n
‖y‖2 −G(−1)

y (nα)− nαG(−2)
y (nα)(

n+ nαG
(−1)
u (nα)

)2 ,

L(α) = n
‖y‖2 −R(−1)

y (nα)− nαR(−2)
y (nα)(

n+ nαR
(−1)
u (nα)

)2 ,

where

G
(p)
a (λ) = ‖KTa‖2eT1 (BT

k Bk + λI)pe1,

R
(p)
a (λ) = ‖KTa‖2eT1 (UTk Uk + λI)pe1,

Bk is the (k+1)×k lower bidiagonal matrix of the Lanczos bidiagonalisation parameters

applied to the matrix K after k iterations, Uk = GBk is the upper bidiagonal matrix

after performing the Givens rotations stored in G on Bk and setting the (k + 1), k
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element to zero. For influence matrices of the form Qα = A(ATA + αLTL)AT , the

upper and lower bounds can be computed using the same process by setting

K =

 A
√
αL

 .
The derived upper and lower bounds can be used to approximate the function V (α)

to obtain an approximate optimal value for α provided that sufficiently many Lanczos

iterations are used in the calculation of U(α) and L(α) [59].

2.2.1 Leaf surface reconstruction

A number of techniques are present in the literature for reconstructing leaf surfaces.

Loch [93] surveyed interpolation techniques, including Shepard’s method and finite el-

ement methods, for reconstructing leaf surfaces. Loch et al. [92] describe the use of

linear and Hsieh-Clough-Tocher (HCT) finite elements over a triangular mesh to in-

terpolate a data set from a frangipani and flame tree leaf. Oqielat et al. [124, 125]

extend the HCT technique by Loch to improve the gradient estimates by using local

radial basis functions. Hong et al. [65] uses a skeleton based technique for first recon-

structing the venation structure from photographs, which is then used in conjunction

with the boundary of the leaf to estimate the leaf surface. A Bezier patch construction

is proposed by Wang [183] to model leaf surfaces from geometrical information. The

discussion now focuses on the application of the reconstruction techniques, particularly

the thin plate spline finite element method and the discrete smoothing Dm-spline.

At the macroscopic scale, the surface of a physical leaf is continuous in three di-

mensional space. Using the digitisation techniques outlined in §2.1, a discrete set of

n points {pi} ∈ R3 on a leaf are captured, possibly with some error introduced by

the chosen device. Using the notation introduced in §2.2, the data set obtained from

digitisation is {xi} with corresponding function values {fi} relative to the reference

plane P. The data points also satisfy {xi} ⊂ Ω ⊂ R2, and it is reasonable to assume

that at least three points are not collinear.

The reference plane used is the plane of minimum total least squares, expressed

as [56]

P = {z = ax+ by + c : (x, y, z) ∈ R3, a, b, c ∈ R}.

The unknown coefficients cref = [a, b, c]T can be calculated by solving [58]

(A+ E)cref = b + r, (2.27)
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where the ith row of A is [pix , piy , 1], bi = piz and E and r are calculated using

min
E,r
‖[E|r]‖F

subject to b + r ∈ Range(A+ E).

The solution to (2.27) can be found efficiently using the singular value decomposi-

tion [57]. The effect of using a reference plane is to provide an improved coordinate

system for reconstructing the surface.

The basis functions for the thin plate spline finite element method (2.13) are chosen

to be piecewise linear finite elements [147], where T is a triangular mesh. This choice

of basis function satisfies

hi(vj) = δij ,

for i = 1, 2, . . . ,m, j = 1, 2, . . . ,m, where δij is the Kronecker Delta, defined as

δij =


1, i = j

0, i 6= j

.

Additional details for these basis functions are provided in §2.2.2 in the context of finite

element methods.

As no derivative information is provided during digitisation, discrete smoothing

D2-splines (m = 2) are used for modelling the leaf surface. The basis functions for

the discrete smoothing D2-spline (2.22) are chosen to be reduced Hsieh-Clough-Tocher

finite elements, where T is a triangular mesh. This choice of basis functions satisfies

h3i−2(vj) = δij , ∂x1h3i−1(vj) = δij and ∂x2h3i(vj) = δij , (2.28)

for i = 1, 2, . . . ,m, j = 1, 2, . . . ,m. Additional details for these basis functions are also

provided in §2.2.2.

2.2.2 Finite element basis functions

Finite elements have desirable properties, such as compact support when used to rep-

resent basis functions over a mesh T [28, 36, 43]. These methods also provide compu-

tational advantages as each element in the mesh is transformed to a standard element

to perform all calculations. The discussion will focus on triangular meshes when used

with linear and reduced Hsieh-Clough-Tocher finite elements.

An affine transformation T : R2 → R2 is used to transform the coordinates between

the chosen standard triangle and a generic triangular element [85]. The two standard

triangles that are used in practice are shown in Figure 2.7.
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ξ

η

(0, 0) (1, 0)

(0, 1)

(a) Standard right angle triangular el-

ement

ξ

η

(
−1, −

√
3

3

) (
1, −

√
3

3

)

(
0, 2
√

3
3

)

(b) Standard equilateral triangular element.

Figure 2.7: Standard triangular finite elements.

Dupuis and Goël [43] outline the details of the standard triangle in Figure 2.7(a),

which has vertices at (0, 0), (1, 0) and (0, 1). The required transformation from this

standard triangle to a generic triangle is given byx
y

 =

x2 − x1 x3 − x1

y2 − y1 y3 − y1

ξ
η

+

x1

y1

 , (2.29)

where the coordinates of the generic triangle are (x1, y1), (x2, y2) and (x3, y3).

Lancaster and Salkauskas [85] outline the details of the standard triangle in Fig-

ure 2.7(a), which has vertices at
(
−1, −

√
3

3

)
,
(

1, −
√

3
3

)
and

(
0, 2
√

3
3

)
. The required

transformation from this standard triangle to a generic triangle is expressed asx
y

 =
1

2A

 2y3 − y2 − y1 −2x3 + x2 + x1

−
√

3 (y2 − y1)
√

3 (x2 − x1)

ξ
η


+

1

2A

 x3 (y2 + y1)− y3 (x2 + x1)

4
√

3A
3 +

√
3 (x3 (y2 − y1)− y3 (x2 − x1))

 ,
(2.30)

where A is the area of the generic triangle, defined as

A =
1

2
det


1 x1 y1

1 x2 y2

1 x3 y3

 .
Due to the simplicity of the transformation (2.29), the right triangle in Figure 2.7(a)

is used as the standard triangle for the linear and Hsieh-Clough-Tocher finite elements

described in the following sections.
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Standard linear element

The simplest finite element that can be used to form a continuous function over the

domain is piecewise linear. The canonical basis functions on the right standard triangle

for the linear element are defined as

φ1 = 1− ξ − η,

φ2 = ξ,

φ3 = η.

(2.31)

Each of these cardinal basis functions is shown graphically in Figure 2.8. When this

ξ

η

φ1

(a) φ1 = 1− ξ − η

ξ

η

φ2

(b) φ2 = ξ

ξ

η

φ3

(c) φ3 = η

Figure 2.8: Graphical representation of the cardinal basis functions for the standard

linear right triangle.

element is used to provide basis functions over a triangulation, the resulting surface

is piecewise linear across the domain. The linear finite element has many advantages,

including fast computation and simple partial derivatives.

Reduced Hsieh-Clough-Tocher finite element

The Hsieh-Clough-Tocher finite element (HCT) was developed by Clough and Tocher [30]

for analysing plate bending using finite element methods. This technique requires sub-

dividing the standard triangle into three smaller triangles, as shown in Figure 2.9 [85].

In this figure, the centroid of the element is used to subdivide it into three smaller

triangles T0, T1, T2. On each subtriangle Tj , a function of the form

ϕ(j) = c
(j)
0 + c

(j)
1 ξ + c

(j)
2 η + c

(j)
3 ξ2 + c

(j)
4 ξη + c

(j)
5 η2 + c

(j)
6 ξ3 + c

(j)
7 ξ2η + c

(j)
8 ξη2 + c

(j)
9 η3

is used to represent the HCT element on the subtriangle Tj [85]. By enforcing continuity

of the function and partial derivatives, the HCT element is uniquely determined by the
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ξ

η

P0 P1

P2

T2

T0T1

Figure 2.9: Subdivision of the triangular element into smaller triangles to obtain the

Hsieh-Clough-Tocher element.

function values and gradients at the vertices of the triangle, as well as the normal

derivatives at the midpoints of the edges of the triangle [28,43,85].

Under the assumption that the gradient varies linearly along a triangle edge, the

reduced HCT element is formed and is uniquely determined by the function values

and gradients at the vertices of the triangle. Dupuis and Goël [43] provide a canonical

set of basis functions for the reduced Hsieh-Clough-Tocher finite element. The nine

basis functions are given in Table 2.2, where φ10, φ11 and φ12 are defined as piecewise

polynomials on the respective subtriangles in Table 2.3.

1 ξ η ξ2 ξη η2 ξ3 ξ2η ξη2 η3 φ10 φ11 φ12

φ1 1 −3 −4 −3 2 4 4 2 1/3 −2/3 −2/3

φ2 1 −2 −3/2 1 3/2 1/2 1/12 5/12 −3/12

φ3 1 −3/2 −2 1/2 3/2 1 1/12 −3/12 5/12

φ4 3 2 −2 −2 −2 −2/3 1/3 −2/3

φ5 1/2 1/2 −1/2 −3/12 1/12 5/12 5/12

φ6 1 1/2 −2 −3/2 −1/2 5/12 1/12 −3/12

φ7 2 3 −2 −2 −2 −2/3 −2/3 1/3

φ8 1/2 1 −1/2 −3/2 −1 5/12 −3/12 1/12

φ9 1/2 −1/2 1/2 −3/12 5/12 1/12

Table 2.2: Coefficients for the canonical basis functions of a reduced Hsieh-Clough-

Tocher finite element.

The reduced HCT finite element is continuously differentiable over the element and

produces a continuously differentiable surface when they are used as canonical basis

functions on a triangulation. An advantage of the reduced HCT finite element is the
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1 ξ η ξ2 ξη η2 ξ3 ξ2η ξη2 η3

φ
(0)
10 −2 3 3 −12 −30 −12 5 21 21 5

φ
(1)
10 1 −3

φ
(2)
10 −3 1

φ
(0)
11 1 −3 −6 3 12 9 −1 −6 −9 4

φ
(1)
11 3 −6 −5 6 6

φ
(2)
11 −3 3 4

φ
(0)
12 1 −6 −3 9 12 3 −4 −9 −6 1

φ
(1)
12 −3 4 3

φ
(2)
12 −6 3 6 6 −5

Table 2.3: Coefficients for φ10, φ11 and φ12 which are defined as piecewise polynomials

on each subtriangle of the Hsieh-Clough-Tocher finite element.

guarantee of a continuous gradient across the triangulation. The cost of having this

functionality is that the basis functions are more complex to evaluate. Ciarlet [29]

shows that the interpolation error for the reduced HCT finite element for any function

v ∈ H3(Ω) over the element K ⊂ Ω is

|v −ΠKv|Hm(K) ≤ Ch3−m
K |v|Hm(K), m = 0, 1, 2,

where ΠKv is the reduced HCT interpolant of v over K and hK is the diameter of the

element K. In this work m = 2, so that the error in the fitted surface is bounded by

the diameter of the element K. This observations ensures the method converges to the

true surface as the size of the elements approaches zero.

2.3 Droplet simulation

The motion of droplets over a leaf surface is important as it affects many aspects

when spraying the leaf with a fluid [14, 44, 168]. This section discusses the simulation

of droplets after they have adhered to a leaf surface. A brief overview of droplet

simulation is initially given, before a gravity-driven model for simulating large droplets

(diameter > 1mm) by Oqielat et al. [126] is presented in §2.3.1.

The Navier-Stokes equations [84], widely accepted as describing the motion of fluids,

are given by

ρ

(
∂v

∂t
+ 〈v,∇v〉

)
= −∇p+ 〈∇,T〉+ f , (2.32)
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where ρ is the density of the fluid, v is the flow velocity, p is the pressure, T is the

deviatoric stress tensor

T =


τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 ,
and f represents any other body forces. Under the long wave approximation assumption

for Newtonian fluids, (2.32) is formulated for the height h of these flows as [151,152]

∂h

∂t
= − 1

3ν

〈
∇, σh3∇∇2h− gh3 cos θ∇h+ gh3 sin θi

〉
, (2.33)

where ∇ = [∂x, ∂y]
T , ν is the kinematic viscosity, σ is the surface tension, g is the force

due to gravity and θ is the angle of the surface. Mayo et al. [100,101] use this approach

to model the movement of droplets on leaf surfaces.

A number of techniques have been used in the past to simulate droplet motion and

were developed in the context of animation [45, 51, 52, 72–74], where computational

efficiency was more important than the precision of the solution. Several techniques

have considered more realistic simulations by simplifying (2.32) based on additional

assumptions placed on the droplet [53,83,90,94,173].

2.3.1 A gravity driven simplified model

An alternate model was proposed by Oqielat et al. [126] for simulating the motion of

large droplets (diameter > 1mm) moving on a leaf surface by assuming that the only

force causing motion is gravity. It must be noted that this model does not attempt to

solve (2.32). The simple model is given by the initial value problem

m
dv

dt
= md(p)− kfv − αd(p), (2.34)

p(0) = p0 and v(0) = v0, where p(t) is the position and v(t) is the velocity of the

droplet at time t, m is the mass of the droplet, kf is a friction factor and α is used to

allow for internal resistance within the droplet. The force due to gravity is represented

by the function

d(p) = g − 〈n,g〉n

where n is the upward pointing unit normal vector to the surface f(x, y) at the point

p and g = −gk. The height of the droplet front at time t is also given by [66,126]

h ∼
(

ν

g sin θ

)√
x

t
(2.35)
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where the droplet front is located at

x(t) =

(
9Ag sin θ

4ν
t

)1/3

,

A is the surface area of the thin film

A =

∫ xN (t)

0
h(x, t) dx,

and sin θ is computed as

sin θ =
〈g,d(p)〉
‖g‖‖d(p)‖

.

The motion of the droplet is approximated by solving (2.34) over a triangulated, piece-

wise linear surface. The exact solution of (2.34) can be found on an individual triangle,

as the normal gradient is constant, to produce a piecewise function representing the

position of the droplet. The simulation is terminated when either the droplet moves

beyond the edge of the leaf, or the height h in (2.35) becomes smaller than a predeter-

mined tolerance.

2.3.2 Shallow water equations

The shallow water equations describe the height and velocity of an incompressible

fluid under the assumption that the wavelength of the fluid is much larger than the

fluid’s height (called the long wave assumption) [166]. Beginning from the Navier-Stokes

equations for modelling fluid motion, the shallow water equations are derived under the

long wave assumption with the following boundary conditions, where z = b(x, y) is the

bottom of the fluid and h(x, y) is the depth of the fluid at the position (x, y) [166,187].

At the bottom of the fluid, the no slip condition, i.e. vx = vy = 0, is imposed so that

the fluid has no velocity relative to the boundary, no flow is permitted through the

bottom

vx
∂b

∂x
+ vy

∂b

∂y
+ vz = 0,

and the bottom shear stress in the x and y directions matches the bottom friction, τbx

and τby respectively,

τbx = τxx
∂b

∂x
+ τxy

∂b

∂y
+ τxz,

τby = τxy
∂b

∂x
+ τyy

∂b

∂y
+ τyz.
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The boundary conditions imposed on the free surface at z = h ensures that there is no

relative normal flow
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂x
− vz = 0,

the surface shear stress in the x and y directions matches the surface friction, τsx and

τsy respectively,

τsx = −τxx
∂b

∂x
− τxy

∂b

∂y
+ τxz,

τsy = −τxy
∂b

∂x
− τyy

∂b

∂y
+ τyz,

and the pressure in the fluid is dependent on the depth only, p = ρg(h− z).

Defining the depth-averaged velocities as

vx =
1

h− b

∫ h

b
vx dz, vy =

1

h− b

∫ h

b
vy dz,

the 2D shallow water equations are given by

∂h

∂t
+
∂(hvx)

∂x
+
∂(hvy)

∂y
= 0,

∂(hvx)

∂t
+
∂(hv2

x + gh2/2)

∂x
+
∂(hvxvy)

∂y
=

1

ρ
(τsx − τbx)− hg∂h

∂x
,

∂(hvy)

∂t
+
∂(hvxvy)

∂y
+
∂(hv2

y + gh2/2)

∂y
=

1

ρ
(τsy − τby)− hg

∂h

∂y
.

In the absence of surface and bottom friction, this system of equations is named the

classical Saint-Venant system [6,115,120].

This work will utilise the shallow water equations in one spatial dimension with

density ρ = 1 and no surface or bottom friction

∂h

∂t
+
∂(hvx)

∂x
= 0, (2.36)

∂(hvx)

∂t
+
∂(hv2

x + gh2/2)

∂x
= −hg∂h

∂x
. (2.37)

Furthermore, by using the simple model (2.34), the velocity of the droplet will be

known, and is used in place of (2.37). As a result, the height model (2.35) detailed

in §2.3.1 is now computed using (2.36) along the path of the droplet, which is able to

provide a profile of the droplet in the direction of motion.
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3.1 Introduction

Accurate digital scanning and subsequent generation of 3D foliage models are important

for realistic reconstruction of entire plants. The characteristics of the leaves affect

agrichemical spray droplet impaction, retention and deposited droplet behaviour [40,

41, 48, 126, 171]. In this article, we discuss the capture of leaf surface geometry at a

scale of 200–500µm for the purposes of accurately modelling the movement of droplets

on leaves.

A number of techniques are available for collecting a point cloud of a plant, including

3D scanning [23, 93, 110, 122, 156], photograph extraction [20, 128, 135, 142, 160, 185]

and electron scanning microscopy [81, 91, 123]. Current research that uses 3D plant

data includes estimating the leaf area and volume of the plant [110], reconstructing

plant canopies [122, 135, 156], estimating wax growth [81] and analysing chlorophyll

fluorescence on a single leaf [123], structure generation of the plant [20, 128, 185] and

reconstruction of leaf surfaces [40,41,48,126,171].
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3D digitisation of plant leaves

Several different scanning devices, including the Roland mdx-20, Microsoft Kinect,

Roland lpx-250 and Artec S, were used for data collection, and are discussed with

their respective strengths and weaknesses for scanning plant leaves. We show that of

these three scanners, the Artec S is the most versatile for scanning the plant species

of interest; cotton, chenopodium and wheat. This work is a crucial component in the

construction of virtual plant models [41].

3.2 3D digitisation hardware

A number of difficulties associated with scanning plants must be considered in the choice

of digitisation hardware for plant leaves. The standard issues of accurately scanning

‘sharp’ edges is prevalent due to the thinness of leaves, as well as the lack of control

over commercial post processing software which is bundled with the devices. Other

difficulties associated with plant leaf scanning include environmental conditions and

leaf obstruction, where plant leaves obstruct each other.

Environmental conditions, such as light and wind, have a significant impact on the

geometry of the chenopodium and wheat plants. Chenopodium is very sensitive to light

conditions [146], to the extent that the leaves change orientation minutes after light

conditions are changed to perform the scan of the plant. Wheat is very sensitive to

wind conditions due to the grassy nature of the species.

The nature of plant growth frequently leads to leaves being fully or partially ob-

scured by other leaves when viewed from a direction perpendicular to the leaf surface.

As the scanners used are most effective when operated from this position, care has to

be taken when scanning these particular leaves.

The 3D scanners which were considered were a Roland mdx-20, Microsoft Kinect,

Roland lpx-250, Picoscan and Artec S. These were chosen as they employ different

scanning techniques and produced scans with a range of resolutions. Details for each

of the scanners which were tested for scanning plant leaves are given in Table 3.1.

3.2.1 Roland MD20 contact scanner

The contact scanner provides the highest resolution point clouds at 50µm resolution.

This device works by extending a needle at the given resolution until it contacts the

object’s surface. Its method of scanning is unsuitable for plant leaves due to their soft

and penetrable nature.
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Scanner Technique Resolution Cost

Roland mdx-20 contact scanner 50µm AU$7 000

Microsoft Kinect ir depth scanner 1000µm US$149

Roland LPX-250 Scanner red laser scanner 200µm AU$10 000

Picoscan structured light 500µm e1 999

Artec S scanner structured light 200µm AU$15 000

Table 3.1: Summary of the scanner hardware tested for scanning plant leaves.

3.2.2 Microsoft Kinect scanner

The Microsoft Kinect scanner (Figure 3.1(a)) uses an infrared (ir) emitter and ir depth

sensor to produce scans of the plants, but they not sufficiently detailed for our use. The

device’s low resolution was not able to capture surface features at the required detail

and further use of this device was ceased. This scanner was tested due to its low

purchase cost, widespread availability and portability.

3.2.3 Roland LPX-250 scanner

The Roland lpx-250 Scanner (Figure 3.1(b)) uses a red laser scanner which moves in

conjunction with a turntable to produce a 3D point cloud of the plant. This scanner

has an advantage over the other scanners in that the entire plant is scanned at once

and the automated movement of the device allows the software to correctly position all

points at the resolution requested. Some disadvantages are that the movement of the

turntable caused the chenopodium and wheat plants to move, producing incorrect scans

of the plant. Also as the direction of the laser beam is fixed, this caused horizontal and

obstructed leaves to not be scanned. This scanner is not portable, making it unsuitable

in a field situation, as well as having a limited size object capacity.

3.2.4 Picoscan

Picoscan (Figure 3.1(c)) uses structured light and a standard camera to perform a

planar scan of the plant. This requires the plant to be rotated manually a number of

times to scan all directions. This is followed by an alignment procedure to ensure all

planar scans are in the same orientation. This scanner requires a detailed calibration

each time the distance between the object and camera changes to ensure an accurate

scanning process. Picoscan also requires careful setup of the camera sensing properties,

such as aperture, shutter speed and white balance, to ensure that the structured light
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(a) Microsoft Kinect (b) Roland LPX-250

(c) Picoscan (d) Artec S scanner

Figure 3.1: Images of the scanning hardware tested on plant leaves.

pattern is reliably captured by the camera.

3.2.5 Artec S scanner

The Artec S scanner (Figure 3.1(d)) is the most expensive of the scanners tested and

uses structured light to capture the geometry of the plant. This scanner captures points

at the same resolution as the Roland lpx-250, but moves freely as it is a handheld

device. This overcomes the difficulties associated with the Roland lpx-250 as the

Artec S can be positioned to ensure that all leaves are scanned and is transported to

the location of the plant. The major difficulty associated with scanning plants using

this device is ensuring that there is enough of the surface visible in the device’s field of

vision, due to large regions of empty space around the plant leaves. This scanner was

most effective when performing a number of smaller individual scans, which were then

aligned and incorporated into the point cloud.
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3.3 Leaf surface scanning

During the project, individual scanners were available at different times. Hence, a

direct comparison of the scanners on the same plant at the growth stage is not available.

Therefore, only a comparison of large leaf feature scanning is feasible. Thus the ability

of the individual scanners to capture the stem, petiole and leaf portions of the respective

plants is not reported here.

3.3.1 Cotton leaf scanning

The cotton plant leaves were the most simple to scan. This is due to their large leaf area

and the geometrical shape. The scanners had difficulty accurately capturing the petioles

due to their thin size and obstruction by the leaf to which they are attached. This was

consistent across all scanners, with the exception of the Roland lpx-250, which also

had difficulty scanning the horizontal leaves. The Artec S was able to produce the most

consistent 3D representation of the leaves due to the handheld nature of the device,

allowing it to be positioned appropriately to obtain the best quality data. A 3D scan of

a cotton plant obtained with the Artec S scanner is viewable in Figure 3.2 with Adobe

Reader (Click the image to activate the interactive video).

3.3.2 Chenopodium leaf scanning

The chenopodium plants were unable to be accurately scanned using the Roland lpx-

250 due to the flexible nature of the main stem, which moved the plant with the torsion

of the turntable. Difficulties in scanning these plants are further compounded by the

jagged edges of the leaves. The petioles were also very difficult to capture accurately.

The Artec S was the most consistent scanning device for chenopodium, and was able

to accurately capture the shape of the large and small leaves, with minor errors at the

tips of the irregular edge. A 3D scan of a chenopodium plant obtained using the Artec

S scanner is viewable in Figure 3.3 with Adobe Reader.

3.3.3 Wheat leaf scanning

Wheat plants are the most difficult of the three species to scan, as changes in wind

conditions alter the shape of the plant. Due to this restriction, the Roland lpx-250 was

unsuitable. The difficulty in scanning this plant type is further compounded due to

the thin leaves and restrictions within the provided commercial software to determine
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Figure 3.2: (top) 3D scan of a cotton plant using the Artec S scanner; (left) image of

a cotton plant. The interactive 3D scan is viewable in Adobe Reader 9.0 or later (click

the image to activate the interactive video).
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Figure 3.3: (top) 3D scan of a chenopodium plant using the Artec S scanner;(left) image

of a chenopodium plant. The interactive 3D scan is viewable in Adobe Reader 9.0 or

later (click the image to activate the interactive video).
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between real and artifact points. The Artec S software was the most configurable in

this manner, but was still largely unsuitable. This scanner again produced the most

consistent scans of the plants. A 3D scan of a wheat plant obtained using the Artec S

scanner is viewable in Figure 3.4 with Adobe Reader.

3.4 Conclusion

This article discussed the scanning of three plant species and the difficulties associated

with the accurate determination of their leaf geometry to a resolution of 200− 500µm.

For scanning cotton, chenopodium and wheat plants, the Artec S scanner is the most

versatile and consistent of the 3D scanners discussed in this article. This is due to the

versatility of its handheld operation and the resolution achievable by the device.
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Conclusion

Figure 3.4: (top) 3D scan of a wheat plant using the Artec S scanner; (left) image of a

wheat plant. The interactive 3D scan is viewable in Adobe Reader 9.0 or later (click

the image to activate the interactive video).
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4.1 Introduction

The application of pesticides, herbicides and fertilisers are important in agriculture.

They provide improved growing conditions for the plants to which they are applied.

Recently, studies have been undertaken to model the adhesion and movement of these

solutions on the plants [40, 48, 126, 171]. Realistic virtual plant models are developed

to model the behaviour of these solutions accurately. This fundamental research of leaf

surface construction from scattered data is of importance in the context of the larger

framework that the current work resides within, where droplet impaction, retention

and deposited droplet behaviour are investigated [41].

Many known species of plants are able to be distinguished from their leaves alone

[165, p. 108]. For this reason, the plant model for a particular species should have

a foliage structure appropriate to that species. Furthermore, if the plant model is to
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be used in future studies for modelling droplet motion on the surface or some other

biological process, then a realistic representation of the plant under consideration will

provide more reliable results. This can only occur if an accurate and realistic model of

the foliage for the particular species is used, as the foliage of the plant performs many

vital functions, such as photosynthesis and transpiration [165]. Accurate representa-

tions of a leaf surface have been previously considered by Loch [92, 93] and then this

work was developed further by Oqielat et al. [124–126], using radial basis functions

with Hsieh-Clough-Tocher (HCT) elements to model the leaf surface.

The scan of a leaf is performed using a 3D laser scanner, as recommended by

Loch [93], which produces a point cloud of the leaf. This point cloud is a discrete

sample of the surface under consideration, possibly with some error in the location of

the data points. To perform analysis on, or produce a virtual reconstruction of the

leaf surface, surface fitting techniques are necessary. This surface may have a number

of characteristics and the domain Ω may be arbitrarily shaped (See Figure 4.1(b) for

an example of a cotton leaf). The leaf surfaces under consideration are assumed to

be continuously differentiable with an arbitrary boundary. The fitted surface should

have these same properties to be an accurate virtual representation. The aim of this

paper is to compare the effectiveness of constructing virtual leaves through the use of

discrete smoothing D2-splines [3], the thin plate spline finite element method [147] and

the radial basis function Clough-Tocher method [124,125].

The solution procedure for each of these techniques discretises the domain and uses a

finite element method (FEM) approach to determine the function in some finite element

space V. Since it is assumed that the virtual leaf surface is continuously differentiable,

we must have V ⊂ H2(Ω). Furthermore, due to the nature of the domain, triangular

elements are used to discretise Ω, which motivates the use of the reduced HCT finite

element.

The process undertaken to obtain a solution of the discretised problem for each

of these approaches is discussed in §4.3. A comparison of the solution strategies,

along with the previous technique described by Oqielat et al. [124,125], is discussed in

§4.4. Results are exhibited for two point clouds of scanned leaves; a cotton leaf and a

chenopodium leaf. It is shown that discrete smoothing D2-splines using reduced HCT

basis functions produce a surface that best represents the physical leaves.
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4.2 Problem description and discretisation

4.2.1 Notation

The following notation is used throughout the paper.

The L2(Ω) inner product is given by

(u, v)L2(Ω) =

∫
Ω
uv dx,

and the standard Sobolev semi-inner products are given by

(u, v)H1(Ω) =

∫
Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx

and

(u, v)H2(Ω) =

∫
Ω

(
∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x1∂x2

∂2v

∂x1∂x2
+
∂2u

∂x2
2

∂2v

∂x2
2

)
dx,

with the corresponding semi-norms given by

|v|2H1(Ω) = (v, v)H1(Ω) and |v|2H2(Ω) = (v, v)H2(Ω).

For vector functions u = (u1, u2), v = (v1, v2) ∈ H1(Ω)2, the L2(Ω) inner product and

the H1(Ω)2 semi-inner product and semi-norm are defined as

(u,v)L2(Ω)2 = (u1, v1)L2(Ω) + (u2, v2)L2(Ω),

(u,v)H1(Ω)2 = (u1, v1)H1(Ω) + (u2, v2)H1(Ω),

|u|2H1(Ω)2 = (u,u)H1(Ω)2 .

The standard Euclidean inner product and associated norm are respectively given by

〈u,v〉 = uTv and ‖u‖2 = 〈u,u〉.

The nullspace of a matrix A is denoted N (A) and nullity(A) = dimN (A) is the dimen-

sion of the nullspace of A. Also define

ρ(n)s =
[
s(a(1)) · · · s(a(n))

]T
,

where the array of predictor variables is given by[
a(1) · · · a(n)

]T
∈ Rn×2

and the associated array of response values is given by

y =
[
y(1) · · · y(n)

]T
∈ Rn.
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4.2.2 Problem Description

The problem of fitting a surface through a point cloud is ill-posed in general when there

is missing data [172]. This problem is overcome by imposing a regularity condition on

the resulting surface. In the case of the techniques under investigation here, it is desired

to find the surface s ∈ H2(Ω) that satisfies

min
s∈H2(Ω)

Jα(s) :=
∥∥∥y − ρ(n)s

∥∥∥2
+ α |s|2H2(Ω) , (4.1)

where α > 0 is a smoothing parameter that depends on the noise in the data set and can

be determined using Generalised Cross Validation [181]. The domain Ω is a polygonal

bounded domain in R2 which contains all of the data points. It is also reasonable

to assume that at least three of the data points are not aligned, which ensures the

existence and uniqueness of a solution.

In order to solve (4.1) using FEM, the domain Ω, over which the surface is to be

approximated must be discretised and a basis is required for the finite element space

over that domain. The discretisation of the domain can be carried out independently

of the data set as there is no requirement that the placement of the nodes of the mesh,

{vi}i=1...m, coincide with the data point locations. As an example, see Figures 4.1(b)

and 4.3(b). The nodes are numbered, according to the triangulation T , such that the

bandwidth of the adjacency matrix is minimised.

4.2.3 Discrete smoothing D2-splines

Arcangéli et al. [3] consider the equivalent variational problem to (4.1) on VD ⊂ H2(Ω),

∀v ∈ VD, 〈ρ(n)f,ρ(n)v〉+ α(f, v)H2(Ω) = 〈y,ρ(n)v〉 (4.2)

to produce the discrete smoothing D2-spline (DSD2-spline) f ∈ VD. The unknown

function can be written as

f(x) =
3m∑
i=1

cihi(x) = h(x)T c, (4.3)

where c is a vector of unknown values to be determined and

h(x) =


h1(x)

h2(x)

. . .

h3m(x)


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is a vector of basis functions for the finite element space VD. In this work, we use

reduced Hsieh-Clough-Tocher basis functions, as described in Dupuis and Goel [43] to

form a basis for VD. This choice of basis functions, which ensures that VD ⊂ H2(Ω),

satisfies the conditions, for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m,

h3i−2(vj) = δij , ∂x1h3i−1(vj) = δij and ∂x2h3i(vj) = δij , (4.4)

where δij is the Kronecker delta. Furthermore, the basis functions have piecewise

continuous second partial derivatives that are square integrable. Substituting h(x)T c

for f and hj(x) for v, j = 1, 2, . . . , 3m, in (4.2) leads to the system of linear equations(
HHT + αR

)
c = Hy, (4.5)

where Hij = hi (aj) and Rij = (hi, hj)H2(Ω). As noted in Arcangéli et al. [3], the matrix

HHT + αR is symmetric, positive definite with the same dimension as the space VD.

4.2.4 Thin Plate Spline Finite Element Smoother

Roberts et al. [147] use a mixed finite element method to find the surface s that min-

imises (4.1). This is done by reformulating the problem to include first derivatives

only. A summary of the method is provided here and the interested reader is referred

to Roberts et al. [147] for a detailed description of the thin plate spline finite element

smoother, named TPSFEM.

Noting that the variational form of (4.1) is

∀v ∈ H2(Ω), 〈ρ(n)s,ρ(n)v〉+ α(s, v)H2(Ω) = 〈y,ρ(n)v〉,

it follows that for v = 1, ρ(n)v = e and

〈ρ(n)s, e〉 = 〈y, e〉, (4.6)

where e = (1, . . . , 1)T .

Let u = [u1, u2]T ∈ H1(Ω)2 be the gradient of s, so that the solution to (4.1) is

determined up to a constant. For a general u ∈ H1(Ω)2, it cannot be expected to find

an s which satisfies both ∂x1s = u1 and ∂x2s = u2. However, a unique solution for s

can be found for a general u satisfying

(∇s,∇v)L2(Ω)2 = (u,∇v)L2(Ω)2 , (4.7)

for all v ∈ H1(Ω), with the constant determined by (4.6). This allows (4.1) to be

reformulated as

min
u∈H1(Ω)2

Jα(u,y) :=
∥∥∥y − ρ(n)Φα(u,y)

∥∥∥2
+ α|u|2H1(Ω)2 , (4.8)
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where Φα(u,y) corresponds to the optimal smoothing function s for a given value of

the smoothing parameter α.

The two problems (4.1) and (4.8) are not equivalent. However, equivalence can be

enforced by ensuring curl(u) = 0. It was suggested in Roberts et al. [147] to drop

this condition entirely, which reduces the problem to a H1(Ω) minimisation problem.

This minimisation problem is more readily solvable than the previous formulation and

a variety of efficient solvers are available (for example, multigrid solvers [182]).

The surface s is sought in continuous piecewise polynomial spaces VT ⊂ H1(Ω). In

light of (4.6), we define

s(x) =

m∑
i=1

cili(x) +
〈y, e〉
n

= l(x)T c + y, (4.9)

where y is the mean response, c is a vector of unknowns to be calculated and

l(x) =


l1(x)

l2(x)

. . .

lm(x)


is a vector of basis functions for the finite element space VT . In this work, linear hat

functions defined by

li(vj) = δij , (4.10)

for i = 1, 2, . . . ,m, j = 1, 2, . . . ,m,, form a basis for VT and δij is the Kronecker delta.

The components of u = [u1, u2]T are also defined as

u1(x) = l(x)Tg1 and u2(x) = l(x)Tg2, (4.11)

where g1 and g2 are vectors of coefficients to be determined. Using (4.9) and (4.11)

allows (4.7) to be expressed in the discrete form

Lc = G1g1 +G2g2, (4.12)

where

Lij = (∇li,∇lj)L2(Ω)2 , G1ij = (∂x1 li, lj)L2(Ω), G2ij = (∂x2 li, lj)L2(Ω). (4.13)

Defining Hij = li(aj), H ∈ Rm×n, (4.6) becomes in discrete form

cTHe + y eTe = yTe =⇒ cTHe = 0. (4.14)
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Equation (4.12) can also be written as

c = L† (G1g1 +G2g2) , (4.15)

where L† is a generalised inverse of L satisfying L†He = 0 due to (4.14).

In order to determine an appropriate form for L† satisfying the given constraint, we

first consider the general form of such a generalised inverse for an arbitrary symmetric

matrix L with N (L) = span {n} and matrix M satisfying L†Mn = 0 in Theorem 4.1.

We prove in Lemma 4.2 that L as defined in (4.13) satisfies the assumptions of Theo-

rem 4.1. Corollary 4.3 shows that an appropriate generalised inverse for L is given by

(4.17).

Theorem 4.1. Let L be a k × k real, symmetric matrix such that nullity(L) = 1.

Let n be any non-null vector in N (L) and let M be any k × k real matrix such that

nTMn 6= 0. Then the matrix

L† =

(
L+

1

nTMn
MnnTMT

)−1

− 1

nTMn
nnT (4.16)

is a reflexive generalised inverse of L (i.e. LL†L = L and L†LL† = L†) such that

L†Mn = 0.

Proof. See Appendix 4.A.

Lemma 4.2. Assume that VT ⊂ H1(Ω) and (4.10) holds. Let L be given in (4.13) and

let n be given by

n = (1, . . . , 1︸ ︷︷ ︸
m

)T .

Then, N (L) = span {n}.

Proof. Let us first remark that any function f ∈ VT can be expressed as f(x) = l(x)T c,

with l = (l1, . . . , lm)T and c ∈ Rm. Taking into account that L is positive semi-definite,

it is then clear that

f is constant ⇐⇒ ∇f = 0 a.e. on Ω ⇐⇒ |∇f |L2(Ω)2 = 0 ⇐⇒ (∇f,∇f)L2(Ω)2 = 0

⇐⇒ cTLc = 0 ⇐⇒ Lc = 0 ⇐⇒ c ∈ N (L).

Now, let c ∈ N (L). Define f(x) = l(x)T c. By the above reasoning, there exists k ∈ R

such that, for all x ∈ Ω, f(x) = k. In particular, for all i = 1, . . . ,m, ci = f(vi) = k,

that is, c = kn. Thus N (L) ⊂ span {n}.

Conversely, let us consider the function g(x) = lT (x)n − 1. Obviously for all i =

1, . . . ,m, g(vi) = 0. Hence, for any element K in the triangulation of Ω, g|K is a
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function in PK = VT |K null on the set of nodes belonging to K. Since this set is

PK-unisolvent, g is null on K. Consequently, g ≡ 0 on Ω. This implies that the

function f(x) = l(x)Tn is constant (equal to 1) on Ω. Therefore, n ∈ N (L) and so

span {n} ⊂ N (L).

Corollary 4.3. Let L ∈ Rm×m be the finite element matrix representation of the

Laplacian given in (4.13). Then a reflexive generalised inverse of L satisfying the

constraint L†He = 0 is given by

L† =

(
L+

1

n
HHTnnTHHT

)−1

− 1

n
nnT . (4.17)

Proof. Consider the function f(x) = l(x)Tn. The reasoning in the proof of Lemma 2

shows that f is constant, in fact, equal to 1. Hence,

HTn =


l(a(1))Tn

l(a(2))Tn
...

l(a(n))Tn

 =


1

1
...

1

 = e.

Therefore, the condition L†He = 0 can be rewritten as L†HHTn = 0. This is precisely

the condition satisfied by the generalised inverse provided by Theorem 4.1 when applied

with M = HHT . Moreover, since

nTMn = nTHHTn = eTe = n,

we conclude that

L† =

(
L+

1

n
HHTnnTHHT

)−1

− 1

n
nnT .

Let

G =
[
G1 G2

]
, K = HTL†G, L =

L 0

0 L

 and g =

g1

g2

 .
The discretised form of (4.8) is then given by

min
g

‖y −Kg‖2 + αgTLg (4.18)

and c = L†Gg.

The minimisation problem (4.18) is equivalent to the system of linear equations

(KTK + αL)g = KTy, (4.19)
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as the coefficient matrix KTK + αL is symmetric and positive definite [147].

TPSFEM produces a continuous linear estimate of the surface s(x) and continuous

linear weak partial derivatives u1(x) and u2(x). However, s(x) does not satisfy the re-

quirement that the partial derivatives are continuous across the domain, as is necessary

for our future work on modelling droplet motion on leaf surfaces [41]. A continuously

differentiable function can be constructed by combining the function values c and weak

partial derivative estimates g1 and g2 at the nodes with reduced HCT finite elements

to construct a continuously differentiable surface. In a manner similar to (4.3), the

function can be constructed as a linear combination of reduced HCT basis functions,

with the additional constant term from (4.9), to give

f(x) =

3m∑
i=1

υihi(x) + y = h(x)Tυ + y,

where hi(x) is defined as in (4.4) and

υ = [c1, g11 , g21 , c2, g12 , g22 , . . . , cm, g1m , g2m ]T .

The constructed function f(x) provides a surface that is continuously differentiable

and is amenable for use in future research as it is also in the space VD. It should be

noted that f(x) is neither an optimal solution to (4.1), as it is not a discrete smoothing

D2-spline, nor can the gradient of f(x) be an optimal solution of (4.8) since it is not a

TPSFEM smoother.

4.2.5 Hybrid Radial Basis Function Clough-Tocher Method

The hybrid radial basis function Clough-Tocher method [125] differs from the two tech-

niques previously described as it is a bivariate interpolation technique, as opposed to a

smoothing technique, for fitting a surface through a set of scattered data points. This

technique selects a subset of size m of the data points and uses these as nodes for the

interpolation process. The fitted surface is of the form (4.3), where c3i−2, i = 1, . . . ,m

is the corresponding function value at vi and c3i−1 and c3i, i = 1, . . . ,m are estimates

of the partial derivatives ∂xs and ∂ys respectively at the node vi.

To estimate the gradient at node K, a radial basis function of the form

s(x) =

mK∑
k=1

γkφ(‖x− vk‖) (4.20)

is fitted using mK nodes and all data points within a specified distance of node K. Once

the coefficients γi have been calculated, the gradient at the node K can be estimated

61



A comparison of techniques for the reconstruction of leaf surfaces from scanned data

as

∇s(vK) =

mK∑
k=1

γk
vK − vk
‖vK − vk‖

· φ′ (‖vK − vk‖) . (4.21)

The radial basis function considered in this work is the thin plate spline radial basis

function of the form

φ(r) = r2 log r, (4.22)

which was chosen to be consistent with the other methods considered in this work.

4.3 Solution Techniques

The optimal surface for either the DSD2-spline or TPSFEM requires a suitable value

for α to be determined. In this work α is determined using generalised cross validation

(GCV), which is recommended by Arcangeli et al. [3] for DSD2-splines and by Roberts

et al. [147] for the TPSFEM surface. The GCV method involves determining the value

of the parameter α that minimises

V (α) =
1
n ‖(In −Qα)y‖2(

1
n tr(In −Qα)

)2 ,
where In it the n×n identity matrix, Qα is the influence matrix [3,147,181] and n is the

number of data points. Both Arcangeli et al. [3] and Roberts et al. [147] recommend

using an approximation V (α) to V (α), due to Hutchinson [67], given by

V (α) =
1
n ‖(In −Qα)y‖2(
1
nkT (In −Qα)k

)2 , (4.23)

where k ∈ Rn is a random vector with elements either 1 or −1 with probability 1/2.

The influence matrix is given by

Qα = HT (HHT + αR)−1H

for the DSD2-spline approach [3] and

Qα = K(KTK + αL)−1KT

for TPSFEM [147]. As can be observed, both influence matrices are in the generic form

A(ATA+ αB)−1AT , where A = HT and B = M for the DSD2-spline and A = K and

B = L for the thin plate smoother, and evaluating (4.23) requires the solution of two

linear systems. Using this generic notation (4.23) can be rewritten as

V (α) = n
‖y‖2 − 2βT1 A

Ty + βT1 A
TAβ1

(n− βT2 A
Tk)2

, (4.24)
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Algorithm 1 Pseudocode for solving the problem

1: procedure Solver(a, y, v, T )

2: # {ai, yi}i=1...n is the set of data points

3: # v is the node placement for the triangulation T of the domain Ω

4: Generate random vector k

5: Build A and B as appropriate for the surface fitting technique

6: Determine αopt that minimises V (α)

7: Determine c for the optimal surface corresponding to α = αopt

8: return c, αopt

9: end procedure

10: procedure V (α)

11: # Evaluate the GCV function (4.24) for a single value of α

12: Solve the linear systems (ATA+ αB)β1 = ATy and (ATA+ αB)β2 = ATk

13: Evaluate V (α) using (4.24)

14: end procedure

where β1 = (ATA+ αB)−1ATy and β2 = (ATA+ αB)−1ATk. The generic procedure

for performing the GCV method is outlined in Algorithm 1.

The approach taken to minimise V (α) (Line 6) is to use Brent’s Method [18]. This

method uses successive parabolic interpolation, with safeguarding by the golden search

method, and is applicable to all quasi-convex functions, which V (α) satisfies. In order

to use this technique efficiently, the monotonic transformation α̃ = log10 α is employed

to simplify the search domain. The domain for α̃ is chosen to be α̃ ∈ [−10, 10], corre-

sponding to α ∈
[
10−10, 1010

]
, which provides a sufficiently large range of α for practical

purposes.

The two techniques clearly differ in lines 5 and 12, which involve the generic ma-

trices A and B. The approach to construct these two matrices is straightforward.

However, the resulting size and structure of these two matrices fundamentally changes

the approach taken to solve the associated linear systems (Line 12). Furthermore,

these two linear systems can be solved simultaneously for a given α, as explained in

the proceeding sections.
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4.3.1 Discrete Smoothing D2-spline Linear System

The linear systems requiring a solution to be solved each step of GCV are in the form

(4.5)

(
HHT + αR

)
β = b,

where β and b are place holders for the relevant vectors. The elements of the matrix

R are calculated using Gaussian quadrature. The coefficient matrix HHT + αR is

symmetric and positive definite for all α > 0 [3]. Furthermore, this matrix will typically

be large and sparse, facilitating the use of iterative techniques to obtain a solution, such

as the Successive Block Conjugate-Gradient method [167].

An incomplete Cholesky preconditioner is proposed [96], where elements smaller

than the drop tolerance are set to zero. The effect of this is that the incomplete

Cholesky factor C̃ is closer to the true factor C by allowing some fill in, whilst the

elements small in magnitude are neglected for memory efficiency. Using C̃ as a left and

right preconditioner produces the preconditioned linear system

C̃−1
(
HHT + αR

)
C̃−T β̂ = C̃−1b,

where β̂ = C̃Tβ. The effect of the preconditioner is shown for a range of drop tolerances

and values for the smoothing parameter α in Table 4.1 for solving the linear systems for

a single GCV function evaluation resulting from the application to the cotton leaf. It

can be observed that as the drop tolerance decreases below 1× 10−4, the wall time and

number of iterations required to solve the linear system significantly decreases compared

to using no preconditioner. The condition number of the preconditioned coefficient

matrix also decreases significantly at the same time. This is offset by an increase in the

number of non-zero elements in the preconditioner, which affects the amount of random

access memory (RAM) required to store the preconditioner and the time to apply the

preconditioner to a vector. As there is not a large reduction in the wall time or the

number of iterations for solving the linear system when the drop tolerance is less than

1 × 10−6, it is recommended for the applications under consideration here that this

value be used as the drop tolerance because it significantly reduces the computational

expense compared to larger values and has lower RAM requirements than smaller drop

tolerances.
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Dropping

Toler-

ance

Smoothing

Parameter

Time (s) Iterations Condition

Number

Sparsity‡

No

preco-

nditioner

α = 10−4 2.98 4494 1.78×107 0.00

α = 1 1.41 2134 5.88×106 0.00

α = 102 2.94 4494 5.45×107 0.00

100

α = 10−4 0.17 189 2.85×103 0.97

α = 1 1.50 1710 1.25×106 0.97

α = 102 3.73 4494 1.15×107 0.97

10−2

α = 10−4 0.11 88 8.28×102 7.33

α = 1 0.92 725 3.77×105 7.82

α = 102 3.90 3444 3.53×106 8.35

10−4

α = 10−4 0.01 4 1.30×100 16.96

α = 1 0.06 35 1.87×103 18.34

α = 102 0.46 260 5.14×104 20.94

10−6

α = 10−4 0.00 2 1.00×100 28.47

α = 1 0.01 4 1.46×100 28.69

α = 102 0.03 8 2.82×101 42.69

10−8

α = 10−4 0.01 2 1.00×100 40.05

α = 1 0.01 2 1.00×100 39.21

α = 102 0.01 3 1.02×100 60.05

10−10

α = 10−4 0.00 1 1.00×100 51.01

α = 1 0.01 2 1.00×100 48.84

α = 102 0.01 2 1.00×100 74.73

Table 4.1: The effect of decreasing the drop tolerance below 10−4 for the incomplete

Cholesky factorisation, which increases the fill-in of the factor, significantly decreases

the time and number of iterations required to solve the system of linear equations

from the cotton leaf data set for a single GCV function evaluation. This parameter

also significantly decreases the condition number of the preconditioned matrix, for the

three values of the smoothing parameter considered when the drop tolerance is less than

10−4. The percentage of non-zero elements in the incomplete Cholesky factor compared

to the full Cholesky factor, which has 463236 non-zero elements for this problem, is

also shown to give an indication of the memory requirements for the preconditioner.

‡Sparsity is measured as the percentage of non-zero elements in the matrix.
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4.3.2 Thin Plate Spline Finite Element Method Linear System

Recall the presence of L† in K, which makes the coefficient matrix KTK + αL from

(4.19) dense. Typically however, this matrix would not be formed because a Krylov

subspace method such as the conjugate gradient method would be used, which only

requires block multiplication of the matrix with a vector. An alternate approach is to

use direct techniques to solve the dense linear system (4.19). However this requires the

formation of the coefficient matrix KTK+αL, and as part of this procedure the action

of the dense matrix L† on G is required. If we denote an arbitrary column of G as v,

then the matrix L†G can be formed columnwise by using Corollary 4.3:

L†v =

(
L+

1

n
HHTnnTHHT

)−1

v − nTv

n
n.

In this way, the matrix product L†G can be formed by solving 2m linear systems, using

the Successive Block Conjugate Gradient method [167], of the form(
L+

1

n
HHTnnTHHT

)
v∗ = v,

where v is a column of G and v∗ is the corresponding column in the matrix product

L†G. The vector (nTv/n)n is then required to be subtracted from each column to

complete the matrix product. As these matrices do not change throughout the solution

procedure, this matrix product is only required to be calculated once.

In the examples given in §4.4, the matrices have relatively small dimension, namely

2996 for cotton and 2782 for chenopodium. To store the coefficient matrices in memory

would require approximately 68.5MB (cotton) and 59.0MB (chenopodium) respectively,

which is easily done using modern computing equipment. Storing the matrices in RAM

would allow the use of a direct method, such as Cholesky factorisation. Using this

approach would require one Cholesky factorisation and two forward and backward sub-

stitutions to solve the two linear systems each GCV evaluation, requiring approximately

8.98 (cotton) and 7.20 (chenopodium) GFLOPS respectively. The computing hardware

used for generating the results reported throughout §4.4 (see Table 4.3) has a theoret-

ical maximum of 108.8 GFLOPS [69], indicating that the linear systems will require a

minimum of 0.08 (cotton) and 0.07 (chenopodium) seconds respectively to solve. This

direct solution approach is taken in this paper to solve the required linear systems (4.19)

as the initial investigation using the Successive Block Conjugate Gradient method [167]

for these linear systems using no preconditioner was not very effective, as illustrated in

Table 4.2, compared to solving the linear systems directly.
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Model Direct Iterative

Cotton leaf (dimension = 2996) 0.47s 16.31s

Chenopodium leaf (dimension = 2782) 0.39s 9.07s

Table 4.2: Comparison of wall times between direct and iterative solution methods for

solving the required linear systems to perform a single evaluation the GCV function

with α = 1.

It must be noted that the direct solution approach currently does not scale well

to large problems. For example, a typical PC with 4GB of available RAM available is

limited to problems with dimension smaller than 23170 on purely memory requirements.

Using the computing technology reported in this paper, this linear system would require

4147.6 GFLOPS, or a minimum of 38 seconds in the best case scenario, to obtain a

solution. As computing resources increase, this approach may be applicable to larger

problems in the future, but the hardware currently available poses a restriction. In this

case, an iterative technique, such as the conjugate gradient method, would be required

to solve the linear systems and the matrix L†G would not need to be explicitly formed,

but rather could be applied to a series of vectors using an iterative technique like the

multigrid method [175]. An alternative formulation of this problem was considered

in Kempthorne et al. [77], where (4.8) was formulated as a saddle point problem and

constraint preconditioning was used to improve the efficiency of the solution technique.

This approach was ineffective for the two problems under consideration as the speed-up

gained was negligible due to the small size of the linear systems.

4.3.3 Hybrid Radial Basis Function Clough-Tocher Method

This technique requires that the gradient be estimated at the node points, as described

in §4.2.5. To estimate the coefficients γk of (4.20), an overdetermined linear system of

the form Aγ = f is required to be solved at each node vk, where Aij = φ(‖aj − vi‖)

and fj is the corresponding function value for vj . The N closest data points to the

node under consideration are chosen to estimate the gradient at that particular node.

Oqielat et al. [125] recommend solving these linear systems using a truncated sin-

gular value decomposition. The small singular values are discarded when they become

less than a chosen relative tolerance. Thus, if σi < σ1ε, where σi is the ith largest

singular value, all singular values σi+1, . . . , σN are ignored. In this work, ε is chosen to

be the machine precision and the 100 closest data points are used.
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4.4 Results

The two techniques outlined in §4.2 are compared for scans of a cotton leaf and a

chenopodium leaf, with the radial basis function HCT method (RBFCT) reported in

Oqielat et al. [125]. Point clouds for each of these data sets are shown in Figures 4.1(a)

and 4.3(a). The underlying mesh is generated using Gmsh [55]. As RBFCT requires

the node placement to coincide with the data set, the nodes generated using Gmsh

are translated to the nearest data point so that all three techniques can be compared

in an unbiased manner using the same underlying mesh structure. These results were

computed using a Matlab R2011a implementation, with the hardware described in

Table 4.3. To allow a comparison of the smoothing parameter between different data

sets, the reported optimal smoothing parameter has been divided by the number of

data points for both data sets, as shown in Tables 4.4 and 4.5. An embedded 3D model

of the virtual leaf surfaces, computed using DSD2-splines, is viewable in Figures 4.2

and 4.4 in Adobe Reader.

CPU Intel Core i7-2600 @ 3.40GHz

Chipset Intel Q87 Express Chipset

RAM 8GB dual channel 1333MHz DDR3 SDRAM

Operating System Ubuntu Precise 12.04.3 LTS

Table 4.3: Computing hardware specifications used for leaf surface reconstructions.

4.4.1 Cotton leaf

This data set contains 107850 data points, distributed as shown in Figure 4.1(a). The

domain is discretised into 2752 triangles with 1498 nodes, shown in Figure 4.1(b).

Table 4.4 shows a summary of the results for all three techniques, with the associated

reconstructed surfaces in Figures 4.1(c) to 4.1(e) coloured by the local “bumpiness” of

the surface s, which is defined at the point x0 by

bumps(x0) :=

(
∂2s(x0)

∂x2
1

)2

+

(
∂2s(x0)

∂x1∂x2

)2

+

(
∂2s(x0)

∂x2
2

)2

. (4.25)

It is evident by comparing these figures that the topography of the virtual leaf surfaces

are very similar for the different techniques. However, under closer inspection there are

quite dramatic differences between the different techniques, as evidenced by the colour

mapping.
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(a) Point cloud of the scanned leaf
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(b) Triangulation and node placement

(c) RBFCT reconstruction (d) TPSFEM reconstruction

(e) DSD2-spline reconstruction (f) Cropped photograph of the

scanned leaf

Figure 4.1: The results of reconstructing a cotton leaf using the scanned data in (a)

and the mesh in (b) for the three techniques are shown in (c) to (e). The photograph

of the leaf (f) shows that the topography of the leaf only contains small bumps. The

DSD2-spline reconstruction is the smoothest of the three reconstructed surfaces.
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It is clear from Figure 4.1(c) that there are ‘bumps’ evident on the RBFCT surface,

which are not present in the data set, nor in either of the other two generated surfaces.

This also corresponds to the region where the data set is most dense, see Figure 4.1(a).

The bumps are due to error from the scanning process as RBFCT assumes that there is

no error in the observations nor error introduced in the gradient estimates. Comparing

the three figures 4.1(c) to 4.1(e) shows that the surface generated using DSD2-splines

is much smoother than either of the other two surfaces, as indicated by the colouring

in the figures. A comparison of the residual variance (RMS), defined as

RMS =

√√√√ 1

n

n∑
i=1

(s(ai)− yi)2,

in Table 4.4 shows that the surface constructed using a discrete smoothing DSD2-spline

has a slightly smaller maximum residual and lower residual variance than the other two

techniques. The RBFCT surface requires significantly more computational time and

has the most bumpy surface, as observed in Figure 4.1(c). While the TPSFEM surface

required less computational time than the DSD2-spline, a comparison of Figures 4.1(d)

and 4.1(e) shows that the bump function takes higher values for the TPSFEM surface

compared to the DSD2-spline.

This is captured in both the optimal α value which is an order of magnitude larger

and |s|2H2(Ω) which is two orders of magnitude smaller for the DSD2-spline than for

TPSFEM. The optimal smoothing parameter α between the two techniques is different

as the term |s|H2(Ω) is approximated by |u|H1(Ω)2 for the TPSFEM smoother, where

∇s 6= u in general. When the additional condition curl(u) = 0 is imposed, ∇s = u

and equivalent α values are obtained for the two techniques. A visual comparison

of the surfaces from the three techniques with the photograph of the cotton leaf in

Figure 4.1(f) shows that the surface reconstructed from using a DSD2-spline most

accurately captures the topology of the physical leaf.

Technique ||y − ρ(n)(x)‖∞ RMS Wall Time αopt/n |s|2H2(Ω)

RBFCT 4.31 0.9669 109.56 s – 9.44× 104

TPSFEM 4.37 0.7844 13.68 s 5.69× 10−7 7.20× 104

DSD2-spline 4.19 0.7559 37.12 s 6.07× 10−6 8.76× 102

Table 4.4: Comparison of the results for all three techniques on a cotton leaf data set.
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Figure 4.2: Textured 3D visualisation of cotton leaf constructed using a DSD2-spline

viewable in Adobe Reader.

4.4.2 Chenopodium leaf

This data set contains 105846 data points, distributed as shown in Figure 4.3(a). The

domain is discretised into 2520 triangles with 1391 nodes, shown in Figure 4.3(b).

Table 4.5 shows the results for all three techniques, with the associated reconstructed

surfaces in Figures 4.3(c) to 4.3(e) coloured by the local “bumpiness” as defined in

(4.25). A photograph of the leaf is included in Figure 4.3(f).

A visual comparison of Figures 4.3(c) to 4.3(e) shows that the DSD2-spline and

TPSFEM produces surfaces with a similar smoothness and RBFCT produces the bump-

iest surface, as shown by the yellow and red colours. Similarly to the cotton leaf, this

roughness in Figure 4.3(e) is likely due to the RBFCT method assuming that there is

no error in the data set nor error introduced in the gradient estimates.

As shown in Table 4.5, the RBFCT and DSD2-spline techniques have a similar

maximum residual and residual variance, while TPSFEM has both of these quantities

slightly higher for this data set. Similarly to the cotton leaf, RBFCT has the greatest

wall time and bumpiness measure. The smoothing parameter of 3.85×10−3, compared

to 2.99×10−5 for the DSD2-spline, indicates that TPSFEM was placing a much greater

emphasis on minimising the penalty term than the DSD2-spline. Figure 4.3(d) shows
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(a) Point cloud of the scanned leaf
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(b) Triangulation and node placement

(c) RBFCT reconstruction (d) TPSFEM reconstruction

(e) DSD2-spline reconstruction (f) Cropped pho-

tograph of the

scanned leaf

Figure 4.3: The results of reconstructing a chenopodium leaf (f) using the scanned

data in (a) and the mesh in (b) for the three techniques are shown in (c) to (e). The

DSD2-spline reconstruction does not introduce additional bumps near the boundary of

the leaf exhibited by the other techniques.
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that the highest values of the bump function are around the edges of the leaf for

TPSFEM, which are not present in either the scanned data set or the physical leaf.

TPSFEM again has the smallest wall time, but cannot reproduce the smoothness of

the physical leaf near the boundary, which is captured in the DSD2-spline.

Technique ||y − ρ(n)(x)‖∞ RMS Wall Time αopt/n |s|2H2(Ω)

RBFCT 0.54 0.0295 95.76 s – 7.41× 103

TPSFEM 0.99 0.0858 8.79 s 3.85× 10−3 4.15× 102

DSD2-spline 0.53 0.0252 47.41 s 2.99× 10−5 1.82× 101

Table 4.5: Comparison of the results for all three techniques on a chenopodium leaf

data set.

Figure 4.4: Textured 3D visualisation of chenopodium leaf constructed using a DSD2-

spline viewable in Adobe Reader.

4.5 Conclusion

The work presented in this paper compared three techniques, the discrete smoothing

D2-spline, the thin plate spline smoother and the radial basis function HCT method,

for generating a continuously differentiable surface to model leaf surfaces. By using a
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reduced Hsieh-Clough-Tocher finite element to construct the set of basis functions, the

resulting surface is guaranteed to have a continuous gradient over the entire domain,

which is an important feature required for future research on modelling droplet motion

on leaf surfaces.

Two different data sets were considered to compare the thin plate spline finite

element method and the discrete smoothing D2-spline, as well as the previous technique

using radial basis functions, to create virtual leaf surfaces. For both leaves, the use

of discrete smoothing D2-splines produced a surface with topological properties most

similar to the physical leaf.

We also plan to further investigate in future research a range of preconditioners

that are suitable for enhancing the performance of the conjugate gradient method

when applied to the thin plate spline finite element method. This research is necessary

as the current technique employed in this paper for solving the required linear systems

is not suitable for larger problems.

In reality, leaf surfaces do not have a continuous gradient. This assumption is

appropriate at the macroscopic level, where leaves at this level of detail are visibly

piecewise smooth. At the microscopic level, the particular characteristics of the leaf,

such as the veins and hairs, play an important role in determining the characteristics of

the leaf surface [165]. This will be particularly important in future research, where the

surfaces generated using this technique will be used for modelling droplet movement

on the leaf surface.
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4.A Proof of Theorem 4.1

Proof. Without loss of generality, it may be assumed that n is a unit vector. Let

λ1, . . . , λk−1 be the non-null eigenvalues of L and define Λ = diag(λ1, . . . , λk−1). Then
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the eigenvalue decomposition of L can be written as L = V DV T with

V =
[
N n

]
and D =

 Λ 0

0T 0

 .
Let us recall that V is an orthonormal matrix (i.e. V V T = V TV = Ik) whose columns

are eigenvectors of L.

We introduce the following auxiliary notations:

β = nTMn, θ = 1/β,b = Mn,d = V Tb, L̃ = L+
1

nTMn
MnnTMT .

The matrix L̃ appears as part of the definition of L†. We first note that

L̃ = L+ θbbT = V DV T + θV V TbbTV V T = V
(
D + θddT

)
V T

= V

(
k−1∑
i=1

λieie
T
i + θddT

)
V T = V U Λ̃UTV T = (V U)Λ̃(V U)T ,

with

U =
[
e1 . . . ek−1 d

]
and Λ̃ =

 Λ 0

0T θ

 .
Since

d = V Tb =

NT

nT

b =

NTb

nTb

 =

NTb

β

 ,
we can express U as

U =

Ik−1 NTb

0T β

 ,
which clearly shows that U is an invertible matrix (it is an upper triangular matrix

with non-null diagonal elements) and

U−1 =

Ik−1 −θNTb

0T θ

 ,
where Ik−1 is the (k− 1)× (k− 1) identity matrix. Since V and Λ̃ are invertible (with

obvious inverses) and

(V U)−1 = U−1V T =

Ik−1 −θNTb

0T θ

NT

nT


=

NT − θNTbnT

θnT

 =

NT
(
Ik − θbnT

)
θnT

 ,
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we deduce that L̃ is invertible and

L̃−1 = (V U)−T Λ̃−1(V U)−1 =
[(
Ik − θnbT

)
N θn

]Λ−1 0

0 β

NT
(
Ik − θbnT

)
θnT


=
(
Ik − θnbT

)
NΛ−1NT

(
Ik − θbnT

)
+ θnnT .

Since L is a real, symmetric matrix, its eigenvalue decomposition is, in fact, a singular

value decomposition. Hence, the Moore-Penrose pseudoinverse L# of L is given by

L# = V D#V T , with D# = diag
(
λ−1

1 , . . . , λ−1
k−1, 0

)
. In other words,

L# =
[
N n

]Λ−1 0

0T 0

NT

nT

 .
Consequently,

L̃−1 =
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
+ θnnT .

Once shown that L̃ is invertible, we can rewrite (4.16) as L† = L̃−1− θnnT . Therefore,

L† =
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
.

We still have to prove that L† is a reflexive generalised inverse of L. Since L = LT ,

Ln = 0 and nTL = (Ln)T = 0T , it is clear that

L
(
Ik − θnbT

)
= L =

(
Ik − θbnT

)
L.

Hence, since LL#L = L# and L#LL# = L#,

LL†L = L
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
L = LL#L = L,

L†LL† = L†L
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
= L†LL#

(
Ik − θbnT

)
=
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
LL#

(
Ik − θbnT

)
=
(
Ik − θnbT

)
L#LL#

(
Ik − θbnT

)
=
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
= L†.

Finally, since b = Mn,

L†Mn =
(
Ik − θnbT

)
L#
(
Ik − θbnT

)
Mn =

(
Ik − θnbT

)
L#(b− b) = 0.

The proof is complete.
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5.1 Introduction

The thin plate spline finite element method, as proposed by Roberts et al. [147], fits

a surface defined by a set of m basis functions on an arbitrary domain Ω to a set

of n data points {xi, yi}i=1...n. The fitted surface is obtained by minimising a linear

combination of the residual of the estimated surface at the data points and a measure

of the smoothness of the surface. The weight of each term is varied by the smoothing

parameter, α > 0. The inclusion of a smoothing term is to allow a unique surface to be

reconstructed from the scanned dataset. In the case of virtualising plant leaves, error is

introduced into the data points, which varies with the particular scanning device used

to capture the dataset. Due to the presence of measurement error, generalised cross

validation (GCV) is used to determine the optimal smoothing parameter [181]. The

result of this process is that a number of linear systems of the form (A+αBBT )u = b,

where A is positive semidefinite and sparse, must be solved for each GCV function

evaluation.
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The solution of these linear systems is a computational bottleneck for this prob-

lem when m is large. Each linear system is of the form of a saddle point problem

and preconditioning this problem type has been the subject of substantial research

(e.g. [11,12,35,38,60,61,88,116]). Block diagonal, block triangular and constraint pre-

conditioners [11] are investigated to accelerate the convergence of the iterative method

applied to the saddle point problem. The linear systems have shifted coefficient ma-

trices, due to the smoothing parameter α, with two different right hand side (RHS)

vectors. The efficient solution of a single linear system for a single value of α is the

focus of this paper.

The thin plate spline smoother algorithm is outlined in section 2 and the different

preconditioning methods are detailed in section 3. The computational statistics ob-

tained from the iterative algorithm using these preconditioners is presented in section

4 for a sample problem based on the peaks function in Matlab. The conclusions of

the work and recommended future work are outlined in section 5.

5.2 Thin Plate Spline Smoother

The thin plate spline smoother uses the analogy that the points lie on a thin metal

sheet, which is twisted and bent to fit the data. The quality of the surface is measured

in terms of the error between the fitted surface and the known value at the data points,

as well as a smoothing term, which is introduced to control the amount of bending and

twisting of the plate. The functional form of this surface on the domain Ω ⊂ R2 is the

solution s(x) ∈ H2(Ω) that minimises the functional

min
s∈H2(Ω)

J̄α(s,y) := ‖s(x)− y‖2n + α|s|2H2(Ω), (5.1)

where

|s|2H2(Ω) =

∫
Ω

(
∂2s

∂x2
1

)2

+ 2

(
∂2s

∂x1∂x2

)
+

(
∂2s

∂x2
2

)2

dx,

〈u, v〉n = n−1uTv, and

‖u‖2n = 〈u, u〉n .

Wahba [181] shows that the optimal value of α depends on the noise in the data and

can be determined using GCV.

Roberts et al. [147] reformulate (5.1) to a H1(Ω) minimisation problem by solving

for u, defined as u := ∇s. This condition however can generally only be satisfied in the

weak sense (∇s, ∇v) = (u, ∇v) ∀ v ∈ H1(Ω) for arbitrary functions u1, u2 ∈ H1(Ω),
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where u = [u1, u2]T . This formulation is equivalent to the original formulation when

the condition curl(u) = 0 is enforced. Roberts et al. [147] recommend dropping this

condition to simplify the solution process. The reformulation led to determination of

u such that

u(x) = arg min
H1(Ω)2

‖Φ(u)− y‖2n + α
(
|u1|H1(Ω) + |u2|H1(Ω)

)
, (5.2)

where, for example,

|u1|2H1(Ω) =

∫
Ω

(
∂u1

∂x1

)2

+

(
∂u1

∂x2

)2

dx,

and Φ(u) is used to denote the solution, s, of (5.3). Furthermore, s also satisfies the

Neumann boundary value problem

∆s = ∇ · u in Ω,

∇s · n = u · n on δΩ.
(5.3)

The constraint

〈s(x), e〉n = 〈y, e〉n

is imposed to ensure a unique solution of (5.3), where e is a vector of all ones.

A discretisation of the domain Ω is required, providing a set of m nodes and a

triangular mesh. A set of basis functions h(x) ∈ H1(Ω)m is defined to discretise the

problem, which gives

s(x) = h(x)T c, u1(x) = h(x)Tg1, u2(x) = h(x)Tg2

and the basis functions are chosen as piecewise linear elements, satisfying hi (xj) = δij ,

with δij the Kronecker Delta. The finite element discretisation of (5.2) and (5.3), for

fixed α yields the minimisation problem

min
c,g1,g2

∥∥ỹ −HT c
∥∥2

n
+ αgT1 Lg1 + αgT2 Lg2

subject to

c = L† (G1g1 +G2g2) ,

where Hij = hi(xj) is a matrix containing the basis functions evaluated at the data

points,

Lij = (∇hi,∇hj)L2(Ω), G1ij = (∂x1hi, hj)L2(Ω), G2ij = (∂x2hi, hj)L2(Ω).
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L† is a generalised inverse of L satisfying L†He = 0 and ỹ = y − 〈y, e〉n e. The inner

product is defined as (u, v)L2(Ω) =
∫

Ω uv d x. This minimisation problem is equivalent

to the equality constrained quadratic programming problem

min
v

vTAv − vTd

s.t.

Bv = 0

(5.4)

where

A =


HHT /n 0 0

0 αL 0

0 0 αL

 , d =


Hy/n

0

0

 ,

B =
[
I −L†G1 −L†G2

]
and v =


c

g1

g2

 .
(5.5)

The use of Lagrange multipliers provide an efficient method of obtaining a solution to

(5.4) [189] and results in the need to solve, for a given α, the system of linear equations

Ax =

A BT

B 0

v

w

 =

d

0

 = b. (5.6)

Problems of this form are also referred to as saddle point problems [11]. The aim of

this work is to investigate efficient solution techniques for systems of linear equations

of the form (5.6).

Benzi et al. [11] review approaches for efficiently solving saddle point problems,

focusing on large and sparse linear systems. They remark that classical methods for

solving saddle point problems include null space methods, which was originally used

in [147]. They also discuss preconditioned Krylov subspace methods (see also [12, 35,

38, 60, 61, 88, 116]) and conclude that effective preconditioners are under development

for many classes of linear systems [11, p. 108].

The solution of these linear systems is the primary computational bottleneck for

the algorithm of these typically large linear systems. In such cases, direct solution

techniques are unable to obtain a solution in reasonable time, necessitating the use of

iterative methods. Preconditioning approaches will be investigated in section 5.3 to

accelerate the convergence of these iterative methods.
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5.3 Solution Approaches

Efficient solution methods for saddle point problems have been the subject of substantial

research due to their regular occurrence in a variety of problems [11,12,38,60,61,88,116].

Benzi et al. [11] provides an overview of ideal preconditioners for saddle point problems.

Two types of preconditioners will be investigated here, namely block preconditioners

and constraint preconditioners.

5.3.1 Block Preconditioners

Two different forms of block preconditioners are under consideration, block diagonal

PD, and block triangular PT , given by the expressions

P−1
D =

A−1 0

0 −S−1

 and P−1
T =

 A−1 0

−S−1BA−1 S−1

 (5.7)

respectively, where S is the Schur complement, S = −BA−1B. Each of these precondi-

tioners is applied on the left of the linear system.

The complete eigendecomposition of P−1
D A is given in de Sturler and Liesen [35].

The interesting point here is the clustering of eigenvalues around the three points

1, 1
2

(
1 +
√

5
)
, and 1

2

(
1−
√

5
)

(see also Murphy et al. [116]). Benzi et al. [11] show

that P−1
T A has 1 as its distinct eigenvalue.

Both of these preconditioners require that A is nonsingular. However, our problem

has nullity(A) ≥ 2, indicating that the matrix is singular. One common approach taken

to overcome the singular nature is to use an augmented Lagrangian formulation [61],

which replaces A of the problem with AW = A + BTWB, where W is a symmetric

positive semidefinite matrix. Greif et al. [60] analyse the choice W = γI and state that

the choice γ = ‖A‖2/‖B‖22 is shown experimentally to be effective. Due to the presence

of L† in B, this will cause AW to be predominantly dense, thus losing the block diagonal

structure in A. Greif et al. [60] state in practise that an approximation to AW is often

used, which will not be considered in this paper.

5.3.2 Constraint Preconditioners

The second type of preconditioning strategy used is a constraint preconditioner [11].

This type of preconditioner takes the form

PC =

Z BT

B 0

 ,
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which is the same as A with the (1, 1) block modified. Generally, Z is chosen implicitly

based on the Schilders Factorisation [12], namely

PC =


BT

1 0 M1

BT
2 M2 E

0 0 I



D1 0 I

0 D2 0

I 0 0



B1 B2 0

0 MT
2 0

MT
1 ET I

 . (5.8)

Choosing the components of this factorisation to match

A =


A11 A12 BT

1

A21 A22 BT
2

B1 B2 0

 ,
and noting that A11 = HHT /n, A12 = AT21 = 0, A22 = diag (αL,αL), B1 = I and

B2 = [−L†G1,−L†G2] gives

D1 = A11 −MT
1 −M1

D2 = M−1
2

(
A22 +BT

2 A11B2

)
M−T2 (5.9)

E = −BT
2 (A11 −M1) ,

where M1 can be any matrix and M2 can be any non-singular matrix. Benzi and

Wathen [12] also comment that any choice of D1, E and M1 and any nonsingular

choice of D2 and M2 provide a suitable preconditioner.

Furthermore, the conjugate gradient algorithm (CG) [153] can be used because this

preconditioner, in conjunction with the linear system (5.6), results in the elimination

of the constraints if directly applied [12, p.203].

5.4 Results

The sample function used to assess the effectiveness of the preconditioners was the

peaks function of Matlab. The function was sampled at 10 000 random points uni-

formly distributed on the unit square. The nodes were chosen as one on each corner

and 496 distributed randomly in the interior of the unit square (500 nodes in total).

The resulting linear system had dimension 2 000 and GMRES [154] was used to solve the

linear system with the block preconditioners because the preconditioned system is not

symmetric. The Hestenes–Stiefel Conjugate Gradient method was used with the con-

straint preconditioner. The two values chosen for the smoothing parameter α are 10−10

and 10−2. The condition number for the coefficient matrices in (5.6) for these choices

of alpha are approximately 5× 1010 and 7× 105 respectively. The desired convergence

tolerance is 1× 10−8 ‖b‖, with ‖b‖ ≈ 122.866.
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5.4.1 Block Preconditioners

The results of the block preconditioners are compared using the exactly formed PD

and PT (5.7) using the Augmented Lagrangian Formulation in Matlab. The choice

W = γI is made, with γ = ‖A‖2/‖B‖22. The effect of using these preconditioners is

shown in Table 5.1.

Table 5.1: Comparison of the preconditioners using the Augmented Lagrangian formu-

lation, with exact forms for the block preconditioners utilised.

Preconditioner α Iterations Residual norm Time (s)

None
10−10 1390 4.8× 10−8 46.9

10−2 537 1.3× 10−9 13.4

Triangular
10−10 4 8.8× 10−8 2.7

10−2 3 2.6× 10−8 2.3

Diagonal
10−10 6 1.1× 10−4 3.0

10−2 3 3.0× 10−8 2.2

It is clear that using the exact form of the preconditioners results in extremely

rapid convergence, as expected by the eigenvalue decomposition of the preconditioned

matrices [35]. It must be noted however that the use of the exact preconditioners is

impractical for solutions of large linear systems, due to the time required to construct

the matrices and the memory requirements to store them. By means of comparison,

applying PD and PT through solving a linear system Px = z with a Krylov subspace

solver, for some z, produces extraordinary computation times. This is primarily due to

solving linear systems with S as the coefficient matrix, whereby multiplying a vector

by S requires the inversion of AW . This will produce unreasonable results for even

moderately sized linear systems. For fitting surfaces with a small number of nodes using

TPSFEM, this method is highly applicable if the matrices can be explicitly formed and

stored in memory. In the situations where this is not possible, approximation methods

for the block preconditioners must be utilised to achieve any improvement for solving

the linear system.

5.4.2 Constraint Preconditioners

The constraint preconditioner used is the Schilders Factorisation (5.8) with elements

described in (5.9). The matrices M1 and M2 are both chosen as the identity matrix.

With these choices, to apply this preconditioner only linear systems of the formD2x = b
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are required to be solved. This linear system was solved inexactly using MINRES [127]

with the convergence tolerance τ varied to determine the effect that the solution of this

linear system has on the overall performance of the preconditioner.

Table 5.2: Effect of the iterative scheme for α = 10−2 for varying tolerance τ .

D2 Linear System Iterations Residual Norm Termination Time (s)

τ = 1× 10−10 2 7.7× 10−8 Converged 23.3

τ = 1× 10−9 2 9.9× 10−8 Converged 22.1

τ = 1× 10−8 2 1.3× 10−7 Converged 21.6

τ = 1× 10−7 2 9.2× 10−8 Converged 20.7

τ = 1× 10−6 2 1.1× 10−6 Converged 19.6

τ = 5× 10−6 3 4.7× 10−6 Converged 20.6

τ = 1× 10−5 3 8.5× 10−6 Converged 20.7

τ = 5× 10−5 – 5.4× 10−5 Stagnation 75.1

Table 5.3: Effect of the iterative scheme for α = 10−10 for varying tolerance τ .

D2 Linear System Iterations Residual Norm Termination Time (s)

τ = 1× 10−10 5 5.3× 10−6 Converged 58.4

τ = 1× 10−9 5 6.7× 10−6 Converged 56.4

τ = 1× 10−8 5 3.7× 10−6 Converged 54.5

τ = 1× 10−7 6 2.2× 10−6 Converged 53.1

τ = 1× 10−6 7 1.3× 10−6 Converged 50.9

τ = 5× 10−6 17 9.6× 10−6 Converged 88.2

τ = 1× 10−5 40 9.0× 10−6 Converged 138.5

τ = 5× 10−5 – 4.3× 10−3 Stagnation 125.2

Tables 5.2 and 5.3 show that the convergence tolerance used to solve the inner linear

system within the preconditioner has an impact on the overall performance of the itera-

tive method. The use of a tolerance larger than τ > 1×10−5 caused the preconditioner

to stagnate, as opposed to converging to the solution of the linear system. This sudden

change may be due to the preconditioner no longer exactly satisfying the constraint

conditions, thus causing the preconditioned system to not be symmetric, positive defi-

nite, resulting in the failure of CG. On the other hand, the use of a tolerance too small

causes oversolving of the inner linear system, achieving no additional reduction in the

number of outer iterations to converge to the solution.
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Table 5.4: Summary statistics for 150 test datasets to assess the effect of the inner

linear system convergence tolerance on the overall iterative scheme.

Tolerance
Mean wall Average inner iterations

clock time (s) α = 1× 10−2 α = 1× 10−10

τ = 1× 10−10 40.7 315 506

τ = 1× 10−9 40.0 302 484

τ = 1× 10−8 37.1 289 454

τ = 1× 10−7 34.3 274 398

τ = 1× 10−6 34.1 250 262

τ = 5× 10−6 56.4 174 140

τ = 1× 10−5 81.2 130 93

τ = 5× 10−5 100.8 43 63

In order to determine an appropriate tolerance τ , the effect of the individual dataset

must be removed. Table 5.4 shows summary statistics for 150 sample datasets, gener-

ated using the method described at the beginning of section 5.4. Analysis of variance

shows that there is a statistical difference between the mean wall clock times averaged

over α for different tolerance levels (F = 1888, d.f. = 7). However, there is no statis-

tical difference between the mean wall clock times for τ = 1× 10−6 and τ = 1× 10−7

averaged over α. In light of τ = 1 × 10−6 requiring less inner iterations (on average)

than τ = 1 × 10−7, this value for the inner convergence tolerance provides the best

trade off between solving the inner linear system exactly and the total time taken.

5.5 Conclusion

Block preconditioners and constraint preconditioners were investigated to determine

their effectiveness for accelerating convergence to the solution of linear systems in the

evaluation of the GCV function from the thin plate spline smoother. The use of block

preconditioners is impractical because the approximations made to reduce computa-

tional requirements causes these preconditioners to be ineffective, as well as the loss of

symmetry of the coefficient matrix, requiring GMRES to be utilised. The use of a con-

straint preconditioner accelerated the convergence to the solution of the linear system

by the conjugate gradient method. Also, the effectiveness of the constraint precondi-

tioner is determined by the solution of the inner linear system D2x = b, with tolerance

1 × 10−6 resulting in the most efficient solution procedure for the size of problems

85



Computational Strategies for Surface Fitting using Thin Plate Spline Finite Element
Methods

studied here.

Future work will involve the use of block conjugate gradient methods to solve mul-

tiple linear systems with the same coefficient matrices at the same time and precondi-

tioning methods for alternative choices of M2 to improve the rate of convergence of the

inner linear system.
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6.1 Introduction

Reconstructing plant surfaces from point cloud data is important for a number of

applications in plant science, including estimating the leaf area and volume of the

plant [110], reconstructing plant canopies [122,135,156], generation of the plant struc-

ture [20,128,185], reconstruction of the leaf surfaces [48,78,92,126,171] and modelling

droplet movement on the leaf surface [40, 41, 126]. The techniques currently used for

data capture of these features are 3D scanning [23, 76, 110, 122, 156] and photograph

extraction [20,135,142,160,185].

The particular interest here is the reconstruction of leaf surfaces to form important
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components of virtual plants that are used in multi-scaled computational models for

agrichemical spraying of whole plants [41]. In this context, it is crucial that the recon-

structed surface provides an accurate virtual representation of the original leaf; this

requirement leads to the use of 3D scanning devices due to the accuracy and speed of

this approach, as evidenced by the recently developed products using this technology

(for example, CSIRO Plantscan and Phenospex PlantEye). Furthermore, the resulting

surface needs to be described by a sufficiently smooth explicit function (in particular,

the surface needs to have a continuous gradient) so that the subsequent mathematical

models for droplet interception, impaction and spreading can be applied. For these rea-

sons, it is not appropriate to apply active contour models (which produce an implicit

function of the surface) [75,136] or two dimensional estimates with perturbations [112].

Instead, desirable approaches for constructing the surface include the following three

methods, the first two of which involve discretising the domain using a finite element

method (FEM): (a) discrete smoothing D2-spline, which, in addition to minimising the

difference between the virtual surface and the original data, acts to smooth the curva-

ture across the surface [3,174]; (b) a thin plate spline smoother [147,148,164]; and (c)

a radial basis function method with Clough-Tocher elements [124,125].

Recently the approaches (a)-(c) above for reconstructing cotton and chenopodium

leaves have been compared [78]. The leaves were scanned using the 3D structured white

light scanner Artec S, producing a point cloud with data points spaced 200500 µm apart

to be used as an input to the surface fitting algorithms. It was found that the surface

generated with D2-splines was much smoother than that computed with the other two

approaches and, furthermore, the algorithm with D2-splines also ran significantly faster.

For these reasons, D2-splines were used to construct the leaf surfaces for simulations

of spraying our virtual plants in Dorr et al. [41].

In the present study we are interested in wheat leaves, which have blades that are

long and narrow. As the blade becomes longer, it is common for it to twist and bend.

An illustration of this typical geometry are the wheat leaves shown in Figure 6.1. A

problem with applying the D2-spline methods to reconstruct surfaces from scanned

data of wheat leaves is that these algorithms require the original surface to be defined

by a single-valued function with respect to a reference plane (roughly speaking, this

means the surface can not spiral or curl over itself). The goal of this work is to adapt

and extend the D2-spline algorithms to apply to all leaves, including leaves such as

wheat leaves whose topology is inherently spiral in nature.
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Figure 6.1: Kempthorne,

Daryl. “A photograph of a

wheat plant which emphasises

the twisted geometry of wheat

leaves.” 2013. JPG file.

Due to the general shape of wheat leaves, it is ap-

propriate to treat them initially as ruled surfaces, which

have the parametric form r(u, v) = m(u) + va(u) [37]

with parameters u and v, where m(u) represents a di-

rectrix and a(u) is a ruling vector. A number of tech-

niques are available for fitting ruled surfaces to data

sets [25, 133, 134]. In this work, a simpler algorithm is

used based on constructing a coordinate system from

the scanned data, together with reconstructed edges

and centre line of the leaf blade. This is done so that

the parameterisation, which will effectively be a rota-

tion and translation of the original data, preserves the

scale of the data set. This approach results in the sur-

face satisfying the properties of an explicit function in

the parameter space.

A summary of our approach is as follows. 1) A

wheat leaf was scanned using an Artec S scanner, which

provides a discrete sample of the surface. 2) The edges

and midline of the leaf are reconstructed using Rapid-

form XOS, after which time a local orthogonal coordi-

nate system (u, v, w) is determined with the u-axis running parallel to the leaf blade.

3) The surface is then parameterised such that it can be represented as the explicit

function w = f(u, v). 4) A surface is then fitted to the dataset in parametric coor-

dinates using D2-spline methods. 5) The fitted surface is converted from parametric

coordinates back to standard coordinates.

We show here that this approach is successful, and is able to compute a functional

representation of a wheat leaf based on a scanned dataset. Our scheme is reliable and

depends on the reconstructions performed, but further research is required to reduce

the computational expense of the parameterisation process.
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6.2 Materials and Methods

6.2.1 Scanning wheat leaves

The 3D Artec S scanner employed to digitise the wheat uses a structured white light

algorithm to capture data points with a spacing of 200− 500 µm. A comparison of the

scanners that were available for use in this project, which included the Roland MD20

contact scanner, Microsoft Kinect, Roland LPX-250 Scanner, Picoscan and Artec S

Scanner, was performed in Kempthorne et al. [76]. The Artec S requires the Artec

proprietary software, Artec Studio, which does severely limit the configurability of the

device. The field of view for this scanner is quite small (80 × 56 × 100 mm), causing

difficulty with scanning wheat leaves, as they are typically long and narrow.

Figure 6.2: Kempthorne,

Daryl. “A photograph of a

wheat plant with the sup-

porting structure to over-

come some difficulties associ-

ated with using the Artec S

scanner.” 2013. JPG file.

This issue is exacerbated by this scanners data ac-

quisition technique, which captures a number of frames

per second and then aligns consecutive frames based on

the assumption that two consecutive frames will scan

a nearby region of the object. As the general shape of

a wheat leaf is visually similar along its length, it can

be difficult for the software to determine exactly where

consecutive frames are to be aligned. This can be over-

come by placing additional rigid objects nearby, but not

contacting, the leaves to provide additional structure

(see Figure 6.2). The data points obtained from these

objects are then removed in a pre-processing stage.

The most reliable process for scanning wheat plants

with this device is to use a number of short scans from

different positions and orientations. A scan is a se-

quence of frames aligned automatically by the device

which represent the object being scanned from a single viewpoint. This process should

be repeated until all portions of the plant are scanned from multiple angles and orien-

tations, as this will ensure that the data quality is as high as possible.

Reconstructing edges and centre line

The orientation and shape of the wheat leaf are required to be known to apply the

parameterization. They are described by three B-splines which traverse the length of
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the blade, one for each boundary and one along the centre of the blade. The process of

fitting these is performed using the spline tool in Rapidform XOS. The control points

for the B-splines of the edges are determined using both the points obtained from

the scanner and the physical leaf. The process is performed in this manner since sharp

edges, such as the edge of a leaf blade, are known to generate the lowest quality scanned

points [170].

Figure 6.3 shows a section of a data set near the edge of a leaf, along with the fitted

boundary curve. As this section of leaf blade was scanned using multiple orientations,

the portion of dense data points is likely to represent physically accurate positions,

whereas the region of significantly lower density points is not.

Figure 6.3: Example of fitting the edge of the wheat leaf to the data set. The region

of high density points is likely to represent the physical leaf, whereas the low density

points are likely to be artificial points.

The curve fitted along the centre of the blade gives additional information about

the shape of the leaf. Whilst this curve is not required to be exactly placed in the

centre of the blade, it must accurately represent the orientation as it is used as an axis

during the parameterisation of the data points.

Parameterising the surface

The following definitions are used throughout this section. The scalar product of two

vectors u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn] is u · v = u1v1 + u2v2 + · · ·+ unvn.

The Euclidean norm is used as a measure of the magnitude of a vector and is defined as

‖u‖ =
√
u · u. The vector product of two vectors u and v, denoted by u× v, produces

a vector which is perpendicular to both u and v. The value of the parameter v which

minimises the function f(v) is expressed as v = argminx f(x). Finally, the set of vectors

that can be written as a linear combination of u and v is written as span{u, v}.
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The algorithm used to parameterise the surface is outlined in Table 6.1. In this

algorithm, m(t), with control points at tj , j = 1, 2, . . . , N , is the B-spline representing

the middle of the leaf blade, U(t) := m′(t)/‖m′(t)‖ is the unit tangent vector to the

centre curve, W(t) is a B-spline representing the upward pointing normal to the plane

of best fit through the local data points and P = (xi, yi, zi) ∈ RM×3 is the set of M

scanned data points.

The function W(t) is constructed from the data set. This is done by using knot

vectors nj at control points tj , where nj := (vj ×U(tj)) / ‖vj ×U(tj)‖2. The vector

vj is calculated so that the affine plane represented B = m(tj) + span {vj ,U(tj)}

minimises the square orthogonal distance between this plane and the local data points.

i.e.

vj = argmin
v∈R3

∑
p∈Pj

‖p−m(tj)− projB(p−m(tj))‖2 ,

where Pj =
{
p ∈ P : ‖p−m(tj)‖2 < ∆

}
is the set of points in the sphere of radius

∆ centred at m(tj) and projB(X) is the projection of x onto the space B. The value

of ∆ is chosen as the maximum width of the leaf to ensure that all datapoints near

the boundary in the region of interest are included. To ensure the orientation of the

normal with respect to the surface is consistent along the length of the leaf, the condition

nj · nj+1 > cos(π/4), j = 1, 2, . . . , N is enforced. This condition guarantees that the

angle between two consecutive normal vectors is less than 45◦, which in turn implies

that the surface does not twist too quickly between the control points. If this condition

is not satisfied, the control points are to be refined until this condition is satisfied.

Using this construction, U(tj) and W(tj) are orthogonal at the control points.

Table 6.1: Algorithm for parameterisation of the wheat leaf surface

1: procedure parameterise(m(t),W(t), P )

2: Set V(t) = U(t)×W(t)/ ‖U(t)×W(t)‖

3: for all points pi in P do

4: Set ui ← argmin
t∈[0,1]

‖pi −m(t)‖2

5: Set vi ← (pi −m(ui)) ·V(ui)

6: Set wi ← (pi −m(ui)) ·W(ui)

7: end for

8: return (u,v,w)

9: end procedure

A schematic of the parameterisation is shown in Figure 6.4. The centre line m(t) is
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indicated in blue, with the dotted portion indicating the opposite side of the leaf. The

local coordinate system is shown at four different locations to illustrate the changing

frame of reference along the leaf blade.

u

w

v

u
w

v

uw

v

u

w

v

Figure 6.4: Visual representation of the parameterisation of the leaf blade. The centre

line is indicated in blue, with the dotted portion showing the opposite side of the leaf.

The local coordinate system is shown in red.

This process allows the data points to be written as pi = m(ui)+viV(ui)+wiW(ui).

The coordinate space (u, v, w) represents the distance along the leaf blade, the distance

of the point from the centre curve of the leaf, and the deviation of the point perpendic-

ular to the plane of best fit through the local data points, respectively. This approach

allows us to express w as a function of u and v, so that we are searching for the function

of the form f(u, v).

6.2.2 Summary of D2-splines algorithm

A D2-spline approach [3] is used for determining the function f(x) over the domain

Ω. The surface resulting from the application of this approach minimises a linear

combination of the residual error between the scanned points and the fitted surface

and the smoothness of the function, which depends on the error introduced during the

scanning process. This requires solving the functional equation

f = argmin
f∈C1(Ω)

n∑
i=1

(wi − f(ui, vi))
2 + α

∫
Ω

(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2

dx,

where α is a smoothing parameter which is automatically chosen using generalised

cross validation [181]. The first term represents the residual between the data point

and the fitted surface. The second term is a penalty term that is included to control the

smoothness of the surface. The relative importance of each of these terms is controlled
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by the smoothing parameter α. The function f is assumed to be of the form

f(x) =

m∑
j=1

cihi(x),

where the m functions hi(x) are reduced Hsieh-Clough-Tocher basis functions [43] and

the coefficients ci are to be determined. The application of this technique to wheat and

chenopodium leaves is described in Kempthorne et al. [78].

Finally, to compute the fitted surface, the coefficients ci in the representation of

the function are calculated as follows. Applying this technique to a dataset leads to a

number of systems of linear equations of the form, for each α,

(
HHT + αM

)
c = Hy,

where H ∈ Rm×M and A ∈ Rm×m with values given by

Hij = hi(xj) and Aij =

∫∫
Ω

∂2hi
∂x2

1

∂2hj
∂x2

1

+ 2
∂2hi
∂x1∂x2

∂2hj
∂x1∂x2

+
∂2hi
∂x2

2

∂2hj
∂x2

2

dx, (6.1)

respectively, and c = [c1, c2, . . . , cm]T . The coefficient matrix HTH + αA is symmetric

and positive definite which allows conjugate gradient algorithms to be used to efficiently

solve the linear system [153]. Reordering the rows and columns of the matrix using

reverse Cuthill-McKee algorithm also significantly reduces the bandwidth of the matrix,

providing additional computational benefits.

6.2.3 Convert fitted surface to standard coordinates

The final step in our approach is to convert the surface from parametric coordinates

back to standard coordinates. Given the form of the parameterization, we can write

this surface as

(x, y, z) = m(ui) + viV(ui) + f(ui, vi)W(ui),

where these functions have been defined in the previous sections. In this work, the sur-

face in standard coordinates has been constructed from a set of discrete points generated

in (u, v) coordinates by gmsh [55]. These points are then used to find corresponding

points in (x, y, z) coordinates.

6.3 Results

The technique described was applied to each of the leaves of a wheat plant. A plant with

leaves having three distinct shape profiles was selected in order that the robustness of
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the algorithm could be demonstrated. The 3D scan of this plant is shown in Figure 6.5.

The full data set contains 442943 data points on all three leaves and the stem. From

Figure 6.5, leaf 1 does not exhibit any twisting or bending along the length of the

blade, leaf 2 contains a three quarter twist with variable width along the blade and leaf

3 bends in the centre and performs a quarter twist near the tip.

Leaf 3

Leaf 2

Leaf 1

Figure 6.5: 3D scan of a full wheat plant. Leaf 1 does not exhibit any twisting or

bending, leaf 2 contains a three quarter twist and leaf 3 bends in the centre and performs

a quarter twist near the tip.

Table 6.2 summarises the results of the computation time to perform the parameter-

isation. As the number of data points increases, the mean computational time increases

approximately 1.4 seconds per 1000 data points. These results were calculated using a

Matlab script running on an i7-4770 Ubuntu Workstation.

Table 6.2: Summary of computation time for the parameterisation algorithm. The

mean time µ and variance σ2 have been estimated using n = 10 trials.

Leaf N Normal Calculation Time (s) Parameterisation Time (s)

Leaf 1 91272 µ = 3.21, σ2 = 0.001, n = 10 µ = 130.67, σ2 = 0.45, n = 10

Leaf 2 161193 µ = 5.70, σ2 = 0.004, n = 10 µ = 226.71, σ2 = 0.87, n = 10

Leaf 3 172883 µ = 4.97, σ2 = 0.006, n = 10 µ = 233.31, σ2 = 0.29, n = 10

The results of applying this surface fitting technique to leaf blade 3 are shown in

Figure 6.6. The data set for the leaf contains 172883 points, distributed on the leaf

blade as shown in Figure 6.6(a). The time to complete the parameterisation of the data
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Surface reconstruction of wheat leaf morphology from three-dimensional scanned data

points is approximately 4 minutes, with the results shown in Figure 6.6(b). This image

emphasises the need for parameterisation, as the data set is now amenable to applying

the D2-spline approach.

−60

−40

−20

0

−70−60−50−40−30−20−100

−40

−35

−30

−25

−20

−15

−10

−5

0

(a) Scanned dataset

0
0.2

0.4
0.6

0.8
1

−4

−2

0

2

4
−2

0

2

u
v

w

(b) Parameterisation of the dataset

(c) Fitted surface in parametric coordinates (d) Fitted surface in standard coordinates

Figure 6.6: Images detailing the parameterisation and reconstruction of wheat leaf

blade 3.

The execution time for computing the D2-spline algorithm outlined above is 49.66 s,

which consists of 41.67 s to calculate the matrices HHT and A and 7.99 s to perform the

generalised cross validation to calculate the optimal value for the smoothing parameter

α and corresponding coefficient values c. The resulting surface is shown in parametric

space in Figure 6.6(c) and in standard coordinates in Figure 6.6(d). The execution

time to convert the surface from parameterised to standard coordinates is 6.12 s. The

fitted surface shown is approximated by a fine mesh of 23456 points producing 46127

triangles, which was generated using gmsh [55].

Leaf blades 1 and 2 were also reconstructed, taking 27.19 s and 42.71 s, respectively,

to compute the D2-spline representation of each of the leaves. The fitted surface is

approximated by a mesh of 11696 points and 22770 triangles for leaf 1 and 22657
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points and 43875 triangle for leaf 2. A complete reconstruction of the plant is shown in

Figure *7*. The three leaf blades have been constructed using the presented algorithm,

while the main stem of the plant has been approximated by a cylinder.

6.4 Discussion

The algorithm for modelling the surface for a wheat leaf has been demonstrated to

provide a realistic representation of the surface. The advantage of using a parameteri-

sation technique is that this provides a simple preprocessing and post processing stage,

so that the underlying D2-spline surface fitting technique is not restricted to flat leaves,

but can be extended to modelling grasses also. This extension allows significantly more

leaf varieties to be modelled using the D2-spline approach, as additional or different

pre-processing and post-processing stages could be applied for use in more complex

geometries.

The obvious downside to this approach is the computational effort required to pa-

rameterise the data set. A significant portion of the parameterisation time is the calcu-

lation of the u coordinate, which requires solving a non-convex minimisation problem.

The current approach taken is to use the lsqnonlin function (from the Optimisa-

tion Toolbox) in Matlab using the trust-region-reflective algorithm. The initial

value is chosen as the knot point which is closest to the data point, as this will be in

the region which globally minimises the distance between the centre line and the data

points. Future research will involve analysing this minimisation problem to determine

an improved computational scheme.

Future work will also include automating the required user input in specifying the

boundary and centre curves. This will have the advantage of increasing throughput

and increasing consistency, as the algorithm will not require any human interaction.
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7.1 Introduction

The challenges facing agrichemical users have increased in complexity over recent years.

On the one hand, consumers require the highest quality of produce, while on the other,

regulators insist on safety (to the consumer from residues) and risk reduction (to the

operator, environment or ecosystem) [192]. The requirement to reduce detrimental eco-

logical effects and retain or improve both biological efficacy and the economic viability

of the grower can only be met by optimising spray efficacy through smarter and more

cost effective spray formulation and application. These factors must be considered to-
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gether as they are linked inextricably [192] if optimal canopy penetration and coverage

is the objective.

Many spray programmes currently employed in the agricultural industry appear to

provide lesser control of pests than might be expected from laboratory trials, which can

be attributed to inadequate canopy penetration and foliar coverage. Spray adjuvants

and the correct choice and use of spray application equipment are powerful tools to

maximise pesticide efficacy, reduce detrimental environmental effects and improve the

economic viability of the grower.

Expensive field measurements of specific crop/environment combinations are cur-

rently required to determine optimal adjuvant formulations and spray application tech-

nology. The use of mathematical and computational models to help predict such be-

haviours could provide a more cost effective alternative, provided they can reliably

predict total plant retention, within-canopy distribution, leaf coverage or spray solu-

tion run-off.

Previous studies have resulted in empirical models for initial adhesion [48] and spray

retention [49, 132] by individual plants. These models utilise parameters that describe

solution properties, spray droplet physical properties and leaf surface characteristics.

Further progress has been made on various elements of the spray retention process.

However, there is a need for a coherent overarching simulation package that is based

on process-driven principles instead of empirical chemical-crop environment specific

scenarios.

Models for spray deposition from aerial application do exist [171], however the focus

has been on spray drift, not retention. Models of spray deposition through the plant

canopy [40], or impaction onto the plant [13] also exist. However, these models make

the simplifying assumption that if a plant intercepts a droplet, it is always retained.

Process-driven models for retention, taking into account droplet bounce and shatter,

have recently been implemented within AGDISP [158]. The focus of the current paper

is on further developing process-driven models for droplet interactions with the plant,

at or after interception. The innovation of the system presented here is that virtual

leaf surface models have been developed and then subjected to virtual spray droplets,

with predictions made of droplet interception and retention by the plant leaves. The

model inputs include formulation, droplet and plant parameters, so the model will be

able to help pick the best formulation and droplet size spectrum to be used for a given

plant/crop. These inputs will need to be modified by intelligent operational choices to
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avoid excessive spray drift while maximising retention in reality.

The construction of a virtual surface with which the droplets may interact is, in

itself, a challenging problem. In order to capture a large, accurate data set the technol-

ogy of scanners and their operation requires a significant amount of experience. Work

reported by Loch [93], investigated the use of piecewise cubic elements to interpolate

a point cloud by a surface with a continuous gradient. In that work the use of a hand

held scanner was addressed and an initial investigation of pathways of surface droplets

under gravity was made. A theoretical analysis of the interpolation technique was

made by [176] and [126] who investigated two techniques for derivative estimation. In

that paper a quasi one dimensional model of the movement of a droplet, incorporating

gravity and some surface effects was presented. Experiments were made by putting

water droplets onto a leaf and recording their paths. In Kempthorne et al. [77] and

Kempthorne et al. [77] least squares approximation of point clouds by linear combina-

tions of smooth splines was investigated. These were the surface fitting techniques used

in the current work for which efficient numerical linear algebra algorithms have been

constructed.

This paper reports on the development of process-based models for adhesion and

retention, using a simplifying assumption of horizontal surfaces and droplets impacting

perpendicular to the surface. The model is then tested for three different formulations

on three plant leaf examples with differing surface shapes and impaction characteristics.

7.2 Model Description

7.2.1 Overview

Mathematical models of droplet impaction processes at multiple scales are being de-

veloped and integrated to help quantify, optimise and predict the complexities of agri-

chemical spray retention by plants. Parameter-driven interactive software has been

implemented to enable the end-user to study and visualise a variety of practical agri-

chemical scenarios. Actual plant leaves have been scanned to capture the surface to-

pography and a realistic virtual leaf surface model generated as an integral component

of a structural model of an entire virtual plant. Virtual spray droplets are then applied

to the leaf model and predictions made of droplet interception and retention by the

plant leaf.
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7.2.2 Leaf surface models to provide virtual reproductions of leaf to-

pography

A leaf surface representation was generated to act as the target for the droplet in-

terception and impaction models. To generate these surface representations a large

number of three-dimensional data points were captured from an actual leaf surface.

Cotton and chenopodium leaves were scanned using an Artec STM, by Artec Group

(www.artec3d.com), which is a 3D white light scanner. This scanning process pro-

duced a cloud of data points, which was then used as an input for a surface fitting

algorithm [78, 126]. This technique provides the ability to control the coarseness of

the underlying mesh, with coarser meshes providing shorter simulation times for the

spray droplet trajectory model. The surface is constructed using D2-splines [3], which

minimises a combination of the squared residuals between the fitted surface and the

collected data and the curvature of the surface.

This process is displayed for a chenopodium leaf in Fig. 1. A photograph of the

scanned leaf is shown in Fig. 1(a). The point cloud of the scanned leaf contained

105,846 data points and is shown in Fig. 1(b). This dataset was then used to generate

a mesh of 6921 points and 13,226 triangles, displayed in Fig. 1(c). The resultant surface

is shown in Fig. 1(d), where the photograph in Fig. 1(a) has been texture mapped

onto the surface. The surface can be presented in a format suitable for use with the

spray droplet trajectory model described in the following section.

7.2.3 Modelling spray droplet trajectories and interception by leaves

on virtual plants

L-studio, a Windows-based software environment for creating simulation models of

plants [138, 139], was used in this study. The leaf surfaces from Section 7.2.2 were

imported into the cpfg (plant and fractal generator with continuous parameters) com-

ponent of L-studio using the Tsurface specification [103]. L-system based models of the

whole plants can be extended to incorporate the detailed leaf surface models and the

spray interception model. A particle trajectory model that uses a combined ballistic

and random walk approach, as described by Dorr et al. [40], was used to model the

movement of spray droplets through the air. It calculates the trajectory of the droplets

from release to final impact and determines if they impact on any leaf; if so, their in-

cidence angle and velocity is determined at impaction. Any droplets that are released

through shatter or bounce are tracked until all droplets are accounted for, including
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(a) (b)

(c) (d)

Figure 7.1: (a) Photograph of a chenopodium leaf with area 735mm2 (b) point cloud

of the scanned leaf (c) generated mesh and (d) the resultant model leaf surface.
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those lost to the ground or that drift away from the sprayed area. A complementary

output is the distribution of spray throughout the canopy. The single plant outputs can

be also amalgamated into a multi-plant (same or different species) model to simulate

spray retention by entire crops or crop/weed populations.

7.2.4 Spray droplet impaction models to calculate adhesion, bounce

or shatter behaviour

When a droplet impacts on a leaf surface, there are three possible outcomes, namely

adhesion, bounce or shatter. The model by Mao et al. [97] is used to describe the

droplets interaction with the leaf surface, leading to either adhesion or bounce. Their

model considers only a horizontal surface [178] and does not apply if the droplet shatters

on impact. Modelling of the shatter process is at a less advanced stage than spread

and bounce [104,113,114,190,191]. Key physical parameters included in these models

are the properties of the formulation (dynamic viscosity, surface tension and density)

and droplet physical properties (diameter and downward velocity).

Modelling droplet bounce

Droplet spread and rebound is typically modelled by balancing changes in the kinetic

and surface energy of a droplet once it has impacted a substrate. Attane et al. [5]

presented a one-dimensional energy balance model describing the spreading and re-

coiling motions of a droplet impacting a horizontal surface, which was then extended

by Mercer et al. [105] to produce a predictor for bounce. This model, however, re-

quires the solution of a second order nonlinear ordinary differential equation for each

droplet impaction which can become time consuming. An alternative model, by Mao

et al. [97], was instead favoured for its use of purely algebraic equations as well as its

better agreement with (unpublished) experimental data.

By comparing energy states of the droplet at key stages of the impact process,

the energy balance model presented by Mao et al. [97] predicts the maximum spread

diameter of the droplet after impact, and its tendency to bounce after subsequent

recoil. The model enforces conservation of volume throughout the impaction process

and assumes that the droplet shape at maximum spread can be approximated by a thin

cylindrical disk.

Maximum spread diameter, dm, is predicted by equating the system energy before

impaction (consisting of surface and kinetic energy) to that at the moment of maximum
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spread (consisting of surface energy and accounting for kinetic energy lost due to viscous

dissipation in the spreading process). To calculate dm, the cubic equation[
1

4
(1− cos θe) + 0.2

We0.83

Re0.33

](
dm
D

)3

−
(

We

12
+ 1

)(
dm
D

)
+

2

3
= 0

from equation (17) of Mao et al. [97] must be solved. This equation incorporates the

system parameters through the Weber number We = ρV 2D/σ , the Reynolds number

Re = ρV D/µ , and the equilibrium (static) contact angle θe . Note that V and D

are the impact velocity and initial diameter of the droplet respectively, ρ is the fluid

density, σ is the surface tension at the fluid-air interface, and µ is the fluid viscosity.

The above cubic equation can be solved exactly for dm; if we write the polynomial in

its monic form, x3 + px+ q = 0, then the real root is given by
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In order to use this result, the inequality
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3

)3
< 0

must be checked first. If this condition is not met, then no real solution for dm exists.

Fortunately this only occurs for relatively small initial droplet diameter D and impact

velocity V , where it is likely that the droplet adheres to the surface and calculation of

dm is not required.

Bounce is predicted by determining whether the recoil stage after maximum spread

will provide enough kinetic energy to the droplet to allow it to re-form into a spheroid

and lift off the surface as a whole. If the energy is not available for rebound, the droplet

will adhere to the surface. Mao et al. [97] predict bounce through the equation

EERE =
1

4

(
dm
D

)2

(1− cos θe)− 0.12

(
dm
D

)2.3

(1− cos θe)
0.63 +

2

3

(
dm
D

)
− 1.

This equation specifically determines the excess rebound energy (EERE) of the

droplet as a function of the maximum spread diameter dm. A value of EERE greater

than zero indicates sufficient energy for bounce and a zero or negative value indicates

adherence. This leads to an extension of the Mao et al. [97] model, where a positive

nonzero EERE can be used in the calculation of the exit velocity of a bouncing droplet

through the relation

Vexit =

√
12EERE

πρD3
.
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In the present study, the direction that the droplet bounces is assumed to be a mirror

of its incoming direction. This simplifying assumption makes most sense when the

impaction occurs perpendicularly onto a horizontal surface, since the droplet would be

expected to rebound upwards (at least in the absence of surface defects). For impactions

involving angled surfaces or trajectories, the concept becomes more complex, with

factors such as energy loss playing a role in determining the precise path of the bouncing

droplet. These complexities are not considered by the simplified mirror assumption,

and are the subject of further work.

Additionally, a bounce boundary may be generated for each spray formulation and

plant type combination by running the Mao model as described above for a range of

initial droplet diameters D and impact velocities V . When plotted on V and D axes,

the points where EERE switches from negative to positive connect to form a curve that

delineates the border between bounce and adhere results.

Modelling droplet shatter

Due to droplet shatter being less well understood than spread and bounce, the bulk of

the literature relies on empirical relations to predict the onset of shattering. A sound

theoretical argument can be made that droplet shatter occurs when the inertial forces

from impact overcome the capillary effects of the fluid. A relation can be written in

terms of the Weber and Reynolds numbers but must be empirically fitted to data [111].

Mundo et al. [114] use one such relation, K = We1/2 Re1/4. They found that a critical

value of K, Kcrit = 57.7, correlated well to the shatter boundary for their data. The

value Kcrit delineates shatter results from non-shatter results: if the calculated K on

impact is greater than Kcrit then the droplet will shatter, otherwise it will either bounce

or adhere.

Laborious adhesion and shatter experiments would normally be required to empir-

ically fit a suitable value of Kcrit to a new data set, which is counterproductive to the

modelling objective. Forster et al. [50], however, devised a simple method to overcome

this issue by providing an estimation of Kcrit based on two contact angle measure-

ments of standardised formulations. This approach is used here to calculate Kcrit for

each plant type, and shatter is predicted if the computed value of Mundo et al.s [114]

criterion exceeds this.

The shatter criterion has the shortcoming that it does not give any information

about the satellite droplets formed in the shatter event; it merely acts as an indicator
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of whether shatter occurs or not. Yoon and DesJardin [190] present energy balance

arguments to account for the distribution of energy to the satellite droplets after shatter.

They also summarise linear stability theories that may be used to predict the number

of satellite droplets formed on impact, Ns. We take their equation (21) (originally

presented in Marmanis and Thoroddsen [98]),

Ns = 0.1Re1 where Re1 =
V

2
√
µ/ρ

(
π2ρD3

σ

)1/4

,

to predict the number of satellite droplets, and use conservation of volume (between

pre-impact and post-splash states) to predict the diameter of each as Dsat = D/N
1/3
s .

To calculate the exit velocity of each satellite droplet, Yoon and DesJardin [190]

form energy balance arguments much like those in Mao et al. [97], leading to

EKE =
π

4Ns
d2
m (1− cos θe)σ − πσD2

sat,

for the kinetic energy of each satellite droplet, EKE. We then use the following equation

to calculate the exit velocity of each droplet:

Vexit =

√
12EKE

πρD3
sat

.

The values for EKE can become negative for certain parameters (in particular for

low contact angles and when the number of satellite drops becomes large) and hence

no real solution for Vexit exists. Even situations where EKE is positive but very close

to zero may pose a problem in practice, because Vexit will in turn be so small that

the satellite droplets will not actually splash away from the site of impaction. To

overcome this limitation we include the condition that if EKE is calculated to be less

than πρV 2D3
sat/1200, we set EKE = πρV 2D3

sat/1200. This ensures that Vexit may

never be less than 10% of the initial impact velocity V , a value which we consider an

appropriate lower bound on the exit velocity to ensure that satellite droplets will splash

away.

The angle of ejection for each satellite droplet is taken from Dorr [39], based on

empirical random distributions of mean and variance.

7.3 Model evaluation

By combining leaf models (Section 7.2.2) with droplet trajectory (spray) models around

plants (Section 7.2.3) and impact models (Section 7.2.4) it is possible to provide realistic

simulations of spray retention based on real plants and formulations. Leaves of varying
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Figure 7.2: L–studio screen shot showing a grid of droplets falling onto a chenopodium

leaf.

size and character were chosen to provide diverse target types. Similarly, representative

formulations with specific physicochemical properties were used to provide a range of

input parameters. The outputs from the models described above can be tested against

laboratory data for individual leaf retention (involving droplet adhesion and secondary

capture from bouncing or shattered droplets) to validate the accuracy of the overall

single leaf retention model.

7.3.1 Single leaf

The model described in Section 2 was run for various droplet sizes, droplet velocities,

leaf types and spray mixtures. Droplet size ranged from 100 to 700µm in 100µm

increments. Droplet velocities were selected to be 1, 3, 6 and 9m/s. A regular grid

of mono-sized droplets at 1mm spacing was generated and allowed to fall vertically so

that the whole leaf surface was covered (Fig. 7.2).

Three leaf types were tested: cotton, wheat and chenopodium. Cotton leaves are

easy to wet, whereas chenopodium and wheat leaves can be described as difficult to

wet. Wheat provides an example of a grass plant while cotton and chenopodium are

broad leaf plants. The leaves were modelled as described in Section 7.2.2. Cotton was

tested with a coarse mesh consisting of 70 triangles and a calculated area of 2848mm2.
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Due to the long, thin and curved nature of the wheat leaf, a mesh consisting of 2271

triangles was used with a leaf area of 1848mm2. The output of the chenopodium leaf

model was saved at two levels of detail. Initial testing was with a coarse mesh that

consists of 100 triangles for the leaf and these results were then compared to a fine

mesh that contains 13,266 triangles per leaf at a 3m/s droplet impact velocity. The

calculated area of the chenopodium leaf was 731mm2 for the coarse mesh and 736mm2

for the fine mesh. The main reason for the difference in area for the two mesh details

is due to edge effects, since the finer the mesh improves the approximation of the leaf

edge.

Three spray mixtures were selected to simulate our models: water only, 0.1%

Ecoteric R©T20 (Huntsman) and 0.1% Pulse R©(Nufarm Ltd). The physical properties

used for model inputs are shown in Table 7.1. In order to obtain these properties,

the following approaches were employed. Surface tension was measured using a Krv̈ss

bubble pressure tensiometer (BP 2 MKII). Static contact angles of each formulation

were measured using a KSV CAM 200 optical contact angle meter with a Basler digital

video camera. Finally, Kcrit was estimated according to Forster et al. [50] from static

contact angles of 20% and/or 50% aqueous acetone solutions on each leaf surface.

7.4 Results

The predicted retention of the spray on each of the three leaf types with different

spray mixtures, droplet sizes and droplet velocities are shown in Tables 7.2–7.4. The

retention is expressed as a percentage of the total volume of spray droplets that impact

the leaf. Normal text indicate that the primary droplets adhere on impact. The bold

text indicate that the primary droplets bounce on impact and the total retention values

shown are due to subsequent recapture of the bouncing droplets. The italic text indicate

that the primary droplets shatter on impact and the total retention values shown are

due to the recapture of the daughter droplets. A comparison of a fine chenopodium

leaf surface mesh and a coarse mesh on spray retention is shown in Table 7.5. Spray

retention obtained from the fine mesh was slightly higher than obtained from the coarse

mesh, although the same trends in the results were observed.
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7.5 Discussion

7.5.1 Droplet size and velocity of impacting drops

Predicted retention of the spray on all three single leaves tended to decrease with in-

creasing droplet size and increasing droplet velocity of impacting droplets. For example,

at a droplet velocity of 3m/s, predicted retention of Formulation 2 (Ecoteric T20) on

a wheat leaf reduced from 100% with a droplet size of 100µm down to 12.9% with a

droplet size of 700µm (Table 7.3). Increasing the velocity from 3m/s to 9m/s for a

100µm drop of Formulation 2 on a wheat leaf reduced the retention from 100% down

to 15%.

The main reason for this trend is that larger and faster droplets have greater energy

on impact. For a given leaf surface, as the energy of the impacting droplet increases, the

velocity of any resulting rebound or shatter droplet increases. The faster these rebound

and shatter droplets move, the greater the chance that they move further from the point

of impact and hence are not retained on the leaf of original impact, although they may

be retained on other nearby leaves if they are present. These results indicate that the

velocities and direction of drops after initial impact can influence the final retention on

the leaf. Further work is required to refine and validate this effect.

7.5.2 Leaf characteristics

Predicted retention on cotton leaves was much higher than on chenopodium and wheat.

At a velocity of 3m/s, all droplet sizes and formulations tested on cotton adhered on

impact, so retention was 100% (Table 7.4). This can be contrasted to retention of 400µm

droplets of Formulation 1 (water) and Formulation 2 (Ecoteric T20), where all droplets

bounced off a chenopodium leaf after initial impact, so retention was 0% (Table 7.4).

The lowest predicted retention on cotton leaves was 43.2% for 700µm droplets at a

velocity of 9m/s (Table 7.2), whereas retention on chenopodium was often below 10%

(Table 7.4). The average predicted total retention across all droplet size, velocity and

formulations scenarios tested was 85, 30 and 18% for cotton, wheat and, chenopodium

respectively.

This result is largely due to the easy to wet nature of cotton leaves, as reflected in

lower static contact angles and high Kcrit values (Table 7.1). There is also a tendency

when droplets shatter or bounce for retention to be higher as leaf surface area increases

(leaf areas for cotton, wheat and chenopodium were 2848, 1848 and 731mm2, respec-
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tively). After initial impact any shatter or bounce droplets move away from the point

of impact and hence the larger the surface area, the greater the proportion of shatter

and bounce droplets likely to be intercepted.

7.5.3 Formulations

Retention of spray on leaf surfaces can be modified by changing the properties of the

formulation applied. Reducing the surface tension of the liquid generally reduces the

static contact angle of the formulation on the leaf surface, resulting in higher retention.

For example, retention of 400µm droplets on chenopodium at a velocity of 3m/s reduced

from 46.8% for Formulation 3 (Pulse) down to 0.0% for Formulation 1 (water) and at

9m/s reduced from 16.4% down to 1.1% (Table 7.2).

This increase in retention, achieved by modifying formulation properties, was most

notable on the hard to wet species of chenopodium and wheat. The repulsion of shat-

ter droplets increases as the contact angle between droplet and leaf increases. Hence

retention values are lower with Formulation 1 (water) than with Formulation 3 (0.1%

Pulse) on all three leaf types since the greater the velocity the further the droplets are

propelled away from the point of impact.

7.5.4 Leaf model detail

It was found that increasing the detail in the leaf model through using a finer mesh

slightly increased the predicted retention on the chenopodium leaf (Table 7.5). Increas-

ing the amount of detail however increases the run time of the model. This becomes

more significant when extending the model to whole plant and full field applications.

The same trends and comparative differences in retention were observed between the

fine and coarse mesh and the difference in predicted retention was often less than 2%.

Given the relatively small difference compared to the greater run time it is considered

that the coarse mesh leaves would be suitable for future studies with full plants.

7.6 Conclustions

A model to predict spray retention on leaf surfaces based on scanned leaf images and

measured formulation properties has been developed. The results show that incoming

droplet properties (size and velocity), spray formulations, leaf surface characteristics

and properties of any shatter or bounce droplets after impact, all influence the amount

of spray retained on a leaf surface. Formulations with a lower surface tension and static
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contact angle on a leaf surface will result in higher retention. Retention was found to

decrease with increasing droplet size and velocity for a given formulation and leaf type.

The droplet impaction models described in this paper are for a combination of

horizontal leaves and droplets impacting perpendicular to the surface. Further work

is required to allow droplets to impact the leaf at different angles. The shatter model

needs to be improved in the area of the predicted number of shatter drops generated,

velocity of these satellite drops and their trajectory.

Ultimately, the impaction model will be incorporated into virtual models of com-

mercially relevant crop and weed plants that are currently being developed, followed

by laboratory and field validation of the results. These simulations will then be used to

quantify agrichemical spray retained by the foliage, and its relative distribution through

the plant canopy for the sustainable management of pesticides in agricultural systems.
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8.1 Introduction

An important component of agrichemical spray retention simulations is a model to

simulate the movement of the droplet on the leaf surface after it has adhered to the

surface. A reliable spray retention simulation requires a large number of droplets, which

can cause complex models to be computationally prohibitive. For this purpose, the

simple droplet model proposed by Oqielat et al. [126] for large droplets (diameter >

1mm) is extended for use on continuously differentiable surfaces. Furthermore, the

model based on thin film theory to estimate the height of the droplet is compared with

the shallow water equations to determine which technique is best suited for representing

the height of the large droplet.

Prior to the adhesion of the droplet to the leaf surface, a number of different out-

comes may occur when the droplet impacts the surface. At impaction, the droplet

may bounce off the leaf, shatter into a number of satellite droplets or adhere [41]. The

relative likeliness of these situations depends on the leaf surface properties, the angle of

impaction, the speed and size of the droplet and the properties of the fluid. This work
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is concerned with the motion of the droplet after it has adhered to the leaf surface.

The simple model does not attempt to solve the Navier-Stokes equations, which

describe the motion of fluids. Rather, the model is a simple approximation for large

droplets only based on the assumption that motion is driven by the force of gravity

only. The Navier-Stokes equations [84] are given by

ρ

(
∂v

∂t
+ 〈v,∇v〉

)
= −∇p+ 〈∇,T〉+ f , (8.1)

where ρ is the density of the fluid, v is the flow velocity, p is the pressure, T is the

deviatoric stress tensor and f represents any other body forces and 〈u,v〉 = uTv is the

standard Euclidean inner product. Under the long wave approximation assumption for

Newtonian fluids, (8.1) is formulated for the height h of these flows as [83,89,151]

∂h

∂t
= − 1

3ν

〈
∇, σh3∇∇2h− gh3 cos θ∇h+ gh3 sin θi

〉
, (8.2)

where ∇ = [∂x, ∂y]
T , ν is the kinematic viscosity, σ is the surface tension, g is the

force due to gravity and θ is the angle of the surface, as depicted in Figure 8.1. Mayo

et al. [100, 101] use this approach to model the movement of droplets on leaf surfaces

and show that the use of thin film models accurately simulate the motion of large and

small droplets. Mayo et al. [100] also investigate numerical methods to reduce the

computational expense of solving (8.2).

θ

xN (t)

h(x, t)

z

x

g

Figure 8.1: Thin film flow down a slope. (Recreated from Figure 2 in Oqielat et al. [126])

Virtual leaf surfaces have been constructed [78] using discrete smoothingD2-splines [3]

with reduced Hseih-Clough-Tocher finite elements to act as a continuously differentiable

surface over which the droplet simulation will be conducted. The use of a continuously

differentiable surface extends the original model, that represented the surface as piece-

wise linear over a triangulation, by no longer requiring a triangulated mesh of the

domain. This allows the use of a numerical differential equation solver to perform the

integration to determine the trajectory of the droplet on the leaf surface.
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The simple droplet model proposed by Oqielat et al. [126] is presented in §8.2,

including an outline of the solution procedure, which will be compared in §8.4 with

the new algorithm detailed in §8.3. The comparison involves the models for both

the trajectory and height of the droplet. It is shown that numerically solving for the

trajectory of the droplet on a continuously differentiable surface is computationally

more efficient than the previous technique.

8.2 Simulation model for large droplets

The model proposed by Oqielat et al. [126] for large droplets assumes that the only

external force changing the motion of the droplet is due to gravity. The simple model

is given by the initial value problem

m
dv

dt
= md(p)− kfv − αd(p), (8.3)

p(0) = p0 and v(0) = v0, where

p(t) = p0 +

∫ t

0
v(ξ)dξ (8.4)

is the position and v(t) is the velocity of the droplet at time t, m is the mass of the

droplet, kf is a friction factor between the droplet and the leaf surface and α is used

to allow for internal resistance within the droplet. The force due to gravity parallel to

the plane is represented by the function

d(p) = g − 〈n,g〉n,

where n is the upward pointing unit normal vector to the surface f(x, y) at the point

p and g = −gk, as shown in Figure 8.2.

n

p

d(p)
g

Figure 8.2: The direction of movement d(p) with normal n and gravity g. (Recreated

from Figure 1 in Oqielat et al. [126])

The procedure employed to solve (8.3) is to triangulate the domain and approximate

the surface as a set of piecewise linear functions. As a result of this approximation,
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d(p) is constant within a triangle, which allows (8.3) to be solved exactly. The position

and velocity of the droplet on the nth triangle of the simulation are given by

p(t) = p0(tn) + dnp t−
1

c

(
v0(tn)− dnp

) (
e−ct − 1

)
, (8.5)

v(t) = dnp +
(
v0(tn)− dnp

)
e−ct, (8.6)

where

dnp =
1

kf
(m− α)dnp ,

dnp is the force due to gravity in the nth triangle, p0(tn) and v0(tn) are the position

and velocity respectively of the droplet when it enters the nth triangle at time tn and

c = kf/m. In order to determine the time tn+1 that the droplet leaves triangle n and

enters triangle n+ 1, the intersection of the position (8.5) with the edge is determined.

This also gives the initial position and velocity of the droplet as it enters the next

triangle.

The height of the droplet is modelled using the one dimensional version of (8.2).

Under the assumption that leaf is nearly horizontal and the height of the droplet decays

to zero as time increases, the solution for large time is given by

h ∼
(

ν

g sin θ

)√
x

t

where the droplet front is located at

xN (t) =

(
9Ag sin θ

4ν
t

)1/3

,

A is the surface area of the thin film

A =

∫ xN (t)

0
h(x, t) dx,

and sin θ is computed as

sin θ =
〈g,d(p)〉
‖g‖‖d(p)‖

.

This model predicts the height of the droplet to decay as h = O(t−1/3) as t→∞.

8.3 Improvements to the large droplet model

In this section, the improvements that have been made to the original model are de-

scribed. These improvements are based on maintaining the representation of the sur-

face with a continuously differentiable function, as well as considering the height of the
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droplet to be well modelled by the shallow water equations [169,193]. The leaf surface is

represented by a discrete smoothing D2-spline [3] with a reduced Hseih-Clough-Tocher

finite element basis. A detailed description of the application of this technique for

constructing virtual leaf surfaces can be found in Kempthorne et al. [78].

The single differential equation (8.3) is replaced by the coupled system of differential

equations
dp

dt
= v

m
dv

dt
= md(p)− kfv − αd(p),

(8.7)

which has the effect of solving for both the position and velocity. This approach has the

advantage that no triangulation of the domain is required and can be solved numerically

over the entire domain, not just an individual triangle. During this process, the actual

gradient of the surface is used, rather than a constant approximation of the gradient for

each triangle. Furthermore, as the droplet is assumed to be in contact with the surface,

the z coordinate can be calculated from the solution for the x and y coordinates.

Namely, the z coordinate is f(p). This allows d(p) to be rewritten in terms of the first

two components only,

d(p) =
−g∇f

1 + ‖∇f‖2
.

As a result of these modifications, (8.7) is a four dimensional nonlinear system of first

order differential equations. This allows the well researched area of numerically solving

first order differential equations to be applied to determine an approximate solution.

at any time t

A second modification is that the coefficient kf representing the coefficient of friction

is modified as the height h of the droplet varies. As the droplet is assumed to be

hemispherical, the radius of the droplet corresponds to the height, so that the friction

coefficient can be estimated using Stokes’ Law as

kf = 6πµh, (8.8)

where µ is the dynamic viscosity of the fluid.

A different model for representing the height of the droplet is also considered. The

shallow water equations are derived from the Navier-Stokes equations under the as-

sumptions that the depth of the fluid is very small compared with its wavelength [169,

193]. The shallow water equations in one dimension are given by [169,193]

∂h

∂t
+
∂(uh)

∂x
= 0 (8.9)

∂(uh)

∂t
+

∂

∂x

(
u2h+

1

2
gu2

)
= −gh db

dx
, (8.10)
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where h(x, t) is the height of the fluid, u(x, t) is the velocity of the fluid and b(x)

represents the surface over which the fluid is moving. The x direction of the one

dimensional system is in the direction of motion of the droplet and is measured by the

arc length of the trajectory of the droplet, namely

x(t) =

∫ t

0
‖v(ξ)‖dξ. (8.11)

Equation (8.10) is unnecessary as the velocity of the droplet is approximated using

(8.7). Thus, only (8.9) is required to determine the height of the droplet, when used in

conjunction with (8.7), which models the droplet as a travelling wave.

Under the assumption that ‖v(t)‖ doesn’t vanish, x(t) is invertible with inverse

t∗(x), so that the velocity of the droplet at x is given by u(x) = ‖v(t∗(x))‖. Noting

that equation (8.9) is a linear, hyperbolic partial differential equation, the exact solution

using the method of characteristics is

h(x, t) =
1

u(x)
f

(
t−
∫ x

0

1

u(ξ)
dξ

)
, (8.12)

where f is an arbitrary function to be determined. The assumption of a hemispherical

droplet with radius h0 provides the initial condition

g(x) =


√
h2

0 − x2, |x| < h0,

0, otherwise.

The characteristic corresponding to x = 0 is chosen to be representative of the ra-

dius of the droplet at all times as this corresponds to the largest height in the initial

condition. It can be noted that (8.12) can be simplified by differentiating (8.11) with

respect to t and rearranging produces the same characteristics that are required to

evaluate (8.12). Thus, it must be that u(x) = ‖v(t)‖, where x is given by (8.11). Fur-

thermore, on the characteristic passing through (x, t) = (η, 0), (8.12) can be simplified

to obtain

h(x, t) =
g(η)‖v(0)‖
‖v(t)‖

, (8.13)

where

η = t−
∫ x

0

1

u(ξ)
dξ

and v(t) is the velocity vector from the droplet simulation. In particular, the represen-

tative height of the droplet will be

h(t) =
h0u(0)

‖v(t)‖
. (8.14)
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8.4 Comparison of the models

The two techniques for modelling the path and height of the droplet are compared on

the basis of the computational efficiency of the computed solutions. A brief discussion of

the process to construct the virtual leaf surface upon which the simulation is conducted

is also provided. The comparison of the methods is conducted on a 10 mm × 10 mm

section of cotton leaf.

8.4.1 Virtual leaf model

It is necessary for a realistic leaf surface to be used so that realistic droplet simulations

are computed. The process taken here is to use discrete smoothing D2-splines [78] to fit

a surface through a set of digitised data points [76]. Figure 8.3 shows the point cloud of

a scanned cotton leaf, the full reconstructed virtual leaf surface, the small section of the

leaf under consideration and its location on the leaf. The full virtual leaf uses a reduced

Hseih-Clough-Tocher finite element basis to give a continuously differentiable surface.

The small section where the droplet simulation will be conducted uses the radial basis

functions φ(r) = r5 to form a basis as they provide 4th order differentiability of the

surface. While this degree of smoothness is not required for this problem, it would be

necessary for a comparison with (8.2), which does have this requirement.

8.4.2 Droplet trajectory comparison

This comparison will consider the motion of a single droplet of volume 0.524 µl (r =

0.5 mm). Two sets of initial conditions will be considered to show the effect that the

mesh size or the original model can have on the droplet motion. The first set uses

the initial position (0.6, 9.5), which corresponds to the highest corner in the region of

interest (centre back corner in Figure 8.3(d)), with initial velocity (5, 0)mm/s. The

second set uses the initial position (5.9, 7.2), with initial velocity (−10, 5)mm/s. The

velocities are chosen to be small because large droplets are unlikely to occur while

spraying a plant, but can form as a number of small droplets coalesce on the leaf

surface. The second situation is unrealistic in this sense, but is included as it highlights

the effect of using a mesh that is too coarse. All meshes that are discussed are regular

meshes covering the domain. These results were computed using a Matlab R2011a

implementation, with the hardware described in Table 8.1.

A triangulation of the surface is required to apply the technique by Oqielat et
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(a) Point cloud of the digitised cotton leaf (b) Textured reconstruction of the cotton leaf

(c) Reconstructed surface highlighting the region

of interest for the simulation

(d) Reconstructed section of interest

Figure 8.3: A discrete smoothing D2-spline is fitted to the point cloud to provide a

virtual reconstruction of the surface. The basis elements for the full leaf are reduced

Hseih-Clough-Tocher finite elements and for the section of interest are radial basis

functions.

al. [126], which can have a dramatic effect to the trajectory of the droplet when chosen

too coarsely. The effect on the position of the droplet for several different mesh sizes is

shown in Figure 8.4 starting from (0.6, 9.5) with initial velocity (5, 0)mm/s. It can be

observed that as the number of vertices in the mesh increases, the computed solution

approaches the numerical solution. The computed trajectory using a 33 × 33 mesh is

indistinguishable from the numerical solution. This behaviour is expected due to the

piecewise linear surface better approximating the surface.

A comparison of the wall times is given in Table 8.2, where it is clear that as the

number of vertices in the mesh increases, the wall time required to compute the tra-

jectory of the droplet correspondingly increases. The cause of the increased execution

time is the number of triangles that the droplet is required to cross increases, thus
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CPU Intel Core i7-2600 @ 3.40GHz

Chipset Intel Q87 Express Chipset

RAM 8 (2× 4)GB dual channel 1333MHz DDR3 SDRAM

Operating System Ubuntu Precise 12.04.4 LTS

Table 8.1: Computing hardware specifications used for leaf surface reconstructions.

Mesh size
Triangles
Crossed

Wall time (s)

5× 5 mesh 10 0.3815

9× 9 mesh 21 0.8004

17× 17 mesh 45 1.9620

33× 33 mesh 91 4.7298

Numerical solution – 0.1410

Table 8.2: Wall time required to compute the motion of the droplet over the domain.

As the mesh becomes finer, the wall time required to compute the trajectory of the

droplet increases. This is due to an increased number of triangles being crossed, which

requires finding more intersection points of the triangle edges with the trajectory of the

droplet.

requiring more intersection points between the triangle edges and the trajectory of the

droplet to be determined. The table also shows that the wall time for computing the

trajectory of the droplet using a numerical ODE solver is smaller than any of the mesh

sizes discussed, and is an order of magnitude smaller than the 33× 33 mesh which had

indistinguishable results in Figure 8.4.

The second droplet simulation began at the position (5.9, 7.2), with the initial ve-

locity (−10, 5)mm/s. This situation is unlikely to occur due to coalescence of smaller

droplets as the initial velocity is in the opposite direction to the force of gravity, but

may occur when a large droplet is formed by the spray nozzle and impacts the surface,

which warrants this investigation. The effect of the mesh size on the predicted droplet

trajectory is shown in Figures 8.6 and 8.7. It is immediately apparent that the trajec-

tory when using a 5 × 5 mesh is quantitatively different to using a finer mesh. This

indicates that the use of a mesh which is too coarse can be detrimental to accurately

determining the droplet path. Similarly to the first case, as the mesh becomes finer

and better approximates the surface, the predicted trajectory approaches the numerical

solution.
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Figure 8.4: The trajectory taken by the droplet with the initial position (0.6, 9.5) and

velocity (5, 0)mm/s is dependent on the fineness of the mesh chosen. As the fineness

of the mesh increases, the computed solution gets closer to the solution obtained using

the new approach. The solution using a 33×33 mesh is indistinguishable from the new

solution.

8.4.3 Droplet height comparison

The existing model using thin film theory [126] is compared with using the shallow

water equations to estimate the height of the droplet. One initial advantage to using

the shallow water equations is that (8.12) is able to provide a profile for the shape of

the droplet, while the existing model assumes that the droplet remains hemispherical

at all times. The profile information is not used throughout the simulation, rather a

representative height (8.14) is used, but is able to be constructed after the simulation

has completed using (8.13). For the purposes of comparison, the trajectory model is

solved numerically to fairly compare the two height models. The initial position and

velocity for the simulation are (0.6, 9.5) and (5, 0)mm/s respectively.

The representative height of the droplet is shown in Figure 8.8. It can be observed

that the two different height models predict very different results for the height of the
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Figure 8.5: The trajectory of the droplets shown on the leaf surface with the same

mesh sizes and colours as Figure 8.4. It is clear that increasing the fineness of the mesh

causes the solution using a mesh to approach the numerical solution.

droplet. This is due, in part, to the assumption that h → 0 as t → ∞ with the thin

film model, an assumption which is not present in the shallow water equations. Also

the shallow water equations as presented have no mechanism for fluid to escape from

the droplet to reduce its mass, giving additional insight to the reason this predicted

height does not also approach zero. We now argue that the height predicted from the

shallow water equations is an improved prediction over using the thin film model from

Oqielat et al. [126].

The vertical component of the position and the magnitude of the velocity of the

droplet are shown in Figure 8.9. The expected phenomena can be observed from the

simulation with the speed of the droplet increasing when the droplet is located on a

downward sloping section of the leaf and decreasing on flatter sections. Recall that

the profile of the droplet is considered with the shallow water equations, so the effect

of increasing velocity will stretch the front of the droplet away from the back, while

decreasing velocity will cause the back to reduce the distance to the front. As the model

assumes that no fluid is lost, this has the effect of increasing and decreasing the size of

the droplet

From Figures 8.8 and 8.9, it can be observed that as the velocity increases, the

height of the droplet decreases. This is due to the front of the droplet accelerating

away from the back of the droplet due to the varying velocity of the different sections

of the droplet. Figure 8.10 shows the profile of the droplet in increments of 0.4 s along
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Figure 8.6: The trajectory taken by the droplet with the initial position (5.9, 7.2) and

velocity (−10, 5)mm/s when using a 5 × 5 mesh produces very different quantitative

behaviour compared to using finer meshes. As the mesh becomes finer, the predicted

trajectory of the droplet approaches becomes similar to the numerical solution.

its path on the leaf surface. This figure, in conjunction with Figure 8.9, highlights

that regions of increasing velocity cause the droplet to become less rounded in these

regions. This is highlighted in the three sections shown in the figure, where the velocity

is expanding and contracting each section.

The behaviour is more pronounced with the initial postion and velocity (5.9, 7.2)

and velocity (−10, 5)mm/s, because the speed of the droplet changes over a larger

range. Figures 8.11 and 8.12 show the droplet heights using both models, as well as the

vertical position and speed. The behaviour observed here is similar to the first set of

initial conditions, with the droplet height decreasing as the speed increased. It should

be noted that it may be unrealistic for the droplet height to increase so dramatically.

Recall that the initial velocity given to this droplet may not be physically realistic, as

large droplets are formed through coalescence of smaller droplets on the leaf surface,

rather than from the spray nozzle.
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Figure 8.7: The trajectory of the droplets shown on the leaf surface with the same

mesh sizes and colours as Figure 8.6. It is clear that increasing the fineness of the mesh

causes the solution using a mesh to approach the numerical solution. The figure also

shows that using a mesh which is too coarse can give different quantitative behaviour

of the droplet trajectory.
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h(t)

Figure 8.8: The evolution of the representative height of the droplet shown above with

the thin film model in blue and the shallow water equations in red. It is quite apparent

that the two height models give very different results for the height of the droplet.
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Figure 8.9: The vertical position of the droplet location p3(t) (blue) and its speed

‖v(t)‖ (red) are shown along the path taken by the droplet. It can be seen that the

speed of the droplet increases when the droplet is located on a downward sloping section

of the leaf and decreases on flatter sections.

8.5 Conclusion

This paper considered improvements to the model proposed by Oqielat et al. [126],

including solving the governing equations for the droplet trajectory numerically with

ordinary differential equations solvers and improving the droplet height model by treat-

ing the droplet as a travelling wave with the shallow water equations. It was shown that

it is superior to numerically compute the trajectory, as this requires less wall time to

produce than using very coarse triangulations, and produced a more accurate trajectory

that could only be achieved with a fine triangulation. Treating the droplet as a trav-

elling wave, through the use of the shallow water equations, produced behaviour that

was more realistic when the large droplet is formed through coalescence. The second

example considered the large droplet to be formed from the spray nozzle, which occurs

infrequently, and the predicted height of the droplet may have been overestimated.

The proposed model in this paper is able to produce a profile of the droplet in

the direction of motion, but gives no indication into spreading of the droplet in an

orthogonal direction. A higher dimensional model is required to be used, such as the

shallow water equations in two dimensions, to determine these features. The current

model does not include the effects of transpiration or evaporation, which may both
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Figure 8.10: The profile of the droplet is shown in increments of 0.4 s along its path on

the leaf surface. All droplets have been aligned so that the left edge of the profile of

the droplet coincides with x = 0 as this simplifies the visual comparison.
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Figure 8.11: The evolution of the representative height of the droplet shown above with

the thin film model in blue and the shallow water equations in red. It is very clear that

the two models chosen give very different representative heights of the droplet.
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Figure 8.12: The vertical position of the droplet location p3(t) (blue) and its speed

‖v(t)‖ (red) are shown along the path taken by the droplet. The initial incline causes

the droplet to decelerate rapidly, before slowly increasing speed over the long downward

sloping section.

130



Conclusion

play a critical role in affecting the trajectory of the leaf. Finally, additional leaf surface

properties, such as waxiness and hairyness, need to be considered, as these can affect

the fluid on the leaf surface.
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CHAPTER NINE

CONCLUSION

This thesis was delivered by publication. The original contribution to the literature

was given in the form of five published journal articles and one manuscript planned for

submission. Two conference seminars were also conducted, presenting the research in

Chapter 5 at the 16th Biennial Computational Techniques and Applications Conference

in 2012 and Chapter 3 at the 11th Engineering Mathematics and Applications Confer-

ence in 2013. The first objective of this research was to accurately reconstruct virtual

representations of physical leaf surfaces to be used as components in entire structural

plant models and as a foundation for droplet simulations. This required digitisation of

the physical plants, in particular their leaves, as discussed in Chapter 3, together with

an investigation of appropriate surface fitting techniques to accurately characterise the

leaves at the macroscopic scale. The reconstruction techniques differed for the three

species of plants, cotton, chenopodium and wheat, that were considered within this

project. Reconstruction of cotton and chenopodium leaves is addressed in Chapter 4

and for wheat leaves in Chapter 6. The second objective of this thesis, which was to

simulate large droplet (diameter > 1mm) motion after adhesion to the leaf surface, is

discussed in Chapter 8. This final chapter of the thesis presents a discussion of how

the two objectives were achieved and key results are then summarised, before some

possible directions for future research are given.

9.1 Summary and Discussion

The objectives of this research were outlined in Chapter 1. This section will restate

these objectives and discuss how the objectives were achieved.
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Objective 1: Construction of virtual leaves

This research was conducted in the context of understanding the effect of spray droplets

on leaves. Structural plant models were required to be developed, one necessary compo-

nent being the leaf structure. Accurate virtual representations of cotton, chenopodium

and wheat leaves were required to be constructed. The two reasons for this are that the

leaves represent most of the surface area of the plant and consequently intercept the

highest proportion of the droplet spray. The coverage of different spray formulations

on the leaves was also required to be evaluated.

Digitisation of plants

As stated above, three species of plants were digitised in order to accurately construct

virtual representations of the physical leaves. The digitisation process produces a dis-

crete set of points in three-dimensional space representing the physical plant surface.

Throughout this project, 3D laser scanning technology was used to digitise the plants.

This involved testing a range of devices to determine which was most suitable for this

application.

The Roland LPX-250 is a class 1 red laser scanner that can produce a full rotary

or planar scan of an object. This device is able to digitise the object with a resolution

of 200 µm in both the horizontal and vertical directions. This device was unsuitable as

only small plants were able to fit inside of the scanning chamber and the rotary motion

required when digitising the plant caused the leaves to move.

A range of structured light 3D scanners were tested including the Microsoft Kinect,

Picoscan and Artec S. The advantage of these digitisation devices was that the scanning

process was able to be completed much faster than the Roland LPX-250. A consequence

of the techniques used by these devices was that a manual alignment phase was required

to be performed for each plant.

The Microsoft Kinect uses an infra-red emitter and sensor to produce a point cloud

of the scene. The device also has a colour camera and is able to capture the texture

of the scene in conjunction with the depth data from the infra-red sensor. This device

was not able to produce the detailed resolution of plant leaves that was needed for the

project.

Picoscan is a structured white-light scanner that uses a series of photographs with

specific patterns to digitise a plant. This device required a long calibration phase for the

results of the digitisation to be an accurate representation of the plant. The device was
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inhibited from any practical use on a number of plants as a time-consuming calibration

phase was required for each new plant.

The Artec S is a structured white-light scanner that was able to digitise plants with

high resolution and accuracy. The resolution of the device is 200 µm with an accuracy

of 50 µm. The device operates by taking a number of small scans that are then aligned

to produce a full scan of the plant. It was found that this device was the most suitable

of those tested for reliably and quickly digitising cotton, chenopodium and wheat plants

for virtual leaf reconstruction.

Construction of virtual leaves

The approach taken to construct virtual representations of plant leaves assumed that

the leaf could be written as an explicit function of two variables z = f(x, y). This allows

surface fitting techniques to be easily applied to the digitised leaf. Three surface fitting

techniques were investigated for reconstructing virtual plant leaves; namely the radial

basis function Clough-Tocher method [124, 125], the thin plate spline finite element

method [147] and the discrete smoothing D2-spline method [3].

The radial basis function Clough-Tocher method [124, 125] triangulates a sample

of the digitised points to form a mesh of the domain. Radial basis functions are used

to estimate the gradient of the surface at the chosen digitised points. The estimated

gradients are used in conjunction with the sample points to form Hsieh-Clough-Tocher

finite elements over the triangulation. This has the effect of producing an interpolating

surface through the sample digitised points over the domain. Any error in the digitised

points is also transferred to the gradient estimates through the estimation process for

these quantities. This makes the choice of the sample points very influential on the

accuracy of the reconstructed leaf surface.

The thin plate spline finite element method [147] and discrete smoothing D2-

spline [3] are smoothing methods associated with minimising the functional equation

min
f∈H2(Ω)

n∑
i=1

(yi − f(xi))
2 + α|f |2H2(Ω).

The thin plate spline finite element method uses a mixed finite-element approach that

reduces the minimisation problem to a H1(Ω) minimisation problem. This is achieved

by enforcing constraints that the function and weak gradients are piecewise linear func-

tions defined over a triangulation of the domain. In order to satisfy the requirement that

the macroscopic surface of the leaf is continuously differentiable, the estimated function
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and gradient values are used in conjunction with reduced Hsieh-Clough-Tocher finite

elements to produce the desired surface. The discrete smoothing D2-spline method

uses a finite element approach to solve the minimisation problem. This approach re-

quires no post-manipulation as the surface produced from this technique is continuously

differentiable.

The thin plate spline finite element method required the action of a pseudoinverse

of the finite element approximation to the Laplacian matrix that results from the weak

gradient condition imposed on the reformulated problem. An explicit form for this

pseudoinverse was found and proven to satisfy the required conditions placed upon it.

The three techniques described above are suitable for broad leaf species of plants,

such as cotton and chenopodium. The reconstruction of other plant species, such as

grasses like wheat, require additional pre-processing and post-processing stages to be

applied to these data sets. In this work, wheat leaves were modelled using a parame-

terisation of the data set along the length of the leaf. This has the effect of introducing

a non-linear reference surface against which the surface is reconstructed. The parame-

terisation technique is applicable for reconstructing surfaces that can be parameterised

with a single parameter representing the distance along the length of the object, with

the shape of the leaf assumed to be linear in the direction orthogonal to the paramet-

ric axis. The surface fitting algorithm applied to the parameterised data set was the

discrete smoothing D2-spline, as this was the most effective technique when applied to

cotton and chenopodium leaves.

The key results from reconstructing cotton, chenopodium and wheat leaf surfaces

reported in Chapters 4 and 6 are summarised here. The use of discrete smoothing

D2-splines produced virtual surfaces that were most similar to the physical leaves. The

thin plate spline finite element method required less computational effort than using

discrete smoothing D2-splines, but did not produce a surface with similar smoothness

properties to the physical leaf. The radial basis function Clough Tocher method was

both the least computationally efficient and was heavily influenced by the error in the

chosen points and consequently the gradient estimates. It was concluded that the use

of discrete smoothing D2-splines was an effective technique for virtually representing

cotton and chenopodium leaves. The application of the parameterisation to the data

set for wheat leaves produced an effective technique for their virtual reconstruction.
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Objective 2: Simulation of large droplet motion

The second objective was to simulate the motion of large droplets on plant leaves. While

most droplets within a spray are small, several small droplets can coalesce, producing

a large droplet for which this research is very relevant.

The simulation of large droplets was performed by extending the method introduced

by Oqielat et al. [126]. This model assumes that gravity is the only force affecting the

velocity of the droplet. The existing work was extended by using a continuously differ-

entiable surface upon which to simulate the droplet. This allowed numerical techniques

to be employed to determine the trajectory of the droplet, which were shown to sig-

nificantly reduce the computational time required to compute the trajectory of the

droplet.

The existing model for representing the height using thin film theory was also

compared with using the shallow water equations to represent the height of the droplet.

The use of the shallow water equations allows a profile of the droplet to be obtained,

which was not possible under the existing model and does not require the computational

expense of solving a full thin-film model. Access to the profile of the droplet may prove

to be beneficial in future research in understanding the motion of large droplets on

plant leaves.

9.2 Directions for further research

The work presented in this thesis has provided new methods for virtual leaf construc-

tion, but has also identified areas where additional research is necessary. Future research

in the following areas would prove useful:

• Computational efficiency of the discrete smoothing D2-spline

The current technique for solving the linear systems resulting from the application

of discrete smoothing D2-splines is required to be improved for very large prob-

lems. In particular, the choice of the preconditioner for the symmetric, positive

definite linear system recommended in this research requires investigation for very

large problems as the fill-in permitted in the incomplete Cholesky factorisation

may not be permitted with the computational hardware available.

The present research uses iterative techniques to solve the two linear systems

required for each generalised cross validation function evaluation. This approach

could be extended by exploiting the fact that Krylov subspaces are invariant when
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the matrix is shifted [162]. This approach doesn’t require the Krylov subspaces

to be recreated on each function evaluation, which could substantially reduce the

computational expense of each function evaluation.

• Surface fitting of complex leaf surfaces

Leaf surfaces, such as cabbage leaves, require investigation into appropriate pa-

rameterisation techniques in order to apply discrete smoothing D2-spline tech-

niques as the curl of the leaf surfaces does not satisfy the conditions required for

the techniques investigated. The assumptions made in the current techniques for

broad and wheat leaves are not suitable for complex geometry.

• Representing the top and bottom of the leaf

The current work has treated the leaves as surfaces with negligible thickness.

Physical leaves can have different chemical properties on the top and bottom sur-

faces of the same leaf, as well as different geometries, that can affect the adhesion

of the droplet spray. Additional research is required to represent the leaves as

three-dimensional volumes, which allows for a higher accuracy representation of

the physical leaves.

• Representation of the microscale properties of the leaf

The current work has considered the macroscopic geometry of the leaf only. The

microscale properties of the leaf, such as the hairyness and waxiness, have been

investigated in other work [117, 118]. Research on techniques for efficiently ac-

cessing these properties, and the effect they have on a droplet, is required in order

to improve the droplet simulations.

Several areas of additional research were discovered for simulating droplets on leaf

surfaces. These include:

• Two-dimensional shallow water equations for large droplets

A number of simplifying assumptions are made about the path of the droplet and

its profile. The use of a two-dimensional model to represent the height will allow

for an investigation into both the profile of the droplet, and any spreading of the

droplet in the direction orthogonal to the direction of movement.

• Thin film models for small droplets

In practice, the droplets that are produced by spray nozzles do not conform to

the large droplet assumption. To investigate the initial behaviour of the droplets,
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prior to coalescence (at which point the large droplet assumption becomes valid),

thin film models could be employed. Progress has been made in this area recently,

published in Mayo et al. [102], where thin film models are used to simulate small

droplets on the leaf surfaces produced by the algorithm presented in this thesis

(the author is a co-author of this article, but it has not been included in the

present thesis).

• Inclusion of additional effects

The current technique using the shallow water equations does not allow for any

transpiration or evaporation of the droplet to occur. Both of these processes affect

the volume of the droplet, which would affect other aspects of a gravity-driven

model.
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[180] Tamás Várady, Ralph R Martin, and Jordan Cox. Reverse engineering of ge-

ometric modelsan introduction. Computer-Aided Design, 29:255 – 268, 1997.

doi:http://dx.doi.org/10.1016/S0010-4485(96)00054-1.

[181] G. Wahba. Spline Models for Observational Data. SIAM, 1990.

[182] W. Wan, T. Chan, and B. Smith. An energy-minimizing interpolation for ro-

bust multigrid methods. SIAM Journal on Scientific Computing, 21:1632–1649,

1999. arXiv:http://epubs.siam.org/doi/pdf/10.1137/S1064827598334277,

doi:10.1137/S1064827598334277.

[183] L. Wang, L. Lu, and N. Jiang. A study of leaf modeling technology based on

morphological features. Mathematical and Computer Modelling, 54:1107 – 1114,

2011. doi:http://dx.doi.org/10.1016/j.mcm.2010.11.042.

[184] W. Wang and G. G. Grinstein. A survey of 3d solid reconstruction from 2d

projection line drawings. Computer Graphics Forum, 12:137–158, 1993. doi:

10.1111/1467-8659.1220137.

[185] T. Watanabe, J. S. Hanan, P. M. Room, T. Hasegawa, H. Nakagawa,

and W. Takahashi. Rice morphogenesis and plant architecture: Measure-

ment, specification and the reconstruction of structural development by 3D

architectural modelling. Annals of Botany, 95:1131–1143, 2005. arXiv:

157

http://dx.doi.org/http://dx.doi.org/10.1016/j.jcis.2005.01.050
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcis.2005.01.050
http://dx.doi.org/http://dx.doi.org/10.1016/S0010-4485(96)00054-1
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/S1064827598334277
http://dx.doi.org/10.1137/S1064827598334277
http://dx.doi.org/http://dx.doi.org/10.1016/j.mcm.2010.11.042
http://dx.doi.org/10.1111/1467-8659.1220137
http://dx.doi.org/10.1111/1467-8659.1220137
http://arxiv.org/abs/http://aob.oxfordjournals.org/content/95/7/1131.full.pdf+html
http://arxiv.org/abs/http://aob.oxfordjournals.org/content/95/7/1131.full.pdf+html


BIBLIOGRAPHY

http://aob.oxfordjournals.org/content/95/7/1131.full.pdf+html, doi:

10.1093/aob/mci136.

[186] V. Weiss, L. Andor, G. Renner, and T. Várady. Advanced surface fitting tech-
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