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Zusammenfassung

Diese Arbeit befasst sich mit der Ordnungsreduktion parameterabhängiger, großer
dynamischer Systeme. Ziel ist es, eine Methodik zu entwickeln, um die Ordnung des
Modells zu reduzieren und gleichzeitig die Parameter-Abhängigkeit zu erhalten.

Wir nutzen zunächst die Methode des Balancierten Abschneidens in Verbindung
mit Spline-Interpolation, um das Problem zu lösen. Kern dieser Methode ist
die Interpolations der reduzierten Übertragungsfunktion, basierend auf einer zuvor
berechneten Übertragungsfunktion eines Samples des Parameter-Domains. Sowohl
lineare, als auch kubische Splines werden getestet. Wie erwartet verbessert die Ver-
wendung letzterer den Fehler der Methode. Es wird gezeigt, dass diese Kombination
die Robustheit des Balancierten Abschneidens sowie dessen Stabilitäts-Erhaltung
und, basierend auf einer neuen Schranke für die Unendlich-Norm der inversen Ma-
trix, Fehlerschranken aufweist.

Die Ordnungsreduction kann in einem Projektionen-Rahmen formuliert werden,
und im Falle eines Parameter-abhängigen Systems hängen die jeweiligen Projektions-
Unterräume auch von Parametern an. Man kann diese Parameter-abhängigen
Projektions-Unterräume nicht explizit bestimmen, jedoch durch Interpolation auf
der Grundlage einer Reihe im Voraus berechneter Unterräume approximieren. Es
stellt sich heraus, dass dies das Problem der Interpolation auf Grassmann Mannig-
faltigkeiten ist. Die Interpolation wird auf Tangentialräumen der zugrunde liegenden
Mannigfaltigkeiten durchgeführt. Um dies zu erreichen, muss man die Exponential-
und Logarithmus-Abbildung, inklusive einer Singulärwertzerlegung anwenden. Der
Prozess wird in eine Offline- und eine Online-Phase unterteilt. Die Rechenzeit
der Online-Phase ist ein entscheidender Punkt. Durch die Untersuchung der For-
mulierung der Exponential- und Logarithmus-Abbildung, und die Analyse der Struk-
tur von Summen von Singulärenwertzerlegungen, gelingt es uns, die rechnerische
Komplexität der Online-Phase zu reduzieren, und damit ist die Nutzung dieses Al-
gorithmuses in Echtzeit möglich.



Interpolation Based Parametric Model Order Reduction

Abstract: In this thesis, we consider model order reduction of parameter-
dependent large-scale dynamical systems. The objective is to develop a method-
ology to reduce the order of the model and simultaneously preserve the dependence
of the model on parameters.

We use the balanced truncation method together with spline interpolation to
solve the problem. The core of this method is to interpolate the reduced transfer
function, based on the pre-computed transfer function at a sample in the parameter
domain. Linear splines and cubic splines are employed here. The use of the latter,
as expected, reduces the error of the method. The combination is proven to inherit
the advantages of balanced truncation such as stability preservation and, based on
a novel bound for the infinity norm of the matrix inverse, the derivation of error
bounds.

Model order reduction can be formulated in the projection framework. In the
case of a parameter-dependent system, the projection subspace also depends on
parameters. One cannot compute this parameter-dependent projection subspace,
but has to approximate it by interpolation based on a set of pre-computed subspaces.
It turns out that this is the problem of interpolation on Grassmann manifolds. The
interpolation process is actually performed on tangent spaces to the underlying
manifold. To do that, one has to invoke the exponential and logarithmic mappings
which involve some singular value decompositions. The whole procedure is then
divided into the offline and online stage. The computation time in the online stage
is a crucial point. By investigating the formulation of exponential and logarithmic
mappings and analyzing the structure of sums of singular value decompositions, we
succeed to reduce the computational complexity of the online stage and therefore
enable the use of this algorithm in real time.

Keywords: Parametric model order reduction, spline, interpolation, Grass-
mann manifolds, real time.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . 6

1.3 Contribution and Outline of Thesis . . . . . . . . . . . . . . . 7

1.1 Motivation

Nowadays, numerical simulation is vital to manufactures. This step, on the one
hand, helps designers to create prototypes that fulfill requirements of producers. On
the other hand, it can serve as cheap and/or time-saving surrogate for experiments,
since real tests are usually expensive and time-consuming.

As the first step of a simulation, one has to search for a mathematical model
which describes the behavior of the device, or a single unit of it. Forming such a
model is based on laws in physics, chemistry, etc. One ends up with a set of partial
differential equations (PDEs) and typically has to solve these equations numerically.
To this end, PDEs must be discretized in space by means of some numerical method
such as the finite element method (FEM) or finite difference method (FDM). By
appropriate linearization and expansion, this generally results in a linear, time-
invariant system of the form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1.1)

where E,A ∈ R
N×N , B ∈ R

N×m, C ∈ R
l×N , D ∈ R

l×m are real or complex matrices;
x(t) is a vector representing the state of the system which depends on time t; u(t)
represents the input given by the user or determined by a process, called input
or control function, which affects the system behavior; y(t) is some information
extracted from the state x(t) and the input u(t). System (1.1) is the mathematical
clarification of the input-output correspondence. One inserts an input u(t) and
observes how interesting information comes out. This action is repeated many times
in the design process.
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Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
u(t) y(t)�

�

�

�

Figure 1.1: Input-output correspondence

Of course, a non-linear system may be generated. For mechanical systems,
the resulting differential equations are usually of second order. If, in addition,
discretization with respect to the time variable is performed, one derives difference
equations. Such cases are beyond the aim of this thesis.

With modern computers, obtaining a numerical solution appears to be simple.
But it is not as easy as it seems to be. In industry, for many reasons such as the
manufacture cost and/or the users’s convenience, one tends to integrate more compo-
nents into tiny units. This results in the so-called micro-electro-mechanical-systems
(MEMS), which are compositions of electric circuits and mechanical elements in
micro scale. Simulation of such complex microsystems is complicated. On the one
hand, knowledge about phenomena happening in normal scale cannot be applied to
micro scale; one needs to take into account the effects that only occur in small scale.
On the other hand, in order to understand the relation between different parts of
the system, all of them must be simulated in the dynamics of interaction.

Let us consider a solid propellant microthruster [104, 145, 150] as an instance
of electro-thermal MEMS. It is used to produce propulsion for nanospacecrafts,
microrockets, and microsatellites. A single microthruster is principally composed of
four parts: the reservoir or the chamber, the igniter, the seal or the diaphragm, and
the nozzle (see Figure 1.2 (left).) The solid fuel is contained in the chamber. The
combustion is ignited by a resistor, which is heated by letting an electric current go
through. This will increase pressure in the chamber and break the diaphragm when
the pressure approaches the critical point. Gas generated from the combustion is
led through a hole on the nozzle part and results in propulsion. This electro-thermal
process is approximately modeled by

∇(K∇T ) +
I2R

V
− ρC

∂T

∂t
= 0, (1.2)

where K is the (isotropic) thermal conductivity, C is the heat conductivity, ρ is the
mass density, T is the unknown temperature. Furthermore, I is the total current
through the resistor, R and V are its total resistance and volume, respectively.
Under some more mild assumptions [150], we can consider (1.2) linear. By the finite
element method, the equation (1.2) is discretized as

EṪ (t) = AT (t) + b
I2(t)R

V
,

y(t) = CT (t),

(1.3)
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in which E,A, b, C are constant matrices and T is now the vector of temperature
at grid points. In the above equations, one is not intersted in the temperature in
the whole domain but only at some nodes, which is expressed through the func-
tion y(t). By the demand of thorough examination, the order of the system (1.3)
tends to be high, especially for 3D simulations. It easily reaches thousands or even
millions. The situation becomes extreme when one wants to integrate numerous
microthrusters into an array (see Figure 1.2 (right)) and model the operation of
them simultaneously, not to mention the simulation of the circuit whose output is
used to compute the input I2(t)R/V .

Figure 1.2: A single solid propellant microthruster and an integrated array [104, 146]

Electro-thermal MEMS simulation is not the only issue where one encounters
large scale systems. Large systems may appear in many other fields such as simula-
tion of computer microchips which may contain millions of details, data assimilation
for weather forecast, modeling and simulation of microfluidic systems.

With such large data, simulation takes unaffordably long time. There obviously
is a need to reduce the order of the mathematical models for these systems. More
precisely, system (1.1) will be replaced with another system of the same form

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) +Du(t),
(1.4)

where Ê, Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
l×r, r � N and (1.4) shares important proper-

ties with and approximates (1.1) in some sense. This task is widely known as model
order reduction (MOR). Since the input-output coupling term D is not involved in
MOR, we can omit this term from now on.

The MOR problem has been investigated for more than half a century and
still attracts the attention of many applied mathematicians as well as engineers.
Several methods have been proposed to solve various large scale problems in practice.
The earliest known method is most probably Proper Orthogonal Decomposition. It
started with the works of Kosambi, Loève and Karhunen in the middle of the last



4 Chapter 1. Introduction

century [96, 114, 93]. This method shares the same idea with Principal Component
Analysis introduced by Pearson in 1901 [133]: using singular value decompositions
(SVD), it extracts the most representative information from given data to construct
the projection subspace. Also using SVD, balanced truncation was introduced in
1981 by Moore [121]. This method is based on the two notions: observability and
reachability, which are of interest in control theory. Balanced truncation first finds a
balancing transformation which balances the degree of observability and reachability
and then truncates all states that have low degrees of those. In contrast with these
two methods, the Krylov subspace method, which was likely to be first proposed for
MOR in 1980s by Gragg and Villemagne [69, 173], requires no matrix decomposition.
It constructs the reduced models that match some moments of the original transfer
function about some point(s). A comprehensive description of MOR methods can
be found in [10].

Each method has its own strength and weakness. Depending on the problem
and the purpose, the user can choose a suitable one. However, all of them can be
formulated under the Petrov-Galerkin projection framework. That is to seek two
full-rank projection matrices V,W ∈ R

N×r and then construct the reduced system
as

W TEV ˙̂x(t) = W TAV x̂(t) +W TBu(t),

ŷ(t) = CV x̂(t).

There are, however, always new challenges in seemingly solved problems. Let
us turn our attention back to the simulation of the solid propellant microthruster
array mentioned above. The propulsion production of each individual thruster is
independent of the others. It is controlled by an array of resistors which ignite the
combustion of the solid propellant. During the combustion, the heat may transfer
from one thruster to its neighbors and result in unwanted ignition. On the other
hand, the loss of heat, besides to its neighbors, to the outside which is inconsiderable
in normal scale, may stop the combustion if it exceeds the provided heat. Therefore,
the integration of microthrusters into an array requires a thorough temperature
control, specially the heat exchange.

Mathematically, the heat exchange is modeled by convection boundary condition,
namely

∂T

∂n
= σ(T − Tb), (1.5)

where Tb is the bulk temperature and σ is the convection coefficient depending on
the surroundings. It is noteworthy that the discretization of (1.5) contributes to the
formulation of matrix A in (1.3). Due to the structure of the integrated thruster
array, the heat flux through the wall is different from part to part. That means,
(1.5) is imposed but with different σ for different parts of the boundary. As a
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consequence, (1.3) becomes

EṪ (t) =
(
A0 +

k∑
i=1

σiAi

)
T (t) + b

I2(t)R

V
,

y(t) = CT (t),

where σi can vary during the use of the model. Conventional MOR methods are only
applicable for fixed σi. Each time one of them changes, the model reduction must
be performed again. This solution has two disadvantages. First, the repetition
of the computation will multiply the consumed time which should be avoided in
modeling and simulation. Second, the outcome model is not convenient to the
users. Certainly, the users, who are often engineers, do not want to learn and use
model reduction; they prefer a compact model which can be adapted to the change
of parameters easily and directly. This fact raises a desire to reduce the order of
parameter-dependent systems (PDS)

E(p)ẋ(t; p) = A(p)x(t; p) +B(p)u(t),

y(t; p) = C(p)x(t; p),
(1.6)

where p ∈ Ω ⊂ R
d, while still preserving the dependence on the parameters p. The

state and the output of this system depend on, in addition to the time variable t,
the parameters p. However, for the sake of simplification of notations, henceforth
we will merely denote them as functions of time. The problem is widely known as
parametric model order reduction (PMOR). Dealing with this problem, the aim of
this thesis is to seek either (I) a parameter-dependent reduced order model for (1.6),

Ê(p) ˙̂x(t) = Â(p)x̂(t) + B̂(p)u(t),

ŷ(t) = Ĉ(p)x̂(t),
(1.7)

where p ∈ Ω ⊂ R
d or (II) a procedure to produce a reduced model of the form (1.7)

for any p ∈ Ω. One can observe that a method in trend I can be used as a method
in trend II. However, the converse is, in general, not available.

If E(p) is non-singular for all p, the differential algebraic equation (DAE) in
(1.6) is an ordinary differential equation (ODE) and can be written as

ẋ(t; p) = Ã(p)x(t; p) + B̃(p)u(t),

y(t; p) = C̃(p)x(t; p).
(1.8)

The system (1.8) is also viewed as a special case of (1.6), where E(p) = I. In
fact, depending on the applications, while some approaches are devoted to systems
whose input-to-state equations are DAEs, the others are developed only for systems
that are composed of ODEs. And in order to keep tracking the original results,
the presentation will be shifted between two kinds of these systems for different
approaches. Moreover, whenever DAEs as in (1.6) are involved, we always assume
that the corresponding matrix pencil (A,E) is regular for all p.
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1.2 Overview of Existing Approaches

Undoubtedly, reduction of the order of PDSs must be based on usual MOR meth-
ods, i.e., methods for parameter-independent systems. The first effort to deal with
PMOR was proposed in [176]. It was then followed by various extensions and devel-
opments, e.g., [43, 55, 110]. The core of these approaches is based on matching the
so-called generalized moments by projecting the original system on either a union
of standard Krylov subspaces or newly defined generalized Krylov subspaces. They
are therefore referred to as Krylov subspace based methods.

The method proposed in [16, 17] combined balanced truncation with interpola-
tion. It starts with constructing reduced transfer functions at given grid points in
the parameter domain. Then, the reduced transfer function on the whole domain is
derived by interpolation using Lagrange, Hermite and sinc functions.

Also using interpolation, the authors of [130] chose to interpolate the reduced
system matrices. Following this direction, they succeeded in finding a way to sum
up different reduced state vectors that have the same physical meaning.

The aforementioned methods follow the trend I: symbolically preserve the de-
pendence on parameters. These solutions give theoretically compact models and are
convenient to the users. However, one can easily observe that (1.7) will be utilized
in a computational manner, i.e., given p ∈ Ω, one has to compute system matrices
of (1.7) in order to really be able to perform further steps. Forming an explicit
expression for the reduced transfer function like (1.7) may encounter some technical
difficulties. Instead of this, one may provide an algorithm that allows the compu-
tation of (1.7) for each given p. The important point is to achieve an algorithm to
compute the reduced system in real time. In MOR context, an algorithm is consid-
ered to be usable in real time if its computational complexity is independent of the
original order.

Reduced
order model

��p ∈ Ω Algorithm������

������

������

������

Figure 1.3: Trend II in solutions to MOR of PDSs

Following the work in [7], the authors of [6, 45, 8] make use of the interpolation
of reduced system matrices in another style. They observed that the original system
matrices usually own some special properties such as symmetric positive definiteness
or non-singularity. The reduced models constructed at a parameter sample (should)
inherit these properties. The direct interpolation of such matrices, in general, does
not preserve such properties and therefore may lead to a completely meaningless
reduced system. The key observation is that such structured matrices belong to
some differential manifolds. The interpolation generally cannot be carried out on
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manifolds, but it can be approximated by interpolating on tangent spaces to this
manifold. To this end, one has to invoke a logarithmic mapping to map data from the
manifold to a tangent space such that one can manipulate them as in a vector space.
Then, the interpolated data are mapped back to the manifold by an exponential
mapping. In comparison with the interpolation based methods mentioned above,
the procedure of this approach is rather complicated. This is the reason why an
explicit expression for the reduced systems of the form (1.7) is not available. The
approach is therefore classified to be in the trend II of the solutions to the order
reduction of PDSs.

1.3 Contribution and Outline of Thesis

Inspired by the work of Baur and Benner [16, 17], our first result combines the
use of balanced truncation and spline interpolation for PMOR. Splines have been
widely used in science and mathematics [26]. Their advantage is that they require
only low-degree polynomials while it still yields a quite smooth approximation. The
application of linear splines to the problem is almost straightforward due to the
simplicity. However, invoking cubic splines, which gives better approximation, faces
some obstacles. In order to derive an error bound for the method and construct
a state space representation for the reduced system, which has been computed by
interpolation of reduced transfer function, we have to choose an appropriate end
condition and estimate as well as prove an upper bound for the norm of the inverse
of the collocation matrix. Besides showing that the stability is preserved in the
proposed method, we also give a hint, using the derived error bound, on which cases
this method should not be applied.

Our second result, belonging to the trend II, develops an algorithm that com-
putes the reduced order model based on a set of pre-computed projection subspaces.
This is done through interpolation of these subspaces. In [7], Amsallem and Farhat
suggested interpolating projection subspaces which have been computed at some
chosen parameter values. This article, to our knowledge, for the first time proposed
the framework of interpolation on a manifold of structured matrices for MOR of
PDSs. However, one cannot use it in real time, since the computational complex-
ity depends on the original order. In [6, 45, 8], the online computation issue was
addressed but the approach used is interpolation of reduced system matrices, not
the projection subspaces. By exploiting the formulations of the logarithmic and ex-
ponential mappings on Grassmann manifold, developing a strategy to structure the
SVD of sums of SVDs, and by appropriately decomposing the computation proce-
dure into offline and online stage, we propose an improved version of the algorithm
that allows real time computation.

The thesis is organized as follows. In Chapter 2, we spend the first section to
recall some basic facts of linear dynamical systems. Some widely used MOR methods
are presented in detail in order to prepare the reader for a deep understanding on
MOR. This chapter also provides a clear explanation for the Riemann structure of
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Grassmann manifolds.
Chapter 3 summarizes existing approaches for MOR of PDSs. It starts with a

systematic presentation of Krylov subspace based methods. We first collect and give
a unified generalization of results in [70, 176, 43] and then show other approaches
in this framework. All methods based on interpolation are presented as well: the
interpolation of reduced transfer function, the direct and indirect interpolation of
system matrices. Besides explanation, the strength and the weakness of each method
are also analyzed.

Our main results are presented in Chapter 4. The spline interpolation based
method is given in the first part. The method is then tested with a PDS resulting
from the discretization of a convection diffusion equation. In the second part, we
present a real time procedure for producing reduced order models using interpolation
on Grassmann manifolds. The effectiveness of our method is then illustrated through
a numerical example with a real-world model.

Finally, the conclusion, possible improvements and open problems are given in
Chapter 5.
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The first section of this chapter gives an overview of dynamical systems. This in-
cludes general definitions, properties that help to have an insight into MOR methods
presented later on. In the second section, some common MOR methods for dealing
with (parameter-independent) large-scale systems are presented. They are the basis
on which MOR methods for PDSs will be built in the succeeding chapters. In the
third section, we provide basic facts on some manifolds in linear algebra.

2.1 Brief Theory of Dynamical Systems

There are various textbooks on this subject, e.g., [163, 31, 39, 65, 10, 84]. This part
is written, however, mainly based on the last three ones.
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2.1.1 Mathematical Formulation of Dynamical Systems

Dynamical systems is a term for all systems, in which the present state of some
components is determined by not only the present but also past state of other
components [125]. Many phenomena in science and life can be modeled as dynamical
systems. They appear frequently in physics, economics, biology, mechanics and
transportations 1.

In order to describe a dynamical system by a mathematical model, all its com-
ponents must be characterized by quantities, which are functions of time and called
variables. Depending on their functionalities in the system, they are divided into
external variables and internal variables [84]. External variables quantify the rela-
tionship between the system and the surroundings. They are, again, categorized
as either input u(t) which represents the effect of the outer objects on the system
or output y(t) which describes the influence of the system on the outer world. We
will only consider the controlled inputs and measured outputs in this dissertation.
Internal variables or the state x(t), on the other hand, stands for the state of the
system.

Before approaching the definition, we need to specify some other concepts. The
first one is the time domain. It is the set of time instants T within which the
act of the system is examined. The time domain may be a discrete set T = N,Z

or a continuous set T = R+, the set of positive real numbers R. The resulting
dynamical system will be said to be discrete-time or continuous-time, respectively.
The sets U, Y,X that the input u(t), the output y(t) and the state x(t) vary on
are called the input value space, output value space, state space, respectively. They
are usually subsets of some Cartesian product of R or the set of complex numbers
C. In addition, only input functions u(t) in some set of functions U are accepted.
This set is referred to as the input function space. The set of functions from T to
U is denoted by UT . We follow [84] to define dynamical systems and the related
concepts.

Definition 2.1 A dynamical system is a structure Σ := (T, U,U , X, Y, ϕ, η), where
T, U,U , X, Y are non-empty sets, T ⊂ R, U ⊂ UT , ϕ : Dϕ ⊂ T 2 ×X ×U −→ X, η :

T ×X × U −→ Y such that the following properties are satisfied:

Interval property: For each t0 ∈ T, x0 ∈ X,u(·) ∈ U , the life span of
ϕ(·, t0, x0, u(·)),

Tt0,x0,u(·) := {t ∈ T | (t; t0, x0, u(·)) ∈ Dϕ},

is an interval in T containing t0.

Consistency property: For each t0 ∈ T, x0 ∈ X,u(·) ∈ U

ϕ(t0; t0, x0, u(·)) = x0.

1Unlike [84], where dynamical system stands for a mathematical model, we use this term (or
sometimes only system) for systems in general. The mathematical model of a system will be
referred to as a model. Nevertheless, system is also used to name a system of linear equations or
differential equations. Such uses, we suppose, do not cause any serious ambiguity.
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Causality property: For all t0 ∈ T, x0 ∈ X,u(·), v(·) ∈ U , t1 ∈ Tt0,x0,u(·) ∩
Tt0,x0,v(·)(

u(t) = v(t) ∀t ∈ [t0, t1)
)
⇒ ϕ(t1; t0, x0, u(·)) = ϕ(t1; t0, x0, v(·)).

Cocycle property: If t1 ∈ Tt0,x0,u(·) and x1 = ϕ(t1; t0, x0, u(·)) for some t0 ∈
T, x0 ∈ X,u(·) ∈ U , then Tt1,x1,u(·) ⊂ Tt0,x0,u(·) and

ϕ(t; t0, x0, u(·)) = ϕ(t; t1, x1, u(·)), t ∈ Tt1,x1,u(·).

ϕ is called the state transition map, η the output map, T × X the event space,
x(t) = ϕ(t; t0, x0, u(·)) the trajectory of Σ determined by initial x(t0) = x0 and
control u(·), its graph ϕ(t; t0, x0, u(·)), t ∈ Tt0,x0,u(·) an orbit of Σ.

We consider only real dynamical systems, i.e., X ⊂ R
N ,U = {f : T → U ⊂ R

m, Y ⊂
R
l}; specification will be made for the situations that relate to the set of complex

number C whenever it is necessary to avoid confusion.

Definition 2.2 The dynamical system Σ is said to be time-invariant if the following
requirements are fulfilled

i) 0 ∈ T ⊂ R and T + T ⊂ T .

ii) U is invariant under shift with arbitrary length 0 ≤ τ ∈ T , i.e., u(t) ∈ U
implies u(t− τ) ∈ U .

iii) For all t0, t, τ ∈ T, τ ≥ 0 and x0 ∈ X,u(·) ∈ U

ϕ(t+ τ ; t0 + τ, x0, u(· − τ)) = ϕ(t, t0, x0, u(·)).

iv) Output map η does not depend on time.

Definition 2.3 The dynamical system Σ is said to be linear if

i) U,U , X, Y are vector spaces on R,

ii) for all t, t0 ∈ T, t ≥ t0, the mappings

ϕ(t; t0, ·, ·) : X × U −→ X and η(t, ·, ·) : X × U −→ Y

are linear.

An important property of linear systems is that the superposition principle holds for
the state transition map ϕ (and output map η), i.e.,

ϕ(t; t0, x0, u(·)) = ϕ(t; t0, x0, 0) + ϕ(t; t0, 0, u(·)).

In words, each trajectory of linear systems is the sum of the free motion ϕ(t; t0, x0, 0)

and the forced motion ϕ(t; t0, 0, u(·)). It also implies that without control u(·), 0 is
an equilibrium point of every linear system.
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Definition 2.4 The dynamical system Σ is said to be differentiable if the following
conditions hold

i) T ⊂ R is an open interval.

ii) U ⊂ R
m, Y ⊂ R

l, and X is an open subset in R
N .

iii) There exists a function f : T ×X × U −→ R
N such that for all t0 ∈ T, x0 ∈

X,u(·) ∈ U , the initial value problem

ẋ(t) = f(t, x(t), u(t)), t ≥ t0, t ∈ T,

x(t0) = x0

has a unique solution x(·) on the maximal open time interval Tt0,x0,u(·) and
x(t) = ϕ(t; t0, ·, ·), t ∈ Tt0,x0,u(·).

iv) η : T ×X × U −→ Y is continuous.

Remark A nonlinear differentiable dynamical system

ẋ(t) = f(t, x(t), u(t)), t ∈ T,

y(t) = η(x(t), u(t)),
(2.1)

where T ⊂ R, U ⊂ R
m, X ⊂ R

N are open, Y ⊂ R
l, U = C(T, U) - the set of

continuous functions from T to U - can be linearized in a neighborhood close to a
given trajectory as follows. Let z(t) = ϕ(t; t0, z0, v(·)). Accordingly

ż(t) = f(t, z(t), v(t)), t0 < t ∈ T,

z(t0) = z0.

Let us assume moreover that ϕ and η are continuously differentiable with respect
to (x, u). Denote by

A(t) =
( ∂fi
∂xj

(
t, z(t), v(t)

))
ij
∈ R

N×N ,

B(t) =
( ∂fi
∂uj

(
t, z(t), v(t)

))
ij
∈ R

N×m,

C(t) =
( ∂ηi
∂xj

(
t, z(t), v(t)

))
ij
∈ R

l×N ,

D(t) =
( ∂ηi
∂uj

(
t, z(t), v(t)

))
ij
∈ R

l×m.

It is shown in [84] that the solution of the state equation of

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t)
(2.2)

is a first order approximation to that of (2.1). Hence, (2.2) is called the linearization
of (2.1). �
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In this thesis, we only consider continuous-time linear time-invariant (LTI) sys-
tems, which take the form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.3)

where A ∈ R
N×N , B ∈ R

N×m, C ∈ R
l×N , D ∈ R

l×m. Some of the following argu-
ments are still valid for descriptor systems, non-linear systems, or systems whose
state equation is a second-order differential equation. Such cases will be specified

clearly during the presentation. For the sake of brevity, we write Σ =

(
A B

C D

)
for system (2.3). If l = m = 1, the system has only one input and one output. It is
therefore called single-input-single-output (SISO) system, otherwise if m > 1, l > 1,
it is called to be multi-input-multi-output (MIMO). Suppose that the state equa-
tion in (2.3) is coupled with the initial condition x(t0) = x0, by the variation of
constants, the state x(t) can be written as

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, t ∈ R.

The ultimate goal of the dissertation, however, involves systems that depend on
parameters p ∈ Ω ⊂ R

d. These parameters are not the usual control input that only
affects the second term in the state equation but appear in the whole system,

ẋ(t) = A(p)x(t) +B(p)u(t),

y(t) = C(p)x(t) +D(p)u(t).

We also assume moreover that the system matrices depend, at least, continuously
on the parameters.

2.1.2 Input-output Behavior Formulation

In many applications, one is only interested in the response of the system to the
given inputs. It may also be the case in which the full state vector is not completely
accessible. One has to define the system without the presence of the state. Assume
that T = R+, t0 = 0, x0 = 0. Then the output of (2.3) associated with input u(·) is

y(t) = Du(t) +

∫ t

0
CeA(t−τ)Bu(τ)dτ.

Recall that the Dirac delta function is a generalized function satisfying

δ(x) =

{
+∞, x = 0,

0, x = 0.
such that

∫ ∞

−∞
δ(x)dx = 1.
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The output y(t) can be rewritten as

y(t) =

∫ t

0
Dδ(τ − t)u(τ)dτ +

∫ t

0
CeA(t−τ)Bu(τ)dτ

=

∫ t

0
Dδ(t− τ)u(τ)dτ +

∫ t

0
CeA(t−τ)Bu(τ)dτ

=

∫ t

0

(
Dδ(t− τ) +

∫ t

0
CeA(t−τ)Bu

)
u(τ)dτ

= (G ∗ u)(t), (2.4)

where G(t) = Dδ(t)+CeAtB. Since G(t) is the response of system Σ to the impulse
δ, it is called the impulse response. Accordingly, we define

L : Lq(R+,R
m) −→ Lq(R+,R

l), 1 ≤ q ≤ ∞
u �−→ y(t) = Du(t) +

∫ t
0 CeA(t−τ)Bu(τ)dτ,

(2.5)

where Lq(R+,R
n) :=

{
f : R+ → R

n,
( ∫

R+
‖f(t)‖qqdt

) 1
q
< ∞

}
. L is called the

input-output operator. This approach is referred to as the input-output behavior ap-
proach in time domain, since only functions of time are involved. It is demonstrated
[84] that if A is a Hurwitz matrix, i.e., Re(λ) < 0, ∀λ ∈ Λ(A) - the set of eigenvalues
of A, L is a bounded linear operator from Lq(R+,R

m) to Lq(R+,R
l), q ≥ 1. In

that case, L is said to be Lq-stable. Accordingly, its corresponding system in the
state space form and its transfer function, defined later, are also said to be stable.
The eigenvalues of A are sometimes referred to as the poles of the system. With
this property, one can define L on T = R and with any initial time t0 and initial
condition x0. The details can be found in [84].

The analysis of the input-output behavior in the frequency domain is derived
from applying Laplace transform to L in L1(R+,R

n).

Definition 2.5 Let f(t) ∈ L1(R+,R
n), the Laplace transform of f is

f̂(s) = (Lf)(s) :=
∫ ∞

0
f(t)e−stdt, s ∈ C.

The crucial advantage of using Laplace transform is that it turns the convolution
into the normal product of two functions. Note that the integral does not always
converge. This happens when f(t)e−αt ∈ L1(R+,R

n), where Re(s) ≥ α. Taking
Laplace transform on both sides of (2.4) yields

ŷ(s) = Ĝ(s)û(s). (2.6)

In frequency domain, Ĝ(s) allows us to determine the system’s output directly
through the usual product with the input. It is called the transfer function of
system (2.3).



2.1. Brief Theory of Dynamical Systems 15

Another way to formulate the transfer function of system (2.3) is to take the
Laplace transform directly on both sides of this system

sx̂(s) = Ax̂(s) +Bû(s),

ŷ = Cx̂(s) +Dû(s).

Thus,
ŷ(s) = (D + C(sI −A)−1B)û(s) =: H(s)û(s). (2.7)

Comparing (2.6) and (2.7), one has Ĝ(s) = H(s) = D + C(sI −A)−1B.
Let φ be a coordinate transformation from x to x̃ in the state space X, i.e.,

x = φx̃. The state space description of system Σ becomes Σ̃ =

(
Ã B̃

C̃ D̃

)
, where

Ã = φ−1Aφ, B̃ = φ−1B, C̃ = Cφ, D̃ = D. By some simple computations, it follows
that

H̃(s) ≡ H(s).

That is, transfer functions are basis independent.

2.1.3 Reachability and Observability

The structure of the system Σ =

(
A B

C D

)
may be such that not all states of

the state space X can be reached from a fixed state with a reasonable control.
The reachable ones constitute a subspace of X. We formulate this concept in the
following

Definition 2.6 • A state x̄ ∈ X is said to be reachable from zero if there exists
a finite energy control u(·) ∈ U , a finite time t̄ such that

x̄ = ϕ(t̄; t0, 0, u(·)).

• The reachable subspace Xr ⊂ X is defined as the set of all reachable states.

• System Σ is said to be reachable if Xr = X.

• The infinite dimensional matrix

R(A,B) := [B AB A2B · · · ]

is called the reachability matrix of Σ.

The phrase “finite energy” related to control u(·) means that u has a finite energy
norm with which U is equipped. Usually, the standard norm of L2(R+,R

m) is used
for U = L2(R+,R

m).
The above definition involves only the pair (A,B) of Σ. We however want to

attach this concept to a concrete dynamical system.
The reachability matrix has a close relationship with the reachability gramian

defined as follow.
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Definition 2.7 The finite reachability gramian at time t ∈ R+ of the system Σ =(
A B

C D

)
is the matrix

P(t) :=

∫ t

0
eAτBBT eA

T τdτ,

where letter T means the matrix transpose.

It is shown that the following statements hold.

Theorem 2.1 ([10], Proposition 4.10)

• P(t) = PT (t) and is positive semi-definite.

• For all t ∈ R+, ImP(t) = ImR(A,B).

Based on Theorem 2.1, the pivotal result and its consequence are given.

Theorem 2.2 ([10], Theorem 4.7)

• Xr = ImR(A,B).

• Xr is an A-invariant subspace, i.e., AXr ⊂ Xr.

• Σ is reachable iff rank(R(A,B)) = N .

• Xr is invariant under coordinate transformations.

Taking the Cayley-Hamilton theorem into account, the rank of R(A,B) is deter-
mined by {AiB, i = 0, · · · , N − 1}.

By Theorems 2.1 and 2.2, ∀ x̄ ∈ Xr, ∀ t̄ ∈ R+, ∃ ξ̄ such that x̄ = P(t̄)ξ̄. Then

ū(t) = BT eA
T (t̄−t)ξ̄

is a control that drives 0 to x̄ at time t̄. It is shown in [10] that ū(t) has min-
imal energy among all controls doing the same task, i.e., ‖ū‖2 ≤ ‖u‖2, ∀ u(t) ∈
L2(R+,R

m), ϕ(t̄ : 0, 0, u(·)) = x̄. If Σ is reachable, by some simple symbolic compu-
tations, we have

‖ū‖22 = x̄TP(t̄)−1x̄. (2.8)

The concept of observability derives from the state observation problem: given
y(t) = Cx(t) for some t ∈ [t1, t1 + τ ], reconstruct state x(t1).

Definition 2.8 • A state x̄ ∈ X of Σ =

(
A B

C D

)
is unobservable if y(t) =

Cϕ(t; 0, x̄, 0) = 0, ∀ t ≥ 0.

• The unobservable subspace Xuo ⊂ X is defined as the set of all unobservable
states of Σ.
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• System Σ is said to be observable if Xuo = {0}.

• The infinite dimensional matrix

O(A,C) := [CT ATCT (AT )2CT · · · ]T

is called the observability matrix of Σ.

• The finite observability gramian at t ∈ R+ is

Q(t) :=

∫ t

0
eA

T τCTCeAτdτ.

In the following, we summarize properties of observability. They are, in a certain
sense, the counterpart of that of reachability.

Theorem 2.3 ([10], Theorem 4.20)

• For all t ∈ R+, X
uo = KerO(A,C) = KerQ(t).

• Xuo is A-invariant.

• Σ is observable iff rank(O(A,C)) = N

• Observability is basis independent.

Similar to (2.8), the energy in L2(R+,R
l) of the output function y(t) = Cx(t) caused

by state x̄ at time t̄ is computed by

‖y‖2 = x̄TQ(t̄)x̄.

For the controllability and observability of second order LTI systems, one can see,
e.g., in [115].

By definition, P and Q are non-decreasing in R+. If Σ is reachable, then P(t)

is non-singular and its inverse P−1(t) is non-increasing. If we fix a state x̄ and take
(2.8) into account, the longer the time the control u(·) needs to steer 0 to x̄, the
less energy it consumes. We deduce that the minimal energy for driving 0 to x̄ at
time t̄ is attained as t̄ → ∞. Likewise, the longer time the state x̄ is active, the
larger observation energy it produces. These facts raise the need to define infinite
gramians.

Definition 2.9 For a stable system Σ =

(
A B

C D

)
, the two (infinite) reachability

gramian and observability gramian are defined as

P :=

∫ ∞

0
eAτBBteA

T τdτ, (2.9)

Q :=

∫ ∞

0
eA

T τCTCeAτdτ. (2.10)
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Instead of explicit formulations, computation of reachability gramian and observ-
ability gramian are usually based on the following result.

Theorem 2.4 ([10], Proposition 4.27) Reachability gramian and observability
gramian of the stable system Σ are solutions of Lyapunov equations:

AP + PAT +BBT = 0, (2.11)

ATQ+QA+ CTC = 0. (2.12)

By the above arguments and notations, the minimal energy for reaching x̄ from 0 is

x̄P−1x̄; (2.13)

the largest observation energy produced by x̄ is

x̄Qx̄. (2.14)

We consider next how a coordinate transformation x = φx̃ can affect the grami-
ans.

P̃ =

∫ ∞

0
eÃτ B̃B̃T eÃ

T τdτ

=

∫ ∞

0
eφ

−1Aφτφ−1BBTφ−T eφ
TATφ−T τdτ

= φ−1Pφ−T . (2.15)

Likewise,
Q̃ = φTQφ. (2.16)

(2.15) and (2.16) lead to an important observation: eigenvalues of PQ are invariant
under coordinate transformations of the state space.

2.1.4 Norms of Systems

In order to quantify dynamical systems, especially the quality of approximation
methods, norms of systems must be defined. Due to the diversity of purposes and
situations, various norms were proposed. First of all, we would like to recall here
the Schatten norm of matrices. Let A ∈ R

l×m,m ≤ l, denote by σ1(A) ≥ σ2(A) ≥
· · · ≥ σm(A) the singular values [68, 46] of A. Then

‖A‖S,p :=

⎧⎪⎨
⎪⎩
(

m∑
i=1

σp
i (A)

) 1
p

, 1 ≤ p < ∞,

σ1(A), p = ∞.

(2.17)

The Schatten norm for p = 2 is also called the Frobenius norm and is equal to the
trace norm

‖A‖S,2 = ‖A‖F :=

(
m∑
i=1

σ2
i (A)

) 1
2

= (trace(A∗A))
1
2 (2.18)
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To define the Hankel norm of a system, we need to formulate its associated
Hankel operator. Recall the formulation (2.5) of a linear system Σ, the Hankel
operator H is defined as

H : L2(R−,Rm) −→ L2(R+,R
l)

u− �−→ y+(t) :=
∫ 0
−∞G(t− τ)u−(τ)dτ, t ≥ 0.

Definition 2.10 The singular values of H, σ(H), are called the Hankel singular
values of system Σ. The Hankel norm of the system Σ is defined as the induced
L2-norm of its Hankel operator, i.e.,

‖Σ‖H := ‖H‖L2 = σmax(H).

It was proven, e.g., in [10] that non-zero Hankel singular values of a reachable,
observable and stable system are equal to the positive square roots of the eigenvalues
of the product of the two gramians,

σi(Σ) =
√

λi(PQ), i = 1, · · · ,m. (2.19)

Therefore,
‖Σ‖H =

√
λmax(PQ).

Next, two frequently used norms for transfer functions will be defined through
Hardy spaces.

Definition 2.11 For functions F : C+ −→ C
l×m analytic on the open right complex

half-plane C+, the Hardy norm of F is

‖F‖Hp :=

⎧⎪⎪⎨
⎪⎪⎩
(
sup
α>0

∫∞
∞ ‖F (α+ iβ)‖pS,pdy

) 1
p

, 1 ≤ p < ∞,

sup
z∈C+

‖F (z)‖S,p, p = ∞.

In the case p = 2 and p = ∞, taking (2.17) and (2.18) into account,

‖F‖H2 =

(
sup
α>0

∫ ∞

∞
trace
(
F ∗(α− iβ)F (α+ iβ)

)
dβ

) 1
2

,

‖F‖H∞ = sup
z∈C+

σmax(F (z)).
(2.20)

The Hardy space Hp(C+,C
l×m) is defined as

Hp(C+,C
l×m) := {F : C+ −→ C

l×m, ‖F‖Hp < ∞}.

Remark By the Maximum modulus theorem [74], (2.20) turns into

‖F‖H2 =

(∫ ∞

−∞
trace
(
F ∗(−iβ)F (iβ)

)
dβ

) 1
2

,

‖F‖H∞ = sup
β∈R

σmax(F (iβ)).
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It is demonstrated that if a stable linear system L : L2(R,Rm) −→ L2(R,Rl) has
F (s) as its transfer function, then the ‖ · ‖H∞ norm of F (s) is equal to the induced
L2 norm of L.

Another definition of H2-norm is given in [10]. There, one also can find a com-
parison between norms. �

2.2 MOR Methods

Recall that MOR involves the approximation of systems of the form (1.1) by a lower
order system of the same form (1.4). For the sake of simplicity, we consider almost
only the ordinary differential equations, i.e., E = I and remove the input-output
coupling term D. The special case will be specified during the presentation of the
method.

2.2.1 Balanced Truncation

Balanced truncation was first proposed in [121] during the analysis of principal
components of linear systems. It is a popular method because of the robustness,
the guarantee of an error bound and the stability preservation. We follow the
explanation in [10] to present the method.

In control theory, it is of importance to characterize the energy to reach a speci-
fied state. Recall the formula (2.13) that for a reachable, stable system the minimal
energy required to reach x̄ is x̄P−1x̄. Since P is symmetric positive definite, it allows
an eigenvalue decomposition

P = V TΔV,

where V is an orthogonal matrix whose columns Vi are eigenvectors of P and Δ =

diag(d1, · · · , dN ), d1 ≥ · · · ≥ dN > 0. Then

P−1 = V TΔ−1V,

in which, Δ−1 = diag(d−1
1 , · · · , d−1

N ).
For any x̄ ∈ X(= R

N ), assume that x̄ has a linear representation through
columns of V as

x̄ =

N∑
i=1

αiVi.

The energy needed to reach x̄ is

x̄P−1x̄ =
( N∑

i=1

αiVi

)T
P−1
( N∑

j=1

αjVj

)

=
( N∑

i=1

αiVi

)T( N∑
j=1

αjd
−1
j Vj

)
=

N∑
i=1

α2
i d

−1
i .
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It turns out that the states having large (significant) components in the subspace
spanned by eigenvectors of P associated with large eigenvalues require small energy
to be reached, referred to as easy to reach, and conversely, the states having large
(significant) components in the subspace spanned by eigenvectors of P associated
with small eigenvalues require large energy to be reached, referred to as difficult to
reach. Likewise for an observable, stable system, by (2.14), the states having large
components in the subspace spanned by eigenvectors of Q associated with large
(small) eigenvalues will produce large (small) observation energy, referred to as easy
(difficult) to observe.

The above analysis provides an efficient way to quantify the degree of reachability
and the degree of observability. The states that are easy to reach and the states that
are easy to observe play dominant roles in the behavior of the system. The others
do not have much contribution to the system and are of less importance. They
are good candidates to be cut off in order to make the order of the system smaller
without considerably affecting the system’s behavior. However, the problem is that
degree of reachability and degree of observability of the states are two independent
concepts. A dilemma can, therefore, happen that a state, which is difficult to reach
(prefers to be truncated), is easy to observe (prefers to be retained) and vice versa.

Consider the system Σ =

(
A b

c

)
where

A =

[
−2 −3

1 1

]
, b =

[
1

−1

]
, c =
[
0 1
]
.

Its two gramians are

P =

[
2.5 −1.5

−1.5 1

]
,Q =

[
0.5 1

1 2.5

]
.

Eigenvalues and eigenvectors of P, which are given in only four decimal digits, are

V =

[
−0.5257 −0.8507

−0.8507 0.5257

]
, D =

[
0.0729 0

0 3.4271

]
.

The first eigenvector of P, V (:, 1), corresponds to the small eigenvalue and is there-
fore difficult to reach. Conversely, the second eigenvector V (:, 2) is easy to reach.
Now, we compute the observability energy these vectors produce.

V (:, 1)TQV (:, 1) = 2.8416 and V (:, 2)TQV (:, 2) = 0.1584.

It turns out that V (:, 1) is easy to observe while V (:, 2) is difficult to observe.
To cope with this, one has to find a basis, if it exists, for the state space on

which, the degree of reachability and the degree of observability are balanced. More
precisely,

P = Q = Λ = diag(σ1, · · · , σN ). (2.21)

It is worth to note that, by (2.19), if (2.21) holds, the diagonal elements are nothing
else but the Hankel singular values of the system.
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Definition 2.12 A reachable, observable, stable system is called to be balanced if
P = Q and principal-axis balanced if (2.21) holds.

The coordinate transformation that converts a reachable, observable, and stable
system into principal-axis balanced form is called a balancing transformation.

The following lemma gives the answers to both questions: the existence of a balanc-
ing transformation and its formulation. The proof is due to some direct computa-
tions.

Lemma 2.5 (e.g., [10], Lemma 7.3) Suppose that P,Q are reachability and ob-
servability gramians of a reachable, observable, stable system. Then a balancing
transformation is

φ = UKΛ− 1
2 and φ−1 = Λ

1
2KTU−1, (2.22)

where P = UUT , UTQU = KΛ2KT are the Cholesky factorization of P and the
eigenvalue decomposition of UTQU .

It is demonstrated that if Hankel singular values are pairwise distinct, the balancing
transformation is unique up to a factor S = diag(±1, · · · ,±1). Otherwise, instead
of S, the factor is a block diagonal matrix whose blocks are orthogonal matrices.

It remains to apply Lemma 2.5 to reduce the reachable, observable, stable system

Σ =

(
A B

C

)
. Suppose that Σ has been set in a balancing coordinate, i.e.,

P = Q = Λ. Decompose the system matrices as

Λ =

[
Λ1 0

0 Λ2

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

We define the two “subsystems” as

Σi =

(
Aii Bi

Ci

)
, i = 1, 2,

which are referred to as the reduced order systems obtained from Σ by balanced
truncation. The following theorem was proven in [50, 67, 10].

Theorem 2.6 (e.g., [10], Theorem 7.9) The reduced systems Σi constructed from
the reachable, observable, stable system Σ have the following properties:

1. Σi are balanced and have no pole in the open right complex half-plane.

2. If each diagonal entry of Λ1 is different from all those of Λ2, Σi are reachable,
observable and stable.

3. Suppose that the Hankel singular values of Σ are σi, i = 1, · · · , n, with multi-
plicities mi, i = 1, · · · , n, and Λ1 contains the first k values with multiplicities.
Then, the difference between Σ and the reduced order system Σ1 is bounded
from above by twice the sum of neglected Hankel singular values

‖Σ− Σ1‖H∞ ≤ 2(σk+1 + · · ·+ σn). (2.23)
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Note that the multiplicities of neglected Hankel singular values are not included in
the upper bound (2.23).

One has a reason to be concerned about the error of the method. Indeed, the
worst case is that σi, i = k + 1, · · · , n are almost the same σi, i = 1, · · · , k, and
the true error may reach the right hand side of (2.23), which is very large, since in
MOR the reduced order is much less than the original order. One can ensure a good
approximation by balanced truncation method only if the Hankel singular values of
the original system decay quickly. Fortunately, as mentioned in [11] and references
therein, in most cases Hankel singular values decay very quickly and therefore the
error caused by balanced truncation is small in such cases.
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Figure 2.1: The decay of Hankel singular values of Building model (left) and Orr-
Sommerfeld model (right) in [33]

Remark Computation of a balancing transformation requires O(N3) floating op-
erations and O(N2) storage, which is unaffordable for very large N . That is why
it is only applicable for moderate-sized systems. There have been some efforts to
adapt the standard method for large systems. The main focus is on the solution to
the Lyapunov equations [134, 18, 15]. However, these approaches theoretically loose
the error bound.

In frequency domain, it is said that balanced truncation gives good approxi-
mations at high frequencies and bad ones at low frequencies, which in some cases
are of interest. Some modifications of the standard method have been made in
[112, 168, 158] to improve the behavior of reduced systems at low frequencies. The
improvements were also made in order to preserve some special properties of the
original systems during the model reduction by balanced truncation: preservation
of contraction mapping was considered in [128], passivity in [135, 180, 142], positive
realness in [170, 177, 143]. A survey on balanced truncation can be found in [73].

Balanced truncation is not only an approach for first order linear ordinary dy-
namical systems. In [169, 143], a similar technique which is based on balanced
truncation and gramians of descriptor systems was proposed. Balanced truncation
method for the second-order system was aimed at in [34, 141, 80]. Generalization
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of reachability and observability gramians and balanced truncation for nonlinear
systems were performed in [101, 38]. �

2.2.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a model reduction method that con-
structs an optimal low-dimensional projection subspace based on given data. The
idea of POD may appear under different names: Karhunen-Loève Decomposition or
Principal Component Analysis (PCA) and in different fields other than MOR. It is
said [22] that the idea of POD originated from some publications in the early of the
1940s [96, 114, 93]. It was first used as a model reduction tool in [116] for the investi-
gation of inhomogeneous turbulence. Since then, in addition to being applied to the
study of coherent structures and turbulence [85, 162, 21], POD was also exploited
to solve numerous types of problems: data compression [9], image processing [144],
fluid flows [148, 147], elliptic systems [92], control and inverse problems [98, 175].
The theoretical presentation in this part of this method is based on [86, 174].

We will start with discrete data. Let X = [x1, · · · , xn] ∈ R
N×n, n ≤ N be

of rank d. In practice, X is generated by experiments or simulations of a given
system. One can think of each column of X as the state of the system that has been
discretized into values at nodes taken at a time instant. They are so-called snapshots.
It is always a desire to find a smaller group of vectors, preferably orthonormal,
{νi}ki=1, k ≤ d, such that this group is the best representative of X. The task can
be expressed as an optimization problem

argmax
νi∈RN

k∑
i=1

n∑
j=1

|〈xj , νi〉|2 such that 〈νi, νj〉 = δij , 1 ≤ i, j ≤ k. (2.24)

The SVD of matrices is an ideal tool to solve this problem. Let

X = UΛV T (2.25)

be the SVD of X. That is, U ∈ R
N×N , V ∈ R

n×n are orthogonal, Λ ∈ R
N×n is a

diagonal matrix whose diagonal entries are 2

σ1 ≥ σ2 ≥ · · · ≥ σd > 0 = · · · = 0.

By (2.25), the columns of U and V satisfy

Xvi = σui, i = 1, · · · , n, (2.26)

XTui = σvi, i = 1, · · · , n.

It follows that the columns of U and that of V are eigenvectors of the symmetric
positive semi-definite matrices XXT and XTX, respectively:

XXTui = σ2
i ui, i = 1, · · · , N, (2.27)

XTXvi = σ2
i vi, i = 1, · · · , n. (2.28)

2The last N − n columns of U can be chosen freely such that they, together with the first n

columns, form an orthonormal basis.
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Now, we turn back to the problem (2.24). For the case k = 1, let us define the
associated Lagrange functional

L(ν, λ)
(ν,λ)∈RN×R

=

n∑
j=1

|〈xj , ν〉|2 + λ(1− ‖ν‖).

The partial derivative of L(ν, λ) with respect to ν is

∂L
∂u

(ν, λ) =
∂

∂u
(νTX,XT ν + λ(1− νT ν))

= 2XXT ν − 2λν.

The first order necessary optimal condition leads to

XXT ν = λν.

Taking (2.27) into account, any column vector of U satisfies the necessary condi-
tion. It remains to find one amongst them, which solves (2.24), i.e., satisfies the
sufficient condition. Suppose that ν̃ ∈ R

N is any vector of length one. Since U is
an orthonormal basis of RN , ν̃ can be represented as

ν̃ = UUT ν̃.

As a consequence,

n∑
j=1

|〈xj , ν̃〉|2 = ν̃TXXT ν̃

= ν̃TUUTXXTUUT ν̃

= ν̃TUUTUΣV TV ΣTUTUUT ν̃

= ν̃TUΣΣTUT ν̃.

≤ σ2
1 ν̃

TUIUT ν̃

= σ2
1

= uT1 XXTu1 =
n∑

j=1

|〈xj , u1〉|2.

In the above argument, we have made use of the fact that ΣΣT =

diag(σ2
1, σ

2
2, · · · , σ2

d, 0, · · · , 0) ∈ R
N×N . This leads to the answer that the first col-

umn of U, u1 is a solution to the problem (2.24) for the case k = 1 and the maximal
value is σ2

1.
With the same argument, one can show that the solution of the problem

argmax
ν∈RN

n∑
j=1

|〈xj , ν〉|2 such that ‖ν‖2 = 1 and 〈ν, ν1〉 = 0

is u2. This fact leads to the following statement.
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Theorem 2.7 (e.g., [174], Theorem 1.1) With the above notations, for any k =

1, · · · , d, the solution to the problem (2.24) is the set of first k left singular values
{ui, i = 1, · · · , k} and the corresponding maximal value is

∑k
i=1 σ

2
i .

By the result of this theorem, we define

Definition 2.13 The first k, k ≤ d, left eigenvectors ui, i = 1, · · · , k, are called the
POD basis of rank k.

For any set of orthonormal vectors {νj , j = 1, · · · , k}, we have,

n∑
i=1

‖xi −
k∑

j=1

〈xi, νj〉νj‖2 =
n∑

i=1

〈xi −
k∑

j=1

〈xi, νj〉νj , xi −
k∑

j=1

〈xi, νj〉νj〉

=

n∑
i=1

〈xi, xi〉 −
n∑

i=1

k∑
j=1

|〈xi, νj〉|2.

This suggests that the maximization problem (2.24) is equivalent to the following
minimization problem

argmin
νi∈RN

n∑
i=1

‖xi −
k∑

j=1

〈xi, νj〉νj‖2 such that 〈νj , νj〉 = δij , 1 ≤ i, j.

Moreover, denote by Υ a matrix consisting of orthonormal column vectors νj , j =

1, · · · , k. It follows that

n∑
i=1

〈xi, xi〉 −
n∑

i=1

k∑
j=1

|〈xi, νj〉|2 = trace(XTX −XTΥΥTX)

= trace(XT (I −ΥΥT )X)

= trace(XT (I −ΥΥT )(I −ΥΥT )X)

= trace(((I −ΥΥT )X)T (I −ΥΥT )X)

= ‖(I −ΥΥT )X‖2F
= ‖X −ΥΥTX‖2F ,

where ‖ · ‖F denotes the Frobenius norm. A consequence of Theorem 2.7 is

Corollary 2.8 With the aforementioned notations, we have

‖X − U(1 : k)U(1 : k)TX‖2F ≤ ‖X −ΥΥTX‖2F , (2.29)

where U(1 : k) denotes the matrix formed by the first k columns of U .

In words, inequality (2.29) says that the subspace spanned by the POD basis min-
imizes the Frobenius norm of the difference between X and its projection on all
subspaces of the same dimension.
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Remark In the POD model reduction framework, the dimension of the state space
N is usually much larger than the number of snapshots n. Hence, one would not com-
pute ui by solving the N -dimensional eigenvalue problem (2.27). Based on (2.26),
one first solves the n-dimensioanl eigenvalues problem (2.28) and then computes ui
as

ui =
1

σi
Xvi, i = 1, · · · , k.

To answer the question how large the size of the POD basis should be to ap-
proximate the given data X well enough, there is so far no a priori criterion. One
clue on which the decision can be based is the ratio∑k

i=1 σi∑d
i=1 σi

.

One can consider to choose k such that this ratio is near 1.
The inner product used in the above presentation is the usual Euclidean one.

In many cases where the system is governed by a partial differential equation, it is
natural to use another inner product which is derived from the spatial discretization
of the underlying equation rather than the original Euclidean product

〈x, y〉W = xtWy,

where W ∈ R
N×N is a positive definite matrix. More details are provided in [174].�

Now, we turn our attention to the case of continuous data. Instead of a matrix,
we are given a trajectory {x(t), t ∈ [0, T ]} ⊂ R

N and asked to find a set of k

orthonormal vectors νi, i = 1, · · · , k which approximate the trajectory as good a
possible. In other words, solve the optimization problem

argmin
νi∈RN

∫ T

0

∥∥∥x(t)− k∑
i=1

〈x(t), νi〉νi
∥∥∥2dt such that 〈νi, νj〉 = δij , 1 ≤ i, j ≤ k. (2.30)

As in the discrete data case, this problem is equivalent to

argmax
νi∈RN

k∑
i=1

∫ T

0

∣∣∣〈x(t), νi〉∣∣∣2dt such that 〈νi, νj〉 = δij , 1 ≤ i, j ≤ k.

In order to clarify the first necessary optimality condition, we define

R : RN −→ R
N

ν �−→ Rν =
∫ T
0 〈x(t), ν〉x(t)dt.

It is shown in [174] that R is linear, bounded, non-negative, and symmetric. Thus
R has a set of non-negative eigenvalues.

Rui = λiui, λ1 ≥ λ2 ≥ · · · ≥ λd > 0 = · · · = 0, (2.31)

where d is the rank of R. One can observe that R plays the same role as UUT in
the discrete data case. And as in the previous case, the eigenvectors of R form the
POD basis as stated in the following theorem, whose proof si given in [174].
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Theorem 2.9 ([174], Theorem 1.12) Suppose that x(t) ∈ C([0, T ],RN ) is the unique
solution of the state equation with a given initial condition. Then the solution to
problem (2.30) is given by the first k eigenvectors of R, λ1 ≥ λ2 ≥ · · · ≥ λk.

We show how to avoid solving the large eigenvalue problem (2.31) by the method
of snapshots [161]. The matrix representing operator R in R

N is

R =

∫ T

0
x(t)xT (t)dt. (2.32)

Now, instead of continuous data {x(t), t ∈ [0, T ]} ⊂ R
N , we take some snapshots of

that trajectory
x(tj), 0 = t0 < t1 < t2 < · · · < tn = T.

Matrix (2.32) can be approximated as

R =

n∑
j=1

x(tj)x
T (tj)Δj ,

where Δj is the step size tj − tj−1. If we write

X =

⎡
⎣x1(t1)

√
Δ1 · · · x1(tn)

√
Δn

· · · · · · · · ·
xN (t1)

√
Δ1 · · · xN (tn)

√
Δn

⎤
⎦ ∈ R

N×n,

then matrix R can be written as R = XXT . As in the discrete data case, we solve
the n-dimensional eigenvalue problem

XTXvi = λivi

and compute the first n eigenvectors of R

ui =
1√
λi

Xvi, i = 1, · · · , k.

This argument, on the one hand, shows that discrete data and continuous data cases
are treated in a unifying manner, on the other hand, is a crucial point to formulate
the so-called balanced POD [147], which will be presented later as a remark.

Now, given a POD basis {ui, i = 1, · · · , r} constructed from data which are
taken from a dynamical system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.33)

where A ∈ R
N×N , B ∈ R

N×m, C ∈ R
l×N , we demonstrate how to use this basis to

produce a reduced system. Since the given data usually contain the most typical
states [98], and moreover the POD basis is their representative, the state vector
x(t) of the dimension N is approximated by Ux̂(t), U = [u1, · · · , ur], where the
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new state vector x̂(t) is of the dimension r � N . That is, x̂(t) is the coordinate
of the projection of a vector whose coordinate is x(t) on the subspace spanned by
{ui, i = 1, · · · , r}. System (2.33) becomes

U ˙̂x(t) = AUx̂(t) +Bu(t),

y(t) = Cx̂(t).
(2.34)

To avoid the overdetermination of (2.34), one forces its residual to be orthogo-
nal with an r-dimensional subspace of RN . The POD method chooses a Galerkin
project framework, i.e., the chosen subspace is also the subspace spanned by
{ui, i = 1, · · · , r}. The reduced system is therefore formulated as,

˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),

where Â = UTAU, B̂ = UTB, Ĉ = CU .

Remark Note that the application of POD to MOR is not restricted to linear
systems. In fact, it is a favorite reduction method for non-linear systems. For a
general model of the form (2.1), the associated reduced order model is

˙̂x(t) = UT f(t, Ux̂(t), u(t)), t ∈ T,

ŷ(t) = η(Ux̂(t), u(t)).

Recall the definition (2.9) and (2.10) of reachability and observability gramians.
If we denote the columns of the input matrix B as b1, · · · , bn, then the impulse
response eAtB can be treated as the group of the response state vectors xi(t) = eAtbi
to the i-th unit impulse δ(t)ei, where ei is the i-th unit vector of Rm. Accordingly,
the reachability gramian can be written as

R =

∫ ∞

0

m∑
i=1

xi(t)xiT (t)dt.

Likewise, the observability gramian is

Q =

∫ ∞

0

m∑
i=1

zi(t)ziT (t)dt,

where zi(t) = eA
T tcTi , ci is the i-th row of C. In balanced truncation one has

to solve Lyapunov equations (2.11) and (2.12), which is expensive. In practice,
impulse response state vectors xi(t), zi(t) are given at time instants t1, · · · , tn. The
two gramians can be approximated by

R =

n∑
j=1

m∑
i=1

xi(tj)x
iT (tj)Δj ,

Q =
n∑

j=1

m∑
i=1

zi(tj)z
iT (tj)Δj .
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Let us set

X =

⎡
⎣x11(t1)

√
Δ1 · · · x11(tn)

√
Δn · · · xm1 (t1)

√
Δ1 · · · xm1 (tn)

√
Δn

· · · · · · · · · · · · · · · · · · · · ·
x1N (t1)

√
Δ1 · · · x1N (tn)

√
Δn · · · xmN (t1)

√
Δ1 · · · xmN (tn)

√
Δn

⎤
⎦ ∈ R

N×(mn).

Accordingly,
R = XXT .

Likewise,
Q = Y Y T .

Let

Y TX = UΣV T =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1

V2

]
be the SVD of Y TX and Σ1 ∈ R

r×r, r < rank(Y TX), and

Φ1 = XV1Σ
− 1

2 , Ψ1 = Σ− 1
2UT

1 Y
T .

Then Φ1 is composed of the first r columns of the approximate balancing transfor-
mation, Ψ1 is the set of the first r rows of its inverse. That is, the new system

x̂(t) = Ψ1AΦ1x̂+Ψ1Bu(t),

ŷ(t) = CΦ1x̂(t)

will be the reduced system of system (2.33) produced by the approximate balanced
truncation. A proof of this can be found in [147]. One can observe that the main ad-
vantage of balanced POD is that one needs not compute the two gramians. Instead,
only two matrices X,Y , which can be determined from simulations or experiments,
are needed. This actually shares the same idea with the original balanced truncation
method proposed in [121]. Therefore, balanced POD method is an approximation
of the balanced truncation method.

There have been various improvements of POD other than its primary version.
The optimality of snapshot locations was addressed in [99], while quite many re-
searches were trying to preserve some property of the original models. The stability
was preserved during the POD reduction in [137], the Lagrangian structure in [100].
In [140], POD was applied to non-linear ODE initial value problems; the error and
the effect of perturbation in data was analyzed. Some others focused on dealing
with PDSs [92, 111, 7, 29, 6, 45]. �

2.2.3 Krylov Subspace Methods

As mentioned in Section 2.1, an LTI system Σ =

(
A B

C

)
can be given in the

frequency domain by its transfer function H(s) = C(sI − A)−1B. Therefore, one
trend in MOR is to find a smaller-order system whose transfer function approximates
the original one. This can be done through matching some first terms of the Laurent
expansion of H(s) at some point(s). Depending on the type of points to be matched,
the problem is named differently.
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• Partial realization: matching terms of the expansion around infinity.

• Padé approximation: matching terms of the expansion at zero.

• Rational interpolation: matching terms of the expansion at arbitrary point.

By making use of Neumann series, one can write

H(s) =

∞∑
i=0

CAiBs−(i+1).

If A is non-singular,

H(s) =

∞∑
i=0

−CA−(i+1)Bsi.

If A− s0I is non-singular,

H(s) =
∞∑
i=0

−C(A− s0I)
−(i+1)B(s− s0)

i.

Note that these above equalities hold locally only.

Definition 2.14 Matrices CAiB,CA−(i+1)B and C(A − s0I)
−(i+1)B are called

the i-th moment of H(s) about infinity, zero and s0, respectively. The matrices
CAiB,CA−(i+1)B are also called high frequency moment and low frequency mo-
ment.

Note that CAiB is also called the Markov parameter. One can check that the
moments about one point of the transfer function, up to a constant, are the value
and consecutive derivatives of the transfer function at that point.

The problem of matching moments now becomes: seek an LTI system Σ̂ =(
Â B̂

Ĉ

)
of order r whose transfer function Ĥ(s) shares the first q(r) moments

with H(s). That can be equivalently written as

H(s) = Ĥ(s) +O((s− s0)
q(r)).

For the case of SISO systems, one can easily verify that the transfer function of
the LTI system Σ̂ can be represented as a rational function of frequency

Ĥ(s) =
PN−1(s)

QN (s)
,

where PN−1(s) is the polynomial of degree at most N − 1 and QN (s) of degree
N . To find a Padé approximation, one can compute coefficients of PN−1(s), QN (s)

through solving linear equations whose coefficients and right hand side are moments
of H(s) (see, e.g., [70]). This approach is called explicit moment matching. It
was once widely used in the Asymptotic Waveform Evaluation (AWE) technique
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[136, 35, 36]. However, it turned out that the explicit moment matching method
suffers from instability and is therefore inaccurate, especially when the order of
the original system becomes larger. An example in [53] shows that this method
deteriorates even when the order merely exceeds 10. One reason is that the method
requires to explicitly compute moments of the original system.

To avoid this shortcoming, the reduced system needs to match moments without
explicitly computing them. This can be achieved with Krylov subspace methods.

Definition 2.15 Given a square matrix A ∈ R
N×N and a vector b ∈ R

N , the n-th
Krylov subspace Kn(A, b) is the subspace spanned by vectors {b, Ab,A2b, · · · , An−1b},
i.e.,

Kn(A, b) := colsp([b Ab A2b · · · An−1b]),

where colsp of a matrix is the subspace spanned by the columns of this matrix.
The state x(t) of a SISO system with homogeneous initial condition has the form
x(t) =

∫ t
0 e

A(t−τ)bu(τ)dτ . Hence constructing a reduced system aims to approximate
the term eAtb. Based on the observation that the matrix exponential operator can
be approximated through projection on Krylov subspaces [62, 155], the connection
between Krylov subspace and Padé approximation was exploited in [59]. Never-
theless, the original idea is most likely due to [69, 173] during solving the partial
realization problem. We restate the theorem here.

Theorem 2.10 ([59], Theorem 1). Given an LTI SISO system Σ =

(
A b

c

)
.

Assume that there exist full-rank matrices V,W ∈ R
N×r such that

colsp(V ) = Kr(A, b),

colsp(W ) = Kr(A
T , cT ),

W TV = I.

(2.35)

Let the reduced system Σ̂ =

(
Â b̂

ĉ

)
be constructed by the corresponding oblique

projections on Krylov subspaces Kr(A, b) and Kr(A
T , cT ), i.e., Â = W TAV, b̂ =

W T b, ĉ = cV . Then the first 2r Markov parameters of the reduced system and
original system are identical.

For Padé approximation and rational interpolation, we have the correspond-
ing statements. All one has to do is to replace V,W in (2.35) by colsp(V ) =

Kr(A
−1, b), colsp(W ) = Kr(A

−T , cT ) for Padé approximation and colsp(V ) =

Kr((A− s0I)
−1, b), colsp(W ) = Kr((A− s0I)

−T , cT ) for rational interpolation.
In practice, very often s is chosen to be iω where ω ∈ R+ is some frequency.

Accordingly, H(iω) becomes the amplification factor which amplifies the input to
yield the output at that frequency. This theorem gives an efficient way to find
an approximation of the transfer function of a large order system in a frequency
range of interest. Quite often, one is interested in approximation at a wide range of
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frequencies. Constructing a reduced system as in Theorem 2.10 cannot cover this
task, since Σ̂ approximates Σ only around s0. A natural question is why one cannot
include all Krylov subspaces associated with frequencies of interest in to the projec-
tion subspace spanned by V and W . This idea was most probably first explored in
[173] while the authors tried to match both high and low frequency moments, i.e.,
partial realization and Padé approximation are both dealt with simultaneously. For
rational interpolation at several points, the most general solution is due to [60, 70],

which is stated for descriptor systems of the form Σ =

(
E A b

c

)
.

Theorem 2.11 ([70], Theorem 3.1). Assume that

colsp(V ) ⊃
k⋃

i=1

KJbi

(
(A− siE)−1E, (A− siE)−1b

)
, (2.36)

colsp(W ) ⊃
k⋃

i=1

KJci

(
(A− siE)−TET , (A− siE)−T cT

)
, (2.37)

and W T (A− siE)V is non-singular for all i = 1, · · · , k then

− cT
(
(A− siE)−1E

)ji−1
(A− siE)−1b = −ĉT

(
(Â− siÊ)−1Ê

)ji−1
(Â− siÊ)−1b̂

(2.38)
for Ji = 1, 2, · · · , Jbi + Jci and i = 1, · · · , k where Ê = W TEV, Â = W TAV, B̂ =

W TB, Ĉ = CV . In words, the first Jbi + Jci moments of the transfer functions of
Σ and Σ̂ about si are identical.

In addition to the capacity for interpolating at multiple points, Theorem 2.11 im-
proves the previous results in two aspects. The first one is the flexibility in choosing
projection matrices. It requires only an inclusion, instead of an equality as in Theo-
rem 2.10. Due to the so-called deflation or rank-deficiency of Krylov matrices, the di-
mensions of Kr((A−siE)−1E, (A−siE)−1b) and Kr((A−siE)−TET , (A−siE)−T cT )

are not necessarily equal. The relaxation allows the adjustment of the number of
columns of V and W to ensure that they are the same. The second advantage is
that no bi-orthogonality is required. This results in the two-sided Arnoldi [41, 157]
and the dual rational Arnoldi methods [127] in MOR3.

Now, we turn our attention to computational aspects. It should be noted that,
to match moments, (2.36) and (2.37) do not have to hold simultaneously. In fact, a
lemma in [70] showed that if either of (2.36) and (2.37), say (2.36), holds and W is
chosen such that it is full-rank, has the same dimension as V and det(W TAV ) = 0,
Jbi moments are matched. Principally, there is no more constraint imposed on V .
However, in order to avoid ill-conditioning of V , it is preferred to have orthonormal
column vectors, i.e., V TV = I. From now on, we will refer to matrices that have
this property as columnwise orthogonal matrices. The task of constructing V can
then be stated as: Compute an orthonormal basis of the Krylov subspace Kn(A, b).
It is completed by an Arnoldi process [12].

3Two-sided Arnoldi was also used for eigenvalue problem, see, e.g., [154].
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Algorithm 1 Arnoldi algorithm
Input: A, b

Output: V columnwise orthogonal such that colsp{V } = Kn(A, b)

1: V (:, 1) :=
b

‖b‖
2: For i = 1 to n, do:

3: Compute hji = V (:, i)TAV (:, j), j = 1, · · · , i.

4: Compute v = AV (:, i)−∑i
j=1 hjiV (:, j).

5: hi+1 j := ‖v‖

6: If hi+1 j = 0 then stop

7: V (:, i+ 1);= v/hi+1 j

8: End do

Note that the standard Arnoldi process uses the classical Gram-Schmidt or-
thogonalization. It was shown in [23] that the orthogonality can be lost in the
computational process, while it is essential to the accuracy of the Arnoldi algorithm
[68]. For ill-conditioned matrices, the loss of orthogonality can be severe [24]. There-
fore, re-orthogonalization in Gram-Schmidt steps in the Arnoldi algorithm should
be used. For more details, see [66].

Suppose that V , satisfying (2.36), has been computed using the Arnoldi algo-
rithm. The one-sided Arnoldi method chooses W = V . The associated reduced
system is then

Σ̂ =

(
V TEV V TAV V T b

cV

)
.

Likewise, if in addition, W is constructed using the Arnoldi algorithm, the reduced
system by the two-sided Arnoldi method is

Σ̂ =

(
W TEV W TAV W T b

cV

)
.

Another way to construct V and W without having to run the Arnoldi process twice
is the Lanczos algorithm [102] for unsymmetric matrices. Instead of two columnwise
orthogonal matrices V and W , the Lanczos algorithm computes two bi-orthogonal
matrices, i.e., W TV = I, satisfying (2.36) and (2.37). Unlike the Arnoldi algorithm,
whose k-th step involves k vectors, each step of the Lanczos algorithm requires
only two three-term recurrences. This is clearly an advantage of storage during
operating large systems. However, the computation using the Lanczos process may
be unstable, see, e.g., [71].
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We now turn to the case of MIMO systems. Based on results derived for the SISO
case, there are two ways to establish the corresponding results for the MIMO case.
The first one, due to [70], is to directly apply Theorem 2.11 for the j-th column of the
input matrix B and the i-th row of the output matrix C. This approach considers
each ij-th entry of the transfer function H(s) ∈ R

l×m as a transfer function that
connects the j-th input to the i-th output. The second approach is based on the
so-called block Krylov subspace, which is defined in the following.

Definition 2.16 Given A ∈ R
N×N , B ∈ R

N×m, where B is full-rank, the n-th
Krylov subspace Kn(A,B) is

Kn(A,B) := colsp(B AB · · · An−1B).

A similar theorem for MIMO systems like Theorem 2.11 can be proven. Since in
Chapter 3 we will present an extension for parameter-dependent transfer functions,
detailed discussion on this topic is skipped here. Theoretically, the two approaches
lead to the same result. However, from our point of view, the second approach has
a better connection with the definition of moments of MIMO transfer functions. It

Algorithm 2 Lanczos algorithm for unsymmetric matrices
Input: A, b, c

Output: V,W such that colsp{V } = Kn(A, b), colsp{W} = Kn(A
T , c) and W TV =

I

1: Choose V (:, 1) and W (:, 1) such that W (:, 1)TV (:, 1) = 1.

2: Set β1 = δ1 = 0, V (:, 0) = W (:, 0) = 0

3: For i = 1 to n, do:

4: αi := W (:, i)TAV (:, i)

5: v := AV (:, i)− αiV (:, i)− βiV (:, i− 1)

6: w := ATW (:, i)− αiW (:, i)− δiW (:, i− 1)

7: δi+1 :=
√
wT v. If δi+1 = 0 then stop

8: βi+1 :=
wT v

δi+1

9: V (:, i+ 1) :=
v

δj+1

10: W (:, i+ 1) :=
w

βj+1

11: End do
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also motivates the development of the block Arnoldi process [156, 90] and the block
Lanczos algorithm [40, 153, 94, 54].

In practice, implementation of Arnoldi and Lanczos procedures may face some
difficulties. The most frequently-happened situation which stops the iteration is
the breakdown. This occurs in the Arnoldi process when v = 0. In the Lanczos
algorithm, this happens when δi+1 = 0, for the reason is either v or w or both are
equal to 0 (referred to as curable breakdown), or v = 0, w = 0 but v is orthogonal to
w (referred to as incurable breakdown or serious breakdown). Another problem is the
deflation in the block version of both Arnoldi and Lanczos processes. The so-called
inexact deflation, which is caused by finite-precise arithmetic, has to be taken into
account. In addition, a long Arnoldi iteration causes the problem of memory storage.
For solutions to these problems, the reader is referred to [131, 164, 58, 165, 57].

Remark An apparent advantage of Krylov subspace methods in comparison with
balanced truncation and POD is the lower computational cost. Computing an r-
order reduced system of an N -order system needs O(N2r) floating operations if the
system is dense and O(Nr2) if it is sparse [10]. However, the stability of the original
system is, in general, not preserved and no a priori error bound is derived. There
have been some improvements of Krylov subspace methods in order to preserve
passivity during the reduction, see e.g., [48, 52, 181]. �

2.2.4 Final Remarks

The MOR methods presented so far in this section cannot, of course, cover all
contributions to such an active field of research. Optimization based MOR has
not been mentioned. These approaches try to minimize the difference between
the reduced order transfer function and the original one. The difference of these
approaches lies in the different norms used. The authors of [67, 88, 91, 18] chose
the Hankel norm, while the authors of [72, 97] used H2 and H2,α norm. For MIMO
systems, the approaches in [61, 179] considered a relaxation of matching moments,
namely tangential interpolation conditions. A surprising fact is that the search for
the first-order necessary condition for the optimal H2 model reduction results in
tangential interpolation constraints [72, 97].

2.3 Some Manifolds in Linear Algebra

This section introduces some manifolds in linear algebra. We focus on Grassmann
manifolds, which will be used later for the interpolation of projection subspaces. The
presentations of others, SPD(n) - the manifold of symmetric positive definite n×n

matrices and GL(n) - the manifold of invertible n×n matrices (also known as general
linear group), are only for a broader view and the material for our discussions about
methods proposed by others. We do not intend to recall the theory of differential
geometry and abstract Riemann manifolds. The interested reader is referred to
[27, 82, 167, 103] for general theory. The summary in this section is based on
[56, 2, 139]. One can also consult [178, 47, 119].
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2.3.1 Topological Structure of Grassmann Manifolds

Let k ≤ n be two positive integers and ST (k, n) denote the set of full-rank n × k

real matrices. This set is known as the Stiefel manifold and has been investigated,
e.g., in [89, 47, 1]. The subset O(k, n), composed of all columnwise orthogonal n×k

real matrices, is sometimes called the compact Stiefel manifold. In this section, for
any n× k real matrix A, we will use the Frobenius norm

‖A‖F :=
(∑

a2ij

) 1
2
.

Next, we denote by G(k, n) the set of k-dimensional subspaces of R
n. Each

element of G(k, n) is represented (not uniquely) by an element of ST (k, n). Hence,

π : ST (k, n) −→ G(k, n)
Y �−→ Y := colsp(Y ).

is a surjective mapping. For any two matrices Y1, Y2 ∈ ST (k, n), π(Y1) = π(Y2) if
and only if there is M ∈ GL(k) such that Y1 = Y2M . It is easy to verify that this
is an equivalence relation. Accordingly, for Y ∈ G(k, n), π−1(Y) is the equivalence
class Y GL(k), where Y spans Y. The topology on G(k, n) is defined as the final
topology with respect to π, i.e., the strongest topology that makes π continuous
(see, e.g., [49].) We directly deduce from the definition that π is open.

2.3.2 Differential Structure of Grassmann Manifolds

For each point Y in G(k, n), one can single out one element of π−1(Y) by means of
cross sections [2]. Let U ∈ ST (k, n), the set

SU := {V ∈ ST (k, n) : UT (V − U) = 0}

is called the affine cross section. Define by

INU := {V ∈ ST (k, n) : UTV is invertible} ⊂ ST (k, n)

and INU := π(INU ) ⊂ G(k, n). If V ∈ INU , the equivalence class V GL(k) inter-
sects with SU at the unique point V (UTV )−1UTU . This allows us to define the
mapping

σU : INU −→ SU

π(V ) �−→ V (UTV )−1UTU,

which is called the cross section mapping. It is a bijection between INU and SU .
Let J = (j1, · · · , jk) ∈ N

k, where 1 ≤ j1 < · · · < jk ≤ n. Denote by Ikn the set
of all indeces J satifying the mentioned conditions. For any n × k matrix A, we
denote by AJ the k × k submatrix consisting of the j1-th, · · · , jk-th row of A and
its complement AC

J , the (n−k)×k submatrix that remains after removing AJ from
A. Denote by EJ := [ej1 · · · ejk ], J ∈ Ikn, the matrix whose comlumns are the unit
vector in R

n. It follows directly that

SEJ = {V ∈ ST (k, n) : VJ = I}
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and
INEJ = {V ∈ ST (k, n) : det(VJ) = 0}.

Obviously, {INEJ
, J ∈ Ikn} is an open covering of ST (k, n). Since π is continuous,

open and surjective, {INEJ , J ∈ Ikn} is an open covering of G(k, n). Note that, by
the “freely-chosen” part V C

J , SEJ can be identified with R
(n−k)×k.

Theorem 2.12 ([56]) The family {(INEJ , σEJ ), J ∈ Ikn} defines a differentiable
structure of dimension (n− k)k on G(k, n).

Definition 2.17 The set G(k, n) together with the differentiable structure defined
above is called the (real) Grassmann manifold of k-dimensional subspaces of the
linear space R

n.

The proof of Theorem 2.12 can be found, e.g., in [27, 56]. A more general parame-
terization of elements of G(k, n) was given in [2]:

R
(n−k)×k � M �→ π(U + U⊥M) ∈ INU

for any U ∈ ST (k, n), where U⊥ ∈ ST (n− k, n) such that UTU⊥ = 0.

2.3.3 Riemann Structure on Grassmann Manifolds

Given a point W of G(k, n), it is necessary to characterize the tangent space
TWG(k, n) at W . Let W ∈ ST (k, n) span W . The vertical space VW and the
horizontal space HW of W are defined as the sets of the matrices:

VW := WR
k×k, and

HW := W⊥ R
(n−k)×k ⊂ R

n×k, (2.39)

respectively. While the elements of VW do not modify the range of W , the elements
of HW do. They represent the vectors of the tangent space to G(k, n) at W . Con-
versely, it was confirmed in [2] that for any tangent vector ξ to G(k, n) at W , there
exists one and only one horizontal vector ξ♦W ∈ HW representing ξ. The vector
ξ♦W is called the horizontal lift of ξ ∈ TWG(k, n). If we change the representation
of W by WM instead of W , where M ∈ GL(k), the horizontal lift will change as in
the following formula:

ξ♦WM = ξ♦WM,M ∈ GL(k). (2.40)

We are now ready to define and formulate the Riemann metric on tangent spaces.
For ξ, ζ ∈ TWG(k, n), the inner product of these two vectors is defined as

< ξ, ζ >W := trace
(
(W TW )−1ξT♦W ζ♦W

)
.

By (2.40), it follows that,

trace
((

(WM)TWM
)−1

ξT♦MW ζ♦MW

)
= trace

(
M−1(W TW )−1M−TMT ξT♦W ζ♦WM

)
= trace

(
M−1(W TW )−1ξT♦W ζ♦WM

)
= trace

(
(W TW )−1ξT♦W ζ♦W

)
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for any M ∈ GL(k). This means that the definition of the metric is independent of
the basis of W .

2.3.4 Geodesic Paths, the Exponential Mapping and the Logarith-
mic Mapping

A geodesic path connecting two points of a manifold is roughly the locally shortest
curve that combines these two points. In R

n, for example, geodesic paths are straight
lines. In abstract Riemann manifolds, characterization of geodesic paths is however
more complicated. It is based on the Riemann connection ∇ηξ, the derivative of a
tangent vector field ξ(t) in the direction of a tangent vector η. A smooth curve Y(t)

on G(k, n) is called a geodesic path (see, e.g., [27]) if

∇Ẏ Ẏ = 0. (2.41)

In words, the tangent vector Ẏ is parallel transported along Y. Based on (2.41), an
explicit expression for geodesic paths on Grassmann manifolds is formulated.

Theorem 2.13 ([2], Theorem 3.6). Let Y(t) be a geodesic path on G(k, n) from Y0

with initial velocity Ẏ0 ∈ TY0G(k, n). Suppose that Y0 ∈ ST (k, n) spans Y0, Ẏ0♦Y0

is the horizontal lift of Ẏ0 and Ẏ0♦Y0(Y
T
0 Y0)

− 1
2 = UΣV T is the thin SVD. Then

Y(t) = π
(
Y0(Y

T
0 Y0)

− 1
2V cos(Σt) + U sin(Σt)

)
. (2.42)

We follow [27] in defining the exponential mapping

ExpW : TWG(k, n) −→ G(k, n)
ξ �−→ Y(1),

where Y(t) is the only geodesic path determined by the initial condition Y(0) = W
and Ẏ(0) = ξ. By Theorem 2.13, the formulation of exponential mapping is as
follows: Let W ∈ G(k, n) be spanned by W ∈ ST (k, n), ξ ∈ TWG(k, n). Assume
that ξ♦W (W TW )

1
2 = UΣV T . Then

ExpW(ξ) = π
(
W (W TW )−

1
2V cos(Σ) + U sin(Σ)

)
. (2.43)

The logarithmic mapping LogW maps each point in a neighborhood of W ∈
G(k, n) to a vector ξ ∈ TWG(k, n). In this neighborhood, it is the inverse of ExpW .
The formulation of logarithmic mapping is given in [2]. Assume that W,Z ∈ G(k, n)
are spanned by two columnwise orthogonal matrices W,Z ∈ O(k, n), respectively,
such that det(W TZ) = 0. Let

(I −WW T )Z(W TZ)−1 = UΣV T

be the thin SVD. Then the horizontal lift of ξ = LogW(Z) is

ξ♦W = Uarctan(Σ)V T . (2.44)
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2.3.5 Examples

Consider G(1, 2). We will use O(1, 2), which can be visualized by the unit circle
S1 ⊂ R

2 ≡ C, to represent elements of G(1, 2). Now let the point Z be represented
by Z = [1 0]T . By (2.39), the horizontal space, whose elements represent the
tangent space to G(1, 2) at Z, is HZ = {[0 a]T , a ∈ R}. So this tangent space is
the line tangent to S1 at point (1, 0). Now take any vector θ ∈ TZG(1, 2) whose
horizontal lift is [0 θ]T such that −π

2 < θ < π
2 . We have the thin SVD

θ♦Z(Z
TZ)−

1
2 =

[
0

θ

]( [
1 0
] [1

0

])− 1
2

=

[
0

1

] [
θ
] [

1
]
.

Applying formula (2.43) yields

ExpZ(θ) = π
([1

0

]( [
1 0
] [1

0

])− 1
2
[1] cos(θ) +

[
0

1

]
sin(θ)

)
= π
([cos(θ)

sin(θ)

])
= W.

One can identify the vector θ with the complex number iθ, the point W with the
complex number cos(θ) + i sin(θ). The above mapping C � iθ �→ cos(θ) + i sin(θ) =

eiθ is the standard exponential of a complex number.

−1 0 1

−1

−0.5

0

0.5

1

W

Z

θ

ExpZ(θ)

TZG(1, 2)

O(1, 2)

Z1

ζ

LogZ(Z1)

Figure 2.2: Exponential and logarithmic mappings on G(1, 2)

Now, pick another point Z1 spanned by Z1 =

[
cos(φ)

sin(φ)

]
, where −π

2 < φ < π
2 . We
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will compute ζ = LogZ(Z1).

(I − ZZT )Z1(Z
TZ1)

−1 =
([1 0

0 1

]
−
[
1

0

] [
1 0
] ) [cos(φ)

sin(φ)

]( [
1 0
] [cos(φ)

sin(φ)

])−1

=

[
0

tan(φ)

]

=

[
0

1

] [
tan(φ)

] [
1
]
.

Applying (2.44), the horizontal lift of ζ is

ζ♦Z =

[
0

1

]
arctan

( [
tan(φ)

] ) [
1
]

=

[
0

φ

]
.

Again, identifying Z1 with cos(φ) + i sin(φ), vector ζ with iφ, the mapping C �
cos(φ) + i sin(φ) �→ iφ = ln(cos(φ) + i sin(φ)) is the natural logarithm.

We consider another example on G(2, 3). Let Z and Z1 be two distinct points
on G(2, 3) represented by

Z =

⎡
⎣1 0

0 0

0 1

⎤
⎦ and Z1 =

⎡
⎢⎣

1√
2

1√
6

− 1√
2

1√
6

0 2√
6

⎤
⎥⎦ , respectively.

By (2.39), the horizontal space of Z has the form

HZ =
{
W =

⎡
⎣ 0 0

w1 w2

0 0

⎤
⎦ , w1, w2 ∈ R

}
. (2.45)

We will compute Z2 = ExpZ(LogZ(Z1)). In the following computations, as
standard short form in Matlab, we display only four decimal digits. First, we have
the thin SVD

(I − ZZT )Z1(Z
TZ1)

−1 =

⎡
⎣0 1

1 0

0 0

⎤
⎦[2.2361 0

0 0

] [
−0.4472 0.8944

0.8944 0.4472

]
.

Applying (2.44), the horizontal lift of LogZ(Z1) is

H =

⎡
⎣ 0 0

−0.5144 1.0288

0 0

⎤
⎦ .

Then, by (2.43), the matrix Z2 spanning Z2 is

Z2 =

⎡
⎣−0.1826 0.8944

0.9129 0

0.3651 0.4472

⎤
⎦ .
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With Matlab, one can easily check that Z1 and Z2 span the same space, i.e., Z1 ≡ Z2

on G(2, 3).

2.3.6 Manifolds SPD(n), GL(n), and R
n×k

This part only summarizes the exponential mapping and logarithmic mapping based
on [139]. The reader who is interested in more properties of SPD(n) and GL(n) is
referred to [126, 120, 13].

First of all, we would like to recall the definitions of the exponential and the
logarithm of square matrices.

Definition 2.18 Given an n× n matrix A, the exponential of A is defined as

eA :=

∞∑
i=0

Ai

i!
. (2.46)

If A ∈ GL(n) and there exists an n×n matrix B such that eB = A, then B is called
the logarithm of A and we write log(A) = B

It is shown that the sequence (2.46) is always convergent and the exponential of any
matrix is non-singular. The logarithm of a real non-singular matrix, however, does
not always exist and, if it exists, is not necessarily unique. For any Hurwitz matrix,
there is uniquely one logarithm whose eigenvalues lie in the open strip (−π, π)

which is called principal logarithm. For more properties of the exponential and the
logarithm of matrices, one can consult, e.g., [42].

Now, pick X0, X1 ∈ GL(n) and Z ∈ TX0GL(n), the exponential and logarithm
are defined as

ExpX0
: TX0GL(n) −→ GL(n)

Z �−→ eZX0
(2.47)

and
LogX0

: GL(n) −→ TX0GL(n)
X1 �−→ log(X1X

−1
0 ).

(2.48)

For X0, X1 ∈ SPD(n) and Z ∈ TX0SPD(n), we define

ExpX0
: TX0SPD(n) −→ SPD(n)

Z �−→ X
1
2
0 e

ZX
1
2
0

(2.49)

and
LogX0

: SPD(n) −→ TX0SPD(n)

X1 �−→ log(X
− 1

2
0 X1X

− 1
2

0 ).
(2.50)

On R
n×k, its tangent space at any point is itself. Therefore, the exponential

and logarithmic mappings are defined quite simply. They are nothing else but the
addition and the subtraction. That is, given X0, X1 ∈ R

n×k and Z ∈ TX0R
n×k,

ExpX0
: TX0R

n×k −→ R
n×k

Z �−→ X0 + Z
(2.51)
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and
LogX0

: R
n×k −→ TX0R

n×k

X1 �−→ X1 −X0.
(2.52)
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This chapter presents the state-of-the-art approaches to MOR of PDSs. As we
will see, these approaches must be somewhat based on existing MOR methods. That
may be a generalization of one method, or a relaxation of one condition. It may
also be a combination of one MOR method with some other technique that helps to
deal with the dependence on parameters such as interpolation, sensitivity analysis
or convex optimization.

3.1 Krylov Subspace Based Methods

The use of Krylov subspace based methods for MOR of PDSs started, to our knowl-
edge, by the article [176], and was then generalized in [43] to the case of more than
two parameters. The result was then applied to the computation of the coupling
capacitances of a three-conductor model where the distances between conductors
may change during the operation.

An effective and reliable algorithm to construct matrices for the projections is
a crucial point in this approach. An approximate moment matching method based
on projecting on Krylov subspaces was proposed in [55], while a so-called two-
directional Arnoldi process was used in [110]. In addition, there are many other
suggestions concerning the development of this direction as well as its applications.
They can be found, for instance, in [76, 75, 37, 51, 107, 108, 122]. Most part of this
section is, however, based only on [176, 43, 55, 110].
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3.1.1 Multi-parameter Moment Matching Methods

Consider a PDS of the form

Eẋ(t) =
(
A−

k∑
i=1

piAi

)
x(t) +Bu(t), x(0) = 0,

y(t) = Cx(t),

(3.1)

where E,A,Ai ∈ R
N×N , B ∈ R

N×m, C ∈ R
l×N . pi ∈ Ωi are (time-independent)

parameters. Systems of the form (3.1) quite often occur as the spatially discretized
versions of parabolic PDEs [152]. The transfer function of (3.1), which depends on
both, frequency and parameters, is formulated as

H(p1, · · · , pk, s) = C
(
sE − (A−

k∑
i=1

piAi)
)−1

B. (3.2)

From (3.2), one can observe that sE and piAi symbolically play the same role.
Hence one can write p0A0 instead of sE in order to simplify the notation. Applying
Neumann series, as long as all the matrix inverses below exist, one can write

H(p0, · · · , pk) = C
(
−A+

k∑
i=0

piAi

)−1
B

= C
(
−A(I −

k∑
i=0

piA
−1Ai)

)−1
B

= −C
(
I −

k∑
i=0

piA
−1Ai

)−1
A−1B

= −C

∞∑
n=0

( k∑
i=0

piA
−1Ai

)n
A−1B (3.3)

= −C
(
I +

k∑
i=0

piA
−1Ai +

k∑
i,j=0

pi(A
−1Ai)(A

−1Aj) + · · ·
)
A−1B

= −CA−1B −
k∑

i=0

piC(A−1Ai)A
−1B

−
k∑

i,j=0

pipjC(A−1Ai)(A
−1Aj)A

−1B + · · ·

The set of parameters (p0, · · · , pk) is treated similarly to the frequency s in
parameter-independent cases. As such, (3.3) is nothing else but the expansion of
H(p0, · · · , pk) about (0, · · · , 0). Its coefficients are so-called mixed moments or gen-
eralized moments.

MOR by moment matching applied to the system (3.1) is conducted in a manner
corresponding to the conventional method presented in Chapter 2. It involves the
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construction of two r-dimensional subspaces, which are represented by two N × r

matrices V and Z, on which the original system is projected. Accordingly, the
reduced system will take the form

Ê ˙̂x(t) =
(
Â−

k∑
i=1

piÂi

)
x̂(t) + B̂u(t), x̂(0) = 0,

y(t) = Ĉx̂(t),

where Ê = ZTEV, Â = ZTAV, Âi = ZTAiV, B̂ = ZTB, Ĉ = CV . Matrices V and
Z are built in such a way that the reduced transfer function

Ĥ(p0, · · · , pk) = Ĉ
(
Ê − Â+

k∑
i=0

piÂi)
)−1

B̂

matches the chosen moments about zero of the transfer function (3.2).
In what follows, for ease of presentation and understanding, we consider the case

k = 1, i.e., there is one frequency parameter which is still denoted by p0 and one
actual parameter p1. Denote by fn

i the (i + 1)th coefficient of an nth binomal, i.e.,
fn
i (ξ, η) = ξn−iηi, 0 ≤ i ≤ n, we rearrange terms in (3.3) as follows.

H(p0, p1) = −C
(
I − (p0A

−1A0 + p1A
−1A1)

)−1
A−1B

= −C

∞∑
n=0

(
p0A

−1A0 + p1A
−1A1

)n
A−1B

= −C
∞∑
n=0

( n∑
i=0

fn
i (A

−1A0, A
−1A1)p

i
0p

n−i
1

)
A−1B

=
∞∑
n=0

n∑
i=0

(
− Cfn

i (A
−1A0, A

−1A1)A
−1B
)
pn−i
0 pi1.

The moment corresponding to pn−i
0 pi1 is denoted by Mn

i , i.e.,

Mn
i := −Cfn

i (A
−1A0, A

−1A1)A
−1B.

If there is one parameter, the function fn
i is merely the n-th power. In our case, the

formulation is rather more complicated. It was proven that fn
i satisfies the following

recursion expression.

Lemma 3.1 ([176], Theorem 1)

fn
i (Φ1,Φ2) = Φ2f

n−1
i−1 (Φ1,Φ2) + Φ1f

n−1
i (Φ1,Φ2)

= fn−1
i−1 (Φ1,Φ2)Φ2 + fn−1

i (Φ1,Φ2)Φ1, i ≤ n = 0, 1, 2, · · ·
(3.4)

Note that in this lemma and what follow,

f0
0 (Φ1,Φ2) = I,

f1
0 (Φ1,Φ2) = Φ1,

f1
1 (Φ1,Φ2) = Φ2,

fn
i (Φ1,Φ2) = 0, for i > n or i < 0.
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More properties are provided in the following statements.

Lemma 3.2 ([176], Theorem 2)

fn
i (ΨΦ1,ΨΦ2)Ψ = Ψfn

i (Φ1Ψ,Φ2Ψ), i ≤ n = 0, 1, 2, · · · . (3.5)

Lemma 3.3 ([176], Theorem 3)

fn
i (Φ1,Φ2) =

β∑
α=0

fβ
β−α(Φ1,Φ2)f

n−β
i−β+α(Φ1,Φ2), n = 0, 1, 2, · · · . (3.6)

Based on these lemmas, a theorem on moment matching can be proven. However,
we first need to generalize the definition of conventional block Krylov subspaces. For
systems depending on two parameters, given two matrices Φ1,Φ2 and a full-rank
matrix Λ, the so-called generalized block Krylov subspace KJ(Φ1,Φ2,Λ) is defined
as

Definition 3.1

KJ(Φ1,Φ2,Λ) := colsp
{ J⋃

n=0

n⋃
i=0

fn
i (Φ1,Φ2)Λ

}
:= colsp

{
Λ,Φ1Λ,Φ2Λ,Φ

2
1Λ,Φ1Φ2Λ,Φ2Φ1Λ,Φ

2
2Λ, · · ·

}
.

We are now ready to state the first result on a multi-parameter moment matching
method.

Lemma 3.4 If V ∈ R
N×r is constructed such that KJ(A

−1A0, A
−1A1, A

−1B) ⊆
colsp{V } and Z is a matrix such that ZTAV is non-singular, then

fn
i (A

−1A0, A
−1A1)A

−1B = V fn
i (Â

−1Â0, Â
−1Â1)Â

−1B̂ (3.7)

for 0 ≤ i ≤ n ≤ J .

Proof We follow the strategy in [176], which is given only for SISO systems, by using
an induction process. First, let us define W T := (ZTAV )−1ZTA. It is evident that
W TV = I. When n = 0, (3.7) is simply

A−1B = V Â−1B̂. (3.8)

Indeed, transforming the right hand side of the above equality, we get

V Â−1B̂ = V (ZTAV )−1ZTB

= V (ZTAV )−1ZTAA−1B

= VW TA−1B.

By hypothesis, colsp{A−1B} ⊆ colsp{V } and W TV = I, which implies (3.8).
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Suppose that (3.7) is fulfilled for all 0 ≤ i ≤ n− 1, applying (3.4) we have

V fn
i (Â

−1Â0, Â
−1Â1)Â

−1B̂

= V
(
Â−1Â1f

n−1
i−1 (Â−1Â0, Â

−1Â1) + Â−1Â0f
n−1
i (Â−1Â0, Â

−1Â1)
)
Â−1B̂

= V
(
Â−1ZTA1V fn−1

i−1 (Â−1Â0, Â
−1Â1) + Â−1ZTA0V fn−1

i (Â−1Â0, Â
−1Â1)

)
Â−1B̂

= V

(
Â−1ZTA1

(
V fn−1

i−1 (Â−1Â0, Â
−1Â1)Â

−1B̂
)

+ Â−1ZTA0

(
V fn−1

i (Â−1Â0, Â
−1Â1)Â

−1B̂
))

(induction hypothesis)

= V

(
Â−1ZTA1

(
fn−1
i−1 (A−1A0, A

−1A1)A
−1B
)

+ Â−1ZTA0

(
fn−1
i (A−1A0, A

−1A1)A
−1B
))

= V

(
(ZTAV )−1ZTAA−1A1

(
fn−1
i−1 (A−1A0, A

−1A1)A
−1B
)

+ (ZTAV )−1ZTAA−1A0

(
fn−1
i (A−1A0, A

−1A1)A
−1B
))

= V (ZTAV )−1ZTA
(
A−1A1f

n−1
i−1 (A−1A0, A

−1A1)

+A−1A0f
n−1
i (A−1A0, A

−1A1)
)
A−1B

(3.4)
=

VW T fn
i (A

−1A0, A
−1A1)A

−1B

(colsp{fn
i (A

−1A0, A
−1A1)A

−1B} ⊆ colsp{V })
= fn

i (A
−1A0, A

−1A1)A
−1B.

Lemma 3.4 provides a theoretical base for the one-sided multi-parameter projection
method. Indeed, multiplying C to the left of (3.7) implies the equality of moments
of the reduced system and the corresponding ones of the full order system. So far,
the information to build up the projection matrices is only taken from the input
matrix B. Output matrix C has not been exploited yet. In fact, C makes the same
contribution. It is shown in the following lemma. We skip the proof due to the
similarity to the proof of Lemma 3.4.

Lemma 3.5 If Z ∈ R
N×r satisfies KJ(A

−TAT
0 , A

−TAT
1 , A

−TCT ) ⊆ colsp{Z} and
V is a matrix such that ZTAV is non-singular, then

CA−1fn
i (A0A

−1, A1A
−1) = ĈÂ−1fn

i (Â0Â
−1, Â1Â

−1)ZT (3.9)

for 0 ≤ i ≤ n ≤ J .

By these results, we come to the main theorem, which was proven in [176] but only
for SISO systems.
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Theorem 3.6 If V,Z ∈ R
N×r satisfy KJB (A

−1A0, A
−1A1, A

−1B) ⊆ colsp{V },
KJC (A

−TAT
0 , A

−TAT
1 , A

−TCT ) ⊆ colsp{Z} and ZTAV is non-singular, then

Cfn
i (A

−1A0, A
−1A1)A

−1B = Ĉfn
i (Â

−1Â0, Â
−1Â1)Â

−1B̂ (3.10)

for 0 ≤ i ≤ n ≤ JB + JC + 1.

Proof The case n = 0 is trivial, as it is a consequence of Lemma 3.4. Now, for any
n ≤ JB + JC + 1, one can always find 0 ≤ iB ≤ JB and 0 ≤ iC ≤ JC such that
n = jB + jC + 1. By (3.6) we have

Cfn
i (A

−1A0, A
−1A1)A

−1B

(3.3)
=

C

jC+1∑
α=0

f jC+1
jC+1−α(A

−1A0, A
−1A1)f

jB
i−jC−1+α(A

−1A0, A
−1A1)A

−1B

(3.4)
=

C

jC+1∑
α=0

(
f jC
jC−α(A

−1A0, A
−1A1)A

−1A1 + f jC
jC+1−α(A

−1A0, A
−1A1)A

−1A0

)
f jB
i−jC−1+α(A

−1A0, A
−1A1)A

−1B

(3.5)
=

jC+1∑
α=0

(
CA−1f jC

jC−α(A
−1A0, A

−1A1)A1 + CA−1f jC
jC+1−α(A

−1A0, A
−1A1)A0

)
f jB
i−jC−1+α(A

−1A0, A
−1A1)A

−1B.

Applying Lemma 3.5 for the first two terms, Lemma (3.4) for the third one of the
above expression yields

Cfn
i (A

−1A0, A
−1A1)A

−1B

=

jC+1∑
α=0

(
ĈÂ−1f jC

jC−α(Â
−1Â0, Â

−1Â1)Z
TA1 + ĈÂ−1f jC

jC+1−α(Â
−1Â0, Â

−1Â1)Z
TA0

)
V f jB

i−jC−1+α(Â
−1Â0, Â

−1Â1)Â
−1B̂

= Ĉ

jC+1∑
α=0

(
Â−1f jC

jC−α(Â
−1Â0, Â

−1Â1)Â1 + Â−1f jC
jC+1−α(Â

−1Â0, Â
−1Â1)Â0

)
f jB
i−jC−1+α(Â

−1Â0, Â
−1Â1)Â

−1B̂

(3.5)
=

Ĉ

jC+1∑
α=0

(
f jC
jC−α(Â

−1Â0, Â
−1Â1)Â

−1Â1 + f jC
jC+1−α(Â

−1Â0, Â
−1Â1)Â

−1Â0

)
f jB
i−jC−1+α(Â

−1Â0, Â
−1Â1)Â

−1B̂

(3.4)
=

Ĉ

jC+1∑
α=0

f jC+1
jC+1−α(Â

−1Â0, Â
−1Â1)f

jB
i−jC−1+α(Â

−1Â0, Â
−1Â1)A

−1B

(3.6)
=

Ĉfn
i (Â

−1Â0, Â
−1Â1)Â

−1B̂.
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Remark If one prefers expanding the transfer function at (ρ0, · · · , ρk) rather than
at (0, · · · , 0), H(p0, · · · , pk) in (3.3) can be written as

H(p0, · · · , pk) = C
(
−
(
A−

k∑
j=0

ρjAj

)
+

k∑
i=0

(pi − ρi)Ai

)−1
B

= −C
(
I −

k∑
i=0

(pi − ρi)
(
A−

k∑
j=0

ρjAj

)−1
Ai

)(
A−

k∑
j=0

ρjAj

)−1
B

= −C
(
A−

k∑
j=0

ρjAj

)−1
B

− C

k∑
i=0

(
A−

k∑
j=0

ρjAj

)−1
Ai

(
A−

k∑
j=0

ρjAj

)−1
B(pi − ρi) + · · ·

and replace A by A−
k∑

i=0
ρjAj and pi by pi − ρi in the rest of this sum.

As mentioned, the generalization of the two-parameter case to a multi-parameter
case was performed in [43]. In our framework, if we work for instance with three
parameters, the generalized block Krylov subspace in Definition 3.1 is defined corre-
spondingly via f(Φ1,Φ2,Φ3,Λ). One can easily recognize the rule for the products
Φα
1Φ

β
2Φ

γ
3 . They are nothing else but the terms of powers of the trinomial Φ1+Φ2+Φ3

over a non-commutative ring. We skip the presentation of this straightforward gen-
eralization here.

We would like to emphasize that Lemma 3.4, Lemma 3.5 and Theorem 3.6 were
proven in [176, 43], but only for SISO cases. The authors of [43] mentioned the
extension of the result to the multi-input case, but rather entrywise. That is, the
construction of V , which is well-established for the single-input case, is repeated
with all columns of the input matrix. The union of the resulting matrices is then
the sought-after projection matrix. It is worthwhile to note that only one-sided
projection was considered in this approach. From our point of view, Theorem 3.6,
which is using the two-sided projection and applicable for MIMO systems, cannot
be directly proven using that approach. Therefore, a systematic presentation of this
subject in this subsection might be regarded as our contribution to this direction.

Projection matrices V,Z in Theorem 3.6 are constructed in order to match the
generalized moments at one point. To match moments at more points, following the
rational interpolation approach [70], one has to compute matrices corresponding to
those points and the required matrices are the union of computed matrices. �

3.1.2 Some Other Developments

Although the Arnoldi process is well-established for the construction of Krylov sub-
spaces in MOR, it works only with standard Krylov subspaces. Therefore, invoking
the Arnoldi process in the present problem means one has to modify the construc-
tion of the subspace or even redefine the moments. This subsection will present
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some of these developments and some other related ideas.
As in the previous parts, we consider a PDS of the form (3.1) depending on only

one parameter p,

Eẋ(t) = (A− pAp)x(t) +Bu(t), x(0) = 0,

y(t) = Cx(t),
(3.11)

and will discuss the case of multi parameters at the end. The transfer function
therefore reads

H(s, p) = C
(
sE − (A− pAp)

)−1
B.

Unlike the multi-parameter moment matching method, the frequency parameter s

and the parameter p are treated differently. This is because in this approach, we
do not consider H(s, p) as a function of two independent variables when expanding
it. Alternatively, we first expand H(s, p) as a function of one variable, and put the
other in the coefficients. Clearly, the parameter that is chosen first, in our case the
frequency s, will play the dominant role 1. Accordingly, we have

H(s, p) = C
(
sE − (A− pAp)

)−1
B

= −C
(
I − s(A− pAp)

−1E
)−1

(A− pAp)
−1B

= −C

∞∑
i=0

(
(A− pAp)

−1E
)i
(A− pAp)

−1Bsi.

Since moments of H(s, p) depend on p, one can by no means match them with
Krylov subspace techniques. If we, however, accept to match these moments in an
approximation sense, we can carry out the task by matching the so-called submo-
ments. Let us write

Mi =
(
(A− pAp)

−1E
)i
(A− pAp)

−1B, i = 0, 1, 2, · · ·

Consider first

M0 = (A− pAp)
−1B

=
(
A(I − pA−1Ap)

)−1
B

=

∞∑
j=0

(A−1Ap)
jA−1Bpj ,

in which the matrix (A−1Ap)
jA−1B are called submoments. One can observe that

the expansion of M0 has the same structure as expansion of the transfer function of
1Separating parameters and frequency in matching moments of transfer functions is also used

in [108]. However, they suggested explicitly matching moments for parameters first and then
implicitly matching moments for the frequency.
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an LTI system. Therefore, one can employ the Krylov subspace method to match
the submoments (A−1Ap)

jA−1B. To this end, we define

colsp{V0} = Ki0(A
−1Ap, A

−1B)

with the intention of approximating M0 by matching its first i0 submoments of M1,
where

M1 = (A− pAp)
−1E(A− pAp)

−1B

=

∞∑
j1=0

(A−1Ap)
j1A−1E

∞∑
j0=0

(A−1Ap)
j0A−1Bpj1pj0 .

By its definition, M1 contains information on M0. This must be taken into account
during the construction of V1. Note that we did not record full data of M0, but only
an approximation of it through V0. For this reason, we define

B1 := EV0

and define the subspace

colsp{V1} := Ki1(A
−1Ap, A

−1B1),

And analogously,
colsp{V2} = Ki2(A

−1Ap, A
−1B2).

Suppose we proceed in this way k times, the projection matrix needed for the
reduction is V , such that

colsp{V } = colsp{V0, V1, · · · , Vk}.

The reduced system is then determined by a one-sided projection. That is,

Ê ˙̂x = (Â− pÂp)x̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉx̂(t),
(3.12)

where Ê = V TEV, Â = V TAV, Âp = V TApV, B̂ = V TB, Ĉ = CV . The following
theorem details how well system (3.12) approximates its original system.

Theorem 3.7 ([55], Theorem 2) The first i0, i1, · · · , ik submoments of
M0,M1, · · · ,Mk, respectively of the original system (3.11) are matched by the
corresponding quantities of the transfer function of the reduced system (3.12).

There are some points we would like to stress here. First, like many other
Krylov subspace methods, there is no strategy for choosing the size of the subspaces
Vj , j = 0, · · · , k. It is empirically decided, for instance, based on how well one wants
to approximate the moments Mj , j = 0, · · · , k.

Second, since Vj determines the size of the starting block Bj+1 in constructing
Vj+1 and this fact repeats constantly, the size of the projection matrix V , which is
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likely the sum of the sizes of all Vj , increases rapidly together with j. For example,
assume that a large MIMO system with 3 inputs needs to be treated and suppose
that no deflation occurs during the reduction. In order to approximate moments,
we match, e.g., 10 submoments for all Mj . Then Vj will have 3× 10j columns and
therefore we will get a reduced system of the order 3 × 10 × (10k+1 − 1)/(10 − 1).
In practice, however, one can hope, as the numerical example in [55] showed, that
matching only a few submoments is good enough for the reduced system to capture
the main behavior of the full-order one.

Third, an extension of this approach to multi-parameter cases is, although for-
mally straightforward, actually cumbersome. After expanding the transfer function
with respect to frequency s, one can approximate the moment Mj in two ways:
defining submoments as in the multi-parameter cases presented in Subsection 3.1.1
or expanding and matching the submoments with respect to one parameter after
another. Whichever way to be chosen, the procedure for approximating higher order
(second or third) soon becomes unfeasibly complicated.

The left hand side matrix of system (3.1) may depend on parameters as well, for
instance

E +
k∑

i=1

piEi. (3.13)

This kind of system arises during the simulation of parametrized interconnect net-
works or MEMS [113, 3, 151, 110]. In the simplest case when only one parameter is
concerned, the transfer function takes the form

H(s, p) = C
(
s(E + pEp)− (A− pAp)

)−1
B (3.14)

= C

(
− (A− pAp)

(
I − s(A− pAp)

−1(E + pEp)
))−1

B

= −C
(
I − s(A− pAp)

−1(E + pEp)
)−1

(A− pAp)
−1B

= −C

∞∑
i=0

(
(A− pAp)

−1(E + pEp)
)i
(A− pAp)

−1Bsi.

The presence of Ep, if we still follow the approach above, accelerates the increase of
the dimension of Vj . Turning back to the example we just mentioned in the previous
part, the projection matrix V will have 3×(2×10)×

(
(2×10)k+1−1

)
/
(
(2×10)−1

)
columns.

From (3.14), one way to avoid this situation is to define an extra parameter
q = sp and end up with a three-parameter-dependent transfer function

H(s, p, q) = C(−A+ sE + qEp + pAp)
−1B.

This leads to a complicated situation related to the extension to multi-parameter
cases mentioned in the previous point. Of course, the multi-parameter method can
be invoked, but we want to carry on with Arnoldi-typed approach.
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We rewrite the transfer function (3.14) as

H(s, p) = C(−(A−Ap) + s(E + pEp))
−1B

=

∞∑
i=0

∞∑
j=0

M i
js

jpi,

where moments M i
j are of the form M i

j = −Cμi
j . It was shown in [110] that the

vector μi
j satisfies the so-called two-directional recurrence

Aμi
j = Eμi

j−1 +Apμ
i−1
j + Epμ

i−1
j−1, (3.15)

in which μ0
0 = A−1B and μi

j = 0 for all negative indices i, j.
Following the moment matching method, if we would like to match (n+1)×(k+1)

moments M i
j , 0 ≤ i ≤ n, 0 ≤ j ≤ k, by a one-sided projection, we have to build a

matrix V such that

colsp{V } = span{M i
j , 0 ≤ i ≤ n, 0 ≤ j ≤ k}. (3.16)

It remains to stably and effectively construct V . For SISO systems, the authors of
[110] proposed what they called PIMTAP (Parametrized Interconnect Macromod-
eling via Two-directional Arnoldi Process) as follows.

Rearrange the set of vectors μi
j as⎡

⎢⎢⎣
μ0
0 μ0

1 · · · μ0
k

μ1
0 μ1

1 · · · μ1
k

· · · · · · · · · · · ·
μn
0 μn

1 · · · μn
k

⎤
⎥⎥⎦ . (3.17)

Denote by Ri the full-rank matrix spanning the same subspace as the one spanned
by the i-th row of (3.17), i.e.,

colsp{Ri} = span{μi−1
0 , μi−1

1 , · · · , μi−1
k }.

Matrix V is then constructed by adding Ri step by step

colsp{Vi} = colsp{Vi−1 Ri}, i = 1, · · · , n+ 1,

V0 = [ ](empty matrix).
(3.18)

One can observe that R1 can be directly built by using a standard Arnoldi process,
since it is the standard Krylov subspace Kk+1(A

−1E,A−1B). For i = 2, · · · , n+ 1,
let us write

μ
[i]
[j] =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ0
j−1

μ1
j−1
...

μi−1
j−1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎣ μ

[i−1]
[j]

μi−1
j−1

⎤
⎥⎦ ∈ R

iN , (3.19)

A[i] =

[
A[i−1]

[0]∗ Ap A

]
, E[i] =

[
E[i−1]

[0]∗ Ep E

]
.
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The notation [0]∗ means that the size of this zero matrix is flexible in order to fit
the size of the whole matrix. In this notation, A[1] = A,E[1] = E. Relation (3.15)
can be rewritten in the form of a linear expression

A[i]μ
[i]
[j] = E[i−1]μ

[i]
[j−1], j = 2, · · · , k + 1.

This suggests that

colsp{W[i]} := span
{
μ
[i]
[1], · · · , μ

[i]
[k+1]

}
= Kk+1

(
A−1

[i] E[i], μ
[i]
[1]

)
.

We however do not need the entire W[i] but only the data that relate to{
μi−1
0 , · · · , μi−1

k

}
. If we decompose W[i] as

W[i] =

[
W 1

[i]

W 2
[i]

]
,

where W 1
[i] consists of the first (i− 1)N rows of W[i] and W 2

[i] consists of the last N

rows, it follows by (3.19) that

colsp{W 2
[i]} = span {Ri} .

It remains to update the columnwise orthogonal matrix Vi by (3.18). Another
method for computing Ri is provided by the same authors in [109].

Since the PIMTAP algorithm includes only the standard Arnoldi procedure and
the Gram-Schmidt re/orthogonalization, the computation is well-behaved. It was
also shown that the reduced system constructed by PIMTAP matches all moments
M i

j , 0 ≤ i ≤ n, 0 ≤ j ≤ k. A generalization to the multi-parameter cases was also
presented. The interested reader is referred to the aforementioned articles.

Another noteworthy approach is based on direct computation of moments in the
frequency domain [76, 75, 32]. The approaches were proposed to deal with linear
subnetworks, which in the most general case can be expressed as

Y (s, p)X(s, p) = b, (3.20)

where Y (s, p) = −A(p) + sE(p) ∈ R
N×N , b ∈ R

N stands for the network excitation.
Denote by M s

i and Mp
i the moments of X with respect to s and p at (s, p) = (0, p0),

respectively. They can be computed by

A(p0)M
s
i = E(p0)M

s
i−1,

−A(p0)M
s
0 = b,

A(p0)M
p
i = −

i∑
j=1

∂j

∂pj
A(p) |p=p0 Mp

i−j

j!
,

−A(p0)M
p
0 = b.

(3.21)

The idea of the moment matching method suggests that the projection matrix V

should be constructed such that

colsp{V } = span{M s
0 , · · · ,M s

n,M
p
0 , · · · ,M

p
k}. (3.22)
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Then system (3.20), after the projection, becomes(
sÊ(p)− Â(p)

)
X̂(p, s) = b̂, (3.23)

where Ê(p) = V TE(p)V, Â(p) = V TA(p)V, b̂ = V T b. It was proven in [76] that the
moments M s

0 , · · · ,M s
n,M

p
0 , · · · ,M

p
k of the original system (3.20) are matched by

the corresponding ones of the reduced system (3.23) as long as (3.22) is fulfilled.
This approach was then rediscovered in [122]. In his thesis, the author considered

to match only the so-called pure moments, which are exactly the moments in (3.21),
and ignore the other moments.

3.2 Interpolation of Transfer Functions

Interpolation is quite an old subfield of mathematics. It is used to approximate the
values of functions on a set within the range of a given discrete set of points at which
the value of the function is known. Applying interpolation on transfer functions
for PMOR was first proposed in [16] and then improved in [17]. It combines the
balanced truncation method and a kind of polynomial interpolation to construct
the transfer function for the reduced system. The difficulty lies in conducting it in
such a way that it inherits from the standard balanced truncation method all useful
properties: stability preservation and a constructible error bound. In the following,
some selected facts will be presented. For a complete account, the reader is referred
to [17]. Consider a parameter-dependent system

ẋ(t) = A(p)x(t) +B(p)u(t), x(p, 0) = 0,

y(t) = C(p)x(t),
(3.24)

where A(p) ∈ R
N×N , B(p) ∈ R

N×m, C(p) ∈ R
l×N , p belongs to a closed, bounded

set Ω ∈ R
d. Let {p1, · · · , pk} ⊂ Ω be a chosen discrete set of parameter values. At

first, like other interpolation based methods, reduced systems have to be constructed
at each pi:

˙̂xi(t) = Âix̂i(t) + B̂iu(t),

ŷi(t) = Ĉix̂i(t), i = 1, · · · , k.
(3.25)

In this approach, balanced truncation was used. Let

Ĥi(s) = Ĉi(sI − Âi)
−1B̂i

denote the reduced transfer function at pi. We emphasize that in this approach,
not the system matrices Ĉi, Âi, B̂i but the reduced transfer function Ĥi(s) is the
object to be interpolated. If we think of the parameter-dependent reduced transfer
function Ĥ(p, s) which is computed at each given parameter value p by the same
method and the same reduced order, its “values" (actually a function of frequency s)
at pi, Ĥ(pi, s) is nothing else but Ĥi(s). Therefore, Ĥi(s), i = 1, · · · , k are used as
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data to reconstruct Ĥ(p, s) on the whole parameter space. This process is illustrated
by Figure 3.1.

Reduced TF:

Original TF:

Interpolate

Interpolate

Pick Pick Pick

H(p1, s)

�

�
�

�
�H(pi, s)

�

��
�	
H(pk, s)

�

Reduce Reduce Reduce

Ĥ1(s)


�

�
Ĥi(s) ��

��
Ĥk(s)

Figure 3.1: Interpolation of transfer function

Depending on the choice of interpolation methods, we receive different resulting
transfer functions. In [16, 17], Lagrange, Hermite and sinc were utilized. A com-
mon feature of these interpolation types is that the resulting interpolant is directly
constructed

k∑
i=1

�i(p)Ĥi(s). (3.26)

This interpolant is used as an approximation of the parameter-dependent reduced
transfer function Ĥ(p, s). Henceforth, we will denote it by the same notation Ĥ(p, s).
Spline interpolation has not been used so far. In the next chapter, we will show our
new result on using spline interpolation in the case of single parameter for this
purpose.

Stability preservation can be derived quite directly. If (3.24) is stable for all
parameter values, each reduced system in (3.25) is stable thanks to the fact that
the standard balanced truncation applied to the original system at each pi preserves
the stability. The reduced transfer function (3.26) is a sum of stable functions, and
therefore stable.

Formulating a bound for the error between the original transfer function and the
reduced one, on the other hand, needs more arguments. First, one has to define a
norm for parameter-dependent systems. Since we use balanced truncation, which
yields an H∞-norm error bound, we define

‖H(p, s)‖∞ := sup
p∈Ω

‖H(p, s)‖∞. (3.27)

Accordingly, the error bound is principally derived by combining the errors caused
by balanced truncation and by interpolation. If Lagrange polynomials on Ω = [a, b]
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are used, it was proven in [17] that

‖H(p, s)− Ĥ(p, s)‖∞ ≤ sup
p∈Ω

‖Rk(H, p, s)‖∞ + ε sup |
k∑

i=1

�i(p)|,

where Rk(H, p, s) = 1
(k+1)!

(
∂k+1

∂pk+1H(ξ(p), s)
) k∏

i=1
(p− pi), ξ(p) ∈ [min pi,max pi].

Function Ĥ(p, s) is a representation of the reduced system in the frequency
domain. If the original system is given in state space representation, one may
want to have the reduced system in state space representation as well. Classical
techniques deriving a state space representation from the transfer function (see [10]
and reference therein) are not applicable, since Ĥ(p, s) depends on the parameter p.
A simple self-suggesting approach which makes use of the state space representations
of the reduced systems at p1, · · · , pk, however, is the following. One can write

k∑
i=1

�i(p)Ĥi(s) =

k∑
i=1

(�i(p)Ĉi)(sIri − Âi)
−1B̂i

=
[
Ĉ1(p) Ĉ2(p) · · · Ĉk(p)

]⎡⎢⎣sIr1 − Â1

. . .
sIrk − Âk

⎤
⎥⎦
−1 ⎡⎢⎣B̂1

...
B̂k

⎤
⎥⎦

= Ĉ(p)(sIr1+···+rk − Â)−1B̂, (3.28)

where Ĉi(p) = �i(p)Ĉi, i = 1, ..., k, Â = diag(Â1, · · · , Âk), B̂ = [B̂T
1 · · · B̂T

k ]
T . The

required representation reads

˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉ(p)x̂(t).
(3.29)

Remark As mentioned in Chapter 2, balanced truncation is a favorable method,
since it provides an error bound, but it is rather expensive due to the solution
of Lyapunov equations and the computation of the SVD. Interpolation of transfer
functions in this style is therefore computationally expensive, especially for systems
with high dimensional parameter space. In such cases, the method soon becomes
unaffordable. To deal with the so-called curse of dimensionality of the problem,
sparse grids [30] have been used in [17].

3.3 Direct Interpolation of System Matrices

This method, proposed in [130], is applicable to any PDS of the form

E(p)ẋ(t) = A(p)x(t) +B(p)u(t),

y(t) = C(p)x(t),
(3.30)
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where E(p), A(p),∈ R
N×N , B(p) ∈ R

N×m, C(p) ∈ R
l×N , p are in Ω ⊂ R

d. We only
assume that the system matrices can be derived for each given p.

Let pi ∈ Ω, i = 1, · · · , k be a chosen set of parameter values. At each of these
points, one uses a standard MOR method as presented in Chapter 2. Note that
all MOR methods can be described in the projection framework by two columnwise
orthogonal or bi-orthogonal matrices W,V . Denote by Wi, Vi ∈ R

N×r the projection
matrices used to reduce system (3.30) at pi. Accordingly, the reduced system at
point pi reads

Êi
˙̂xi(t) = Âix̂i(t) + B̂iu(t),

ŷ(t) = Ĉx̂i(t),
(3.31)

where Êi = W T
i E(pi)Vi, Âi = W T

i A(pi)Vi, B̂i = W T
i B(pi), Ĉi = C(pi)Vi. Now, the

resulting reduced system is constructed via interpolation of its system matrices

Ê =
k∑

i=1

fi(p)Êi, Â =

k∑
i=1

fi(p)Âi,

B̂ =

k∑
i=1

fi(p)B̂i, Ĉ =

k∑
i=1

fi(p)Ĉi,

(3.32)

where fi(p) are some weight functions which form a partition of unity
∑k

i=1 fi(p) =

1, ∀p ∈ Ω.
Forming a reduced system like (3.32) from local reduced systems (3.31) only

makes sense if all local coordinates x̂i are equal. More precisely, they have to be
the coordinates of vectors with respect to one basis. But the projection matrices
Vi, i = 1, · · · , k, used to construct (3.31) are in general pairwise different, which
means that the original state vector x(t) is approximated by different vectors Vix̂i
in different subspaces depending on pi. Therefore, some additional procedure has to
”equalize“ the coordinates x̂i and has to do it in such a way that the input-output
behavior of the local reduced systems is not affected.

Clearly, the input-output behavior of (3.31) remains unchanged if we multiply
from both sides with two non-singular matrices, say,

MiÊiT
−1
i

˙̂x∗i (t) = MiÂiT
−1
i x̂∗i (t) +MiB̂iu(t),

ŷ(t) = ĈiT
−1
i x̂∗i (t).

(3.33)

The matrices Ti are the transformations that change the coordinate from x̂∗i to x̂i,

x̂∗i = Tix̂i.

With a choice of Ti, we can change the local coordinate x̂i freely. This is the crucial
tool to turn all x̂i, i = 1, · · · , k, to a common coordinate x̂∗ referring to the same
subspace.

We will now analyze the situation in order to find Ti. In the original space, the
state vector is, after transforming with Ti, approximated by zi = ViT

−1
i x̂∗i . These
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are, however, vectors that lie on the subspace spanned by the columns of Vi. One
wants these vectors to belong to a common subspace, say, spanned by columnwise
orthogonal matrix R ∈ R

N×r. Matrix R is usually chosen in such a way that
the resulting reduced system captures the most important dynamics of the original
system. The coordinate of zi with respect to the basis formed by columns of R is
now

x̂∗ = RT zi = RTViT
−1
i x̂∗i . (3.34)

If we choose Ti = RTVi, all x̂∗i will become identical to x̂∗ and that is what we would
like to have.

Remark The choice of R, in addition to containing important dynamics of the
original system, has to guarantee the non-singularity of RTVi, i = 1, · · · , k. �

A direct way to collect important dynamics and store in R is as follows. Let

V = [V1 V2 · · ·Vk].

and
ΦΛΨ = V

be the SVD of V . Matrix R can be chosen as the first r singular vectors. The cost
for computing the SVD of an N × kr matrix V is quite high; fortunately, this has
to be done only once for the whole reduction process. The authors of [130] also
mentioned another way to construct R, which gives a better approximation and is
flexible with the variation of parameters. However, the SVD must be performed
for all new parameter values p. It is, from our opinion, not advisable for real time
simulation. We will come back to this issue in Chapter 4.

For the choice of Mi in (3.33), it was advised in [130] to choose Mi = (W T
i R)−1.

Accordingly, (3.33) becomes

(W T
i R)−1W T

i E(pi)Vi(R
TVi)

−1 ˙̂x∗i (t)
= (W T

i R)−1W T
i A(pi)Vi(R

TVi)
−1x̂∗i (t) + (W T

i R)−1W T
i B(pi)u(t),

ŷ(t) = C(pi)Vi(R
TVi)

−1x̂∗i (t).

(3.35)

3.4 Indirect Interpolation of System Matrices

As we learnt in the previous section, interpolation of system matrices must be han-
dled with care due to the incompatibility of local projection bases. Another issue
which should be considered when interpolating system matrices is the structure of
these matrices. A specific structure represents specific properties. For example,
when we are dealing with an ordinary differential equation of the form

ẋ(t) = Ax(t) + f(t),

a common hypothesis is the non-singularity of A. Another example is the symmet-
ric positive definiteness of matrices. It frequently arises in structural analysis and
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simulations of mechanical systems. One can easily verify that such properties are,
in general, not preserved during the interpolation. Therefore, direct interpolation
on sets of structural matrices is not advisable.

The idea to deal with interpolation of structural matrices was first proposed in
[6, 5] and then followed by [45]. These works share the same idea with [7] which
involves interpolation on Grassmann manifolds. The core of these methods is to
interpolate on the tangent spaces to the underlying manifolds, which is composed
of these system matrices, rather than on manifolds themselves.

According to the analysis in Section 2.3, such structured matrices constitute
differential manifolds, e.g., SPD(n),GL(n),G(k, n). Consequently, tangent spaces
to these manifolds exist everywhere. More important, the logarithmic mapping and
exponential mappings are well-defined. These are important tools to transfer data
between manifolds and their tangent spaces and therefore help to carry out the task.
The formulation of these mappings highly depends on their associated manifolds.
The manner, the outcome and the application of the methods are therefore quite
distinct. In the remainder of this section, for the sake of simplicity, the result
derived in [45] will be presented. Some other aspects of the approach will be given
as remarks.

Consider the system

ẋ(t) = A(p)x(t) +B(p)u(t),

y(t) = C(p)x(t),

where A(p) ∈ R
N×N , B(p) ∈ R

N×m, C(p) ∈ R
l×N , p ∈ Ω ⊂ R

d. Matrix A(p) is
assumed to be invertible for all p. The dependence of A,B,C on p may be non-
linear or even implicit, i.e., as in Section 3.3, no analytic expressions are required.

The reduction method used in this approach is based on POD. At the beginning,
it constructs a POD basis V ∈ R

N×r. Unlike the standard POD method, in which
V is built based on the SVD of the set of snapshots taken at different time instants,
the variation of parameters must be taken into consideration; the snapshots here are
taken corresponding to different parameter values: p1, · · · , pk as well. That is, the
total numbers of snapshots is the product of that of time instants and of parameter
values. The next step is to approximate the original state x(t) by V x̂(t) and to
project the resulting system on the subspace spanned by the left projection matrix
W ∈ R

N×r,W TV = I. The bi-orthogonality is added in order to keep the reduced
system in ordinary form.

Since A,B,C may not be given with explicit dependence on p, or the dependence
is too complicated to be handled, one cannot (or can hardly) formally multiply, e.g.,
W TA(p)V . Even though the evaluations of A(p), B(p), C(p) for each value p are
well-performed, the reduced system formed in this way is not suitable for online
simulations. Because at each new value of p, to get the reduced system, one has to
perform computations whose complexity depends on the full-order N .

To avoid this, it is proposed to reduce the system at the points of a given sample
p1, · · · , pk and then use the so-called local pre-computed reduced order models as
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data to construct a reduced order model for each new parameter value p. Let us
denote by

˙̂x(t) = Âix̂(t) + B̂iu(t),

ŷ(t) = Ĉix̂(t), i = 1, · · · , k,
(3.36)

where Âi = W TA(pi)V, B̂i = W TA(pi) and Ĉi = C(pi)V, i = 1, · · · , k, the k pre-
computed reduced order models. Now it remains to compute the reduced system at
new values p, i.e., the triplet Â(p), B̂(p), Ĉ(p), using only these k reduced models
(3.36). That is, we follow the trend II for MOR of PDSs.

Interpolation is the first idea to be thought of in such a situation. By hypothesis,
Âi is non-singular for all i and therefore belongs to manifold GL(r). Hereinafter,
elements of GL(r) may be referred to as points. Direct interpolation on GL(r) is
doomed to failure due to the easily verified fact that GL(r) is not closed under
addition.

In the following, the interpolation procedure which was first proposed in [7] and
reused in [45] on GL(r) is carried out indirectly on its tangent space.

Step 1 Choose one matrix, say Â1, as a reference point at which the tangent space
TÂ1

GL(r) is used. Â1 is chosen such that the distances from the other points
in the sample to Â1 are not too large.

Step 2 Map all points Â2, · · · , Âk from GL(r) to TÂ1
GL(r) by the logarithmic

mapping LogÂ1
. Here we use the formula (2.48) in Chapter 2

LogÂ1
(Âi) = log

(
ÂiÂ

−1
1

)
. (3.37)

Step 3 With given p, the “vector” associated with p, Â(p) ∈ TÂ1
GL(r) is approxi-

mated via interpolation of LogÂ1
(Âi). If we use, for example, Lagrange inter-

polation, then

Â(p) =
k∑

i=1

�i(p)LogÂ1
(Âi),

where �i(p) are Lagrangian polynomials associated with the given grid points
pi.

Step 4 Map Â(p) back to GL(r) by the exponential mapping ExpÂ1
defined as in

(2.47). This image is considered as an approximation of Â(p) corresponding
to p:

Â(p) = ExpÂ1
(Â(p)) := exp(Â(p))Â1. (3.38)

So far, the interpolation procedure is only proposed for Â(p). It remains to
compute B̂(p) and Ĉ(p) from B̂i, Ĉi. Should the same process be applied? It is
worth to recall that there are no constraints imposed on B(p) and C(p). Therefore,
as p varies on Ω, B(p) and C(p) do not belong to specified manifolds but actually lie
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on subspaces RN×m and R
l×N , respectively. As a consequence, we do not need to use

the interpolation method that is applied to A(p). Instead, a standard interpolation
technique, for instance, spline interpolation or Lagrange interpolation is invoked to
compute B̂(p) and Ĉ(p). It turns out that the standard interpolation is a special
case of the framework of interpolation on manifolds. Indeed, applying the four-step
procedure mentioned above to R

N×m and R
l×N using the logarithmic mapping and

the exponential mapping defined as (2.52) and (2.51) will result in the standard
interpolation.

The use of the approach mentioned above for simulations is divided into two
stages. In the first stage, we compute and store Âi, B̂i, Ĉi, i = 1, · · · , k. This step is
rather time consuming, since the computation has complexity of original order N ,
which is very large. However, this is merely the preparatory step and the requirement
of computational speed is therefore not pressing. In the second so-called online stage,
given a parameter value p /∈ {p1, · · · , pk} but in the range of this set, the reduced
system corresponding to p need to be computed as fast as possible. This task is
done by invoking the 4-step procedure given above. Note that in this stage, we
only work with small matrices Âi, B̂i, Ĉi, and hence the computational cost is low.
The idea of separating the reduction process into two stages, widely-called offline-
online decomposition derives from solving affinely parameter-dependent problems
[172, 117]. This idea is also exploited in Chapter 4 to improve an existing algorithm
and therefore discussed more thoroughly in Section 4.2.

Remark The authors of [45] suggested employing the algorithm in [44] for the
logarithm of non-singular matrices (3.37) and the technique in [83] for the exponent
(3.38).

In [6], the approach was applied to the construction of ROMs for a parameter-
dependent mechanical system, whose system matrices are symmetric positive def-
inite. Since it is a second-order differential equation, the presentation is skipped
here. The interested reader is referred to the mentioned reference.

It was pointed out in [5, 8] that interpolation of precomputed ROMs by their
system matrices, which were computed by projecting on different subspaces at dif-
ferent parameter values, was ill-advised. It was therefore suggested that, before
interpolating, the difference between projection subspace bases used for computing
ROMs and that for the ROM whose system matrices were chosen as reference point
should be minimized. In our opinion, however, putting this step (Step A in [8])
in online stage as mentioned in both these publications is unnecessary. One can
observe that, the search for the matrix Q (see [8], (4.4)) is independent of the new
value of the parameter set μNμ+1, and Algorithm 1 in [8] for Step A is completely
based on the available precomputed data. This step can therefore be carried out in
offline stage. �
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3.5 Some More References

The aforementioned methods in this chapter cannot cover all approaches to such
an active research issue. Here are some developments which were left out. In [25],
piecewise-linear moment matching was used to deal with highly nonlinear parameter-
ized systems. In another direction, a greedy algorithm [132] was invoked in [29, 77]
to effectively select parameter samples and time instants in producing projection
spaces. The authors of [77] went even further to give an a posteriori error estima-
tion between the reduced and the original output. Also based on POD, the method
developed in [81] analyzed the shape sensitivity of the models whose geometries de-
pend on parameters and then used this information to build bases for reduced order
models. In [106] a framework for PMOR based on generalized Loewner matrices
was proposed. Most recently, parameter-dependent systems were considered as bi-
linear systems and the H2-norm MOR method for bilinear systems was invoked to
treat the parameter-dependent case in [19]. Also based on H2-norm MOR methods,
the authors of [14] extended the known result to the case of parameter-dependent
systems and succeeded to characterize the first-order necessary optimality condition
for a local minimizer.
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This chapter presents new results for two different PMOR approaches. In the
first section, we consider the construction of a reduced transfer funtion based on
balanced truncation and spline interpolation. The use of linear and cubic spline in-
terpolation is investigated and error bounds are derived. The second section presents
an improvement for the interpolation of projection subspaces to construct reduced
order models of PDSs. This improvement helps to speed up an existing algorithm
and enable it to be used in real time. Examples are provided in both sections to
illustrate our methods.

4.1 Interpolation of Transfer Function

Consider a PDS Σ(p) given by

ẋ(t) = A(p)x(t) +B(p)u(t), x(0) = 0,

y(t) = C(p)x(t),
(4.1)

where A ∈ R
N×N , B ∈ R

N×m, C ∈ R
l×N depend on a single parameter p ∈ [a, b].

Denote by H(p, s) its transfer function. System (4.1) is assumed to be stable,
reachable and observable for all p ∈ [a, b]. This hypothesis ensures that the balanced
truncation works for any values of p in the parameter domain.
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The effort to directly find a parameter-dependent balancing transformation is
soon realized to be unfeasible. The solution to the generally parametric Lyapunov
equations

A(p)P + PAT (p) +B(p)BT (p) = 0,

AT (p)Q+QA(p) + CT (p)C(p) = 0,

to the best of our knowledge, is still unknown, not to mention the matrix inverse
in formulating φ in (2.5). Nevertheless, it is well-formulated when the parameter is
fixed. This fact leads to an idea that one can reduce the original system at a given
parameter set, say a = p0, · · · , pk = b whose reduced transfer functions are Ĥi(s).
After that, {(pi, Ĥi(s)), i = 0, · · · , k} are available and, as presented in Section 3.2,
then used as data in interpolation to construct the reduced transfer function Ĥ(p, s)

over [a, b]. In this section, linear and cubic splines will be utilized.

4.1.1 Using Linear Spline Interpolation

We will proceed similarly to Section 3.2. First, a discrete set of parameter values
a = p0, · · · , pk = b is chosen. The choice of this set will influence the quality of the
reduction. To avoid digression, we discuss this issue at the end.

At each pi, we reduce system Σ(pi) to the order of ri by balanced truncation,

˙̂x(t) = Âix(t) + B̂iu(t),

ŷ(t) = Ĉix̂(t), i = 0, · · · , k

and denote by Ĥi(s) the corresponding reduced transfer function.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

p0 p1 p2 pk−1 pk

f0 f1 fk

Figure 4.1: Linear splines
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For the given grid on [a, b], the basis linear splines

fi(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f−
i =

p− pi−1

pi − pi−1
if p ∈ [pi−1, pi],

f+
i =

p− pi+1

pi − pi+1
if p ∈ [pi, pi+1],

0, otherwise

for i = 0, · · · , k, in which f0(p) and fk(p) are defined to be identical zero outside
[p0, pk], will be used. By imposing the interpolation conditions, which require that at
all interpolation points pi, the resulting parameter-dependent reduced transfer func-
tion is equal to the pre-computed reduced functions Ĥi(s), we derive the interpolant
as

Ĥ(p, s) =
k∑

i=0

fi(p)Ĥi(s). (4.2)

The interpolant Ĥ(p, s), which is considered as an approximation of the parameter-
dependent reduced transfer function, is the external description in the frequency
domain of the reduced order system. As described in the Section 3.2, we derive a
state space representation by (3.28) and (3.29). Note that we can also attach the
dependence on the parameter to the reduced load matrix B̂ instead of Ĉ(p)

To measure the quality of PMOR, we use the infinity norm (3.27). In the SISO
case H(p, s) is a scalar function, thus we have

‖Σ(p)‖∞ = sup
p∈[a,b]

‖H(p, s)‖H∞ = sup
p∈[a,b]

sup
s∈C+

|H(p, s)|. (4.3)

For the sake of convenience, we recall the definition of the Lipschitz condition, which
will be used to obtain an error bound.

Definition 4.1 A parameter-dependent transfer function H(p, s) is said to satisfy
the Lipschitz condition with respect to p if there exists a constant L such that

∀p1, p2 ∈ [a, b], ‖H(p1, s)−H(p2, s)‖H∞ ≤ L|p1 − p2|. (4.4)

The following theorem gives an error bound for the linear spline interpolation based
PMOR given above.

Theorem 4.1 Assume that the reduced system Σ̂(p) is constructed from system
Σ(p) in (4.1) as above and assume moreover that the transfer function H(p, s) of
(4.1) satisfies the Lipschitz condition (4.4). Then

‖Σ(p)− Σ̂(p)‖∞ ≤ Lh+ E , (4.5)

where L is the Lipschitz constant defined in (4.4), h = max{pi+1−pi, i = 0, · · · , k−
1} and E = max

{
‖H(pi, s)−Ĥi(s)‖H∞ , i = 0, . . . , k

}
is the maximal value of errors

caused by balanced truncation of the original system at grid points p0, . . . , pk.
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Proof By the triangle inequality, we have

∥∥∥H(p, s)− Ĥ(p, s)
∥∥∥
∞

=
∥∥∥H(p, s)−

k∑
i=0

fi(p)Ĥi(s)
∥∥∥
∞

≤
∥∥∥H(p, s)−

k∑
i=0

fi(p)H(pi, s)
∥∥∥
∞

+
∥∥∥ k∑

i=0

fi(p)H(pi, s)−
k∑

i=0

fi(p)Ĥi(s)
∥∥∥
∞
. (4.6)

Suppose that p ∈ [pi, pi+1] and consider the first term in (4.6),

∥∥∥H(p, s)−
k∑

i=0

fi(p)H(pi, s)
∥∥∥
∞

=
∥∥∥H(p, s)− f+

i (p)H(pi, s)− f−
i+1H(pi+1, s)

∥∥∥
∞

=
∥∥∥(f+

i (p) + f−
i+1(p)

)
H(p, s)− f+

i (p)H(pi, s)− f−
i+1(p)H(pi+1, s)

∥∥∥
∞

=
∥∥∥f+

i (p)
(
H(p, s)−H(pi, s)

)
+ f−

i+1(p)
(
H(p, s)−H(pi+1, s)

)∥∥∥
∞

≤
(
f+
i (p) + f−

i+1(p)
)

max
p∈[pi,pi+1]

{∥∥∥H(p, s)−H(pi, s)
∥∥∥
∞
,
∥∥∥H(p, s)−H(pi+1, s)

∥∥∥
∞

}
≤ Lh. (4.7)

In the above argument, we have made use of the fact that f+
i (p) + f−

i+1(p) ≡ 1. It
remains to bound the second term of (4.6) by E .

∥∥∥ k∑
i=0

fi(p)H(pi, s)−
k∑

i=0

fi(p)Ĥi(s)
∥∥∥
∞

=
∥∥∥f+

i (p)H(pi, s) + f−
i+1(p)H(pi+1, s)− f+

i (p)Ĥi(s)− f−
i+1(p)Ĥi+1(s)

∥∥∥
∞

=
∥∥∥f+

i (p)
(
H(pi, s)− Ĥi(s)

)
+ f−

i+1(p)
(
H(pi+1, s)− Ĥi+1(s)

)∥∥∥
∞

≤ sup
p∈[pi,pi+1]

(
f+
i (p) + f−

i+1(p)
)
×

max
{∥∥∥H(pi, s)− Ĥi(s)

∥∥∥
H∞

,
∥∥∥H(pi+1, s)− Ĥi+1(s)

∥∥∥
H∞

}
≤ E . (4.8)

The statement of the theorem is directly implied from (4.6) - (4.8).

Since balanced truncation preserves the stability of the system, all Ĥi(s), i =

0, · · · , k, are stable. Fortunately, this already guarantees the stability of Ĥ(p, s),
because the construction of Ĥ(p, s) results from Ĥi(s) by addition and multiplication
with scalars fi(p) only.

In order to receive the bound (4.5), the Lipschitz condition plays a key role.
In addition, it ensures the finiteness of the infinity norm of a parameter-dependent
system Σ(p). One question naturally arising is, whether this condition is too strict.
We will seek an answer for this question in the following part, first for SISO systems
and then for MIMO ones.

The following holds for any complex-valued function of one real variable.
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Lemma 4.2 Let [a, b] denote a closed interval in R and f : [a, b] → C. Assume that
the first derivative of f is continuous and bounded by the constant M over [a, b], then
for all t1, t2 ∈ [a, b]

|f(t1)− f(t2)| ≤
√
2M |t1 − t2|. (4.9)

Proof One can always write

f(t) = α(t) + iβ(t),

where α(t), β(t) ∈ R, t ∈ [a, b]. For any t1 < t2 ∈ [a, b], applying the Mean Value
Theorem for α(t) and β(t), we have

|f(t1)− f(t2)| = |α(t1)− α(t2) + i(β(t1)− β(t2))|
=
√
(α(t1)− α(t2))2 + (β(t1)− β(t2))2

=

√
α′2(tα0 ) + β′2(tβ0 )|t1 − t2|, for some tα0 , t

β
0 ∈ (t1, t2)

≤
√
(α′2(tα0 ) + β′2(tα0 )) + (α′2(tβ0 ) + β′2(tβ0 ))|t1 − t2|

=

√
|f ′(tα0 )|2 + |f ′(tβ0 )|2|t1 − t2|

≤
√
2M |t1 − t2|.

Seemingly, one only needs to show that the transfer function has a bounded
derivative and then apply Lemma 4.2 to derive the Lipschitz condition. However,
the considered situation is more complicated since H(p, s) depends on, in addition
to p, the complex variable s, and the upper bound M therefore depends on s. One
has to show that there is a common upper bound for all s ∈ C

+. We have the
following assertion.

Lemma 4.3 In addition to the hypotheses on stability, reachability and observ-
ability, we assume moreover that all entries of A(p), B(p), C(p) of the parameter-
dependent system (4.1) with l = m = 1 are continuously differentiable over [a, b],
then there is a constant M such that∣∣∣∂H

∂p
(p, s)
∣∣∣ ≤ M, ∀p ∈ [a, b], s ∈ C

+. (4.10)

Proof By assumption, the transfer function can be written in the form of

H(p, s) =
sN−1zN−1(p) + sN−2zN−2(p) + · · ·+ z0(p)

sN + sN−1wN−1(p) + sN−2wN−2(p) + · · ·+ w0(p)
.

Then, the partial derivative of H(p, s) with respect to p has the form

∂H

∂p
(p, s) =

Q2N−1(p, s)

Q
2N

(p, s)
,
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where Q2N−1(p, s) is a polynomial of variable s, with coefficients depending on p

and a degree not greater than 2n− 1, and Q
2N

(p, s) =
(
det(H(p, s))

)2
is one with

the exact degree 2N . Since all entries of A,B,C are continuously differentiable, the
coefficients of Q2N−1(p, s) and Q

2N
(p, s) are bounded on [a, b]. On the other hand,

the degree of Q
2N

is higher than that of Q2N−1(p, s); this ensures that ∂H
∂p (p, s)

is bounded in a neighborhood of infinity, i.e., for some large real number R, there
exists a constant M1 such that∣∣∣∂H

∂p
(p, s)
∣∣∣ ≤ M1, ∀p ∈ [a, b], s ∈ C

+, |s| > R. (4.11)

In the closed domain {(p, s) : p ∈ [a, b], s ∈ C
+, |s| ≤ R}, ∂H∂p (p, s) is continuous.

Therefore, ∣∣∣∂H
∂p

(p, s)
∣∣∣ ≤ M2, ∀p ∈ [a, b], s ∈ C

+, |s| ≤ R. (4.12)

By choosing M = max{M1,M2}, inequalities (4.11) and (4.12) directly complete
the proof.

Combining the above two lemmas implies the following theorem.

Theorem 4.4 Under the hypotheses of Lemma 4.3, the transfer function of the
system (4.1) with l = m = 1 satisfies the Lipschitz condition (4.4).

Proof Recall that for any SISO transfer function,

‖H(s)‖H∞ = sup
s∈C+

|H(s)|.

Applying Lemma 4.3 implies that the inequality (4.10) holds for the transfer function
of (4.1), H(p, s). Note that this is true for any s ∈ C

+. Then, using Lemma 4.2, we
deduce

‖H(p1, s)−H(p2, s)‖H∞ = sup
s∈C+

|H(p1, s)−H(p2, s)|

≤ sup
s∈C+

√
2M |p1 − p2|

=
√
2M |p1 − p2|.

In the SISO case, by making use of (4.3), one can directly apply Lemma 4.2 and
Lemma 4.3 to derive Theorem 4.4. However, in the MIMO case these two lemmas
are not enough, as the inequalities (4.9) and (4.10) only hold for the entries of the
(matrix-valued) transfer function. Meanwhile, the norm appearing in the Lipschitz
condition (4.4) dependes on the largest singular value of the matrix H(p, s). To
cope with this difficulty, one has to investigate the relationship between the singular
values of a matrix and its entries. That inspires us to use a Gerschgorin-type theorem
[138]. For the clarity of our discussion it is recalled here.
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Theorem 4.5 ([138], Theorem 2). Suppose A = (aij) ∈ C
m×n. Let

ri =

n∑
j=1,j �=i

|aij |, ci =

m∑
j=1,j �=i

|aji| and si = max(ri, ci), ai = |aii|

for i = 1, 2, . . . ,min(m,n). For m = n, define

s =

⎧⎪⎪⎨
⎪⎪⎩

max
n+1≤i≤m

{ n∑
j=1

|aij |
}
, for m > n

max
m+1≤i≤n

{ m∑
j=1

|aji|
}
, for m < n.

In the case m ≥ n, each singular value of A lies in one of the real intervals

Bi = [(ai − si)+, ai + si], i = 1, . . . , n, Bn+1 = [0, s], (4.13)

where (ai−si)+ = max(0, ai−si). If m = n or if m > n and ai ≥ si+s, i = 1, . . . , n,
then Bn+1 is not needed in the above statement. Furthermore, every component
interval of the union of Bi, 1, . . . , n + 1 (n for m = n), contains exactly k singular
values if it contains k intervals of B1, . . . , Bn.

In the case of m ≤ n, n is replaced by m in (4.13).

Theorem 4.6 Under the hypotheses of Lemma 4.3, the transfer function of the
system (4.1) with arbitrary numbers of inputs and outputs satisfies the Lipschitz
condition (4.4).

Proof Let H(p, s) = (hij(p, s)) ∈ C
l×m. Clearly, inequalities (4.9) and (4.10) hold

for all hij(p, s), i = 1, . . . , l, j = 1, . . . ,m. We deduce that each entry satisfies the
Lipschitz condition, with different Lipschitz constants. However, one can take a
common bound for all of them, say

sup
s∈C+

|hij(p1, s)− hij(p2, s)| ≤ K|p1 − p2| ∀p1, p2 ∈ [a, b]. (4.14)

Now, we apply Theorem 4.5 to the matrix H(p1, s) − H(p2, s) ∈ C
m×l. Taking

(4.14) into account, the quantities ai + si and s in Theorem 4.5 are bounded by
min(l,m)K|p1 − p2|. It is noteworthy that this bound holds for all values p1, p2 ∈
[a, b] and s ∈ C

+. Finally, we get the desired result

∀p1, p2 ∈ [a, b], ‖H(p1, s)−H(p2, s)‖H∞ ≤ min(l,m)K|p1 − p2|.

If the original system depends smoothly on parameters, the reduced system is
preferred to be so. The linear spline interpolation cannot give such property. Higher-
order spline interpolation is therefore needed. Nevertheless, the high-order spline
interpolation usually results in unnecessarily complicated procedure. Hence, cubic
spline interpolation will be our choice. In the quite well-known paper [78] published
in 1968, it was proven that the sequence of cubic spline interpolants associated with
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a given fourth order continuously differentiable function g(x) uniformly converges
to g(x) at a fourth order rate of the maximal distance between nodes. Therefore,
one expects that a better error estimate than (4.5) will be derived if cubic spline
interpolation is used. However, unlike linear spline interpolation where the inter-
polant is directly formulated as (4.2), one has to determine coefficients cri (see (4.16)
below) through solving a system of linear equations. This results in a difficulty in
establishing the state space representation of the reduced system as well as getting
a bound for the error. The next subsection will describe in detail how to interpolate
the reduced transfer function by cubic splines, how much better the error bound is,
how to reconstruct the state space representation as well as with which condition
such an error bound can be achieved.

4.1.2 Using Cubic Spline Interpolation

In this subsection, we consider a SISO PDS

ẋ(t) = A(p)x(t) + b(p)u(t), x(0) = 0,

y(t) = c(p)x(t),
(4.15)

where A ∈ R
N×N , b, c are a column vector and a row vector in R

N , respectively,
depending on a single parameter p ∈ [a, b]. As in the preceding subsection, this
system is assumed to be stable, reachable and observable for all p ∈ [a, b]. Its
transfer function is denoted by H(p, s).
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Figure 4.2: Cubic B-splines on a uniform grid

The interval [a, b] is partitioned into k parts with a uniform grid pj = jh, j =

0, . . . , k, where h = (b − a)/(k). In addition, we define two extra nodes, p−1 =

a − h, pk+1 = b + h. The rj-th order reduced transfer function of (4.15) created by
balanced truncation at node pj is again denoted by Ĥj(s).
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The cubic basis splines (B-splines) with the given uniform grid are

fi(p) =
1

6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(p− pi−2)
3, if p ∈ [pi−2, pi−1),

−3(p− pi−1)
3 + 3h(p− pi−1)

2 + 3h2(p− pi−1) + h3, if p ∈ [pi−1, pi),

3(p− pi+1)
3 + 3h(p− pi+1)

2 − 3h2(p− pi+1) + h3, if p ∈ [pi, pi+1),

−(p− pi+2)
3, if p ∈ [pi+1, pi+2),

0, otherwise,

for i = −1, . . . , k + 1. Note that all of these functions are defined identical zero
outsite the parameter interval [a, b].

We construct the interpolant, which will be considered as the transfer function
of the reduced system Σ̂(p), of the form

Ĥ(p, s) =
k+1∑
i=−1

cri (s)fi(p), (4.16)

where cri (s) are coefficients depending on s which need to be determined. Following
Section 3.2, for interpolation conditions, we do not use the original transfer function
but the pre-computed reduced Ĥj(s) = ĉj(sIrj − Âj)

−1b̂j at node pj

Ĥ(pj , s) = Ĥj(s) or
j+1∑

i=j−1

cri (s)fi(pj) = Ĥj(s), j = 0, . . . , k. (4.17)

In order to ensure the uniqueness of the cubic spline interpolation, end conditions
must be added. There are three common choices [26, 79], and the choice of the end
conditions, surprisingly, heavily influences the result. In our case we choose natural
end conditions in order to avoid evaluating the derivatives of the original transfer
function:

∂2Ĥ(p0, s)

∂p2
=

∂2Ĥ(pk, s)

∂p2
= 0. (4.18)

We will show later why this is also useful to get a state space representation. The
interpolant is forced to satisfy (4.17) and (4.18) and this allows us to determine
coefficients cri (s) through the linear system

FCr(s) = Hr(s), (4.19)

where

Cr(s) = [cr−1(s) c
r
0(s) · · · crk+1(s)]

T ,

Hr(s) = [0, Ĥ0(s), · · · , Ĥk(s), 0]
T ,
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F =
1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
h2 − 12

h2
6
h2 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0

· · · · · · · · · . . . . . . . . . · · · · · ·

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 6
h2 − 12

h2
6
h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

(k+3)×(k+3).

Remark We do emphasize that the procedure proposed above is not the standard
cubic spline interpolation technique that is well-known among the numerical analysis
community. That is due to the fact that instead of using the values of the original
transfer at interpolation points, we use their reduced data.

Since the right hand side of the equation (4.19) is composed of stable transfer
functions of s, its solution Cr is also stable. This implies the stability of the reduced
transfer function (4.16). �

The derivation of bound (4.5) for linear spline interpolation was quite straight-
forward, since the interpolant (4.2) was directly formulated from the pre-computed
data and the linear basis spline. To derive a corresponding error bound for the cubic
interpolation, a similar proof to that of Theorem 4.1 will be used. By studying the
proof of Theorem 4.1, it is realized that an upper bound for the infinity norm - the
maximum absolute row sum - of F−1, must be constructed.

Forming bounds for the inverse of a matrix is quite an attractive but challenging
task. The derived results can be used to estimate the error in approximation [4, 78],
the lower bound for the smallest eigenvalue [171, 124] and therefore the bound for the
matrix’s condition number. In the general case, one may want to invoke a classical
well-known statement taken from theory of functional analysis: “If a square matrix
A ∈ R

n×n satisfies ‖Ax‖ ≥ c‖x‖, ∀x ∈ R
n for some fix constant c, then A is non-

singular and ‖A−1‖ ≤ c−1.” Verifying the hypothesis of the above assertion for the
infinity norm is, however, not tractable at all. Therefore, it is advisable to restrict
the consideration to a smaller class of matrices. The authors of [123, 124, 171] get
results for strictly diagonally dominant (SDD) and S-strictly diagonally dominant
(S-SDD) [63] matrices. Regretfully, these results cannot be directly applied to our
situation as F is neither an SDD nor an S-SDD matrix. In [95], bounds for the norm
of the inverses of a subclass of M-matrices [129] and H-matrices, so-called partitioned
M-matrices and partitioned H-matrices (PM- and PH-matrices) respectively, were
discussed. A direct application of these results is, however, not available, for F is
neither a PM nor a PH-matrix. One idea is that, to deal with our matrix F , we
utilize the scaling technique mentioned in [123] before applying the main result in
[95]. For the elucidation of our later arguments, definitions of such matrices are
recalled.

Definition 4.2 Given a square matrix A = (aij) ∈ R
n×n.



4.1. Interpolation of Transfer Function 77

SDD matrix: Matrix A is called an SDD matrix if |ajj | >
∑

i �=j |aij | ∀1 ≤ j ≤ n.

S-SDD matrix [63, 64]: Let S be a non-empty subset of the index set {1, · · · , n}.
Denote by S̄ the complement of S in {1, · · · , n}. Define rSi (A) :=∑

j∈S\{i} |aij |. A is called an S-SDD matrix if⎧⎨
⎩|aii| > rSi (A), ∀i ∈ S,(

|aii| − rSi (A)
)(

|ajj | − rS̄j (A)
)
> rS̄i (A)r

S
j (A), ∀i ∈ S, j ∈ S̄.

M-matrix [129]: A is called an M-matrix if A can be decomposed as

A = sI −B,

in which B = (bij), bij ≥ 0 ∀i, j (matrices that have this property are called
Z-matrices), s is a positive real number greater than the spectral radius of B.

H-matrix: The comparison matrix of A, M(A) = (ãij) is defined as

ãij :=

{
|aij |, i = j,

−|aij |, i = j.

Matrix A is called an H-matrix if M(A) is an M-matrix.

PM-matrix and PH-matrix [95]: Let

k⋃
i=1

Mi = {1, · · · , n} (4.20)

be a partitioning of the index set into k disjoint non-empty subsets which have
ni elements. We write

Aij = A[Mi,Mj ], i, j = 1, · · · , k

for a representation of A in the block form, i.e.,

A =

⎡
⎢⎢⎣
A11 A12 · · · A1k

A21 A22 · · · A2k

· · · · · · · · · · · ·
Ak1 Ak2 · · · Akk

⎤
⎥⎥⎦ .

Now, we define
∏k

i=1 ni aggregated matrices by

A(i1,i2,··· ,ik) :=

⎡
⎢⎢⎣
ri1(A11) ri1(A12) · · · ri1(A1k)

ri2(A21) ri2(A22) · · · ri2(A2k)

· · · · · · · · · · · ·
rik(Ak1) rik(Ak2) · · · rik(Akk)

⎤
⎥⎥⎦ , ij ∈ Mj , j = 1, · · · , k.

We call A a PM-matrix with respect to partitioning (4.20) if A is a Z-matrix
and all aggregated matrices A(i1,i2,··· ,ik) are non-singular M-matrices.

Matrix A is called a PH-matrix if M(A) is an PM-matrix.
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Remark Most of the aforementioned definitions and results also hold for complex
matrices. For the sake of ease we restrict ourselves to real matrices.

Besides these definitions, there are numerous characterizations of such matrices.
They can be found for instance in [20, 166]. �

The following theorem will be used in the proof of the lemma later.

Theorem 4.7 ([95], Theorem 3.1) If A ∈ C
m×m,m ≥ 1 is a PH-matrix with respect

to the partitioning (4.20), then A is an H-matrix, and its inverse satisfies the upper
bound

‖A−1‖∞ ≤ max
i1,··· ,in

‖(M(A)(i1,··· ,in))−1‖∞ (4.21)

Lemma 4.8 Matrix F in (4.19) is non-singular and the following inequality holds

‖F−1‖∞ ≤ 6max
{64
17

,
288 + 48h2

77

}
, (4.22)

where the infinity norm of an n × n constant matrix M is recalled as ‖M‖∞ :=

max
i

∑n
j=1 |mij |.

Proof We would like to start the proof with a comment, that scaling a matrix M

with a diagonal matrix whose diagonal entries have absolute values smaller than
or equal to one will increase the infinity norm of the inverse. More precisely, if
0 < di ≤ 1 then ‖M−1‖∞ ≤ ‖(Mdiag(di))−1‖∞.

First, the proof of the main theorem in [123] inspires us to scale matrix F to get
better properties. Two quantities BS

1 , B
S
2 are defined as

0 ≤ BS
1 := max

i∈S
rS̄i (A)

|aii| − rSi (A)
< BS

2 := min
j∈S̄

|ajj | − rS̄j (A)
rSj (A)

≤ 1. (4.23)

It was shown in [63] that if BS
1 < γ < BS

2 , then F can be scaled by the diagonal
matrix

diag(γ, · · · , γ︸ ︷︷ ︸
S

, 1, · · · , 1︸ ︷︷ ︸
S̄

)

to an SDD matrix. In our case, since only the first and the last rows of F contain h,
we choose S = {2, 3, · · · , k + 2}. The corresponding quantities are BS

1 = BS
2 = 1/3

which violates (4.23). Nevertheless, we still define D1 = diag(1, 1/3, · · · , 1/3, 1) and
use this matrix for scaling F . Accordingly, we have

F1 = FD1 =
1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
h2 − 4

h2
2
h2 0 · · · 0 0 0

1 4
3

1
3 0 · · · 0 0 0

0 1
3

4
3

1
3 · · · 0 0 0

· · · · · · · · · . . . . . . . . . · · · · · ·

0 0 0 0 · · · 1
3

4
3 1

0 0 0 0 · · · 2
h2 − 4

h2
6
h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It can be checked that the matrix F1 is now an S-SDD (not an SDD!) matrix with
S = {3, 4, · · · , k+1} as well as a PH-matrix with the partition (1|2 · · · k+2|k+3).
By Theorem 1.2 in [95], the non-singularity of F is, again, ensured.

A quite remarkable fact is, that applying the main theorems in [123] and Theorem
4.7 yields the same bound: ‖F−1

1 ‖ ≤ 36. Meanwhile, continuing to scale this matrix
surprisingly gives a better bound. Since the two quantities BS

1 = 1/3, BS
2 = 1, one

can multiply F1 with matrix D2 = diag(1, 1, γ, · · · , γ, 1, 1) where γ ∈ (1/3, 1). The
next step is to apply Theorem 4.7 to the PH-matrix F2 = F1D2. Obviously, the
resulting bound for ‖F−1

2 ‖∞ depends on γ ∈ (1/3, 1). The smallest upper bound
among the bounds produced by applying Theorem 4.7 when γ varies in (1/3, 1) is
expected. However, the continuous min-max problem

min
γ∈(1/3,1)

max
i1,i2,i3

‖(M(F2)
(i1,i2,i3))−1‖∞

can hardly be solved. Therefore, we will choose the best value for γ in the discrete
sense by the following steps:

• First, discretize the interval (1/3, 1) into a uniform mesh with step size 1/12

and let γ take values 5/12, 6/12, · · · , 11/12 one by one. In each case, we apply
Theorem 3.1 in [95] for F2 = F1D2 with the aforementioned partitioning.

• Then, pick two adjacent nodes whose corresponding bounds are the smallest.
These two bounds are 24 and 6(3h2/4 + 9/2) corresponding to γ = 7/12 and
γ = 8/12. We can hope that the value of γ whose resulting bound is smallest
lies in this subinterval.

• Repeat the above steps with the new interval (7/12, 8/12) with step size 1/48,
we will get the interval (28/48, 29/48). And do it again in this interval with
step size 1/192. At γ = 115/192, we get the required inequality.

That is, setting F2 = F1diag(1, 1, 115/192, · · · , 115/192, 1, 1), applying Theorem 4.7
to F2 results in the bound (4.22).

Remark The bound (4.22) cannot, of course, be considered as the best bound. It
is the smallest among only the mentioned discrete points.

In order to check the quality of the bound, we consider as examples two cases
where F has the dimension 7 and 10. The infinity norms of the inverses of the
comparison matrices are 6(31/10 + 13h2/30) and 6(61/20 + 17h2/40), respectively.
It reveals that the bound (4.22) is quite close to ‖M(F )−1‖∞.
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If we use the Hermite end condition, the ”collocation matrix“ F reads,

F =
1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
h 0 3

h 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0

· · · · · · · · · . . . . . . . . . · · · · · ·

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · − 3
h 0 3

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By applying Theorem 3.1 of [95], one can show that

‖F−1‖ ≤ 6
h+ 1

2
.

However, there is no feasible way to reconstruct the state space representation for
the reduced system. �

Based on Lemma 4.8, we get the following error bound for the PMOR method
using cubic spline interpolation.

Theorem 4.9 Assume that the reduced system Σ̂(p) is constructed from the original
system (4.15) by cubic spline interpolation as described above. Assume moreover that
∀s ∈ C

+ the transfer function H(p, s) is fourth order continuously differentiable with
respect to p on [a, b]. Then∥∥∥Σ(p)− Σ̂(p)

∥∥∥
∞

≤ 5

384

∥∥∥∂4H(p, s)

∂p4

∥∥∥
∞
h4 + 6max

{64
17

,
288

77
+

48

77
h2
}
E (4.24)

where E = max
{
‖H(pi, s)− Ĥi(s)‖H∞ , i = 0, . . . , k

}
.

Proof Let us denote by Cf = [cf−1(s), c
f
0(s), · · · , c

f
k+1(s)]

T the solution of the linear
equation (4.19) but with the right hand side Hf = [0, H(p0, s), · · · , H(pk, s), 0]

T ,
where H(pi, s) is the transfer function of the original full-order system at the pa-
rameter value pi. Then the function

∑k+1
i=−1 c

f
i fi(p) is the cubic spline conventionally

constructed from the original function H(p, s). Next, we proceed analogously to the
proof of Theorem 4.1

∥∥∥H(p, s)− Ĥ(p, s)
∥∥∥
∞

=
∥∥∥H(p, s)−

k+1∑
i=−1

cri (s)fi(p)
∥∥∥
∞

≤
∥∥∥H(p, s)−

k+1∑
i=−1

cfi (s)fi(p)
∥∥∥
∞

+
∥∥∥ k+1∑
i=−1

cfi (s)fi(p)−
k+1∑
i=−1

cri (s)fi(p)
∥∥∥
∞
. (4.25)

According to Theorem 1 in [78], the first term of (4.25) is dominated by
5

384

∥∥∥∂4H(p,s)
∂p4

∥∥∥
∞
h4. It is noteworthy that ∂4H(p,s)

∂p4
is stable provided that H(p, s)
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is so. This guarantees that
∥∥∥∂4H(p,s)

∂p4

∥∥∥
∞

is finite. Suppose that p ∈ [pj , pj+1] for
some j = 0, · · · , k, the second term of (4.25) satisfies

∥∥∥ k+1∑
i=−1

cfi (s)fi(p)−
k+1∑
i=−1

cri (s)fi(p)
∥∥∥
∞

=
∥∥∥ j+2∑
i=j−1

(
cfi (s)− cri (s)

)
fi(p)
∥∥∥
∞

≤ max
{
sup
s∈C+

|cfi (s)− cri (s)|, i = j − 1, · · · , j + 2
}

sup
p∈[pj ,pj+1]

j+2∑
i=j−1

fi(p).

Note that the B-splines form a partition of unity, therefore the sum
∑j+2

i=j−1 fi(p) is
identically equal to 1. By hypothesis, F (Cf − Cr) = Hf −Hr which implies that
Cf − Cr = F−1(Hf −Hr) and

‖Cf − Cr‖∞ ≤ ‖F−1‖‖Hf −Hr‖∞ (4.26)

where ‖.‖∞ of a vector of functions is understood as the maximum of supremums of
its elements. Thus ‖Hf −Hr‖∞ is nothing else but the maximal value of errors E
caused by balanced truncation of the original system at grid points p0, . . . , pk. The
theorem is directly deduced from Lemma 4.8 and (4.25) and (4.26).

Remark A state space representation of the reduced system can be constructed as
follows. Denote by f(p) = [f−1(p) f0(p) · · · fk+1(p)]

T , the column of cubic basis
splines and F(p)T = [Fi(p)]

T
i=−1,··· ,k+1 = f(p)TF−1. We get

Ĥ(p, s) =

k+1∑
i=−1

fi(p)c
r
i (s) = f(p)TCr = f(p)TF−1Hr

= F(p)THr =

k∑
i=0

Fi(p)ĉi(sIri − Âi)
−1b̂i

=
[
F0(p)ĉ0 F1(p)ĉ1 · · · Fk(p)ĉk

] ⎡⎢⎣sIr0 − Â0

. . .
sIrk − Âk

⎤
⎥⎦
−1 ⎡⎢⎣b̂0...

b̂k

⎤
⎥⎦ .

Then the reduced system is Σ̂(p) =

(
Â b̂

ĉ(p) 0

)
, where Â = diag(Â0, · · · , Âk), b̂ =

[b̂0 · · · b̂k]
T and ĉ(p) = [F0(p)ĉ0 · · · Fk(p)ĉk], of the order

∑k
i=0 ri.

As in the previous subsection, it is evident that if all entries of A, b, c of the
stable system (4.15) are fourth order continuously differentiable, so is its transfer
function.

In the case of MIMO systems, by using Theorem 1 in [78], the bound for the
first term of (4.25) only holds elementwise. The deduction from the boundedness
of the entries of a matrix to the boundedness of its infinity norm is likely possible
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by using Theorem 4.5. However, the bound for the second term of (4.25) is still not
known. Therefore, the extension of Theorem 4.9 to the MIMO case still remains
unsolved. Regardless of this fact, the procedure using cubic spline interpolation
presented above still works for MIMO systems. �

4.1.3 Numerical Example

To show the effectiveness of our method, we consider in this subsection a model
derived from the discretization of a convection-diffusion equation

∂Φ

∂t
= �Φ+ p · ∇Φ+ S(ζ, ξ)u(t) (4.27)

on QT = Ω× (0, T ),Ω = (0, 1)2 with homogeneous initial and boundary conditions

Φ(ζ, ξ, 0) = 0 on Ω,

Φ|∂Ω×(0,T ) = 0.
(4.28)

In (4.27) and (4.28), Φ represents the concentration of some material in a fluid
medium, p = (p1, p2) is the velocity field and S(ζ, ξ)u(t) stands for the source of
a contaminant. These equations are usually used as a mathematical model for a
pollution process.

Equation (4.27) is semi-discretized by the finite difference method over the do-
main Ω such that it results in a dynamical system of size 576,

ẋ(t) = (A+ p1A1 + p2A2)x(t) + bu(t),

y(t) = cx(t),

where x(t) denotes the spatially discretized state Φ(ζ, ξ, t). The partial derivatives
are approximated as follows

�Φi,j =
1

h2
(Φi−1,j +Φi+1,j +Φi,j−1 +Φi,j+1 − 4Φi,j),(∂Φ

∂x

)
i,j

=
1

h
(Φi+1,j − Φi,j),(∂Φ

∂y

)
i,j

=
1

h
(Φi,j+1 − Φi,j).

Matrices A,A1, A2 result from discretizations of the diffusion and convection terms,
respectively. The function S is specified as

S(ζ, ξ) =
1

exp
(
100
(
(ζ − 1

2)
2 + (ξ − 1

2)
2
)) ,

which stands for the location of the source at (1/2, 1/2) and yields the input vector
b.
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Figure 4.3: Absolute error of linear spline (left) and cubic spline (right) interpolation
based method

The output vector c represents a linear function of the states whose expression
is

l = x1 + 3x2 − 3x3 + 90x4 − 4x50 + 5x100 + 3x150 + 27x200 + 11x250

−34x300 + 12x350 + 6x400 − 5x450 − 4x496 + x490 + 3x520 + x570.

The velocity field is treated as parameters. As we would like to study the single
parameter case, p1 is assumed to change within [0, 1] while p2 is a fixed constant
and quite small in comparison with p1. For the sake of simplicity, we use a uniform
grid for the parameter space and equally reduced orders at grid points. In our
example, the reduced order at each grid point is always 8. Hence, the resulting
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Figure 4.4: A comparison of the errors of two methods; reduced order 48



84 Chapter 4. Main Results

reduced order will be a multiple of 8. For example, if the reduced order is 48, 6 grid
points 0, 0.2, 0.4, 0.6, 0.8, 1 have been chosen. Both linear splines and cubic splines
are used to interpolate the reduced transfer function and then construct the state
space representation of the overall reduced system. Figure 4.3 depicts the derived
absolute errors caused by the reduction. Figure 4.4 compares the error caused by
cubic spline interpolation to that caused by linear spline interpolation. These errors
are computed with infinity norm by the Matlab command norm(sys,inf) at all
points of the grid 0 : 0.02 : 1.

As we can see in the two figures, the error decreases when more interpolation
points are added. And as expected, the cubic spline interpolation gives a smaller
error than that given by linear spline interpolation. Another thing may be concluded
from the shape of the error plots is that the error caused by interpolation is rather
large. It can also be observed that the error caused by cubic spline interpolation
tends to be larger at the two ends of the parameter interval. This may be due to
the effect of the end conditions.

4.1.4 Discussion

The first term of the derived error bound using spline interpolation is, in general,
difficult to be computed. If, however, by some mean, one can compute it or have
an estimation of it, the derived error bound can be used as a hint to get a reduced
systems that satisfies a given error tolerance as follows. First, the step size h should
be chosen such that the first term of the error bound is less than a half of the
tolerance. Then, the local reduced orders at grid points are decided such that the
maximum of the errors, E , is small. Clearly, the smaller the (local) reduced order
is, the larger the (local) error is. Meanwhile, the reduced order is always expected
as small as possible. Therefore, E is chosen such that the reduced order is ”large“
enough for the second term of the error bound is, again, less than a half of the
tolerance.

So far, our method is presented to work with ordinary systems. For algebraic
dynamical system, we can use the balanced truncation method specially designed
for descriptor systems. For more details, the reader is referred to [169].

A challenging issue is the choice of interpolation points, including both the num-
ber of points and their locations. Too many grid points will enlarge the reduced
order, produce more unnecessary computations, and therefore reduce the efficiency
of the method. Nevertheless, too few points cannot capture the variation of the
system. In [17], it is proposed to use a sparse grid [30] to reduce the number of grid
points.

Since the variation of the system may be quite different from part to part in the
parameter domain, the locations of grid points, as many other interpolation meth-
ods, needs to be optimized. In our problem, both aspects, number of interpolation
points and their locations, can be addressed based on the study of the effect of
perturbation on the reduced order models of dynamical systems, which is the main
purpose of two research papers [87, 160]. In these papers, the difference between
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the reduced order state, produced by POD, and the original state was estimated via
the approximation error and the magnitude of the parameter perturbation. Based
on this, the so-called regions of validity is determined, which helps to choose the
size of a grid point’s neighborhood on which the error caused by reduction is still
acceptable. We may address this subject in a future project.

By analyzing the data from the above numerical example and the derived er-
ror bound (4.24), it appears that the norm of the fourth derivative of the transfer
function dominates the bound. Usually, systems which change a lot when the pa-
rameter changes, have very large derivatives. We henceforth call them highly varying
systems. This raises doubts about the effectiveness of the proposed method when
applied to such systems. We consider the following theoretical example.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 −2 0 0 0 0

0 0 −3 0 0 0

0 0 0 −4 0 0

0 0 0 0 −1.1 −p/2− 0.55

0 0 0 0 p/2 + 0.5505 p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

c =
[
3 2 1 4 2 −3

]
, d = 0.

When parameter p is in the closed interval [0, 1], system (4.29) is stable, reachable
and observable. We apply the proposed method using cubic splines with 5 interpo-
lation points. The system is reduced to order 1 at the first 4 points and 2 at the fifth
point. This results in an overall reduced system of the order 6. Figure 4.5 shows
the absolute error and the norm of original system.
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Figure 4.5: Absolute errors of cubic spline method vs. norm of the original system

One can observe that in the domain (0.81, 0.94), the errors are extraordinarily
large and even exceed the norm of the original system. One can easily check the
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Hankel singular values of (4.29) in that domain and therefore be sure that it is not
caused by the truncation of states. What makes the method deteriorate? It turns
out that the bound for the absolute error, as shown in (4.24), can also depend on
the fourth order derivative of the transfer function. The values of ‖∂4H(p,s)

∂p4
‖∞ at

nodes 0.02i, i = 1, · · · , 50 are rowwise given in Table 4.1.

Table 4.1: Infinity-norm of the fourth-order derivative of the transfer function of
system (4.29)

1.7416e+03 1.9454e+03 2.1776e+03 2.4429e+03 2.7467e+03
3.0956e+03 3.4975e+03 3.9616e+03 4.4993e+03 5.1243e+03
5.8531e+03 6.7059e+03 7.7073e+03 8.8879e+03 1.0285e+04
1.1946e+04 1.3928e+04 1.6305e+04 1.9169e+04 2.2638e+04
2.6862e+04 3.2035e+04 3.8407e+04 4.6308e+04 5.6171e+04
6.8570e+04 8.4279e+04 1.0435e+05 1.3020e+05 1.6383e+05
2.0802e+05 2.6670e+05 3.4556e+05 4.5287e+05 6.0091e+05
8.0818e+05 1.1030e+06 1.5295e+06 2.1576e+06 3.0984e+06
4.5266e+06 6.6973e+06 1.0059e+07 1.6912e+07 3.8180e+07
2.5958e+08* 2.8061e+07 2.7601e+07 8.6382e+07 7.3125e+07

One can see that the norm of the fourth derivative of the transfer function in
the mentioned domain (*) tends to be the largest. This explains, taking the error
bound (4.24) into account, why the absolute errors in this area are large.

From these facts, we would like to emphasize that using interpolation based
(spline interpolation and perhaps all kinds of polynomials interpolation based) meth-
ods for PMOR should be conducted with care. These methods may deteriorate when
being applied to highly varying parameter-dependent systems.

The spline interpolation based method proposed in this section is, mathemat-
ically, to approximate a parameter-dependent transfer function over a parameter
domain. However, adding two transfer functions may lead to a transfer function
with no meaningful physical interpretation. For example, we consider two transfer
functions 1

H1(s) =
ω1

s2 + ω2
1

, H2(s) =
ω2

s2 + ω2
2

,

whose impulse responses are h1(t) = sinω1t and h2(t) = sinω2t, respectively. They
can be considered as simple models of two tuning forks with different lengths, which
produce two different tones when excited. The function

H3(s) =
1

2

(
H1(s) +H2(s)

)
is the average of the two given transfer functions whose impulse response is h3(t) =

1/2(sinω1t+sinω2t). It certainly gives out an accord, instead of a tone, which is far
different from the original sound. This is also illustrated through their sigma plots,

1This example is due to a private discussion with Boris Lohmann
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see Figure 4.6. As we can observe, the interpolation adds an extra pole to H3(s).
From this fact, one would like an approach that can work directly with system
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Figure 4.6: Sigma plot of transfer functions H1(s) and H2(s) and its interpolant

matrices but still can avoid the problem mentioned in Section 3.3. Interpolation of
projection subspaces might be a good choice. In the next section, the details of this
method will be presented.

4.1.5 Final Remarks

The terminology “interpolation of a transfer function” has so far been used in several
different contexts, we would like to discriminate them in order to avoid confusion. It
was first used to name the multi-point moment matching method in Section 2.2.3, in
which the reduced transfer function is constructed in such a way that it matches the
value and several consecutive derivatives of the original transfer function at some
frequencies. This is the normal interpolation of one-variable functions whose values
are in C or Cl×m (in the case of a MIMO system). In Chapter 3, it is recalled during
the Krylov subspace based methods; this is merely the interpolation of functions of
several variables. Also in Section 3.2 of Chapter 3 and this section, this term is
used to call the two approaches of interpolation of parameter-dependent transfer
functions. They may be considered as the interpolation of functions whose values
lie in the Banach spaces H∞.

The approach of this work shares the same idea with [16, 17], in which the
authors used Lagrange, Hermite, rational and sinc interpolations. We would like
to emphasize that no error bound estimate was given in [16]. There was one error
bound given in [17] for Lagrange interpolation.
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4.2 Interpolation of Projection Subspace

Model order reduction is, thoroughly speaking, to find an appropriate subspace
for projection to gain some purpose, e.g., matching specific moments, removing
marginal states. The cooperation between projection and interpolation is the back-
bone of the interpolation based methods. In the approaches presented so far, the
data for interpolation are the reduced models given a set of parameter samples;
the projections on subspaces corresponding to a chosen set of parameter values are
performed before the interpolation. We may also try to reverse this order, i.e., we
interpolate the projection subspace first, to get a parameter-dependent subspace,
and then straightforwardly project the original system on to the derived subspace.
This method, on the one hand, results in no extra poles, which happens when inter-
polating the transfer function, and on the other hand, avoids the problem explained
in Section 3.3 when reduced system matrices are interpolated. It is because the
interpolation is performed in the set of r-dimensional subspaces in R

N , which con-
stitute a Grassmann manifold. As a consequence, we are led to the problem of
interpolation of data on a manifold, whose structure has to be taken into account.
As mentioned in Section 3.4, interpolation on Grassmann manifold and its applica-
tion to constructing ROMs based on a set of precomputed ROMs was first proposed
in [7]. An interpolation algorithm was also proposed. It will be explained in the
first part of this section. In the second part, we will give a strategy to reduce the
computational complexity of the proposed algorithm.

4.2.1 Application to MOR for PDSs

Consider a PDS

E(p)ẋ(t) = A(p)x(t) +B(p)u(t),

y(t) = C(p)x(t),
(4.30)

in which E(p), A(p) ∈ R
N×N , B(p) ∈ R

N×m, C(p) ∈ R
l×N depend on parameters

p ∈ Ω ⊂ R
d, where Ω is closed and bounded. We will use the Krylov subspace

method with one-sided projection to reduce this system. To this end, we have to
build a matrix W satisfying (2.36). However, the projection matrix W in this case is
no longer a constant matrix, since the system matrices depend on p. For each p ∈ Ω,
we denote the mentioned projection matrix by W (p) to emphasize its dependence on
p. The direct computation of W (p) for all p ∈ Ω, i.e., an explicit formula of W (p), is
impossible. Thus, interpolation is invoked as a tool to construct an approximation
of W (p). Let us state the problem of interpolation as follow.

Given p0, · · · , pk ∈ Ω, denote by W0, · · · ,Wk columnwise orthogonal ma-
trices whose columns span projection subspaces S0, · · · , Sk, respectively. Con-
struct a parameter-dependent basis W (p) for S(p) by interpolating the data
(p0,W0), · · · , (pk,Wk).
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The simplest idea is to form W (p) as a weighted sum of W0, · · · ,Wk

W (p) :=

k∑
i=1

ωi(p)Wi,

where ωi(p) are some weight functions. This solution may lead to the situation
in which the resulting matrix W (p) is no longer a basis for a subspace. In other
words, direct interpolation on a Grassmann manifold may result in a point not
being included in it. This can be illustrated in the following example. Consider
S1, S2 ∈ G(2, 3) represented by

W1 =

⎡
⎣ 0 0

9 3

18 0

⎤
⎦ and W2 =

⎡
⎣2 1

3

1 0

0 1
3

⎤
⎦ .

Then S = (1/10)S1 + (9/10)S2 is represented by

W =
1

10
W1 +

9

10
W2

=

⎡
⎣ 0 0

9
10

3
10

18
10 0

⎤
⎦+
⎡
⎣18

10
3
10

9
10 0

0 3
10

⎤
⎦

=

⎡
⎣9

5
3
10

9
5

3
10

9
5

3
10

⎤
⎦ ,

and therefore S /∈ G(2, 3). The reason is that Grassmann manifolds are not a
space; they are not flat. Hence, interpolation must be modified or performed in
approximation sense.

One cannot directly interpolate a function whose values lie on a Grassmann man-
ifold, but one can do that on its tangent space. A reliable connection between the
given data and their corresponding data on the tangent space must be established,
because the data is initially given on the manifold, they have to be mapped to the
tangent space, where the interpolation is performed, and then the interpolated data
is mapped back to the manifold. This idea was first proposed in [7], and was then
followed by [6, 45, 8] which have been mentioned in Section 3.4. For the clarity
of our discussion, we restate the procedure here, which is for Grassmann manifolds
only.

Given S0, S1, · · · , Sk ∈ G(r,N) represented by columnwise orthogonal matrices
W0,W1, · · · ,Wk.

Step 1 Choose the contact point for the tangent space, e.g., S0.

Step 2 Map point S1, · · · , Sk to TS0G(r,N) by LogS0
. By (2.44), LogS0

(Si) = Yi is
a vector represented by

Zi = Uiarctan(Λi)V
T
i , (4.31)
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where

(I −W0W
T
0 )Wi(W

T
0 Wi)

−1 = UiΛiV
T
i , i = 1, · · · , k

is the thin SVD.

Step 3 Interpolate on TS0G(r,N) using some standard interpolation technique.
Note that LogS0

(S0) = Y0 = 0. Given a parameter value p ∈ Ω, we denote by
Y (p) the vector on TS0(r,N) corresponding to the parameter value p, which
will be computed by interpolation. By any common interpolation technique,
Y (p) is represented by the matrix

Z(p) =
k∑

i=1

fi(p)Zi. (4.32)

Step 4 Map the interpolated result Y (p) back to the Grassmann manifold. Using
the exponential mapping, (2.43), one has to compute first the thin SVD

Z(p) = U(p)Λ(p)V (p)T , (4.33)

and then the matrix representation of the subspace is

W (p) = W0V (p) cos(Λ(p)) + U(p) sin(Λ(p)). (4.34)

Finally, the system matrices of the sought-after reduced system are constructed
as

Ê(p) = W T (p)E(p)W (p),

Â(p) = W T (p)A(p)W (p),

B̂(p) = W T (p)B(p),

Ĉ(p) = C(p)W (p).

(4.35)

Remark This method can be combined with all MOR methods that can be formu-
lated as a one-sided projection such as POD and one-sided Krylov subspace method.

One condition that has to be satisfied when using this method is, that S1, · · · , Sk

are in a neighborhood of S0. This is because the connection between the Grassmann
manifold and its tangent space is based on geodesic paths, which are determined by
a second order differential equation [2]. The closeness of Si to S0 is a requirement
for the existence of the solution of the underlying equation. If the distance, which is
defined in [2], between Si and S0 is rather large, one should partition the parameter
domain into some subdomains and choose one contact point for each subdomain. �
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4.2.2 Reduction of Computational Complexity

Formula (4.35), mathematically, provides a nice expression for constructing the re-
duced system. In practice especially in online simulation, the computational costs
for each new parameter value p are essential: Given p ∈ Ω, one needs to evaluate
the reduced system at p as fast as possible. Applying the aforementioned four-step
procedure, one has to compute

• interpolation on the tangent spaces at Step 3 requiring O(Nr) operations;

• thin SVD (4.33) requiring O(Nr2) operations;

• matrix multiplication (4.34) requiring O(Nr2) operations;

• reduced system matrices (4.35) requiring O(N2r) operations.

In the model reduction framework, N is typically very large. With computational
complexity of O(N2r), the online computation is in general rather slow. This is the
reason why the result in [7] failed to be usable in real time. To enable this, the
only way is to exclude the dependence of the computational complexity on N . The
presentation of our solution will start with a simple case.

4.2.2.1 Linear Interpolation and Single Parameter

Let Ω = [a, b] and a = p0 < · · · < pk = b. Since the procedure can be applied to
each subinterval [pi−1, pi], we can restrict ourselves, without loss of generality, to
the case k = 1. The process of interpolating on Grassmann manifolds for the case
of linear interpolation of a single parameter is illustrated in Figure 4.7.

At Step 3, using linear interpolation with two vectors Y1 and Y0(≡ 0) leads to

Y (p) =
p− p0
p1 − p0

Y1.

Therefore

Z(p) = U1
p− p0
p1 − p0

arctan(Λ1)V
T
1 . (4.36)

Note that (4.36) is still the thin SVD of Z(p), we do not have to compute the
SVD (4.33) in Step 4; the basis for the projection subspace at p is straightforwardly
written down as

W (p) = W0V1 cos
( p− p0
p1 − p0

arctan(Λ1)
)
+ U1 sin

( p− p0
p1 − p0

arctan(Λ1)
)
. (4.37)

Inspired by the reduced basis method [132] which was initially proposed to deal with
parameterized elliptic equations, we now assume that the system matrices of (4.30)
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Figure 4.7: Interpretation of the interpolation on Grassmann manifolds

are affinely dependent on p, i.e.,

E(p) =

ΦE∑
i=1

fE
i (p)Ei,

A(p) =

ΦA∑
i=1

fA
i (p)Ai,

B(p) =

ΦB∑
i=1

fB
i (p)Bi,

C(p) =

ΦC∑
i=1

fC
i (p)Ci,

(4.38)

where Ei, Ai, Bi, Ci are independent of p. For the effectiveness of the method pre-
sented later, we assume moreover, that ΦE , ΦA, ΦB, ΦC are very small compared to
N , and the evaluations of fE

i , fA
i , fB

i , fC
i for all p are cheap. Indeed many mathe-

matical models satisfy these conditions, e.g., the Helmholtz problem [118], heat con-
duction problems [159], and thermal flow [149]. Moreover, one can always linearize
the nonlinear dependence or interpolate the implicit dependence on parameters to
derive the affine structure (4.38).

For the sake of brevity, we denote by Ξ(p) the diagonal matrix
(
(p− p0)/(p1 −
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p0)
)
arctan(Λ1). Accordingly, the reduced matrices (4.35) are written as

Ê(p) = W T (p)E(p)W (p) =

ΦE∑
i=1

fE
i (p)W T (p)EiW (p)

=

ΦE∑
i=1

fE
i (p)
(
cos(Ξ(p))V T

1 W T
0 + sin(Ξ(p))UT

1

)
Ei

(
W0V1 cos(Ξ(p)) + U1 sin(Ξ(p))

)

=

ΦE∑
i=1

fE
i (p) cos(Ξ(p))VT

1 W
T
0 EiW0V1 cos(Ξ(p))

+

ΦE∑
i=1

fE
i (p) cos(Ξ(p))VT

1 W
T
0 EiU1 sin(Ξ(p))

+

ΦE∑
i=1

fE
i (p) sin(Ξ(p))UT

1 EiW0V1 cos(Ξ(p)) (4.39)

+

ΦE∑
i=1

fE
i (p) sin(Ξ(p))UT

1 EiU1 sin(Ξ(p)).

The matrix Â(p) is computed analogously:

Â(p) =

ΦA∑
i=1

fA
i (p) cos(Ξ(p))VT

1 W
T
0 AiW0V1 cos(Ξ(p))

+

ΦA∑
i=1

fA
i (p) cos(Ξ(p))VT

1 W
T
0 AiU1 sin(Ξ(p))

+

ΦA∑
i=1

fA
i (p) sin(Ξ(p))UT

1 AiW0V1 cos(Ξ(p)) (4.40)

+

ΦA∑
i=1

fA
i (p) sin(Ξ(p))UT

1 AiU1 sin(Ξ(p)).

Likewise,

B̂(p) = W T (p)B(p) =

ΦB∑
i=1

fB
i (p)W T (p)Bi

=

ΦB∑
i=1

fB
i (p) cos(Ξ(p))VT

1 W
T
0 Bi +

ΦB∑
i=1

fB
i (p) sin(Ξ(p))UT

1 Bi. (4.41)

Ĉ(p) = C(p)W (p) =

ΦC∑
i=1

fC
i (p)CiW (p)

=

ΦC∑
i=1

fC
i (p)CiW0V1 cos(Ξ(p)) +

ΦC∑
i=1

fC
i (p)CiU1 sin(Ξ(p)). (4.42)
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All matrices in (4.39)-(4.42) emphasized with bold letters are independent of p; they
can be computed and stored before starting the online stage. In the following, we
summarize the whole PMOR process in terms of offline-online decomposition.

Offline We compute and store

• Two columnwise orthogonal projection matrices W0,W1 at p0 and p1 by
the Krylov subspace method.

• The thin SVD

(I −W0W
T
0 )W1(W

T
0 W1)

−1 = UΛV T .

• The parameter-independent terms which are emphasized with bold letters
in (4.39)–(4.42): VTWT

0 EiW0V,VTWT
0 EiU, · · · ,CiU1.

The most expensive computations here are the SVD and matrix multiplications
in the second and the third step of the offline stage, which need O(N2r)

operations.

Online Given a parameter value p, compute the reduced system matrices via (4.39)-
(4.42).

The computational cost of the online stage is O(r2), totally independent of N .
This will accelerate the computation and therefore enable the method to be used in
real time.

Remark The case of linear interpolation and single parameter was also analyzed in
[5]. The formula (4.37) was derived in this work as well. However, it was mentioned
only in order to show the relation between interpolation on Grassmann manifolds
and interpolation of subspace angles derived in [111]. The improvement of compu-
tational speed was not considered there. �

4.2.2.2 General Case

The key point of the solution to linear interpolation of a single parameter is the
formula (4.36). Thanks to the simplicity of the linear interpolation, we have an
explicit expression for W (p) without the computation of SVD (4.33) as in the general
case. To extend the result to the general case, we have to deal with the SVD of the
sum (4.32). More precisely, a suitable strategy to compute the SVD of this sum has
to be set up and in the development which will be seen later, a careful combination
of the SVD with the offline-online decomposition must be performed.

One can observe that no matter what the dimension of the parameter domain is
and/or no matter how high the order of interpolation is, one derives the interpolant
of the form (4.31)-(4.32) with weight coefficients αi(p) ≥ 0 for all p ∈ Ω. It can be
rewritten as

Z(p) =
∑
i

Uiαi(p)arctan(Λi)V
T
i . (4.43)
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Obviously, each term in (4.43) is still a thin SVD. Hence, this very structure of Z(p)

should be exploited in formulating its SVD. Based on the modification technique for
thin SVDs proposed in [28], where the SVD of the sum of an SVD and a low rank
updating matrix was considered, we succeeded in solving the problem in the general
case as described below. However, for the sake of brevity of the presentation, we
consider the situation that the sum is composed of three terms. We can think of
the case when there are two parameters (p, q) ∈ [p0, p1]× [q0, q1] and we use bilinear
interpolation. We can then write

Z(p, q) =
3∑

i=1

Uiαi(p, q)SiV
T
i

=
[
U1 U2 U3

] ⎡⎣α1(p, q)S1

α2(p, q)S2

α3(p, q)S3

⎤
⎦
⎡
⎣V T

1

V T
2

V T
3

⎤
⎦ . (4.44)

Denote by P the columnwise orthogonal matrix whose columns span the in-
tersection of the orthogonal complement of the subspace spanned by the columns
of U1 and the subspace spanned by both, U2 and U3. The matrix P , supposed
to have the size N × n, (n ≤ 2r) can be computed as the left singular vectors of
(I −U1U

T
1 )[U2 U3]. Note that P depends on the ordering of the triplet U1, U2, U3.

Thanks to the projection, we have

[
U1 U2 U3

]
=
[
U1 P

] [I UT
1 U2 UT

1 U3

0 P T (I − U1U
T
1 )U2 P T (I − U1U

T
1 )U3

]
.

For the same reason, we can write

[V1 V2 V3] = V1[I V T
1 V2 V T

1 V3].

Now replace the first and the last factors in (4.44) by the corresponding quantities,
we get

Z(p, q) =
[
U1 P

] [I UT
1 U2 UT

1 U3

0 P T (I − U1U
T
1 )U2 P T (I − U1U

T
1 )U3

]
⎡
⎣α1(p, q)S1

α2(p, q)S2

α3(p, q)S3

⎤
⎦
⎡
⎣ I

V T
2 V1

V T
3 V1

⎤
⎦V T

1

=
[
U1 P

]
K(p, q)V T

1 , (4.45)

where

K(p, q) =

[
α1(p, q)S1 + α2(p, q)U

T
1 Z2V1 + α3(p, q)U

T
1 Z3V1

α2(p, q)P
T(I−U1U

T
1 )Z2V1 + α3(p, q)P

T(I−U1U
T
1 )Z3V1

]
∈ R

(r+n)×r.

(4.46)
Let us denote the thin SVD of K(p, q) by

K(p, q) = Φ(p, q)Λ(p, q)Ψ(p, q)T . (4.47)
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By (4.45) and (4.47), the SVD of Z(p, q) is therefore

Z(p, q) =
(
[U1 P ]Φ(p, q)

)
Λ(p, q)

(
V1Ψ(p, q)

)T
.

Accordingly, the basis for the projection subspace, by (4.34), is

W (p, q) = W0V1Ψ(p, q) cos(Λ(p, q)) + [U1 P ]Φ(p, q) sin(Λ(p, q)). (4.48)

Now, using the assumption of affine dependence (4.38), the reduced system is con-
structed similarly to the linear interpolation with single parameter case.

Ê(p, q) = W T (p, q)EW (p, q) (4.49)

=

ΦE∑
i=1

fE
i (p, q) cos(Λ(p, q))Ψ(p, q)TVT

1 W
T
0 EiW0V1Ψ(p, q) cos(Λ(p, q))

+

ΦE∑
i=1

fE
i (p, q) cos(Λ(p, q))Ψ(p, q)TVT

1 W
T
0 Ei[U1 P]Φ(p, q) sin(Λ(p, q))

+

ΦE∑
i=1

fE
i (p, q) sin(Λ(p, q))Φ(p, q)T [U1 P]TEiW0V1Ψ(p, q) cos(Λ(p, q))

+

ΦE∑
i=1

fE
i (p, q) sin(Λ(p, q))Φ(p, q)T [U1 P]TEi[U1 P]Φ(p, q) sin(Λ(p, q)).

The matrix Â(p, q) is constructed analogously. The load matrix and output matrices
are

B̂(p, q) = W T (p, q)B =

ΦB∑
i=1

fB
i (p, q) cos(Λ(p, q))Ψ(p, q)TVT

1 W
T
0 Bi (4.50)

+

ΦB∑
i=1

fB
i (p, q) sin(Λ(p, q))Φ(p, q)T [U1 P]TBi

and

Ĉ(p, q) = CW (p, q) =

ΦC∑
i=1

fC
i (p, q)CiW0V1Ψ(p, q) cos(Λ(p, q)) (4.51)

+

ΦC∑
i=1

fC
i (p, q)Ci[U1 P]Φ(p, q) sin(Λ(p, q)),

respectively. One can realize that all quantities emphasized with bold letters in
(4.46), (4.49), (4.50), (4.51) are independent of p, q and therefore can be computed
and stored beforehand. We now summarize the procedure in the form of offline-
online decomposition as follows.

Offline We compute and store:
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• W0,W1,W2,W3 corresponding to (p0, q0), (p1, q0), (p0, q1), (p1, q1).

• [U1,Λ1, V1], [U2,Λ2, V2], [U3,Λ3, V3] representing LogS0
(S1), LogS0

(S2),

LogS0
(S3), respectively.

• P ∈ R
N×(r+n) by SVD.

• All necessary quantities (in bold letters in (4.46)) for the matrix K.

• All necessary quantities (in bold letters in (4.49), (4.50), (4.51)) for the
reduced matrices Ê, Â, B̂, Ĉ.

Online Given any value (p, q) ∈ [p0, p1]× [q0, q1], we compute

• the matrix K as in (4.46),

• the thin SVD of K: ΦΛΨT = K,

• the reduced system matrices by (4.49), (4.50), (4.51).

The computation cost of the online stage is O((r + n)r2) which can be considered
as O(r3).

Remark The matrix P and therefore the matrix K depend on the choice of ordering
of U1, U2, U3 in the sum (4.44). However, W (p, q) in (4.48) always spans the same
subspace, since W0 and the first factor in the second term of W (p, q) are the same
with respect to any order of U1, U2, U3.

Using offline-online decomposition in order to deal with highly computational
complexity is not a new idea. It has been widely used for parameterized PDEs
[118, 117, 159, 132, 149]. For MOR, as mentioned in Section 3.4, it was applied to
interpolation on manifolds of reduced system matrices [6, 5, 45, 8]. It was also used
in [77], without interpolation, for order reduction of parameter-dependent systems.
Consideration of interpolation of projection subspaces as interpolation on Grass-
mann manifolds was suggested in [7]. In this work, however, neither the offline-online
decomposition nor a way for reducing the computational complexity have been used
and given. Our strategy obviously eliminates the dependence of the computational
complexity in the online stage on the full order, accelerates the computation and
therefore enables the algorithm to be used in real time. This will be illustrated in
the numerical example. �

4.2.3 Numerical Example

In this section, the applicability of the proposed method is illustrated through an
example taken from the Oberwolfach model reduction benchmark collection. This
model has been mentioned in Chapter 1. The spatial discretization in space of the
heat transfer partial differential equation gives a system of the order 4257:

EṪ (t) = (A− htopAtop − hbotAbot − hsidAsid)T (t) +Bu(t)

y(t) = CT (t),
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where E and A, the heat capacity and heat conductivity matrices, are symmetric,
B is the load vector, C is the output matrix. We, however, retain only the first
row of C in order to simplify the error evaluation. Matrices Atop, Abot, Asid are
the diagonal matrices derived from the discretization of the convection boundary
conditions on the top, at the bottom and on the side with the corresponding film
coefficients htop, hbot, hsid. These coefficients may change according to the change
of the surroundings of the chip and will be treated as the parameters of the model.
The unknown T is the vector of temperatures. All system matrices are sparse. The
reader is referred to [105, 152] for more details.
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Figure 4.8: Relative errors using IGM vs. direct method; reduced order: 20 (left),
40 (right)

As the first test for linear interpolation of a single parameter, we fix two param-
eters htop = 5000, hbot = 200 and let the left hsid vary from 10 to 109. Projection
matrices corresponding to hsid = 10 and hsid = 109 are computed by the Krylov
subspace method with the intention of matching moments about s0 = 100. The
reduced orders are 20 and 40. In both cases, the Krylov subspace at hsid = 10 will
be chosen as the contact “point”. To check the quality of the approximation, we
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compute the relative errors, which is defined by

‖H(·)− Ĥ(·)‖H∞
‖H(·)‖H∞

,

of the reduced transfer function at 17 points, 10, 50, 100, 500, 1000, · · · , 109, hence-
forth called points of interest. We use an approximation of the form

‖H(·)‖H∞ ≈ max
w∈[wmin,wmax]

|H(iw)|,

where i denotes the imaginary unit. In our case, the frequency grid/range is cho-
sen to be −5000 : 10 : 5000. These relative errors computed by interpolation on
Grassmann manifolds (IGM) as aforementioned are then compared with the rela-
tive errors caused by direct computation, i.e., the reduced system is constructed by
fixing the parameter at points of interest. We then perform the same test with hbot.
These errors are plotted in Figure 4.8.

The errors caused by both methods, if all conditions of using IGM are fulfilled,
should be identical at the two ends of the parameter interval. As we can see,
however, there is difference of the errors at the right end, when hsid and hbot are
equal to 109. There are two possible reasons for this. From a theoretical point
of view, as mentioned before, when using IGM the grid points should not be too
far from the contact point. The distance between two points, which are actually
two subspaces, can be computed, but one does not know exactly how small the
distance should be, since this comes from the requirement for the local existence
of the solution of a second order differential equation. If this distance is large, the
logarithmic and exponential mappings may not work properly. As a consequence,
IGM may not work well. From a computational point of view, in our case, when
the parameter is large, the computation of the reduced system of the order 40 by
IGM is rather sensitive to the perturbation of the data. Indeed, we perturbed the
data by the amount of 10−15, i.e., replaced 10 and 109 by 10(1 + i × 10−15) and
109(1+ i×10−15), i = −2,−1, 0, 1, 2 and looked at the changes in the relative errors
of both methods. The direct computation was stable with these changes of the data.
For IGM, when the reduced order was 20, the resulting changes in the relative errors
at both ends were from 10−12 to 10−14. Meanwhile, when the reduced order was 40,
the resulting changes in the error at the left end was around 10−9 and at the right
end was 10−7. This explains that the relative errors at the right end may vary 10−7

around its exact value, which can be seen in Figure 4.9. Note also that we use the
logarithmic scale for the horizontal axes in all the plots, this also contributes to the
intuitive sudden increase in the errors at the right end of the parameter interval.
In the end, the amount of 10−7 variation in the relative error is not so large and
therefore does not seriously affect the quality of the approximation.

In order to verify the computational reduction, the reduced system in state space
representation form is computed at different parameter values. All the computa-
tions are performed with Matlab R2010b on a computer, using Linux/Debian 5.0,
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Figure 4.9: Relative errors using bilinear interpolation; reduced order:
10 (top-left), 20 (top-right), 30 (bottom-left), 40 (bottom-right)

and equipped with processor 2GHz 2GB AMD Athlon 64 X2. Since the computa-
tion time can slightly vary from point to point, we evaluate the reduced system at
99 points in 10 < hsid < 10000. The time, counted in seconds, consumed by the
procedure with offline-online decomposition and that without offline-online decom-
position, i.e., the original method proposed in [7] at different reduced orders are
listed in Table 4.2. The acceleration factor is computed as the ratio between the
time consumed by the two methods.

In the second test, we fix htop and let hbot and hsid vary from 50 to 5 × 104

and 5 to 5 × 104, respectively. We examine the reduced system at a total of 100
grid points corresponding to typical values of parameters hbot and hsid mentioned in
[105]. First of all, we compute 4 projection subspaces at (hbot, hsid) = (50, 5), (5 ×
104, 5), (50, 5× 104) and (5× 104, 5× 104) with the intention of matching moments
about s0 = 100. The reduced orders are 10, 20, 30 and 40. The subspace at (50, 5)

will be used as the contact point. The relative errors of the reduced models are
plotted in Figure 4.9. The computation time is listed in Table 4.3.

The decrease in the error when the reduced order increases shows that our pro-
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Table 4.2: Computation time: linear interpolation
Reduced order 10 20 30 40
With off-on decomp. 0.0479 0.0508 0.0563 0.0675
Without off-on decomp. 0.9468 3.0626 5.6700 7.2910
Acceleration factor 19.7851 60.3121 100.7854 107.9589

gram works properly. However, the fact that this decrease is not so considerable
suggests that, in this case, the effort to increase the reduced order does not bring
much achievement.

We can realize that the advantage of using the proposed method is different in
the linear case and general case as the reduced order varies. In the linear case,
the higher the reduced order is, the bigger the acceleration factor is, while in the
general case, it gets smaller. The reason is that in the linear case, the procedure is
simple, we do not have to compute matrix K as well as its SVD. Therefore, when
the reduced order is higher, we can take advantage of this fact. Meanwhile, in the
general case, the computation of K and its SVD slows down the online stage as the
reduced order increases.

Table 4.3: Computation time: bilinear interpolation
Reduced order 10 20 30 40
With off-on decomp. 0.0674 0.1982 0.4562 0.8372
Without off-on decomp. 1.0480 3.0708 5.8994 7.5586
Acceleration factor 15.5415 15.4934 12.9309 9.0287





Chapter 5

Conclusion

In this thesis, model order reduction of parameter-dependent systems has been in-
vestigated. All methods are based on the extension of standard MOR methods or
a combination of one of them with an interpolation technique. We have focused on
the second direction.

As the first effort, we have combined the balanced truncation method with spline
interpolation to symbolically preserve the dependence of the considered model on
parameters. This approach does not require an explicit expression of the depen-
dence. However, it is applicable only for reachable, observable and stable systems.
We have shown that the error between the original system and the reduced system
is bounded from above, and this bound is theoretically explicit and a priori. It is
the sum of, up to a factor, the error caused by balanced truncation and one caused
by interpolation. If the considered system is highly varying, the derivative of its
transfer function is large; in such case, we have suggested that this method should
not be applied. In addition, the stability is preserved during the reduction process.
Although the actual process produces the external description of the reduced sys-
tem, a state space representation for the resulting reduced system is constructed by
appropriately choosing the end conditions and some computations.

Our second effort concentrated more on computational aspects. We have pro-
jected the original system on Krylov subspaces. For parameter-dependent systems,
these subspaces vary with the parameter and it turns out that they lie on a Grass-
mann manifold. To deal with the dependence on parameters, we have interpolated
a set of pre-computed projection subspaces. However, the standard interpolation
procedure does not work since one has to maintain the rank of the bases of these
subspaces. We had to first map the data on the underlying Grassmann manifold to a
tangent space, then interpolate on that space and finally map the interpolated data
back to the Grassmann manifold. The connection between a Grassmann manifold
and its tangent spaces is determined by exponential and logarithmic mappings. By
exploiting the structure of these mappings, analyzing the structure of sums of SVDs
and by decomposing the process into offline and online stages, we have consider-
ably reduced the computation cost of the online stage and therefore enabled this
procedure to be usable in real time.

In the following we analyze some directions which may be investigated in the
coming time.

As mentioned before, it is still a challenge to derive an error bound of the method
using cubic spline interpolation for the MIMO case. We presume that sophisticated
new linear algebra results will be needed in order to solve this problem.
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The error of using spline interpolation can probably satisfy a given tolerance
thanks to controlling the local error and determining the region of validity on which
the error is still less than a given number regardless the change of parameter. This
needs further investigations into the application of results on the effect of perturba-
tion on ROMs.

Our second result on interpolating on Grassmann manifolds is applicable for
one-sided projection reduction methods. In some case, a MOR method can only be
formulated as a two-sided projection such as balanced truncation. In other cases,
two-sided projection always gives a better result than one-sided projection does. It
is therefore a need to extend the interpolation on Grassmann manifold framework
for such methods. A Gram-Schmidt-like method may be an option but the way to
imbed it in the algorithm such that the online stage is able to be used in real time
is still unknown.

The sensitivity of computing ROMs using IGM needs to be investigated in de-
tail. Especially, one needs to know in each specific case the distance between the
interpolation points and the contact point in which the procedure is still effective.
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