2,031 research outputs found

    Development of a SQUID magnetometry system for cryogenic neutron electric dipole moment experiment

    Get PDF
    A measurement of the neutron electric dipole moment (nEDM) could hold the key to understanding why the visible universe is the way it is: why matter should predominate over antimatter. As a charge-parity violating (CPV) quantity, an nEDM could provide an insight into new mechanisms that address this baryon asymmetry. The motivation for an improved sensitivity to an nEDM is to find it to be non-zero at a level consistent with certain beyond the Standard Model theories that predict new sources of CPV, or to establish a new limit that constrains them. CryoEDM is an experiment that sought to better the current limit of ∣dn∣<2.9×10−26 e |d_n| < 2.9 \times 10^{-26}\,e\,cm by an order of magnitude. It is designed to measure the nEDM via the Ramsey Method of Separated Oscillatory Fields, in which it is critical that the magnetic field remains stable throughout. A way of accurately tracking the magnetic fields, moreover at a temperature ∌0.5 \sim 0.5\,K, is crucial for CryoEDM, and for future cryogenic projects. This thesis presents work focussing on the development of a 12-SQUID magnetometry system for CryoEDM, that enables the magnetic field to be monitored to a precision of 0.1 0.1\,pT. A major component of its infrastructure is the superconducting capillary shields, which screen the input lines of the SQUIDs from the pick up of spurious magnetic fields that will perturb a SQUID's measurement. These are shown to have a transverse shielding factor of >1×107> 1 \times 10^{7}, which is a few orders of magnitude greater than the calculated requirement. Efforts to characterise the shielding of the SQUID chips themselves are also discussed. The use of Cryoperm for shields reveals a tension between improved SQUID noise and worse neutron statistics. Investigations show that without it, SQUIDs have an elevated noise when cooled in a substantial magnetic field; with it, magnetostatic simulations suggest that it is detrimental to the polarisation of neutrons in transport. The findings suggest that with proper consideration, it is possible to reach a compromise between the two behaviours. Computational work to develop a simulation of SQUID data is detailed, which is based on the Laplace equation for the magnetic scalar potential. These data are ultimately used in the development of a linear regression technique to determine the volume-averaged magnetic field in the neutron cells. This proves highly effective in determining the fields within the 0.1 0.1\,pT requirement under certain conditions

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Fundamental and Applied Problems of the String Theory Landscape

    Get PDF
    In this thesis we study quantum corrections to string-derived effective actions \textit{per se} as well as their implications for phenomenologically relevant setups like the \textit{Large Volume Scenario} (LVS) and the \textit{anti-D3-brane} uplift. In the first part of this thesis, we improve the understanding of string loop corrections on general Calabi-Yau orientifolds from an effective field theory perspective by proposing a new classification scheme for quantum corrections. Thereby, we discover new features of string loop corrections, like for instance possible logarithmic effects in the Kahler and scalar potential, which are relevant for phenomenological applications like models of inflation. In the next part of the thesis, we derive a simple and explicit formula, the \textit{LVS parametric tadpole constraint} (PTC), that ensures that the anti-D3-brane uplifted LVS dS vacuum is protected against the most dangerous higher order corrections. The main difficulty appears to be the small uplifting contribution which is necessary due to the exponentially large volume obtained via the LVS. This in turn requires a large negative contribution to the tadpole which is quantified in the PTC. As the negative contribution to the tadpole is limited in weakly coupled string theories, the PTC represents a concrete challenge for the LVS. The last part of the thesis investigates the impact of αâ€Č\alpha' corrections to the brane-flux annihilation process discovered by Kachru, Pearson, and Verlinde (KPV) on which the anti-D3-brane uplift is based. We find that αâ€Č\alpha' corrections drastically alter the KPV analysis with the result that much more flux in the Klebanov-Strassler throat is required than previously assumed in order to control the leading αâ€Č\alpha' corrections on the NS5-brane. The implication for the LVS with standard anti-D3-brane uplift can again be quantified by the PTC. Incorporating this new bound significantly increases the required negative contribution to the tadpole. In addition, we uncover a new uplifting mechanism not relying on large fluxes and hence deep warped throats, thereby sidestepping the main difficulties related to the PTC

    Under construction: infrastructure and modern fiction

    Full text link
    In this dissertation, I argue that infrastructural development, with its technological promises but widening geographic disparities and social and environmental consequences, informs both the narrative content and aesthetic forms of modernist and contemporary Anglophone fiction. Despite its prevalent material forms—roads, rails, pipes, and wires—infrastructure poses particular formal and narrative problems, often receding into the background as mere setting. To address how literary fiction theorizes the experience of infrastructure requires reading “infrastructurally”: that is, paying attention to the seemingly mundane interactions between characters and their built environments. The writers central to this project—James Joyce, William Faulkner, Karen Tei Yamashita, and Mohsin Hamid—take up the representational challenges posed by infrastructure by bringing transit networks, sanitation systems, and electrical grids and the histories of their development and use into the foreground. These writers call attention to the political dimensions of built environments, revealing the ways infrastructures produce, reinforce, and perpetuate racial and socioeconomic fault lines. They also attempt to formalize the material relations of power inscribed by and within infrastructure; the novel itself becomes an imaginary counterpart to the technologies of infrastructure, a form that shapes and constrains what types of social action and affiliation are possible

    Exploring mechanisms of disuse atrophy and optimal rehabilitation strategies for the restoration of muscle mass, structure & function

    Get PDF
    Disuse atrophy (DA) occurs during situations of unloading and is characterised by a loss of muscle mass and function. These reductions may be observed as early as 5 days into a period of unloading. While the reduction of muscle size is well studied, the reduction in muscle function is less well characterised. Furthermore, different muscles of the lower leg have been shown to express diverging profiles of muscle size loss as a result of DA. In particular, the medial gastrocnemius (MG) is relatively susceptible to DA while the tibialis anterior (TA) is resistant to even long-term bed rest of over a month. The average length of stay in hospital in the UK was last reported at 4.5 days which is enough time for DA to occur in the quadriceps. In older individuals, loss of muscle mass and function may reduce quality of life to the point of frailty and are less well suited to performing resistance exercise. Hence, alternative therapies to attenuate DA may be needed. This thesis introduces skeletal muscle and its function as an organ in the human body, along with its composition and how this influences its function. It then discusses the study of DA and the situations in which it occurs, before covering the response of different muscles, the time course and strategies used for rehabilitation. General methods used within this thesis are detailed in Chapter 2. In Chapter 3, results of muscle size, strength, and various aspects of function from the vastus lateralis (VL), the MG and the TA to investigate the difference in response to 15-day unilateral lower limb immobilisation in young adults. In Chapters 4 and 5, this thesis investigates the neuromuscular adaptation to this intervention in the VL compared to the non-immobilised control, and then the immobilised MG and TA, respectively. These results show an impairment of neural input to the VL and the MG following immobilisation which is not seen in the TA. Finally, in Chapter 6, peripheral nerve stimulation is shown to potentially recruit from a broader pool of motor units than traditional neuromuscular electrical stimulation and as such may be more favourable for rehabilitation

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
    • 

    corecore