19 research outputs found

    Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

    Full text link
    A graph is OkO_k-free if it does not contain kk pairwise vertex-disjoint and non-adjacent cycles. We show that Maximum Independent Set and 3-Coloring in OkO_k-free graphs can be solved in quasi-polynomial time. As a main technical result, we establish that "sparse" (here, not containing large complete bipartite graphs as subgraphs) OkO_k-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is proven sharp as there is an infinite family of O2O_2-free graphs without K3,3K_{3,3}-subgraph and whose treewidth is (at least) logarithmic. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse OkO_k-free graphs, and that deciding the OkO_k-freeness of sparse graphs is polynomial time solvable.Comment: 28 pages, 6 figures. v3: improved complexity result

    QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails

    QPTAS and subexponential algorithm for maximum clique on disk graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for \textsc{Maximum Clique} on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2O~(n2/3)2^{\tilde{O}(n^{2/3})} for \textsc{Maximum Clique} on disk graphs. In stark contrast, \textsc{Maximum Clique} on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2n1ε2^{n^{1-\varepsilon}}, unless the Exponential Time Hypothesis fails

    Towards the Erd\H{o}s-Gallai Cycle Decomposition Conjecture

    Full text link
    In the 1960's, Erd\H{o}s and Gallai conjectured that the edges of any nn-vertex graph can be decomposed into O(n)O(n) cycles and edges. We improve upon the previous best bound of O(nloglogn)O(n\log\log n) cycles and edges due to Conlon, Fox and Sudakov, by showing an nn-vertex graph can always be decomposed into O(nlogn)O(n\log^{*}n) cycles and edges, where logn\log^{*}n is the iterated logarithm function.Comment: Final version, accepted for publicatio

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Towards the Erdős-Gallai cycle decomposition conjecture

    Get PDF
    In the 1960's, Erdős and Gallai conjectured that the edges of any n-vertex graph can be decomposed into O(n) cycles and edges. We improve upon the previous best bound of O(nloglogn) cycles and edges due to Conlon, Fox and Sudakov, by showing an n-vertex graph can always be decomposed into O(nlog∗n) cycles and edges, where log∗n is the iterated logarithm function

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Packing and embedding large subgraphs

    Get PDF
    This thesis contains several embedding results for graphs in both random and non random settings. Most notably, we resolve a long standing conjecture that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/21/2. %posed e.g.~by Bollob\'as, In Chapter 2 we obtain the following perturbation result regarding the hypercube \cQ^n: if H\subseteq\cQ^n satisfies δ(H)αn\delta(H)\geq\alpha n with α>0\alpha>0 fixed and we consider a random binomial subgraph \cQ^n_p of \cQ^n with p(0,1]p\in(0,1] fixed, then with high probability H\cup\cQ^n_p contains kk edge-disjoint Hamilton cycles, for any fixed kNk\in\mathbb{N}. This result is part of a larger volume of work where we also prove the corresponding hitting time result for Hamiltonicity. In Chapter 3 we move to a non random setting. %to a deterministic one. %Instead of embedding a single Hamilton cycle our result concerns packing more general families of graphs into a fixed host graph. Rather than pack a small number of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings of more general families of graphs. More specifically, we provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. %In general, this degree condition is best possible. %In particular, this yields an approximate version of the tree packing conjecture %in the setting of regular host graphs GG of high degree. %Similarly, our result implies approximate versions of the Oberwolfach problem, %the Alspach problem and the existence of resolvable designs in the setting of %regular host graphs of high degree. In particular, this yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree
    corecore