673 research outputs found

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Hybrid intelligent machine systems : design, modeling and control

    Get PDF
    To further improve performances of machine systems, mechatronics offers some opportunities. Traditionally, mechatronics deals with how to integrate mechanics and electronics without a systematic approach. This thesis generalizes the concept of mechatronics into a new concept called hybrid intelligent machine system. A hybrid intelligent machine system is a system where two or more elements combine to play at least one of the roles such as sensor, actuator, or control mechanism, and contribute to the system behaviour. The common feature with the hybrid intelligent machine system is thus the presence of two or more entities responsible for the system behaviour with each having its different strength complementary to the others. The hybrid intelligent machine system is further viewed from the system’s structure, behaviour, function, and principle, which has led to the distinction of (1) the hybrid actuation system, (2) the hybrid motion system (mechanism), and (3) the hybrid control system. This thesis describes a comprehensive study on three hybrid intelligent machine systems. In the case of the hybrid actuation system, the study has developed a control method for the “true” hybrid actuation configuration in which the constant velocity motor is not “mimicked” by the servomotor which is treated in literature. In the case of the hybrid motion system, the study has resulted in a novel mechanism structure based on the compliant mechanism which allows the micro- and macro-motions to be integrated within a common framework. It should be noted that the existing designs in literature all take a serial structure for micro- and macro-motions. In the case of hybrid control system, a novel family of control laws is developed, which is primarily based on the iterative learning of the previous driving torque (as a feedforward part) and various feedback control laws. This new family of control laws is rooted in the computer-torque-control (CTC) law with an off-line learned torque in replacement of an analytically formulated torque in the forward part of the CTC law. This thesis also presents the verification of these novel developments by both simulation and experiments. Simulation studies are presented for the hybrid actuation system and the hybrid motion system while experimental studies are carried out for the hybrid control system

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Rapid-convergent nonlinear differentiator

    Full text link
    A nonlinear differentiator being fit for rapid convergence is presented, which is based on singular perturbation technique. The differentiator design can not only sufficiently reduce the chattering phenomenon of derivative estimation by introducing a continuous power function, but the dynamical performances are also improved by adding linear correction terms to the nonlinear ones. Moreover, strong robustness ability is obtained by integrating nonlinear items and the linear filter. The merits of the rapid-convergent differentiator include the excellent dynamical performances, restraining noises sufficiently, avoiding the chattering phenomenon and being not based on system model. The theoretical results are confirmed by computer simulations and an experiment.Comment: 26 pages, 15 figure

    New noise-tolerant neural algorithms for future dynamic nonlinear optimization with estimation on hessian matrix inversion

    Get PDF
    Nonlinear optimization problems with dynamical parameters are widely arising in many practical scientific and engineering applications, and various computational models are presented for solving them under the hypothesis of short-time invariance. To eliminate the large lagging error in the solution of the inherently dynamic nonlinear optimization problem, the only way is to estimate the future unknown information by using the present and previous data during the solving process, which is termed the future dynamic nonlinear optimization (FDNO) problem. In this paper, to suppress noises and improve the accuracy in solving FDNO problems, a novel noise-tolerant neural (NTN) algorithm based on zeroing neural dynamics is proposed and investigated. In addition, for reducing algorithm complexity, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is employed to eliminate the intensively computational burden for matrix inversion, termed NTN-BFGS algorithm. Moreover, theoretical analyses are conducted, which show that the proposed algorithms are able to globally converge to a tiny error bound with or without the pollution of noises. Finally, numerical experiments are conducted to validate the superiority of the proposed NTN and NTN-BFGS algorithms for the online solution of FDNO problems

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Saturated Output-Feedback Hybrid Reinforcement Learning Controller for Submersible Vehicles Guaranteeing Output Constraints

    Get PDF
    In this brief, we propose a new neuro-fuzzy reinforcement learning-based control (NFRLC) structure that allows autonomous underwater vehicles (AUVs) to follow a desired trajectory in large-scale complex environments precisely. The accurate tracking control problem is solved by a unique online NFRLC method designed based on actor-critic (AC) structure. Integrating the NFRLC framework including an adaptive multilayer neural network (MNN) and interval type-2 fuzzy neural network (IT2FNN) with a high-gain observer (HGO), a robust smart observer-based system is set up to estimate the velocities of the AUVs, unknown dynamic parameters containing unmodeled dynamics, nonlinearities, uncertainties and external disturbances. By employing a saturation function in the design procedure and transforming the input limitations into input saturation nonlinearities, the risk of the actuator saturation is effectively reduced together with nonlinear input saturation compensation by the NFRLC strategy. A predefined funnel-shaped performance function is designed to attain certain prescribed output performance. Finally, stability study reveals that the entire closed-loop system signals are semi-globally uniformly ultimately bounded (SGUUB) and can provide prescribed convergence rate for the tracking errors so that the tracking errors approach to the origin evolving inside the funnel-shaped performance bound at the prescribed time

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

    Get PDF
    In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations
    corecore