3 research outputs found

    Transmit Diversity Code Filter Sets (TDCFSs), an MISO Antenna Frequency Predistortion Scheme for ATSC 3.0

    Full text link
    "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")Transmit diversity code filter sets (TDCFSs) are a method of predistorting the common waveforms from multiple transmitters in the same frequency channel, as in a single frequency network, in order to minimize the possibility of cross-interference among the transmitted signals over the entire reception area. This processing is achieved using all-pass linear filters, allowing the resulting combination of predistortion and multipath to be properly compensated as part of the equalization process in the receiver. The filter design utilizes an iterative computational approach, which minimizes cross-correlation peak side lobe under the constraints of number of transmitters and delay spread, allowing customization for specific network configurations. This paper provides an overview of the TDCFS multiple-input single output antenna scheme adopted in ATSC 3.0, together with experimental analysis of capacity and specific worst-case conditions that illustrate the benefits of using the TDCFS approach.Lopresto, S.; Citta, R.; Vargas, D.; G贸mez Barquero, D. (2016). Transmit Diversity Code Filter Sets (TDCFSs), an MISO Antenna Frequency Predistortion Scheme for ATSC 3.0. IEEE Transactions on Broadcasting. 62(1):271-280. doi:10.1109/TBC.2015.2505400S27128062

    Coverage optimization and power reduction in SFN using simulated annealing

    Get PDF
    An approach that predicts the propagation, models the terrestrial receivers and optimizes the performance of single frequency networks (SFN) for digital video broadcasting in terms of the final coverage achieved over any geographical region, enhancing the most populated areas, is proposed in this paper. The effective coverage improvement and thus, the self-interference reduction in the SFN is accomplished by optimizing the internal static delays, sector antenna gain, and both azimuth and elevation orientation for every transmitter within the network using the heuristic simulated annealing (SA) algorithm. Decimation and elevation filtering techniques have been considered and applied to reduce the computational cost of the SA-based approach, including results that demonstrate the improvements achieved. Further representative results for two SFN in different scenarios considering the effect on the final coverage of optimizing any of the transmitter parameters previously outlined or a combination of some of them are reported and discussed in order to show both, the performance of the method and how increasing gradually the complexity of the model for the transmitters leads to more realistic and accurate results.This work was supported by the Spanish Ministry of Science and Innovation under Projects TEC2008-02730 and TEC2012-33321. The work of M. Lanza and 脕. L. Guti茅rrez was supported by a Pre-Doctoral Grant from the University of Cantabria

    Planning Large Single Frequency Networks for DVB-T2

    Get PDF
    [EN] The final coverage and associated performance of an SFN is a joint result of the properties of all transmitters in the SFN. Due to the large number of parameters involved in the process, finding the right configuration is quite complex. The purpose of the paper is to find optimal SFN network configurations for DVB-T2. Offering more options of system parameters than its predecessor DVB-T, DVB-T2 allows large SFN networks. However, self-interference in SFNs gives rise to restrictions on the maximum inter-transmitter distance and the network size. In order to make optimum use of the spectrum, the same frequency can be reused over different geographical areas - beyond the reuse distance to avoid co-channel interference. In this paper, a methodology based on theoretical network models is proposed. A number of network architectures and network reference models are considered here for different reception modes in order to study the effects of key planning factors on the maximum SFN size and minimum reuse distance. The results show that maximum bitrate, network size and reuse distance are closely related. In addition, it has been found that the guard interval is not the only limiting parameter and that its impact strongly depends on the rest of DVB-T2 mode parameters as well as on the network characteristics (Equivalent Radiated Power, effective height, inter-transmitter distance). Assuming that the C/N requirements are in the vicinity of 20 dB and bitrates over 30 Mbps, it has been found that the network can be as large as 360 x 360 km (delivering 39.2 Mbps) or even 720 x 720 km (delivering 37.5 Mbps). The reuse distance will also have a complex dependency on the DVB-T2 mode and especially the network parameters, ranging from below 100 to 300 km.This work has been financially supported by the Beihang University, IRT, the University of the Basque Country UPV/EHU (UFI 11/30 and program for the specialization of the postdoctoral researcher staff) and by the Spanish Ministry of Economy and Competitiveness under the project HEDYT-GBB (TEC2012-33302)
    corecore