371 research outputs found

    Quality of Experience and Adaptation Techniques for Multimedia Communications

    Get PDF
    The widespread use of multimedia services on the World Wide Web and the advances in end-user portable devices have recently increased the user demands for better quality. Moreover, providing these services seamlessly and ubiquitously on wireless networks and with user mobility poses hard challenges. To meet these challenges and fulfill the end-user requirements, suitable strategies need to be adopted at both application level and network level. At the application level rate and quality have to be adapted to time-varying bandwidth limitations, whereas on the network side a mechanism for efficient use of the network resources has to be implemented, to provide a better end-user Quality of Experience (QoE) through better Quality of Service (QoS). The work in this thesis addresses these issues by first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC) applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models for real-time and non real-time video streaming have been proposed and a rate adaptation technique is also developed to minimize with fairness the distortion of multiple videos with difference complexities. To provide resiliency against errors, the effect of Unequal Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has been also included in the proposed R-D modelling. Moreover, to improve the support of QoE at the network level for multimedia applications sensitive to delays, jitters and packet drops, a technique to prioritise different traffic flows using specific QoS classes within an intermediate DiffServ network integrated with a WiMAX access system is investigated. Simulations were performed to test the network under different congestion scenarios

    Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation

    Get PDF
    In recent years, the integration of machine learning techniques into navigation systems has garnered significant interest due to their potential to improve estimation accuracy and system robustness. This doctoral dissertation investigates the use of Deep Learning combined with a Rao-Blackwellized Particle Filter for enhancing geomagnetic navigation in airborne simulated missions. A simulation framework is developed to facilitate the evaluation of the proposed navigation system. This framework includes a detailed aircraft model, a mathematical representation of the Earth\u27s magnetic field, and the incorporation of real-world magnetic field data obtained from online databases. The setup allows an accurate assessment of the performance and effectiveness of the proposed Geomagentic architecture in diverse and realistic geomagnetic scenarios. The results of this research demonstrate the potential of Machine Learning algorithms in improving the performance of the sensor fusion filter for geomagnetic navigation, and introduces a novel approach for resolution enhancing of available geomagnetic models, which provides a better description of the magnetic features within these models. The integration leads to more accurate and robust inertial guidance in airborne missions, thus paving the way for advanced, reliable navigation systems for a variety of aerial vehicles. Overall, this dissertation contributes to the state-of-the-art in geomagnetic navigation research by offering a novel approach to integrating machine learning techniques with traditional estimation methods, with a novel technique to obtain more accurate geomagnetic models required within these navigation architectures. The findings of this work hold promise for the development of advanced, adaptive navigation systems for both civilian and military aviation applications

    Qualitative Process Analysis : Theoretical Requirements and Practical Implementation in Naval Domain

    Get PDF
    Understanding complex behaviours is an essential component of everyday life, integrated into daily routines as well as specialised research. To handle the increasing amount of data available from (logistic) dynamic scenarios, analysis of the behaviour of agents in a given environment is becoming more automated and thus requires reliable new analytical methods. This thesis seeks to improve analysis of observed data in dynamic scenarios by developing a new model for transforming sparse behavioural observations into realistic explanations of agent behaviours, with the goal of testing that model in a real-world maritime navigation scenario

    Smart Feature Selection to enable Advanced Virtual Metrology

    Get PDF
    The present dissertation enhances the research in computer science, especially state of the art Machine Learning (ML), in the ïŹeld of process development in Semiconductor Manufacturing (SM) by the invention of a new Feature Selection (FS) algorithm to discover the most important equipment and context parameters for highest performance of predicting process results in a newly developed advanced Virtual Metrology (VM) system. In complex high-mixture-low-volume SM, chips or rather silicon wafers for numerous products and technologies are manufactured on the same equipment. Process stability and control are key factors for the production of highest quality semiconductors. Advanced Process Control (APC) monitors manufacturing equipment and intervenes in the equipment control if critical states occur. Besides Run-To-Run (R2R) control and Fault Detection and ClassiïŹcation (FDC) new process control development activities focus on VM which predicts metrology results based on productive equipment and context data. More precisely, physical equipment parameters combined with logistical information about the manufactured product are used to predict the process result. The compulsory need for a reliable and most accurate VM system arises to imperatively reduce time and cost expensive physical metrology as well as to increase yield and stability of the manufacturing processes while concurrently minimizing economic expenditures and associated data ïŹ‚ow. The four challenges of (1) eïŹƒciency of development and deployment of a corporate-wide VM system, (2) scalability of enterprise data storage, data traïŹƒc and computational eïŹ€ort, (3) knowledge discovery out of available data for future enhancements and process developments as well as (4) highest accuracy including reliability and reproducibility of the prediction results are so far not successfully mastered at the same time by any other approach. Many ML techniques have already been investigated to build prediction models based on historical data. The outcomes are only partially satisfying in order to achieve the ambitious objectives in terms of highest accuracy resulting in tight control limits which tolerate almost no deviation from the intended process result. For optimization of prediction performance state of the art process engineering requirements lead to three criteria for assessment of the ML algorithm for the VM: outlier detection, model robustness with respect to equipment degradation over time and ever-changing manufacturing processes adapted for further development of products and technologies and ïŹnally highest prediction accuracy. It has been shown that simple regression methods fail in terms of prediction accuracy, outlier detection and model robustness while higher-sophisticated regression methods are almost able to constantly achieve these goals. Due to quite similar but still not optimal prediction performance as well as limited computational feasibility in case of numerous input parameters, the choice of superior ML regression methods does not ultimately resolve the problem. Considering the entire cycle of Knowledge Discovery in Databases including Data Mining (DM) another task appears to be crucial: FS. An optimal selection of the decisive parameters and hence reduction of the input space dimension boosts the model performance by omitting redundant as well as spurious information. Various FS algorithms exist to deal with correlated and noisy features, but each of its own is not capable to ensure that the ambitious targets for VM can be achieved in prevalent high-mixture-low-volume SM. The objective of the present doctoral thesis is the development of a smart FS algorithm to enable a by this advanced and also newly developed VM system to comply with all imperative requirements for improved process stability and control. At ïŹrst, a new Evolutionary Repetitive Backward Elimination (ERBE) FS algorithm is implemented combining the advantages of a Genetic Algorithm (GA) with Leave-One-Out (LOO) Backward Elimination as wrapper for Support Vector Regression (SVR). At second, a new high performance VM system is realized in the productive environment of High Density Plasma (HDP) Chemical Vapor Deposition (CVD) at the InïŹneon frontend manufacturing site Regensburg. The advanced VM system performs predictions based on three state of the art ML methods (i.e. Neural Network (NN), Decision Tree M5’ (M5’) & SVR) and can be deployed on many other process areas due to its generic approach and the adaptive design of the ERBE FS algorithm. The developed ERBE algorithm for smart FS enhances the new advanced VM system by revealing evidentially the crucial features for multivariate nonlinear regression. Enabling most capable VM turns statistical sampling metrology with typically 10% coverage of process results into a 100% metrological process monitoring and control. Hence, misprocessed wafers can be detected instantly. Subsequent rework or earliest scrap of those wafers result in signiïŹcantly increased stability of subsequent process steps and thus higher yield. An additional remarkable beneïŹt is the reduction of production cycle time due to the possible saving of time consuming physical metrology resulting in an increase of production volume output up to 10% in case of fab-wide implementation of the new VM system

    Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

    Get PDF
    In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA)

    A scalable recommender system : using latent topics and alternating least squares techniques

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsA recommender system is one of the major techniques that handles information overload problem of Information Retrieval. Improves access and proactively recommends relevant information to each user, based on preferences and objectives. During the implementation and planning phases, designers have to cope with several issues and challenges that need proper attention. This thesis aims to show the issues and challenges in developing high-quality recommender systems. A paper solves a current research problem in the field of job recommendations using a distributed algorithmic framework built on top of Spark for parallel computation which allows the algorithm to scale linearly with the growing number of users. The final solution consists of two different recommenders which could be utilised for different purposes. The first method is mainly driven by latent topics among users, meanwhile the second technique utilises a latent factor algorithm that directly addresses the preference-confidence paradigm

    A Semantic-Based Middleware for Multimedia Collaborative Applications

    Get PDF
    The Internet growth and the performance increase of desktop computers have enabled large-scale distributed multimedia applications. They are expected to grow in demand and services and their traffic volume will dominate. Real-time delivery, scalability, heterogeneity are some requirements of these applications that have motivated a revision of the traditional Internet services, the operating systems structures, and the software systems for supporting application development. This work proposes a Java-based lightweight middleware for the development of large-scale multimedia applications. The middleware offers four services for multimedia applications. First, it provides two scalable lightweight protocols for floor control. One follows a centralized model that easily integrates with centralized resources such as a shared too], and the other is a distributed protocol targeted to distributed resources such as audio. Scalability is achieved by periodically multicasting a heartbeat that conveys state information used by clients to request the resource via temporary TCP connections. Second, it supports intra- and inter-stream synchronization algorithms and policies. We introduce the concept of virtual observer, which perceives the session as being in the same room with a sender. We avoid the need for globally synchronized clocks by introducing the concept of user\u27s multimedia presence, which defines a new manner for combining streams coming from multiple sites. It includes a novel algorithm for estimation and removal of clock skew. In addition, it supports event-driven asynchronous message reception, quality of service measures, and traffic rate control. Finally, the middleware provides support for data sharing via a resilient and scalable protocol for transmission of images that can dynamically change in content and size. The effectiveness of the middleware components is shown with the implementation of Odust, a prototypical sharing tool application built on top of the middleware

    WisdoM: Improving Multimodal Sentiment Analysis by Fusing Contextual World Knowledge

    Full text link
    Sentiment analysis is rapidly advancing by utilizing various data modalities (e.g., text, image). However, most previous works relied on superficial information, neglecting the incorporation of contextual world knowledge (e.g., background information derived from but beyond the given image and text pairs) and thereby restricting their ability to achieve better multimodal sentiment analysis (MSA). In this paper, we proposed a plug-in framework named WisdoM, to leverage the contextual world knowledge induced from the large vision-language models (LVLMs) for enhanced MSA. WisdoM utilizes LVLMs to comprehensively analyze both images and corresponding texts, simultaneously generating pertinent context. To reduce the noise in the context, we also introduce a training-free contextual fusion mechanism. Experiments across diverse granularities of MSA tasks consistently demonstrate that our approach has substantial improvements (brings an average +1.96% F1 score among five advanced methods) over several state-of-the-art methods

    Layered Wyner-Ziv video coding: a new approach to video compression and delivery

    Get PDF
    Following recent theoretical works on successive Wyner-Ziv coding, we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantiza- tion, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered Wyner-Ziv coding for quality enhance- ment. Similar to FGS coding, there is no performance diÂźerence between layered and monolithic Wyner-Ziv coding when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that Wyner-Ziv coding gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks. For scalable video transmission over the Internet and 3G wireless networks, we propose a system for receiver-driven layered multicast based on layered Wyner-Ziv video coding and digital fountain coding. Digital fountain codes are near-capacity erasure codes that are ideally suited for multicast applications because of their rate- less property. By combining an error-resilient Wyner-Ziv video coder and rateless fountain codes, our system allows reliable multicast of high-quality video to an arbi- trary number of heterogeneous receivers without the requirement of feedback chan- nels. Extending this work on separate source-channel coding, we consider distributed joint source-channel coding by using a single channel code for both video compression (via Slepian-Wolf coding) and packet loss protection. We choose Raptor codes - the best approximation to a digital fountain - and address in detail both encoder and de- coder designs. Simulation results show that, compared to one separate design using Slepian-Wolf compression plus erasure protection and another based on FGS coding plus erasure protection, the proposed joint design provides better video quality at the same number of transmitted packets

    Radio over fiber enabling PON fronthaul in a two-tiered cloud

    Get PDF
    Avec l’avĂšnement des objets connectĂ©s, la bande passante nĂ©cessaire dĂ©passe la capacitĂ© des interconnections Ă©lectriques et interface sans fils dans les rĂ©seaux d’accĂšs mais aussi dans les rĂ©seaux coeurs. Des systĂšmes photoniques haute capacitĂ© situĂ©s dans les rĂ©seaux d’accĂšs utilisant la technologie radio sur fibre systĂšmes ont Ă©tĂ© proposĂ©s comme solution dans les rĂ©seaux sans fil de 5e gĂ©nĂ©rations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources rĂ©seau, le cloud computing et des services de stockage sont en cours de dĂ©ploiement. De cette maniĂšre, les ressources centralisĂ©es pourraient ĂȘtre diffusĂ©es de façon dynamique comme l’utilisateur final le souhaite. Chaque Ă©change nĂ©cessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des rĂ©seaux et de les dĂ©finir de façon logicielle. Les amplificateurs Ă  semi-conducteurs rĂ©flectifs (RSOA) sont une technologie clĂ© au niveau des ONU(unitĂ© de communications optiques) dans les rĂ©seaux d’accĂšs passif (PON) Ă  fibres. Nous examinons ici la possibilitĂ© d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numĂ©rique sur un PON. La radio sur fibres peut ĂȘtre facilement rĂ©alisĂ©e grĂące Ă  l’insensibilitĂ© a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modĂšle OSI. Les interactions entre la couche physique et la commutation de rĂ©seaux peuvent ĂȘtre faites par l’ajout d’un contrĂŽleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation rĂ©seau pourrait ainsi bĂ©nĂ©ficier d’une couche optique flexible grĂące des ressources rĂ©seau dynamique et adaptĂ©e. Dans ce mĂ©moire, nous Ă©tudions un systĂšme disposant d’une couche physique optique basĂ© sur un RSOA. Celle-ci nous permet de façon simultanĂ©e un envoi de signaux sans fil et le transport de signaux numĂ©rique au format modulation tout ou rien (OOK) dans un systĂšme WDM(multiplexage en longueur d’onde)-PON. Le RSOA a Ă©tĂ© caractĂ©risĂ© pour montrer sa capacitĂ© Ă  gĂ©rer une plage dynamique Ă©levĂ©e du signal sans fil analogique. Ensuite, les signaux RF et IF du systĂšme de fibres sont comparĂ©s avec ses avantages et ses inconvĂ©nients. Finalement, nous rĂ©alisons de façon expĂ©rimentale une liaison point Ă  point WDM utilisant la transmission en duplex intĂ©gral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mĂ©langeurs RF dans la liaison montante, nous avons rĂ©solu le problĂšme d’incompatibilitĂ© avec le systĂšme sans fil basĂ© sur le TDD (multiplexage en temps duplexĂ©).With the advent of IoT (internet of things) bandwidth requirements triggered by aggregated wireless connections have exceeded the fundamental limitation of copper and microwave based wireless backhaul and fronthaul networks. High capacity photonic fronthaul systems employing radio over fiber technology has been proposed as the ultimate solution for 5G wireless system. To maximize utilization of server and network resources, cloud computing and storage based services are being deployed. In this manner, centralized resources could be dynamically streamed to the end user as requested. Since on demand resource provision requires the orchestration between the server and network infrastructure, a smart photonic (physical layer)PHY enabled cloud is foreseen to support network virtualization and software defined network. RSOAs (Reflective Semiconductor Optical Amplifier) are being investigated as key enablers of the colorless ONU(Optical Network Unit) solution in PON (Passive Optical Network). We examine the use of an RSOA in radio over fiber systems to transport wireless signals over a PON simultaneously with digital data. Radio over fiber systems with flexible wavelength allocation could be achieved thanks to the colorless operation of the RSOA and wavelength reuse technique. The wavelength flexibility in optical PHY are inline with the paradigm of software defined network (SDN) in OSI layer 2/3. The orchestration between optical PHY and network switching fabric could be realized by extending the SDN controller to include optical layer handlers. Network virtualization could also benefit from the flexible optical PHY through dynamic and tailored optical network resource provision. In this thesis, we investigate an optical PHY system based on RSOA enabling both analog wireless signal and digital On-Off Keying (OOK) transportation within WDM (Wavelength Division Multiplexing) PON architecture. The RSOA has been characterized to show its potential ability to handle high dynamic range analog wireless signal. Then the RF and IF radio over fiber scheme is compared with its pros and cons. Finally we perform the experiment to shown a point to point WDM link with full duplex transmission of analog WiFi signal with downlink OOK signal. By introducing two RF mixer in the uplink, we have solved the incompatible problem with TDD (Time Division Duplex) based wireless system
    • 

    corecore