667 research outputs found

    SoftCast: Clean-slate Scalable Wireless Video

    Get PDF
    Video broadcast and mobile video challenge the conventional wireless design. In broadcast and mobile scenarios the bit rate supported by the channel differs across receivers and varies quickly over time. The conventional design however forces the source to pick a single bit rate and degrades sharply when the channel cannot not support the chosen bit rate. This paper presents SoftCast, a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality. To do so, SoftCast ensures the samples of the digital video signal transmitted on the channel are linearly related to the pixels' luminance. Thus, when channel noise perturbs the transmitted signal samples, the perturbation naturally translates into approximation in the original video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity video, and a receiver with a bad channel (high noise) obtains a low fidelity video. We implement SoftCast using the GNURadio software and the USRP platform. Results from a 20-node testbed show that SoftCast improves the average video quality (i.e., PSNR) across broadcast receivers in our testbed by up to 5.5dB. Even for a single receiver, it eliminates video glitches caused by mobility and increases robustness to packet loss by an order of magnitude

    SoftCast

    Get PDF
    The focus of this demonstration is the performance of streaming video over the mobile wireless channel. We compare two schemes: the standard approach to video which transmits H.264/AVC-encoded stream over 802.11-like PHY, and SoftCast -- a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality

    Multicast Services for Multimedia Collaborative Applications

    Get PDF
    This work aims at providing multicast services for multimedia collaborative applications over large inter-networks such as the Internet. Multimedia collaborative applications are typically of small group size, slow group membership dynamics, and awareness of participants\u27 identities and locations. Moreover, they usually consist of several components such as audio, video, shared whiteboard, and single user application sharing engines that collectively help make the collaboration session successful. Each of these components has its demands from the communication layer that may differ from one component to another. This dissertation identifies the overall characteristics of multimedia collaborative applications and their individual components. It also determines the service requirements of the various components from the communication layer. Based on the analysis done in the thesis, new techniques of multicast services that are more suitable for multimedia collaborative applications are introduced. In particular, the focus will be on multicast address management and connection control, routing, congestion and flow control, and error control. First, we investigate multicast address management and connection control and provide a new technique for address management based on address space partitioning. Second, we study the problem of multicast routing and introduce a new approach that fits the real time nature of multimedia applications. Third, we explore the problem of congestion and flow control and introduce a new mechanism that takes into consideration the heterogeneity within the network and within the processing capabilities of the end systems. Last, we exploit the problem of error control and present a solution that supports various levels of error control to the different components within the collaboration session. We present analytic as well as simulation studies to evaluate our work, which show that our techniques outperform previous ones

    Reliable Multicast Transport for Heterogeneous Mobile IP environment using Cross-Layer Information

    Get PDF
    Reliable multicast transport architecture designed for heterogeneous mobile IP environment using cross-layer information for enhanced Quality of Service (QoS) and seamless handover is discussed. In particular, application-specific reliable multicast retransmission schemes are proposed, which are aimed to minimize the protocol overhead taking into account behaviour of mobile receivers (loss of connectivity and handover) and the specific application requirements for reliable delivery (such as carousel, one-to-many download and streaming delivery combined with recording). The proposed localized retransmission strategies are flexible configured for tree-based multicast transport. Cross layer interactions in order to enhance reliable transport and support seamless handover is discussed considering IEEE 802.21 media independent handover mechanisms. The implementation is based on Linux IPv6 environment. Simulations in ns2 focusing on the benefits of the proposed multicast retransmission schemes for particular application scenarios are presented

    Regular Topologies for Gigabit Wide-Area Networks

    Get PDF
    In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin
    corecore