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1 INTRODUCTION AND OVERVIEW

SRI International (SRI) is pleased to submit this final report describing our efforts under SRI

Project 8600, entitled "Regular Topologies for Gigabit Wide-Area Networks." In general terms,

this project aimed at the analysis and design of techniques for very high-speed networking. The

formal objectives of the project were to

• Identify switch and network technologies for wide-area networks that interconnect a

large number of users and can provide individual data paths at gigabit/s rates

• Quantitatively evaluate and compare existing and proposed architectures and

protocols, identify their strength and growth potentials, and ascertain the

compatibility of competing technologies

• Propose new approaches to existing architectures and protocols, and identify

opportunities for research to overcome deficiencies and enhance performance.

The project was organized into two parts:

1. The design, analysis, and specification of techniques and protocols for

very-high-speed network environments. In this part, SRI has focused on several key

high-speed networking areas, including forward error control (FEC) for high-speed

networks in which data distortion is the result of packet loss, and the distribution of

broadband, real-time traffic in multiple user sessions.

2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was

done within the framework of the DARTnet experimental T1 national network. The

aim of the work was to advance the state of the art in benchmarking DARTnet's

performance and traffic control by developing support tools for network

experimentation, by designing benchmarks that allow various algorithms to be

meaningfully compared, and by investigating new queueing techniques that better

satisfy the needs of best-effort and reserved-resource traffic.

This document is the final technical report describing the results obtained by SR1 under this

project. The report consists of three volumes:

Volume I contains a technical description of the network techniques developed by Sill in the

areas of FEC and multicast of real-time traffic (Part 1 of the project).

Volume 2 describes the work performed under CATE (Part 2).

Volume 3 contains the source code of all software developed under CATE.

The rest of this volume contains an overview of the work and the results obtained under Part 1.

For an overview of the work in CATE, see Volume 2.

1.1 ERROR CONTROL FOR HIGH-SPEED NETWORKS

The emerging generation ofgigabit wide-area networks (GWANs) will provide long-distance

data paths of bandwidth in excess of 1 gigabit/s to individual end users. The fiber-optic links of a

GWAN are characterized by very low bit-error rates (BER) on the order of 10-_4. However, in

network technologies such as asynchronous transfer mode (ATM), bottlenecks due to limited

storage, processing power, and switching speed are likely to cause packet loss. Traditionally, data



integrityhasbeenmaintainedby end-to-endandlink-by-link retransmissions.Suchclosed-loop

techniques are not effective GWAN paths, because such paths are characterized by a

high-bandwidth-delay product. End-to-end retransmissions result in intolerable storage

requirements and data delay, and network switches are not expected to have the processing power

and storage needed for link-by-link retransmission. For example, assuming data travel at the speed

of light, the propagation delay on a 3000 km path is 10 ms, which translates to 10 7 bit durations at

1 gigabit/s. For these reasons, end-to-end protocols based on open-loop control are preferable for

GWANs. Open-loop techniques require the use of FEC coding, in which the source adds redundant

bits to the transmitted data sequence, to allow a recipient to recover lost or erroneously received

data.

A coding scheme for GWAN must have the following properties:

• Recovery from long sequences of lost bits (that is, missing packets)

• Correction of occasional bit errors

• A low probability of undetected errors

• Minimal processing requirements per packet, preferably by low-complexity
hardware

• Addition of little delay to the data

• Requirement of minimal amounts of storage.

In Section 2 we present several coding schemes suitable for a GWAN environment. These

schemes are based on grouping the data packets into blocks, to which control (parity) packets are

added. Each coding scheme is limited in the number of packets it can recover; no packets may be

recovered if more than that number are missing from a single block.

Several methods for generating parity packets are described, along with decoding techniques

and their hardware-based implementations. We also present algorithms for reducing the effect of

bursts of missing packets by interleaving the packet sequence. Other techniques for combating

burst errors are based on the intelligent management of buffers in the network switches, and the

selective discarding of packets from congested buffers to disperse missing packets among as many

blocks as possible, thereby reducing the required coding complexity.

Performance evaluation, by both analytic and simulation models, shows that this technique

can reduce the packet loss rate by a reduction of up to three orders of magnitude.

1.2 HETEROGENEOUS MULTICAST OF REAL-TIME TRAFFIC

Multicast service, in which a source sends information to multiple recipients, has many

applications, including the updating of a replicated database, speech and video teleconferencing,

electronic mail, newsletter distribution, collaborative environments, and parallel processing.

The need for multicasting was recognized in the early days of computer networking, and some

protocols, mainly for multidestination routing, were developed (e.g., reverse-path forwarding of

broadcast packets [Karlson and Vetterli 1989]. The emergence of broadband networks and

high-performance workstations has provided the opportunity to establish and maintain multicast

sessions in which large numbers of real-time streams (e.g., video and multimedia visualizations)

are distributed to multiple users.
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The user population is expected to be heterogeneous, with the set of multicast recipients

greatly differing in their end devices and the network-access bandwidth available to them.

Consequently, when a source multicasts a broadband signal, not all intended destinations are

willing to receive or are capable of receiving the complete signal. Bandwidth or terminal

limitations restrict the rate of information that can be delivered to some, whereas others prefer to

pay less and receive only a subset of the information contained in a multicast signal. An example

of such a scenario is when a video signal is distributed to a (potentially large) number of recipients

who widely differ in their display devices and the bandwidth available to them. Users with

wideband access, high-resolution displays, and powerful processors can receive and process the

complete high-resolution color video signal, whereas users with less capable displays or lower

bandwidth access, who are capable of receiving only part of the signal, may prefer to receive, say,

only black-and-white video, rather than receiving no video at all. Similarly, in voice

communication, users may settle for low-rate synthetic speech without speaker recognition, when

they cannot receive a complete digital speech signal.

Moreover, users may differ in their ability to receive broadband multicast signals, even if they

have similar access bandwidth and terminals. In multimedia teleconferencing, users who send and

receive multiple streams that represent the various media may not be able to obtain the full

bandwidth needed to communicate via all these media simultaneously. Consequently, users must

choose the signal to be emphasized at any given time. These decisions, which are made by

individual users, are likely to change with time, reflecting the users' ability to focus on different

media at different times. For example, users may first allocate most of their access bandwidth for

video and de-emphasize computer animation; later, as more computational results are presented

through animation, that bandwidth allocation may change to allow a close examination of that

signal but reception of only a low-resolution, black-and-white video.

In a multiparty, multimedia session, a number of real-time streams, possibly representing

different media, are offered to the participants. In many cases, however, not all participants want

to or can receive all of the offered streams at all times. Session flexibility and network efficiency

can be greatly enhanced if participants are provided with the means for specifying the streams they

wish to receive and the desired quality for each stream. The network can use this information to

decide which sla-eams to distribute and where, and to resolve conflicts so as to maximally satisfy

the participants' individual requests and capacity constraints. This is particularly important in a

heterogeneous network where link capacities and traffic demands vary across the network, thereby

necessitating the delivery of different streams to different parts of the network according to

individual destinations and network constraints. In such an environment, it is of great importance

to optimally distribute multiple streams from a source to a set of destinations, subject to the

destinations' requirements and the limitations on available link capacities.

In Sections 3, 4, and 5 we report on three major areas of investigation in heterogeneous

multicast (HMC). In Section 3 the basic motivation and techniques for HMC are presented,

including an algorithm for computing distribution trees that provide a path from the source to each

destination with the maximum available bandwidth. We also present an efficient algorithm for

optimal allocation of bandwidth to the various signal layers, based on the bandwidth availability
for the destinations.
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In Section4 wefocusonthecasein whichacollectionof streamsis distributedfromasource
to themulticastdestinationsoveraprecomputedtree.Users'requestsareexpressedby meansof
bids, which are non-negative values assigned by each destination to each offered stream. Assuming

that the source gains an amount equal to a user's bid whenever a stream is delivered to that user,

we seek distributions that maximize the sources' gain. The optimal assignment of streams to the

links of a multicast tree is formulated as an integer programming problem, and an algorithm for

determining the optimal assignment is presented. The algorithm consists of three procedures:

listing candidate assignments on a single link, listing candidate assignments on tree paths, and

evaluating the gain for each assignment. The algorithm's correctness is proved, and its

computational complexity is ascertained.

In Section 5 we explore the issue of maintaining the multicast tree by incrementally changing

a maximum bandwidth tree (MBT) for HMC, to accommodate changes in the population of

destinations and their traffic demands. The objective is to deliver maximum traffic to each

destination while retaining the tree structure and to efficiently distribute traffic. Both centralized

as well as distributed asynchronous algorithms are presented. The former algorithms are

Dijkstra-like; while the latter are Belman-Ford-like, in that both the cost function and the labelling

rule change to suit our objective. Two types of algorithms are presented: in the first, the

maximum-bandwidth path to the new destination is obtained on the condition that no changes are

made to the existing MBT; in the second algorithm, the maximum-bandwidth path to the new

destination is obtained with minimal changes to the existing MBT. For each of the above types of

algorithms, we present a centralized asynchronous algorithm of each type, i.e., algorithms whose

computations start from the source and destination nodes, respectively. A third algorithm is also

presented that restores the tree structure to the routing paths, if that tree structure is destroyed.
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2 PACKET RECOVERY IN HIGH-SPEED NETWORKS USING CODING
AND BUFFER MANAGEMENT

Rapid progress in the development of fiber optics and components for photonic transmission,

reception, coupling, filtering, and related communications functions has created the technology for

constructing gigabit/s multiuser networks [Nussbaum 1988]. So far most of the research in high-

speed communication systems has focused on local and metropolitan area networks (LAN and

MAN) [IEEE 1989; Prucnal, Blumenthal, and Santoro 1987; Sun and Gerla 1989; Rom and

Shacham 1988; Maxemchuk 1986], and on high-speed switches [Huang and Knauer 1984;

Turner 1986; Acampora 1989]. Efforts are now underway to design and construct wide-area

networks to span large geographical regions and provide long-distance data paths of bandwidth in

excess of 1 gigabit/s to individual end users. We call such systems GWANs.

GWAN data paths are composed of fiber-optic links with very low BERs. It is not uncommon

to achieve error rates of 10-14 over a long-distance fiber cable, despite the presence of regenerators

every 100 km.

Despite their enormous link bandwidths, GWANs are still expected to experience bottlenecks

due to limited storage, processing power, and switching speed. Statistical resource sharing by a

large number of high-speed, fluctuating-rate streams is bound to cause congestion and occasional

buffer overflow. Even when a GWAN guarantees users a minimum data rate, its flow-enforcement

mechanisms, such as Leaky Bucket [Turner 1986], are designed to delete packets that exceed the

network's ability to switch and forward. Packet loss is likely to be the dominant cause of data
distortion in GWANs.

Network switches and end users traditionally rely on acknowledgement (ACK)-based closed-

loop control to recover lost packets, and adjust incoming traffic rates to overcome congestion

[Burton and Sullivan 1972]. The high delay-bandwidth product of long-distance data paths in

GWAN results in a large "path storage." For example, assuming data travel at the speed of light,

the propagation delay on a 3000 km path is 10 ms, which translates to 107 bit durations at

1 gigabit/s. In such an environment, ACK-based end-to-end protocols require large data storage,

reduce channel utilization, and may cause instability. Because of these reasons, end-to-end

protocols based on open-loop control are being developed for GWANs. An example of this trend

is the aforementioned Leaky Bucket flow-control mechanism.

Another example of open-loop control is FEC coding, in which a recipient can recover lost or

erroneously received data via parity bits, which are added by the source to the information

sequence. Recovering lost packets reduces the need for retransmissions of reliable data, and

enhances the quality of real-time data transmission that cannot rely on ACKs and retransmissions

because of the large delays involved.

A coding scheme for GWANs must:

• Deal with long sequences of lost bits (that is, missing packets)

• Correct occasional bit errors

• Result in low probability of undetected errors.



Sincebits aretransmittedat extremelyhighrates,codingshouldbe done with minimal

processing per packet, preferably by low-complexity hardware. It should add little delay to the data

and require minimal amounts of storage. In Subsection 2.1 we present several coding schemes
suitable for a GWAN environment. These schemes are based on grouping the data packets into

blocks, to which control packets are added. Each coding scheme is limited in the number of packets

it can recover: no packets may be recovered if more than that number are missing from a single

block. In Subsection 2.2 we discuss techniques for reducing the effect of bursts of missing packets

by interleaving and by intelligent buffer management, whereby packets are selected for deletion on

the basis of their block affiliation. In Subsection 2.3 we use the reduction in packet loss rate as the

performance measure for our coding schemes, and discuss the effect of block size, packet arrival

rate, and amount of coding overhead on performance. We provide results from both a simple

analytic model and more realistic simulations that show the limitations of the coding schemes and

the conditions under which they substantially reduce in loss rate.

2.1 CODING FOR PACKET RECOVERY

2.1.1 General Considerations

When noise-induced bit errors are the main cause of data distortion, as is the case in current

computer communication networks, data are carried in the same packet as the error-control bits

protecting them. However, recovery of lost packets requires that the error-control bits and the data

they protect be carried in separate packets. Chiou and Li [1988] proposed the duplication of each

data packet to enhance data survivability in high-loss military data networks. In GWAN, packet

loss rate is expected to be sufficiently small to make this 50% rate repetition code quite inefficient.

Our approach utilizes sequence numbers, which are already required by many protocols.

Since the order in which packets are sent is denoted by sequence numbers in ascending order, a

data recipient identifies missing packets by gaps in the arriving sequence, either upon the arrival

of a packet with an out-of-sequence number, or after a pre-determined waiting time. Thus, a

missing packet can be considered as a sequence of bit erasures, i.e., unreliable bits whose location

is known [Blahut 1988]. Several FEC codes efficiently correct erasures, most notably the Reed-

Solomon codes [ibid]. However, the special case we consider, in which erasures come in packet-

size sequences, allows us to employ simpler techniques for recovering lost data.

The rate at which packets are lost often depends on the rate at which packets are emitted by

the source. In particular, packets are more likely to be rejected because of buffer overflow as their

rate of arrival to the buffer increases. Since coding increases the volume of traffic entering the

network, the data packet loss rate is likely to increase after the control bits are added. Thus, the

lower the code overhead (i.e., the higher the code rate), the lower is the increase in the packet loss

rate. However, using control bits to recover lost packets should bring the packet loss rate below the

loss rate at which no coding is used. The ratio of packet loss rate after decoding to the rate at which

no coding is used is denoted the loss ratio, and it must be smaller than 1:1 for the code to be useful.

In addition to the above consideration, the coding scheme must be suitable for implementation

in gigabit/s networks: that is, it should require little processing and even be amenable to hardware

implementation in hardware. Both coding and decoding should add a minimal amount of delay to

the packets, and should require only small data storage for operation.



Basedon theaboveconsiderations,weproposeto groupdata packets into blocks of

predetermined size, and add to each block a number of pariS.' packets to contain the error-control

bits. The number of parity packets, and their construction, determines the maximum number of data

packets that can be recovered. However, any subset of missing packets can be recovered by using

the parity packets and the other data packets of the block. The balance of this section presents

several methods for constructing parity packets and using them to recover lost packets. For

simplicity of presentation, we assume that all packets are m bits long; however, the schemes can

also work with variable-length packets. We begin with the simplest technique for recovering a

single packet per block.

2.1.2

by

A Single Packet Recovery

To each block of K data packets the source adds an m-bit parity packet, whose i-th bit is given

K

CK÷I,i = (Z cj, ilm°d(2) (l)
"j= l

where cj i is the i-th bit of the j-th packet. We denote such a packet a "vertical" parity packet,
because if the' block is arranged as a rectangular array with packets as rows, cK + 1, i is the sum
modulo 2 of the bits in the i-th column.

The parity packet is generated by an encoder consisting of m exclusive-or gates (XOR, or

symbolically _), each of which has its output connected to one of its input ports, as shown in

Figure 1. Packets are given, one at a time, to the encoder, with bits 1, 2 ..... m applied to the input

ports of gates 1, 2 ..... m, respectively. At a clock pulse, the decoder output port i represents the

sum modulo 2 of bits in position i of the previous packets in the block and bit i of the current

packet. There is no need to store the whole block of packets at the source; thus, immediately

following its "contribution" to the encoder, a packet can be sent over the network. Following the

application of the K-th packet, the gates' m output ports contain the parity packet, which is then
transmitted.

The recipient of the packet sequence employs a decoder similar in structure to the encoder.

For a given block, each arriving packet is applied in parallel to the m input ports of the decoder.

Following the application of any subset of K packets from a block, the m output ports contain the

remaining packet. If no data packet was lost or excessively delayed in the network, those first K

packets are the data packets of the block, in which case the recipient may ignore the parity packet.

If, however, data packets are missing from a block, the recipient identifies the location of the

missing packets from the gap in the sequence numbers, and considers these packets to be erasures.

If only one of the block's data packets is missing, the K packets applied to the decoder include

K - 1 data packets and the vertical parity packet. In this case, the erasure is replaced by the

contents of the parity generator's output after those K packets are applied to the decoder.

Notice that the arriving packets need not be delayed at the receiver. Every packet is applied

to the parity encoder/decoder, and immediately thereafter can be forwarded. Furthermore, packets

may be applied to the decoder in an arbitrary order, since the XOR operation is commutative. This

is particularly important for networks that do not guarantee sequenced delivery.
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2.1.3 Multiple Packet Recovery

When a block protected by a single vertical parity packet is received with two or more packets

missing, none of those packets can be recovered. More control data must be added to recover

multiple packets in a block. Since recovering an erased packet amounts to solving an equation with

one unknown, there must be at least as many parity packets as there are missing packets. Each of

those parity packets must add a linearly independent equation to the set.

To recover two packets in a block, we propose to add a diagonal parity packet, the bits of

which are the modulo-2 sums of bits along block diagonals, as follows:

CK + 2. i

( Y---_ = 1 Cj.k+ 1-j) mod(2)

(X',K+ lL,j = 1 Cj, k ÷ 1 -j) rood(2)

-i+ l( j = 1 Ci- m +j, m + 1 -j) mod(2)

1 <_i<K+ 1

K+2 < i _<m

m+ l <_i<_m+ K

(2)

Here we assume K < m - 1. Similar equations can be written for K > m - 1. Notice that the

diagonal parity packet has m + K bits, compared to m bits in a data or vertical parity packet. If the

network requires all transmission units to be of the same size, such as ATM cells [Gonet, Adam,

and Coudreus 1986], a diagonal parity packet may have to occupy more than one unit. For K < m,

a diagonal packet occupies two transmission units.

The encoder for constructing the diagonal parity packet is similar in structure to that shown

in Figure 1, except that its registers have m + K storage elements each and the i-th packet of the

block i = 1..... K ÷ 1 is shifted to the right and placed with its first bit in the i - 1 -st element. To

create a block with two-packet recovery capability, the source employs a vertical encoder, as

described below, and a diagonal encoder. The operation is still sequential, in that as soon as a

Packeti-,JlJ2J3I
Packet i

Clock

Output

1,12131 I

I

Counter ]

m _ Output

Figure 1. Parity Packet Generation
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packet is clocked into both encoders (possibly in parallel), it is shipped to the network. Following

the clocking of the K-th packet, the vertical parity packet is ready, but before it is sent, it is also

clocked into the diagonal encoder. At that point, the diagonal packet is ready.

The recipient employs two encoders identical to those used by the source. Its first step in

decoding is to generate two new parity packets, one from each encoder, as follows. The data

packets of a given block are clocked into each encoder and, as soon as the last one is clocked, the

outputs of each encoder are summed modulo 2 bitwise with the corresponding parity packets that

arrive from the networks. The new parity packets, one vertical with m and the other diagonal with

m + K bits, are used by the recipient to construct up to two missing packets in the block. We denote

the bits of these new parity packets dK + l, i. (i = 1.2 ..... m) and

dK. 2, i , (i = 1, 2 ..... m + K), respectively.

Let us examine how the recipient reconstructs two packets in a block by using the new parity

packets. Assume that packets 1 and 2 are missing. The first bit of packet 1, cl, 1 can be recovered

since it equals the first bit of the diagonal packet, cK+2, 1, and c2, 1 = Cl, 1 _ dK+ l, 1" For

1 < i -< m, then c 1, i = c2, i - 1 _ dK + 2, i and c2. i = cl, i @ dK + 1, i- Decoding of any other pair of

data packets is done in a similar fashion. See Figure 2 for a possible hardware implementation of

the decoder; note that the interconnections of gates and registers in that figure are for decoding

packets 1 and 2, and would be somewhat different for other packet pairs.

dK+l

Cl.

dK+2
I I 2 I 3

C2. m-

t

ol
V

c2, m

Cl, m

-)

, ... Im KI
Figure 2. A Decoder for Reconstructing Two Packets

If one data packet and one parity packet are missing from an arriving block, the other parity

packet is used to recover the data packet. If the only missing packets are the parity packets, the

recipient ignores them and forwards only the data packets. If more than two packets are missing

from a block, none can be recovered with this 2-packet coding scheme.
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It is possibleto incrementallyenhancethepacket-recovenngcapabilityby addingparity
packetsthatareconsmactedby asetof modulo-2additions,linearlyindependentof thepreviously
constructedparitypackets.Forexample,to beableto reconstructthreelostpacketsin ablock,we
addto thepreviouslydescribedverticalanddiagonalparitypacketsanotherdiagonalparitypacket,
this onewith parityoperationsalongtheblockdiagonalsorthogonalto thoseusedin thefirst
diagonalparitypacket.Thesourcemustnow employanadditionalencoder,andthedecodmg
schemeis somewhatmorecomplex.

2.1.4 Handling Bit Errors

Although bit errors are rare in GWAN, they nevertheless do occur and must be anticipated. A

parity bit added to a packet ("horizontal" parity), detects a single bit error in that packet, through a

mismatch between its value and the modulo 2 sum of the received data bits. If a single bit error

occurs in a block in which no packet is missing, the bit in the vertical parity, which is in the same

position in the packet as the erroneous bit, shows a similar mismatch. The intersection of the

column and row identifies the bit in error, thereby allowing the recipient to correct it. To detect

more than one bit error in a packet, a stronger error detecting code is needed, for example 16-bit

CRC [Blahut 1988]. Multiple errors per packet can be corrected by the CRC and the parity packet,

provided no packet is missing from that block and no other packets contain errors. This condition

is quite reasonable because of the very low error probability in fiber-optic links.

If there are both missing packets and bit errors in a block, and the total number of those

packets is not larger than the maximum that can be recovered, the recipient considers the packets

with bit errors as erasures and recovers all the packets, as described in the previous subsection.

It is also possible to add a small amount of parity bits that allow the recipient to correct bit

errors in a packet and recover the maximum number of erased packets allowed by the parity

packets. Consider for example a block of K data packets to which vertical and diagonal parity

packets, as described in the previous subsection, are added. Suppose that in such a block packets 1

and 2 are missing and in packet 3 bit ca, i is erroneous.

The recipient first attempts to recover packets 1 and 2 as if packet 3 does not include a bit

error. This results in an error pattern consisting of two bit errors in packet 2 and a single error in

packet 1. To correct these errors the recipient needs additional m/2 parity bits. Each such bit

includes in its construction only one of the errors in the above pattern. By knowing the packets in

which the error occurred, two diagonal parity packets are sufficient to determine the location of the

errors. Notice that these m/2 parity bits can be accommodated in the second part of the diagonal

parity packet, where K < m/2, so that no additional packets are generated.

2,1.5 Recovering a Burst of Lost Packets

Arranging the data in a matrix, and adding parity bits both for the rows and the columns, can

used for correcting bit errors [Clark and Cain 1981]; this idea also be employed to recover bursts

of lost packets. To do so, we arrange the data packets in a K x M array and add to each row and
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each column of the array a parity packet. The i-th bit of a parity packet is the modulo 2 sum of the

i-th bits of the data packets in the corresponding row or column. That is, if we denote by ¢i.j, k the
k-th bit of the packet in the (i,j) position in the array, then

M

Ci, M+l,k = _Eci, j,k_mod(2), l <k<_m, l <__i<_K (3)

K

i 1

1 <_k<_m, 1 <_j<_M (4)

The code rate, (K + M) / (KM), can be varied by adjusting the dimensions of the array.

If the packets are sent by rows, this scheme can recover bursts of missing packets of any

length less than or equal to M. Such recovery is done with the aid of the column parity packets

only. The row parity packets are used to recover additional missing packets scattered over the

array. This technique requires larger hardware complexity: K + M coders similar to those

described in Subsection 2.1.3. Note that packets do not encounter larger delays at the source than

they would with no interleaving. Also, if a row suffers only a single missing packet, that packet can

be recovered after the last packet of the row is received. On the other hand, if two or more packets

are missing from a row, they must wait until their respective columns are fully received.

2.2 BUFFER MANAGEMENT AND INTERLEAVING

Bit errors are caused by random processes; and although network designers can affect the

average error rate, say by adjusting signal power, they cannot select the bits that will be received

in error. In contrast, a congested node selects a particular packet for deletion from the set of packets

available in its buffer, according to preprogrammed buffer management rules. In current networks,

these rules are designed to support congestion control and improve throughput and fairness in

service. For example, a buffer management scheme may give priority to packets that are already in

the buffer and may reject all packets that arrive when the buffer is full. Other rules may assign

priority to packets based on their source or destination, on the elapsed time they have spent in the

network, or according to the rate at which those packets are emitted by their source.

Buffer management rules may not affect the average rate at which packets are lost, but they

can have a strong effect on the distribution of lost packets. The performance of the error control

scheme described above strongly depends on this distribution. For example, two missing packets

in a block are not recoverable, but two packets in adjacent blocks are. Thus, the role of buffer

management procedures in enhancing end-to-end error control can be that of dispersing the deleted

packets so as to minimize the number of blocks that arrive with multiple missing packets. This can

be done in the following manner. When an arriving packet finds a full buffer and that packer's

block has already suffered a lost packet, the server deletes from its buffer a packet from a previous

block that has not lost an 3, packets so far and admits the arriving packet. Only if such an intact block

cannot be found does the server delete a second packet from a block. Figure 3 depicts the algorithm

by which packets are deleted from the buffer.

11



Suppose now that the server in question has a finite buffer that can store up to B packets, and

that the arrival process consists of a stream of packets sent in ascending sequence numbers from a

single source. Making the block size K less than B guarantees that whenever an arriving packet

finds a full buffer, there is at least one packet from a previous block in the buffer. If B < K, arriving

packets from the end of the i-th block may not find packets from the i - 1 -st block in the buffer,

thereby limiting the usefulness of this technique. In the next section we show that although the best

performance without buffer management is sometimes achieved for a block length larger than the

buffer size, not much degradation is encountered when K is restricted to be smaller than or equal

to B. This provides for further improvement by buffer management.

In the discussion so far we have assumed that the packet stream arriving at the server consists

of a consecutive sequence of contiguous packet blocks. Under these circumstances, the server has

access at any moment to at most FB/K7 blocks, aside from the block whose packets are arriving

at that moment. For a single packet recovery coding, FB/K1 + 1 is the maximum-length burst of

missing packets that can be recovered.

If the level of spreading offered by the buffer management is not sufficient, the source can

arrange its packets in N interleaved streams, by assigning to each stream every N-th packet. Such

deterministic interleaving spreads bursts of deleted packets in the arriving stream over multiple

blocks. However, monitoring multiplexed streams requires more effort by the server than is needed

for a single stream.

new arrival

N Y

I delete,packet fromunoeleted block I

I
I admit new arrival I

Figure 3. An Algorithm for Packet Rejection
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"Natural" spreading of bursts occurs when the arriving stream comprises intermixed packets

from many sources. This is the case, for example, when the server represents a controller of an

output queue in a space-division switch [Hluchyj and Karol 1988], to which packets are arriving

from all input ports, each carrying an independent stream. In this case the packet mix is random

rather than deterministic, in the sense that a given packet belongs to a specific stream with some

probability. It is interesting to note that deterministic interleaving offers better burst spreading and

thus lower probability of loss than random interleaving. For example, consider a burst of length

s < N. All the packets in this burst are recoverable under deterministic interleaving because no

block suffers more than one missing packet. On the other hand, in the random case, there is some

probability that some blocks suffer two or more losses. This probability may be quite large, a

phenomenon -known as the "birthday paradox" [Feller 1958], so named because of the

"'paradoxical" fact that among a group of 23 people, there is a better than 50% probability that two

of them will share a birthday. In our case, a burst of 14 consecutive erasures in a data stream

consisting of 100 randomly multiplexed streams results in a 0.615 probability that two of the

erasures will share the same traffic stream, thereby resulting in an unrecoverable erasure. In

contrast, the use of a 100-way deterministically interleaved stream would guarantee that each of

the erasures in the burst of 14 would occur in a different FEC block.

2.3 PERFORMANCE EVALUATION

As indicated above, the two factors in the packet loss process that must be incorporated in a

model are

• The packet rejection distribution and the effect of adding parity packets on that

distribution

• The reduction in packet loss rate through buffer management and coding.

The model we use in this section for ascertaining this effect is depicted in Figure 4. It consists

of a data source to generate both data and parity packets and send them through a single server with

a finite buffer, which represents the network. Packets are lost when an arriving packet finds a full

buffer. The specific packet that is rejected in this case depends on the buffer management scheme

exercised by the server. The data recipient gets the packet sequence and attempts to recover

missing data packets by using the parity packets.

Source Network Recipient

0 ,lllllD 0
P toss ( ?_) P loss ( ?_)

?_(1 + n/ K) Ploss ( Z (1 + n/ K) ) P dec ( )_ ( l + n/ K) )

Figure 4. Performance Evaluation Model
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The main parameters in the model are the buffer size (B), the number of parity packets per

block (n), the number of data packets in a block (K), and the rate, denoted by ;_ packets/second, at

which the source generates fixed-size (m bits) data packets. Time is slotted and each data packet

requires exactly one slot to be transmitted. We assume that the number of packets arriving during

slots 1.2 .... , are independent Poisson distributed random variables with mean k. The measure of

performance we use is the loss ratio, defined in the following paragraph.

When only data packets are sent, at rate _., the loss rate Ptoss ( ?_) experienced at the server is

also the loss rate observed at the recipient output assuming no retransmissions. Adding n parity

packets to every block of K data packets increases the packet rate at the server to k ( 1 + n/K) and

consequently the loss rate of the packet stream to Pioss ( ?_( 1 + n/K) ). This latter loss rate,

however, is reduced by decoding at the recipient to Paec ( ?_( 1 + n/K) ). The loss ratio, G, of the

coding scheme is defined as

Pdec(k( 1 + n/K) )
G -= (5)

Pioss ( Z )

and for a coding scheme to be useful, it must have G < 1.

Several interesting tradeoffs can be investigated with this model. An example is the percent

of parity bits in the packet stream. On the one hand, the number of packets that can be recovered

in a block increases with the number of parity packets in the block. On the other hand, a large

percent of overhead packets increases the traffic rate and hence the loss rate in the packet stream

arriving at the decoder. The percent of overhead packets is also constrained by the requirement that

the total packet rate, data and parity, should be less than 1 to avoid buffer saturation. We investigate

these and other considerations in the subsections below with a simple analytic model and with more

realistic simulation results. We end this section with a discussion of FEC code design constraints.

2.3.1 Analytic Model

To analytically model the performance, we consider the case in which the packets arriving at

the server are from a single source, and coding is based on adding a single parity packet to each

block of K data packets with no interleaving. We assume that the numbers of packets arriving in

time slots 1, 2 .... are independent, Poisson distributed random variables with rates Z and

( 1 .4.n/K), for the uncoded and coded packet streams respectively.

The packet loss probabilities, Ptoss (?') and PIoss ( ?_( 1.4- n/ K) ) are each the rejection

probability for a discrete-time, single-server queue with finite size B, and constant service time of
one slot. The buffer behavior is modeled as a finite-state discrete time Markov chain, in which the

state is the number of packets in the queue just before the beginning of a slot. The state transition

probabilities can be found in the literature (for example by Hluchyj and Karoi [1988]).

The decoder performance is evaluated under an additional assumption, which is that each

packet finds a full buffer with probability p = Ptoss( _ ( 1 + n/K) ), independently of other

packets. That is, we represent the effect of buffer overflow by marking each packet with a "loss"

tag with probability p and leave it unmarked with probability 1 -p.
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First consider decoding with no buffer management. At the decoder, the number of lost

packets in a block is a random variable with binomial distribution and parameters K + 1, p. That is,

Pr { i lost packets in a block } = b ( K + 1, i. p) - (K + 1)pi( 1 _ p) K . I - i (6)
i

A lost packet can be recovered if and only if it is the only lost packet in its block. The average

number of packets lost in a block after decoding is given by

K+I

EL = _,,jb(K+ l.j,p) = (K+l)p- (K+ l)p(1-p)g (7)

j=2

The packet loss rate after decoding, Pdec, is thus given by

Pdec = EL/(K+ 1) = p -p( 1 _p)g=p( 1 - e -Kpp) (8)

where the approximation is for small values ofp and large values of K such that Kp is finite.

Let us now consider the selective rejection of packets at a typical network node. Suppose that

the node buffer is not smaller than the block length, so that whenever an arriving packet, say from

block l, finds a full buffer, there is at least one packet from block I - 1. The new packet is accepted

into the buffer only if a previous packet from block l has been rejected and block l - 1 did not

suffer any packet loss. In this case, a packet from block l - 1 is rejected to make room for the new

arrival from block I. This implies that block / - 1 arrives with no lost packets if and only if block

1 has no more than one lost packet.

To ascertain the effect of this buffer management procedure on the decoder's performance,

we start with the stream of rejected ("marked") and accepted packets. If two or more packets are

missing from block l and none from / - 1, the buffer management action amounts to deleting a

packet from block l - 1 and restoring a packet in block I. Ifa packet is already missing from block

l - 1, no "trading" is done.

Let i,j be the quantity of missing packets in blocks ! and ! - 1, respectively. Let L(i,j) be

the number of packets that cannot be recovered after decoding in block l, given i, j.

0 i=0,1

0 i=2,j=OLi'j = i - 1 i >_3,j = 0 (9)

i i>2,j>O
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Thus,theprobabilityof packetlossafterdecodingwith buffermanagementis givenby

Paec= EL/(K+ I) =

K+I
1

(K+ 1) ._
tin3

{ib(K+ 1, i,p) [1 -b(K+ 1,0,p)] + (i- 1)b(K+ 1, i,p)b(K+ 1,0,p) }

=p- b(K+l,l,p) +b(K+l,O,p) (10)
K+I K+I

[1 -b(K+ 1, 1,p) -b (K+ 1,0,p) +b(K+ 1, 2,p) ]

Tables 1 and 2 depict the performance of the scheme described above, for buffer size B=20,

and packet arrival rates before encoding of 0.8 and 0.9, respectively. The entries for K = oo

represent no encoding, and the packet loss probabilities are those for a single server queue with the

above arrival rates. The second row shows the packet loss rate for the value of K that minimizes

that loss rate after decoding, without buffer management. For example, for _ = 0.8, with no

encoding the packet loss rate is 2.55 x 10 -s. With block size K = 70, the higher packet rate of

0.8 ( 1 + 1/70) causes the loss probability to increase to 4.17 x 10 -5. However, the decoder

reduces that rate to 1.22 x 10 -7, thereby achieving a total packet loss reduction of more than two

orders of magnitude. For K = 19, the largest block size for which the server can apply the buffer

management scheme effectively, the total improvement in Pdec is almost three orders of

magnitude. At data-packet rate _. = 0.9, the initial loss rate is higher than before and the

improvement is smaller, as Table 2 shows. However, even at that congested level, the packet

recovery scheme, along with proper buffer management, reduces the packet loss rate by more than

an order of magnitude.

Table 1. Probability of Packet Loss with B = 20 and _, = 0.8; All Quantities

Are for Z ( 1 + 1/K)

LOSS PROBABILITY

WITH BUFFER
K BEFORE DECODING AFTER DECODING MANAGEMENT

co 2.55 x 10 -5

70 4.17 x 10 -s 1.22 x 10 -7

19 1.5 x 10 --4 4.25 X 10 -7 1.28 x 10 _

10 6.55 x 10 --4 4.28 X 10 -6 2.51 X 10 -7

8 1.35 X 10 -3 1.46 x 10 -s 1.12 X 10 -6

6 4.11 x 10 -3 1.0x 10 --4 1.15 x 10 -5
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Table 2. Probability of Packet Loss with B = 20 and ;_ = 0.9

K

oo

65

19

10

8

LOSS PROBABILITY

BEFORE DECODING

1.35 x 10 -3

2.18 × 10 -3

6.28 x 10 -3

1.89 x 10 -2

3.0 x 10 -2

AFTER DECODING

2.89 x 10 -4

7.07 x 10 -4

3.26 x 10 -3

6.39 x 10 -3

WITH BUFFER
MANAGEMENT

1.22 " 10 -4

8.78 x 10 -4

2.11 x 10 -3

6 5.43 x 10 -2 1.51 x 10 -2 6.39 x 10 -3

2.3.2 Simulation

In the analytic model we assume that packets are rejected independently. To study the

sensitivity of the coding scheme to correlation in the rejection process, we simulated the model

shown in Figure 4. Runtime parameters to the simulation include data input rate, the type of FEC,

the amount of deterministic interleaving or random multiplexing, and the type of buffer

management.

Each simulation run was repeated five times with different random number generator seeds.

In all cases, the confidence intervals computed from these values are more narrow than the lines

on the graphs. Although the effects of initial conditions were not eliminated, comparisons with

analytic results, where available, indicate that the measured simulation results deviate by less than

10% from the computed values.

The following paragraphs compare the results of the simulation with those of the analytic

model, then present simulation results comparing the efficacy of buffer management, FEC,

deterministic interleaving, and random multiplexing. These results show that buffer management

is necessary to achieve an acceptable loss ratio, that a simple single-erasure-correcting FEC

scheme used in conjunction with deterministic interleaving is superior to more complex FEC

schemes, that deterministic interleaving is superior to random multiplexing, and that loss ratios
of 10 -3 are achievable.
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2.3.2.1 Comparison to Analytic Results

Tables 3 and 4 show that the loss probability, both with and without buffer management, is

much worse than that predicted by the analytic model; in fact, in all cases the FEC gain is

insufficient to overcome the greater erasure rate caused by the addition of the redundant packets.

This is due to the extremely bursty nature of the queue overflow process. The following sections

evaluate some methods for improving this situation.

Table 3. Probability of Packet Loss with B = 20 and ;_ = 0.8 (Simulation)

LOSS PROBABILITY

WITH BUFFER
K BEFORE DECODING AFTER DECODING MANAGEMENT

2.68 × 10 -5

70 4.79 " 10 -s 3.96 x 10 -5 3.45 x 10 -5

19 1.8 x 10 -4 1.53 x 10 -7 8.53 x 10 -5

lo 6.67 x 10 -4 5.15 x 10 -4 1.98 × 10 -4

8 1.61 x 10 -3 1.21 x 10 -3 3.36 x 10 -4

6 3.85 x 10 -3 2.77 x 10 -3 5.61 x 10 -4

Table 4. Probability of Packet Loss with B = 20 and ;_ = 0.9 (Simulation)

LOSS PROBABILITY

WITH BUFFER

K BEFORE DECODING AFTER DECODING MANAGEMENT

1.61 × 10 -3

65 1.87 × 10 -3 1.74 × 10 -3 1.66 x 10 -3

19 5.78 x 10-3 5.14 x 10 -3 3.89 x 10 -3

10 1.47 x 10 -2 1.23 x 10 -2 6.69 x 10 -3

8 2.41 x 10 -2 1.95 x 10 -2 9.34 x 10 -3

6 4.68 x l0 -2 3.69 x 10 -2 1.45 x 10 -2

2.3.2.2 Buffer Management

The great improvement due to buffer management is clearly illustrated in Figure 5, which

shows the loss ratio with and without buffer management, respectively, for a M/D/l/10 queue

carrying randomly multiplexed streams with an aggregate ;_ of 0.85. Each stream has single-

erasure-correcting FEC, each block of which consists of 20 data packets and a single FEC packet.

A loss ratio of zero indicates perfect performance.
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As can be seen from the figure, buffer management improves the loss ratio by up to two orders

of magnitude. Note that more than two traffic streams must be present in order for coding to show

any benefit at all, even with buffer management. As will be shown later, deterministic interleaving

may be used to overcome this difficulty.

2.3.2.3 FEe Versus Deterministic Interleaving

Another method of reducing the loss ratio is to increase the erasure-correcting capability of

the FEC coding scheme, by using the diagonal parity packets described in previous sections. Recall

that a diagonal parity packet is longer than a data packet. We make the pessimistic assumption that

two MB-bit packets are added to the traffic for each diagonal packet.

This section compares three FEC coding schemes: a single-erasure-correcting scheme

requiring one overhead packet per block, a double-erasure-correcting scheme requiring three

overhead packets per block, and a triple-erasure-correcting scheme requiring five overhead packets

per block. These schemes are compared at equal code rates; thus, the first scheme has 20 data

packets per block, the second has 60, and the third has 100.

The single-erasure-correcting scheme with a three-way interleave can be considered to act as

a separate coding scheme, with 60 data packets per block, that is capable of correcting from one to

three erasures per block, depending on the distribution of erasures within the block. Similarly, the

single-erasure-correcting scheme with a five-way interleave can be considered to act as a separate

coding scheme, with 100 data packets per block, that is capable of correcting from one to five

erasures per block, again depending on the distribution of erasures within the block.

Figure 6 demonstrates that interleaving the single-erasure-correcting scheme is superior to

using the more complex multiple-erasure-correcting schemes for a M/D/l/10 queue with buffer

management and ?_ = 0.85. The loss ratio for each FEC coding scheme is plotted against a

normalized degree of interleaving, consisting of the actual degree of interleaving multiplied by the

ratio of the block length divided by the block length of the single-erasure-correcting scheme.
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Figure 6 thus compares the double-erasure-correcting scheme to the single-erasure-correcting

scheme at triple the interleaving, and compares the triple-erasure-correcting scheme to the single-

erasure-correcting scheme at quintuple the interleaving.

Note the presence of loss ratios of better than 10 -3 in Figure 6.
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Figure 6. FEe Versus Deterministic Interleaving

2.3.2.4 Interleaving Versus Multiplexing

Figure 7 shows that deterministic interleaving is slightly superior to random multiplexing for

an M/D/l/10 queue with buffer management and load ;_ = 0.85. This effect becomes more

pronounced for larger queues, which have lower raw loss rates.

However, the increased interleaving results in increased delay for the correction of erased

packets. The tradeoff between delay and reliability is application dependent. It is instructive to

compare the delay caused by interleaving with the delay imposed by round-trip time on
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retransmissions. Assuming that the source and destination are located 3000 km from each other,

communicate at a rate of 1 gigabit/s, and are connected by a speed-of-light communications

medium, the round-trip time will be greater than 1600 packet durations. This means that an FEC

scheme that uses a block length of 20 packets may use up to 160-way interleaving, while still

maintaining an average reconstitution delay smaller than is possible with a retransmission-based

scheme.

2.4 CONCLUSION

The novel technique for reducing the packet loss rate in high-speed wide-area networks,

which was presented in this section, is based on open loop recovery. Parity packets, which the

source adds to each block of data packets, are used by the recipient to reconstruct lost packets from

the respective blocks. The missing packets are identified by observing a sequence-number gap in

the stream of incoming packets. Methods for recovering a single or double loss, and larger numbers

of losses from a block were presented. Bit errors can be corrected by either reconstructing the

affected packet as if it were missing or by additional parity information.

To alleviate the effect of packet loss correlation, we proposed to enhance buffer management

procedures in the networks so that packets are rejected based on their block affiliation and the

number of packets already lost in their block. A similar effect can be achieved by interleaving the

data, either intentionally by the source, or as it occurs naturally during statistical multiplexing.

We evaluated the performance of these packet recovery schemes by using a model, which

consists of a source that codes the data; a single-server, discrete-time, finite-capacity queue which

causes packet loss and at which buffer management is carried out; and a recipient, which uses a

decoder to reconstruct missing packets. The performance measure we selected was the ratio of

packet loss rate after decoding to the packet loss rate when no coding is used. This ratio, denoted

loss ratio, must be smaller than 1 for the code to be useful. Both analytic and simulation results

were presented for this model. The former, obtained under the assumption of independent packet

losses, showed loss ratios of the order 10 -3 and smaller.

The simulation runs showed that packet loss correlation is a severe problem when each packet

stream has a dedicated finite buffer. In this case, buffer management and/or interleaving is vital to

the achievement of good loss ratios. We have also shown that deterministic interleaving achieves

better loss ratios than statistical multiplexing. This observation implies that when multiple streams

are intermixed, as in output queues of a space-division switch, round-robin polling is superior to

random polling. Loss ratios of better than 10 -3 were demonstrated.

In summary, our performance study shows that a significant reduction in packet loss rate can

be achieved with a combination of coding, buffer management, and interleaving.
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3 MULTIPOINT COMMUNICATION BY HIERARCHICALLY
ENCODED DATA

Multicast service, in which a source sends information to multiple recipients, has many

applications, including the updating of a replicated database, speech and video teleconferencing,

electronic mail, newsletter distribution, collaborative environment, and parallel processing.

The need for multicasfing was recognized in the early days of computer networking, and some

protocols, mainly for multidestination routing, were developed (e.g., reverse-path forwarding of

broadcast packets [Karlsson and Vetterli 1989]. Recently, new techniques have also emerged,

including multicast routing [Ghanbari 1989; LeGall 1991], reliable end-to-end packet

delivery [Burton and Sullivan 1972; Schwartz 1987; Shacham and McKenney 1990; Acampora

1989], and multicast switching [Bailly et al. 1980; Blahut 1988].

Early generations of data communication networks offered only limited multicast service,

since their narrow-band links, small user populations, and limited computation and display

capabilities made such services infeasible or unattractive for many applications. However, the

emergence of broadband network technology, such as the asynchronous transfer mode, opens new

opportunities for multicast services. Broadband channels and packet-based fast switching allow

many more users than in the past to connect to networks, facilitate more types of interaction among

users, and support a larger variety of traffic types including broadband signals such as video. This

combination of physical means for supporting multiple services and a large interconnected user

base that can benefit from such services provides a fertile ground upon which a rapid growth of

multicast services can be expected [Lee, Boorstyh, and Arthurs 1988; Bailly et al. 1980].

The user population is expected to be heterogeneous, with the set of multicast recipients

greatly differing in their end devices and the network-access bandwidth available to them.

Consequently, when a source multicasts a broadband signal, not all intended destinations are

willing to receive or are capable of receiving the complete signal. Bandwidth or terminal

limitations restrict the rate of information that can be delivered to some, whereas others prefer to

pay less and receive only a subset of the information contained in a multicast signal. An example

of such a scenario is when a video signal is distributed to a (potentially large) number of recipients

with widely different display devices and available bandwidths. Users with wideband access,

high-resolution displays, and powerful processors can receive and process a complete

high-resolution color video signal, whereas users with less capable displays or lower bandwidth

access, who can receive only part of the signal, may prefer to receive, say, only black-and-white

video to receiving no video at all. Similarly, in voice communication, users may settle for low-rate

synthetic speech without speaker recognition when they cannot receive a complete digital speech

signal.

Moreover, users may differ in their ability to receive broadband multicast signals, even if they

have similar access bandwidth and terminals. In multimedia teleconferencing, users who send and

receive multiple streams that represent the various media may not be able to obtain the full

bandwidth needed to communicate via all these media simultaneously. Consequently, users must

choose the signal they emphasize at any given time. These decisions by individual users are likely

to change with the users' ability to focus on different media at different times. For example, users

may first allocate most of their access bandwidth for video and de-emphasize computer animation;
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later, as more computational results are presented through animation, that bandwidth allocation

may change to allow a close examination of that signal, but reception of only a low-resolution,

black-and-white video.

All existing multicast protocols were developed on the assumption that all recipients receive

all the information emitted by a source. Using such protocols in a heterogeneous environment
raises a serious dilemma: a session must either exclude the more limited users who cannot receive

the full signal, or must penalize the more capable users by compressing (and distorting) the signal

to fit the least capable users.

In this section we present an approach for multicasting in a heterogeneous environment,

where each destination receives the subset of the signal allowed by its constraints. This approach

requires careful signal selection and coordination among the source, destination, and network. In

this paper we focus on the following areas of the proposed approach.

Signal Representation. The source's signal is encoded and presented to the network as a set

of bit streams called layers. The layers are so organized that the quality of reception is proportional

to the number of layers received--the first layer provides the basic information, and every layer

improves upon the quality of the layers below it. (Such coding algorithms are known as subband

or hierarchical coding, and the corresponding signal representations are "known as layered or

hierarchical signals.) We then review several layered coding techniques and analyze their

suitability for multicast service.

Routing and Signal Optimization. The network employs algorithms that find the maximum

bandwidth available to each destination and compute optimal paths with those bandwidth values.

We present

• An efficient procedure for determining the maximum bandwidth to each destination,

given that all the layers to each destination must be sent on the same path

• A signal optimization procedure that, given the set of available bandwidths, assigns

bandwidth to each layer so as to maximize the signal quality as seen by the set of

destinations

• An algorithm for determining the maximum-bandwidth, shortest paths to each
destination.

Maintaining Data Integrity. The source's signal is protected by packets carrying error-control

bits, which are sent along with the data packets and allow a receiver to recover lost data packets.

The layers of the signal are individually protected, since missing packets at different layers have

different effects on the received-signal quality, and since destinations that receive only a subset of

the signal cannot make use of error-control data that are applied to the whole signal as a single

stream. Moreover, it is expected that many applications of the type of multicast discussed here will

require time-constrained delivery of data, thereby excluding retransmission as a data recovery

mechanism. We also present techniques for open-loop recovery of lost data based on erasure

correction, which was presented in Section 2, and discuss ways of providing different protections

to different layers of a signal.
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3.1 HIERARCHICAL ENCODING OF DATA

Hierarchical encoding is a name for a recently developed family of signal representation

techniques, in which the source information, most commonly a digital real-time signal, is

partitioned into substreams, each of which represents a well-defined portion of the signal.* The

substreams, also known as layers, are so constructed that substream 1 (the lowest layer) carries the

elements that are essential for reconstruction of the signal by the receiver, although the resulting

signal may be of low quality. Substream i (i > 1 ) contains information that improves the quality of

reception.

Extensive research has been conducted on hierarchical encoding, especially for video and

voice signals. The first hierarchical encoding scheme was designed for speech transport over

packet-switching integrated networks [Burton and Sullivan 1972]. In this technique, the lowest

layer contains the most significant bits of the digital representation of the speech signal, and Layer

i contains bits of lesser significance than Layer i-1, but of greater significance than those in

Layer i+ 1. In this case Layer i improves the signal quality at the receiver, if and only if all layers
below it are received as well.

While this technique is also applicable for video, several other hierarchical coding techniques

have been developed that exploit the unique features of the video signal, which is composed of a

sequence of frames with intraframe spatial correlation and interframe temporal correlation. We

describe below two of the numerous hierarchical coding schemes that can be found in the literature,

with emphasis on the features that impact signal transmission over a network.

A basic video encoding technique called conditional replenishment is utilized to generate a

variable bit rate (VBR) stream, based on which a receiver reconstructs a video signal of constant

quality [Clark and Cain 1981]. This video coding scheme, however, is sensitive to bit errors and

data loss, which suggests that quality may be severely affected when such a stream is transmitted

over a packet-switching network. To solve this problem, the video stream is partitioned into two
substreams"

1. The first part contains essential video information such as synchronization pulses and

address changes, as well as basic video data. Reception this part alone enables the

receiver to obtain a video signal. Since this information is vital, it must be received

with high reliability.

2. The second part contains '_add-on" information, which improves the quality of the

received video. This information can be sent over the network over shared links,

which results in some packet loss. However, the video signal is separated in such a

way that losses in the second part do not affect the quality of the first part.

This scheme is implemented with 110-120 Kbps for the complete video signal, of which

24 Kbps are devoted to the first part [ibid]. When both parts of the signal suffer no losses, the

picture quality is dependent only on the coding parameters of the second part. As the loss rate of

the second part increases, the video exhibits graceful degradation in quality. Even at 100% packet

loss rate for the second layer, the signal exhibits reasonable quality despite being somewhat

impaired by smearing and block structure distortion.

*Hierarchical encoding is also known as pyramidal, layered, or subband encoding.
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Hierarchical encoding is based on partitioning the spectrum of the video signal along its

three-dimensional frequency region: horizontally, vertically, and temporally [Chiou and Li 1988].

Region 1 contains the low-pass components of the signal and is the only subband that is essential

for signal reception. Receiving only subband l results in a video signal of low quality; every other

layer adds to the quality of the signal. The simulation of subband coding using 11 frequency

regions showed that the various subbands greatly differ in their mean rate and burstiness [ibid].

Subband 1, for example, was generated at 600 Kbps with about 20 Kbps standard deviation,

whereas the corresponding rates for layers 5 and 11 were 250 Kbps (mean) and 130 (variance), and

20 Kbps (mean) and 15 (variance), respectively. With the average rate of the total output at

2.7 Mbps, subband 1 consisted of less than 25% of the total rate, which implies that users can

participate in a session even if their access bandwidth is only a quarter of that needed for receiving

a complete signal. This scheme provides very good error containment in case of lost packets;

however, due to the low rate of some of the subbands, packetization delay is large for those

subbands and essentially for the whole signal. Combining some of the lowest-rate subbands helps
to reduce this delay.

It is interesting to note that the emerging standard for video compression, named

MPEG [IEEE 1989], may also be viewed as hierarchically structured. Every eighth frame is a

reference frame containing the complete set of parameters needed for frame reconstruction at the

receiver, whereas other frames (the interframes) carry only information about changes from these

reference frames. Receiving only the reference frames (which constitute the lowest layer) results
in low-quality video, which improves as more interframes are received.

Hierarchical coding provides the basis to which the source, destinations, and networks specify

requirements and set call-level parameters. Destinations can declare signal-delivery parameters,

such as desired bandwidth; and the network uses end-users' requirements and the source's signal

structure to compute routes to all destinations. Furthermore, the source can base the number of

signal layers and the bandwidth assigned to each layer on the availability of network bandwidth

and on the destinations' requirements, so as to maximize the utility of the signal delivered to the

destinations. These aspects of hierarchical encoding are discussed in the next section.

3.2 SETTING CALL-LEVEL PARAMETERS

The processor responsible for setting up a hierarchical multicast session must first receive as

an input the destinations" requirements. Based on this input, and the network conditions, the

processor determines the major parameters of the session by the following steps:

1. Computing the bandwidth available to each destination. The most important factor is

the maximum signal bandwidth that can be delivered to each destination, given the

smallest of (1) destination's maximum bandwidth requirement and (2) the maximum

path bandwidth available to that destination. Other constraints that may be taken into

consideration include the minimum-quality signal accepted by each destination and

the penalty for failing to deliver the minimum-quality signal to a given destination.

2. Setting parameters of the signal layer structure to maximize the overall quality

delivered to the destinations. By this we mean assigning bandwidth to each layer

under constraints such as a fixed number of layers and constant overall signal
bandwidth.
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3. Computing a set of paths to deliver to each destination the maximum possible

number of layers. The paths must result in efficient network utilization, where no link

carries more traffic than is actually delivered to the destinations on the paths of which

that link is a part. The paths must also be optimal with respect to user requirements

or cost. For example, if delay is a critical factor, the shortest path with maximum

bandwidth should be used.

In the rest of this section we present algorithms for accomplishing these tasks, under the

constraint that all the layers delivered to a given destination follow the same path to that

destination. First, however, we describe the network and coder models.

3.2.1 The Mode

The network is modeled by a graph G = ( K E), where V and E are the sets of nodes and

links, respectively. Each link (i,j) c E is characterized by its available capacity bi. j. The

available capacity of the path { i 1, i 2..... in } is defined as mini {bi_"ii., }, 1 <_j <_n - 1.

To extend the model to also incorporate the destination's bandwidth requirements, the graph

G is augmented by N links and N nodes, where N is the number ofmulticast destinations. For each

destination d, which is connected to node e of the original graph and requires signal at bandwidth

W d, a node d and a link ( e, d) are added with link capacity be. d = Wd"

We follow the link-state approach to route computation by assuming that the full network

topology and bandwidth availability are known to the processing units that compute routes.

The source generates its signal in a hierarchy of up to K layers, where layer 1 (the lowest

layer) represents the basic signal and Layer i, ( 1 < i _<K) improves upon the quality of the signal

constructed from layers 1, 2 ..... i - 1. We assume that the maximum number of layers, K, and the

total bandwidth of the full signal are both fixed, but that the bandwidth assigned to each layer can

be modified by the source. We denote the bandwidth assigned to the i-th layer by LB i. Thus, to

receive the signal at level i, a destination must have access bandwidth of at least W i = __,_ = 1LBj.

3.2.2 Maximum Bandwidth Computation

Given the aforementioned model, we use a Dijkstra-like algorithm to compute the maximum

single-path bandwidth to all destinations. The algorithm begins by labeling the source, say node 1,

by B 1 = 0% and all other nodes are temporarily labeled by zero, i.e., B i' = 0. The label values

represent the maximum path capacity from the source to each of the nodes. The algorithm's first

step is to assign to all of node l's neighbor nodes temporary labels, Bi', according to B i' = bl. i"

The node with the maximum label value, say node 2, is assigned a permanent label B 2 = B2'. The

temporary labels of node 2's neighbor nodes are then modified according to

Bi'=--max(Bi ', min {Bi'.b2, i} ) (11)

That is, the capacity of the path from node 1 to i through 2 is the maximum between its

previous label and the path capacity through node 2. After this temporary labeling, the node with

the maximum temporary label is permanently labeled (i.e., converting Bi'to Bi). The process
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repeatsitself, wherein atypical stepthenodewith the largesttemporarylabelis permanently
labeled,andthetemporarylabelsof all its neighborsareaccordinglymodified.Thealgorithm
terminateswhenthe lastnodeof thegraphis permanentlylabeled.It canbeshownthatanode's
permanentlabel soassignedhasavaluethatequalsthemaximumcapacityof all pathsfrom the
sourceto thatnode.

It is interestingto notethat thisalgorithmassignspermanentlabelvaluesin anondecreasing
sequence.Consequently,oncethealgorithmcomputespermanentlabelsfor all themulticast
destinationnodesandthosenodeswith labelsnot strictly smallerthanthesmallestdestination
label,thereisnopaththroughunassignednodesthatcancarryenoughlayersof thesignalhierarchy
neededfor adestination.

This algorithmprovidesinformationaboutthebandwidthavailableto all destinations.We
will seein Subsection3.2.4how to usethis informationto computemaximum-capacity,
shortest-pathroutesto all destinations.But firstwediscusshowthesourcecanusethis information
to optimize its signalstructure.

3.2.3 Optimization of Signal Structure

The maximum-bandwidth algorithm returns a list of destinations and the bandwidth they can

receive. If the signal layer structure is already determined, this information can be translated into

the number of layers to each destination. However, when the signal structure is flexible, the

bandwidth occupied by each layer can be set to maximize the quality seen by the set of destinations

in the specific session.

Suppose there are N destinations and they can receive the signal in L different bandwidth

levels. That is, n i destinations can receive the signal at bandwidth no larger than W i, where

i = 1, 2 ..... L and ,___,/L=I ni = N. Suppose that a measure of signal quality is assigned to each

bandwidth: that is, if a destination receives the signal at bandwidth W i, the quality of the received

signal is qi > 0, where qi > qj if W_ > Wj. Notice that a destination with available bandwidth W_

may receive the signal at a lower bandwidth level, in which case the received quality is according

to the bandwidth actually delivered.

The source is assumed to generate its signal in up to K layers. If K > L, the source can send

its signal in L layers corresponding to the bandwidth levels available to the destinations, thereby

matching the demands of all destinations. The more interesting, and common, case is when K < L.

In this case, the source selects K bandwidth levels Wi, Wi2 ..... Wi, and encodes its signal at these

levels. That is, the first layer is assigned bandwidth Wi, the second Wi2 - Wi,, etc., where
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W/x _>W L. Notice that all destinations at level Wj, ( W;k _<Wj < W;,., ) receive the signal at the

bandwidth Wik, and the corresponding quality qi k. Given this choice of signal levels, the average

signal quality received by the destination population is defined as

Q_(il, i2, iK) = (ni,+ )qi,....... ni 2 - 1

• + " ) qi_"4" (nlj "''nlj÷ 1 - 1
(12)

+ (nix+ ...niL)qi _

In this equation, it is assumed that destination j does not receive a signal at all if Wj < W 1, in
which case q: = 0. We formulate the signal design problem as follows: based on the knowledge

of the bandwidth levels available to the destinations, assign bandwidth to the K layers so that the

total received quality is maximized. That is, the source attempts to achieve a total quality of

= + )qi,Q_ max ((ni I ""ni 2 - 1

1 __ i 1 <_ ... <_ iK__L

+ .... + (nt_+ ...nij. _l)qil + ... (13)

4-
+ (nix ...niL)qi j )

This problem can be solved by an iterative procedure, which we present below. Notice that

forK = 1,

= + +nL) qi 1]QIL max [(ni, ... (14)
iI

We denote

implying that

Ql(i,J) = (ni+...+nj)qi (15)

Q_ --- max [Q1 (i, L)]
i

For k _> 1 we define

Qk(il, L) = max [Ql(il, i2- 1) +Q1(i2, i3- 1) + ... +Ql(ik, L)]

i2 <- ... <- iK <- L (17)

That is, Qk ( i, L ) is the maximum average quality for a k level signal, given that its first level

is i 1 .

(16)
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Using the notation above we can write:

Qk(i],L) = max [Q](i],i2-1) +Q](i2, i3-1) +...+Ql(ik, L) ]

i 2 <_... <_i K<_L

= max[Ol(il, i2-1)] +max [Ol(i2, i3-1)+...+Ol(ik, L)]

i2 i 3 <-... <-i K<_L

(18)

= max [Ql(il, i2- 1) +Qx_I(i2, L)]
i 2

The maximum value is given by

Q/_ = max [Ql(il, iz-l)+Qj(iz, i3-1)+...+Ql(ik, L)]

i I <--... <-iK<--L

= max[max[Q](il, i2-1)] +max [Q](i2, i3-1)+...+Ql(ijeL)]]

i2 i 1 i 3 _<... _<i_ < L (19)

= max Q + QK- 1 (i2' L)
i 2

The recursive expression for QK( il, L) can be used to compute these values by first

computing the (L) values for Q1 (i,j), 1 < i <j <_L, and then, for 2 < k < L and

2 < i < L - K + 1, computing Qk ( i, L). The maximum value, QLx, is computed using equation 19.

Although this iterative solution method is demonstrated above only for the case in which

maximum bandwidth is specified for each destination, the same method can accommodate

additional types of constraints. Such constraints are, for example, a requirement that all

destinations to receive at least the lowest layer of the signal and a specification of the minimum

acceptable signal bandwidth for each destination.

3.2.4 Computation of a Multicast Tree

The two algorithms specified above result in signal structure that is optimally tuned for the

specific set of destinations and network conditions. Furthermore, the first algorithm, which

computes the maximum bandwidth available to all destination, also provides paths with the

corresponding bandwidth. When that algorithm terminates, a node's label is equal to the maximum

bandwidth path leading to that destination. The set of links connecting nodes to the nodes they label

is a tree by construction, and the paths along this tree possess the maximum bandwidth available
to each node on them.

Note, however, that constructing this tree is suboptimal for routing packets, for the following
reasons:

There may be shorter paths with the same bandwidth, which would be more desirable

for packet routing.

The node labels on the tree do not necessarily represent the actual utilization of the
tree link.
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Foranexampleof thelatter,considerFigure8,wherethesourceisnode1andthedestinations
are2, 3, 4, and5. Thethinandthick linesrepresentlink bandwidthssufficientfor carryingsignal
level 1only andthewholesignal,respectively.Themaximumbandwidthspanningtree,which
consistsof all the links except(A,D) and(D,4),indicatesthatdestination2canreceivethefull
signal,whereas3,4, and5 canreceiveonly level 1.

Usingthetreeascomputedimpliesthat node1sendsthefull signalalongthetreepathto
nodeB, whichreplicateslevel 1for forwardingto 3, andforwardsthecompletesignalto C,which
forwardsonly level 1to destinations4 and5. WedenotenodesB andC asfilters, sincesomeof
their outputcarry fewersignallayersthanthosearrivingat thenode'sinput.Usingthetreeas
describedis inefficient.First,link (B,C)shouldcarryonlylayer 1of thesignal,sinceonly this layer
reachesthedestinations(4and5) to whichthis link leads.Thesameargumentappliesto link (2,B).
Reducingthesignallevelcarriedontheselinks shiftsthefilter role from B andC to node2. That
is, thecompletesignalis carriedonly on links (1,A) and(A,2), andontherestonly layer 1 is
carried.However,with this newbandwidthassignment,it is preferableto sendtraffic to node4
throughlinks (A,D) and(D,4),whicharenotevenonthemaximumbandwidthtree,sincethispath
hasthesamebandwidthasthetreepathbut is shorter.

As illustratedinFigure8,themaximum-bandwidthtreealgorithmhastwomajordeficiencies:

• It doesnotguaranteeshortestpaths.

• It includeswidebandlinks leadingto destinationsthatcanreceiveonly lower
bandwidths.

Someimprovementsin thealgorithmcanbemade,asfollows.

,)

LEGEND

1 Source

2, 3, 4, 5 Destinations

A, B, C, D Nodes

Figure 8. Multicast Routing with Two Link Types
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Shorter paths can be obtained by selecting the node with the shortest distance to the source

during the execution of the algorithm in the step where a node is selected for inclusion in P, if there

are several nodes with maximum value in T. For example, in Figure 8 node D should be chosen as

a predecessor for node 4 since it is closer to the source than C.

After the termination of the algorithm, bandwidth allocation to links that are incorporated with

too high a bandwidth (such as link (B,C) in Figure 8) can be reduced by the following procedure.

A destination is selected that has an assigned bandwidth lower than the maximum (say, node 3). Its

tree path is followed to the source, and any link bandwidth is reduced to the destination's

bandwidth. This operation continues until the path meets a node with an outgoing link of higher

bandwidth than that of the selected destination (node B). At that point, another destination is

selected (say, node 5) and the procedure continues (this time reducing the bandwidth assignment

of [B,C] and [2,B]). Notice, however, that since the assignment of the paths is based on maximum

bandwidth, this "bandwidth trimming" procedure may still result in some paths that are longer than

others with the same bandwidth. For example, the route to node 4 does not carry more traffic than

needed, but is not the shortest.

To remedy these deficiencies, we modified the above algorithm so that it incorporates

bandwidth trimming more often. This is done by first considering the links with maximum

available bandwidth W K, and then constructing a shortest-path spanning tree using only these

links. If this spanning tree reaches all destinations of the multicast session, the procedure ends with

all destinations capable of receiving the full signal. Otherwise, the tree must be expanded with links

of WK_ 1 tO additional destinations that can receive only K-1 levels of the source signal. For

example, in Figure 8 this first step produces a tree with nodes 1, A, 2, B, C, and the thick links

connecting them.

Notice that the subtree already constructed using the links with W g may contain overutilized

links. These are the links that do not lead to a destination after the first step; therefore, the path to

any destination they may lead to in future steps must contain a lower-bandwidth link, thereby

restricting the path's bandwidth below W x. These overutilized links are eliminated from the

highest-bandwidth spanning tree by selecting a tree leaf that is not a multicast destination, and

deleting the tree link leading to it. The operation is repeated until there are no leaves that are not

destinations. The resulting tree is the basis for expansion. In our example, nodes C and B are not

destinations; therefore, links (2,B) and (B,C) are deleted from the tree.

The tree is expanded by the use of all the links with available bandwidth W_K that are not

included in the tree and the links with W x _ 1, with all these links considered as having an available

bandwidth of W K _ 1. Via these links, paths with shortest distance from the source are obtained to

all the nodes reachable by this additional set of links. Again, in our example, links (2,B) and (B,C)

are now becoming thin links and are used to expand the tree along with the other thin links. The

links that do not lead to a destination are eliminated, and their capacities are reassessed as having

been "reduced" to W K _ 2" The algorithm continues in this manner until all the multicast
destinations are reached.

The tree expansion procedure described above involves an important tradeoff. Recall that the

input to the first expansion is the set of links with W K_ 1 and the Wg spanning tree with minimum

distance assigned to each of its nodes. In the expansion, we either do or do not allow changes in

the distances of the first tree. A node of the Wg tree may change its distance when a link of Wx _ j
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completesacycle.Sincewedonot wantto eliminatetheW K links in the first tree (since they

provide the broadband path to that node), we may either allow the W K_ 1 link to be added, thereby

destroying the tree structure, or we may not allow the inclusion of those links, in which case the

resulting paths to the W K_ 1 nodes may not be the shortest. As an example of such a situation,

consider the graph in Figure 9, in which nodes 2 and 3 are the destinations. The path to node 2 is

1,A,B,C,D,2, on which the complete signal is delivered. When extending the path to node 3 we face

the following situation: using the previous path and extending it by (2,3) preserves the tree

structure. However, the path 1,A,E,2,3 is shorter yet delivers the same bandwidth to node 3;

therefore it is preferable to the other path, but it destroys the tree structure of the paths.

03
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Figure 9. Maximum Bandwidth Spanning Tree

3.3 ERROR-CONTROL PROCEDURES

In the previous section we presented procedures for setting session parameters such as

destination requirements, signal structure, and maximum-bandwidth paths. During a session, the

source sends its signal in packets, each of which carries bits of a single layer, to allow easy filtering

of layers in the network. In this section we discuss issues in maintaining the integrity of such a

layered packet stream.

Packet transport in hierarchical multicast is different from that in a "regular" session: in a

regular, unicast, or multicast session, all packets form a single stream in which all packets are

equally important and each has to reach all destinations. In hierarchical multicast, on the other

hand, different layers require different degrees of protection, and different destinations receive

different subsets of the signal layers. These differences result in requirements for special

error-control procedures, as discussed below.

Since broadband signals used in hierarchical multicast are likely to be distributed in a

high-speed, fiber-optic-based network, data distortion is expected to be dominated by packet loss

due to congestion and admission control, rather than by noise-inflicted bit errors. For this reason,

the focus here is on techniques for the recovery of lost packets rather than the correction of bit

errors. Furthermore, the focus here is on FEC rather than on retransmission-based techniques such

as ARQ [Burton and Sullivan 1972; Schwartz 1987] because of the real-time delivery

requirements, which are likely to be imposed on traffic amenable to hierarchical coding.
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FEC-based packet recovery schemes make use of the fact that recipients can identify the

location of missing packets by the gaps in the sequence numbers of the arriving stream. This fact

allows the recipient to treat a lost packet as a sequence of erasures rather than a burst of errors,

thereby requiring much less overhead for recovery.

When designing an error-control technique for packet recovery, one has first to recognize that

carrying control bits in the same packet with the data bits they are to protect is not very useful, since

the error-control bits are also lost when the packet is discarded. Rather, we propose the use of

error-control schemes that (1) protect a group of packets at a time, (2) provide error-control

redundancy for the whole group, and (3) carry the control bits separately from the data, so that

losing a packet affects either data or control bits but not both. Carrying error-control and data bits

in separate packets is also useful in cases such as video coding, where the source emits its data in

packet-ready format without including error control. Adding error-control packets is easier in these

cases than modifying the packet structure to add error-control bits, since the latter often require
modification of the source, whereas the former do not.

A basic FEC scheme described by Shacham and McKenney [1990] groups the source's

packets into L packet blocks, and adds to each block parity packets, where each bit in a parity

packet is a function of the corresponding bits in the data packets of the block. For example, the i-th

bit of a parity packet may be the modulo 2 sum of the i-th bits of the data packets. Additional parity

packets can be constructed via orthogonal sets of equations. The advantage of this scheme is that

parity packets can be constructed _'on the fly" by very simple hardware, without delaying the

transmission of the first data packet until the last packet of the block passes through the coder, so

that there is no need to wait for the arrival of the whole block before decoding begins. Decoding is

also very simple and has the additional advantage that packets need not be decoded in the order in

which they pass through the coder. However, if the packet stream must be forwarded to the

recipient in order, blocks with missing packets must be delayed until the last packet arrives, so that

the recovered packet(s) can be inserted in the correct place in the sequence. Another advantage of

this scheme is that it generates a systematic code that leaves the data packets intact and is usable

when other packets are lost and cannot be recovered.

The performance of this erasure recovery scheme depends on the amount of parity packets

that are added to the data and on the distribution of packet losses. Since packets are lost because of

excess traffic, adding parity packets increases the traffic and thereby increases the packet loss rate.

On the other hand, adding too few parity packets makes the erasure recovery technique too weak.

It was found that about 5% of parity information is sufficient to reduce the packet loss rate by two
to three orders of magnitude, when the added loss rate due to traffic increase was taken into
consideration.

This impressive gain, however, was computed on the assumption that packets are lost

independently. Correlation in the packet loss process, i.e., when packets are lost in bursts, reduces

the performance of this scheme. It is -known that the buffer overflow process is bursty: the

conditional probability that an arriving packet will find the buffer full is higher if the previous

packet found it full than if the previous packet found that the buffer had storage space. Recovering

bursts of lost packets requires more overhead and more complex decoding schemes than is required

for the recovery of packets that are lost independently. Moreover, bursts of errors cause more

visible damage than randomly generated errors. Thus, the performance of FEC can be greatly

improved by provisions for dispersing bursts of lost packets.
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Noticethatpacketsarediscardedbynetworknodesaccordingtoahuman-designedalgorithm,
asopposedto the+'natural"noiseprocessthat causestransmissionerrors.Thetotal numberof
packetsthatarediscardedis aresultof overallcongestionandmaynot beeasyto adjustin real
time. However,whichpacketsarebeingdiscardedandwhicharekept in thebuffercanbeeasily
affectedby changingtherulesthatgovernadmissionto thebufferandorderof service(priority) of
thepackets.This implies that buffer management procedures can help improve conditions for error
control.

These considerations are true for any type of traffic, but they have special implications for

hierarchical data. First, the complete stream issued by the source may not arrive intact at each

destination. In fact, as discussed above, the main reason for employing hierarchical data is to allow

some layers to be +'peeled off" inside the network. Consequently, if packets of different layers are

combined in the same FEC block, intentional discarding of packets from one layer severely affects

the ability to recover packets from another layer that are lost due to buffer overflow. The objective,

however, should be that the ability to recover lost packets of (for instance) layer 1 is independent

of the arrival of higher layers.

To achieve this goal, the erasure recovery scheme is augmented by applying parity packets to

blocks consisting of data packets of the same layer. The advantages of this provision are as follows:

• Layers can be coded/decoded independently.

• Different erasure recovery codes or rates can be applied to different layers, to match

the level of protection to the signal quality deterioration due to packet loss at the

various layers.

• Parity packets can be added only to part of the traffic, such as the lowest layer,

resulting in a lower increase in traffic (hence in loss rate) than if the whole stream
were encoded.

A disadvantage of this separation is that it requires as many coders and decoders as there are

protected layers, whereas only one coder and decoder are needed per source/destination when the

whole stream is encoded together. An additional disadvantage is that more delay is needed to

resequence a recovered stream if it is layered than if it is a single stream. However, the advantages

above clearly outweigh the disadvantages.

Techniques for dispersing lost packets are of special importance for hierarchical data. For

example, a burst of lost packets at the lowest layer of a video signal can cause clearly visible

degradation of the image for several seconds. There are two basic mechanisms for alleviating the

effect of bursty losses in the network:

• Priority-based discarding of packets

• Arranging the source+s packet stream as a rectangular array, and providing parity

packets to groups of data packets constituting both rows and columns of such an

array.

When encoding is applied to an entire stream, buffer management procedures disperse packet

loss by discarding packets based on their FEC block affiliation and on the number of packets

already lost in their respective blocks. For example, if the code can recover only one packet per

block, discarding two packets from a block prevents the recovery of both packets. Thus, if the
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secondpacketis aboutto bediscarded from a block, the buffer server selects a packet from another

block that has not yet lost any packet and discards it instead, thereby making both packets
recoverable.

With hierarchical data and separate layer encoding, the buffer has an additional degree of

freedom in that it can choose packets for discarding from different layers. Since the various layers

are interleaved, there is a higher probability of finding a substitute packet that prevents a second

packet loss in a block of a given layer. The most natural choice is to discard higher-layer packets

before lower-layer packets are discarded. Notice that in some hierarchical representations, once a

packet is discarded, all packets that contain the higher-layer information of that packet lose their

value and therefore may also be discarded. The aforementioned layer-based priorities are for

packet discarding and do not imply order of service. Since all packets must be delivered below

some given delay, high-layer packets are served before low-layer packets that represent later

segments of the signal.

The interleaving of the layers provides a natural dispersion of bursts of lost packets for any

specific layer. For example, if the lowest-layer packets represent 1 /N-th of the total stream, the

number of packets lost from this layer during a burst is that fraction of the length of the burst.

Notice that both the layer-based discarding priority and the burst dispersion have maximum

effect where the whole source stream is present, say, at node D in Figure 9. However, as high layers

are removed due to lack of bandwidth, the effect of this "cushioning" for the low-layer packets

diminishes. Over narrow-band links, after high layers have been removed, the low-layer packets

have no other packets to preempt, which is likely to increase the loss rate of the low-layer packets

and the burstiness of that loss process.

In cases where a significant portion of the traffic goes through narrow-band paths, the source

should employ the other loss dispersion mechanism mentioned above, namely, interleaved coding.

3.4 CONCLUSION

We have introduced a multipoint communication paradigm that combines hierarchical coding

of the source's signal with the delivery of different subsets of layers to destinations based on their

terminal and access constraints. This paradigm facilitates the distribution of broadband information

in heterogeneous environments and allows more destinations to participate in a multicast session,

despite differences in the rates at which they can receive or prefer to receive information.

Hierarchical multicast requires new protocol functionality at the source, the destination, and

the data distribution network. This paper has discussed some of the major areas that are essential

to such operation:

• Hierarchical signal representation

• Computation of the maximum bandwidth available to each user

° Assignment of bandwidth to the signal layer to maximize overall received quality

• Determining the shortest-path tree whose paths are of maximum bandwidth

• Efficient assignment of traffic volume to links

• Error-control procedures aimed at recovering lost packets.
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Themaximum-bandwidthalgorithm,signaloptimizationprocedure,treealgorithm,and
traffic assignmentareaimedat staticconditionsandarethereforeapplicableto long-termactions
suchascall setup.Thesetechniquesmustbe furtherenhancedto operatein dynamicnetwork
conditionsthatarisefrom traffic variationsandchangesin destinationpopulation.

Notealsothatthesetechniquesweredevelopedundertheassumptionthatall thesignallayers
arecarriedon thesamepathfrom thesourceto a specificdestination.Therearecertainbenefitsto
sucharestriction,includingtheflexibility to protectlower-layerpacketsby thedeletionof
higher-layerpackets,reductionof delayjitter at thereceiver,andsimplificationof session
management.Allowing traffic to becarriedto adestinationovermultiplepathscanyield more
bandwidth,hencehigherquality,to individualdestinations.

In addition,theabovemechanismsshouldbesupplementedby admissioncontroland
resourcereservationfor thevarioussignallayers.Thesemechanismsmusttakeinto consideration
thedifferencein importanceamongthelayersandmustprovidethesmoothestpossibledelivery
for the lowestlayer--if necessary,attheexpenseof higherlayers.
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4 AN ALGORITHM FOR OPTIMAL MULTICAST OF MULTIMEDIA
STREAMS

Multimedia communication that integrates voice and/or data and human and/or computer-

generated information is likely to be the cornerstone of many future applications: it is expected to

greatly enhance the versatility and effectiveness of human information exchange

(teleconferencing) and human-machine interaction [Jayant 1992]. In a multimedia session, a

source typically generates multiple streams, each representing a different medium, with possibly

multiple video images, graphics, and audio. The high bandwidth and processing requirements of

such sessions has thus far impeded their implementation, due to the limitations of traditional

networking technology. Recent advances, however, in processing, transmission, and switching

technologies have provided the physical infrastructure needed to support broadband, multimedia,

multiparty information exchange. Other essential ingredients, like routing, traffic control, and

resource allocation protocols, are still active areas of research.

An important requirement of traffic-control mechanisms for real-time multicast is a means of

distributing multiple streams from source(s) to a set of destinations. Certain network technologies

(mostly local-area networks) support traffic distribution to all connected users at the physical level,

most notably by a common bus or ring to which all the users have access. This task is significantly

more difficult in networks with mesh topologies, which are required to employ multicast routing

and transport protocols to effectively deliver the transmitted streams to the requesting destinations

without unnecessary consumption of network resources. Mesh topologies used to be typical in

wide-area networks, while LANs employed specially configured topologies such as bus or ring.

Recently, however, mesh topologies have also been employed by high-speed LANs as a means of

increasing network size and total throughput. Thus, multiparty traffic distribution mechanisms will

be required for both LANs and WANs.

Existing multicast protocols approach the distribution task by attempting to deliver all

generated streams to all destinations. This approach is intuitively appealing, because if all

destinations receive the same information, all can communicate on an equal basis. In many cases,

however, this approach may be infeasible, inefficient, too constraining, or simply undesirable. For

example, when the total bandwidth required by all streams exceeds the capacity of the network, the

network is simply unable to deliver all streams. Such limitations are likely to be particularly

important in real-time video-based communication, in which the number of multimedia streams

being offered to the network increases with the number of participants. Consequently, the number

of participants and variety of data streams that can be exchanged among them may be severely
constrained.

The limitations of the traditional approach are particularly restrictive in heterogeneous

networks, where the links have different capacities and terminal equipment capabilities vary

considerably among the destinations [Ballardie, Francis, and Crowcrofi 1993]. Moreover, the cost

of participating in a session increases with the delivered data rate; therefore, a user may prefer to

limit the scope of his/her participation by receiving only a subset of the generated traffic, e.g., by

electing to view only some of the offered images at any given time. Furthermore, in a multiparty
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session, users are likely to differ in the streams they wish to receive at any given time, thereby

forcing the network to deliver different streams to different users, which gives rise to another form

of heterogeneity.

The effect of bandwidth constraints is to limit the subsets of generated streams that can be

delivered to destinations, whereas heterogeneity imposes different limits and constraints across the

network. In both cases, attempting to deliver all generated streams to all users may result in severe

inefficiencies and uncontrolled packet losses, which in turn degrades the quality of the received

streams. Furthermore, in heterogeneous environments the received quality will vary among users.

Attempting to make the received quality equal while insisting on uniform delivery results in a

dilemma: if all users who wish to participate are allowed to be in the session regardless of their

constraints, the quality of the session is driven by the ability of the least capable destination. On

the other hand, if the more capable users insist on a certain minimum quality, destinations that

cannot participate at that level must be excluded.

We propose here a way around this dilemma in which the traffic distribution algorithm takes

into consideration all user requests and network bandwidth constraints, and delivers to each user a

subset of streams according to the user's individual needs and capabilities. That is, a stream is

distributed not necessarily to all destinations, but only to those who request it and are capable of

receiving it. Other streams may be distributed to different groups of destinations. Such a scheme,

which we call heterogenous multicast, was presented by Shacham [ 1992] in the context of the

distribution of a single stream that is encoded in layers (also known as hierarchically

encoded) [Karlsson and Vetterli 1989; Ghanbari 1989]. The protocol delivers to destinationj the

layers 1, 2 ..... lj, where lj is determined by the maximum-capacity path to j.

In this section, we generalize the work by Shacham [ 1992] to the case of a single-source

multicast of multiple streams, some of which may be hierarchically encoded. Each destination

specifies the subset of streams and layers it wishes to receive, and the distribution algorithm

presented in this paper attempts to satisfy all individual demands. The main difference between this

paper and the work in the hierarchical model presented by Shacham is that in the method we

propose, a destination can specify and receive a much wider range of subsets of streams than the

ordered set 1.2 ..... l allowed by Shacham. The relaxation of subset selection requires a new

method for stream selection and distribution.

To deliver the streams to their destinations, a multicast tree from the source to all destinations

is established as a part of the session setup procedure, with all streams from the source to all

destinations being candidates for transport on that tree. A single multicast tree for all streams is

advantageous in multimedia communications because it facilitates media synchronization and

simplifies traffic management. So that the largest number of streams can be carried, it is assumed

here, as it was by Shacham, that a maximum-bandwidth tree, which consists of the highest-capacity

paths from the source to each destination, is established at the beginning of the session. Such a tree

is depicted in Figure 10, where the link capacities are marked in angular brackets; the destinations

are nodes A, B, and C; and S is the source.

The task we face is that of providing a unidirectional distribution of multiple streams, with

different bandwidth requirements, over a tree with heterogeneous link capacities to a set of

destinations, each of which places an individual demand for a subset of the generated streams.
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Figure 10. Maximum-Bandwidth Tree
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When all demands cannot be satisfied in this heterogeneous environment, a problem arises as to

how to select and distribute the "best" sets of streams. There are clearly many possibilities for

stream distributions, where each distribution amounts to assigning streams to tree links.

A natural question that arises in this situation is how to compare different distributions. Once

a suitable metric and a selection criterion are decided upon, an algorithm can be developed to

compute the optimal distribution. To this end, we find the concept of a bid to be very effective. A

bid is a nonnegative numerical value assigned by each destination to each stream, and represents

the level of priority assigned by the destination to the reception of that particular stream.* For every

stream delivered on a tree leaf, the source gains an amount equal to the sum of the bids for that

stream assigned by the destinations on that leaf. The total gain for a given distribution is defined
as the sum of all the bids for all streams over all leaves to which the streams are delivered. Stream

distributions can thus be compared on the basis of their total gain; the objective of such a

comparison is to select a distribution that maximizes the total gain to the source.

Extensive research has been conducted on multicast traffic distribution, with most of the

attention given to finding distribution (spanning) trees under various conditions and with various

objectives, including minimizing the total cost of the tree or the average delay to the users

[Bharath-Kumar and Jaffe 1983], limited network status information (e.g., [Ballardie, Francis, and

Crowcroft 1973; Bharath-Kumar and Jaffe 1983]), and flexibility in modifying the tree during the

session [Waxman 1993; Doar and Leslie 1993]. The effect of streams on network capacity and the

need to select stream subsets has only been mentioned in passing [Waxman 1988], but no algorithm

or analysis has been provided. In the following subsections we address this need.

*Bids are discussed in detail in Subsection 2.3.
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4.1 THE STREAM-SELECTION PROBLEM

This discussion is structured as follows: In Subsection 4.1 we formulate the stream

distribution problem as one of mathematical optimization; in Subsection 4.2 we develop an

algorithm to compute the optimal distribution. In Subsection 4.4 we prove the algorithm's

correctness and in Subsection 4.5 we ascertain its complexity. Subsection 4.6 contains some

concluding remarks.

4.1.1 Bandwidth Constraints

In the model considered here, a multimedia source S is connected to M destinations (] ..... M)

by a multicast tree G(V,E,C) where V, E, and C represent network nodes, links, and link capacities,

respectively. An example is shown in Figure 11, where the link capacities are denoted by (Cj),
j = 1..... L. The source, which is connected to the distribution tree through the access link s,

generates N real-time streams where stream i requires bandwidth wi, i = 1..... N. It should be

noted that assuming a single access link for the source does not restrict the generality of our results.

Specifically, if the source is connected to multiple subtrees by separate access links, the streams on

the different subtrees do not compete for bandwidth with one another. Hence, individual subtrees

(rooted at the source) can be studied separately.

Given a maximum-bandwidth tree, the capacity of the path from the source to destination i is

defined as mini { Cj} , where Cj is the capacity of link j on the path. For example, in Figure 11 the

capacities of the paths from the source to B and D are 3 and 2, respectively.

Source

S

LEGEND

< > Link Capacity

S Access Link

G,H,J, K, L Links

A, B, C, D, E, F Destinations

<2>

H <5> K B

C
:3>

<8> D

A F

Figure 11. Heterogeneous Multicast Tree
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4.1.2 Feasible Flows

We define aflow to be a set of streams and their assignment to links. It is convenient to

represent a flow on the tree by means of the set of the stream assignment variables { Xi.j} , which
are defined by

1 if stream i is assigned to link j

Xi, j = (20)

0 otherwise

To be feasible, a flow must satisfy the following constraints:

1. Continuity. All flows originate at the source and no streams are generated at the tree

nodes: i.e.,

Xi,j (- Xi, k (21)

where j is down the tree from k.

2. Link Bandwidth. Streams are assigned to links only if the link bandwidth can support

them; i.e., for all links j,

XXi,jwi <_ Cj (22)
l

Notice that if __ 1wi <--Cj, for all j, then the tree has sufficient bandwidth to carry all
streams to all destinations; i.e., all flows that satisfy the contint, ity constraints are feasible. In this

case, the multistream distribution task is straightforward: simply assign a stream only to the paths

leading to the destinations with positive bids for that stream. However, if the bandwidth is limited

and not all links can accommodate all streams, the stream distribution must be restricted by setting

some of the Xi, j values to zero, in spite of nonzero bids for them.

One can immediately see that even for a modest-size tree and a relatively small number of

streams, the number of feasible flows can be very large. Of these feasible flows, we focus our
interest on the flows that are

1. Efficient. A stream is not assigned to a nonleaf link if it is not assigned to at least one

child branch of the tree. In terms of flow assignment variables, if Xi, j = 1, then Xi. k
cannot be zero for all children k of linkj.

'_ Undominated. For feasible flows X and Y, Ydominates X if X i j < Yi " for all i,j with_" • -- ,]

at least one strict inequality. If flow X is feasible and no feasible flow dominates X,
X is called undominated.

4.2 BIDS

A metric is needed to compare flows and select the "best" from the set of undominated flows

(which can be large). Such a metric should reflect the degree to which the destinations' demands

are satisfied and the network is utilized. To that end, participant k assigns a nonnegative value,

B,_ >__0 (called a bid), to streamj. When a _roup of destinations share a leaf, which is the case
K,J

when they are connected through a common-medium LAN, each stream delivered to the leaf is

available to the whole group. Hence, instead of directly handling bids by individual destinations,

it is more convenient in this case to deal with the bids presented to the network by the whole group
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on tree-leafj. Consequently, we denote the bid on link (leaf) i for stream j by

bi.j = _-,dest k c leafi Bk, j' with the summation being over all destinations connected to link i. The

source is assumed to gain an amount b;,j when stream j is delivered to the destination(s) on leaf i.

If b;.j > 0, but stream j is not delivered to that leaf, there is no gain to the source.

The flow metric that we use is the sum of the bids gained by the flow for all streams and

destinations. The objective of the selection algorithms is to find the flow that maximizes the total

gain to the source.

4.2.1 Problem Formulation

Our problem can now be stated as follows: Find LN numbers Xi, j that take values in {0, 1 }
and that maximize

._bjX i j j is a leaf
t,J

subject to ]_N= 1wiXi, j <- Cj j £ T (23)

Xi.j <--Xi. I j is a child of /

This is a 0-1 integer programming problem, which is known to be NP-complete [Papadimitriu
and Steiglitz 1982].

4.2.2 A Simple Case: Flow on a Single Link

To illustrate the difficulty of this problem, consider a simple case where the source and all

destinations share a common-medium, multiple-access network, such as an Ethernet or a token

ring. Every transmitted stream reaches all the destinations, and the medium bandwidth is assumed

to be the bottleneck. In this case, the problem in Expression 4 is reduced to the knapsack

problem [ibid]. The tree has only one link, so that the second subscript in the variables above is not

needed. The variable X; now assumes a value of 1 if the source transmits stream i, and 0 otherwise.

The corresponding optimization problem becomes that of maximizing

_biX i subject to _wiX i <_C
i i (24)

In the next section, we present an algorithm for solving the problem in Expression 4.

4.3 THE OPTIMIZATION ALGORITHM

In principle, one can determine the best flow by listing all possible combinations of Xi. j for
i = 0. 1...... N and j - 1, 2 ...... L. Each such binary vector, which has NL components, is
checked for feasibility, i.e., flow continuity and satisfaction of the bandwidth constraints. The

feasible flows are ordered according to their gains; and from the flows that achieve the maximum

gain, the one that minimizes ]_Xi. j is selected. The last selection results in the highest gain per used

network resource. This approach necessitates the evaluation of 2 NL vectors, which severely limits

the "size" of the problems that are computationally tractable.
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In therestof this sectionweprovideanalternativealgorithmthatreducesthenumberof
examinedvectorsby progressingon thephysicaldistributiontreefrom thesourceto the
destinations,andidentifying flows thatareinfeasibleandinferior to onesthathavealreadybeen
found.Onceidentified,theseflows areeliminatedfrom furtherconsiderationdownthetree,and
flow feasibility is maintainedasit progresses.Thealgorithmconsistsof threeprocedures:

1. Link_feasible, for finding all undominated (i.e., maximal) subsets over a single link

2. Tree_feasible, for using Link_feasible to produce all maximal feasible subsets over

all the links of the physical multicast tree

3. Value, for evaluating the gain for each feasible maximal flow, i.e., the sum of bids

for all the streams in the flow over all leaves to which the flow is distributed.

The algorithm starts from the tree root, which has an associated set of streams. For simplicity

of presentation we assume that the root has only one child link. Notice that we can always convert

a tree to this form by adding a node and connecting it to the root by a link with bandwidth equal to

the maximum of the bandwidth of all child links of the root.

A more detailed explanation of the operation of these procedures is given below, along with

semiformal descriptions.

4.3.1 A Procedure for Listing All Link_feasible Undominated Sets of Streams

The input to the procedure Link_feasible is the capacity of a link and the bandwidth

requirements for M streams, which are available at the transmitting end of the link. The procedure's

output is a list of all undominated subsets of streams. Notice that if a subset is undominated and
feasible on a link, it is also maximal, in that no other stream can be added without violating the

subset's feasibility.

Link_feasible examines subsets of the M streams, where each subset is represented by the

M vectors (b I ..... bM), where b i = 1 (0) if stream i belongs (does not belong) to the subset. The

vectors are organized in M rows, where row i consists of vectors with a Hamming weight of k, i.e.,

_= i bi = k. From each set in row k there are k pointers leading to the k-dominated vectors of

weight k - 1, denoted its children. Initially, all vectors are unmarked.

Link_feasible begins with row M; and if the subset with all streams is feasible, the procedure

terminates. Otherwise, it continues to row M - 1. Upon considering row k, a vector that is

unmarked and is feasible is added to the output list and its children are marked as dominated. All

children of a dominated vector are marked as dominated. Link_feasible terminates after the first

row in which all vectors either are dominated or have been added to the output set. A semiformal

description of the procedure is given below.

Link feasible(link-bandwidth, vector)

Initialization:

All vectors are unmarked

All rows are initially marked "0 _"

The set of undominated sets is empty

For all vectors in a row

If a vector is marked dominated
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Mark all of its childrenvectorsasdominated

Else
If thevectoris infeasible
markrow _"1"
Else
addthevectorto the list of undominatedsets
markall of its childrenasdominated

Uponcompletionof arow:
If therow is marked"0"
STOP.Therearenomoreundominatedsetsto add
Else
Scanthenextrow.

4.3.2 A Procedure for Finding All Feasible Undominated Flows

The procedure Tree_feasible finds all undominated flows on the tree. Using Link_feasible,

and starting from the link connecting the root to the tree, the procedure expands each undominated
set on a link to its undominated subsets on the children links. Tree_feasible accepts as input the

description of the physical multicast tree (topology, link bandwidths, and bids on the leaves) and

the bandwidth requirements of the set of streams offered by the root. The procedure begins at the

root and builds a extended tree as follows. In a typical step, Tree_feasible considers a link and a

set that is available at the parent link. For each undominated subset (found by Link_feasible), the

procedure appends all the children of that link to the extended tree and marks that undominated
subset as available for those children. Another way of looking at this procedure is to see that

Tree_feasible creates, for each undominated set found on a link, a replica of the next stage of the

subtree of the physical multicast tree, from that link to the leaves. At the termination of the

Tree_feasible, each undominated set on the root access link has a replica of the physical multicast

tree associated with it. Each undominated set on any other link is associated with a replica of the

subtree of the physical tree. By following these associated trees, we can extract all undominated

flows.

The procedure is given as input.

A description of the physical multicast tree with the bandwidth associated with each link

An L-vector, where L is the number of streams offered by the root, and the i'th

component is the bandwidth requirement of stream i.

Tree_feasible(root_link, vector)

for all child_link(root_link)

link_feasible(child_link, vector)

for all undominated sets

append all child_links(child_link)

if child_link is not a leaf

for all undominated sets

tree_feasible(child_link, undominated_set).
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4.3.3 A Procedure for Evaluating All Feasible Flows

A flow is associated with a gain that is "earned" whenever a stream is delivered on a leaf. The

gain per stream per leaf equals the bid on that leaf for that stream; and the gain of a flow is the sum

over all leaves of the bids for all streams that reach the respective leaves. The flow to select is, of

course, the one that has the maximum gain. The recursive procedure Value tracks all flows from

their undominated sets on the root link. It uses the fact that the value of a set on a link is determined

by the values of all of its undominated subsets on the child links, according to the following rules:

1. On each child link, the undominated subset with the maximum gain is selected.

2. The sum of the values found in item 1 above over all child links is the value of the

set on the parent tree.

To find the undominated flow with the maximum gain, we use the following rules:

1. The gain of an undominated set on a leaf is the sum of the bids for the elements of
the set on that leaf.

2. The gain on a link is the maximum of the gains of all undominated sets on that link.

3. The gain of an undommated set on a nonleaf link is the sum of the gains on all the
child links associated with that set.

In a semiformal manner, the procedure Value that computes this maximum gain is given in

the following recursive form:

Value(root_link, set)

If link --= leaf

V = EstreamE setbs

Else

V = _down link max(Value(down_link, set)).

Here b s is the bid for stream s, and the summations in the first and second expressions are over all
undominated subsets that reach the leaf, and over all children links in the extended tree,

respectively.

4.3.4 An Example

The following example illustrates the operation of the algorithm. Figure 12 shows the

physical multicast tree, including the streams (1,2,3,4) offered by the source and their respective

bandwidth demands, namely [1,2,4,5]. The links' available capacities are enclosed in angular

brackets, and the bids for each stream at each of the destinations A, B, C, and D, are enclosed in

curly brackets. For example, there is sufficient path capacity to deliver stream 2 to destination A,

and if that stream is delivered to that destination, the source's gain is 1.

Link_feasible operates as illustrated in Figure 13. It begins by examining row 4, with the full

set of offered streams, i.e., (1,2,3,4). Since the total bandwidth demand of 12 exceeds the link

capacity of 8, the procedure moves to examine row 3, which contains the sets of three streams. Of

these, the sets (1,2,3) and (1,2,4) are feasible, hence undominated, while the other two are

infeasible. When the procedure examines row 2 it examines the set (3,4), since the other sets of
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Hamming weight 2 are dominated by the undominated sets that have already been found. Since the

set (3,4) is infeasible, and since all sets in the last row are dominated, the procedure terminates. The

output of the procedure in this case consists of the two undominated sets found above.

Tree_feasible begins at the root and applies Link_feasible to the access link (leading to

node H), resulting in two undominated sets, namely (1,2,3) and (1,2,4), with total bandwidth

requirements of 7 and 8, respectively. For each of these sets, a replica of the two links HE and HG

is appended to node H, as shown in Figure 14: i.e., the links HF1, HG1 and HF2, HG2 are

associated with the sets (1,2,3) and (1,2,4), respectively. Using these sets, the procedure

Link_feasible finds the undominated subsets to be (1,2) and (1,2,3) on links HF1 and HG1,

respectively. Similarly, the set (1,2,4) is used on HF2, where the single undominated set (1,2) is

found, and HG2, where there are two undominated sets, (1,4) and (2,4). Associated with each of

these sets is a replica of the links one step down the tree from the link on which they are computed.

Figure 15 shows the full extended tree, where there is one replica of the subtree at nodes F1, GI,

and F2, because at each of those nodes a single undominated tree is offered to the subtree. At G2,

on the other hand, two replicas of the down tree are appended, one each for the sets (1,4) and (2,4)

that are being offered at G2. The bandwidth values of the down-tree links further reduce the
number of streams that can be delivered. The sets marked on the leaves of the extended tree in

Figure 15 constitute all the undominated sets that can be delivered.

The procedure Value translates the bids at the leaves to numerical values at all links. For

example, since link G2D22 is a leaf, delivering stream 2 results in a gain of 2, which is the bid that

destination D assigns to stream 2. On link G2C22, one of the two undominated sets (2) and (4) can

be delivered, with resulting gains of 0 and 2, respectively, implying that it is preferable to deliver

set (4). Thus, the total gain of the set (2,4) on the link HG2 is 4, while a similar argument shows

that the corresponding gain of (1,4) on that link is 3. That is, the former set is preferable to the latter

on link HG2. The total bids for sets (1,2,4) and (1,2,3) on the root access link can be calculated in

a similar fashion to be 6 and 7, respectively, thereby making the latter set more attractive. The

selected distribution is, therefore, (1,2) on link HF in the physical tree and (1,2,3) on HG. The

remaining stream assignments are (1,2) on FA, (1) on FB, (1,3) on GC, and (1,2) on GD. A final

correction is made by observing that stream (I) results in 0 gain on FB and GD and can therefore

be eliminated from those links without penalty.

(1,2,3) / (1,2,_Q G1

Source (1,2,4_>

(1,2,3,4) '' _ ,_..

[1,2,4,5] <7>\t',"U <_ F2

_1_2,4)
-G2

Figure 14. Initial Buildup of the Extended Tree
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Figure 15. The Extended Tree and Flow Gains

4.4 CORRECTNESS PROOF

To prove the correctness of the algorithm, it must be shown that of all the flows generated by
the algorithm, the one with the highest gain is selected; and that there is no other feasible flow with

a higher gain. Our approach for the proof is, therefore, to show that the following hold true:

1. If a flow A is not included in the algorithm's outcome, either that flow is infeasible,

or a feasible flow B that dominates A is found by the algorithm. Notice that the latter

implies that the gain of flow B is equal to or larger than that ofA.

2. Of all the flows in the algorithm's output, the one with the highest gain is selected.
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A feasible flow X, as defined in Subsection 4.1.2, can be represented by a set of vectors Xj,

one for each of the L links of the multicast tree, Xj = (X1. j ..... XN. j) , with 0-1 values that satisfy

constraints (21) and (22) for continuity and bandwidth feasibility, respectively. Flow X is

dominated by flow Y ifXi, j <- Yi,j for all i.j.

A flow Y is included in the algorithm's output if

• Its vector Ys that corresponds to the root access link is one of the sets listed by

Link_feasible for that link

• Its vector Yj that corresponds to a child of the root access link is one of the sets listed
by Link_feasible on the extended tree, for that link on the subtree that is associated
with the aforementioned set on the access link

• Its vector Yi that corresponds to a link in the physical multicast tree is one of the sets

listed by the algorithm for that link on the subtree associated with the set that

corresponds to that flow on the parent of that link in the extended tree.

Let X be a feasible flow on the physical multicast tree, and consider its vector X s for the root

access link. Since the procedure Link_feasible lists on that link all undominated subsets of the N

streams offered by the source, it must select at least one such set Ys such that Xi, s < Yi. s for all

i = 1..... N. If there are more dominating vectors, we arbitrarily choose one of them. Consider

now a child link j on the extended tree that is associated with the selected set Ys; and compare Xj

to all subsets of Ys on that link. If there is a subset Ys! such that Xi. j _- Yi, sl for all i, we continue

to check the other child links. If we can identify such dominating sets on all of the child links, we

continue to the respective child links associated with the identified subsets. If in this process we

reach all leaves, the collections of subsets Y so identified constitute a feasible flow that dominates

flow X.

Consider now the case in which we follow the selected subsets as described above to reach

link j, where no dominating subset can be found. Since a dominating set Yk was found on the

parent link k (by the above process), and since the procedure Link_feasible lists all undominated

subsets of Yk on the child link j, the discrepancy means that Xj is not a subset of any of the sets

listed on link k. But, since X k is dominated by Yk, Xj cannot be dominated by X k, which
contradicts the feasibility assumption for X.

Accordingly, we can restrict our attention to the flows listed on the extended tree. Suppose

that a flow Y achieves a higher gain than the Z identified by the procedure Value. Consider the

subtree of the extended tree with which flow Y is associated. To be higher than Z, the gain of Ys

must be larger than that listed for Z s. But the procedure Value computes a smaller gain for Ys than

for Zs; therefore Ys must be smaller than the gain of Y. That is, on one of the child links of the

subtree associated with Ys, a smaller than maximum value must have been selected. But this is

impossible, since on each link the procedure Value selects the subset with the maximum value,

where the value of each vector is computed as the sum of the values of the vectors on the associated

children links. These arguments show that the algorithm does select the flow with the maximum

gain, and is therefore correct.
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4.5 COMPLEXITY ANALYSIS

Lemma: If an N-stream set is considered by the procedure Link_feasible over a link, the

maximum number of undominated sets is (N/_2 J.

t

Proof" Suppose that all streams have the same bandwidth requirements w. If the link

bandwidth is W, then all undominated sets contain LW/wj streams, since all sets with that number

of streams are feasible, no set with more streams is feasible, and all those sets with fewer streams

are dominated. That is, the number ofundominated sets in this equal-bandwidth case is LW/wJ '

and the maximum such number occurs when k W/wJ = N/2.

Suppose now that one stream has a larger bandwidth requirement than the other: e.g., stream

1 has k times the bandwidth requirement of each of the other streams. The maximum number of

N-1 N-1
undominatedsets inthis caseis ILN/2j) + _LN/2J-k) < ILNN2j)"

Thus, when the procedure Link_feasible is applied to a link on which K streams are offered,
/

inthe worst case the procedure is required to check 2 K subsets and yields as its output (K_2)sets'

each of which is being applied to each child link.

Suppose the tree has M stages and at every stage each link has D child links. The source offers

N streams to the links on the first stage. Link_feasible is applied to each of the D first-stage links

N J undominated The second of theand on each it checks 2 N sets and generates N/2 sets. stage

INN/2 JD links, andon each link Link_feasible considers aset of size N/2:extended tree has

i.e., it checks 2 N''z sets, and generates IN�2 |\N/4 ) sets to be tested on the third stage.

The above arguments lead to the following estimate of the computational complexity of

Tree_feasible:

'3N/2l N )+")N/41 N )(N!2/-F +")N/2M-II N IIN!21 (N!2M-:)D(2N+ N/2 " N/2 \N/4J .... N/2 _,N/4J"_N/2 M- ) (25)

This computation is less complex than checking all the sets on all links, with the resulting

complexity 2 NL, where L is the number of links, given by

1 - D M
L = D+D2+D 3+ +D M = D

"'" 1-D
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4.6 CONCLUSION

Protocols for exchanging real-time multimedia information in a session with multiple

participants are likely to be essential to such important applications as teleconferencing and remote

learning. Means for the efficient distribution of multimedia traffic are of particular importance for

heterogeneous multicast sessions, which are conducted over networks with nonuniform link

capacities and in which users are allowed to specify individual demands for the streams they wish
to receive.

In this section we have addressed the problem of optimal selection and multicast distribution

of multimedia streams in heterogeneous sessions. Since users compete for network resources, each

user offers a certain bid for each stream it requests, and the source gains the respective bids

whenever a stream is delivered to a user. Bids, which are nonnegative numbers, represent users'

interest in the streams, and are used to measure the relative satisfaction of the users with the streams

delivered to them. Thus, distribution algorithms strive for higher gains, and the optimal distribution

is the one that results in the maximum gain.

We have assumed that all the streams are distributed over a single multicast tree. Such a tree

may be, for example, the maximum bandwidth tree that results in paths with maximum capacity

from the source to each destination. The algorithm is suitable for centralized implementation

because it requires information about bandwidth availability on the tree as well as knowledge of

users' demands and bids.

We have formulated the problem of multimedia distribution over a tree as 0-1 integer

programming, and have developed and illustrated the operation of an algorithm for optimal

distribution. The algorithm has much smaller computational complexity than the direct stream-

subset enumeration and evaluation. Still, the resulting complexity is rather high. Further reductions

in complexity can be expected from approximation and heuristic algorithms using the greedy

approach. Several such algorithms, which we have developed, will be presented in a forthcoming

paper.

Future work on this problem will include the development of fast, parallel algorithms for

approximate solutions for networks with large values of N, L, and M; and incorporation of

heterogeneous, bursty traffic sources into the model.
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5 ALGORITHMS FOR INCREMENTAL CHANGES TO A MAXIMUM
BANDWIDTH TREE FOR HETEROGENEOUS MULTICAST

Multicast protocols were traditionally developed under the assumption that all recipients

receive all the information emitted by a source. To that end, a tree is established with the source at

its root and reaching all destinations; every inner node on the tree replicates all traffic from the root

to all outgoing branches. Shortest-path or minimum-cost trees are the most common approaches.

In many heterogeneous networks, users differ widely in the bandwidth available to them, and

when the distributed traffic consists of real-time streams, it is likely that not all intended

participants have the bandwidth and processing capability for receiving the full streams. Insisting

on uniformity in multicast distribution in such cases raises a serious dilemma: either the more

limited users, which cannot receive the full stream, are excluded; or information must be overly

compressed, thereby penalizing the more capable users.

An approach termed heterogeneous multicast (HMC) that circumvents the above dilemma

was proposed by Shacham [1992]. In this approach, based on layer encoding of real-time streams,

the quality of a received stream is a function of the number of layers delivered. The stream

distribution is done over a maximum-bandwidth tree (MBT), consisting of the path of maximum

capacity available for each destination, on which the maximum number of layers are delivered to

their respective destinations. Notice that although the reception quality varies from destination to

destination, each gets the highest quality possible.

Multicast routing can be computed for a complete set of destinations or incrementally. In the

first case, which is considered in Shacham's 1992 paper, an MBT is constructed for a given source,

a layered stream with its bandwidth characteristics, a network topology, a set of destinations, and

their bandwidth requirements. This type of calculation is suitable for the beginning of a multicast

session in which all preregistered participants are to be connected. This approach for calculating a
multicast distribution tree to a set of destinations has received the main attention in multicast

routing research. Most of the approaches proposed thus far focus on minimizing the cost to the

network or the users, which has led to the computation of Steiner or to minimum delay trees

[Ghanbari 1989].

Real-time multicast sessions, such as teleconferencing, are expected to be dynamic, with the

number of destinations, their bandwidth requirements, and the bandwidths available varying with

time. In such an environment the set of paths to the destinations is likely to change in response to

destinations joining the session, leaving it, or changing the number of layers they request during

the session. Instead of computing a new MBT each time the dynamics change, which may result in

many changes to the existing MBT, it is desirable to make incremental changes to the existing

MBT, to accommodate the current dynamics and at the same time minimize the changes to the

MBT. These incremental changes to the HMC distribution paths are the subject of this paper.

In general, updating the HMC distribution paths requires two steps:

1. Computation of a path (or paths)

2. Allocation of resources, e.g., bandwidth reservations, along the path.
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The focus of this report is on the first part, that is, algorithms for computing routes that satisfy

users demands. Most of the work on multicasting assumes a static environment [Bharath-Kumar

and Jaffe 1993; Doar and Leslie 1993; Waxman 1988; Waxman 1993]. Karlsson and Vetterli

[1989] and Ghanhari [1989] consider a dynamic environment in which hosts are added and

removed from a nonheterogeneous multicast connection. The routing algorithm attempts to

minimize network cost. The resultant dynamic Steiner tree problem is solved by means of

heuristics, and the performance of these heuristics is illustrated. Our problem is different from the

above, in that we consider heterogeneous multicast. In addition, our objective is different. We are

interested in determining the maximum-bandwidth shortest paths to each destination. Papadimitriu

and Steiglitz [1982] present an ad hoc resource reservation protocol that supports multicast

applications. This work assumes the existence of an underlying routing strategy and is as such not
related to our work.

The emphasis in this report is on extending the MBT to include a new destination. Other

dynamics are simpler to handle and require changing only the forwarding tables at the nodes.

Extending an MBT to include a new destination must be done in two phases:

1. Obtain a path to the new destination

2. Restore the tree structure to the routing paths, in case the first phase destroys the tree

structure of the existing MBT, since it is desirable that at the conclusion of phase l,

the collection of paths is still a tree.

First, we present centralized algorithms that use the link-state approach to route computation

by assuming that the full network topology and bandwidth availability are "known to the processing

units that compute the MBT. These processing units also populate forwarding tables at each node

in the MBT with information about the number of signal layers to be sent to each downstream node.

Also, the routing tree obtained is a source-oriented tree, even if the algorithm computations are
started from a destination node.

Algorithms for the first phase are Dijkstra-like [Jayant 1992]; in which both the cost function

and the labelling rule change to suit our objective. Two types of algorithms are presented, in which

1. The maximum-bandwidth path to the new destination is obtained subject to the

condition that no changes are made to the existing MBT

2. The maximum-bandwidth path to the new destination is obtained with minimal

changes to the existing MBT.

For each of these two types we present two algorithms, in which

1. The algorithm computation is started from the source node

2. The algorithm computation is started from the new destination: the advantage of this

approach is that on average it is likely to have lower computational complexity.

Next, we present distributed asynchronous algorithms to construct an MBT and to make

incremental changes to it. The advantage of using such algorithms is, of course, that very little

information needs to be stored at the network nodes. Also, such algorithms respond more quickly

to network dynamics. Information need be exchanged only between adjacent nodes.
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The algorithms presented are Bellman-Ford-like in that both the cost function and the

labelling rule change to suit our objective. In addition to a distributed asynchronous algorithm to

construct an MBT at the start of a multicast session, two distributed asynchronous algorithms are

presented to add a new destination to the multicast session. The first algorithm obtains the

maximum bandwidth path to the new destination, subject to the condition that no changes are made

to the existing MBT; the second obtains the maximum-bandwidth path to the new destination with

minimal changes to the existing MBT.

The rest of this section is organized as follows. In Subsection 5.1, we present the network

model. In Subsection 5.2, we review the centralized algorithm [Shacham 1992] that is used to

obtain an MBT for heterogeneous multicast in a static environment, since this algorithm forms the

basis of other centralized algorithms for making incremental changes to the MBT. These

algorithms are described in Subsection 5.3. In Subsection 5.4, we present a distributed

asynchronous algorithm to construct a MBT, given a source, a layered stream with its bandwidth

characteristics, the network topology, a set of destinations, and their bandwidth requests. In

Subsection 5.5, we present distributed asynchronous algorithms to make incremental changes to a

MBT. Finally, in Subsection 5.6, we present a summary of this section.

5.1 NETWORK MODEL

The network is modelled by a graph G = (V, E), where V and E are sets of nodes and links,

respectively. One of these nodes is the source node and D c V is the set of multicast destinations
for a multicast session. We focus on one hierarchical multicast session and characterize each link

(i, j) E E by the capacity, bij, available on this link for the session. To extend the model to

incorporate the maximum bandwidth, say W s, at which the source delivers the signal, a dummy

node replaces the source node in the graph and the source node is connected to this dummy node

by a link of capacity W s. In addition, to incorporate the destination's bandwidth requirements, the

graph G is augmented by M nodes and M links, where M is the number of multicast destinations.

For each destination d, d E D, a node d' replaces d in the graph and d is connected to d' by link

(d, d') of capacity W a, W a being the bandwidth at which destination d desires the multicast

signal.

The source generates its signal in a hierarchy of layers, say K, where layer 1 (the lowest layer)

represents the basic signal and layer i, 1 < i < k, improves upon the quality of the signal constructed

from layers 1, 2, ..., i - 1. We assume that the maximum number of layers, K, and the total

bandwidth of the full signal are both fixed, but that the bandwidth assigned to each layer can be

modified by the source. The bandwidth assigned to each layer can be set to maximize the quality

seen by the set of destinations. Details of this optimization procedure are provided by Shacham

[1992]. These signal layers are then delivered over an MBT consisting of the path of maximum

capacity available for each destination, on which the maximum number of layers are delivered to

the respective destinations. Note that although the reception quality varies from destination to

destination, each gets the highest quality possible.
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5.2 ROUTE FINDING ALGORITHMS FOR HETEROGENEOUS MULTICAST IN A

STATIC ENVIRONMENT

Given the aforementioned model, we use a Dijkstra-like algorithm to compute the maximum

single-path bandwidth to all destinations. Each node i is assigned three labels, Pi, Bi and Hi, where

Pi is the current preferred neighbor at i, B i is the maximum path capacity from the source to the

node i along the path through Pi, and H i is the hop count (number of links) from the source to i

along this path. The labels are updated as the algorithm progresses. At each step of the algorithm,

one node becomes permanently labeled. Once a node's label is permanent, the node is included in
a set P. Assume that the source node is 1.

Initialization Step. P = { 1 }, B 1 = oo Hi = 0, pj is left undefined, since we terminate a

path at the source and hence there is no preferred neighbor at I. Bj = b lj, Hj = 1, and pj = 1 for

j_l.

Step 1. (Permanently labelling a node) Find i _: P such that

B i = maxj_pBj

If more than one node satisfies the above equation, choose the node with the smallest hop

count to the source for permanent labelling and inclusion in P. Node i is now permanently labelled

and included in set P. Set P = P tJ {i } . If P contains all the destination nodes, then stop.

Step 2. (Updating of labels) For all j E P set

Bj = max IBj, min {B i, bij} }

If Bj is the larger of the two terms in the above equation, the other labels Hi, pj at nodej are
left unchanged; otherwise, they are changed as follows:

Hj = Hi+l

pj= i

Go to Step 1.

The following can be proved for the above algorithm, as in Jayant [ 1992]:

• B i label at each node, i, indicates the maximum bandwidth of all paths from the
source to that node.

• The permanent label values are assigned to nodes in a nonincreasing sequence of

their permanent Bj values.

• The maximum-bandwidth path from the source to a destination is obtained by

starting at the destination and connecting nodes to their preferred neighbors until the
source node is reached.

• If there is more than one maximum-bandwidth path from the source to a destination,

the one with the smallest hop count is chosen.

• The set of maximum bandwidth paths from the source to all the multicast

destinations forms a tree, termed a maximum bandwidth spanning tree (MBT).
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Using B i values to determine the number of signal layers to be transmitted on a link may
create a situation where more layers are transmitted on a link than are necessary. The above

Dijkstra-like algorithm is followed by an O (N) bandwidth-trimming procedure. In this procedure,

starting from each destination, bandwidth labels are propagated to the upstream nodes towards the

source. At each node the bandwidth label is set to be equal to the maximum-bandwidth label of

each downstream node. The details of this procedure are provided by Shacham [ 1992].

The worst-case computation complexity of the Dijkstra-like algorithm is O (N 2) . The

bandwidth trimming procedure takes O (N) steps in the worst case, since at most N nodes are

visited. Thus, the overall worst-case computation complexity for the route-finding algorithm is

O (N 2) .

5.3 ALGORITHMS FOR INCREMENTALLY CHANGING THE MBT TO

ACCOMODATE A DYNAMIC ENVIRONMENT

At the beginning of a multicast session, an MBT can be constructed via the algorithm

described in the previous section, for a source, a layered stream with its bandwidth characteristics,

a network topology, a set of destinations, and their bandwidth requirements.

As we mentioned earlier, a multicast environment will most likely be dynamic where the

number of destinations involved in the multicast session, the number of layers requested by a

destination, and the bandwidth available for this multicast session on each link in the network may

all vary with time. Changes to a current multicast session are requested by a destination. The

following requests can be made:

1. A destination may request to be deleted from the multicast session.

2. A destination may request that the number of signal layers delivered to it be reduced.

3. A destination may request that the number of signal layers delivered to it be
increased.

4. A new destination may request to be added to the multicast session.

A possible way to effect these changes is to compute a new MBT each time a request for a

change arrives, and switch routing paths from the old MBT to the new MBT. The problem with

this approach is that it may cause disruptions to nodes on the old MBT. A disruption at a node

occurs when paths from the source to the node along the old MBT and the new MBTjoin the node

via different links. A disruption at a node is undesirable because it involves choosing one of the

two incoming links on which to receive the signal, which may cause out-of-order packets,

switching delays, and the like at this node, and these undesirable effects may be propagated to the

destination node, downstream from this node. One of the reasons why paths from the source to a

node could be different along the old and new MBTs is that the bandwidth available for this

multicast session on various links in the network may have changed between the time the old MBT

was computed to the time the new MBT is computed.

A more interesting and desirable way to effect the changes is to do so with no disruptions or

with minimal disruptions to nodes on the old MBT. Thus only incremental change occurs to the

old MBT, each time a request is served. In what follows we shall describe algorithms that effect

these changes with no disruptions or with minimal disruptions to nodes on the old MBT.
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While makingincrementalchangesto theMBT, we follow thelink-stateapproachby
assumingthatthefull networktopologyandbandwidthavailabilityare"known to the processing

units that make the changes to the MBT. With each incremental change, these processing units also

populate forwarding tables at the appropriate nodes in the MBT with information about the number

of signal layers are to be sent to each downstream node. A we mentioned earlier, the MBT is a

source-oriented tree, even if the algorithm's computations start from a destination node.

Request (1) can be considered to be a special case of request (2), since deleting a destination

from a multicast session amounts to reducing the number of signal layers to this destination to zero.

To accommodate requests (1) and (2), a message from the destination is sent upstream, towards the

source to each node along the multicast tree, requesting a reduction in the number of signal layers

that are forwarded to this destination. This request propagates up the multicast tree towards the

source until it reaches a node that forwards more signal layers than are desired by the requesting

destination, along another tree branch. This algorithm has a worst-case computation complexity of

O (N), N being the number of nodes in the multicast tree, since at most N nodes are visited.

In the case of request (3), in the simplest case, there is sufficient residual capacity on the

multicast tree links to support the new demand. A message from the destination is sent upstream

to each node along the multicast tree towards the source, requesting an increase in the number of

signal layers that are forwarded to this destination. This request propagates up the multicast tree
towards the source until it reaches a node that has the desired number of signal layers. This

algorithm also has a worst-case computation complexity of O (N), N being the number of nodes in

the multicast tree, since at most N nodes are visited.

To effect the above changes, no change in the old MBT is required. These algorithms merely

update the forwarding tables at the MBT nodes.

The task of meeting requests 1,2, and 3 is more challenging when the available bandwidth on

the tree is insufficient for delivery of the requested number of signal layers to the requesting

destination. In this case, for purposes of route computation, this destination node is deleted from

the old MBT and treated as in the case of request 4, where a new destination requests to be added

to the multicast session.

To accommodate request 4, we present two types of algorithms.

• The first type follows a "no disruption" approach: that is, it does not change the

structure of the existing tree. These algorithms find a path to the new destination

from a node of the existing tree such that no other tree node is on the path. Off all

such paths, the algorithm finds one that can deliver to the destination the largest

number of stream layers.

• The second type of algorithms finds a path that can deliver the maximum number of

layers to the requestor even if that path passes through several tree nodes, thereby

creating multiple intersecting paths and destroying the tree structure. These

algorithms destroy the tree structure at a minimal number of nodes, thus causing a

minimal number of disruptions to the current multicast destinations. A procedure to

restore the tree structure to the routing path follows the conclusion of the above

algorithms.
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We havedevelopedtwo algorithmsfor eachof thesetwo types.

• First,wherethealgorithmcomputationis startedfrom thesourcenode
• Second,wherethealgorithmcomputationis startedfrom thenewdestination;the

advantageof the latteris thatonaverageit is likely to havelowercomputational
complexity.

All thealgorithmsaremodificationsof theDijkstra-like algorithmdescribedabovein
Subsection5.2,in which boththecostfunctionandthelabellingrule changeto suitourobjective.
In caseswheredisruptionsoccursto theold MBT, analgorithmto restorethetreestructureto the
routingpathsfollows theDijkstra-like algorithm.

In thefollowing subsections,wewill describethesealgorithmsin detail.

5.3.1 Source Initiated Without Disrupting Old MBT

The Dijkstra-like algorithm is run on a network graph modified by deleting all those incoming

links at an old MBT node that are not on the old MBT. Deleting all such links ensures that the old

MBT is not disrupted. The algorithm is followed by the bandwidth trimming procedure, as in
Subsection 5.2.

The worst-case complexity of the algorithm is O (N2): the modified graph is obtained in at

most O (N 2) steps, since it involves examining at most all the edges of the network graph, and the

Dijkstra-like algorithm takes at most O (N 2) steps.

5.3.2 Destination Initiated Without Disrupting Old MBT

A Reverse-Dijkstra-like algorithm is used on the network graph to find the maximum-

bandwidth path from the destination to the old MBT nodes. Permanent labels are assigned to nodes

in a decreasing order of bandwidth to the destination. The algorithm terminates when it first

permanently labels an old MBT node. When labeling a node that does not belong to the old MBT,

the algorithm considers the full bandwidth available from the node to the destination; however,

when labelling a node on the old MBT, the algorithm computes the minimum of the following:

• The bandwidth of the path from the node to the destination.

• The bandwidth of the old MBT path from the source to the old MBT node, which is

the sum of the bandwidth currently used to deliver stream layers and the available

capacity on the tree path from the source. We assume that the B i label on all old MBT

nodes already has this information.* Let us denote the B i label on old MBT nodes

oldB i, to distinguish it from the B i label that is assigned to MBT nodes by the

reverse-Dijkstra-like algorithm.

The permanent bandwidth labels on old MBT nodes are retained because they are used to

forward signal layers to the old MBT nodes.

*This label updating could be accomplished, for instance, by a modified Dijkstra-like algorithm run on the modified
network graph, as described in Subsection 5.3.1; the algorithm is triggered when a session using one or more MBT
links concludes.
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Let us denote the destination node as node 1.

Initialization Step. P = { 1 }, B] = oo Hi = 0, p] is left undefined, since we terminate a

path at the destination and hence there is no preferred neighbor at 1. For node j, j = 1, if node j,

j _ 1, then Hj = 1, and pj = 1. Also, if node j, j _ 1 is not a node on the old MBT, Bj = bj].
If node j, j _ 1 is a node on the old MBT, then

Bj = ,nin .... { oldBj, bj, }

Step 1. (Permanently labeling a node) Find i E P such that

B e = maxjcpBj

If more than one node satisfies the above equation, choose the node with a smaller hop count

to the source for permanent labelling and inclusion in P. Node i is now permanently labelled and

included in set P. Set P -- P U {i }. Stop when any old MBT node is included in P.

Step 2. (Updating of labels) For all j E P set

Bj = max {Bj, min {Bi, bji } } ifjdoesnotbelongtooldMBST

= minloldBj, rnax{Bj, minlBi, bji}} } otherwise

If Bj is the larger of the two terms inside the max operator in the above equation, the other

labels Hj and pj at nodej are left unchanged; else they are changed as follows:

Hj -- Hi + l

pj= i

Go to Step 1.

The maximum-bandwidth path from the new destination to the old MBT node is obtained by

starting at the destination and proceeding through the connected nodes to their preferred neighbors
until the first old MBT node is reached.

The path obtained to the destination as a consequence of the above algorithm, by extending

the old MBT, is the maximum-bandwidth path possible without disruption of the old MBT. This is

so because the permanent B i value at an old MBT node, obtained via the above algorithm, indicates

the maximum-bandwidth path available from the source to the new destination along that node. In

a Dijkstra-like algorithm, permanent node labels are assigned in a nonincreasing order of B i's;

therefore, the first old MBT node that is permanently labelled is the one through which the

maximum number of layers can be delivered from the source to the new destination.

A little reflection reveals that since we initiate the algorithm from the destination, we do not

need any bandwidth trimming along the new path from the old MBT to the new destination. The

permanent bandwidth label, obtained via the above algorithm at each node from the new

destination along the maximum-bandwidth path to the node at which this path joins the old MBT,

can be used to determine the number of signal layers to be transmitted on each link on the new path.
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Theworst-casecomputationcomplexityof thisalgorithmis againO (N °) , which is the

worst-case computation complexity of the reverse-Dijkstra-like algorithm.

5.3.3 Source Initiated with Minimal Disruption of Old MBT

Our objective here is to obtain a maximum-bandwidth path to the new destination, with a

minimal number of disruptions to the nodes in the old MBT. We run the route-finding algorithm

in two phases.

In the first phase, we obtain maximum-bandwidth paths to all the multicast destinations with

minimal disruption to existing nodes in the old MBT. This procedure superimposes a new MBT

over the old one, and may destroy the tree structure at certain nodes.

In the second phase, an algorithm is run to restore the tree structure to the routing paths.

We now describe the two phases.

First Phase. The old MBT node labels are retained, and a slightly modified Dijkstra-like

algorithm is run to obtain a new MBT containing all the multicast destinations. The slight

modification lies in a provision whereby if a choice exists between two maximum-bandwidth paths

from the source to a destination with the same hop count, the path that causes the fewest disruptions

of the old MBT nodes is chosen. This is accomplished by adding another label, D i, to the set of

labels at each node i. D i is the number of disruptions caused to the nodes of the old MBT along the

path from the source to i. During the initialization step, D i is set to 0 for all nodes.

During step 1 of the Dijkstra-like algorithm, if more than one node satisfies the max operator,

the node with the smallest hop count to the source is chosen for permanent labelling and inclusion

in P. If more than one node satisfies the max operator and if more than one of these have the same

hop count to the source, the one with the smallest value of D i is chosen. The algorithm terminates

when the new destination is permanently labelled and included in the set P.

During step 2 of the Dijkstra-like algorithm, If Bj is the smaller of the two terms in the

equation, the labels H i, pj at nodej are changed as before. In addition, if nodej is an old MBT node

and if connecting it to node i causes a disruption at node j, Dj is set equal to D i + 1. If nodej is not

an old MBT node, Dj is set equal to D i. If Bj is the larger of the two terms in the equation, the

labels H i, pj, and Dj at nodej are left unchanged. At the conclusion of the above algorithm, each
node in the old MBT has two sets of labels: one set corresponds to the old MBT and the other new

set corresponds to the maximum bandwidth path to the new destination. On the other hand, each

new node added to the routing paths has just one set corresponding to the maximum-bandwidth

path to the new destination.

Second Phase. During the second phase, an algorithm is run to restore tree structure to the

routing paths, with minimal disruptions to the old MBT. This algorithm is implemented by

modifying the bandwidth trimming procedure, as described by Shacham [1992]. Each destination,

i, sends its B i label value upstream along the MBT.* At the upstream node j, after the node labels

of all its downstream nodes are received, the Bj label is set equal to the maximum of the bandwidth
labels of each of its downstream nodes, ff at nodej two incoming streams arrive along different

links and if the stream along the old MBT has enough signal layers to satisfy the Bj demand, a

*The new destination sends its only bandwidth label, i.e., the new bandwidth label; while the other destinations send

their old bandwidth labels.
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deletemessageissentalongtheotherpath;otherwise,adeleterequestissentalongtheold MBT
path.Thisprocedurerestoresthetreestructuretotheroutingpaths.Minimal disruptionsarecaused
to thenodesof theold MBT, sincetheold MBT pathis deletedonly if it doesnotdeliverthe
numberof signallayersnecessaryto providemaximumbandwidthto thenewdestination.As in
thebandwidthtrimmingprocedure,Bj value is propagated to the upstream node along the path that
is retained. This step assures bandwidth trimming, if at all possible. The algorithm terminates when
the source node examines the bandwidth labels received from each of its downstream nodes to see

if it needs to reduce its bandwidth label value.

The phase- 1 Dijkstra-like algorithm has a worst-case computation complexity of O ( N 2 ), and

the phase-2 algorithm has a worst-case computation complexity of O ( N), since at most N nodes

are visited. Thus, the worst-case computation complexity of the above two-phase algorithm is

again O ( N 2 ).

5.3.4 Destination Initiated with Minimal Disruptions to Old MBT

This algorithm is similar to the previous algorithm, the difference being that during phase 1,

a reverse Dijkstra-like algorithm is run from the destination to the source. The old MBT labels are

retained and the reverse-Dijkstra-like algorithm determines the maximum bandwidth path from the

source to the new destination. The algorithm terminates when the source node is permanently

labeled and included in the set P. Again, if there is a choice between two paths from the source to

the destination, with the same bandwidth and the same hop count, the one with the fewest

disruptions to the old MBT nodes is chosen. As before, the old MBT node labels are retained.

Let us denote the destination node as node 1.

Initialization Step. P = { 1 }, B 1 = 0% Hi = 0, Pl is left undefined, since we terminate a

path at the destination; hence there is no preferred neighbor at 1. For nodes,j, j * 1, Bj = blj,

Hj = 1, and pj = 1. For all nodes i, D i = O.

Step 1. (Permanently labeling a node) Find i ¢ P such that

B; = m,, j ¢pBj

If more than one node satisfies the above equation, choose the node with smaller hop count to

the source for permanent labelling and inclusion in P. If more than one node satisfies the above

equation and more than one out of these nodes have the same hop count to the source, choose the

one with a smaller value of D i. Node i is now permanently labelled and included in set P. Set

P = P t3 { i } . Stop when the source node is included in P.

Step 2. (Updating of labels) For all j ¢ P set

Bj = max [Bj, rain {B i, bjil I
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If Bj is the larger of the two terms in the above equation, the other labels (Hi. pj, Dj) at node
j are left unchanged, else they are changed as follows:

Itj = Hi+ l

p)= i

Dj = Di+l

Dj = D i

if link (j,t) causes a disruption a_ i

otherwise

Go to Step 1.

During phase 2 of the algorithm, the maximum-bandwidth path from the new destination is

followed to the source. Each time this path traverses an old MBT node, the old MBT node is

examined to see if it receives the multicast signal via two different links. If this is the case, and if

the bandwidth demand of the new path cannot be met along the old MBT path, a delete message is

sent upstream along the old MBT path. If the bandwidth demand of the new path can be met along

the old MBT path, a delete message is sent upstream along the new path.

The worst-case computation complexity of this algorithm is O ( N 2 ) as well, since the worst-

case complexity of the phase-I algorithm is O (N 2) and the worst-case computation complexity

of the phase-2 algorithm is O ( N).

5.4 DISTRIBUTED ROUTE-FINDING ALGORITHM FOR HETEROGENEOUS

MULTICAST IN A STATIC ENVIRONMENT

Given the network model in Subsection 5.1, we use a distributed asynchronous Bellman-Ford-

like algorithm to compute the maximum single-path bandwidth from all nodes to the source node.

A straightforward adaptation of the Bellman-Ford algorithm would have us execute the following

dynamic program algorithm at each node i. Without loss of generality, 1 is taken to be the source

node.

B i = maxjcN(i)Imin IBj, bji} } ...(i_= 1)
(26)

BI _- oo

where Nil) indicates the set of neighbors of i, and B i (the bandwidth label at node i) indicates the

bandwidth of the maximum-bandwidth path from the source to i. Each node, from time to time,

communicates its bandwidth label to all of its neighbors. The value ofB i for the source node is kept

fixed at infinity, while the initial values of B i at all other nodes can be an 5' non-negative numbers.

It is well -known that the Bellman-Ford algorithm suffers from the so-called "bad news

phenomenon" whereby the algorithm reacts (converges) slowly to a sudden increase in one or more

link lengths. Unfortunately, the above adaptation of the Bellman-Ford algorithm suffers from a

more severe bad-news phenomenon whereby the algorithm does not converge to the correct

bandwidth labels if a sudden decrease in one or more link bandwidths occurs because of the

presence of"route cycles." We illustrate this phenomenon with an example. In Figure 16, a part of

a network is shown. The numbers on the arcs indicate available link bandwidths. Let us concentrate

on the bandwidth labels for nodes x and v. For link x-z, the available link bandwidth changes

abruptly from 4 to 1. Before this change occurs, the above distributed algorithm converges to the
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correctbandwidthlabelvalues,i.e.,B x = 4; By - 3. After the change, the label values converge to

B x = By - 3 which are obviously incorrect values. The correct values are B x = By ---1. This happens

as a consequence of the "route cycle" x-y-x. We solve this problem as follows. Each node i, apart

from the bandwidth label B i, maintains a hop-count (to the source node) label, H i, as well. H i for

the source node is kept fixed at 0, while the initial H i values at all other nodes can be any non-

negative numbers. The following dynamic program equations are executed at each node i.

Pi = jE N(i)that .... minimizes""cx[l+Hj] +max_ 1, 1 ]...(i¢ l)
Ls: b ,j (27)

B i = rain {Bp, bp,i} ... (i _: 1)

Bl=OO

(28)

H i = 1 +Hp...(i* 1)
(29)

HI=0

where a is a positive constant. The above dynamic program equations find a path P from the source

node 1 to each node i, obtained by connecting preferred neighbors (Pi at node i) from i all the way

1

to the source node, such that the cost function aH (P) + max t c t,_, H(P) being the number of

hops on path P and b I being the bandwidth of link I on path P, is minimized. Including the hop-

count label in the dynamic program equations at each node ensures recovery from the bad-news

phenomenon. The hop-count label of the nodes constituting a route cycle keeps increasing, and so

does the cost of using them as a preferred neighbor. After some iterations, a"non-route-cycle" node

3

Figure 16. "Bad News Phenomenon" Due to Sudden Decrease in Available
Link Bandwidth
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becomes preferred at some node(s) constituting the route cycle; thus, the route cycle is broken.

Similarly, in the example in Figure 16, if a small value is used for a, the algorithm converges after

some iterations to the correct bandwidth labels B x = By = 1.

The value of the parameter a represents a tradeoff between the optimality (with respect to

maximum-bandwidth paths) of the above algorithm and the time it takes for the algorithm to

recover from the bad news phenomenon. A large value for ct will enable quicker recovery from the

bad news phenomenon, but an optimal solution (with respect to maximum-bandwidth paths)

cannot be guaranteed. A very small value for a will result in an optimal solution for most practical

cases but will imply that it may take many iterations of the above equations to recover from the bad

news phenomenon. In addition, using the hop-count label in the above fashion has the desirable

effect that the algorithm favors the path with fewer hops, if there are two paths of equal bandwidth
to the source node.

Obviously, in order for the above scheme to be workable, the available bandwidth on links

should not change too frequently relative to the speed of convergence of the above algorithm.

Fortunately, this is often true in a practical network. The changes in available link bandwidth occur

as a consequence of sessions being admitted to or dropped from the network. The time between

such changes is, for the most part, greater than the time it takes for the algorithm to converge.

Finally, the initial conditions of the algorithm require only that the label values at all nodes* be

non-negative, so that when link bandwidths do change, the label values available at all the nodes

are non-negative. Thus, it is not necessary to reinitialize the algorithm after each change in

bandwidth availability.

If a number of available bandwidth changes occur up to some time to and no other changes

occur subsequently, under certain assumptions, all of which are reasonable in a practical network,

the convergence of the above algorithm to an optimal solution within a finite time after to can be

proved, as in Jayant [1992]. These assumptions are as follows:

• Nodes never stop updating their labels and receiving labels from their neighbors.

• All the initial node labels are non-negative. Furthermore, all estimates

communicated to nodes by neighbors before the initial time to and received after time

to are non-negative.

• All old label values are eventually purged from the system.

Under these assumptions it can be proved as in Jayant's article [1992] that our algorithm

converges to the optimal solution. A key role in the proof is played by the monotonicity property

of the dynamic program iteration. In our case, this monotonicity property is expressed as follows.

2 B_, which satisfy the inequalities HI < H_, B_ > B_, thenGiven scalars H I, B I, H i ....

*This statement applies to all nodes except the source node, whose label values remain fixed.
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5.5 DISTRIBUTED ASYNCHRONOUS ALGORITHMS FOR MAKING INCREMENTAL

CHANGES TO THE MBT TO ACCOMODATE A DYNAMIC ENVIRONMENT

In Subsection 5.3 we described various requested changes that can be made to a multicast

session initially set up with a source, a layered stream with its bandwidth characteristics, a network

topology, a set of destinations and their bandwidth requests. The algorithms described in that

section to accommodate requests 1,2, and 3 are by their very nature distributed and asynchronous,

if there is sufficient residual capacity on the multicast tree to support the new demand.

The case where the available bandwidth on the tree is insufficient for delivery of the requested

number of layers to the requesting destination, and case 4 where a new destination requests to be

added to the multicast session, can be treated similarly: for purposes of route computation, the

requesting destination node in the former case is deleted from the old MBT and treated as in case

4. The algorithms presented in Subsection 5.3 to accommodate case 4 are all modifications of a

Dijkstra-like algorithm and use the link-state approach to route computation by assuming that the

full network topology and bandwidth availability are "known to the processing units that compute

the MBT. Here, however, we are interested in distributed asynchronous algorithms.

In the next two subsections, we will describe distributed asynchronous algorithms for adding

a new destination to a multicast session. We present two algorithms. The first algorithm follows a

"no disruption" approach and finds a path to deliver the largest possible number of stream layers

to the new destination without destroying the existing tree structure. The second algorithm finds a

path that can deliver the maximum number of layers to the requester even if that path passes

through several tree nodes, thereby creating multiple intersecting paths and destroying the tree

structure. This algorithm determines paths that destroy the tree structure at a minimal number of

nodes, thus causing minimal disruptions to the current multicast destinations. This algorithm is

followed by another algorithm to restore the tree structure to the routing paths. These algorithms

are modifications of the Bellman-Ford-like algorithm described in Subsection 5.2, in which both

the cost function and the labelling rule change to suit our objective. In cases where disruptions

occur to the old MBT, an algorithm to restore the tree structure to the routing paths follows the

Bellman-Ford-like algorithm.

5.5.1 No Disruptions to Old MBT

The dynamic program equations 27, 28, and 29 are run at each node in the network, including

the new destination, with the caveat that at a node that belongs to the old MBT, bandwidth label

updating is permitted only if the preferred neighbor is the same as before. This caveat prevents

disruptions at old MBT nodes and at the same time allows more bandwidth to the new destination,

if more bandwidth is available along the old MBT links than was available when the old MBT was

computed.

5.5.2 Minimal Disruptions to Old MBT

Our objective here is to obtain a maximum-bandwidth path to the new destination, with

minimal disruptions to the nodes in the old MBT. As in the cases described in Subsection 53, we

run the route-finding algorithm in two phases.
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• In the first phase, we obtain maximum-bandwidth paths to all the multicast

destinations, with minimal disruption to existing nodes in the old MBT. This

procedure superimposes a new MBT over the old MBT and may destroy the tree
structure at certain nodes.

° In the second phase, an algorithm is run to restore the tree structure to the routing

paths.

We describe the two phases as follows.

First Phase. The old MBT node labels are retained, and a slightly modified Bellman-Ford-like

algorithm is run to obtain a new MBT containing all the multicast destinations. The slight

modification lies in the following provision: if we have a choice between two maximum-

bandwidth paths from the source to a destination with the same hop count, the path that causes

fewer disruptions to the old MBT nodes is chosen. This is accomplished by adding another label,

D i, to the set of labels at each node i. D i is the number of disruptions caused to the nodes of the

old MBT along the path from the source to i. The initial values of D i are 0 for the source node, and

any non-negative integer for all other nodes. Equation 27 is modified as follows:

Pi =jEN(i)that minimizes tx[l+Hj] +fSf(Dj)+maxI_.,_i.it (30)

where 13is a small positive constant and f(.) is a function that adds 1 to the disruption label of node

j if connecting j to i causes a disruption at i; otherwise, it returns the disruption label ofj. Thus,

f(Dj) = Dj+l, if connecting j to i causes a disruption at i

= Dj , otherwise

The bandwidth and hop count labels are updated as before. The node label showing the

number of disruptions to old MBT nodes is updated as follows:

D i = f(Dp)

(31)

(32)

DI=0

With the above changes, the dynamic program equations find a path P from the source node

to node i, obtained by connecting preferred neighbors, Pi at node i, from i all the way to the source

1
node. This connection is such that the cost function aH (P) + fJD (P) max z • -- is minimized,

Pb l

H(P) and D(P) being the number of hops and the number of disruptions to old MBT nodes on path

P, respectively. Since ct and [5 are chosen to be very small numbers, their contribution to the above

cost function can be ignored; thus, the above algorithm finds the maximum-bandwidth path to the

new destination. If more than one maximum-bandwidth path is available to the new destination,

the path with the smaller value of aH (P) + _D (P) is chosen. This smaller value is desirable,

since it causes paths with smaller hop counts and with fewer disruptions to old MBT nodes to be

chosen. The parameters a and B can be chosen so as to reflect the relative importance of choosing

paths with small hop counts and paths with minimal disruptions to old MBT nodes. At the
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conclusionof theabovealgorithm,eachnodein theold MBT hastwo setsof labels:oneset
correspondsto theold MBT, andtheother,newsetcorrespondsto themaximum-bandwidthpath
to thenewdestination;whileeachnewnodeaddedto theroutingpathshasjust one set

corresponding to the maximum bandwidth path to the new destination.

Second Phase. The algorithm to restore the tree structure to the routing paths, with minimal

disruptions to the old MBT has been presented in Subsection 5.3. This algorithm is distributed and

asynchronous and thus can be used in a distributed and asynchronous manner.

5.6 SUMMARY

In this section we have presented algorithms for incrementally changing a maximum-

bandwidth tree for heterogeneous multicast to accommodate changes in the population of

destinations and their traffic demands. The objective is to deliver maximum traffic to each

destination, while retaining the tree structure, and to efficiently distribute traffic. Both centralized

and distributed asynchronous algorithms were presented. The former algorithms are Dijkstra like,

while the latter are Bellman-Ford like, in that both the cost function and the labelling rule change
to suit our objective. Two types of algorithms were presented: the first obtains the maximum-

bandwidth path to the new destination, subject to the condition that no changes are made to the

existing MBT; and the second obtains the maximum-bandwidth path to the new destination, with

minimal changes to the existing MBT. For each of the above types of centralized algorithms, we

presented two whose computations start from the source and destination nodes, respectively. We

have also presented an algorithm to restore the tree structure to the routing paths, if the tree

structure of the routing paths is destroyed.

Related issues that merit future investigation are

• Protocols for resource reservation along the maximum-bandwidth paths

• Protocols to update forwarding tables at nodes with each incremental change to the
MBT

• Extension of our scenario to include more than one source node.
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6 CONCLUSION

The new generation of gigabit wide-area networks will require new algorithms and

protocols to

• Address unique network characteristics such as high bandwidth-delay products,

scarce resources at tandem nodes, and data distortion due to packet loss that

outweighs losses due to random bit errors

• Support new services that take advantage of the broadband data paths.

The results obtained in this research project address such issues and include

• Novel methods for recovering lost packets at the receiving end of a wide-area,

broadband data path in which packets are discarded because of buffer congestion.
These methods include

Recovering lost packets by means of parity packets that are inserted into the

data stream by the sender

Efficient, hardware-based encoder and decoder for generating parity packets

and recovering lost packets

Intelligent buffer management and interleaving, to mitigate the effect of bursts

of discarded packets.

• Techniques for the distribution of real-time traffic streams to multiple receivers;

these techniques take into consideration network heterogeneity and variations in the

receiver's capabilities and preferences. In particular, we proposed the concept of

heterogeneous multicast, which is based on the following techniques:

Hierarchical encoding of the streams by the sender: i.e., presenting the source

signal by an ordered set of substreams, each representing a different part of the

original signal. The ordering of the substreams is such that receiving

substream 1 allows the reception of the stream at a relatively low quality; and

each other substream enhances the reception quality of the substreams before it.

Computation of a distribution tree with the root at the source and a path with

maximum capacity leading from the source to each destination. An algorithm

was presented for computing such a maximum-bandwidth tree.

An efficient algorithm for partitioning the original stream into substreams to

optimally match the set of path bandwidths avaliable to the receivers.

Algorithms for multicasting a collection of real-time streams over a given tree.

This technique is a generalization of the situations described above; it

introduces new elements of contention among the receivers who wish to receive

different subsets that cannot all be supported by the network. We proposed a fair

resolution of such contention based on bids placed by each receiver for the

streams it wishes to receive, and presented an algorithm for allocating streams

to tree links so as to maximize the bid earned by the source.
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Algorithms for maintaining heterogeneous multicast trees to accommodate

receivers joining or leaving the session. We presented centralized and

distributed algorithms for extending and shrinking the tree, while minimizing

the disruption to receivers already connected to the tree.

The importance of the techniques and algorithms developed in this project is their ability to

enhance the capabilities of broadband wide-area networks, thereby enabling them to provide

improved services. Some of these algorithms have already been implemented and demonstrated on

a testbed we constructed under another program.
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