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ABSTRACT

This thesis contains several embedding results for graphs in both random and non random

settings. Most notably, we resolve a long standing conjecture that the threshold probability

for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/2.

In Chapter 2 we obtain the following perturbation result regarding the hypercube Qn:

if H ⊆ Qn satisfies δ(H) ≥ αn with α > 0 fixed and we consider a random binomial subgraph

Qnp of Qn with p ∈ (0, 1] fixed, then with high probability H ∪Qnp contains k edge-disjoint

Hamilton cycles, for any fixed k ∈ N. This result is part of a larger volume of work where we

also prove the corresponding hitting time result for Hamiltonicity.

In Chapter 3 we move to a non random setting. Rather than pack a small number

of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings

of more general families of graphs. More specifically, we provide a degree condition on a

regular n-vertex graph G which ensures the existence of a near optimal packing of any family

H of bounded degree n-vertex k-chromatic separable graphs into G. In particular, this

yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the

Alspach problem and the existence of resolvable designs in the setting of regular host graphs

of high degree.
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Chapter 1

Introduction

The topics of this thesis are extremal graph theory and probabilistic combinatorics. Our

results all concern the following question: given two graphs G and H as input, determine

whether G contains a subgraph isomorphic to H?

We are interested in the case where this subgraph is spanning in G. Our goal will be to

determine the existence of such subgraphs and not to find specific examples. In general, even

this is an NP-complete problem. One famous example which is known to be NP-complete is

the problem of determining whether G contains a cycle that covers every vertex exactly once

(i.e. a Hamilton cycle). As a result of this NP-completeness, for many classes of graphs G

and H, the study of this question has moved in the direction of finding sufficient conditions,

particularly in the form of degree conditions. The classic example concerning Hamilton cycles

is the theorem of Dirac, which states that for n ≥ 3, every n-vertex graph with minimum

degree at least n/2 is Hamiltonian. We study this question of containing a given subgraph

for the case of Hamilton cycles, but also for more general families of graphs. Moreover, we

tackle this problem in both random and non random settings.

We begin in the random setting. In graph theory, a random graph is a graph that has

been sampled via some probability distribution over a fixed collection of graphs. The most

well-known and studied random graph model is the binomial model Gn,p. One can generate a
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random graph G ∼ Gn,p according to this distribution by starting with the n-vertex complete

graph and deleting each edge with probability 1−p, independently of every other edge. Given

a property of interest, the aim of study is to determine the threshold probability p∗ for this

model beyond which the property is realised with high probability (sometimes referred to as

the phase transition).

The threshold probability for Hamilton cycles appearing in the binomial model has

been very well understood since the 1970s. Another random graph model which can be

sampled in a similar way to the binomial model, is the model of random subgraphs of the

hypercube. This time, instead of starting with the complete graph, one starts with the

n-dimensional hypercube. In contrast to the binomial model, the problem of determining the

threshold probability for Hamiltonicity in random subgraphs of the hypercube has proven

much more difficult. In Chapter 2 we resolve this question by proving the threshold probability

occurs at p∗ = 1/2. Moreover, instead of embedding just a single Hamilton cycle at this

threshold, we actually prove that for any fixed k ∈ N, the same threshold holds for packing k

Hamilton cycles into our random subgraph of the hypercube. Here we say that k Hamilton

cycles pack into a graph G whenever G contains k edge-disjoint Hamilton cycles as a subgraph.

In Chapter 3 we switch to a non random setting. Instead of packing a small number

of Hamilton cycles into a fixed host graph G, our aim is now to pack the optimal number.

In fact for the case of Hamilton cycles this problem was already well understood: recently

Csaba, Kühn, Lo, Osthus, and Treglown [35] showed that any r-regular n-vertex graph G

with r ≥ bn/2c has a decomposition into Hamilton cycles and at most 1 perfect matching.

Here we say that a graph G decomposes into a collection of graphs H in the special case

where H packs into G and covers every edge of G (i.e. H and G have the same number

of edges). In Chapter 3, we allow for a more general class of graphs than Hamilton cycles,

characterised by the graph property of having small bandwidth. Here a graph has small

bandwidth if each vertex only has edges to vertices that are ‘nearby’ with respect to some

vertex ordering (this includes Hamilton cycles). We provide a degree condition on a regular
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graph G which is sufficient to ensure the existence of a near optimal packing of such families

of graphs into G. In general, this degree condition is best possible.

Our result in Chapter 3 can be viewed as a near optimal packing version of the

bandwidth theorem of Böttcher, Schacht and Taraz [24] (which concerns embedding a single

small bandwidth graph) in the setting of regular host graphs. Several design-type corollaries

follow. One example concerns the tree packing conjecture of Gyárfás and Lehel, which asks

for decompositions of the complete graph into specific collections of trees. Our result yields

an approximate version of this conjecture for bounded degree trees, in the setting of regular

host graphs of high degree. Another long standing conjecture, the Oberwolfach problem,

which concerns decomposing the complete graph into cycles, was recently solved by Glock,

Joos, Kim, Kühn, and Osthus [48], where our result was an important tool in their proof.

Finally, we mention some further work that has not been included in this thesis due to

word constraints. The local resilience of a graph G with respect to a property P measures how

much one has to change G locally in order to destroy P . In a sequence of two papers [33, 32]

we prove ‘resilience’ versions of several classical results for the binomial and random regular

graph models. Here we sample an n-vertex d-regular graph according to the random regular

model Gn,d by choosing a graph uniformly at random from the collection of all n-vertex

d-regular graphs.

In [32] we solve a conjecture of Ben-Shimon, Krivelevich and Sudakov by proving a

resilience version of Dirac’s theorem in the setting of random regular graphs. More precisely,

we show that, whenever d is sufficiently large compared to ε > 0, with high probability the

following holds: let G′ be any subgraph of the random n-vertex d-regular graph Gn,d with

minimum degree at least (1/2 + ε)d. Then G′ is Hamiltonian. Here the condition that d is

large is necessary.

In [33] we consider strengthenings of Dirac’s theorem. Pósa’s theorem states that any

n-vertex graph G whose degree sequence d1 ≤ . . . ≤ dn satisfies di ≥ i+ 1 for all i < n/2 has

a Hamilton cycle. This result is generalised further by Chvátal’s theorem, which characterises
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all degree sequences that ensure the existence of a Hamilton cycle. We prove a resilience

version of Pósa’s Hamiltonicity condition for the binomial model Gn,p and show that a natural

guess for a resilient version of Chvátal’s theorem for this model fails to be true.
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Chapter 2

Hamiltonicity of random subgraphs of

the hypercube

2.1 Introduction

The n-dimensional hypercube Qn is the graph whose vertex set consists of all n-bit 01-strings,

where two vertices are joined by an edge whenever their corresponding strings differ by a

single bit. The hypercube and its subgraphs have attracted much attention in graph theory

and computer science, e.g. as a sparse network model with strong connectivity properties. It

is well known that hypercubes contain spanning paths (also called Gray codes or Hamilton

paths) and, for all n ≥ 2, they contain spanning cycles (also referred to as cyclic Gray codes

or Hamilton cycles). Classical applications of Gray codes in computer science are described in

the surveys of Savage [89] and Knuth [65]. Applications of hypercubes to parallel computing

are discussed in the monograph of Leighton [82].

2.1.1 Spanning subgraphs in hypercubes

The systematic study of spanning paths, trees and cycles in hypercubes was initiated in the

1970’s. There is by now an extensive literature about subtrees of the hypercube; see, for
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instance, results of Bhatt, Chung, Leighton, and Rosenberg [10] about embedding subdivided

trees (instigated by processor allocation in distributed computing systems).

As a generalization of Hamilton paths, Caha and Koubek [27] considered the problem

of finding a collection of spanning vertex-disjoint paths, given a prescribed set of endpoints.

After several improvements [29, 52], this problem was recently resolved by Dvořák, Gregor,

and Koubek [40].

The applications of hypercubes as networks in computer science inspired questions

about the reliability of its properties. This led to considering ‘faulty’ hypercubes in which

some edges or vertices are missing. For instance, Chan and Lee [28] showed that, if Qn has at

most 2n− 5 faulty edges and every vertex has (non-faulty) degree at least 2, then there is a

Hamilton cycle in Qn which avoids all faulty edges (and this condition is best possible). They

also showed that the general problem of determining the Hamiltonicity of Qn with a larger

number of faulty edges is NP-complete. More generally, Dvořák and Gregor [39] studied

the existence of spanning collections of vertex-disjoint paths with prescribed endpoints in

faulty hypercubes. (We will apply these results in our proofs, see Section 2.7.3 for details.)

These can be seen as extremal results about the robustness of the hypercube with respect to

containing spanning collections of paths and cycles.

2.1.2 Hamilton cycles in binomial random graphs

One of the most studied random graph models is the binomial random graph Gn,p. Here we

have a (labelled) set of n vertices and we include each edge with probability p independently

of all other edges.

Given some monotone increasing graph property P, a function p∗ = p∗(n) is said to

be a (coarse) threshold for P if P[Gn,p ∈ P]→ 1 whenever p/p∗ →∞ and P[Gn,p ∈ P]→ 0

whenever p/p∗ → 0. One can define the stronger notion of a sharp threshold similarly:

p∗ = p∗(n) is said to be a sharp threshold for P if, for all ε > 0, we have that P[Gn,p ∈ P ]→ 1
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whenever p ≥ (1 + ε)p∗ and P[Gn,p ∈ P] → 0 whenever p ≤ (1 − ε)p∗. The problem of

finding the threshold for the containment of a Hamilton cycle was solved independently by

Pósa [87] and Koršunov [73]. Furthermore, Koršunov [73] determined the sharp threshold for

Hamiltonicity to be p∗ = log n/n. These results were later made even more precise by Komlós

and Szemerédi [72]. It is worth noting that p∗ = log n/n is also the sharp threshold for the

property of having minimum degree at least 2. In this sense, the results about Hamilton

cycles in Gn,p can be interpreted as saying that the natural obstruction of having sufficiently

high minimum degree is also an ‘almost sufficient’ condition.

A property that generalises Hamiltonicity is that of containing k edge-disjoint Hamilton

cycles, for some k ∈ N. We will present more results in this direction in Section 2.1.4; for now,

let us simply note that the sharp threshold for the containment of k edge-disjoint Hamilton

cycles in Gn,p, for some k ∈ N independent of n, is p∗ = log n/n, i.e. the same as the threshold

for Hamiltonicity.

The study of robustness of graph properties has also attracted much attention recently.

For instance, given a graph G which is known to satisfy some property P , consider a random

subgraph Gp obtained by deleting each edge of G with probability 1− p, independently of all

other edges. The problem then is to determine the range of p for which Gp satisfies P with

high probability. In this setting, a result of Krivelevich, Lee, and Sudakov [75] asserts that,

for any n-vertex graph G with minimum degree at least n/2, the graph Gp is asymptotically

almost surely Hamiltonian whenever p� log n/n. This can be viewed as a robust version of

Dirac’s theorem on Hamilton cycles.

2.1.3 Hamilton cycles in binomial random subgraphs of the hyper-

cube

Throughout this paper, we will consider random subgraphs of the hypercube and show that

the hypercube is robustly Hamiltonian in the above sense. We will denote by Qnp the random
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subgraph of the hypercube obtained by removing each edge of Qn with probability 1 − p

independently of every other edge.

The random graph Qnp was first studied by Burtin [26], who proved that the sharp

threshold for connectivity is 1/2. This result was later made more precise by Erdős and

Spencer [42] and Bollobás [13]. As a related problem, Dyer, Frieze, and Foulds [41] determined

the sharp threshold for connectivity in subgraphs of Qn obtained by removing both vertices

and edges uniformly at random. Later, Bollobás [15] proved that 1/2 is also the sharp

threshold for the containment of a perfect matching in Qnp . As with the Gn,p model, this also

coincides with the threshold for having minimum degree at least 1.

The main goal of this paper is to study the analogous problem for Hamiltonicity in

random subgraphs of the hypercube. There is a folklore conjecture that the sharp threshold

for Hamiltonicity in Qnp should be 1/2, i.e. the same as the threshold for having minimum

degree at least 2. This question was explicitly asked by Bollobás [16] at several conferences

in the 1980’s, in the ICM surveys of Frieze [46] and Kühn and Osthus [80], as well as the

recent survey of Frieze [47]. A special case of our first result resolves this problem.

Theorem 2.1.1. For any k ∈ N, the sharp threshold for the property of containing k

edge-disjoint Hamilton cycles in Qnp is p∗ = 1/2.

For k = 1, this can be seen as a probabilistic version of the result on faulty hyper-

cubes [28], and also as a statement about the robustness of Hamiltonicity in the hypercube.

While, for p < 1/2, with high probability Qnp will not contain a Hamilton cycle, it

turns out that the reason for this is mostly due to local obstructions (e.g., vertices with

degree zero or one). More precisely, we prove that, for any constant p ∈ (0, 1/2), a.a.s. the

random graph Qnp contains an almost spanning cycle.

Theorem 2.1.2. For any δ, p ∈ (0, 1], a.a.s. the graph Qnp contains a cycle of length at least

(1− δ)2n.

We believe that the probability bound is far from optimal, in the sense that random
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subgraphs of the hypercube where edges are picked with vanishing probability should also

satisfy this property.

Conjecture 2.1.3. Suppose that p = p(n) satisfies that pn→∞. Then, a.a.s. Qnp contains

a cycle of length (1− o(1))2n.

Similarly, it would be interesting to determine which (long) paths and (almost spanning)

trees can be found in Qnp . Moreover, our methods might also be useful to embed other large

subgraphs, such as F -factors.

Conjecture 2.1.4. Suppose ε > 0 and an integer ` ≥ 2 are fixed and p ≥ 1/2 + ε. Then,

a.a.s. Qnp contains a C2`-factor, that is, a set of vertex-disjoint cycles of length 2` which

together contain all vertices of Qn.

2.1.4 Hitting time results

Remarkably, the above intuition that having the necessary minimum degree is an ‘almost

sufficient’ condition for the containment of edge-disjoint perfect matchings and Hamilton

cycles can be strengthened greatly via so-called hitting time results. These are expressed in

terms of random graph processes. The general setting is as follows. Let G be an n-vertex

graph with m = m(n) edges, and consider an arbitrary labelling E(G) = {e1, . . . , em}. The

G-process is defined as a random sequence of nested graphs G̃(σ) = (Gt(σ))mt=0, where

σ is a permutation of [m] chosen uniformly at random and, for each i ∈ [m]0, we set

Gi(σ) = (V (G), Ei), where Ei := {eσ(j) : j ∈ [i]}. Given any monotone increasing graph

property P such that G ∈ P, the hitting time for P in the above G-process is the random

variable τP(G̃(σ)) := min{t ∈ [m]0 : Gt(σ) ∈ P}.

Let us denote the properties of containing a perfect matching by PM, Hamiltonicity

by HAM, and connectivity by CON , respectively. For any k ∈ N, let δk denote the property

of having minimum degree at least k, and let HMk denote the property of containing

bk/2c edge-disjoint Hamilton cycles and, if k is odd, one matching of size bn/2c which is
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edge-disjoint from these Hamilton cycles. With this notion of hitting times, many of the

results about thresholds presented in Sections 2.1.2 and 2.1.3 can be strengthened significantly.

For instance, Bollobás and Thomason [18] showed that a.a.s. τCON (K̃n(σ)) = τδ1(K̃n(σ))

and, if n is even, then a.a.s. τPM(K̃n(σ)) = τδ1(K̃n(σ)). Ajtai, Komlós, and Szemerédi [2]

and Bollobás [14] independently proved that a.a.s. τHAM(K̃n(σ)) = τδ2(K̃n(σ)). This was

later generalised by Bollobás and Frieze [17], who proved that, given any k ∈ N, for n even

a.a.s. τHMk(K̃n(σ)) = τδk(K̃n(σ)).

A hitting time result for the property of having k edge-disjoint Hamilton cycles when

k is allowed to grow with n is still not known, even in Kn-processes. As a slightly weaker

notion, consider property H, where we say that a graph G satisfies property H if it contains

bδ(G)/2c edge-disjoint Hamilton cycles, together with an additional edge-disjoint matching

of size bn/2c if δ(G) is odd. Knox, Kühn, and Osthus [64], Krivelevich and Samotij [76] as

well as Kühn and Osthus [81] proved results for different ranges of p which, together, show

that Gn,p a.a.s. satisfies property H.

For graphs other than the complete graph, Johansson [59] recently obtained a robust-

ness version of the hitting time results for Hamiltonicity. In particular, for any n-vertex

graph G with δ(G) ≥ (1/2 + ε)n, he proved that a.a.s. τHAM(G̃(σ)) = τδ2(G̃(σ)). This was

later extended to a larger class of graphs G and to hitting times for HM2k, for all k ∈ N

independent of n, by Alon and Krivelevich [6].

In the setting of random subgraphs of the hypercube, Bollobás [15] determined the

hitting time for perfect matchings by showing that a.a.s. τPM(Q̃n(σ)) = τCON (Q̃n(σ)) =

τδ1(Q̃n(σ)). One of our main results (which implies Theorem 2.1.1) is a hitting time result for

Hamiltonicity (and, more generally, property HMk) in Qn-processes. Again, this question

was raised by Bollobás [16] at several conferences.

Theorem 2.1.5. For all k ∈ N, a.a.s. τHMk(Q̃n(σ)) = τδk(Q̃n(σ)), that is, the hitting time

for the containment of a collection of bk/2c Hamilton cycles and k−2bk/2c perfect matchings,
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all pairwise edge-disjoint, in Qn-processes is a.a.s. equal to the hitting time for the property

of having minimum degree at least k.

We omit the proof of Theorem 2.1.5 due to word constraints. A sketch is provided in

Section 2.2.6 and the full proof can be found in [31]. We also wonder whether this is true if k

is allowed to grow with n, and propose the following conjecture which, if true, would be an

approximate version of the results of [76, 81, 64] in the hypercube.

Conjecture 2.1.6. For all p ∈ (1/2, 1] and η > 0, a.a.s. Qnp contains (1/2 − η)δ(Qnp)

edge-disjoint Hamilton cycles.

2.1.5 Randomly perturbed graphs

A relatively recent area at the interface of extremal combinatorics and random graph theory

is the study of randomly perturbed graphs. Generally speaking, the idea is to consider a

deterministic dense n-vertex graph H (usually satisfying some minimum degree condition)

and a random graph Gn,p on the same vertex set as H. The question is whether H is close

to satisfying some given property P in the sense that a.a.s. H ∪Gn,p ∈ P for some small p.

This line of research was sparked off by Bohman, Frieze, and Martin [11], who showed that,

if H is an n-vertex graph with δ(H) ≥ αn, for any constant α > 0, then a.a.s. H ∪Gn,p is

Hamiltonian for all p ≥ C(α)/n. Other properties that have been studied in this context are

e.g. the existence of powers of Hamilton cycles and general bounded degree spanning graphs

[22], F -factors [7] or spanning bounded degree trees [74, 20]. One common phenomenon in

this model is that, by considering the union with a dense graph H (i.e. a graph H with linear

degrees), the probability threshold of different properties is significantly lower than that in

the classical Gn,p model. The results for Hamiltonicity [11] were very recently generalised by

Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [53] to allow α to tend to 0 with n

(that is, to allow graphs H which are not dense).

We consider randomly perturbed graphs in the setting of subgraphs of the hypercube.
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To be precise, we take an arbitrary spanning subgraph H of the hypercube, with linear

minimum degree, and a random subgraph Qnε , and consider H ∪Qnε . (Note here that Qnε is a

‘dense’ subgraph of Qn, but for ε < 1/2 it will contain both isolated vertices and vertices of

very low degrees.) In this setting, we show the following result.

Theorem 2.1.7. For all ε, α ∈ (0, 1] and k ∈ N, the following holds. Let H be a spanning

subgraph of Qn such that δ(H) ≥ αn. Then, a.a.s. H ∪Qnε contains k edge-disjoint Hamilton

cycles.

We can also allow H to have much smaller degrees, at the cost of requiring a larger

probability to find the Hamilton cycles.

Theorem 2.1.8. For every integer k ≥ 2, there exists ε > 0 such that a.a.s., for every

spanning subgraph H of Qn with δ(H) ≥ k, the graph H ∪ Qn1/2−ε contains a collection of

bk/2c Hamilton cycles and k − 2bk/2c perfect matchings, all pairwise edge-disjoint.

We omit the proof of Theorem 2.1.8 due to word constraints. A full proof can be found

in [31]. Note that Theorem 2.1.8 can be viewed as a ‘universality’ result for H, meaning that

it holds for all choices of H simultaneously. It would be interesting to know whether such a

result can also be obtained for the lower edge probability assumed in Theorem 3.1.2, i.e., is it

the case that, for all ε, α ∈ (0, 1], a.a.s. G ∼ Qnε has the property that, for every spanning

H ⊆ Qn with δ(H) ≥ αn, G ∪H is Hamiltonian?

As we will prove, Theorem 2.1.1 follows straightforwardly from Theorem 2.1.7, and it

follows trivially from Theorem 2.1.5. In turn, Theorem 2.1.5 follows from Theorem 2.1.8. On

the other hand, Theorems 2.1.2, 2.1.7 and 2.1.8, while being proved with similar ideas, are

incomparable.

2.1.6 Percolation on the hypercube

To build Hamilton cycles in random subgraphs of the hypercube, we will consider a random

process which can be viewed as a branching process or percolation process on the hypercube.
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With high probability, for constant p > 0, this process results in a bounded degree tree in Qnp

which covers most of the neighbourhood of every vertex in Qn, and thus spans almost all

vertices of Qn. The version stated below is a special case of Theorem 2.6.1.

Theorem 2.1.9. For any fixed ε, p ∈ (0, 1], there exists D = D(ε) such that a.a.s. Qnp

contains a tree T with ∆(T ) ≤ D and such that |V (T ) ∩ NQn(x)| ≥ (1 − ε)n for every

x ∈ V (Qn).

Further results concerning the local geometry of the giant component inQnp for constant

p ∈ (0, 1/2) were proved recently by McDiarmid, Scott, and Withers [83].

The random process we consider in the proof of Theorem 2.1.9 can be viewed as

a branching random walk (with a bounded number of branchings at each step). Simpler

versions of such processes (with infinite branchings allowed) have been studied by Fill and

Pemantle [45] and Kohayakawa, Kreuter, and Osthus [66], and we will base our analysis on

these. Motivated by our approach, we raise the following question, which seems interesting

in its own right.

Question 2.1.10. Does a non-returning random walk on Qn a.a.s. visit almost all vertices

of Qn?

More generally, there are many results and applications concerning random walks on

the hypercube (but allowing for returns). For example, motivated by a processor allocation

problem, Bhatt and Cai [9] studied a walk algorithm to embed large (subdivided) trees into

the hypercube. Moreover, the analysis of (branching) random walks is a critical ingredient

in the study of percolation thresholds for the existence of a giant component in Qnp . These

have been investigated e.g. by Bollobás, Kohayakawa, and Łuczak [12] and Borgs, Chayes,

Hofstad, Slade, and Spencer [19] and Hofstad and Nachmias [56].
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2.2 Outline of the main proofs

2.2.1 Overall outline

We now sketch the key ideas for the proof of Theorem 2.1.7. We will first prove the case

k = 1, and later use this to deduce the case when k > 1. Recall we are given H ⊆ Qn

with δ(H) ≥ αn, and G ∼ Qnε , with α, ε ∈ (0, 1]. Our aim is to show that a.a.s. H ∪ G is

Hamiltonian.

Our approach for finding a Hamilton cycle is to first obtain a spanning tree. By

passing along all the edges of a spanning tree T (with a vertex ordering prescribed by a

depth first search), one can create a closed spanning walk W which visits every edge of T

twice. The idea is then to modify such a walk into a Hamilton cycle. (This approach is

inspired by the approximation algorithm for the Travelling Salesman Problem which returns

a tour of at most twice the optimal length.) More precisely, our approach will be to obtain

a near-spanning tree of Qn−s, for some suitable constant s, and to blow up vertices of this

tree into s-dimensional cubes. These cubes can then be used to move along the tree without

revisiting vertices, which will result in a near-Hamilton cycle H. All remaining vertices which

are not included in H will be absorbed into H via absorbing structures that we carefully put

in place beforehand.

In Sections 2.2.2 to 2.2.4 we outline in more detail how we find a long cycle in G

(Theorem 2.1.2). Note that in Theorem 2.1.2 we have G ∼ Qnε , so a.a.s. G will have isolated

vertices which prevent any Hamilton cycle occurring as a subgraph. In Section 2.2.5 we outline

how we build on this approach to obtain the case k = 1 of Theorem 2.1.7. In Section 2.2.6

we sketch how we obtain Theorem 2.1.5.
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2.2.2 Building block I: trees via branching processes.

We view each vertex in Qn as an n-dimensional 01-coordinate vector. By fixing the first

s coordinates, we fix one of 2s layers L1, . . . , L2s of the hypercube, where s ∈ N will be

constant. Thus, L ∼= Qn−s for each layer L. By considering a Hamilton cycle in Qs, we may

assume that consecutive layers differ only by a single coordinate on the unique elements of

Qs which define them. Let G ∼ Qnε . For each layer L, we let L(G) := G[V (L)] and define the

intersection graph I(G) :=
⋂2s

i=1 Li(G). Hence, I(G) ∼ Qn−s
ε2

s . We view I(G) as a subgraph of

Qn−s. We first show that I(G) contains a near-spanning tree T (Theorem 2.6.1). Thus, a

copy of T is present in each of L1(G), . . . , L2s(G) simultaneously.

Since the walk W mentioned in Section 2.2.1 passes through each vertex x of T a total

of dT (x) times, it will be important later for T to have bounded degree. In order to guarantee

this, we run bounded degree branching processes (see Definition 2.6.3) from several far apart

‘corners’ of the hypercube. Roughly speaking, T will be formed by taking a union of these

processes and removing cycles. Crucially, the model we introduce for these processes has a

joint distribution with Qn−s
ε2s

, so that T will in fact appear as a subgraph of I(G). In applying

Theorem 2.6.1, we obtain a bounded degree tree T ⊆ I(G) which contains almost all of the

neighbours of every vertex of I(G). We also obtain a ‘small’ reservoir set R ⊆ V (I(G)),

which T avoids and which will play a key role later in the absorption of vertices which do not

belong to our initial long cycle. At this point, both T and R are now present in every layer

of the hypercube simultaneously.

2.2.3 Building block II: cube tilings via the nibble.

Let ` < s and 0 < δ � 1 be fixed. In order to gain more local flexibility when traversing the

near-spanning tree T , we augment T by locally adding a near-spanning `-cube factor of I(G).

One can use classical results on matchings in almost regular uniform hypergraphs of small

codegree to show that I(G) contains such a collection of Q` spanning almost all vertices
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of I(G). However, we require the following stronger properties, namely that there exists a

collection C of vertex disjoint copies of Q` in I(G) so that, for each x ∈ V (I(G)),

(i) C covers almost all vertices in NQn(x);

(ii) the directions spanned by the cubes intersecting NQn(x) do not correlate too strongly

with any given set of directions.

The precise statement is given in Theorem 2.5.7. Neither (i) nor (ii) follow from existing

results on hypergraph matchings and the proofs strongly rely on geometric properties intrinsic

to the hypercube. We will omit the proof of Theorem 2.5.7 due to word constraints but

describe the main steps of this proof below.

To prove Theorem 2.5.7, we build on the so-called Rödl nibble. More precisely, we

consider the hypergraph H, with V (H) = V (Qn−s), where the edge set is given by the copies

of Q` in I(G). We run a random iterative process where at each stage we add a ‘small’

number of edges from H to C, before removing all those remaining edges of H which ‘clash’

with our selection. A careful analysis and an application of the Lovász local lemma yield the

existence of an instance of this process which terminates in the near-spanning `-cube factor

with the properties required for Theorem 2.5.7.

2.2.4 Constructing a long cycle.

Roughly speaking, we will use T as a backbone to provide ‘global’ connectivity, and will use

the near-spanning `-cube factor C and the layer structure to gain high ‘local’ connectivity

and flexibility. Let T ∪
⋃
C∈C C =: Γ′ ⊆ I(G) and let Γ ⊆ Γ′ be formed by removing all leaves

and isolated cubes in Γ′. It follows by our tree and nibble results that almost all vertices

of I(G) are contained in Γ. Note that, for each v ∈ V (Qn−s) = V (I(G)), there is a unique

vertex in each of the 2s layers which corresponds to v. We refer to these 2s vertices as clones

of v and to the collection of these 2s clones as a vertex molecule. Similarly, each `-cube C ∈ C
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contained in Γ gives rise to a cube molecule. We construct a cycle in G which covers all of

the cube molecules (and, therefore, almost all vertices in Qn).

Let Γ∗ be the graph obtained from Γ by contracting each `-cube C ⊆ (
⋃
C∈C C) ∩ Γ

into a single vertex. We refer to such vertices in Γ∗ as atomic vertices, and to all other

vertices as inner tree vertices. We run a depth-first search on Γ∗ to give an order to the

vertices. Next, we construct a skeleton which will be the backbone for our long cycle. The

skeleton is an ordered sequence of vertices in Qn which contains the vertices via which our

cycle will enter and exit each molecule. That is, given an exit vertex v for some molecule

in the skeleton, the vertex u which succeeds v in the skeleton will be an entry vertex for

another molecule, and such that uv ∈ E(G). Here, a vertex in the skeleton belonging to

an inner tree vertex molecule is referred to as both an entry and exit vertex. (Actually, we

will first construct an ‘external skeleton’, which encodes this information. The skeleton then

also prescribes some edges within molecules which go between different layers.) We use the

ordering of the vertices of Γ∗ to construct the skeleton in a recursive way starting from the

lowest ordered vertex. It is crucial that our tree T has bounded degree (much smaller than

2s), so that no molecule is overused in the skeleton.

Once the skeleton is constructed, we apply our ‘connecting lemmas’ (Lemmas 2.7.8

and 2.7.9). These connecting lemmas, applied to a cube molecule with a bounded number of

pairs of entry and exit vertices as input (given by the skeleton), provide us with a sequence of

vertex-disjoint paths which cover this molecule, where each path has start and end vertices

consisting of an input pair. The union of all of these paths combined with all edges in G

between the successive exit and entry vertices of the skeleton will then form a cycle H ⊆ G

which covers all vertices lying in the cube molecules (thus proving Theorem 2.1.2).
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2.2.5 Constructing a Hamilton cycle.

In order to construct a Hamilton cycle in H ∪G, we will absorb the vertices of V (Qn) \ V (H)

into H. We achieve this via absorbing structures that we identify for each vertex (see

Definition 2.7.2). To construct these absorbing structures, we will need to use some edges

of H. Roughly speaking, to each vertex v we associate a left `-cube C l
v ⊆ Qn and a right

`-cube Cr
v ⊆ Qn, where C l

v, C
r
v are both clones of some `-cubes C l, Cr ∈ C contained in Γ. We

choose these cubes so that v will have a neighbour u ∈ V (C l
v) and a neighbour u′ ∈ V (Cr

v),

to which we refer as tips of the absorbing structure. Furthermore, u will have a neighbour

w ∈ V (Cr
v), which is also a neighbour of u′. Our near-Hamilton cycle H will satisfy the

following properties:

(a) H covers all vertices in C l
v ∪ Cr

v except for u, and

(b) wu′ ∈ E(H).

These additional properties will be guaranteed by our connecting lemmas discussed in

Section 2.2.4. We can then alter H to include the segment wuvu′ instead of the edge wu′, thus

absorbing the vertices u and v into H. The following types of vertices will require absorption.

(i) Every vertex that is not covered by a clone of either some inner tree vertex or of some

cube C ∈ C which is contained in Γ.

(ii) The cycle H does not cover all the clones of inner tree vertices and, thus, the uncovered

vertices of this type will also have to be absorbed.

However, we will not know precisely which of the vertices described in (i) and (ii) will

be covered by H and which of these vertices will need to be absorbed until after we have

constructed the (external) skeleton. Moreover, many potential absorbing structures are later

ruled out as candidates (for example, if they themselves contain vertices that will need to be

absorbed). Therefore, it is important that we identify a ‘robust’ collection of many potential
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absorbing structures for every vertex in Qn at a preliminary stage of the proof. The precise

absorbing structure eventually assigned to each vertex will be chosen via an application of

our rainbow matching lemma (Lemma 2.5.4) at a late stage in the proof.

We will now highlight the purpose of the reservoir R. Suppose v ∈ V (Qn) is a vertex

which needs to be absorbed via an absorbing structure with left `-cube C l
v and left tip

u ∈ V (C l
v). Recall that both u and C l

v are clones of some u∗ ∈ V (Γ) and C l ∈ C, where

u∗ ∈ V (C l). If u∗ has a neighbour w∗ in T − V (C l), then it is possible that the skeleton will

assign an edge from u to w for the cycle H (where w is the clone of w∗ in the same layer as u).

Given that u is now incident to a vertex outside of C l
v, we can no longer use the absorbing

structure with u as a (left) tip (otherwise, we might disconnect T ). To avoid this problem,

we show that most vertices have many potential absorbing structures whose tips lie in the

reservoir R (which T avoids). Here we make use of vertex degrees of H. A small number of

scant vertices will not have high enough degree into R. For these vertices we fix an absorbing

structure whose tips do not lie in R, and then alter T slightly so that these tips are deleted

from T and reassigned to R. The fact that scant vertices are few and well spread out from

each other will be crucial in being able to achieve this (see Lemma 2.6.20).

Let us now discuss two problems arising in the construction of the skeleton. Firstly,

letMC ⊆ Qn with C ∈ C be a cube molecule which is to be covered by H. Furthermore,

suppose one of the clones C l
v of C belongs to an absorbing structure for some vertex v. Let u

be the tip of C l
v and suppose that u has even parity. We would like to apply the connecting

lemmas to coverMC − {u} by paths which avoid u. But this would now involve covering

one fewer vertex of even parity than of odd parity. This, in turn, has the effect of making

the construction of the skeleton considerably more complicated (this construction is simplest

when successive entry and exit vertices have opposite parities). To avoid this, we assign

absorbing structures in pairs, so that, for each C ∈ C, either two or no clones of C will be

used in absorbing structures. In the case where two clones are used, we enforce that the

tips of these clones will have opposite parities, and therefore each moleculeMC will have
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the same number of even and odd parity vertices to be covered by H. We use our robust

matching lemma (see Lemma 2.5.2) to pair up the clones of absorbing structures in this way.

To connect up different layers of a cube molecule, we will of course need to have suitable

edges between these. Molecules which do not satisfy this requirement are called ‘bondless’

and are removed from Γ before the absorption process (so that their vertices are absorbed).

Secondly, another issue related to vertex parities arises from inner tree vertex molecules.

Depending on the degree of an inner tree vertex v ∈ V (T ), the skeleton could contain an

odd number of vertices from the moleculeMv consisting of all clones of v. All vertices in

Mv outside the skeleton will need to be absorbed. But since the number of these vertices is

odd, it would be impossible to pair up (in the way described above) the absorbing structures

assigned to these vertices. To fix this issue, we effectively impose that H will ‘go around

T twice’. That is, the skeleton will trace through every molecule beginning and finishing

at the lowest ordered vertex in Γ∗. It will then retrace its steps through these molecules in

an almost identical way, effectively doubling the size of the skeleton. This ensures that the

skeleton contains an even number of vertices from each molecule, half of them of each parity.

Finally, once we have obtained an appropriate skeleton, we can construct a long cycle

H as described in Section 2.2.4. For every vertex in Qn which is not covered by H we have

put in place an absorbing structure, which is covered by H as described in (a) and (b). Thus,

as discussed before, we can now use these structures to absorb all remaining vertices into H

to obtain a Hamilton cycle H′ ⊆ H ∪G, thus proving the case k = 1 of Theorem 2.1.7.

2.2.6 Hitting time for the appearance of a Hamilton cycle.

As mentioned in Section 2.1.4, we will omit the proof of Theorem 2.1.5 due to word constraints.

We offer the following insight into the proof by highlighting the key steps where it builds on

the proof of Theorem 2.7.1.

In order to prove Theorem 2.1.5, we consider G ∼ Qn1/2−ε. We show that a.a.s., for
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any graph H with δ(H) ≥ 2, the graph G∪H is Hamiltonian. The main additional difficulty

faced here is that G ∪H may contain vertices having degree as low as 2. For the set U of

these vertices we cannot hope to use the previous absorption strategy: the neighbours of

v ∈ U may not lie in cubes from C. (In fact, v may not even have a neighbour within its own

layer in G ∪H.) To handle such small degree vertices, we first prove that they will be few

and well spread out. We define three types of new ‘special absorbing structures’. The type of

the special absorbing structure SA(v) for v will depend on whether the neighbours a, b of v

in H lie in the same layer as v. In each case, SA(v) will consist of a short path P1 containing

the edges av and bv, and several other short paths designed to ‘balance out’ P1 in a suitable

way. These paths will be incorporated into the long cycle H described in Section 2.2.4. In

particular, this allows us to ‘absorb’ the vertices of U into H. To incorporate the paths Pi

forming SA(v), we will proceed as follows.

Firstly, we make use of the fact that Theorem 2.6.1 allows us to choose our near-

spanning tree T in such a way that it avoids a small ball around each v ∈ U . Thus, (all clones

of) T will avoid SA(v), which has the advantage there will be no interference between T

and the special absorbing structures. To link up each SA(v) with the long cycle H, for each

endpoint w of a path in SA(v), we will choose an `-cube in I(G) which suitably intersects T

and which contains w (or more precisely, the vertex in I(G) corresponding to w). Altogether,

these `-cubes allow us to find paths between SA(v) and vertices of H which are clones of

vertices in T . The remaining vertices in molecules consisting of clones of these `-cubes will

be covered in a similar way as in Section 2.2.4. All vertices in these balls around U which are

not part of the special absorbing structures will be absorbed into H via the same absorbing

structures used in the proof of Theorem 2.1.7 to once again obtain a Hamilton cycle H′.
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2.2.7 Edge-disjoint Hamilton cycles.

The results on k edge-disjoint Hamilton cycles can be deduced from suitable versions of

the case k = 1. Those versions are carefully formulated to allow us to repeatedly remove a

Hamilton cycle from the original graph. We deduce Theorem 2.1.1 from Theorem 2.7.1 in

Section 2.7.5.

2.3 Notation

For n ∈ Z, we denote [n] := {k ∈ Z : 1 ≤ k ≤ n} and [n]0 := {k ∈ Z : 0 ≤ k ≤ n}. Whenever

we write a hierarchy of parameters, these are chosen from right to left. That is, whenever

we claim that a result holds for 0 < a� b ≤ 1, we mean that there exists a non-decreasing

function f : [0, 1)→ [0, 1) such that the result holds for all a > 0 and all b ≤ 1 with a ≤ f(b).

We will not compute these functions explicitly. Hierarchies with more constants are defined

in a similar way.

A hypergraph H is an ordered pair H = (V (H), E(H)) where V (H) is called the vertex

set and E(H) ⊆ 2V (H), the edge set, is a set of subsets of V (H). If E(H) is a multiset, we

refer to H as a multihypergraph. We say that a (multi)hypergraph H is r-uniform if for

every e ∈ E(H) we have |e| = r. In particular, 2-uniform hypergraphs are simply called

graphs. Given any set of vertices V ′ ⊆ V (H), we denote the subhypergraph of H induced by

V ′ as H[V ′] := (V ′, E ′), where E ′ := {e ∈ E(H) : e ⊆ V ′}. We write H − V ′ := H[V \ V ′].

Given any set Ê ⊆ E(H), we will sometimes write V (Ê) := {v ∈ V : there exists e ∈

Ê such that v ∈ e}.

Given any (multi)hypergraph H and any vertex v ∈ V (H), let E(H, v) := {e ∈

E(H) : v ∈ e}. We define the neighbourhood of v as NH(v) :=
⋃
e∈E(H,v) e \ {v}, and

we define the degree of v by dH(v) := |E(H, v)|. We denote the minimum and maximum

degrees of (the vertices in) H by δ(H) and ∆(H), respectively. Given any pair of vertices

u, v ∈ V (H), we define E(H, u, v) := {e ∈ E(H) : {u, v} ⊆ e}. The codegree of u and v
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in H is given by dH(u, v) := |E(H, u, v)|. Given any set of vertices W ⊆ V (H), we define

NH(W ) :=
⋃
w∈W NH(w). We denote E(H, v,W ) := {e ∈ E(H) : v ∈ e, e \ {v} ⊆ W},

NH(v,W ) :=
⋃
e∈E(H,v,W ) e \ {v} and dH(v,W ) := |E(H, v,W )|; we refer to the latter two

as the neighbourhood and degree of v into W , respectively. Given A,B ⊆ V (H) we denote

EH(A,B) := {e ∈ E(H) : e ⊆ A ∪ B, e ∩ A 6= ∅, e ∩ B 6= ∅} and eH(A,B) := |EH(A,B)|.

Whenever A = {v} is a singleton, we abuse notation and write EH(v,B) and eH(v,B). Thus,

eH(v,B) and dH(v,B) may be used interchangeably.

Given any graph G and two vertices u, v ∈ V (G), the distance distG(u, v) between u

and v in G is defined as the length of the shortest path connecting u and v (and it is said

to be infinite if there is no such path). Similarly, given any sets A,B ⊆ V (G), the distance

between A and B is given by distG(A,B) := minu∈A,v∈B distG(u, v). For any r ∈ N, we denote

Br
G(u) := {v ∈ V (G) : distG(u, v) ≤ r} and Br

G(A) := {v ∈ V (G) : distG(A, v) ≤ r}; we refer

to these sets as the balls of radius r around u and A, respectively.

A directed graph (or digraph) is a pair D = (V (D), E(D)), where E(D) is a set of

ordered pairs of elements of V (D). If no pair of the form (v, v) with v ∈ V (D) belongs

to E(D), we say that D is loopless. Given any v ∈ V (D), we define its inneighbourhood

as N−D(v) := {u ∈ V (D) : (u, v) ∈ E(D)}, and its outneighbourhood as N+
D(v) := {u ∈

V (D) : (v, u) ∈ E(D)}. The indegree and outdegree of v are defined as d−D(x) := |N−D (x)| and

d+
D(x) := |N+

D (x)|, respectively. The minimum in- and outdegrees of (the vertices in) D are

denoted by δ−(D) and δ+(D), respectively.

Given any multihypergraph or directed graph (V,E), a set M ⊆ E is called a matching

if its elements are pairwise disjoint. If the edges of M cover all of V , then it is said to be a

perfect matching. Given an edge-colouring c of H, we say that a matching of H is rainbow if

each of its edges has a different colour in c.

We often refer to the n-dimensional hypercube Qn as an n-cube (the n is dropped

whenever clear from the context). Given two vertices v1, v2 ∈ V (Qn) = {0, 1}n, we write

dist(v1, v2) for the Hamming distance between v1 and v2. Thus, {v1, v2} ∈ E(Qn) if and only

23



if dist(v1, v2) = 1. Whenever the dimension n is clear from the context, we will use 0 to denote

the vertex {0}n. Given any v ∈ {0, 1}n, we will say that its parity is even if dist(v,0) ≡ 0

(mod 2), and we will say that it is odd otherwise. This gives a natural partition of V (Qn)

into the sets of vertices with even and odd parities. Given any two vertices v1, v2 ∈ {0, 1}n,

we will write v1 =p v2 if they have the same parity, and v1 6=p v2 otherwise.

We will often consider the natural embedding of V (Qn) into Fn2 , which will allow us to

use operations on the vertex set: whenever we write v+ u, for some u, v ∈ {0, 1}n, we refer to

their sum in Fn2 . Given a vertex v ∈ {0, 1}n and an edge e = {x, y} ∈ E(Qn), we define v + e

to be the edge with endvertices v + x and v + y. Given any two sets A,B ⊆ {0, 1}n, we will

use the sumset notation A+B := {a+ b : a ∈ A, b ∈ B}, and we will abbreviate the k-fold

sumset A+ . . .+ A by kA. Similarly, given any sets A ⊆ {0, 1}n and E ⊆ E(Qn), we write

A + E := {a + e : a ∈ A, e ∈ E}. Given a graph G ⊆ Qn and a set of vertices A ⊆ {0, 1}n,

A+G will denote the graph with vertex set A+V (G) and edge set A+E(G). Note that this

should never be confused with the notation G−A, which will be used exclusively to consider

induced subgraphs of G. We will call the unitary vectors in Fn2 the directions of the hypercube.

The set of directions will be denoted by D(Qn). Thus, D(Qn) = {ê ∈ {0, 1}n : dist(ê,0) = 1}.

Note that two vertices v1, v2 ∈ {0, 1}n are adjacent in Qn if and only if there exists ê ∈ D(Qn)

such that v1 = v2 + ê. Given any vertex v ∈ {0, 1}n and any set D ⊆ D(Qn), we will denote

by Qn(v,D) := Qn[v + n(D ∪ {0})] the subcube of Qn which contains v and all vertices in

{0, 1}n which can be reached from v by only adding directions in D. Given any subcube

Q ⊆ Qn, we will write D(Q) to denote the subset of D(Qn) such that, for any v ∈ V (Q),

we have Q = Qn(v,D(Q)). Given any direction ê ∈ D(Q), we will sometimes informally say

that Q uses ê. Given two vertices v1, v2 ∈ {0, 1}n, their differing directions are all directions

in D(v1, v2) := {ê ∈ D(Qn) : dist(v1 + ê, v2) < dist(v1, v2)}. Observe that, if dist(v1, v2) = d,

then |D(v1, v2)| = d and Qn(v1,D(v1, v2)) is the smallest subcube of Qn which contains both

v1 and v2.

When considering random experiments for a sequence of graphs (Gn)n∈N with |V (Gn)|
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tending to infinity with n, we say that an event E holds asymptotically almost surely (a.a.s.)

for Gn if P[E ] = 1− o(1). When considering asymptotic statements, we will ignore rounding

whenever this does not affect the argument.

2.4 Probabilistic tools

Here we list some probabilistic tools that we will use throughout the paper. The following

can be proved easily with the Cauchy-Schwarz inequality.

Proposition 2.4.1. Given a non-negative random variable X with finite support, we have

that

P[X = 0] ≤ 1− E[X]2

E[X2]
.

Throughout the paper, we will be interested in proving concentration results for

different random variables. We will often need the following Chernoff bound (see e.g. [58,

Corollary 2.3]).

Lemma 2.4.2. Let X be the sum of n mutually independent Bernoulli random variables

and let µ := E[X]. Then, for all 0 < δ < 1 we have that P[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 and

P[X ≤ (1− δ)µ] ≤ e−δ
2µ/2. In particular, P[|X − µ| ≥ δµ] ≤ 2e−δ

2µ/3.

Similar bounds hold for hypergeometric distributions (see e.g. [58, Theorem 2.10]).

For m,n,N ∈ N with m,n < N , a random variable X is said to follow the hypergeometric

distribution with parameters N , n and m if it can be defined as X := |S ∩ [m]|, where S is a

uniformly chosen random subset of [N ] of size n.

Lemma 2.4.3. Suppose Y has a hypergeometric distribution with parameters N , n and m.

Then, P[|Y − E[Y ]| ≥ t] ≤ 2e−t
2/(3n).

The following bound will also be used repeatedly (see e.g. [5, Theorem A.1.12]).
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Lemma 2.4.4. Let X be the sum of n mutually independent Bernoulli random variables.

Let µ := E[X], and let β > 1. Then, P[X ≥ βµ] ≤ (e/β)βµ. In particular, we have

P[X ≥ 7µ] ≤ e−µ.

Finally, the Lovász local lemma will come in useful. Let E := {E1, E2, . . . , Em} be a

collection of events. A dependency graph for E is a graph H on vertex set [m] such that, for all

i ∈ [m], Ei is mutually independent of {Ej : j 6= i, j /∈ NH(i)}, that is, if P[Ei] = P[Ei |
∧
j∈J Ej ]

for all J ⊆ [m]\ (NH(i)∪{i}). We will use the following version of the local lemma (it follows

e.g. from [5, Lemma 5.1.1]).

Lemma 2.4.5 (Lovász local lemma). Let E := {E1, E2, . . . , Em} be a collection of events and

let H be a dependency graph for E. Suppose that ∆(H) ≤ d and P[Ei] ≤ p for all i ∈ [m]. If

ep(d+ 1) ≤ 1, then

P

[
m∧
i=1

Ei

]
≥ (1− ep)m.

2.5 Auxiliary results

2.5.1 Results about matchings

We will need three auxiliary results to help us find suitable absorbing cube pairs for different

vertices. We will need to preserve the alternating parities of vertices that are absorbed by

each molecule. The first lemma (Lemma 2.5.2) presented in this section, will help us to show

that all vertices can be paired up in such a way that these parities can be preserved. The

second lemma (Lemma 2.5.3) will be used to show that, for each such pair of vertices, there

are many possible pairs of absorption cubes. Finally, the third lemma (Lemma 2.5.4) will

allow us to assign one of those pairs of absorption cubes to each pair of vertices we need to

absorb in such a way that these cube pairs are pairwise vertex disjoint.

To prove Lemma 2.5.2, as well as Lemma 2.6.16 and Theorem 2.6.19, the following

consequence of Hall’s theorem will be useful.
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Lemma 2.5.1. Let G be a bipartite graph with vertex partition A ∪̇B. Assume that there is

some integer ` ≥ 0 such that, for all S ⊆ A, we have |N(S)| ≥ |S| − `. Then, G contains a

matching which covers all but at most ` vertices in A.

Given any graph G and a bipartition (A,B) of V (G), we say that (A,B) is an r-

balanced bipartition if ||A| − |B|| ≤ r. Let G be a graph on n vertices, and let r, d ∈ N with

r ≤ d. We say that G is d-robust-parity-matchable with respect to an r-balanced bipartition

(A,B) if, for every S ⊆ V (G) such that |S| ≤ d and |A \ S| = |B \ S|, the graph G − S

contains a perfect matching M with the property that every edge e ∈M has one endpoint in

A \ S and one endpoint in B \ S.

Given two disjoint sets of vertices A and B, the binomial random bipartite graph

G(A,B, p) is obtained by adding each possible edge with one endpoint in A and the other

in B with probability p independently of every other edge. Given any two bipartite graphs

on the same vertex set, G1 = (A,B,E1) and G2 = (A,B,E2), and any α ∈ R, we define

ΓαG1,G2
(A) as the graph with vertex set A where any two vertices x, y ∈ A are joined by an

edge whenever |NG1(x) ∩NG2(y)| ≥ α|B| or |NG1(y) ∩NG2(x)| ≥ α|B|.

Lemma 2.5.2. Let d, k, r ∈ N and α, ε, β > 0 be such that r ≤ d, 1/k � 1/d, ε, α and

β � ε, α. Then, any bipartite graph G = G(A,B,E) with |B| = n ≥ |A| ≥ k such that

dG(x) ≥ αn for every x ∈ A satisfies the following with probability at least 1− 2−10n: for any

r-balanced bipartition of A into (A,B), the graph ΓβG,G(A,B,ε)(A) is d-robust-parity-matchable

with respect to (A,B).

Proof. Let Γ := ΓβG,G(A,B,ε)(A). Let Γ′ be the auxiliary digraph with vertex set A where, for

any pair of vertices x, y ∈ A, there is a directed edge from x to y if |NG(x)∩NG(A,B,ε)(y)| ≥ βn.

Observe that the graph obtained from Γ′ by ignoring the directions of its edges and identifying

the possible multiple edges is exactly Γ, which means that δ(Γ) ≥ δ+(Γ′).

Given any two vertices x, y ∈ A, by Lemma 2.4.2 we have that

P[(x, y) /∈ E(Γ′)] = P[|NG(x) ∩NG(A,B,ε)(y)| < βn] ≤ e−εαn/3.
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Furthermore, for a fixed x ∈ A, observe that the events that (x, y) /∈ E(Γ′), for all y ∈ A\{x},

are mutually independent. Therefore, d+
Γ′(x) is a sum of independent Bernoulli random

variables. Let m := |A|. If d+
Γ′(x) < 4m/5, that means that there is a set of m/5 vertices

Y ⊆ A \ {x} such that (x, y) /∈ E(Γ′) for all y ∈ Y . We then conclude that

P[d+
Γ′(x) < 4m/5] ≤

∑
Y ∈(A\{x}

m/5 )

P[(x, y) /∈ E(Γ′) for all y ∈ Y ] ≤
(
m

m/5

)
e−εαnm/15 ≤ 2−20n.

By a union bound over the choice of x, we conclude that

P[δ(Γ) < 4m/5] ≤ P[δ+(Γ′) < 4m/5] ≤ m2−20n ≤ 2−10n.

Now, condition on the event that the previous holds. Fix any r-balanced bipartition

(A,B) of A and let Γ(A,B) be the bipartite subgraph of Γ induced by this bipartition. Fix

any set S ⊆ A with |S| ≤ d and |A \ S| = |B \ S|. We have that δ(Γ(A,B) − S) ≥

4m/5 − m/2 − d − r > m/4. Therefore, by Lemma 2.5.1, Γ(A,B) − S contains a perfect

matching.

The second lemma will be stated in terms of directed graphs.

Lemma 2.5.3. Let c, C > 0 and let α ∈ (0, 1/(1 + c/C)). Let D be a loopless n-vertex

digraph such that

(i) for every A ⊆ V (D) with |A| ≥ αn we have
∑

v∈A d
−(v) ≥ cαn, and

(ii) for every B ⊆ V (D) with |B| ≤ cαn/C we have
∑

v∈B d
+(v) ≤ cαn.

Then, D contains a matching M with |M | > cαn/(2C).

Proof. Assume for a contradiction that the largest matchingM in D has size |M | ≤ cαn/(2C).

Since α < 1/(1 + c/C), there exists a set A ⊆ V (D) \ V (M) with |A| ≥ αn, and thus, by

(i),
∑

v∈A d
−(v) ≥ cαn. Since M is the largest matching, all edges that enter A must come

from vertices of M (otherwise, we could add one such edge to M , finding a larger matching).

However, by (ii), the number of edges going out of V (M) is less than cαn, a contradiction.
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For convenience, we state the third lemma in terms of rainbow matchings in hyper-

graphs.

Lemma 2.5.4. Let n, r ∈ N and let H be an n-edge-coloured r-uniform multihypergraph.

Then, for any m ≥ 10, the following holds. Suppose H satisfies the following two properties:

(i) For every i ∈ [n], there are at least m edges of colour i.

(ii) ∆(H) ≤ m/(6r).

Then, there exists a rainbow matching of size n.

Proof. The idea is to pick a random edge from each colour class and prove that with non-zero

probability this results in a rainbow matching. First, for each i ∈ [n], let Mi be a set of m

edges of colour i. We choose an edge from each Mi uniformly at random, independently of

the other choices. For any i, j ∈ [n] with i 6= j and for any two edges e ∈Mi and e′ ∈Mj for

which e∩ e′ 6= ∅, we denote by Ae,e′ the event that both e and e′ are picked. We observe that

P[Ae,e′ ] =

(
1

m

)2

.

Moreover, note that every event Ae,e′ is independent of all other events Af,f ′ but at most

2m · r ·∆(H) ≤ m2/3. Indeed, this holds because Ae,e′ can only depend on those events which

involve at least one edge from either colour i or colour j. Applying now Lemma 2.4.5, we

deduce that with non-zero probability no event Ae,e′ occurs, as required.

2.5.2 Properties of random subgraphs of the hypercube

In this section we state and prove some basic properties of random subgraphs of the hypercube.

The first one guarantees that the degrees of all vertices are linear in the dimension.

Lemma 2.5.5. Let 0 < δ � ε ≤ 1/2. Then, we a.a.s. have that δ(Qn1/2+ε) ≥ δn.

Proof. Let p := 1/2 + ε. Fix any v ∈ {0, 1}n. Throughout this proof, we write d(v) to refer

to the degree of v in Qnp .
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Note that d(v) follows a binomial distribution with parameters n and p. Since δ < 1/2,

it follows that

P[d(v) ≤ δn] ≤ δn

(
n

δn

)
pδn(1− p)(1−δ)n.

Using the Stirling formula, we conclude that

P[d(v) ≤ δn] ≤ (1 +O(n−1))

√
δn

2π(1− δ)

((p
δ

)δ (1− p
1− δ

)1−δ
)n

.

By the union bound, it now suffices to show that

(p
δ

)δ (1− p
1− δ

)1−δ

=

(
1 + 2ε

2δ

)δ (
1− 2ε

2(1− δ)

)1−δ

<
1

2
,

but this follows since δ � ε.

Next we show that, in any ball of radius `, the number of vertices whose degree is

far from the expected is much smaller (at most a constant) if we allow larger deviations for

the degrees. Even more, we can prove a similar statement if we restrict the degrees to some

linear subsets of the total neighbourhood in Qn. Recall that, for any vertex v ∈ {0, 1}n, any

graph G ⊆ Qn and a set S ⊆ NQn(v), we denote dG(v, S) = |NG(v) ∩ S|.

Lemma 2.5.6. Let ε, δ, γ ∈ (0, 1) and ` ∈ N. For each v ∈ {0, 1}n, let S(v) ⊆ NQn(v)

satisfy |S(v)| ≥ γn. Let E be the event that there are no vertices v ∈ {0, 1}n for which

|{u ∈ B`(v) : dQn
ε
(u, S(u)) 6= (1 ± δ)ε|S(u)|}| ≥ 100/(δ2εγ). Then, for n sufficiently large,

P[E ] ≥ 1− e−4n.

Proof. Throughout this proof, we write d(v) for dQn
ε
(v) and d(v, S) for dQn

ε
(v, S), for any set

S.

Let C := d100/(δ2εγ)e. Fix any vertex v ∈ {0, 1}n and A ∈
(
B`(v)
C

)
. Observe that for

any u ∈ A, if d(u, S(u)) 6= (1± δ)ε|S(u)|, then d(u, S(u) \ A) 6= (1± δ/2)ε|S(u)|. Observe

that E[d(u, S(u) \ A)] ∈ [ε(|S(u)| − C), ε|S(u)|] for all u ∈ A. Furthermore, the variables

{d(u, S(u) \ A) : u ∈ A} are mutually independent, and each of them follows a binomial
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distribution. By Lemma 2.4.2, for each u ∈ A we have that, for n sufficiently large,

P[d(u) 6= (1± δ)ε|S(u)|] ≤ P[d(u, S(u) \ A) 6= (1± δ/2)ε|S(u)|] ≤ 2e−δ
2εγn/19 ≤ e−δ

2εγn/20.

We say that A is bad if d(u, S(u)) 6= (1 ± δ)ε|S(u)| for all u ∈ A. Since the variables

d(u, S(u) \ A) are mutually independent, it follows that

P[A is bad] ≤
(
e−δ

2εγn/20
)C
≤ e−5n.

Observe that E holds if there are no bad sets A. By a union bound over all choices of v and

all choices of A, it follows that

P[E ] ≤ 2n
(
`n`

C

)
e−5n ≤ e−4n.

Finally, due to word constraints, we state without proof Theorem 2.5.7. A full proof

can be found in [31]. Roughly speaking, Theorem 2.5.7 states that, for any constant ε > 0

and ` ∈ N, with high probability the random graph Qnε contains a set of `-dimensional cubes

which are vertex-disjoint, cover all but a small proportion of the vertices of Qnε , and are

‘sufficiently significant’ with respect to every large set of directions, while not being ‘too

significant’ with respect to any given direction.

Given any ` ∈ N, any S ⊆ D(Qn) and any copy C of Q` with C ⊆ Qn, we define the

significance of C in S as σ(C, S) := |D(C) ∩ S|. Similarly, given any set C of `-dimensional

cubes in Qn, we define the significance of C in S as σ(C, S) :=
∑

C∈C σ(C, S). We also

denote Σ(C, S, t) := {C ∈ C : σ(C, S) ≥ t}. Given any x ∈ {0, 1}n and any Y ⊆ NQn(x),

we denote Cx(Y ) := {C ∈ C : dist(x,C) = 1, V (C) ∩ Y 6= ∅}. In particular, we will write

Cx := Cx(NQn(x)).

Theorem 2.5.7. Let ε, δ, α, β ∈ (0, 1) and K, ` ∈ N be such that 1/` � α � β. For each

x ∈ {0, 1}n, let A0(x) := NQn(x) and, for each i ∈ [K], let Ai(x) ⊆ A0(x) be a set of size

|Ai(x)| ≥ βn. Then, the graph Qnε a.a.s. contains a collection C of vertex-disjoint copies of

Q` such that the following properties are satisfied for every x ∈ {0, 1}n:

31



(M1) |A0(x) ∩ V (C)| ≥ (1− δ)n;

(M2) for every ê ∈ D(Qn) we have |Σ(Cx, {ê}, 1)| = o(n1/2);

(M3) for every i ∈ [K]0 and every S ⊆ D(Qn) with αn/2 ≤ |S| ≤ αn we have

|Σ(Cx(Ai(x)), S, `1/2)| ≥ |Ai(x)|/3000.

2.6 Near-spanning trees in random subgraphs of the hy-

percube

In this section we present our results on bounded degree near-spanning trees in Qnε . In

Section 2.6.1 we prove the main result of this section (Theorem 2.6.1). This implies that

with high probability there exists a near-spanning bounded degree tree in Qnε , which covers

most of the neighbourhood of every vertex whilst avoiding a small random set of vertices, to

which we refer as a reservoir. In Section 2.6.2 we prove Theorem 2.6.19, which allows us to

extend the tree using vertices of the reservoir such that (amongst others) the proportion of

uncovered vertices is even smaller. Finally, in Lemma 2.6.20 we show that, if some number

of small local obstructions is prescribed, the tree given by Theorem 2.6.19 can be slightly

modified to avoid these obstructions. For convenience, throughout this section, we move away

from the algebraic notation for the hypercube to a more combinatorial notation.

We (re-)define the hypercube by setting V (Qn) := P([n]) and joining two vertices

u, v ∈ P([n]) by an edge if and only if ||u| − |v|| = 1 and u ⊆ v or v ⊆ u. In this setting,

directions correspond to the elements in [n], and following a direction i ∈ [n] from a vertex

v ∈ P([n]) means adding i to v if i /∈ v, or deleting it from v if i ∈ v. Note that there is a

natural partition of V (Qn) into sets such that every vertex of a set has the same size. Given

any set S ⊆ [n], we denote S(t) := {X ⊆ S : |X| = t}. We will denote by Li, for i ∈ [n]0, the

set of all vertices v ∈ V (Qn) = P([n]) with |v| = i (that is, Li = [n](i)), and we will refer
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to these sets as levels. This notation is especially useful because of the natural notion of

containment of vertices, which provides a partial order on the vertices of Qn. Given any

graph G ⊆ Qn, for a vertex x ∈ Li, we refer to the neighbours of x in G lying in Li+1 as

up-neighbours, and to the neighbours of x in Li−1 as down-neighbours, and denote these sets by

N↑G(x) and N↓G(x), respectively. We write d↑G(x) := |N↑G(x)| and d↓G(x) := |N↓G(x)|. Whenever

the subscript is omitted, we mean that G = Qn. We will say that a path P = v1 . . . vk in Qn

is a chain if its vertices satisfy the relation v1 ⊆ . . . ⊆ vk, and refer to it as a v1-vk chain.

In more generality, because of the symmetries of the hypercube, this notation can

be extended with respect to any vertex v ∈ V (Qn) by defining, for each i ∈ [n]0, Li(v) :=

{u ∈ V (Qn) : dist(u, v) = i}. One can then define up-neighbours and down-neighbours with

respect to v, and use the notations N↑G(x, v), N↓G(x, v), d↑G(x, v) and d↓G(x, v), for G ⊆ Qn.

We say that a path P = v1 . . . vk in Qn is a chain with respect to v if its vertices satisfy that,

if v1 ∈ Lj(v) for some j ∈ [n]0, then for all ` ∈ [k] \ {1} we have v` ∈ Lj+`−1(v), and refer to

it as a v1-vk chain. Given any graph G ⊆ Qn, for any i ∈ [n] and v ∈ V (Qn), we will write

EG(Li−1(v), Li(v)) for the set of edges of G whose endpoints lie in the levels Li−1(v) and

Li(v), respectively. We will drop the subscript whenever G = Qn.

2.6.1 Constructing a bounded degree near-spanning tree

Our goal in this subsection is to prove Theorem 2.6.1 below. Given a graph G and δ ∈ [0, 1],

let Res(G, δ) be a probability distribution on subsets of V (G), where R ∼ Res(G, δ) is

obtained by adding each vertex v ∈ V (G) to R with probability δ, independently of every

other vertex. We will refer to this set R as a reservoir.

Theorem 2.6.1. Let 0 < 1/D, δ � ε′ ≤ 1/2, and let ε, γ ∈ (0, 1] and k ∈ N. Then, the

following holds a.a.s. Let S ⊆ V (Qn) with the following two properties:

(P1) for any distinct x, y ∈ S we have dist(x, y) ≥ γn, and

(P2) Bk+2
Qn (S) ∩ {∅, [n], [dn/2e], [n] \ [dn/2e]} = ∅.
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Let R ∼ Res(Qn, δ). Then, there exists a tree T ⊆ Qnε − (R ∪Bk
Qn(S)) such that

(T1) ∆(T ) < D,

(T2) for all x ∈ V (Qn) \Bk
Qn(S), we have that |NQn(x) ∩ V (T )| ≥ (1− ε′)n.

The set S will be important in the proof of Theorems 2.1.5 and 2.1.8, where it will

play the role of the set U of vertices of small degree. In the proof of Theorems 2.1.1 and 2.1.7

we can take S = ∅.

To prove Theorem 2.6.1, we will consider suitable ‘branching-like’ processes which

start at the ‘bottom’ of the hypercube, and grow ‘upwards’. The tree will be formed by

considering unions of such processes. The precise definition of the model we use is given in

Definition 2.6.3. Crucially, there is a joint distribution of this branching-like process model

and the binomial model Qnε . These processes are analysed and constructed in the results

leading up to Lemma 2.6.12. Subgraphs obtained from the processes are then connected into

a tree in Lemma 2.6.17.

We begin with a formal description of our model. We denote by p = (p0, . . . , pn−1) ∈

[0, 1]n an n-component vector of probabilities. We now describe a distribution on subgraphs

of Qn which is biased with respect to the number of edges between different levels of the

hypercube.

Definition 2.6.2 (Level-biased subgraphs of Qn). Given n ∈ N and p = (p0, . . . , pn−1) ∈

[0, 1]n, let Wn
p be a distribution on subgraphs of Qn where W ∼ Wn

p is generated as follows:

we set V (W ) := V (Qn) and, for each i ∈ [n− 1]0, each e ∈ E(Li, Li+1) is included in W with

probability pi, independently of all other edges.

Roughly speaking, the above model has the advantage that, by choosing our prob-

abilities pi appropriately, it will allow us to generate subgraphs of Qn where each vertex

has the same number of up-neighbours in expectation. Moreover, note that there is a joint

distribution ofWn
p and Qnp such that we haveWn

p ⊆ Qnp , where p is the maximum component

of p.

34



We are now in a position to define one further distribution on subgraphs of Qn. We will

search for a near-spanning tree for Qnε in the graphs generated according to this distribution.

Definition 2.6.3 (Percolation graph P(n,p,M)). Given n,M ∈ N and p = (p0, . . . , pn−1) ∈

[0, 1]n, we define P(n,p,M) to be a distribution on subgraphs of Qn where P ∼ P(n,p,M)

is generated as follows. Let R ∼ Res(Qn, 1/100) and W ∼ Wn
p . For each x ∈ V (Qn),

if d↑W (x) ≥ M , let B(x) ⊆ N↑W (x) be a uniformly random set of size M (otherwise, let

B(x) := ∅), and let E(x) be the set of edges joining x to each y ∈ B(x). Let W ′ be the

spanning subgraph of W with edge set
⋃
x∈V (Qn) E(x). The graph P ⊆ Qn is then given by

setting P := W ′ −R.

Remark 2.6.4. Observe that, given any two distinct edges e, e′ ∈ E(Qn), the events e ∈

E(W ′) and e′ ∈ E(W ′) are mutually dependent if and only if for some i ∈ [n] we have

e, e′ ∈ E(Li−1, Li) with e ∩ e′ = {v} for some v ∈ Li−1. Otherwise, these events are

independent. In particular, if e ∈ E(Li−1, Li) and e′ ∈ E(Lj−1, Lj) with i 6= j, then these

events are always independent.

Note that P(n,p,M) ⊆ Wn
p by definition, and therefore we have a joint distribution

of P(n,p,M) and Qnp such that P(n,p,M) ⊆ Qnp , where p is the maximum component of p.

Definition 2.6.5 (Feasible (n,p,M)). We say that the tuple (n,p,M) is feasible if

(i) pi = 0 for all 9n/10 < i < n,

(ii) maxi∈[n−1]0pi < 1/10 and M > 1600,

(iii) there exists t ∈ R with 600 < t < 100M such that P ∼ P(n,p,M) satisfies P[e ∈

E(P )] = t/n for all e ∈
⋃b9n/10c
i=0 E(Li, Li+1).

Remark 2.6.6. Let (n,p,M) be feasible, where p = (p0, . . . , pn−1). Note that p0 determines

the value of pi for all i ∈ [b9n/10c]. Furthermore, let P ∼ P(n,p,M). We can generate

P by first sampling W ∼ Wn
p and R ∼ Res(Qn, 1/100), and then defining the graph W ′ as

35



described in Definition 2.6.3. Let t′ := t/( 99
100

)2, where t is as in Definition 2.6.5(iii). Since

(n,p,M) is feasible, for all e ∈
⋃b9n/10c
i=0 E(Li, Li+1) we have

P[e ∈ E(W ′)] = t′/n.

Furthermore, for all i ∈ [b9n/10c], given e, e′ ∈ E(Li, Li+1) with e 6= e′, we have that

P[e, e′ ∈ E(W ′)] ≤ P[e ∈ E(W ′)]2 = (t′/n)2.

From here on, where it is clear from the context, we will use p0, . . . , pn−1 to denote the

components of each probability vector p, and will use t to denote the value t in Definition 2.6.5

and t′ to denote the value t′ in Remark 2.6.6.

Proposition 2.6.7. For all ε ∈ (0, 1/10), M > 1600, and n ∈ N such that 0 < 1/n� 1/M, ε

there exists a tuple (n,p,M) which is feasible and such that pi ≤ ε for all i ∈ [n− 1]0.

Proof. Let P ∼ P(n,p,M), for some p which will be determined later. We generate P

by first sampling W ∼ Wn
p and R ∼ Res(Qn, 1/100). Let j ∈ [b9n/10c]0 be fixed and let

e ∈ E(Lj, Lj+1). Let x ∈ Lj be incident with e. Let A be the event that e ∈ E(W ). For

each k ∈ [n − j]0, let Bk be the event that d↑W (x) = k. Let C be the event that e ∈ E(P ).

For each i ∈ [n−M ]0, let

fi(y) :=
( 99

100

)2 M

n− i

n−i∑
k=M

(
n− i
k

)
yk(1− y)n−i−k.

Then, we have that

P[C] =

n−j∑
k=M

P[C | A ∧ Bk]P[A | Bk]P[Bk]

=

n−j∑
k=M

( 99

100

)2M

k

k

n− j

(
n− j
k

)
pkj (1− pj)n−j−k = fj(pj).

Let m := mini∈[b9n/10c]0 fi(ε).

Claim 2.6.1. We have 600
n
< m < 100M

n
.
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Proof of Claim 2.6.1. Let i ∈ [b9n/10c]0 be such that fi(ε) = m. Clearly,

fi(ε) ≤
100M

n

n−i∑
k=M

(
n− i
k

)
εk(1− ε)n−i−k < 100M

n
.

Moreover, we have that

fi(ε) =
( 99

100

)2 M

n− i

n−i∑
k=M

(
n− i
k

)
εk(1− ε)n−i−k > 1

2

( 99

100

)2M

n
,

as M ≤ ε(n− i)/2. J

For each i ∈ [b9n/10c]0 such that fi(ε) > m, since fi(x) is continuous, by the

intermediate value theorem we can choose some pi ∈ (0, ε) such that fi(pi) = m. This

determines the probability vector p = (p0, . . . , pn−1). By Claim 2.6.1, the tuple (n,p,M) is

feasible (with mn playing the role of t in Definition 2.6.5), hence the statement is satisfied.

In order to construct the near-spanning tree, we will generate a graph P ∼ P(n,p,M),

for some feasible (n,p,M), and will be interested in whether or not there exists a chain in

P from some vertex x ∈ Lm to some vertex y ∈ Lm′ , for m′ > m and x ⊆ y. Note that the

presence and absence of such chains in P are highly dependent. Thus, in order to show that

such chains exist with high probability, we will consider the number of x-y chains and bound

its variance. We do so in the following lemma. In order to state it, we first need to set up

some notation.

Given x ∈ Lm and y ∈ Lm′ with m′ ≥ m, we denote by Xx,y the collection of x-y chains

in Qn. For each X ∈ Xx,y and any graph G ⊆ Qn, let YX(G) be the corresponding indicator

variable which takes value 1 if X ⊆ G and 0 otherwise. Let Yx,y(G) :=
∑

X∈Xx,y
YX(G).

Whenever G is clear from the context, we will simply write Yx,y. We define

∆(Yx,y) :=
∑

(X,X′)∈X 2
x,y

X 6=X′

Cov[YXYX′ ],

so Var[Yx,y] = ∆(Yx,y) +
∑

X∈Xx,y
Var[YX ].
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Lemma 2.6.8. Let P ∼ P(n,p,M), where (n,p,M) is feasible with 0 < 1/n� 1/M . Let

1 ≤ m < m′ ≤ 9n/10 with m′−m+ 1 ≥ n/4− 1. Let x ∈ Lm and y ∈ Lm′ with x ⊆ y. Then,

∆(Yx,y) ≤ 2E[Yx,y]
2.

The proof of Lemma 2.6.8 makes use of the analysis in the proof of a similar lemma of

Kohayakawa, Kreuter, and Osthus [66, Lemma 7]. In order to shorten our analysis here, we

first state a partial result which follows from the analysis of [66]. For this, we first need to

give some more definitions.

Fix x ∈ Lm and y ∈ Lm′ with m′ ≥ m and x ⊆ y. Observe that |Xx,y| = dist(x, y)! =

(m′ −m)! depends only on the distance between x and y. For each k ∈ [n], let Rk := (k− 1)!.

Given any X,X ′ ∈ Xx,y with X 6= X ′, let i(X,X ′) := |V (X) ∩ V (X ′)| − 2, let s(X,X ′) be

the number of connected components of X − V (X ′), and let `(X,X ′) be the largest order

over these components.

Next, we define the set of possible intersection patterns for two chains. Let k :=

m′−m+1. Given any chains X,X ′ ∈ Xx,y, let A(X,X ′) be the collection of indices a ∈ [k−2]

for which X and X ′ agree on their (a+ 1)-th elements (where we consider x to be the first

element of X and X ′). An admissible (i, `, s)-pattern is a set A ⊆ [k − 2] with |A| = i such

that the longest interval of consecutive elements in [k− 2] \A contains exactly ` elements and

such that the number of maximal intervals of consecutive elements in [k − 2] \ A is exactly

s. We denote by Ai,`,s the set of all admissible (i, `, s)-patterns. Furthermore, we define

Ci,`,s := |Ai,`,s|. Note that any pair of chains X,X ′ ∈ Xx,y with i(X,X ′) = i, `(X,X ′) = `

and s(X,X ′) = s define an admissible (i, `, s)-pattern A(X,X ′) ∈ Ai,`,s.

Given a chain X ∈ Xx,y and a pattern A ∈ Ai,`,s, let F (A) be the number of chains

X ′ ∈ Xx,y such that A(X,X ′) = A. (Note that the definition of F (A) is independent of X.)

Let Fi,`,s := maxA∈Ai,`,s
F (A). Observe that Fi,`,s is an upper bound on the number of chains

X ′ with A(X,X ′) = A.
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Finally, for each triple (i, `, s) ∈ [k − 3]0 × [k − 2]2, let

∆i,`,s :=
∑

(X,X′)∈X 2
x,y , X 6=X′

i(X,X′)=i, `(X,X′)=`, s(X,X′)=s

E[YXYX′ ].

Furthermore, let

∆0(Yx,y) :=
∑

(X,X′)∈X 2
x,y

i(X,X′)=0

Cov[YXYX′ ] and ∆1(Yx,y) :=
∑

(X,X′)∈X 2
x,y

i(X,X′)∈[k−3]

Cov[YXYX′ ].

Thus, ∆(Yx,y) = ∆0(Yx,y) + ∆1(Yx,y). Note that, by summing ∆i,`,s over all triples (i, `, s) ∈

[k − 3]× [k − 2]2, we obtain an upper bound for ∆1(Yx,y).

Lemma 2.6.9 ([66]). For all M > 100 there exists n0 such that, for all n ≥ n0, the following

holds. Let x ∈ L1 and y ∈ Ln−1 with x ⊆ y. Let p ≥ M/(2n). Let Q ⊆ Qn be a random

subgraph chosen according to any distribution such that

∆i,`,s

E[Yx,y]2
≤ Ci,`,sFi,`,s

Rn−1pi
,

for each possible choice of (i, `, s) ∈ [k − 3]× [k − 2]2. Then,

∆1(Yx,y) ≤
100

M
E[Yx,y]

2.

With this, we are finally ready to prove Lemma 2.6.8.

Proof of Lemma 2.6.8. Let P ∼ P(n,p,M), where (n,p,M) is feasible. Recall, from Defi-

nition 2.6.3, that P is generated by first sampling a set R ∼ Res(Qn, 1/100) and a graph

W ∼ Wn
p . We then generate the graph W ′ by choosing, for each v ∈

⋃b9n/10c
i=0 Li, a set of

M up-neighbours uniformly at random from the set of up-neighbours v has in W , provided

d↑W ′(v) ≥ M (and by setting d↑W ′(v) := 0 otherwise). Let t′ := t/( 99
100

)2. Thus, for all

e ∈
⋃b9n/10c
i=0 E(Li, Li+1) we have by Remark 2.6.6 that

P[e ∈ W ′] = t′/n.
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Let k := m′−m+ 1, and let X be a fixed x-y chain in Qn. By Remark 2.6.4 it follows

that

E[Yx,y] = RkP[X ⊆ P ] = Rk(t
′/n)k−1

( 99

100

)k
. (2.6.1)

Furthermore, for all (i, `, s) ∈ [k − 3]0 × [k − 2]2, we have that

∆i,`,s ≤ RkCi,`,sFi,`,s

(
99t′

100n

)2k−i−2

. (2.6.2)

To see this, note that we may first choose an x-y chain X, for which there are Rk choices.

Next, we choose an admissible (i, `, s)-pattern A ∈ Ai,`,s, of which there are Ci,`,s. We then

have at most Fi,`,s choices for x-y chains X ′ with A(X,X ′) = A. Next, we bound the number

of vertices and edges of X ∪ X ′. It is clear that X has k vertices and k − 1 edges, and

|V (X ′) \ V (X)| = k − i− 2. Moreover, observe that |E(X ′) \E(X)| ≥ k − i− 1. The bound

finally follows by considering the probability that all these vertices and edges are present in

P and by Remark 2.6.6.

We are going to compute bounds for ∆0(Yx,y) and ∆1(Yx,y) separately, and then

combine them to obtain the result. We begin with a bound for ∆1(Yx,y). Combining (2.6.1)

and (2.6.2), it follows that, for all (i, `, s) ∈ [k − 3]× [k − 2]2,

∆i,`,s

E[Yx,y]2
≤ Ci,`,sFi,`,s

Rk

(n
t′

)i( 1
99
100

)i+2

≤ Ci,`,sFi,`,s
Rk

(
n

t′( 99
100

)3

)i
.

Note that (m
′−m+2
n

)t′( 99
100

)3 > 100. It follows that we can apply Lemma 2.6.9 with (m
′−m+2
n

)t′( 99
100

)3

and m′ −m+ 2 playing the roles of M and n and p = t′( 99
100

)3/n to obtain that

∆1(Yx,y) ≤
100

(m
′−m+2
n

)t′( 99
100

)3
E[Yx,y]

2 ≤ E[Yx,y]
2. (2.6.3)

We now turn our attention to ∆0(Yx,y). For any two chains X,X ′ ∈ Xx,y such that

i(X,X ′) = 0, we have that X ∪ X ′ has 2k − 2 vertices and the same number of edges.

Therefore, by Remarks 2.6.4 and 2.6.6 we have E[YXYX′ ] ≤ ( 99t′

100n
)2k−2, and by (2.6.1) we

have that

∆0(Yx,y) ≤ R2
k

( 99t′

100n

)2k−2(
1−

( 99

100

)2)
≤ E[Yx,y]

2. (2.6.4)
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The conclusion follows immediately by combining (2.6.3) and (2.6.4).

In order to proceed further, we will consider unions of independent graphs P ∼

P(n,p,M).

Definition 2.6.10. Let n,M,C ∈ N and p ∈ [0, 1]n. We define PC(n,p,M) to be a distri-

bution on subgraphs of Qn such that P ∼ PC(n,p,M) is generated by taking C independently

generated graphs Pi ∼ P(n,p,M) and setting P :=
⋃C
i=1 Pi. For each i ∈ [C], there is a set

Ri ∼ Res(Qn, 1/100) associated with Pi. Let R :=
⋂C
i=1 Ri. We say that R is the reservoir

associated with P .

It follows from Definitions 2.6.3 and 2.6.10 that there is a joint distribution of

PC(n,p,M) and Qnmin{1,Cp} such that PC(n,p,M) ⊆ Qnmin{1,Cp}, where p = maxi∈[n−1]0 pi.

Note that for all x ∈ V (Qn) we have that P[x ∈ R] = (1/100)C .

Our next goal is to prove that, by choosing constants appropriately, there is a high

probability that there exists an x-y chain in P ∼ PC(n,p,M), even if we restrict the set of

‘valid’ chains to a significant subset of the total. For this, we will make use of Lemma 2.6.8.

Given any vertices x ∈ Lm and y ∈ Lm′ with x ⊆ y, any set Z ⊆ Xx,y, and any graph G ⊆ Qn,

we denote the number of x-y chains X ∈ Z such that X ⊆ G by Y (Z, G).

Lemma 2.6.11. For n,C ∈ N and η, α > 0 such that 0 < 1/n � 1/C � η, α and any

feasible (n,p,M) with 0 < 1/n� 1/M , the following holds. Let 1 ≤ m < m′ ≤ 9n/10 with

m′ −m + 1 ≥ n/4 − 1. Let x ∈ Lm and y ∈ Lm′ with x ⊆ y. Let Zx,y ⊆ Xx,y be such that

|Zx,y| ≥ α|Xx,y|. Let P ∼ PC(n,p,M). Then,

P[Y (Zx,y, P ) > 0] ≥ 1− η.

Proof. For each i ∈ [C], let Pi ∼ P(n,p,M), and let P :=
⋃C
i=1 Pi. Let Yi := Yx,y(Pi) and

Zi := Y (Zx,y, Pi), and let

∆(Zi) :=
∑

(X,X′)∈Z2
x,y

X 6=X′

Cov[YX(Pi)YX′(Pi)].

41



Note that

E[Y 2
i ] ≤ ∆(Yi) + E[Yi] + E[Yi]

2. (2.6.5)

We also have

E[Z2
i ] ≤ E[Y 2

i ] (2.6.6)

and, since all x-y chains are equiprobable,

E[Zi]
2 ≥ α2E[Yi]

2. (2.6.7)

Let k := m′ −m+ 1. By (2.6.1), we have that E[Yi] = Rk(t
′/n)k−1(99/100)k, where t′

is the value given in Remark 2.6.6. Recall that Rk = |Xx,y| = (k − 1)!. We have by Stirling’s

formula that E[Yi] > 1. Therefore, E[Yi] ≤ E[Yi]
2. Moreover, it follows by Lemma 2.6.8 that

∆(Yi) ≤ 2E[Yi]
2. So E[Y 2

i ] ≤ 4E[Yi]
2 by (2.6.5). Combining this with (2.6.6), (2.6.7) and

Proposition 2.4.1 we obtain

P[Zi = 0] ≤ 1− E[Zi]
2

E[Z2
i ]
≤ 1− α2E[Yi]

2

E[Z2
i ]
≤ 1− α2E[Yi]

2

E[Y 2
i ]
≤ 1− α2/4.

It follows that

P[Y (Zx,y, P ) = 0] =
∏
i∈[C]

P[Zi = 0] ≤ (1− α2/4)C ≤ η.

When performing our analysis on the structure of P , the dependence of chains on

each other becomes difficult to take into account. In order to deal with this issue, we will

show that, with high probability, it suffices to consider only chains which lie in some large

subsets of the total sets of chains, with the property that the presence or absence of a chain

in one of these large subsets is independent from chains of all other subsets. (Note that

Lemma 2.6.11 works for these sets of chains as long as they are not too small.) Lemmas 2.6.12

and 2.6.16 guarantee the existence of such sets. In Lemma 2.6.12 we prove that, assuming

x, x′ ∈ Lm, and y, y′ ∈ Lm′ , where y, y′ are far apart, one can construct very large sets of

chains between the pairs x, y and x′, y′, which are independent in the sense described above.

Then, in Lemma 2.6.16 we will prove that we can pick many endpoints y ∈ Lm′ in such a
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way that they are suitably far apart. Moreover, we will combine Proposition 2.6.14 with

Lemma 2.6.15 to later show that these large sets of chains can be constructed in such a way

that each avoids a small fixed set of forbidden vertices. This will be important in showing

that the tree we construct for our main result can be made to avoid the forbidden set S in

the statement of Theorem 2.6.1.

Given 0 ≤ m < m′ ≤ n, let x, x′ ∈ Lm and y, y′ ∈ Lm′ with x ⊆ y and x′ ⊆ y′. We

denote by X ¬x′,y′x,y the collection of chains X ∈ Xx,y for which there is no X ′ ∈ Xx′,y′ with

V (X) ∩ V (X ′) 6= ∅.

Lemma 2.6.12. For all n ≥ 100, the following holds. Let 1 ≤ m < m′ ≤ n− 1 be such that

n/4− 1 ≤ k := m′ −m+ 1 ≤ n/2. Let x, x′ ∈ Lm and y, y′ ∈ Lm′ with x ⊆ y and x′ ⊆ y′ be

such that dist(x, x′) = 2 and dist(y, y′) ≥ 9k2/(10n). Then,

|X ¬x′,y′x,y | ≥
(

1− 60000

n

)
|Xx,y|.

Proof. We may assume that x ∪ x′ ⊆ y ∩ y′, since otherwise X ¬x′,y′x,y = Xx,y. Let b := |y ∩ y′|.

We have that b ≤ m′ − 9k2/(20n). Let H denote the smallest subcube of Qn which contains

both x ∪ x′ and y ∩ y′. For each i ∈ [b] \ [m], let X i
x,y ⊆ Xx,y be the set of chains X ∈ Xx,y

such that V (X) ∩ Li ∩ V (H) 6= ∅. Note that X ¬x′,y′x,y ⊇ Xx,y \
⋃
i∈[b]\[m]X i

x,y and

|X i
x,y| =

(
b−m− 1

i−m− 1

)
(m′ − i)!(i−m)!. (2.6.8)

Indeed, there are
(
b−m−1
i−m−1

)
choices to fix an element z ∈ V (H) ∩ Li. (To see this, consider

that H is itself a cube of dimension b −m − 1, and we are choosing a vertex z from the

(i−m− 1)-th level of this cube.) Then, there are (i−m)! x-z chains, and (m′− i)! z-y chains.

Recall that |Xx,y| = (k − 1)!. By comparing this with (2.6.8) and simplifying, for all

i ∈ [b] \ [m] we obtain

|X i
x,y|
|Xx,y|

=
i−m
m′ −m

i−m−1∏
j=1

b−m− j
m′ −m− j

≤ i−m
k − 1

. (2.6.9)
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We now split the analysis into two cases. First, when i is small, we bound (2.6.9)

directly. For all i ∈ [b] \ [m] with i ≤ m+ 64, it follows from (2.6.9) that

|X i
x,y|
|Xx,y|

≤ 64

n/4− 1
≤ 300

n
. (2.6.10)

On the other hand, for each i ∈ [b− 1] \ [m], by (2.6.9) we have that

|X i+1
x,y |
|Xx,y|

=
|X i

x,y|
|Xx,y|

i+ 1−m
i−m

· b− i
m′ − i

≤ 39

40

i+ 1−m
i−m

|X i
x,y|
|Xx,y|

.

For all i ∈ [b− 1] \ [m+ 64], this yields

|X i+1
x,y |
|Xx,y|

≤ 99

100

|X i
x,y|
|Xx,y|

. (2.6.11)

Finally, by combining (2.6.10) and (2.6.11), and considering a geometric series we

conclude that
|X ¬x′,y′x,y |
|Xx,y|

≥
|Xx,y| −

∑b
i=m+1 |X i

x,y|
|Xx,y|

≥ 1− 60000

n
.

Remark 2.6.13. Lemma 2.6.12 holds similarly if dist(x, x′) ≥ 9k2/(10n) and dist(y, y′) = 2.

Proposition 2.6.14. Let 0 < 1/n � γ, 1/k ≤ 1, where n, k ∈ N, and let S ⊆ V (Qn) be

such that, for all distinct x, x′ ∈ S, we have dist(x, x′) ≥ γn. Then, for any y ∈ Lm such that

m ≥ n/8, and for every γm/2 ≤ t ≤ (1− γ/2)m, we have |y(t) ∩Bk
Qn(S)| ≤ |y(t)|2−γn/200.

Proof. Let m ≥ n/8 and y ∈ Lm. Let γm/2 ≤ t ≤ (1− γ/2)m and let S ′ ⊆ S be the set of

all those x ∈ S for which Bk
Qn(x) ∩ y(t) 6= ∅. We have that

|Bk
Qn(S) ∩ y(t)| =

∑
x∈S′
|Bk
Qn(x) ∩ y(t)| ≤ 2nk|S ′|. (2.6.12)

Moreover, for every x, x′ ∈ S ′ we have that Bγn/3
Qn (x) ∩Bγn/3

Qn (x′) = ∅, and, therefore,

|S ′|(min
x∈S′
|Bγn/3
Qn (x) ∩ y(t)|) ≤ |y(t)|. (2.6.13)

Claim 2.6.2. For every x ∈ S ′ we have |Bγn/3
Qn (x) ∩ y(t)| ≥ 2γm/20.
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Proof. Let x′ ∈ Bk
Qn(x) ∩ y(t). Let z ⊆ x′ be such that z ∈ Lγm/7 (recall that t ≥ γm/2).

Since y ∈ Lm we have that |y \ x′| = m− t. Let z′ ⊆ y \ x′ be such that z′ ∈ Lγm/7 (recall

that t ≤ (1−γ/2)m). It follows that (x′ \ z)∪ z′ ∈ Bγn/3
Qn (x)∩ y(t). Note that there are

(
t

γm/7

)
choices for z and

(
m−t
γm/7

)
choices for z′. It follows that∣∣∣Bγn/3
Qn (x) ∩ y(t)

∣∣∣ ≥ (m− t
γm/7

)(
t

γm/7

)
≥ 2γm/20. J

Combining (2.6.12), (2.6.13) and the above claim we have

|Bk
Qn(S) ∩ y(t)| ≤ 2nk|y(t)|

minx∈S′ |Bγn/3
Qn (x) ∩ y(t)|

≤ 2nk|y(t)|2−γm/20 ≤ |y(t)|2−γn/200.

Given x, y ∈ V (Qn) with x ⊆ y and S ⊆ V (Qn), we denote by X¬Sx,y the collection of

chains X ∈ Xx,y for which V (X) ∩ S = ∅.

Lemma 2.6.15. Let 0 < 1/n � γ, 1/k ≤ 1 where n, k ∈ N, and let S ⊆ V (Qn) be such

that for all x, x′ ∈ S we have dist(x, x′) ≥ γn. Let x, y ∈ V (Qn) \ Bk
Qn(S) with x ⊆ y and

m := dist(x, y) ≥ n/8. Then, |X ¬B
k
Qn (S)

x,y | ≥ 3m!/4.

Proof. We may assume that x = ∅ and y = [m], where m ≥ n/8. Let X i
x,y denote the

collection of chains X ∈ Xx.y for which V (X) ∩ Li ∩Bk
Qn(S) 6= ∅. We have

|Xx,y \ X
¬Bk
Qn (S)

x,y | ≤
m−1∑
i=1

|X i
x,y|. (2.6.14)

Furthermore, by Proposition 2.6.14 (with γ/2 playing the role of γ), for all γm/4 ≤ i ≤

(1− γ/4)m we have that

|X i
x,y| ≤

(
m

i

)
2−γm/400i!(m− i)! = 2−γm/400m!. (2.6.15)

Next, we consider the case i ∈ [γm/4], where first we prove the following claim.

Claim 2.6.3. For all i ∈ [4k] we have |X i
x,y| ≤ (2n)i−1(k + 1)i!(m− i)!.

Proof. Observe that |S ∩
⋃γn/2−1
i=1 Li| ≤ 1. If S ∩

⋃γn/2−1
i=1 Li = ∅, then X i

x,y = ∅ for all

i ∈ [4k], so assume |S ∩
⋃γn/2−1
i=1 Li| = 1. Let v be the unique vertex in S ∩

⋃γn/2−1
i=1 Li. Then,
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Bk
Qn(v) ∩ Li = Bk

Qn(S) ∩ Li for each i ∈ [4k]. Thus, in order to prove Claim 2.6.3, it suffices

to show that |Bk
Qn(v) ∩ Li| ≤ (2n)i−1(k + 1) for each i ∈ [4k].

We will proceed by induction on i. Since ∅ = x /∈ Bk
Qn(v), it follows that |Bk

Qn(v) ∩

L1| ≤ k + 1, so the base case holds.

Now, suppose that |Bk
Qn(v) ∩ Li−1| ≤ (2n)i−2(k + 1) for some 2 ≤ i ≤ 4k. Consider

first the case where v ∈ Lj for some i ≤ j ≤ i+ k. In this case, any u ∈ Li ∩Bk
Qn(v) satisfies

either

(i) u ⊆ v or

(ii) there is a v-u path of length at most k whose penultimate vertex lies in Li−1.

There are
(
j
i

)
≤
(
k+i
i

)
choices for u satisfying (i), whereas by applying induction to the

penultimate vertex in such paths it follows that there are at most n(2n)i−2(k + 1) choices for

u satisfying (ii). Altogether, we have

|Bk
Qn(v) ∩ Li| ≤

(
k + i

i

)
+ n(2n)i−2(k + 1) ≤ (2n)i−1(k + 1).

The case where v ∈ Lj for some i− k ≤ j < i is handled similarly. This completes the

induction step and the proof of the claim. J

Recall that |S ∩ Bγm/2−1
Qn (x)| ≤ 1. It follows that for all i ∈ [γm/3] we have that

|Bk
Qn(S) ∩ Li| ≤ nk and, therefore, |X i

x,y| ≤ nki!(m− i)!. Suppose |S ∩Bγm/2−1
Qn (x)| = 1, and

let v be the unique vertex in S ∩ Bγm/2−1
Qn (x). Let j ∈ [γm/2 − 1] be such that v ∈ Lj. It

follows by Claim 2.6.3 that

γm/3∑
i=1

|X i
x,y| ≤

j+k∑
i=j−k

|X i
x,y| ≤


∑j+k

i=j−k(2n)i−1(k + 1)i!(m− i)! if j ≤ 3k,∑j+k
i=j−k n

ki!(m− i)! if 3k < j < γm/2

≤
4k∑
i=2k

(2n)i−1(k + 1)i!(m− i)!. (2.6.16)
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If S ∩Bγm/2
Qn (x) = ∅, then this trivially holds too. By the symmetry of the hypercube, we

also have that
m∑

i=m−γm/3

|X i
x,y| ≤

4k∑
i=2k

(2n)i−1(k + 1)i!(m− i)!. (2.6.17)

Therefore, by (2.6.14)–(2.6.17) we have

|Xx,y \ X
¬Bk
Qn (S)

x,y | ≤
m−γm/3∑
i=γm/3

2−γm/400m! + 2
4k∑
i=2k

(2n)i−1(k + 1)i!(m− i)! ≤ m!/4.

Lemma 2.6.16. Let 0 < 1/n � η, 1/k′, γ ≤ 1 and n/2 ≤ k < n with n, k′, k ∈ N. Let

S ⊆ V (Qn) be such that for all x ∈ V (Qn), we have that |Bγn
Qn(x) ∩ S| ≤ 1. Let y ∈ Lk and

let s := b(k + 1)/2c. Then, there exists three sets of vertices A = {a1, . . . , a(1−η)n} ⊆ L1,

B = {b1, . . . , b(1−η)n} ⊆ NQn(y) and C = {c1, . . . , c(1−η)n} ⊆ Ls such that

(i) for each pair i, j ∈ [(1− η)n] with i 6= j we have dist(ci, cj) ≥ 9s2/(10n),

(ii) Bk′
Qn(S) ∩ C = ∅, and

(iii) for each i ∈ [(1− η)n] we have ai ⊆ ci ⊆ bi.

Proof. Choose k vertices c1, . . . , ck ∈ y(s) independently and uniformly at random. Then,

choose n − k vertices c′k+1, . . . , c
′
n ∈ y(s−1) independently and uniformly at random. For

each i ∈ [n] \ [k], choose an element ai ∈ [n] \ y such that all the ai are distinct, and let

ci := c′i ∪ {ai} ∈ Ls. For each i ∈ [n] \ [k], let bi ∈ N↑(y) be the unique vertex such that

ai ∈ bi, so that when viewing each ai now as a 1-element set, we have ai ⊆ ci ⊆ bi for all

i ∈ [n] \ [k].

Note that, for each pair i, j ∈ [n] with i 6= j, we have that

E[|ci ∩ cj|] ≤ s2/k. (2.6.18)

Assume that we reveal each ci in turn. We then have that, for each i ∈ [n] \ {1}, the variables

|ci ∩ cj| with j ∈ [i − 1] are hypergeometric. Thus, by Lemma 2.4.3 and (2.6.18), for each

pair i, j ∈ [n] with i 6= j we have that

P[|ci ∩ cj| ≥ 21s2/(20k)] ≤ e−n/25000.
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By a union bound, it follows that a.a.s. for all pairs i, j ∈ [n] with i 6= j we have |ci ∩ cj| <

21s2/(20k) and, thus, dist(ci, cj) ≥ 9s/10. In particular, (i) holds a.a.s.

Next, let S1 := y(s) ∩ Bk′
Qn(S) and S2 := y(s−1) ∩ Bk′+1

Qn (S). By applying Proposi-

tion 2.6.14 first with k′, S and s playing the roles of k, S and t, respectively, and then with

k′+1, S and s−1 playing the roles of k, S and t, respectively, we obtain that |S1| ≤
(
k
s

)
2−γn/200

and |S2| ≤
(
k
s−1

)
2−γn/200. Therefore, for all i ∈ [k] we have

P[ci ∈ S1] ≤
(
k
s

)
2−γn/200(
k
s

) = 2−γn/200.

For all i ∈ [n]\ [k] we have P[ci ∈ S1] ≤ P[c′i ∈ S2] and similarly we have P[c′i ∈ S2] ≤ 2−γn/200.

It now follows by a union bound that (ii) holds a.a.s.

Next, consider an auxiliary bipartite graph H with parts y(1) and {c1, . . . , ck} and the

following edge set. For each i ∈ [k] and a ∈ y(1), let {a, ci} be an edge whenever a ∈ ci. Thus,

for each i ∈ [k] we have that dH(ci) = s. Furthermore, it follows by Lemma 2.4.2 that a.a.s. for

all a ∈ y(1) we have dH(a) = (1± η/2)s. Condition on this. Then, for each X ⊆ y(1), since

we have eH(NH(X), y(1)) ≥ eH(NH(X), X), it follows that |N(X)| ≥ |X| − ηk/2. Therefore,

by Lemma 2.5.1 we have a matching of size (1− η/2)k in H.

Similarly, a.a.s. we have a matching of size (1− η/2)k in the analogous bipartite graph

H ′ with parts N↓(y) and {c1, . . . , ck}, where for each i ∈ [k] and b ∈ N↓(y) we have that

{b, ci} is an edge whenever ci ⊆ b. By concatenating these matchings (and relabelling the

indices if necessary), it follows that a.a.s. there is an ordering {a1, . . . , ak} of the elements of

y and an ordering {b1, . . . , bk} of the vertices of N↓(y) such that, for all i ∈ [(1 − η)k], we

have ai ⊆ ci ⊆ bi. Furthermore, as explained before, by construction, for all i ∈ [n] \ [k], we

have ai ⊆ ci ⊆ bi. Thus, (iii) holds a.a.s.

Finally, given that each of (i), (ii), (iii) holds a.a.s., there must exist a choice of

c1, . . . , cn such that (i)-(iii) hold simultaneously.

We are now in a position to combine the results we have shown so far to prove the

following key lemma, which is used to provide a base structure for the near-spanning tree
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which we seek.

Lemma 2.6.17. Let 0 < 1/n � 1/C � ε′ ≤ 1/2, and 0 < 1/n � 1/k′, γ ≤ 1/2, where

n, k′, C ∈ N, and let (n,p,M) be feasible with 0 < 1/n � 1/M . Moreover, let S ⊆ V (Qn)

be such that, for all x ∈ V (Qn), we have |Bγn
Qn(x) ∩ S| ≤ 1 and ∅ /∈ Bk′

Qn(S). Then, with

probability at least 1 − e−50n we have that P ∼ PC(n,p,M) satisfies the following: for all

y ∈
⋃b9n/10c
i=dn/2e Li \Bk′

Qn(S), there exists a collection of chains Xy such that, for all X ∈ Xy, we

have X ⊆ P −Bk′
Qn(S), one of the endpoints of X belongs to L1, and∣∣∣NQn(y) ∩

⋃
X∈Xy

V (X)
∣∣∣ ≥ (1− ε′)n.

Proof. Fix η > 0 such that 0 < 1/n � η � ε′, and let m := 480000. Fix a vertex

y ∈ Lk \ Bk′
Qn(S) for some n/2 ≤ k ≤ 9n/10. Let s := b(k + 1)/2c. By Lemma 2.6.16

with η/2 playing the role of η, there exists a collection of vertices {c1, . . . , c(1−η/2)n} ⊆ Ls

such that Bk′
Qn(ci) ∩ S = ∅ and dist(ci, cj) ≥ 9s2/(10n) for all pairs i, j ∈ [(1− η/2)n] with

i 6= j; an ordering b1, . . . , bn of NQn(y), and an ordering a1, . . . , an of L1, such that for all

i ∈ [(1−η/2)n] we have ai ⊆ ci ⊆ bi. For each i ∈ [(1−η/2)n], we call (ai, bi, ci) a triple. Note

that |Bk′
Qn(S) ∩ (L1 ∪NQn(y))| ≤ 2(k′ + 1), and hence we may assume for each i ∈ [(1− η)n]

that (ai, bi, ci) forms a triple where ai, bi /∈ Bk′
Qn(S). We denote by T the collection of all

such triples. Partition [(1 − η)n] into two sets I1 := {i ∈ [(1 − η)n] : bi ∈ N↓(y)} and

I2 := [(1 − η)n] \ I1. Let A1 := {ai : i ∈ I1}, A2 := {ai : i ∈ I2}, B1 := {bi : i ∈ I1},

B2 := {bi : i ∈ I2}, C1 := {ci : i ∈ I1} and C2 := {ci : i ∈ I2}. Note that k − ηn ≤ |C1| ≤ k.

We first turn our attention to A1, B1 and C1. Partition A1, B1 and C1 into sets

A1, . . . ,Am, B1, . . . ,Bm and C1, . . . , Cm, respectively, each of size at least b(k − ηn)/mc and

at most 2b(k − ηn)/mc, and such that, for every triple (a, b, c) ∈ T there exists j ∈ [m]

such that a ∈ Aj, b ∈ Bj and c ∈ Cj. For each i ∈ [m], write Ai = {ai1, . . . , ai|Ai|},

Bi = {bi1, . . . , bi|Ai|} and Ci = {ci1, . . . , ci|Ai|}, where the labeling is such that (aij, b
i
j, c

i
j) ∈ T for

each j ∈ [|Ai|]. For each i ∈ [m] and j ∈ [|Ai|], we define the set Zaij ,cij ⊆ Xaij ,cij as the set of

all chains X ∈ Xaij ,cij which, for all j′ ∈ [|Ai|] \ {j}, neither intersect any chain X ′ ∈ Xai
j′ ,c

i
j′
,
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nor Bk′
Qn(S). By Lemmas 2.6.12 and 2.6.15 and the definition of m, we have that

|Zaij ,cij | ≥
1

2
|Xaij ,cij |. (2.6.19)

For each triple (a, b, c) ∈ T and any graph G ⊆ Qn, let Ia,c(G) take value 1 if Y (Za,c, G) > 0,

and 0 otherwise. (Recall that Y (Za,c, G) denotes the number of chains X ∈ Za,c with X ⊆ G.)

For each i ∈ [m], let Ii(G) :=
∑

j∈[|Ai|] Iaij ,cij(G) =
∑

j∈[|Ai|] Iaij ,cij(G−B
k′
Qn(S)).

We are now in a position to consider P ∼ PC(n,p,M). Recall that P is generated by

sampling C independent graphs Pi, where Pi ∼ P(n,p,M). In each Pi we can give bounds

on the probability that certain chains appear. Note that, for each i ∈ [C] and each fixed

i′ ∈ [m] we have that, for every pair j, j′ ∈ [|Ai′|] with j 6= j′, the variables Y (Zai′j ,ci′j , Pi) and

Y (Zai′
j′ ,c

i′
j′
, Pi) are independent (and, therefore, Iai′j ,ci′j (Pi) and Iai′

j′ ,c
i′
j′

(Pi) are independent too).

Since C is a large constant, this independence will allow us to boost the probability that

these chains appear in P −Bk′
Qn(S). The analysis is broken into two steps.

Claim 2.6.4. With probability at least 1− 2e−75n, the graph P ∼ PC(n,p,M) satisfies the

following.

(1) P − Bk′
Qn(S) contains an a-c chain for at least (1 − ε′/2)k of the triples (a, b, c) ∈ T

with c ∈ C1.

(2) P −Bk′
Qn(S) contains a c-b chain for at least (1− ε′/2)k of the triples (a, b, c) ∈ T with

c ∈ C1.

Proof. We show that (1) and (2) each hold with probability 1− e−75n. The result then follows

by a union bound.

For (1), let C ′ :=
√
C. By (2.6.19), we can apply Lemma 2.6.11 with (ε′)2, 1/2 and

C ′ playing the roles of η, α and C, respectively. Thus, for P ′ ∼ PC′(n,p,M), for all i ∈ [m]

and j ∈ [|Ai|] we have that

P[Iaij ,cij(P
′) = 1] = P[Y (Zaij ,cij , P

′) > 0] ≥ 1− (ε′)2.
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It follows that for all i ∈ [m] we have E[Ii(P
′)] ≥ (1−(ε′)2)|Ai| and, therefore, by Lemma 2.4.2,

P[Ii(P
′) > |Ai|(1− (ε′)3/2)] > 1− e−(ε′)3n/(25·106). (2.6.20)

Let P ∼ PC(n,p,M), and note that P can be generated by sampling C ′ independent

graphs P ′j ∼ PC
′
(n,p,M) and considering their union. For each i ∈ [m], let E i be the

event that Ii(P ) > |Ai|(1− (ε′)3/2). It follows from (2.6.20) that, for each i ∈ [m], we have

P[E i] > 1− e−100n. Now let E be the event that, for all i ∈ [m], Ei holds. It follows by a union

bound that

P[E ] ≥ 1− e−75n.

Thus, with probability at least 1 − e−75n the graph P − Bk′
Qn(S) contains an a-c chain for

at least (1 − (ε′)3/2)|C1| of the triples (a, b, c) ∈ T with c ∈ C1. Since |C1| ≥ (1 − 2η)k,

P − Bk′
Qn(S) contains an a-c chain for at least (1 − ε′/2)k of the triples (a, b, c) ∈ T with

c ∈ C1..

To show (2), for each triple (a, b, c) ∈ T with c ∈ C1, one can consider the set Xc,b and

define sets Zc,b and variables Ic,b(G) analogously to the proof of (1). Then, by Lemma 2.6.11,

Lemma 2.6.12 together with Remark 2.6.13, and Lemma 2.6.15, the same argument as above

shows that, with probability at least 1− e−75n, the graph P −Bk′
Qn(S) contains a c-b chain

for at least (1− ε′/2)k of the triples (a, b, c) ∈ T with c ∈ C1. J

It follows by Claim 2.6.4 that with probability at least 1 − 2e−75n we have that

P −Bk′
Qn(S) contains an a-b chain for at least (1− ε′)k of the triples (a, b, c) ∈ T with c ∈ C1.

We can prove an analogous result for the sets A2, B2 and C2. More specifically, we can show

that with probability at least 1−2e−75n, for P ∼ PC(n,p,M), the graph P−Bk′
Qn(S) contains

an a-b chain for at least (1− ε′)(n− k) of the triples (a, b, c) ∈ T with c ∈ C2. Combining this

with the previous, it follows that, with probability at least 1− 4e−75n, P −Bk′
Qn(S) contains

an a-b chain for at least (1− ε′)n of the triples (a, b, c) ∈ T . Finally, the result follows by a

union bound over all y ∈
⋃b9n/10c
i=dn/2e Li \Bk′

Qn(S).
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Let F be the union of all chains given by Lemma 2.6.17 (applied with k′ := k). Then,

F satisfies (T2) in Theorem 2.6.1 for all vertices x ∈
⋃b9n/10c
i=dn/2e Li \Bk

Qn(S). However, we need

this property to hold for every x ∈ V (Qn) \Bk
Qn(S). Recall the discussion in the beginning

of this section where, due to the symmetries in the hypercube, we can ‘redefine’ any vertex

v ∈ V (Qn) to be the empty set ∅. As discussed, this leads to a redefined notion of levels

in the hypercube where, for each i ∈ [n]0, we let Li(v) := {u ∈ V (Qn) : dist(u, v) = i}. The

notion of a chain in this setting was also discussed.

When we consider this generalised setting, by replacing Li with Li(v) in Defini-

tions 2.6.2, 2.6.3 and 2.6.10, we obtain a distribution on subgraphs of Qn which we denote by

PCv (n,p,M). (Note, again, that there is a joint distribution of PCv (n,p,M) and Qnmin{1,Cp}

such that PCv (n,p,M) ⊆ Qn
min{1,Cp}, where p = maxi∈[n−1]0 pi.) Then, for any fixed v ∈ V (Qn),

Lemma 2.6.17 holds in this setting by replacing chains by chains with respect to v. Intuitively,

we may think of this simply as growing several branching processes rooted at different vertices

of the hypercube. This will be crucial in proving (T2).

Note that F may have unbounded degrees and also may be disconnected. To turn

F into a bounded degree forest we will later delete suitable edges. To make it connected

without significantly raising any vertex degrees we will apply the following lemma.

Lemma 2.6.18. For n ∈ N such that 0 < 1/n� δ ≤ 1/50 and 0 < ε < 1/2, the following

holds a.a.s. Let R ∼ Res(Qn, δ). Then, there exists a cycle in Qnε [(L1 ∪L2) \R] which covers

L1 \R.

Proof. Let R ∼ Res(Qn, δ). Let A be the event that |R ∩ L1| ≥ n/4. By Lemma 2.4.4 we

have that P[A] ≤ e−Θ(n). Expose R ∩ L1 and condition on the event that A does not occur.

Note that for each pair of vertices x, y ∈ L1 there exists a unique vertex z ∈ L2 ∩

NQn(x)∩NQn(y) (in particular, z = x∪y). Let H be an auxiliary graph with vertex set L1\R,

where we include an edge between x and y if x∪y /∈ R and {x, x∪y}, {y, x∪y} ∈ E(Qnε ). By

definition, a Hamilton cycle in H would correspond uniquely to a cycle in Qnε [(L1 ∪ L2) \R]
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covering L1 \ R. Note that H has the same distribution as a binomial random graph

G ∼ Gn−|R∩L1|,p, where p = (1− δ)ε2. Let B be the event that there exists a Hamilton cycle

in H. As, after conditioning on A not holding, Gn−|R∩L1|,p is a.a.s. Hamiltonian (see e.g. [73,

87]), it follows that

P[B] ≥ P[B | A]P[A] ≥ (1− o(1))(1− e−Θ(n)) = 1− o(1).

We are now in a position to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. Choose constants M,C ∈ N such that 1/D, δ � 1/C, 1/M �

ε′. By Proposition 2.6.7, there exists a tuple (n,p,M) which is feasible and such that

maxi∈[n−1]0 pi ≤ ε/(5C). Let x1 := ∅, x2 := [dn/2e], x3 := [n] \ x2 and x4 := [n]. For each

j ∈ [4], let Pj ∼ PCxj (n,p,M) be sampled independently, and let Rj be the reservoir associated

with Pj. Let R :=
⋂
j∈[4]Rj, and note that R ∼ Res(Qn, 1/108C). Finally, let Q ∼ Qnε/5

be independent of all other previous choices. Recall that, for each j ∈ [4], there is a joint

distribution of PCxj (n,p,M) and Qnε/5 such that PCxj (n,p,M) ⊆ Qnε/5 (see the discussion after

Definition 2.6.10). It follows that there is a joint distribution of×4

j=1
PCxj(n,p,M)×Qnε/5

and Qnε such that P1 ∪P2 ∪P3 ∪P4 ∪Q ⊆ Qnε . Therefore, it suffices to show that we can find

the desired tree T in (P1 ∪ P2 ∪ P3 ∪ P4 ∪ (Q−R))−Bk
Qn(S).

For each j ∈ [4], let Aj :=
⋃b9n/10c
i=dn/2e Li(xj) \Bk

Qn(S), and let Ej be the event that, for

all y ∈ Aj , the graph Pj−Bk
Qn(S) contains a collection X j

y of chains with respect to xj , where

each chain X ∈ X j
y has an endpoint in L1(xj) (and thus in L1(xj) \ (Rj ∪Bk

Qn(S))), and such

that at least (1− ε′)n of the neighbours of y in Qn are covered by the union of the chains in

X j
y . Note that Ej is equivalent to saying that the union of the chains in X j

y satisfies (T2) for

all y ∈ Aj. For each j ∈ [4] we have by Lemma 2.6.17 that P[Ej] ≥ 1− e−50n. Condition on

the event that Ej holds for all j ∈ [4].

For each j ∈ [4], let Fj ⊆ Qn be given by Fj :=
⋃
y∈Aj

⋃
X∈X j

y
X. For each j ∈ [4],

let Gj ⊆ Fj be defined by removing, for each y ∈ V (Fj) \ {xj}, all edges of Fj joining y to

its down-neighbours with respect to xj except for one (if y has one such down-neighbour in
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Fj). In particular, it follows that each connected component of Gj is a tree and contains one

vertex in L1(xj), and that ∆(Gj) ≤ CM + 1. Since Gj has the same vertex set as Fj , we have

that Gj satisfies (T2) for all y ∈ Aj. Furthermore, note that V (Qn) \ Bk
Qn(A) =

⋃4
j=1Aj.

Therefore, the graph G :=
⋃
j∈[4]Gj satisfies (T2) and ∆(G) ≤ 4CM + 4.

Since Bk+2
Qn (S) ∩ {∅, [n], [dn/2e], [n] \ [dn/2e]} = ∅ it follows that Bk

Qn(S) ∩ (L1(xj) ∪

L2(xj)) = ∅ for each j ∈ [4]. Let E5 be the event that, for each j ∈ [4], Q[L1(xj)∪L2(xj)]−R

contains a cycle Cj which covers L1(xj) \R. By four applications of Lemma 2.6.18 (applied

with xj playing the role of ∅) we have that P[E5] = 1− o(1). Condition on the event that

this occurs.

Let H := G ∪
⋃
j∈[4]Cj. It follows that H is connected and ∆(H) ≤ 4CM + 6. In

order to complete the proof, let T ⊆ H be a spanning tree of H.

2.6.2 Extending the tree

Roughly speaking, in Theorem 2.6.1 we showed that, for any ε > 0, given a reservoir chosen

at random, the random graph Qnε a.a.s. contains a bounded-degree tree T ′ which avoids the

reservoir and satisfies the local property that, for every vertex x ∈ V (Qn), all but a fixed

small proportion of its neighbours are covered by T ′. Our goal in this section is to show

that T ′ can be extended into a tree T where the proportion of uncovered vertices (in each

neighbourhood) is even smaller, while still retaining the bounded degree property. The precise

statement is the following.

Theorem 2.6.19. For all 0 < 1/n � 1/`, ε ≤ 1, where n, ` ∈ N, the following holds.

Let R,W ⊆ V (Qn) and let T ′ ⊆ Qn − (R ∪W ) be a tree. For each x ∈ V (Qn) \W , let

Z(x) ⊆ NQn(x) ∩ V (T ′) be such that |Z(x)| ≥ 3n/4. Then, a.a.s. there exists a tree T with

T ′ ⊆ T ⊆ (Qnε ∪ T ′)−W such that

(TC1) ∆(T ) ≤ ∆(T ′) + 1;

(TC2) for all x ∈ V (Qn), we have that |B`
Qn(x) \ (V (T ) ∪W )| ≤ n3/4, and
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(TC3) for each x ∈ V (T ) ∩R, we have that dT (x) = 1 and the unique neighbour x′ of x in T

is such that x′ ∈ Z(x).

Proof. Let Q ∼ Qnε . For each x ∈ V (Qn) \W we have 3εn/4 ≤ E[eQ(x, Z(x))] ≤ εn. Let

S1 := {x ∈ V (Qn) : dQ(x) > 11εn/10}, S2 := {x ∈ V (Qn) \ W : eQ(x, Z(x)) < 2εn/3}

and S := S1 ∪ S2. Let E1 be the event that there exists no vertex x ∈ V (Qn) such that

|B`
Qn(x)∩S1| ≥ n1/2. By Lemma 2.5.6 we have that P[E1] ≥ 1− e−4n. Similarly, let E2 be the

event that there exists no vertex x ∈ V (Qn) such that |B`
Qn(x)∩S2| ≥ n1/2. By Lemma 2.5.6

we have that P[E2] ≥ 1− e−4n. Condition on E1 ∧ E2 holding, that is, that there is no vertex

x ∈ V (Qn) such that |B`
Q(x) ∩ S| ≥ n3/4.

Given E1 ∧ E2, let H be an auxiliary bipartite graph with parts A := V (T ′) \ S and

B := V (Qn) \ (V (T ′)∪W ∪S), where we include an edge between a ∈ A and b ∈ B whenever

{a, b} ∈ E(Q) and a ∈ Z(b). By definition of S we have for all a ∈ A that

dH(a) ≤ 11εn/10− 2εn/3 < εn/2.

Furthermore, we have for all b ∈ B that

dH(b) ≥ 2εn/3− n3/4 > εn/2.

Since for all X ⊆ B we have eH(NH(X), B) ≥ eH(X,NH(X)), it follows that |NH(X)| ≥ |X|.

Thus, by Lemma 2.5.1, H contains a matching covering all of B. This corresponds to a

matching in Q ∼ Qnε . The statement follows by setting T to be the union of T ′ and this

matching.

2.6.3 The repatching lemma

Later we will apply Theorem 2.6.1 to obtain a tree T and a reservoir R in Qnε which is disjoint

from V (T ). To carry out the absorption step later on, it will be important that for each

vertex some proportion of its neighbourhood consists of vertices in R. However, the tree

produced by Theorem 2.6.1 (and the subsequent application of Theorem 2.6.19) will result in
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a small number of vertices with few or no neighbours in R. The following repatching lemma

will be called on to deal with such vertices, by slightly altering T .

Given a graph P and S ⊆ V (P ) we say that S is connected in P if the vertices of S

lie in the same component of P .

Lemma 2.6.20. Let 0 < 1/n � c, ε, 1/f, 1/D where f,D ∈ N. Given a fixed x ∈ V (Qn),

let C(x) ⊆ NQn(x) × NQn(x) be such that |C(x)| ≥ cn and such that, for all distinct

(y1, z1), (y2, z2) ∈ C(x), we have {y1, z1} ∩ {y2, z2} = ∅. Furthermore, for each (y, z) ∈ C(x),

let B(y, z) ⊆ (NQn(y) ∪ NQn(z)) \ {x} with |B(y, z)| < D. Then, with probability at least

1− e−5n, for every F ⊆ V (Qn) with |F | ≤ f , there exist a pair (y, z) ∈ C(x) with y, z /∈ F

and a graph P ⊆ Qnε − {y, z} with |V (P )| < 5D such that

(R1) B(y, z) ∩NQn(y) is connected in P , and so is B(y, z) ∩NQn(z).

(R2) V (P ) ∩ F = ∅.

Proof. We provide a counting argument to show there exist edge-disjoint graphs P1, . . . , Pε′n ⊆

Qn such that, if any is present inQnε , then it would satisfy (R1) and (R2) for some (y, z) ∈ C(x).

We will then prove that, with high probability, one of the Pi must be present in Qnε . Note

that we may assume x = ∅. By passing to a subset of C(x) and replacing c with c/(30D) if

necessary, we may also assume that |C(x)| = cn and 2Dc < 1/10. Similarly, by passing to a

suitable subset of C(x), we may assume that, for any distinct (y, z), (y′, z′) ∈ C(x), we have

that B(y, z) ∩B(y′, z′) = ∅.

Fix any F ⊆ V (Qn) with |F | ≤ f . We update C(x) by removing any pair (y, z) ∈ C(x)

for which ({y, z} ∪ B(y, z)) ∩ F 6= ∅. It follows that |C(x)| ≥ cn − 2f . Now, for each

(y, z) ∈ C(x) and for each w ∈ {y, z}, let Aw := NQn(w) ∩ B(y, z), and let xw1 , . . . , xw|Aw| be

the vertices of Aw.

Claim 2.6.5. For each e = (y, z) ∈ C(x), w ∈ {y, z} and i ∈ [|Aw| − 1], there exists a

collection Pwi of subgraphs of Qn such that the following hold:
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(RC1) |Pwi | ≥ n/2 and for each P ∈ Pwi we have V (P ) ∩ (F ∪ {y, z}) = ∅.

(RC2) Every P ∈ Pwi is an (xwi , x
w
i+1)-path of length 4.

(RC3) The graphs in Pwi are pairwise edge-disjoint.

(RC4) For every e′ = (y′, z′) ∈ C(x) with e′ 6= e, every w′ ∈ {y′, z′} and every j ∈ [|Aw′| − 1],

the graphs in Pwi are edge-disjoint from those in Pw′j .

(Note that we do not require the paths in Pwi to be edge-disjoint from those in Pw′i′

when w,w′ ∈ {y, z} are distinct and i ∈ [|Aw| − 1], i′ ∈ [|Aw′| − 1].)

Proof of Claim 2.6.5. Let e1, . . . , ecn be an ordering of the elements of C(x), where for each

k ∈ [cn] we have that ek = (yk, zk). Note that, for each k ∈ [cn], each w ∈ {yk, zk} and

all i ∈ [|Aw|], we have that |xwi | = 2, and for each i, j ∈ [|Aw|] with i 6= j we have that

dist(xwi , x
w
j ) = 2, with xwi ∩ xwj = w.

Suppose that, for some 1 < k ≤ cn, every j ∈ [k − 1], every w ∈ {yj, zj} and every

i ∈ [|Aw|−1], we have found a collection Pwi which satisfies (RC1)–(RC4). We now show that,

for each w ∈ {yk, zk} and each i ∈ [|Aw| − 1], a suitable choice for Pwi exists. We construct

the set Pwi as follows. Let v1 := xwi \ w and v2 := xwi+1 \ w. For each d ∈ [n] \ (xwi ∪ xwi+1), let

Pd ⊆ Qn be the path which passes through the following vertices in successive order:

xwi , x
w
i ∪ {d}, xwi ∪ {d} ∪ v2, (x

w
i ∪ {d} ∪ v2) \ v1 = xwi+1 ∪ {d}, xwi+1.

Note that each path Pd has length 4 and that V (Pd) ∩ {yk, zk} = ∅. Furthermore, for any

distinct d, d′ ∈ [n] \ (xwi ∪ xwi+1), it is clear that Pd and Pd′ are internally disjoint, and hence,

are edge-disjoint. To avoid F as well as the edges of any previously chosen paths we set

Pwi :=

{
Pd : d ∈ [n] \ (xwi ∪ xwi+1);xwi ∪ {d}, xwi+1 ∪ {d} /∈ N

(
k−1⋃
j=1

B(yj, zj)

)
;V (Pd) ∩ F = ∅

}
.

It follows that Pwi satisfies (RC2) and (RC3). Recall that V (Pd) ∩ {yk, zk} = ∅.

Therefore, to see that (RC1) holds, note that, for all distinct (y′, z′), (y′′, z′′) ∈ C(x) and all
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x′ ∈ B(y′, z′), x′′ ∈ B(y′′, z′′), since B(y′, z′) ∩B(y′′, z′′) = ∅, we have that x′ and x′′ contain

at most one common neighbour in the third level L3 of Qn. Since |
⋃k−1
j=1 B(yj, zj)| < Dcn,

there are at most 2Dcn < n/10 choices for d such that xwi ∪ {d} ∈ N(
⋃k−1
j=1 B(yj, zj)), or

xwi+1 ∪ {d} ∈ N(
⋃k−1
j=1 B(yj, zj)). Furthermore, since |F | ≤ f , it follows that there are still at

least n/2 suitable choices for d, that is, (RC1) holds as desired. Additionally, (RC4) holds by

construction; indeed, since neither the second nor the fourth vertex of each path in Pwi lies in

some path in
⋃
j∈[k−1]

⋃
w′∈{yj ,zj}

⋃
i′∈[|Aw′ |−1]Pw

′

i′ , the paths in Pwi must be edge-disjoint from

all the paths in
⋃
j∈[k−1]

⋃
w′∈{yj ,zj}

⋃
i′∈[|Aw′ |−1]Pw

′

i′ . Thus, we can proceed by induction and

create a suitable collection Pwi for each k ∈ [cn], w ∈ {yk, zk} and i ∈ [|Aw| − 1]. J

For each e = (y, z) ∈ C(x), w ∈ {y, z} and i ∈ [|Aw| − 1], let Pwi be the collection of

subgraphs given by Claim 2.6.5. Note that, for any choice of P1 ∈ Pw1 , . . . , P|Aw|−1 ∈ Pw|Aw|−1,

we have that Aw is connected in Pw :=
⋃|Aw|−1
j=1 Pj . To complete the proof, we now show that,

on passing to Qnε , with high probability there will exist some e = (y, z) ∈ C(x) and some Py

and Pz of the above form such that Py ∪ Pz ⊆ Qnε . Moreover, note that each such choice of

Py ∪ Pz satisfies (R1) and (R2) for our fixed F and |Py ∪ Pz| ≤ 5D. Since Py ∪ Pz ⊆ B4
Qn(x),

Lemma 2.6.20 will then follow by a union bound over all choices of F ⊆ B4
Qn(x) with |F | ≤ f .

Let Q ∼ Qnε . Consider e = (y, z) ∈ C(x), w ∈ {y, z} and i ∈ [|Aw| − 1]. Let P ∈ Pwi

and recall that P has length 4. It follows that P[P * Q] = 1 − ε4. Let Ewi be the event

that there exists some P ∈ Pwi such that P ⊆ Q. Since |Pwi | ≥ n/2 and paths in Pwi are

edge-disjoint by (RC3), we have that P[Ewi ] ≥ 1−(1−ε4)n/2. Let Ee :=
∧
w∈{y,z}

∧
i∈[|Aw|−1] Ewi .

Since |Ay|+ |Az| ≤ 2D, we have that

P[Ee] ≥ 1− 2D(1− ε4)n/2 ≥ 1− e−ε4n/4.

Finally, let E be the event that there exists some e ∈ C(x) such that the event Ee occurs.

It follows by (RC4) that, for e, e′ ∈ C(x) with e 6= e′, the event Ee is independent of Ee′ .

Therefore, since |C(x)| ≥ cn, we have that

P[E ] ≥ 1− e−ε4cn2/4.
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Recall that by (RC2) it now suffices to consider a union bound over all choices of

F ⊆ B4
Qn(x) with |F | ≤ f . The result follows since

1− f
(
n4

f

)
e−ε

4cn2/4 > 1− e−5n.

2.7 Hamilton cycles in randomly perturbed dense sub-

graphs of the hypercube

In this section, we introduce a few more auxiliary lemmas and combine them with the tools

we have developed so far to prove the following result.

Theorem 2.7.1. For every ε, α ∈ (0, 1] and c > 0, there exists Φ ∈ N such that the following

holds. Let H ⊆ Qn be a spanning subgraph with δ(H) ≥ αn and let G ∼ Qnε . Then, a.a.s. there

is a subgraph G′ ⊆ G with ∆(G′) ≤ Φ such that, for every F ⊆ Qn with ∆(F ) ≤ cΦ, the

graph ((H ∪G) \ F ) ∪G′ is Hamiltonian.

Note that Theorem 2.7.1 trivially implies the case k = 1 of Theorem 2.1.7. In fact, in

Section 2.7.5 we will use Theorem 2.7.1 to prove Theorem 2.1.7 in full generality. For this

derivation, we will need the stronger conditions imposed in the statement of Theorem 2.7.1.

More precisely, the formulation of Theorem 2.7.1 involving a ‘forbidden’ graph F and a

‘protected’ graph G′ is designed to make repeated applications of Theorem 2.7.1 possible in

order to take out k edge-disjoint Hamilton cycles. When finding the i-th Hamilton cycle, the

protected graph will contain all the essential ingredients for this, while the forbidden graph

will contain all previously chosen Hamilton cycles as well as the protected graphs for the

entire set of Hamilton cycles (see Section 2.7.5 for details).

The first step of the proof of Theorem 2.7.1 will be to consider a particular partition

of the hypercube into subcubes. The structure of this partition will be used extensively

throughout the rest of the paper, so we first introduce the necessary notation in the next

subsection. Then, in Section 2.7.2 we prove several results regarding this structure, concerning
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its properties in Qnε and with respect to a reservoir R ∼ Res(Qn, δ). In Section 2.7.3, we

will prove our connecting lemmas, which provide sets of paths in (sub)cubes which (roughly

speaking) link up pairs of vertices and, together, span all vertices of these (sub)cubes. We

prove Theorem 2.7.1 in Section 2.7.4. Finally, we deduce Theorems 2.1.1, 2.1.2 and 2.1.7

from Theorem 2.7.1 in Section 2.7.5.

2.7.1 Layers, molecules, atoms and absorbing structures.

Throughout this section, given any two vectors u and v, we will write uv for their concatenation.

Consider Qn and some s ∈ N, with s < n. We divide Qn into 2s vertex-disjoint copies of Qn−s

as follows: for each a ∈ {0, 1}s, we consider the set of vertices Va := {av : v ∈ {0, 1}n−s}, and

consider the graph Q(a) := Qn[Va]. We will refer to each Q(a) as an s-layer of Qn (s will be

dropped whenever clear from the context). Given ` ≤ n− s, we will refer to any copy of a

cube Q` in one of the s-layers as an `-atom (again, ` will be dropped whenever clear from

the context).

Fix a Hamilton cycle C of Qs. By abusing notation, whenever necessary, we assume

that the coordinate vector of each vertex of C is concatenated with n− s 0’s. C induces a

cyclical ordering on {0, 1}s, which we will label as a1, . . . , a2s . In turn, this gives a cyclical

ordering on the set of layers. In this section, for each i ∈ [2s], we denote Li := Q(ai) (as

opposed to Section 2.6, where Li denoted the i-th level of the hypercube). Given an `-atom A

in an s-layer Q(a), we refer toM(A) := A+V (C) as an (s, `)-molecule (again, the parameters

will be dropped when clear from the context). ThusM(A) is the vertex-disjoint union of 2s

copies of Q`. We refer to an (s, 1)-molecule as a vertex molecule and an (s, `)-molecule for

` > 1 as a cube molecule. Observe that, if we label the atoms in a molecule cyclically following

the labelling of the layers, then Qn contains a perfect matching between any two consecutive

atoms where all edges are in the same direction as the corresponding edge in C. Whenever

we work with molecules, we consider this cyclical order implicitly. In particular, whenever we
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refer to a moleculeM =M(A) = A1∪ · · ·∪A2s , the cyclical order A1∪ · · ·∪A2s of the Ai is

that induced by C. Given a moleculeM(A) = A1∪· · ·∪A2s , a sliceM∗ ⊆M(A) will consist

of the subgraph ofM(A) induced by its intersection with some number of consecutive layers,

i.e. M∗ = Aa+1 ∪ · · · ∪Aa+t for some a, t ∈ [2s]. Alternatively, given any a ∈ V (C), any path

P ⊆ C and any atom A ⊆ Q(a), P determines a slice ofM(A) by settingM∗ := A+ V (P ).

Consider i ∈ [2s] and the cyclical ordering of the layers given by C. Given any

subgraph G ⊆ Qn, we will often denote the restriction of G to the i-th layer by Li(G), that

is, Li(G) := G[V (Li)]. Given any v ∈ {0, 1}n−s, we will refer to the vertex aiv as the i-th

clone of v. In general, when it is clear from the context, we will also refer to the i-th clone of

a cube C ⊆ Qn−s (as well as other subgraphs), which, analogously, will be the corresponding

copy in Li of C. In particular, the i-th layer Li is the i-th clone of Qn−s.

As we already discussed in Section 2.2, in order to prove our results we will first

construct a near-spanning cycle and then absorb the remaining vertices into this cycle. We

will achieve this by using the following absorbing structure.

Definition 2.7.2 (Absorbing `-cube pair). Let `, n ∈ N, and let G ⊆ Qn. Given a vertex

x ∈ V (Qn), an absorbing `-cube pair for x in G, which we denote by (C l, Cr), is a subgraph

of G which consists of two vertex-disjoint `-dimensional cubes C l, Cr ⊆ G and three edges

e, el, er ∈ E(G) satisfying the following properties:

(AP1) |V (C l) ∩NQn(x)| = |V (Cr) ∩NQn(x)| = 1;

(AP2) el and er are the unique edges from x to C l and Cr, respectively;

(AP3) the unique vertex y ∈ V (C l) ∩NQn(x) satisfies dist(y, Cr) = 1, and

(AP4) e is the unique edge from y to Cr.

We will refer to C l as the left absorption cube and to Cr as the right absorption cube.

Given an absorbing `-cube pair (C l, Cr) we refer to y as the left absorber tip, and to the
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unique vertex z ∈ V (Cr) ∩NQn(x) as the right absorber tip. We refer to the unique vertex

z′ ∈ e \ {y} as the third absorber vertex.

2.7.2 Bondless and bondlessly surrounded molecules

Given any graph G ⊆ Qn, we will say that an (s, `)-moleculeM = A1∪· · ·∪A2s ⊆ Qn, where

Ai is the i-th clone of some `-cube A ⊆ Qn−s, is bonded in G if, for all i ∈ [2s], G contains

at least 100 edges between Ai and Ai+1 whose endpoint in Ai has even parity and at least

100 such edges whose endpoint in Ai has odd parity. Otherwise, we call it bondless in G.

Furthermore, given a collection U of (s, `)-molecules in G, we say thatM∈ U is bondlessly

surrounded in G (with respect to U) if there exists some vertex v ∈ V (M) which has at least

n/2`+5s neighbours in Qn which are part of (s, `)-molecules of U which are bondless in G.

Both bondless and bondlessly surrounded molecules create difficulties in applying the rainbow

matching lemma (Lemma 2.5.4), which in turn is used to assign absorption structures to

vertices. Therefore, it will become important that we bound the number of each, and show

that they are well spread out.

Lemma 2.7.3. Let ε > 0 and `, s, n ∈ N be such that s < n, ` ≤ n− s and 1/`� ε. Then,

for any (s, `)-moleculeM⊆ Qn, the probability that it is bondless in Qnε is at most 2s+1−ε2`/4.

Proof. Fix an (s, `)-moleculeM = A1∪· · ·∪A2s ⊆ Qn. Consider a pair of consecutive atoms

Ai,Ai+1 ⊆M, for some i ∈ [2s]. Let Xi be the number of edges between Ai and Ai+1 in Qnε

whose endpoint in Ai is odd, and let Yi be the number of such edges whose endpoint in Ai is

even. We have that Xi, Yi ∼ Bin(2`−1, ε). By Lemma 2.4.2, it follows that

P[Xi < 100] ≤ 2−ε2
`/4,

and the same bound holds for P[Yi < 100]. By a union bound over all i ∈ [2s], we conclude

that

P[M is bondless in Qnε ] ≤ 2s+1−ε2`/4.
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Lemma 2.7.4. Let ε ∈ (0, 1) and `, n ∈ N with 0 < 1/n � 1/` � ε, and let s := 10`.

Let M be a collection of vertex-disjoint (s, `)-moleculesM⊆ Qn. For each x ∈ V (Qn), let

NM(x) := {M ∈M : dist(x,M) = 1}. Assume that the following holds for every x ∈ V (Qn):

(BS) for any direction ê ∈ D(Qn), there are at most
√
n molecules M ∈ NM(x) such that

ê ∈ D(A) for all atoms A ∈M.

Then, with probability at least 1− 2−n
9/8, for every x ∈ V (Qn) we have that B`2

Qn(x) intersects

at most n1/3 molecules from M which are bondlessly surrounded in Qnε .

Proof. We begin by fixing an arbitrary vertex x ∈ V (Qn) and an arbitrary set B ⊆M of n1/3

molecules which intersect B`2

Qn(x). We will estimate the probability that all of the molecules

in B are bondlessly surrounded in Qnε , by considering the neighbourhoods of the different

vertices which make up these molecules. If the probability of being bondlessly surrounded

was independent over different molecules and vertices, then this would be a straightforward

calculation. However, there are dependencies which we must consider: namely, when two

different molecules have edges to the same third molecule. We will first bound the number of

such configurations in Qn. Since the molecules in M ⊇ B are vertex-disjoint, it follows that,

if two of these molecules are adjacent in Qn, then all of their atoms are pairwise adjacent in

each of the layers, via clones of the same edges. Thus, we can restrict the analysis to a single

layer.

Fix a layer L and let A be the collection of atoms obtained by intersecting each

moleculeM∈M with L. Let AB ⊆ A be the set of such atoms whose molecules lie in B. Fix

an atom A ∈ AB, and let y ∈ V (A) be a fixed vertex. We say an atom A′ ∈ A is y-dependent

if there exists A′′ ∈ AB, A′′ 6= A, such that dist(y,A′) = dist(A′,A′′) = 1. The following

claim will allow us to bound the number of y-dependent atoms.

Claim 2.7.1. Fix A′′ ∈ AB with A′′ 6= A. Then, the number of A′ ∈ A for which dist(y,A′) =

dist(A′,A′′) = 1 is at most 2`(2 +
√
n).
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Proof. Let z ∈ V (A′′) and let ê ∈ D(y, z). Let A′ ∈ A be such that dist(y,A′) = dist(z,A′) =

1. Suppose first that ê /∈ D(A′). Then we must have either y + ê ∈ V (A′) or z + ê ∈

V (A′). Since all the atoms in A are vertex-disjoint, this leaves only two possibilities for A′.

Alternatively, suppose ê ∈ D(A′). Then, by (BS) applied with y playing the role of x, we

have at most
√
n possibilities for A′. Finally, by considering all z ∈ V (A′′) we prove the

claim. J

By considering all possibilities for A′′ ∈ AB, since |AB| = n1/3, it follows by Claim 2.7.1

that the number of y-dependent atoms is at most n6/7. For each y ∈ V (A), let N ′(y) ⊆ NM(y)

be given by removing from NM(y) all molecules which contain a y-dependent atom. It follows

that |N ′(y)| = |NM(y)| − o(n) for every y ∈ V (A).

Let MA ∈ M be the molecule containing A. For each vertex y ∈ V (A), let Ey be

the event that N ′(y) contains at least n/2`+5s+1 moleculesM ∈ M which are bondless in

Qnε . Then, |N ′(y)| ≥ n/2`+5s+2. Moreover, we only consider here those vertices y ∈ V (A)

for which |NM(y)| ≥ n/2`+5s+1, since otherwise y cannot contribute towards MA being

bondlessly surrounded. Fix such a vertex y. Let Y be the number of atoms A ∈ N ′(y) which

correspond to molecules which are bondless in Qnε . Note that Y is a sum of independent

indicator variables. By Lemma 2.7.3, we have that E[Y ] ≤ 2s+1−ε2`/4n. In order to derive a

lower bound for E[Y ], note that the probability that an (s, `)-moleculeM is bondless can be

bounded from below by the probability that there are no edges between two fixed consecutive

atoms A1,A2 ⊆M, whose endpoints in A1 are even. This occurs with probability (1− ε)2`−1 .

Thus,

E[Y ] ≥ (1− ε)2`−1 |N ′(y)| ≥ (1− ε)2`−1

(n/2`+5s+2).

By Lemma 2.4.4, we have that P[Ey] ≤ 2−cn, for some constant c > 0 which depends on `

and ε. For each atom A ∈ AB, let BA be the event that there exists a vertex y ∈ V (A) such

that Ey holds. Let B :=
∧
A∈AB

BA. Note that the definition of N ′(y) ensures that the events
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BA with A ∈ AB are pairwise independent. Thus,

P[E ] ≤ (2`−cn)n
1/3

< 2−n
5/4

.

In turn, this means that the probability that all moleculesM∈ B are bondlessly surrounded

is bounded from above by 2−n
5/4 . Lemma 2.7.4 now follows by a union bound over the 2n

choices for x and the at most
(
n`2

n1/3

)
choices for B.

Finally, we will show that ‘scant’ molecules are not too clustered. (We will later define

a vertex molecule as ‘scant’ –with respect to a graph H and a reservoir R– if one of its

vertices vi has the property that few of its neighbours lie in the i-th clone of R.)

Lemma 2.7.5. Let C, s, n ∈ N such that 0 < 1/n � 1/C � α, δ ≤ 1 and 1/n � 1/s. Let

H ⊆ Qn be such that δ(H) ≥ αn. For each v ∈ V (Qn−s) and each i ∈ [2s], let vi be the i-th

clone of v, and letMv := {vi : i ∈ [2s]}. Let R ∼ Res(Qn−s, δ) and, for each i ∈ [2s], let Ri

be the i-th clone of R. Let

B := {Mv | v ∈ V (Qn−s), there exists i ∈ [2s] : eH(vi, Ri) < αδn/4}.

Let E be the event that there exists some u ∈ V (Qn−s) such that B10`
Qn−s(u) contains more

than C vertices v ∈ V (Qn−s) withMv ∈ B. Then, P[E ] < e−n.

Proof. Let u ∈ V (Qn−s) and let D ⊆ B10`
Qn−s(u) be a set of C vertices. Let D′ :=⋃

x,y∈D:x 6=yNQn−s(x) ∩NQn−s(y). Since any pair of distinct vertices share at most two neigh-

bours, we have that |D′| ≤ 2
(
C
2

)
. For each i ∈ [2s], we denote the i-th clone of D′ by D′i, and

let R′i := Ri \D′i.

For each x ∈ V (Qn), let i(x) be the unique index i ∈ [2s] such that x ∈ V (Li). Observe

that eH(x, V (Li(x))) > 2αn/3 for every x ∈ V (Qn). For each x ∈ V (Qn), let Ex be the event

that eH(x,Ri(x)) ≤ αδn/4, and let E ′x be the event that eH(x,R′i(x)) ≤ αδn/4. It follows by

Lemma 2.4.2 that P[E ′x] ≤ e−αδn/16 for all x ∈ V (Qn). For each v ∈ V (Qn−s), let Ev and E ′v

be the events that there exists i ∈ [2s] such that Evi and E ′vi hold, respectively. By a union
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bound, it follows that P[E ′v] ≤ 2se−αδn/16 for all v ∈ V (Qn−s). Finally, let ED and E ′D be

the events that Ev and E ′v, respectively, hold for every v ∈ D. Note that the events in the

collection {E ′v : v ∈ V (Qn−s)} are mutually independent. Furthermore, since the event Ex

implies E ′x for all x ∈ V (Qn), we have that

P[ED] ≤ P[E ′D] ≤ (2se−αδn/16)C < e−5n.

Taking a union bound over all vertices u and over all choices of D we obtain the result.

2.7.3 Connecting cubes

The hypercube satisfies some robust connectivity properties. The problem of (almost) covering

Qn with disjoint paths has been extensively studied.

In order to create a long cycle, which can be used to absorb all remaining vertices, while

preserving the absorbing structure, we will make use of the robust connectivity properties

of the hypercube. In particular, we will need several results which guarantee that, given

any prescribed pairs of vertices in a slice, there is a spanning collection of vertex-disjoint

paths, each of which uses the vertices of one of the given pairs as endpoints. We will also

need similar results for almost spanning collections of paths, where these paths avoid a given

prescribed vertex. Throughout this subsection we denote by uv the edge between two given

adjacent vertices u and v (instead of {u, v}).

The following lemma will be essential for us. It follows from some results of Dvořák

and Gregor [39, Corollary 5.2].

Lemma 2.7.6. For all n ≥ 100, the graph Qn satisfies the following.

(i) Let m ∈ [25] and let {ui, vi}i∈[m] be disjoint pairs of vertices with ui 6=p vi for all i ∈ [m].

Then, there exist m vertex-disjoint paths P1, . . . ,Pm ⊆ Qn such that, for each i ∈ [m],

Pi is a (ui, vi)-path, and
⋃
i∈[m] V (Pi) = V (Qn).
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(ii) Let x ∈ V (Qn). Let m ∈ [25] and let {ui, vi}i∈[m] be disjoint pairs of vertices of

Qn − {x} such that u1, v1 6=p x and ui 6=p vi for all i ∈ [m] \ {1}. Then, there exist m

vertex-disjoint paths P1, . . . ,Pm ⊆ Qn such that, for each i ∈ [m], Pi is a (ui, vi)-path,

and
⋃
i∈[m] V (Pi) = V (Qn) \ {x}.

(iii) Let {ui, vi}i∈[2] be disjoint pairs of vertices with ui =p vi for all i ∈ [2] and u1 6=p u2.

Then, there exist two vertex-disjoint paths P1,P2 ⊆ Qn such that, for each i ∈ [2], Pi is

a (ui, vi)-path, and V (P1) ∪ V (P2) = V (Qn).

We now motivate the statement (as well as the proof) of Lemma 2.7.8, which is the

main result of this subsection. We are given a slice M∗ of a molecule M ⊆ Qn which is

bonded in a graph G ⊆ Qn. Furthermore, we are given collections of vertices L, R (which

are part of absorbing cube structures), and S (which, when constructing a long cycle, will be

used to enter and leaveM∗). More specifically, we have that

• L will have size 0 or 2, and will consist of left absorber tips. If it has size 2, the vertices

will have opposite parities. These must be avoided by our connecting paths, so that we

can make use of the absorbing structures we have put in place (see the discussion in

Section 2.2).

• R will consist of the pairs of right absorber tip and third absorber vertex. These must

be connected via an edge with the paths we find.

• S will consist of a set of pairs of vertices {u, v} with u 6=p v. Later, when creating a

long cycle, u will be a vertex through which we enterM∗ from a different molecule,

and v will be the next vertex from which we leaveM∗ (with respect to some ordering).

Each of our paths will be a (u, v)-path, for some such pair {u, v}.

In order to find our paths, we will call on Lemma 2.7.6. To illustrate this, supposeM∗

consists of the atoms A1, . . . ,At, for some t ∈ N. Suppose that S = {u, v} with u ∈ V (A1)

and v ∈ V (At). Furthermore, suppose that L,R = ∅. To construct a path from u to v, we
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will first specify the edges used to pass between different atoms. For all k ∈ [t− 1], we choose

an edge v↑ku
↑
k+1 from Ak to Ak+1, thus v↑k 6=p u

↑
k+1. For technical reasons, we aim to have all

the vertices u↑k+1 of the same parity as u. We can then apply Lemma 2.7.6 to find a path

from u↑k+1 to v↑k+1 which covers all of V (Ak+1). Together with the edges v↑ku
↑
k+1, all these

paths will form a single path from u to v which spans V (M∗). In the more general setting

where u ∈ V (Ai) and v ∈ V (Aj) with 1 < i < j < t, the (u, v)-path we construct would first

pass down to A1, then up to At and, finally, back down to Aj.

When L 6= ∅, due to vertex parities, the following issue can arise. Suppose L = {x, y}

with x ∈ V (A1), u ∈ V (A2), y ∈ V (A3) and v ∈ V (Aj) for some j > 3 (and R = ∅).

Furthermore, suppose that both u and x have odd parity. In line with the above description,

the vertex u↓1, through which we enter A1, would have odd parity. It follows that, since x

also has odd parity, we cannot hope to construct a path which starts at u↓1 and covers all of

V (A1)\{x}. The solution will be instead to pass up to A3 first (and, in general, to whichever

atom contains y). Recall that, since x has odd parity, y must have even parity. We specify a

vertex u↑3 of odd parity, through which we enter A3, but then also specify a vertex v↓3 of odd

parity from which we will leave A3 to reenter A2. We now arrive back in A2 with a vertex

u↓2 of even parity. We will specify another vertex v↓2 of odd parity from which we leave A2

and a vertex u↓1 of even parity through which we enter A1. In this way, we can now apply

Lemma 2.7.6 to find a path which starts at u↓1 and covers all of V (A1) \ {x}, and which can

be extended into a path from u to v covering all of V (M∗) \ L.

There are several other instances which must be dealt with in a similar way. This

is formalised by Lemma 2.7.8. Before proving this lemma, however, we need the following

definition.

Definition 2.7.7 ((u, j, F,R)-alternating parity sequence). Let `, s, t, n ∈ N with t ≤ 2s

and 2 ≤ ` ≤ n − s. Let G ⊆ Qn. Let M = A1 ∪ · · · ∪ A2s ⊆ Qn be an (s, `)-molecule

and let M∗ = Aa+1 ∪ · · · ∪ Aa+t, for some a ∈ [2s], be a slice of M. Let u ∈ V (Ai), for
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some i ∈ [a + t] \ [a]. Let j ∈ [a + t] \ [a], and let F,R ⊆ V (M∗). Suppose i ≤ j. Let

IR := {k ∈ [j − i]0 : |R ∩ V (Ai+k)| ≥ 1}. Assume that the following properties hold:

• For all k ∈ [j − i]0 we have that |R ∩ V (Ai+k)| ∈ {0, 2}.

• For each k ∈ IR, the vertices in R ∩ V (Ai+k) are adjacent in Qn, and we write

R ∩ V (Ai+k) = {wk, zk} so that wk 6=p u.

Let S ′ = (u0, v1, u1, . . . , vj−i, uj−i) be a sequence of vertices satisfying the following properties:

(P0) If u ∈ R, then u0 := w0; otherwise, u0 := u.

(P1) For each k ∈ [j − i] we have that uk =p u.

(P2) For each k ∈ [j − i] we have that vk ∈ V (Ai+k−1), uk ∈ V (Ai+k) and vkuk ∈ E(G).

(P3) The vertices of S ′ other than u0 avoid F ∪R.

A (u, j, F,R)-alternating parity sequence S in G is a sequence obtained from any

sequence S ′ which satisfies (P0)–(P3) as follows. For each k ∈ IR ∩ [j − i], replace each

segment (vk, uk) of S ′ by (vk, uk, wk, zk).

The case i > j is defined similarly by replacing each occurrence of [j− i] and [j− i]0 in

the above by [i− j] and [i− j]0, and each occurrence of Ai+k and Ai+k−1 by Ai−k and Ai−k+1.

Given an alternating parity sequence S, we will denote by S− the sequence obtained

from S by deleting its initial element.

Lemma 2.7.8. Let n, s, ` ∈ N be such that s ≥ 4 and 100 ≤ ` ≤ n − s. Let G ⊆ Qn

and consider any (s, `)-molecule M = A1 ∪ · · · ∪ A2s ⊆ Qn which is bonded in G. Let

M∗ = Aa+1 ∪ · · · ∪ Aa+t, for some a ∈ [2s] and t ≥ 10, be a slice ofM. Moreover, consider

the following sets.

(C1) Let L ⊆ V (M∗) be a set of size |L| ∈ {0, 2} such that, if L = {x, y}, then x ∈ V (Ai)

and y ∈ V (Aj) with i 6= j and x 6=p y.
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(C2) Let R ⊆ V (M∗) \ L be a (possibly empty) set of vertices with |R| ≤ 10 such that,

for all k ∈ [a + t] \ [a], we have |R ∩ V (Ak)| ∈ {0, 2} and, if |R ∩ V (Ak)| = 2, then

R ∩ V (Ak) = {wk, zk} satisfies that wkzk ∈ E(M∗) and, if |L| = 2, then k /∈ {i, j}.

(C3) Let m ∈ [14] and consider m vertex-disjoint pairs {ur, vr}r∈[m], where ur, vr ∈ V (M∗)\L

and ur 6=p vr for all r ∈ [m], such that, for each r ∈ [m], we have ur ∈ V (Air) and

vr ∈ V (Ajr). Assume, furthermore, that for each t′ ∈ [t] we have that |
⋃
r∈[m]{ur, vr} ∩

V (Aa+t′) ∩R| ≤ 1.

Then, there exist vertex-disjoint paths P1, . . . ,Pm ⊆M∗ ∪G such that, for each r ∈ [m], Pr

is a (ur, vr)-path,
⋃
r∈[m] V (Pr) = V (M∗) \ L, and every pair {wk, zk} with k ∈ [a+ t] \ [a] is

an edge of some Pr.

Proof. By relabelling the atoms, we may assume thatM∗ = A1 ∪ · · · ∪ At. Let S := {ur, vr :

r ∈ [m]}. By relabelling the vertices, we may assume that ir ≤ jr for all r ∈ [m] and (if

L 6= ∅) i < j. Let IL := {k ∈ [t] : L∩ V (Ak) 6= ∅}, IR := {k ∈ [t] : R∩ V (Ak)∩ S 6= ∅} and

R∗ := R \
⋃
k∈IR V (Ak). Note that IL = ∅ or IL = {i, j} and IL ∩ IR = ∅. For each r ∈ [m],

let IrR := {k ∈ {ir, jr} : R ∩ V (Ak) ∩ {ur, vr} 6= ∅}, so that IR =
⋃m
r=1 I

r
R. Without loss of

generality, we may also assume that, for each r ∈ [m], if ur ∈ R, then ur = zir , and if vr ∈ R,

then vr = wjr . Similarly, for each k ∈ [t] \ IR, if R ∩ V (Ak) = {wk, zk}, we may assume that

wk 6=p u1.

For each r ∈ [m], we will create a list Lr of vertices. We will refer to Lr as the

skeleton for Pr. We will later use these skeletons to construct the vertex-disjoint paths via

Lemma 2.7.6. For each r ∈ [m], we will write L∗r for the (unordered) set of vertices in Lr. In

order to construct each Lr, we will start with an empty list and update it in (possibly) several

steps, by concatenating alternating parity sequences. Whenever Lr is updated, we implicitly

update L∗r. In the end, for each r ∈ [m] we will have a list of vertices Lr = (xr1, . . . , x
r
`r

). For

each r ∈ [m] and k ∈ [t], let Ir(k) := {h ∈ [`r − 1] : 2 - h and xrh, xrh+1 ∈ V (Ak)}. We will

require the Lr to be pairwise vertex-disjoint. Furthermore, we will require that they satisfy
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the following properties:

(L1) For all r ∈ [m] we have that `r is even.

(L2) For all r ∈ [m] and h ∈ [`r − 1], if h is odd, then xrh, xrh+1 ∈ V (Ak), for some k ∈ [t]; if

h is even, then xrhxrh+1 ∈ E(G ∪M∗).

(L3) For all k ∈ [t] we have that 1 ≤ |I1(k)| ≤ 6 and |Ir(k)| ≤ 1 for all r ∈ [m] \ {1}.

(L4)1 For each k ∈ [t]\(IL∪I1
R) and each h ∈ I1(k), we have x1

h 6=p x
1
h+1. For each k ∈ IL∪I1

R,

for all but one h ∈ I1(k) we have x1
h 6=p x

1
h+1, while for the remaining index h ∈ I1(k)

we have that x1
h =p x

1
h+1 and their parity is opposite to that of the unique vertex in

L ∩ V (Ak) if k ∈ IL and to that of the unique vertex in {wk, zk} ∩ {u1, v1} if k ∈ I1
R.

(L4)r For each r ∈ [m] \ {1}, the following holds. For each k ∈ [t] \ IrR and each h ∈ Ir(k), we

have xrh 6=p x
r
h+1. For each k ∈ IrR, for all but one h ∈ Ir(k) we have xrh 6=p x

r
h+1, while

for the remaining index h ∈ Ir(k) we have that xrh =p x
r
h+1 and their parity is opposite

to that of the unique vertex in {wk, zk} ∩ {ur, vr}.

(L5) For each r ∈ [m], we have the following. If ur /∈ R, then ur = xr1. If vr /∈ R, then

vr = xr`r . If ur ∈ R (and thus ur = zir), then wir = xr1 and ur /∈ L∗1∪ · · ·∪L∗m. If vr ∈ R

(and thus vr = wjr), then zjr = xr`r and vr /∈ L∗1 ∪ · · · ∪ L∗m.

(L6) Every pair (wk, zk) with {wk, zk} ⊆ R∗ is contained in L1 and zk directly succeeds wk.

We begin by constructing L1. Let L1 := ∅ and let F := L ∪ R ∪ S. If i1 = 1 and

R∗ ∩ V (A1) = {w1, z1}, then let S1 := (u1, w1, z1). If i1 = 1 and u1 ∈ R, then let S1 := (u1).

Otherwise, let S1 be a (u1, 1, F, (R ∩ V (Ai1)) ∪ (R∗ ∩ V (A1)))-alternating parity sequence.

Let L1 := S1. Note that the existence of such a sequence S1 is guaranteed by our assumption

thatM is bonded in G. To see this, note that all edges of G required by S1 (that is, the

pairs {vk, uk} in Definition 2.7.7) need to be chosen so that they do not have an endpoint
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in F ; given any particular pair of consecutive atoms, this forbids at most 30 edges between

these two atoms (26 because of S and 4 because of L ∪R).

We will now update L1. While doing so, we will update F and consider several

alternating parity sequences. The existence of each of these follows a similar argument to the

above. For any given pair of consecutive atoms, every time we update F , the set of forbidden

edges will increase its size by at most 3. We will update F at most four times, so F will

forbid at most 42 edges between any pair of consecutive atoms. Thus, by the definition of

bondedness, each of the alternating parity sequences required below actually exists.

Let u↓1 be the last vertex in L1. Note that u↓1 =p u1 by Definition 2.7.7(P1). We

update F as F := F ∪ L∗1. For the next step in the construction of L1, there are three cases

to consider, depending on the size of L and, if |L| = 2, the relative parities of x and u1. If

i1 = 1 and u1 ∈ R, let R� := R∗ ∪ {w1, z1}; otherwise, let R� := R∗.

Case 1: L = ∅.

Let S2 be a (u↓1, t, F,R
�)-alternating parity sequence. If i1 = 1 and u1 ∈ R, update L1 as

L1 := S2. Otherwise, update L1 as L1 := L1S−2 . Update F := F ∪ L∗1.

Case 2: |L| = 2 and x 6=p u1.

Let S2 be a (u↓1, i, F,R
�)-alternating parity sequence. If i1 = 1 and u1 ∈ R, update L1

as L1 := S2. Otherwise, update L1 := L1S−2 . Update F := F ∪ L∗1. Choose any vertex

u∗i ∈ V (Ai) with u∗i 6=p u1, and let S3 be a (u∗i , j, F,R
�)-alternating parity sequence. Update

L1 := L1S−3 and F := F ∪ L∗1. Let v− be the final vertex of S2, and let v+ be the second

vertex of S3. Note that v− and v+ appear consecutively in L1 and that v− =p v
+ =p u1 6=p x.

Finally, choose any vertex u∗j ∈ V (Aj) with u∗j =p u1, let S4 be a (u∗j , t, F,R
�)-alternating

parity sequence, and update L1 := L1S−4 and F := F ∪ L∗1. Let w− be the final vertex of S3,

and let w+ be the second vertex of S4. We then have that w− and w+ appear consecutively

in L1, and w− =p w
+ 6=p y, u1. Moreover, the final vertex u↑t of L1 satisfies u↑t =p u1.

Case 3: |L| = 2 and x =p u1.

Let S2 be a (u↓1, j, F,R
�)-alternating parity sequence. If i1 = 1 and u1 ∈ R, update L1 as
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L1 := S2; otherwise, update L1 := L1S−2 . Update F := F ∪ L∗1. Next, let u∗j ∈ V (Aj) be

a vertex with u∗j 6=p u1 and let S3 be a (u∗j , i, F,∅)-alternating parity sequence. Update

L1 := L1S−3 and F := F ∪ L∗1. Finally, let u∗i ∈ V (Ai) be a vertex with u∗i =p u1 and let

S4 be a (u∗i , t, F,R
∗ ∩
⋃t
k=j+1 V (Ak))-alternating parity sequence. Update L1 := L1S−4 and

F := F ∪ L∗1.

In each of the three cases, let u↑t denote the last vertex in L1. Note that, by Defini-

tion 2.7.7(P1), we have u↑t =p u1, and recall that v1 6=p u1. Let S5 be a (u↑t , j1, F,∅)-alternating

parity sequence. Update L1 := L1S−5 . Again by Definition 2.7.7(P1), we have that the final

vertex u∗ of L1 is such that u∗ =p u
↑
t =p u1 6=p v1. Finally, if v1 ∈ R, update L1 := L1(zj1);

otherwise, update it as L1 := L1(v1). Observe that L1 satisfies (L1)–(L3), (L4)1, (L5) and

(L6) for the case r = 1 by construction.

We now construct Lr for all r ∈ [m]\{1}. For each r ∈ [m]\{1}, we proceed iteratively

as follows. Let Lr := ∅ and Fr := L∪R∪S∪
⋃
r′∈[r−1] L

∗
r′ . Let Sr be a (ur, jr, Fr, R∩V (Air))-

alternating parity sequence and update Lr as Lr := Sr. If vr ∈ R, update Lr := Lr(zjr);

otherwise, update Lr := Lr(vr). Note that each sequence Sr requires the existence of at most

one edge of G, which has to avoid Fr, between any pair of consecutive atoms ofM∗. In a

similar way to what was discussed above, at most three choices of such edges can be forbidden

every time we add a new alternating parity sequence to F . Since for each r ∈ [m] \ {1} we

consider one new sequence, by the time we consider Fm we have increased the number of

forbidden edges by at most 3(m− 1) ≤ 39. This gives a total of at most 81 forbidden edges

and, thus, the existence of the sequences Sr is guaranteed by the assumption that M is

bonded in G. Moreover, the lists L1, . . . ,Lr now satisfy (L1)–(L6).

We are now in a position to apply Lemma 2.7.6. For each k ∈ [t], let tk :=
∑

r∈[m] |Ir(k)|.

Furthermore, for any r ∈ [m] and k ∈ [t], for each h ∈ Ir(k), we refer to the pair xrh, xrh+1 as a

matchable pair. By (L3), (L4)1, (L4)r and Lemma 2.7.6(i), each atomAk with k ∈ [t]\(IL∪IR)

can be covered by tk vertex-disjoint paths, each of whose endpoints are a matchable pair

contained in Ak. Similarly, by (L3), (L4)1, (L4)r and Lemma 2.7.6(ii), each atom Ak with
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k ∈ IL ∪ IR contains tk vertex-disjoint paths, each of whose endpoints are a matchable pair in

Ak such that the union of these tk paths covers precisely V (Ak) \ (L∪ (S ∩R)). (Recall that

by (C2) and (C3) the set V (Ak) ∩ (L ∪ (S ∩ R)) consists of a single vertex if k ∈ IL ∪ IR.)

For each matchable pair xrh, xrh+1 in Ak, let us denote the corresponding path by Pxrh,xrh+1
.

The paths P1, . . . ,Pm required for Lemma 2.7.8 can now be constructed as follows.

For each r ∈ [m], let Pr be the path obtained from the concatenation of the paths Pxrh,xrh+1
,

for each odd h ∈ [`r], via the edges xrhxrh+1 for h ∈ [`r − 1] even. By (L5), if Pr does not

contain ur, then Pr starts in wir , and ur does not lie in any other path; therefore, we can

update Pr as Pr := urPr. Similarly, if Pr does not contain vr, then Pr ends in zjr and vr

does not lie in any other path, and thus we can update Pr as Pr := Prvr. It follows that⋃
r∈[m] V (Pr) = V (M∗) \ L, and thus the paths Pr are as required in Lemma 2.7.8.

We also need the following simpler result. Its proof follows similar ideas as those

present in the proof of Lemma 2.7.8. For the sake of completeness, we include the proof

of Lemma 2.7.9 in Appendix A of the arXiv version of this paper. We point out here that

Lemma 2.7.6(iii) is only needed for this proof.

Lemma 2.7.9. Let n, s, ` ∈ N be such that 4 ≤ s and 100 ≤ ` ≤ n − s. Let G ⊆ Qn

and consider any (s, `)-molecule M = A1 ∪ · · · ∪ A2s ⊆ Qn which is bonded in G. Let

M∗ = Aa+1 ∪ · · · ∪ Aa+t, for some a ∈ [2s] and t ≥ 10, be a slice ofM. Moreover, consider

the following sets.

(C′1) Let L ⊆ V (M∗) be a set of size |L| ∈ {0, 2} such that, if L = {x, y}, then x ∈ V (Ai)

and y ∈ V (Aj), with i 6= j and x 6=p y.

(C′2) Let R ⊆ V (M∗) \ L be a (possibly empty) set of vertices with |R| ≤ 10 such that,

for all k ∈ [a + t] \ [a], we have |R ∩ V (Ak)| ∈ {0, 2} and, if |R ∩ V (Ak)| = 2, then

R ∩ V (Ak) = {wk, zk} satisfies that wkzk ∈ E(M∗) and, if |L| = 2, then k /∈ {i, j}.
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(C′3) Consider two vertex-disjoint pairs {ur, vr}r∈[2] with u1, u2 ∈ V (Aa+1) \ L and v1, v2 ∈

V (Aa+t)\L such that u1 6=p u2, v1 6=p v2, u1 =p v1, and |{u1, u2}∩R|, |{v1, v2}∩R| ≤ 1.

Then, there exist two vertex-disjoint paths P1,P2 ⊆M∗∪G such that, for each r ∈ [2],

Pr is a (ur, vr)-path, V (P1) ∪ V (P2) = V (M∗) \ L, and every pair of the form {wk, zk} ⊆ R

with k ∈ [a+ t] \ [a] is an edge of either P1 or P2.

2.7.4 Proof of Theorem 2.7.1

Proof of Theorem 2.7.1. Let 1/D, δ′ � 1, and let

0 < 1/n0 � δ � 1/`� 1/k∗, α′ � β, 1/S ′ � 1/c, 1/D, δ′, ε, α,

where n0, `, k
∗, S ′, D ∈ N. Our proof assumes that n tends to infinity; in particular, n ≥ n0.

Let s := 10`, Φ := 12` and and Ψ := cΦ.

Observe that Qn[{0, 1}s×{0}n−s] ∼= Qs contains a Hamilton cycle. We fix an ordering

of the layers L1, . . . , L2s of Qn induced by this Hamilton cycle (as defined in Section 2.7.1).

If we view these layers as different subgraphs on the vertex set of Qn−s, we can define the

intersection graph of the layers I :=
⋂2s

i=1 Li (note that I ∼= Qn−s) and, for any G ⊆ Qn, we

denote I(G) :=
⋂2s

i=1 Li(G). Note that, if G ⊆ I(G), then there is a clone of G in Li(G), for

each i ∈ [2s]. For each layer L, we denote by GL the clone of G in L(G). Observe that, for

any η ∈ [0, 1], we have I(Qnη) ∼ Qn−s
η2s

. We will sometimes write GI for the subgraph of I

where, for each e ∈ E(I), we have e ∈ E(GI) whenever G contains some clone of e (thus, GI

is the ‘union’ of the subgraphs that G induces on each layer).

For each i ∈ [7], let εi := ε/7 and let Gi ∼ Qnεi , where these graphs are taken inde-

pendently. It is easy to see that
⋃7
i=1 Gi ∼ Qnε′ for some ε′ < ε. Thus, it suffices to show

that a.a.s. there is a graph G′ ⊆
⋃7
i=1Gi with ∆(G′) ≤ Φ such that, for every F ⊆ Qn

with ∆(F ) ≤ Ψ, the graph ((H ∪
⋃7
i=1 Gi) \ F ) ∪G′ is Hamiltonian. In summary, we fix a

near-spanning tree and reservoir in the intersection graph of G1. G6 is used to extend this
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tree to cover almost all of the vertices of the reservoir. G7 is then used to alter the tree

slightly at vertices which have few neighbours in the reservoir. We fix a near-spanning cube

tiling of the intersection graph of G3 and we use G5 to fix good edge connectivity between

different layers within molecules of the cubes of this tiling. Finally, G2 and G4 are used to

find and fix suitable absorbing structures for each vertex of the hypercube. We now split our

proof into several steps.

Step 1: Finding a tree and a reservoir. Consider the probability space Ω :=

Qn−s
ε2

s
1
×Res(Qn−s, δ′) (with the latter defined as in Section 2.6.1), so that, given R ∼ Res(I, δ′),

we have that (I(G1), R) ∼ Ω.

Let E1 be the event that there exists a tree T ⊆ I(G1) − R such that the following

hold:

(TR1) ∆(T ) < D, and

(TR2) for all x ∈ V (I), we have that |NI(x) ∩ V (T )| ≥ 4(n− s)/5.

It follows from Theorem 2.6.1, with n− s, ε2s

1 , δ′,∅ and 1/5 playing the roles of n, ε, δ,S

and ε′, respectively, that PΩ[E1] = 1− o(1).

Step 2: Identifying scant molecules. For each v ∈ V (I), letMv denote the vertex

moleculeMv := {av : a ∈ {0, 1}s}. We say a vertex moleculeMv is scant if there exist some

layer L and some vertex x ∈ V (Mv ∩ L) such that dH(x,RL) < αδ′n/10, where RL is the

clone of R in L. Let E2 be the event that there exists some x ∈ V (I) such that there are

more than S ′ vertices v ∈ B10`
I (x) satisfying thatMv is scant. It follows from Lemma 2.7.5

with S ′ and δ′ playing the roles of C and δ that PΩ[E2] < e−n. Let E∗1 := E1 ∧ E2. Therefore,

PΩ[E∗1 ] = 1− o(1).

Condition on E∗1 holding. Then, G1 satisfies the following: there exist a set R ⊆ V (I)

and a tree T ⊆ I(G1)−R such that the following hold:
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(T1) ∆(T ) < D;

(T2) for all x ∈ V (I), we have that |NI(x) ∩ V (T )| ≥ 4(n− s)/5, and

(T3) for every x ∈ V (I), B10`
I (x) contains at most S ′ vertices v such thatMv is scant.

Recall this implies clones of T and R satisfying (T1)–(T3) exist simultaneously in each layer

of G1.

Step 3: Finding robust matchings for each slice. Recall from Section 2.2.5 that

we will absorb vertices in pairs, where each pair consists of two clones x′, x′′ of the same

vertex x ∈ V (I). In this step, for each x ∈ V (I) and for each set of clones of x that may need

to be absorbed, we find a pairing of these clones so that we can later build suitable absorbing

`-cube pairs for each such pair of clones. We will find this pairing separately for each slice of

the vertex moleculeMx. Considering each slice separately has the advantage that the chosen

pairs are ‘localised’. This will be convenient later when linking up the paths used to absorb

these vertices. Accordingly, we now partition the set of layers into sets of consecutive layers

as follows. Let

q := 210Dk∗ and let t := 2s/q. (2.7.1)

For each j ∈ [t], let Sj :=
⋃jq
i=(j−1)q+1 Li. Given any molecule M, we consider the slices

Sj(M) := Sj ∩M. We denote by S(M) the collection of all these slices ofM.

Let Vsc ⊆ V (I) be the set of all vertices x ∈ V (I) such that Mx is scant. Recall

G2 ∼ Qnε2 . For each v ∈ V (I) \ Vsc and each S ∈ S(Mv), we define the following auxiliary

bipartite graphs. Let H(S) := (V (S), NI(v), EH), where EH is defined as follows. Consider

v′ ∈ V (S) and let Lv′ be the layer which contains v′. Let w ∈ NI(v), and let wLv′ be the

clone of w in Lv
′ . Then, {v′, w} ∈ EH if and only if w ∈ R and {v′, wLv′} ∈ E(H). Note

that dH(S)(v
′) ≥ αδ′n/10 for all v′ ∈ V (S) since S is a slice of a vertex molecule which is not

scant. Similarly, we define G2(S) := (V (S), NI(v), EG2), where {v′, w} ∈ EG2 if and only if

{v′, wLv′} ∈ E(G2).
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Note that the partition of V (S) into vertices of even and odd parity is a balanced

bipartition. Define the graph ΓβH(S),G2(S)(V (S)) as in Section 2.5.1. Note that, by definition,

we have that V (ΓβH(S),G2(S)(V (S))) = V (S). Furthermore, by definition,

(RM) given any w1, w2 ∈ V (S), we have that {w1, w2} ∈ E(ΓβH(S),G2(S)(V (S))) if and only if

|NH(S)(w1) ∩NG2(S)(w2)| ≥ β(n− s) or |NG2(S)(w1) ∩NH(S)(w2)| ≥ β(n− s).

By applying Lemma 2.5.2 with d = 24D, r = 0, α = αδ′/10, ε = ε2, n = n−s, k = q = 210Dk∗ ,

β = β and G = H(S), we obtain that, with probability at least 1 − 2−10(n−s) ≥ 1 − 2−8n,

the graph ΓβH(S),G2(S)(V (S)) is 24D-robust-parity-matchable with respect to the partition of

V (S) into vertices of even and odd parity.

We would like to proceed as above for slices in scant molecules; however, recall that

scant molecules contain vertices with few or no neighbours in the reservoir, and therefore

we must adapt our approach. For each v ∈ Vsc and each S ∈ S(Mv), we define an auxiliary

bipartite graph H(S) and G2(S) as above, except that we omit the condition that w ∈ R

for the existence of an edge in H(S). By applying Lemma 2.5.2 again, we obtain that, with

probability at least 1 − 2−8n, the graph ΓβH(S),G2(S)(V (S)) is 24D-robust-parity-matchable

with respect to the partition of V (S) into vertices of even and odd parity.

By a union bound over all v ∈ V (I) and all slices S ∈ S(Mv), we have that a.a.s. the

graph ΓβH(S),G2(S)(V (S)) is 24D-robust-parity-matchable (with respect to the partition of

V (S) into vertices of even and odd parity) for every slice S, where H(S) is as defined

above in each case. We condition on this event holding and call it E∗2 . Thus, for each

slice S and each set S ⊆ V (S) with |S| ≤ 24D which contains as many odd vertices

as even vertices, there exists a perfect matching M(S, S) in the bipartite graph with

parts consisting of the even and odd vertices of V (S) \ S, respectively, and edges given

by ΓβH(S),G2(S)(V (S)). For each slice S, we denote by M(S) the set of edges contained in the

union (over all S) of the matchings M(S, S) (without multiplicity). Furthermore, for each

e = {we, wo} ∈M(S), we let N(e) := (NH(S)(we) ∩NG2(S)(wo)) ∪ (NG2(S)(we) ∩NH(S)(wo)).
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By (RM), we have |N(e)| ≥ β(n−s) ≥ βn/2. For each v ∈ V (I), letM(v) :=
⋃
S∈S(Mv) M(S).

Let K := maxv∈V (I) |M(v)|. In particular, we have that K ≤
(

2s

2

)
.

Step 4: Obtaining an appropriate cube factor via the nibble. For each

x ∈ V (I), consider the multiset A(x) := {N(e) : e ∈ M(x)}. If |A(x)| < K, we artificially

increase its size to K by repeating any of its elements. Label the sets in A(x) arbitrarily as

A(x) = {A1(x), . . . , AK(x)}. Thus, if x ∈ V (I) \ Vsc, then Ai(x) ⊆ R for all i ∈ [K].

Let C be any collection of subgraphs C of I such that C ∼= Q` for all C ∈ C. For any

vertex x ∈ V (I) and any set Y ⊆ NI(x), let Cx(Y ) ⊆ C be the set of all C ∈ C such that

x /∈ V (C) and Y ∩ V (C) 6= ∅, and let Cx := Cx(NI(x)).

Recall G3 ∼ Qnε3 and I(G3) ∼ Qn−s
ε2

s
3

. We now apply Theorem 2.5.7 to the graph I(G3),

with ε2s

3 , α
′, δ/2, β/2, K and ` playing the roles of ε, α, δ, β, K and `, respectively, and using

the sets Ai(x) given above, for each x ∈ V (I) and i ∈ [K]. Thus, a.a.s. we obtain a collection

C of vertex-disjoint copies of Q` in I(G3), such that the following properties hold for every

x ∈ V (I):

(N1) |Cx| ≥ (1− δ)n.

(N2) For every direction ê ∈ D(I) we have that |Σ(Cx, {ê}, 1)| = o(n1/2).

(N3) For every i ∈ [K] and every S ⊆ D(I) with α′(n− s)/2 ≤ |S| ≤ α′(n− s) we have

|Σ(Cx(Ai(x)), S, `1/2)| ≥ |Ai(x)|/3000 ≥ βn/6000.

Condition on the above event holding and call it E∗3 .

Step 5: Absorption cubes. For each x ∈ V (I) and i ∈ [K], we define an auxiliary

digraph D = D(Ai(x)) on vertex set Ai(x) − {x} (seen as a set of directions of D(I)) by

adding a directed edge from ê to ê′ if there is a cube Cr ∈ Cx(Ai(x)) such that x+ ê ∈ V (Cr)

and ê′ ∈ D(Cr). In this way, an edge from ê to ê′ in D indicates that the cube Cr could be
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used as a right absorber cube for x, if combined with a vertex-disjoint left absorber cube

with tip x+ ê′. Observe that, for all ê ∈ Ai(x)− {x},

d+
D(ê) ∈ [`]0. (2.7.2)

Furthermore, it follows by (N3) that any set S ⊆ V (D) with |S| = α′n/2 satisfies

eD(V (D), S) ≥ `1/2βn/6000 > `1/2β2n. (2.7.3)

Recall that Ai(x) = N({x1, x2}) for some {x1, x2} ∈M(S), where S ∈ S(Mx) is some

slice ofMx. Note that x1, x2 ∈ Mx, and let Lj be the layer containing xj for each j ∈ [2].

We say that x1 and x2 are the vertices (or clones of x) which correspond to the pair (x, i).

Let (ê, ê′) ∈ E(D) and, for each j ∈ [2], let ej be the clone of {x + ê′, x + ê′ + ê} in Lj. It

follows that there is a cube Cr ∈ Cx(Ai(x)) such that ej connects the clone Cj of Cr to the

clone of x+ ê′ in Lj.

Recall G4 ∼ Qnε4 . Let D
′ ⊆ D be the subdigraph which retains each edge (ê, ê′) ∈ E(D)

if and only if the edges e1, e2 described above are both present in G4. Note that each edge of D

is therefore retained independently of every other edge with probability ε2
4. By Lemma 2.4.2,

(2.7.2) and (2.7.3), it follows that D′ satisfies the following with probability at least 1− e−10n:

(DG1) for every A ⊆ V (D) with |A| = α′n/2 we have
∑

v∈A d
−
D′(v) ≥ ε3

4β
2`1/2n, and

(DG2) for every B ⊆ V (D) we have that
∑

v∈B d
+
D′(v) ≤ `|B|.

Recall that D = D(Ai(x)). By a union bound, (DG1) and (DG2) hold a.a.s. for all x ∈ V (I)

and i ∈ [K]. We condition on this event and call it E∗4 .

For each x ∈ V (I) and i ∈ [K], recall that (RM) and the definition of Ai(x) imply

that |Ai(x)| ≥ β(n− s). Thus, it follows by Lemma 2.5.3 with |Ai(x)|, 2α′/β, ε3
4β

3`1/2/(2α′)

and ` playing the roles of n, α, c and C, respectively, that there exists a matching M ′′(Ai(x))

of size at least ε34β
2

2`1/2
|Ai(x)| ≥ ε3

4β
3n/(3`1/2) in D′(Ai(x)).
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Next, for each x ∈ V (I) and i ∈ [K], we remove from M ′′(Ai(x)) all edges (ê, ê′) ∈

M ′′(Ai(x)) such that x+ ê′ does not lie in any cube of Cx(Ai(x)). We denote the resulting

matching by M ′(Ai(x)). Note that, by (N1), we have

|M ′(Ai(x))| ≥ ε3
4β

3n/(3`1/2)− δn ≥ n/`. (2.7.4)

Consider Ai(x), for some x ∈ V (I) and i ∈ [K], and let x1, x2 be the clones of x which

correspond to (x, i). As before, for each j ∈ [2], let Lj be the layer containing xj. Recall

Definition 2.7.2 and note that, by construction, we have the following.

(AB1) For each edge (ê, ê′) ∈M ′(Ai(x)), there is an absorbing `-cube pair (C l, Cr) for x in I

such that, for each j ∈ [2], the clone (C l
j, C

r
j ) of (C l, Cr) in Lj is an absorbing `-cube

pair for xj in H ∪G2 ∪G3 ∪G4. In particular, the edge joining the left absorber tip

to the third absorber vertex lies in G4. Moreover, C l, Cr ∈ Cx(Ai(x)) ⊆ C and (C l, Cr)

has left and right absorber tips x+ ê′ and x+ ê, respectively. Furthermore, for each

x ∈ V (I) \ Vsc, these tips lie in R. We refer to (C l
1, C

r
1) and (C l

2, C
r
2) as the absorbing

`-cube pairs for x1 and x2 associated with (ê, ê′).

Thus, the graph H ∪G2 ∪G3 ∪G4, contains at least n/` absorbing `-cube pairs for

each of the clones x1 and x2 of x associated with edges in M ′(Ai(x)) ⊆ D(Ai(x)). Moreover,

sinceM ′(Ai(x)) is a matching, for each j ∈ [2] these absorbing `-cube pairs for xj are pairwise

vertex-disjoint apart from xj.

For ease of notation, we will often consider the absorbing `-cube pair (C l, Cr) for x in

I which (C l
1, C

r
1) and (C l

2, C
r
2) are clones of, and use it as a placeholder for both of its clones.

By slightly abusing notation, we will refer to (C l, Cr) as the absorbing `-cube pair associated

with (ê, ê′). Note, however, that (C l, Cr) is not necessarily an absorbing `-cube pair for x in

I(H ∪G2 ∪G3 ∪G4).

Step 6: Removing bondless molecules. Recall G5 ∼ Qnε5 . In this step, we

consider the edges between the different layers.
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For each C ∈ C, letMC denote the cube molecule consisting of the clones of C. Let

C ′ ⊆ C be the set of cubes C ∈ C for which MC is bonded in G5. By an application of

Lemma 2.7.3, for each C ∈ C we have that

P[C /∈ C ′] = P[MC is bondless in G5] ≤ 2s+1−ε52`/4 ≤ 2−ε2
`/30.

For each x ∈ V (I), let A0(x) := NI(x). For each i ∈ [K]0, let E(x, i) be the event

that |Cx(Ai(x)) \ C ′| > n/`4. Since the cubes C ∈ C are vertex-disjoint, the events that the

moleculesMC are bondless in G5 are independent. Therefore, we have that

P[E(x, i)] ≤
(

n

n/`4

)
(2−ε2

`/30)n/`
4 ≤ 2−10n.

Let E4 :=
∨
x∈V (I)

∨
i∈[K]0

E(x, i). By a union bound over all x ∈ V (I) and i ∈ [K]0, it follows

that

P[E4] ≤ 2−8n. (2.7.5)

Let Cbs ⊆ C be the set of all C ∈ C such that MC is bondlessly surrounded in G5

(with respect to {MC′ : C ′ ∈ C}). For each x ∈ V (I), let E(x) be the event that there are

more than n1/3 cubes C ∈ Cbs which intersect B`2

I (x). Let E5 :=
∨
x∈V (I) E(x). By (N2), we

may apply Lemma 2.7.4 with ε5 playing the role of ε to conclude that

P[E5] ≤ 2−n
9/8

. (2.7.6)

Now let E∗5 := E4∧E5. It follows from (2.7.5) and (2.7.6) that E∗5 occurs a.a.s. Condition

on this event.

Let C ′′ := C ′ \ Cbs. For each x ∈ V (I) and each i ∈ [K], let

(AB2) M(Ai(x)) ⊆M ′(Ai(x)) consist of all edges (ê, ê′) ∈M ′(Ai(x)) whose associated absorb-

ing `-cube pair (C l, Cr) satisfies that Cr, C l ∈ C ′′.

By combining (2.7.4) with the further conditioning, it follows that, for each x ∈ V (I) and

each i ∈ [K],

|M(Ai(x))| ≥ n/`− n/`4 − n1/3 ≥ n/`2. (2.7.7)

82



Consider any x ∈ V (I) and i ∈ [K], and let x1, x2 be the two clones of x corresponding

to (x, i). Then, at this point, for each j ∈ [2], H ∪ G2 ∪ G3 ∪ G4 contains at least n/`2

vertex-disjoint (apart from xj) absorbing `-cube pairs for xj such that each of these absorbing

`-cube pairs (C l, Cr) is associated with an edge of M(Ai(x)), and for each C ∈ {C l, Cr} the

corresponding cube moleculeMC is bonded in G5 and (within the collection {MC′ : C ′ ∈ C}

of all cube molecules)MC is not bondlessly surrounded in G5.

Step 7: Extending the tree T . For each x ∈ V (I), let Z(x) := NI(x) ∩ V (T ) ∩(⋃
C∈C′′ V (C)

)
. It follows by (T2), (N1) and our conditioning on the event E∗5 that, for each

x ∈ V (I), we have that

|Z(x)| ≥ 4(n− s)/5− δn− n/`4 − n1/3 ≥ 3n/4.

Recall G6 ∼ Qnε6 . We apply Theorem 2.6.19 with ε2s

6 , 2, T , R,∅ and the sets Z(x)

playing the roles of ε, `, T ′, R,W and Z(x), respectively. Combining this with (T1), we

conclude that a.a.s. there exists a tree T ′ such that T ⊆ T ′ ⊆ I(G6) ∪ T and the following

hold:

(ET1) ∆(T ′) < D + 1;

(ET2) for all x ∈ V (I), we have that |B2
I (x) \ V (T ′)| ≤ n3/4;

(ET3) for each x ∈ V (T ′) ∩R, we have that dT ′(x) = 1 and the unique neighbour x′ of x in

T ′ is such that x′ ∈ Z(x).

We condition on the above event holding and call it E∗6 .

At this point, for each x ∈ V (I) and each i ∈ [K], we redefine the set M(Ai(x)).

(AB3) Let M(Ai(x)) retain only those edges whose associated absorbing `-cube pair (C l, Cr)

satisfies that both C l and Cr intersect T ′ in at least 2 vertices.
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It follows from (2.7.7) and (ET2) that

|M(Ai(x))| ≥ n/`2 − n3/4 > 4n/`3. (2.7.8)

Step 8: Fixing a collection of absorbing `-cube pairs for the vertices in

scant molecules. Recall G7 ∼ Qnε7 . Consider any x ∈ Vsc and j ∈ [K]. Recall from Step 3

that the tips of the cubes of the absorbing `-cube pair associated with a given edge in

M(Aj(x)) may not lie in the reservoir R. Roughly speaking, we will alter T ′ so that the tips

are relocated from the tree T ′ to the reservoir R.

We start by redefining the matchings M(Aj(x)) as follows: for each x ∈ Vsc and each

j ∈ [K], remove from M(Aj(x)) all edges (ê, ê′) such that NT ′(x) ∩ {x + ê, x + ê′} 6= ∅. It

follows from (2.7.8) and (ET1) that, for all x ∈ V (I) and j ∈ [K],

|M(Aj(x))| ≥ 4n/`3 −D > 2n/`3. (2.7.9)

For each x ∈ Vsc, each j ∈ [K] and each matching M ′ ⊆M(Aj(x)) with |M ′| ≥ n/`3,

let E ′(x, j,M ′) be the following event:

for every set B ⊆ V (I) with |B| < 2`+s+3ΨKS ′, there exists an edge ~e ∈ M ′, whose

associated absorbing `-cube pair (C l, Cr) has tips xl and xr, for which there exists a

subgraph P (~e,B) ⊆ I(G7)−{xl, xr} such that |V (P (~e,B))| < 21D/2, V (P (~e,B))∩B =

∅, and both NT ′(x
l) and NT ′(x

r) are connected in P (~e,B).

For a graph P (~e,B) as above, we will refer to xl and xr as the tips associated with P (~e,B),

and refer to (C l, Cr) as the absorbing `-cube pair associated with P (~e,B). (Recall that, if

~e = (ê, ê′), then xl = x+ ê and xr = x+ ê′.)

By invoking Lemma 2.6.20 with n − s, ε2s

7 , 1/`3, 2`+s+3ΨKS ′, 2D + 2 and the sets

{(x + ê, x + ê′) : (ê, ê′) ∈ M ′} and (NT ′(x + ê) ∪ NT ′(x + ê′))(ê,ê′)∈M ′ playing the roles of

n, ε, c, f , D, C(x) and (B(y, z))(y,z)∈C(x), respectively, we have that E ′(x, j,M ′) holds with

probability at least 1 − 2−5(n−s). Let E∗7 :=
∧
x∈Vsc

∧
j∈[K]

∧
M ′⊆M(Aj(x)):|M ′|≥n/`3 E ′(x, j,M ′).
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By a union bound over all x ∈ Vsc, j ∈ [K] and M ′ ⊆ M(Aj(x)) such that |M ′| ≥ n/`3, it

follows that P[E∗7 ] ≥ 1− 2−2n.

Condition on the event that E∗7 holds. It follows that, for each x ∈ Vsc, j ∈ [K],

M ′ ⊆M(Aj(x)) with |M ′| ≥ n/`3 and any B ⊆ V (I) with |B| < 2`+s+3ΨKS ′, there exists a

subgraph P (x, j,M ′, B) ⊆ I(G7) with |V (P (x, j,M ′, B))| < 21D/2 which avoids B∪{xl, xr},

where xl and xr are the tips associated with P (x, j,M ′, B), and such that both NT ′(x
l) and

NT ′(x
r) are connected in P (x, j,M ′, B). Moreover, by choosing P (x, j,M ′, B) minimal, we

may assume that it consists of at most two components, and each such component contains

either NT ′(x
l) or NT ′(x

r).

Let ι := |Vsc| and let x1, . . . , xι be an ordering of Vsc. For each i ∈ [ι], j ∈ [K] and

k ∈ [2s+1Ψ], by ranging over i first, then j, and then k, we will iteratively fix a graph

P (xi, j, k,M
′
i,j,k, Bi,j,k) as above. In particular, this graph will have an absorbing `-cube pair

with tips xli,j,k and xri,j,k associated with it. After the graph P (xi, j, k,M
′
i,j,k, Bi,j,k) is fixed, so

are these tips. Let Ji,j,k := ([i− 1]× [K]× [2s+1Ψ])∪{(i, j′, k′) : (j′, k′) ∈ [j− 1]× [2s+1Ψ]}∪

{(i, j, k′′) : k′′ ∈ [k − 1]} and suppose that we have already fixed P (xi′ , j
′, k′,M ′

i′,j′,k′ , Bi′,j′,k′)

for all (i′, j′, k′) ∈ Ji,j,k such that these P (xi′ , j
′, k′,M ′

i′,j′,k′ , Bi′,j′,k′) are vertex-disjoint from

each other and from the set {xli′,j′,k′ , xri′,j′,k′ : (i′, j′, k′) ∈ Ji,j,k} of tips associated with all

these P (xi′ , j
′, k′,M ′

i′,j′,k′ , Bi′,j′,k′). In order to fix P (xi, j, k,M
′
i,j,k, Bi,j,k), we first define the

sets Bi,j,k and M ′
i,j,k. Let M ′

i,j,k be obtained from M(Aj(xi)) as follows. Remove all edges

whose associated absorbing `-cube pair (C l, Cr) satisfies (V (C l) ∪ V (Cr)) ∩ {xli′,j′,k′ , xri′,j′,k′ :

(i′, j′, k′) ∈ Ji,j,k} 6= ∅. Remove all edges (ê, ê′) ∈ M(Aj(xi)) such that {xi + ê, xi + ê′} ∩⋃
(i′,j′,k′)∈Ji,j,k V (P (xi′ , j

′, k′,M ′
i′,j′,k′ , Bi′,j′,k′)) 6= ∅ too. Note that, by (2.7.9) and (T3), it

follows that |M ′
i,j,k| ≥ n/`3. Let Bi,j,k be the set of vertices y ∈ B`/2

I (xi) such that at least

one of the following holds:

(P1) there exists (i′, j′, k′) ∈ Ji,j,k such that y ∈ V (P (xi′ , j
′, k′,M ′

i′,j′,k′ , Bi′,j′,k′));

(P2) there exists (i′, j′, k′) ∈ Ji,j,k such that y lies in the absorbing `-cube pair associated
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with P (xi′ , j
′, k′,M ′

i′,j′,k′ , Bi′,j′,k′).

Note that |Bi,j,k| < 2s+`+3ΨKS ′ by (T3). We then fix P (xi, j, k,M
′
i,j,k, Bi,j,k) to be the

graph guaranteed by our conditioning on E∗7 . Observe that, by the choice of Bi,j,k, we have

that P (xi, j, k,M
′
i,j,k, Bi,j,k) is vertex-disjoint from

⋃
(i′,j′,k′)∈Ji,j,k P (xi′ , j

′, k′,M ′
i′,j′,k′ , Bi′,j′,k′).

We denote by (C l(xi, j, k), Cr(xi, j, k)) the absorbing `-cube pair for xi associated with

P (xi, j, k,M
′
i,j,k, Bi,j,k). By the choice of M ′

i,j,k, we have that

(CD) for all (i′, j′, k′) ∈ Ji,j,k, C l(xi, j, k) and Cr(xi, j, k) are both vertex-disjoint from

C l(xi′ , j
′, k′) and Cr(xi′ , j

′, k′).

Let Csc
1 := {(C l(xi, j, k), Cr(xi, j, k)) : (i, j, k) ∈ [ι] × [K] × [2s+1Ψ]}. Let P ′ :=

{xli,j,k, xri,j,k : (i, j, k) ∈ [ι]×[K]×[2s+1Ψ]} and P :=
⋃
i∈[ι],j∈[K],k∈[2s+1Ψ] P (xi, j, k,M

′
i,j,k, Bi,j,k).

Recall that P (xi, j, k,M
′
i,j,k, Bi,j,k) avoids the tips xli,j,k and xri,j,k associated with it. It follows

from this, (P2), and the definition of M ′
i,j,k that P ′∩V (P ) = ∅. Let T ′′′ := T ′[V (T ′)\P ′]∪P .

Note that T ′′′ is connected by the definition of E ′(x, j,M ′). Let T ′′ be a spanning tree of T ′′′.

By (ET1) and the fact that the graphs P (xi, j, k,M
′
i,j,k, Bi,j,k) are vertex-disjoint and satisfy

|V (P (xi, j, k,M
′
i,j,k, Bi,j,k))| < 21D/2, it follows that

∆(T ′′) ≤ 12D. (2.7.10)

Define the (new) reservoir R′ := (R ∪ P ′) \ V (P ).

At this point, for each x ∈ V (I) \ Vsc and each i ∈ [K], we redefine the set M(Ai(x))

as follows.

(AB4) Let M(Ai(x)) retain only those edges whose associated absorbing `-cube pair (C l, Cr)

satisfies that both C l and Cr are vertex-disjoint from both cubes of all absorbing `-cube

pairs of Csc
1 and both tips xl and xr satisfy that xl, xr ∈ R \ V (P ) ⊆ R′.

Note that, by (T3), we have |B`+1
I (x)∩V (P )| ≤ 21·2sΨDKS ′ and |B`+1

I (x)∩V (
⋃

(Cl,Cr)∈Csc1
(C l∪

Cr))| ≤ 4 · 2`+sΨKS ′. Combining this with (2.7.8) and (AB1), it follows that

|M(Ai(x))| ≥ 4n/`3 − (21D + 4 · 2`)2sΨKS ′ > n/`3. (2.7.11)
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Step 9: Fixing a collection of absorbing `-cube pairs for the vertices in non-

scant molecules. At this point, we still do not know which vertices will need to be absorbed

eventually into an almost spanning cycle, but we can already determine the vertices in I whose

clones the vertices to be absorbed will be (the reason for this will be apparent later, see Step 13).

Recall that C ′ and C ′′ were defined in Step 6. Let C ′′′ := {C ∈ C ′ : V (C) ∩ V (T ′′) 6= ∅} and

let Vabs := V (I) \
⋃
C∈C′′′ V (C). We will now fix a collection of absorbing `-cube pairs for all

vertices in each vertex moleculeMx with x ∈ Vabs \ Vsc.

First, recall from (T3) that, for all x ∈ V (I), we have that |B10`
I (x) ∩ Vsc| ≤ S ′. Thus,

in constructing T ′′, we removed at most 2s+2ΨKS ′ vertices in B`
I(x) from T ′. Therefore, it

follows from (ET2) that, for all x ∈ V (I), we have

|B2
I (x) \ V (T ′′)| ≤ 2n3/4. (2.7.12)

For all x ∈
⋃
C∈C′′ V (C), we claim that

|NI(x) ∩ V (T ′′) ∩
⋃
C∈C′

V (C)| ≥ (1− 21−`−5s)n. (2.7.13)

To see that this holds, combine (N1), (2.7.12) and the definition of bondlessly surrounded

molecules.

Recall also the definition of M(x) from Step 3.

Claim 2.7.2. For each x ∈ Vabs \ Vsc and each e ∈M(x), there exists a set Cabs
1 (e) of 2s+1Ψ

absorbing `-cube pairs (C l
k(e), C

r
k(e)) ⊆ I, for k ∈ [2s+1Ψ], which satisfies the following:

(i) for all x ∈ Vabs \Vsc, e ∈M(x) and k ∈ [2s+1Ψ], the absorbing `-cube pair (C l
k(e), C

r
k(e))

is associated with some edge in M(Aj(x)), for some j ∈ [K], and

(ii) for all x, x′ ∈ Vabs \ Vsc, all e ∈ M(x) and e′ ∈ M(x′), and all k, k′ ∈ [2s+1Ψ] with

(x, e, k) 6= (x′, e′, k′), the absorbing `-cube pairs (C l
k(e), C

r
k(e)) are vertex-disjoint (except

for x in the case when x = x′).
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Proof. Let V :=
⋃
x∈Vabs\Vsc M(x). Let K ′ := |V|, and let f1, . . . , fK′ be an ordering of the

edges in V . Given any i ∈ [K ′], the edge fi corresponds to a pair (x, j(i)) (in the sense that

Aj(i)(x) = N(fi), see Step 4), where x ∈ Vabs \ Vsc and j(i) ∈ [K]. Let Ci be the collection of

at least n/`3 absorbing `-cube pairs for x in I guaranteed by (2.7.11). In particular, each

of these absorbing `-cube pairs (C l, Cr) is associated with an edge of M(Aj(i)(x)) and, by

(AB2), satisfies C l, Cr ∈ C ′′.

Let H be the 2s+1ΨK ′-edge-coloured auxiliary multigraph with V (H) := C ′′, which

contains an edge between C and C ′ of colour (i, k) ∈ [K ′]× [2s+1Ψ] whenever (C,C ′) ∈ Ci or

(C ′, C) ∈ Ci. In particular, H contains at least n/`3 edges of each colour. We now bound

∆(H). Consider any C ∈ V (H). Note that, for each edge e of H incident to C, there exists

some x = x(e) ∈ Vabs \ Vsc such that C together with some other cube C ′ ∈ V (H) forms an

absorbing `-cube pair for x. In particular, x must be adjacent to C in I. Moreover, if e has

colour (i, k), then fi ∈ M(x) (and it has corresponding pair (x, j(i)) for some j(i) ∈ [K]).

Since fi ∈ M(x) and |M(x)| ≤
(

2s

2

)
, it follows that each vertex y which is adjacent to C

in I can play the role of x for at most 2s+1Ψ · 22s edges of H incident to C. Thus, dH(C)

is at most 2s+1Ψ · 22s times the number of vertices y ∈ Vabs \ Vsc which are adjacent to

C in I. Recall that Vabs = V (I) \
⋃
C∈C′′′ V (C). Together with (2.7.13), this implies that

the number of vertices in Vabs which are adjacent to C is at most |C|n/2`+5s−1. Thus,

dH(C) ≤ 2s+1Ψ22s|C|n/2`+5s−1 ≤ n/`4.

Since each colour class has size at least n/`3 and ∆(H) ≤ n/`4, by Lemma 2.5.4,

H contains a rainbow matching of size 2s+1ΨK ′. For each (i, k) ∈ [K ′] × [2s+1Ψ], let

(C l
k(fi), C

r
k(fi)) ∈ Ci be the absorbing `-cube pair of colour (i, k) in this rainbow matching. J

Recall that, for any x ∈ V (I), each index i ∈ [K] is given by a unique edge e ∈M(x)

via the relation N(e) = Ai(x). For each x ∈ Vabs\Vsc and each i ∈ [K], let Cabs
1 (x, i) := Cabs

1 (e),

where e is the unique edge given by the relation above, be the set of absorbing `-cube pairs guar-

anteed by Claim 2.7.2. Similarly, for each k ∈ [2s+1Ψ], let (C l
k(x, i), C

r
k(x, i)) := (C l

k(e), C
r
k(e)).
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Let G :=
⋃7
i=1Gi. For each x ∈ Vabs \ Vsc and each i ∈ [K], let G∗(x, i) ⊆ I be the

graph consisting of all edges between the left absorber tip and third absorber vertex of every

absorbing `-cube pair in Cabs
1 (x, i). Let G• ⊆ I be the graph consisting of all edges between

the left absorber tip and third absorber vertex of every absorbing `-cube pair in Csc
1 . Let

G∗ := G• ∪
⋃
x∈Vabs\Vsc

⋃
i∈[K] G

∗(x, i) ⊆ I. Recall that, given any graph G ⊆ I, for each layer

L, we denote by GL the clone of G in L. Let G∗4 := G4 ∩
⋃2s

i=1G
∗
Li
. Furthermore, let G∗5 ⊆ G5

consist of all edges of G5 which have endpoints in different layers. We let G′ ⊆ G be the

spanning subgraph with edge set

E(G′) := E(G∗4) ∪ E(G∗5) ∪
⋃
C∈C′

E(MC) ∪
2s⋃
i=1

E(T ′′Li
).

Note that, using (2.7.10), we have that ∆(G′) ≤ Φ.

Now, let F ⊆ Qn be any graph with ∆(F ) ≤ Ψ. Recall that we denote by FI ⊆ I the

graph which contains every edge {x, y} ∈ E(I) such that there exists an edge e = {x′, y′} ∈

E(F ) with x′ ∈Mx and y′ ∈My.

Note that T ′′ ⊆ I(G′), R′ ⊆ V (I), and C ⊆ I(G′) for every C ∈ C ′. Recall the

definitions of C ′′ from Step 6 and C ′′′ from Step 9. Combining all the previous steps, we claim

that the following hold (conditioned on the events E∗1 , . . . , E∗7 , which occur a.a.s.).

(C1) ∆(T ′′) ≤ 12D.

(C2) Any vertex x ∈ R′ ∩ V (T ′′) is a leaf of T ′′. Furthermore, if x ∈ R′ ∩ V (T ′′), then its

unique neighbour x′ in T ′′ satisfies that x′ ∈ Z(x) (where Z(x) is as defined in Step 7).

(C3) For all x ∈ V (I), we have that |NI(x) ∩ V (T ′′) ∩
⋃
C∈C′′ V (C)| ≥ (1− 2/`4)n.

(C4) For each x ∈ Vsc and i ∈ [K], there is an absorbing `-cube pair (C l(x, i), Cr(x, i)) for x

in I, which is associated with some edge e ∈M(Ai(x)). In particular, (C l(x, i), Cr(x, i))

is as described in (AB1) (recall also (AB2)), that is, there are two absorbing `-cube
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pairs (C l
1(x, i), Cr

1(x, i)) and (C l
2(x, i), Cr

2(x, i)) in H ∪G, associated with e ∈M(Ai(x)),

for the clones x1 and x2 of x which correspond to (x, i). Additionally, each of these

absorbing `-cube pairs (C l(x, i), Cr(x, i)) satisfies the following:

(C4.1) (C l
1(x, i), Cr

1(x, i)) ∪ (C l
2(x, i), Cr

2(x, i))− V (Mx) ⊆ G′;

(C4.2) the tips xl of C l(x, i) and xr of Cr(x, i) lie in R′ \ V (T ′′), and {x, xl}, {x, xr} /∈

E(FI); in particular, the tips xl1, xr1 of (C l
1(x, i), Cr

1(x, i)) and xl2, xr2 of (C l
2(x, i), Cr

2(x, i))

satisfy that {x1, x
l
1}, {x1, x

r
1}, {x2, x

l
2}, {x2, x

r
2} ∈ E((H ∪G) \ F );

(C4.3) C l(x, i), Cr(x, i) ∈ C ′′ ∩ C ′′′, and

(C4.4) for any x′ ∈ Vsc and i′ ∈ [K] with (x′, i′) 6= (x, i) we have that C l(x, i), Cr(x, i),

C l(x′, i′) and Cr(x′, i′) are vertex-disjoint.

Let Csc denote the collection of these absorbing `-cube pairs.

(C5) For each x ∈ Vabs\Vsc and i ∈ [K], there is an absorbing `-cube pair (C l(x, i), Cr(x, i)) for

x in I, which is associated with some edge inM(Ai(x)). In particular, (C l(x, i), Cr(x, i))

is as described in (AB1), that is, there are two absorbing `-cube pairs (C l
1(x, i), Cr

1(x, i))

and (C l
2(x, i), Cr

2(x, i)) in H ∪G, associated with e ∈M(Ai(x)), for the clones x1 and

x2 of x which correspond to (x, i). Moreover, each of these absorbing `-cube pairs

(C l(x, i), Cr(x, i)) satisfies the following:

(C5.1) (C l
1(x, i), Cr

1(x, i)) ∪ (C l
2(x, i), Cr

2(x, i))− V (Mx) ⊆ G′;

(C5.2) the tips xli of C l(x, i) and xri of Cr(x, i) lie in R′, and {x, xli}, {x, xri} /∈ E(FI);

in particular, the tips xl1, xr1 of (C l
1(x, i), Cr

1(x, i)) and xl2, xr2 of (C l
2(x, i), Cr

2(x, i))

satisfy that {x1, x
l
1}, {x1, x

r
1}, {x2, x

l
2}, {x2, x

r
2} ∈ E((H ∪G) \ F );

(C5.3) C l(x, i), Cr(x, i) ∈ C ′′ ∩ C ′′′;

(C5.4) for any x′ ∈ Vabs \ Vsc and i′ ∈ [K] with (x′, i′) 6= (x, i) we have that C l(x, i),

Cr(x, i), C l(x′, i′) and Cr(x′, i′) are vertex-disjoint, and
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(C5.5) both C l(x, i) and Cr(x, i) are vertex-disjoint from all cubes of absorbing `-cube

pairs in Csc.

Let C¬sc denote the collection of these absorbing `-cube pairs.

Indeed, (C1) is given in (2.7.10). (C2) holds by (ET3) and the fact that P ′ ∩ V (T ′′) = ∅.

(C3) follows by combining (N1), the conditioning on E∗5 , and (2.7.12). (C4) follows from

the construction of P and T ′′ in Step 8. Indeed, for each x ∈ Vsc and i ∈ [K], consider

the collection of absorbing `-cube pairs {(C l(x, i, k), Cr(x, i, k))}k∈[2s+1Ψ] defined in Step 8.

Since ∆(F ) ≤ Ψ, it follows that dFI
(x) ≤ 2sΨ, and thus there must exist some absorbing

`-cube pair in this collection such that the edges joining its tips to x do not belong to FI .

Fix one such absorbing `-cube pair and call it (C l(x, i), Cr(x, i)). Then, (C4.1) holds by

the definition of G′ combined with (AB1), and (C4.2) holds by the definition of R′ and T ′′

combined with (AB1), while (C4.4) holds by (CD). On the other hand, (C4.3) follows because

of the definition of the set M(Ai(x)) in (AB2) and (AB3). Finally, consider (C5). For each

x ∈ Vabs \ Vsc and i ∈ [K], consider the collection Cabs
1 (x, i) of 2s+1Ψ absorbing `-cube pairs

for x in I guaranteed by Claim 2.7.2. For each of these absorbing `-cube pairs we have

that (C5.3) holds by (AB2), (AB3) and the fact that, by (AB4), their intersection with T ′′

contains their intersection with T ′. Similarly, (C5.4) holds by Claim 2.7.2, and (C5.5) holds

because of (AB4). Finally, note that ∆(FI) ≤ 2sΨ. It follows that there exists a choice of

(C l(x, i), Cr(x, i)) ∈ Cabs
1 (x, i) such that {x, xli}, {x, xri} /∈ E(FI). Then, (C5.1) and (C5.2)

hold by the definition of G′, (AB1) and (AB4).

Step 10: Constructing auxiliary trees T ∗ and τ0. From this point on, every

step will be deterministic. Let T ∗ be obtained from T ′′ by removing all leaves of T ′′ which lie

in R′.

We will now construct an auxiliary tree τ0, which will be used in the construction of

an almost spanning cycle. We start by defining an auxiliary multigraph Γ′ as follows. First,
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let Γ1 := T ∗ ∪
⋃
C∈C′ C. (Recall that C ′ is the collection of all C ∈ C for whichMC is bonded

in G5, see Step 6.) Let Γ2 be the graph obtained by iteratively removing all leaves from Γ1

until all vertices have degree at least 2. Observe that, after this is achieved, the resulting

graph still contains all cubes C ∈ C ′. Let Γ3 be obtained from Γ2 by removing all connected

components which consist of a single cube C ∈ C ′. Now, let Γ′ be the multigraph obtained by

contracting each cube C ∈ C ′ such that C ⊆ Γ3 into a single vertex. We refer to the vertices

resulting from contracting such cubes as atomic vertices, and to the remaining vertices in Γ′

as inner tree vertices. Given C ∈ C and j ∈ [2s], we call A =MC ∩Lj an atom. We continue

to identify each inner tree vertex v with the vertex v ∈ V (I) from which it originated in Γ1.

Observe that Γ′ is connected, and (C1) implies that

dΓ′(v) ≤ 12D for all inner tree vertices, and ∆(Γ′) ≤ 12 · 2`D. (2.7.14)

Given an atomic vertex v ∈ V (Γ′), let C(v) ∈ C be the cube which was contracted to

v in the construction of Γ′, and let M(v) := MC(v). Furthermore, for each j ∈ [2s], let

Aj(v) :=M(v) ∩ Lj. Similarly, for any v ∈ V (Γ′) which is an inner tree vertex, we define

M(v) :=Mv. Observe that every edge e ∈ E(Γ′) corresponds to a unique edge e′ ∈ I(G′).

We say that e originates from e′. We denote by D(e) ∈ D(I) the direction of e′ in I. By

abusing notation, we will sometimes also view D(e) as a direction in Qn.

Next, we fix any atomic vertex v0 ∈ V (Γ′). We define an auxiliary labelled rooted

tree τ0 = τ0(v0) by performing a depth-first search on Γ′ rooted at v0 and then iteratively

removing all leaves which are inner tree vertices. This results in a tree τ0 rooted at an atomic

vertex v0 and all whose leaves are atomic vertices. Let m := |V (τ0)| − 1, and let the vertices

of τ0 be labelled as v0, v1, . . . , vm, with the labelling given by the order in which each vertex

is explored by the depth-first search performed on Γ′. For each i ∈ [m], we define τi as the

maximal subtree of τ0 which contains vi and all whose vertices have labels which are at least

as large as i. Given any vertex x ∈ V (I), we say that x is represented in τ0 if x ∈ V (τ0) or

there exists some atomic vertex v ∈ V (τ0) such that x ∈ V (C(v)). Similarly, we say that a
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cube C ∈ C is represented in τ0 if there exists an atomic vertex v ∈ V (τ0) such that C = C(v).

We will sometimes also say thatMx orMC are represented in τ0, respectively.

The tree τ0 will be the backbone upon which we construct our long cycle. First, we

need to set up some more notation. For each i ∈ [m]0, let pi := dτi(vi) and let Nτi(vi) =

{ui1, . . . , uipi}. It follows from (2.7.14) that

pi ≤ 12D − 1 if vi is an inner tree vertex, and ∆(τ0) ≤ 12 · 2`D. (2.7.15)

For each i ∈ [m]0 and k ∈ [pi], let eik := {vi, uik}, let f ik := D(eik), and let jik be the label

of uik in τ0, that is, uik = vjik . For any k ∈ [pi], we will sometimes refer to i as the parent

index of jik. Furthermore, for each i ∈ [m]0 such that vi is an atomic vertex, and for each

k ∈ [pi], consider the edge in I(G′) from which eik originates and let νik be its endpoint in

C(vi). Finally, for each i ∈ [m]0, we define a parameter ∆(vi) recursively by setting

∆(vi) :=


0 if vi is an atomic vertex which is a leaf of τ0,∑pi

k=1 ∆(uik) if vi is an atomic vertex which is not a leaf of τ0,

pi + 1 +
∑pi

k=1 ∆(uik) if vi is an inner tree vertex.
(2.7.16)

This parameter ∆(vi) will be used to keep track of parities throughout the following steps.

Note that ∆(vi) counts the number of times a depth first search of τi (starting and ending at

vi) traverses an inner tree vertex.

Consider the partition of all molecules into slices of size q introduced at the beginning

of Step 3, where q is as defined in (2.7.1). Given any v ∈ V (τ0), we denote the slices of its

molecule by M1(v), . . . ,Mt(v), where t is as defined in (2.7.1). Thus, for each i ∈ [t] we

have thatMi(v) =
⋃iq
j=(i−1)q+1Aj(v). For each i ∈ [m]0, we are going to assign an input slice

Mb(i)(vi) to each vertex vi. We do so by recursively assigning an input index b(i) ∈ [t] to
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each i ∈ [m]0. We begin by letting b(0) := 1. Then, for each i ∈ [m]0 and each k ∈ [pi], we set

b(jik) :=


b(i) if vi is an inner tree vertex,

b(i) + k − 1 (mod t) if vi is an atomic vertex.

Note that the bound on ∆(τ0) in (2.7.15) and the definition of t in (2.7.1) imply that

b(jik) 6= b(jik′) whenever vi is an atomic vertex and k 6= k′.

Step 11: Finding an external skeleton for T ∗. Our next goal is to find an almost

spanning cycle in G′ by using τ0 to explore different molecules in a given order. For this, we

are going to generate a skeleton; this will be an ordered list of vertices which we will denote

by L. In order to construct L, we will construct disjoint partial skeletons Li and L̂i for all

i ∈ [m] in an inductive way. Each of these skeletons will start and end in the input slice for the

vertex vi which is being considered. These partial skeletons will depend on the starting and

ending vertices ofMb(i)(vi) which are provided for each of them. Therefore, given two distinct

starting vertices x, x̂ ∈ V (Mb(i)(vi)) and two distinct ending vertices y, ŷ ∈ V (Mb(i)(vi)), we

will denote the partial skeletons by Li(x, y) and L̂i(x̂, ŷ), respectively.

The first step in the construction of L is to construct a set of vertices L•, to which

we will refer as an external skeleton, and for which we will in turn construct partial external

skeletons in an inductive way. The external skeleton will be essential in determining which

vertices will not be covered by the almost spanning cycle, and hence need to be absorbed.

Roughly speaking, the external skeleton will contain

(i) all vertices where the almost spanning cycle enters and leaves each cube molecule

represented in τ0, and

(ii) all vertices which are not in cube molecules and are needed to connect cube molecules

to each other (that is, some clones of inner tree vertices).

On the other hand, all vertices in a vertex molecule represented in τ0 by an inner tree vertex

which do not belong to the external skeleton will have to be absorbed.
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For each i ∈ [m], given the starting and ending vertices x, y, x̂, ŷ ∈ V (Mb(i)(vi))

for Li(x, y) and L̂i(x̂, ŷ), we will denote the corresponding partial external skeleton by

L•i (x, y, x̂, ŷ).

The external skeleton is constructed recursively. The partial external skeletons are the

result of each recursive step, assuming that the starting and ending points have been defined.

Roughly speaking, for each i ∈ [m], we will define partial external skeletons for any possible

starting and ending vertices. The starting and ending vertices which we actually use are then

fixed by the partial external skeleton whose index is the parent of i. Ultimately, all of them

will be fixed when defining the external skeleton L•.

LetMRes ⊆ V (Qn) be the union of all the clones of R′. We will construct an external

skeleton L• which satisfies the following properties:

(ES1) For each i ∈ [m] such that vi is an inner tree vertex, L• ∩ V (Mb(i)(vi)) contains exactly

2pi + 2 vertices, half of them of each parity, and L• ∩ (V (M(vi)) \ V (Mb(i)(vi))) = ∅.

(ES2) For each i ∈ [m] such that vi is an atomic vertex, L• ∩ V (M(vi)) contains exactly

4pi + 4 vertices. If vi is not a leaf of τ0, eight of these vertices (four of each parity) lie in

V (Mb(i)(vi)), and four (two of each parity) lie in each V (Mb(i)+k(vi)) with k ∈ [pi − 1].

If vi is a leaf, then all four of these vertices lie in V (Mb(i)(vi)).

(ES3) L• ∩ V (M(v0)) contains exactly 4p0 vertices, four of them (two of each parity) lying in

each V (Mk(v0)) with k ∈ [p0].

(ES4) The sets described in (ES1)–(ES3) partition L•.

(ES5) L• ∩MRes = ∅.

We now proceed to define the partial external skeletons formally. The construction proceeds

by induction on i ∈ [m] in decreasing order, starting with i = m. We define a valid connection

sequence (xi, yi, x̂i, ŷi) for vi as any set of distinct vertices xi, yi, x̂i, ŷi ∈ V (Mb(i)(vi)) which

satisfy the following:
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(V1) xi 6=p y
i if ∆(vi) is even, and xi =p y

i otherwise;

(V2) x̂i 6=p x
i, and

(V3) ŷi 6=p y
i.

Given any valid connection sequence (xi, yi, x̂i, ŷi), we will refer to xi and x̂i as starting

vertices, and to yi and ŷi as ending vertices. Throughout the construction ahead, observe

that, every time we use a partial external skeleton to build a larger one, its starting and

ending vertices form a valid connection sequence by construction. The vertices xi, yi, etc. will

be part of Li(xi, yi), and the vertices x̂i, ŷi, etc. will be part of L̂i(x̂i, ŷi). The vertices xi,

yi, x̂i, ŷi will be used by the skeleton to move from the molecule represented by vi in τ0

to the molecule represented by its parent. Given these vertices, the following construction

provides the vertices wik and ŵik (as well as zik and ẑik, if applicable) which are used to move

to molecules represented by the children of vi. Given any vertices (x, y, x̂, ŷ) in Qn and any

direction f ∈ D(Qn), we write f + (x, y, x̂, ŷ) = (f + x, f + y, f + x̂, f + ŷ).

Now suppose that i ∈ [m] and that, for each i′ ∈ [m] \ [i], we have already constructed

a partial external skeleton L•i′(x
i′ , yi

′
, x̂i

′
, ŷi
′
) for vi′ and every valid connection sequence

(xi
′
, yi
′
, x̂i

′
, ŷi
′
) for vi′ . We will now construct a partial external skeleton for vi and every valid

connection sequence for vi. We consider several cases.

Case 1: vi ∈ V (τ0) is a leaf of τ0. Assume that (xi, yi, x̂i, ŷi) is a valid connection

sequence for vi. Then, the partial external skeleton for this connection sequence is given by

L•i (x
i, yi, x̂i, ŷi) := {xi, yi, x̂i, ŷi}.

Case 2: vi ∈ V (τ0) is an inner tree vertex. We construct a set of partial external

skeletons for vi as follows.

1. Suppose (xi, yi, x̂i, ŷi) is a valid connection sequence for vi. Let wi0 := xi, wipi := yi,

ŵi0 := x̂i and ŵipi := ŷi. Let W i
0 := {wi0, wipi , ŵ

i
0, ŵ

i
pi
}.

2. For each k ∈ [pi − 1], iteratively choose two vertices wik, ŵik ∈ V (Mb(i)(vi)) \W i
k−1
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such that f ik + (wik−1, w
i
k, ŵ

i
k−1, ŵ

i
k) is a valid connection sequence for uik, and let

W i
k := W i

k−1 ∪ {wik, ŵik}.

Note that the definition of q in (2.7.1) and the bound on pi in (2.7.15) ensure that we

have sufficiently many vertices to choose from (similar comments apply in the other cases).

Moreover, (2.7.16) implies that f ipi + (wipi−1, w
i
pi
, ŵipi−1, ŵ

i
pi

) is a valid connection sequence for

uipi . The partial external skeleton for vi and connection sequence (xi, yi, x̂i, ŷi) is defined as

L•i (x
i, yi, x̂i, ŷi) := {xi, x̂i} ∪

pi⋃
k=1

(
{wik, ŵik} ∪ L•jik(f ik + (wik−1, w

i
k, ŵ

i
k−1, ŵ

i
k))
)
.

Case 3: vi ∈ V (τ0) is an atomic vertex which is not a leaf. We construct a set of

partial external skeletons for vi as follows.

1. Assume (xi, yi, x̂i, ŷi) is a valid connection sequence for vi. Let wi0 := xi.

2. For each k ∈ [pi], iteratively choose distinct vertices zik, wik, ẑik, ŵik ∈ (V (Mb(i)+k−1(vi))∩

V (Mνik
)) \ {xi, yi, x̂i, ŷi} satisfying that zik 6=p w

i
k−1 and f ik + (zik, w

i
k, ẑ

i
k, ŵ

i
k) is a valid

connection sequence for uik.

Then, the partial external skeleton for vi and connection sequence (xi, yi, x̂i, ŷi) is defined as

L•i (x
i, yi, x̂i, ŷi) := {xi, yi, x̂i, ŷi} ∪

pi⋃
k=1

(
{zik, wik, ẑik, ŵik} ∪ L•jik(f ik + (zik, w

i
k, ẑ

i
k, ŵ

i
k))
)
.

After having constructed all these partial external skeletons for all vi with i ∈ [m], we

are now ready to construct L•.

1. Choose any vertex w0
0 ∈ V (A1(v0)).

2. For each k ∈ [p0], iteratively choose four distinct vertices z0
k, ẑ

0
k, w

0
k, ŵ

0
k ∈ (V (Mk(v0))∩

V (Mν0k
)) satisfying that z0

k 6=p w0
k−1 and f 0

k + (z0
k, w

0
k, ẑ

0
k, ŵ

0
k) is a valid connection

sequence for u0
k.

Then, we define

L• :=

p0⋃
k=1

(
{z0

k, w
0
k, ẑ

0
k, ŵ

0
k} ∪ L•j0k(f 0

k + (z0
k, w

0
k, ẑ

0
k, ŵ

0
k))
)
.
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Observe that (ES1)–(ES4) hold by construction. In turn, (ES5) holds because of the

definition of τ0. Indeed, observe that V (T ∗)∩R′ = ∅ by (C2). Moreover, by the construction

above, all vertices in L• are incident to some edge in a clone of the tree T ∗, and thus, they

cannot lie inMRes.

Step 12: Constructing an auxiliary tree τ ′0. In order to extend the external

skeleton into the skeleton and construct an almost spanning cycle, we first need to extend τ0

to a new auxiliary tree τ ′0 which encodes information about some additional molecules.

We construct τ ′0 by appending some new leaves to τ0. Note that τ0 was built by

encoding all the information about T ∗, and τ ′0 will encode the information about T ′′. In

particular, by (C2), each cube C ∈ C ′ which intersects T ′′ and does not intersect T ∗ contains at

least one vertex u which is joined to T ∗ by an edge e′ = {u, v} ∈ E(T ′′) such that v ∈ V (C ′),

where C 6= C ′ ∈ C ′′. Note that the construction of τ0 implies that C ′ is represented in τ0.

For each such cube C, choose one such vertex u and append a new vertex to the atomic

vertex representing C ′ in τ0 via an edge e which originates as e′ ∈ E(T ′′). We say that this

newly added vertex is atomic and represents C. The resulting tree after all these leaves are

appended is τ ′0. In particular, τ0 ⊆ τ ′0, and it now follows that precisely the C ∈ C ′′′ are

represented in τ ′0, where C ′′′ is as defined in Step 9. Furthermore, it follows from (C1) that
dτ ′0(v) ≤ 12D for all v ∈ V (τ ′0) which are inner tree vertices, and

∆(τ ′0) ≤ 12 · 2`D.
(2.7.17)

For all vertices of τ ′0, we will use the same notation for the vertices, cubes and molecules that

they represent as we did for the vertices of τ0. Note that, by (C4.3) and (C5.3),

(CP) every cube C belonging to some absorbing `-cube pair in Csc ∪ C¬sc is represented in τ ′0.

It will be important for us that τ ′0 represents ‘most’ vertices of the hypercube. In

particular, for each x ∈ V (I), let λ(x) denote the number of vertices y ∈ NI(x) which are

represented in τ ′0 by atomic vertices. By (C3), we have that

λ(x) ≥ (1− 2/`4)n. (2.7.18)
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By an averaging argument, it follows that at least (1 − 2/`4)2n−s vertices x ∈ V (I) are

represented in τ ′0 by atomic vertices. We will construct an almost spanning cycle in G′ which

contains all the clones of these vertices.

Let m′ := |V (τ ′0)| − 1. Label V (τ ′0) \ V (τ0) = {vm+1, . . . , vm′} arbitrarily. For each

i ∈ [m], we define τ ′i as the maximal subtree of τ ′0 which contains vi and all of whose

vertices have labels at least as large as i. For each i ∈ [m]0, let p′i := dτ ′i (vi) and let

Nτ ′i
(vi) = {ui1, . . . , uip′i} (where the labelling is consistent with that of Nτi(vi)). For each

i ∈ [m]0 and k ∈ [p′i] \ [pi], let eik := {vi, uik}, let f ik := D(eik), and let jik be the label of uik in

τ ′0. Furthermore, for each i ∈ [m]0 such that vi is an atomic vertex, and for each k ∈ [p′i] \ [pi],

consider the unique edge which eik originates from in I(G′) and let νik be its endpoint in C(vi).

Finally, for each i ∈ [m′] \ [m] we set ∆(vi) := 0.

As in Step 10, we consider the partition into slices for the new molecules arising from

the newly added cubes represented by τ ′0. For each i ∈ [m′] \ [m], we assign an input index

b(i) ∈ [t]. To do so, for each i ∈ [m]0 such that vi is an atomic vertex and each k ∈ [p′i] \ [pi],

we set b(jik) := b(i) + k − 1 (mod t). Similarly to Step 10, (2.7.1) and (2.7.17) imply that

in this case b(jik) 6= b(jik′) for all k 6= k′. For each i ∈ [m′] \ [m], let `i be the label in τ ′0 of

the unique vertex adjacent to vi (i.e., the parent label of i), and let mi be the label of vi in

Nτ ′`i
(v`i). Note that b(i) = b(`i) +mi − 1.

Step 13: Fixing absorbing `-cube pairs for vertices that need to be ab-

sorbed. At this point, we can determine every vertex in V (Qn) that will have to be absorbed

into the almost spanning cycle we are going to construct. For every vertex x ∈ V (I) not

represented in τ ′0, we will have to absorb all vertices inMx. Furthermore, for each v ∈ V (τ0)

which is an inner tree vertex, we will also need to absorb all vertices inMv \ L•. By (ES1),

this means that, in each such moleculeMv, the same number of vertices of each parity need

to be absorbed. Recall the definition of Vabs from Step 9. This is precisely the set of vertices

which are not represented in τ ′0 by an atomic vertex and, therefore, it is the set of all vertices
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x ∈ V (I) such that some clone of x needs to be absorbed. It follows from (2.7.18) that

|Vabs| ≤ 2n−s+1/`4. (2.7.19)

Now, for each x ∈ Vabs, we will pair the vertices in each slice which need to be absorbed (each

pair consisting of one vertex of each parity) and fix an absorbing `-cube pair for each such

pair of vertices. The absorbing `-cube pair that we fix will be the one given by (C4) or (C5)

for this pair of vertices, depending on whether x ∈ Vsc or not.

For each x ∈ Vabs and S ∈ S(Mx), let S(x,S) := V (S) ∩ L•. It follows by (ES1)–

(ES4) that |S(x,S)| ≤ 24D and S(x,S) contains the same number of vertices of each parity.

(Here we also use that pi ≤ 12D − 1 for every inner tree vertex vi by (2.7.15) and (2.7.17).)

Therefore, the matching M(S, S(x,S)) defined in Step 3 is well defined. Recall that each

edge e ∈M(S, S(x,S)) gives rise to a unique index i ∈ [K] via the relation N(e) = Ai(x).

(Here we ignore all those indices i′ ∈ [K] arising by artificially increasing the size of A(x), see

the beginning of Step 4.) For each x ∈ Vabs, let Ix ⊆ [K] be the set of indices i ∈ [K] which

correspond to edges in
⋃
S∈S(Mx) M(S, S(x,S)).

For each x ∈ Vabs and i ∈ Ix, as stated in (C4) and (C5), we have already fixed an

absorbing `-cube pair for the clones of x corresponding to (x, i). Let

V abs :=
⋃

x∈Vabs

V (Mx) \ L•.

As discussed above, this is the set of all vertices that need to be absorbed. Recall that G′ was

defined before (C1)–(C5). It follows from (C4) and (C5) that ((H ∪G) \ F ) ∪G′ contains a

set Cabs = {(C l(u), Cr(u)) : u ∈ V abs} of absorbing `-cube pairs such that

(C1) for all distinct u, v ∈ V abs, the absorbing `-cube pairs (C l(u), Cr(u)) and (C l(v), Cr(v))

for u and v are vertex-disjoint and (C l(u), Cr(u)) ∪ (C l(v), Cr(v))− {u, v} ⊆ G′;

(C2) there exists a pairing U = {f1, . . . , fK′} of V abs such that

(C2.1) for all i ∈ [K ′], if fi = {ui, u′i}, then ui 6=p u
′
i;
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(C2.2) if fi = {ui, u′i}, then there is a vertex v ∈ Vabs such that ui and u′i are clones of

v which lie in the same slice ofMv, and (C l(ui), C
r(ui)) and (C l(u′i), C

r(u′i)) are

clones of the same absorbing `-cube pair for v in I such that (C l(ui), C
r(ui)) lies

in the same layer as ui and (C l(u′i), C
r(u′i)) lies in the same layer as u′i;

(C2.3) if u, u′ ∈ V abs do not form a pair f ∈ U , then (C l(u), Cr(u)) and (C l(u′), Cr(u′))

are clones of vertex-disjoint absorbing `-cube pairs in I (except in the case when

u, u′ are clones of the same vertex v ∈ Vabs, in which case (C l(u), Cr(u)) and

(C l(u′), Cr(u′)) are clones of absorbing `-cube pairs in I which intersect only in v);

(C3) if we let C∗ :=
⋃

(Cl(u),Cr(u))∈Cabs{C l(u), Cr(u)}, then C∗ contains either two or no clones

of each cube C ∈ C ′′ ∩ C ′′′, and every cube in C∗ is a clone of some cube C ∈ C ′′ ∩ C ′′′.

The pairing described in (C2) is given by the matchings M(S, S(x,S)). Furthermore, it

follows from (C4.2), (C5.2) and (ES5) that

(C4) the set of all tips of the absorbing `-cube pairs in Cabs is disjoint from L•.

We denote by L, R1 and R2 the collections of all left absorber tips, right absorber

tips, and third absorber vertices, respectively, of the absorbing `-cube pairs in Cabs. Observe

that the following properties are satisfied:

(C∗1) For all i ∈ [m′]0 such that vi is an atomic vertex and all j ∈ [t], we have that

|L ∩ V (Mj(vi))| ∈ {0, 2} and, if |L ∩ V (Mj(vi))| = 2, then these two vertices u, u′ lie

in different atoms of the slice and satisfy that u 6=p u
′.

(C∗2) For all i ∈ [m′]0 such that vi is an atomic vertex and all j ∈ [t], we have that

|(R1 ∪ R2) ∩ V (Mj(vi))| ∈ {0, 4}. If |(R1 ∪ R2) ∩ V (Mj(vi))| = 4, then these four

vertices form two pairs such that one vertex of each pair belongs to R1 and the other

to R2. Each of these pairs lies in a different atom of the slice and satisfies that its two

vertices are adjacent in G′.
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(C∗3) For all i ∈ [m′]0 such that vi is an atomic vertex and all j ∈ [t], if L ∩ V (Mj(vi)) 6= ∅,

then (R1 ∪R2) ∩ V (Mj(vi)) = ∅.

(C∗4) The sets described in (C∗1) and (C∗2) partition L and R1 ∪R2, respectively.

Indeed, (C∗1)–(C∗3) follow from (C2) and (C3), and (C∗4) follows by (CP).

For each u ∈ V abs, we denote the edge consisting of the right absorber tip and the

third absorber vertex of (C l(u), Cr(u)) by eabs(u), and we denote by Pabs(u) the path of

length three formed by the third absorber vertex, the left absorber tip, u, and the right

absorber tip, visited in this order. Note that eabs(u) ∈ E(G′) by (C1). Moreover, recall that

Cabs consists of absorbing `-cube pairs in ((H∪G)\F )∪G′). Thus, Pabs(u) ⊆ ((H∪G)\F )∪G′.

Step 14: Constructing the skeleton. We can now define the skeleton for the

almost spanning cycle. Intuitively, this skeleton builds on the external skeleton by adding

more structure that the cycle will have to follow. In particular, the skeleton adds the edges

used to traverse from each slice in a cube molecule to its neighbouring slices, and it also

incorporates the cube molecules represented in τ ′0 which were not represented in τ0. (The

reason why these were not incorporated earlier is the following: if we already choose the

valid connection sequences for these cube molecules in Step 12, then the tips of the absorbing

cubes chosen in Step 13 might have non-empty intersection with the external skeleton, which

we want to avoid, see (S7) below.) Furthermore, the skeleton gives an ordering to its vertices,

and the cycle will visit the vertices of the skeleton in this order.

We will build a skeleton L = (x1, . . . , xr), for some r ∈ N, and write L• := {x1, . . . , xr}.

We will construct L in such a way that the following properties hold:

(S1) For all distinct k, k′ ∈ [r], we have that xk 6= xk′ .

(S2) {x1, xr} ∈ E(G′).

(S3) For every k ∈ [r− 1], if xk and xk+1 do not both lie in the same slice of a cube molecule
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represented in τ ′0, then {xk, xk+1} ∈ E(G′). Moreover, in this case, if xk+1 lies in a cube

molecule represented in τ ′0, then xk+2 lies in the same slice of this cube molecule as

xk+1.

(S4) For every i ∈ [m′]0 and every j ∈ [t], no three consecutive vertices of L lie inMj(vi)

(here L is viewed as a cyclic sequence of vertices).

(S5) For every i ∈ [m′] such that vi is an atomic vertex and every j ∈ [t], we have that

|V (Mj(vi)) ∩ L•| is even and 4 ≤ |V (Mj(vi)) ∩ L•| ≤ 12. In particular, |V (Mt(v0)) ∩

L•| = 4.

(S6) For all k ∈ [r] except two values, we have that xk 6=p xk+1. The remaining two values

k1, k2 ∈ [r] correspond to two pairs of vertices xk1 , xk1+1, xk2 , xk2+1 ∈ V (Mt(v0)). For

these two values, we have that xk1 6=p xk2 and either

(i) xk1 =p xk1+1 and xk2 =p xk2+1, or

(ii) xk1 6=p xk1+1 and xk2 6=p xk2+1,

where xk1 , xk2 ∈ V (A(t−1)q+1(v0)) and xk1+1, xk2+1 ∈ V (Atq(v0)).

(S7) L• ∩ (L ∪R1 ∪ V abs) = ∅ and L• ⊆ L•.

As happened with the external skeleton, the skeleton is built recursively from partial

skeletons, which are defined first for the leaves. This recursive construction means that the

overall order in which the molecules are visited will be determined by a depth first search

of the tree τ ′0. Moreover, as discussed in Section 2.2.5, for parity reasons the skeleton will

actually traverse τ ′0 twice. These two traversals will be ‘tied together’ in the final step of the

construction of the skeleton.

Note that, for each i ∈ [m], the starting and ending vertices xi, x̂i, yi, ŷi for the partial

skeletons for vi are determined by the external skeleton. For each i ∈ [m′] \ [m], the starting

and ending vertices for the partial skeletons of vi will be determined when constructing the
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partial skeleton for the parent vertex v`i of vi. In particular, when constructing the partial

skeleton for v`i , we will define vertices z`imi
, ẑ`imi

, w`imi
, ŵ`imi

∈Mb(i)(v`i). Then, the starting and

ending vertices for the partial skeleton of vi will be

(xi, yi, x̂i, ŷi) := f `imi
+ (z`imi

, w`imi
, ẑ`imi

, ŵ`imi
). (2.7.20)

(Recall that `i, mi, b(i) and f `imi
were defined at the end of Step 12.)

We are now in a position to define the partial skeletons formally. The construction

proceeds by induction on i ∈ [m′] in decreasing order, starting with i = m′. Recall from the

beginning of Step 11 that, for all i ∈ [m], xi, yi ∈ V (Mb(i)(vi)) are the starting and ending

vertices for the first partial skeleton L(xi, yi) for vi, respectively, and x̂i, ŷi ∈ V (Mb(i)(vi)) are

the starting and ending vertices for the second partial skeleton L̂(x̂i, ŷi) for vi, respectively.

The vertices xi, yi, x̂i, ŷi were fixed in the construction of the external skeleton, and they form

a valid connection sequence. For each i ∈ [m′] \ [m], the vertices xi, yi, x̂i, ŷi ∈ V (Mb(i)(vi))

defined in (2.7.20) will also form a valid connection sequence.

Let F := L ∪ R1 ∪ L•. For each k ∈ [2s], let êk be the direction of the edges in

Qn between Lk and Lk+1. Throughout the following construction, we will often choose

vertices which are used to transition between neighbouring slices, all while avoiding the set

F . Similarly to the proof of Lemma 2.7.8, all of these choices can be made by (ES2), (ES3),

(C∗1), (C∗2), and because all cube molecules considered here are bonded in G5 and, therefore,

also in G′. (The latter holds since for each atomic vertex v ∈ V (τ ′0) the corresponding cube

C(v) satisfies C(v) ∈ C ′.) Whenever we mention a vertex that we do not define here, we

refer to the vertex with the same notation defined when constructing the external skeleton in

Step 11.

Suppose that i ∈ [m′] and that for every i′ ∈ [m′] \ ([i] ∪ [m]) and every valid

connection sequence (xi
′
, yi
′
, x̂i

′
, ŷi
′
) for vi′ we have already defined two partial skeletons

L(xi
′
, yi
′
), L̂(x̂i

′
, ŷi
′
) for vi′ with this connection sequence. (As discussed above, eventually we

will only use the two partial skeletons for vi′ with connection sequence as defined in (2.7.20).)
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Moreover, suppose that for every i′ ∈ [m] \ [i] we have already defined two partial skeletons

L(xi
′
, yi
′
), L̂(x̂i

′
, ŷi
′
) for vi′ with connection sequence (xi

′
, yi
′
, x̂i

′
, ŷi
′
) (fixed by the external

skeleton). If i ∈ [m], let (xi, yi, x̂i, ŷi) be the connection sequence for vi fixed by the external

skeleton. If i ∈ [m′] \ [m], let (xi, yi, x̂i, ŷi) be any connection sequence for vi. We will now

define the two partial skeletons for vi with connection sequence (xi, yi, x̂i, ŷi). We consider

several cases.

Case 1: vi is a leaf of τ ′0. We construct the partial skeletons as follows. Let

xi0 := xi and x̂i0 := x̂i. For each k ∈ [t − 1]0, iteratively choose any two vertices yik, ŷik ∈

V (A(b(i)+k)q(vi)) \ (F ∪ {xi, yi, x̂i, ŷi}) satisfying that

1. yik 6=p x
i
k and ŷik 6=p x̂

i
k;

2. xik+1 := yik+ ê(b(i)+k)q /∈ F ∪{xi, yi, x̂i, ŷi} and x̂ik+1 := ŷik+ ê(b(i)+k)q /∈ F ∪{xi, yi, x̂i, ŷi},

and

3. {yik, xik+1}, {ŷik, x̂ik+1} ∈ E(G′).

Recall that we use× to denote the concatenation of sequences. The first and second partial

skeletons for vi with connection sequence (xi, yi, x̂i, ŷi) are given by

Li(xi, yi) := (xi)

(
t−1×
k=0

(yik, x
i
k+1)

)
(yi) and L̂i(x̂i, ŷi) := (x̂i)

(
t−1×
k=0

(ŷik, x̂
i
k+1)

)
(ŷi).

Case 2: vi ∈ V (τ0) is an inner tree vertex. Then, the first and second partial skeletons

for vi with connection sequence (xi, yi, x̂i, ŷi) are defined as

Li(xi, yi) := (xi)
pi×
k=1

(Ljik(xj
i
k , yj

i
k), wik) and L̂i(x̂i, ŷi) := (x̂i)

pi×
k=1

(L̂jik(x̂j
i
k , ŷj

i
k), ŵik),

where jik was defined in Step 10.

Case 3: vi ∈ V (τ0) is an atomic vertex which is not a leaf of τ ′0. We construct the

partial skeletons for vi as follows. (Recall that, for each k ∈ [p′i] \ [pi], the vertex νik was

defined in Step 12.)
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1. For each k ∈ [pi], iteratively choose distinct vertices yik, ŷik ∈ V (A(b(i)+k−1)q(vi)) \ F

such that

1.1. yik 6=p w
i
k and ŷik 6=p ŵ

i
k;

1.2. xik+1 := yik + ê(b(i)+k−1)q /∈ F and x̂ik+1 := ŷik + ê(b(i)+k−1)q /∈ F , and

1.3. {yik, xik+1}, {ŷik, x̂ik+1} ∈ E(G′).

2. If pi = 0, let xi1 := xi and x̂i1 := x̂i. For each k ∈ [p′i] \ [pi], iteratively choose distinct

vertices zik, wik, ẑik, ŵik ∈ (V (Mb(i)+k−1(vi)) ∩ V (Mνik
)) \ (F ∪ {xik, x̂ik}) and distinct

vertices yik, ŷik ∈ V (A(b(i)+k−1)q(vi)) \ (F ∪ {zik, wik, ẑik, ŵik}) satisfying that

2.1. zik, ŵik 6=p x
i
k and ẑik, wik =p x

i
k;

2.2. xjik , yjik , x̂jik , ŷjik /∈ F , where xjik , yjik , x̂jik and ŷjik are defined as in (2.7.20);

2.3. yik 6=p w
i
k and ŷik 6=p ŵ

i
k;

2.4. xik+1 := yik + ê(b(i)+k−1)q /∈ F and x̂ik+1 := ŷik + ê(b(i)+k−1)q /∈ F , and

2.5. {yik, xik+1}, {ŷik, x̂ik+1} ∈ E(G′).

As discussed earlier, observe that a choice satisfying 2.2. exists by (C∗1), (C∗2) and

(ES2).

3. For each k ∈ [t] \ [p′i], iteratively choose distinct vertices yik, ŷik ∈ V (A(b(i)+k−1)q(vi)) \ F

satisfying that

3.1. yik 6=p x
i
k and ŷik 6=p x̂

i
k;

3.2. xik+1 := yik + ê(b(i)+k−1)q /∈ F and x̂ik+1 := ŷik + ê(b(i)+k−1)q /∈ F , and

3.3. {yik, xik+1}, {ŷik, x̂ik+1} ∈ E(G′).

Then, we may define the first and second partial skeletons for vi with connection sequence

(xi, yi, x̂i, ŷi) as

Li(xi, yi) := (xi)

(
p′i×
k=1

(zik,Ljik(xj
i
k , yj

i
k), wik, y

i
k, x

i
k+1)

)(
t×

k=p′i+1

(yik, x
i
k+1)

)
(yi),
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L̂i(x̂i, ŷi) := (x̂i)

(
p′i×
k=1

(ẑik, L̂jik(x̂j
i
k , ŷj

i
k), ŵik, ŷ

i
k, x̂

i
k+1)

)(
t×

k=p′i+1

(ŷik, x̂
i
k+1)

)
(ŷi).

We are now ready to construct L. The idea is similar to that of Case 3, except that

we now tie together the first and second partial skeletons in Step 1.2 below.

1. Choose any two vertices x0
1, x̂

0
1 ∈ V (A1(v0)) \ F such that

1.1. x0
1 =p w

0
0 and x̂0

1 6=p w
0
0;

1.2. y0
t := x̂0

1 + ê2s /∈ F and ŷ0
t := x0

1 + ê2s /∈ F , and

1.3. {x0
1, ŷ

0
t }, {x̂0

1, y
0
t } ∈ E(G′).

2. For each k ∈ [p0], iteratively choose two distinct vertices y0
k, ŷ

0
k ∈ V (Aqk(v0)) \ F such

that

2.1. y0
k 6=p w

0
k and ŷ0

k 6=p ŵ
0
k;

2.2. x0
k+1 := y0

k + êkq /∈ F and x̂0
k+1 := ŷ0

k + êkq /∈ F , and

2.3. {y0
k, x

0
k+1}, {ŷ0

k, x̂
0
k+1} ∈ E(G′).

3. For each k ∈ [p′0]\ [p0], iteratively choose distinct vertices z0
k, w

0
k, ẑ

0
k, ŵ

0
k ∈ (V (Mk(v0))∩

V (Mν0k+1
))\(F∪{x0

k, x̂
0
k}) and distinct vertices y0

k, ŷ
0
k ∈ V (Akq(v0))\(F∪{z0

k, w
0
k, ẑ

0
k, ŵ

0
k})

satisfying that

3.1. z0
k, ŵ

0
k 6=p x

0
k and ẑ0

k, w
0
k =p x

0
k;

3.2. xj0k , yj0k , x̂j0k , ŷj0k /∈ F , where xj0k , yj0k , x̂j0k and ŷj0k are defined as in (2.7.20);

3.3. y0
k 6=p w

0
k and ŷ0

k 6=p ŵ
0
k;

3.4. x0
k+1 := y0

k + êkq /∈ F and x̂0
k+1 := ŷ0

k + êkq /∈ F , and

3.5. {y0
k, x

0
k+1}, {ŷ0

k, x̂
0
k+1} ∈ E(G′).

4. For each k ∈ [t− 1] \ [p′0], iteratively choose any two vertices y0
k, ŷ

0
k ∈ V (Akq(v0)) \ F

satisfying that
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4.1. y0
k 6=p x

0
k and ŷ0

k 6=p x̂
0
k;

4.2. x0
k+1 := y0

k + êkq /∈ F and x̂0
k+1 := ŷ0

k + êkq /∈ F , and

4.3. {y0
k, x

0
k+1}, {ŷ0

k, x̂
0
k+1} ∈ E(G′).

The final definition of L is given by

L := (x0
1)

(
p′0×
k=1

(z0
k,Lj0k(xj

0
k , yj

0
k), w0

k, y
0
k, x

0
k+1)

)(
t−1×

k=p′0+1

(y0
k, x

0
k+1)

)
(y0
t , x̂

0
1)

(
p′0×
k=1

(ẑ0
k, L̂j0k(x̂j

0
k , ŷj

0
k), ŵ0

k, ŷ
0
k, x̂

0
k+1)

)(
t−1×

k=p′0+1

(ŷ0
k, x̂

0
k+1)

)
(ŷ0
t ).

Observe that (S1)–(S6) hold by construction. In particular, (2.7.16) together with

(V1) ensure that in Case 3 the final two vertices of the two partial skeletons satisfy xit+1 6=p y
i

and x̂it+1 6=p ŷ
i. Moreover, the pairs x0

t , y
0
t and x̂0

t , ŷ
0
t will play the roles of the pairs xk1 , xk1+1

and xk2 , xk2+1 in the second part of (S6). Similarly, (S7) holds by combining the construction

of L, (C4), (ES5) and the definition of V abs.

Recall that we write L = (x1, . . . , xr). For each i ∈ [m′]0 such that vi is an atomic

vertex and each j ∈ [t], let Ji,j := {k ∈ [r] : xk, xk+1 ∈ V (Mj(vi))} and Si,j := {{xk, xk+1} :

k ∈ Ji,j}.

Step 15: Constructing an almost spanning cycle. We will now apply the

connecting lemmas to obtain an almost spanning cycle in G′ from L = (x1, . . . , xr). For each

i ∈ [m′]0 such that vi is an atomic vertex and each j ∈ [t], except the pair (0, t), we apply

Lemma 2.7.8 to the sliceMj(vi) and the graph G′, with L∩V (Mj(vi)), (R1∪R2)∩V (Mj(vi))

and Si,j playing the roles of L, R and the pairs of vertices described in Lemma 2.7.8(C3),

respectively. Note that the conditions of Lemma 2.7.8 can be verified as follows. (C1) and

(C2) hold by (C∗1) and (C∗2) combined with (C∗3). (C3) holds by (S1) and (S3)–(S7). For

Mt(v0), we apply Lemma 2.7.8 or Lemma 2.7.9 depending on whether (ii) or (i) holds in (S6)

(the conditions for Lemma 2.7.9 can be checked analogously). For each i ∈ [m′]0 such that
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vi is an atomic vertex and each j ∈ [t], this yields |Ji,j| vertex-disjoint paths (P i,jk )k∈Ji,j in

Mj(vi) ∪G′ = G′ such that, for each k ∈ Ji,j,

(i) P i,jk is an (xk, xk+1)-path,

(ii)
⋃
k∈Ji,j V (P i,jk ) = V (Mj(vi)) \ L, and

(iii) any pair of second and third absorber vertices in R1 ∪R2 contained in the same atom

ofMj(vi) form an edge in one of the paths.

Now consider the path obtained as follows by going through L. Start with x1. For

each k ∈ [r], if there exist i ∈ [m′]0 and j ∈ [t] such that {xk, xk+1} ∈ Si,j, add P i,jk to the

path; otherwise, add the edge {xk, xk+1} (this must be an edge of G′ by (S3)). Finally, add

the edge {xr, x1} of G′ (this is given by (S2)) to the path to close it into a cycle H in G′. This

cycle satisfies the following properties (recall that eabs(u) was defined at the end of Step 13):

(HC1) |V (H)| ≥ (1− 4/`4)2n.

(HC2) V (H) ∪̇ L ∪̇ V abs partitions V (Qn).

(HC3) For all u ∈ V abs, we have that eabs(u) ∈ E(H).

Indeed, note that H covers all vertices in L• (since L• ⊆ L• by (S7)) as well as all vertices

lying in cube molecules represented in τ ′0 except for those in L (by (ii)). Together with the

definition of V abs, this implies (HC2). Moreover, since |L| = |V abs|, (HC1) follows from

(2.7.19). Finally, (HC3) follows by (iii).

Step 16: Absorbing vertices to form a Hamilton cycle. For each u ∈ V abs,

replace the edge eabs(u) by the path Pabs(u) (recall from the end of Step 13 that Pabs(u) lies

in ((H ∪G) \ F ) ∪G′). Clearly, this incorporates all vertices of L ∪ V abs into the cycle and,

by (HC2) and (HC3), the resulting cycle is Hamiltonian.
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2.7.5 Proofs of Theorems 2.1.1, 2.1.2 and 2.1.7

First, we show that, as a byproduct of the proof of Theorem 2.7.1, we also have a proof of

Theorem 2.1.2.

Proof of Theorem 2.1.2. Apply Steps 1, 4, 6, 7, 10, 11, 12, 14 and 15 in succession. In general,

any reference to absorbing cubes in these steps (see e.g. the end of Step 6) should be skipped

as well.

Next, we will show how Theorem 2.7.1 can be used to prove Theorem 2.1.7.

Proof of Theorem 2.1.7. Consider a decomposition of H into k edge-disjoint subgraphs H1 ∪

· · · ∪Hk such that, for every i ∈ [k], we have δ(Hi) ≥ αn/(2k). To see that this is possible,

let us randomly partition the edges of H so that each e ∈ E(H) is assigned to one of the

Hi’s uniformly at random and independently from all other edges. Thus, for every i ∈ [k] we

have P[e ∈ E(Hi)] = 1/k. It follows by Lemma 2.4.2 that, for every vertex x ∈ V (Qn) and

every i ∈ [k],

P[dHi
(x) ≤ αn/(2k)] ≤ e−αn/(8k).

For each x ∈ V (Qn), let B(x) be the event that dHi
(x) ≤ αn/(2k) for some i ∈ [k]. Hence,

P[B(x)] ≤ ke−αn/(8k) for all x ∈ V (Qn). Observe that B(x) is independent of the collection of

events {B(y) : dist(x, y) ≥ 2}. A simple application of Lemma 2.4.5 shows that

P

 ∧
x∈V (Qn)

B(x)

 > 0

and, therefore, such a decomposition of H exists.

We now consider a similar decomposition of Qnε . In particular, given Qnε , we partition

its edges into k edge-disjoint subgraphs, Q1 ∪ · · · ∪Qk, in such a way that, if e ∈ E(Qnε ), then

e is assigned to one of the Qi chosen uniformly at random and independently of all other

edges. Thus, for each e ∈ E(Qnε ) we have P[e ∈ E(Qi)] = 1/k for all i ∈ [k]. It follows that,

for each i ∈ [k], we have Qi ∼ Qnε/k.
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Let Φ be a constant such that Theorem 2.7.1 holds with ε/k, α/(2k) and k+ 2 playing

the roles of ε, α and c, respectively. For each i ∈ [k], apply Theorem 2.7.1 with Hi and Qi

playing the roles of H and G, respectively. We obtain that a.a.s. there exists a subgraph

Gi ⊆ Qi with ∆(Gi) ≤ Φ such that, for every Fi ⊆ Qn with ∆(Fi) ≤ (k + 2)Φ, the graph

((Hi ∪Qi) \ Fi)) ∪Gi is Hamiltonian. Condition on the event that this holds for all i ∈ [k]

simultaneously (which holds a.a.s. by a union bound).

We are now going to find k edge-disjoint Hamilton cycles C1, . . . , Ck iteratively. For

each i ∈ [k], we proceed as follows. Let Fi :=
⋃k
j=1Gj ∪

⋃i−1
j=1Cj. It is clear by construction

that ∆(Fi) ≤ k(Φ + 2) ≤ (k + 2)Φ. By the conditioning above, there must be a Hamilton

cycle Ci ⊆ ((Hi ∪Qi) \ Fi)) ∪Gi. Take any such Ci and proceed.

It remains to prove that C1, . . . , Ck are pairwise edge-disjoint. In order to see this,

suppose that there exist i, j ∈ [k] with i < j such that E(Ci) ∩ E(Cj) 6= ∅, and let

e ∈ E(Ci) ∩E(Cj). In order to have e ∈ E(Ci), since Gj ⊆ Fi \Gi, we must have e /∈ E(Gj).

However, since e ∈ Fj by definition, we must have e ∈ E(Gj), a contradiction.

Now, Theorem 2.1.1 follows as an immediate corollary.

Proof of Theorem 2.1.1. It is well known (see e.g. [15]) and easy to show that Qn1/2−ε

a.a.s. contains isolated vertices. So it suffices to consider Qn1/2+ε for any fixed ε > 0 and

show that a.a.s. it contains k edge-disjoint Hamilton cycles. Let 0 < δ � ε ≤ 1/2. Let

H ∼ Qn1/2+ε/2 and G ∼ Qnε/2. Note that H ∪G ∼ Qnη , for some η ≤ 1/2 + ε. Furthermore, by

Lemma 2.5.5, a.a.s. δ(H) ≥ δn. Applying Theorem 2.1.7 to H ∪ G, we obtain the desired

result.
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Chapter 3

A bandwidth theorem for approximate

decompositions

3.1 Introduction

Starting with Dirac’s theorem on Hamilton cycles, a successful research direction in extremal

combinatorics has been to find appropriate minimum degree conditions on a graph G which

guarantee the existence of a copy of a (possibly spanning) graph H as a subgraph. On the

other hand, several important questions and results in design theory ask for the existence of

a decomposition of Kn into edge-disjoint copies of a (possibly spanning) graph H, or more

generally into a suitable family of graphs H1, . . . , Ht.

Here, we combine the two directions: rather than finding just a single spanning graph

H in a dense graph G, we seek (approximate) decompositions of a dense regular graph G

into edge-disjoint copies of spanning sparse graphs H. A specific instance of this is the

recent proof of the Hamilton decomposition conjecture and the 1-factorization conjecture for

large n [35]: the former states that for r ≥ bn/2c, every r-regular n-vertex graph G has a

decomposition into Hamilton cycles and at most one perfect matching, the latter provides

the corresponding threshold for decompositions into perfect matchings. In this paper, we
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restrict ourselves to approximate decompositions, but achieve asymptotically best possible

results for a much wider class of graphs than matchings and Hamilton cycles.

3.1.1 Previous results: degree conditions for spanning subgraphs

Minimum degree conditions for spanning subgraphs have been obtained mainly for (Hamilton)

cycles, trees, factors and bounded degree graphs. We now briefly discuss several of these.

Recall that Dirac’s theorem states that any n-vertex graph G with minimum degree at least

n/2 contains a Hamilton cycle. More generally, Abbasi’s proof [1] of the El-Zahar conjecture

determines the minimum degree threshold for the existence of a copy of H in G where H

is a spanning union of vertex-disjoint cycles (the threshold turns out to be b(n+ oddH)/2c,

where oddH denotes the number of odd cycles in H).

Komlós, Sárközy and Szemerédi [67] proved a conjecture of Bollobás by showing that

a minimum degree degree of n/2 + o(n) guarantees every bounded degree n-vertex tree as a

subgraph (this was later strengthened in [71, 34, 57]).

An F -factor in a graph G is a set of vertex-disjoint copies of F covering all vertices

of G. The Hajnal–Szemerédi theorem [54] implies that the minimum degree threshold for

the existence of a Kk-factor is (1− 1/k)n. This was generalised to kth powers of Hamilton

cycles by Komlós, Sárközy and Szemerédi [70]. The threshold for arbitrary F -factors was

determined by Kühn and Osthus [78], and is given by (1− c(F ))n+O(1), where c(F ) satisfies

1/χ(F ) ≤ c(F ) ≤ 1/(χ(F ) − 1) and can be determined explicitly (e.g. c(C5) = 2/5, in

accordance with Abbasi’s result).

A far-reaching generalisation of the Hajnal–Szemerédi theorem [54] would be provided

by the Bollobás–Eldridge–Catlin (BEC) conjecture. This would imply that every n-vertex

graph G of minimum degree at least (1− 1/(∆ + 1))n contains every n-vertex graph H of

maximum degree at most ∆ as a subgraph. Partial results include the proof for ∆ = 3

and large n by Csaba, Shokoufandeh and Szemerédi [36] and bounds for large ∆ by Kaul,
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Kostochka and Yu [61].

Bollobás and Komlós conjectured that one can improve on the BEC-conjecture for

graphs H with a linear structure: any n-vertex graph G with minimum degree at least

(1 − 1/k + o(1))n contains a copy of every n-vertex k-chromatic graph H with bounded

maximum degree and small bandwidth. Here an n-vertex graph H has bandwidth b if there

exists an ordering v1, . . . , vn of V (H) such that all edges vivj ∈ E(H) satisfy |i − j| ≤ b.

Throughout the paper, by H being k-chromatic we mean χ(H) ≤ k. This conjecture was

resolved by the bandwidth theorem of Böttcher, Schacht and Taraz [24]. Note that while

this result is essentially best possible when considering the class of k-chromatic graphs as a

whole (consider e.g. Kk-factors), the results in [1, 78] mentioned above show that there are

many graphs H for which the actual threshold is significantly smaller (e.g. the C5-factors

mentioned above).

The notion of bandwidth is related to the concept of separability: An n-vertex graph

H is said to be η-separable if there exists a set S of at most ηn vertices such that every

component of H \ S has size at most ηn. We call such a set an η-separator of H. In general,

the notion of having small bandwidth is more restrictive than that of being separable (e.g. the

n-vertex star is 1/n-separable but has bandwidth bn/2c). However, for graphs with bounded

maximum degree, it turns out that these notions are actually equivalent (see [23]).

3.1.2 Previous results: (approximate) decompositions into large

graphs

We say that a collection H = {H1, . . . , Hs} of graphs packs into G if there exist pairwise

edge-disjoint copies of H1, . . . , Hs in G. In cases where H consists of copies of a single graph

H we refer to this packing as an H-packing in G. If H packs into G and e(H) = e(G) (where

e(H) =
∑

H∈H e(H)), then we say that G has a decomposition into H. Once again, if H

consists of copies of a single graph H, we refer to this as an H-decomposition of G. Informally,
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we refer to a packing which covers almost all edges of the host graph G as an approximate

decomposition.

As in the previous section, most attention so far has focussed on (Hamilton) cycles,

trees, factors, and graphs of bounded degree. Indeed, a classical construction of Walecki

going back to the 19th century guarantees a decomposition of Kn into Hamilton cycles

whenever n is odd. As mentioned earlier, this was extended to Hamilton decompositions of

regular graphs G of high degree by Csaba, Kühn, Lo, Osthus and Treglown [35] (based on

the existence of Hamilton decompositions in robustly expanding graphs proved in [79]). A

different generalisation of Walecki’s construction is given by the Alspach problem, which asks

for a decomposition of Kn into cycles of given length. This was recently resolved by Bryant,

Horsley and Petterson [25].

A further famous open problem in the area is the tree packing conjecture of Gyárfás

and Lehel, which says that for any collection T = {T1, . . . , Tn} of trees with |V (Ti)| = i, the

complete graph Kn has a decomposition into T . This was recently proved by Joos, Kim, Kühn

and Osthus [60] for the case where n is large and each Ti has bounded degree. The crucial

tool for this was the blow-up lemma for approximate decompositions of ε-regular graphs G by

Kim, Kühn, Osthus and Tyomkyn [63]. In particular, this lemma implies that if H is a family

of bounded degree n-vertex graphs with e(H) ≤ (1− o(1))
(
n
2

)
, then Kn has an approximate

decomposition into H. This generalises earlier results of Böttcher, Hladkỳ, Piguet and

Taraz [21] on tree packings, as well as results of Messuti, Rödl and Schacht [84] and Ferber,

Lee and Mousset [43] on packing separable graphs. Very recently, Allen, Böttcher, Hladkỳ

and Piguet [3] were able to show that one can in fact find an approximate decomposition of

Kn into H provided that the graphs in H have bounded degeneracy and maximum degree

o(n/ log n). This implies an approximate version of the tree packing conjecture when the trees

have maximum degree o(n/ log n). The latter improves a bound of Ferber and Samotij [44]

which follows from their work on packing (spanning) trees in random graphs.

An important type of decomposition of Kn is given by resolvable designs: a resolvable
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F -design consists of a decomposition into F -factors. Ray-Chaudhuri and Wilson [88] proved

the existence of resolvable Kk-designs in Kn (subject to the necessary divisibility conditions

being satisfied). This was generalised to arbitrary F -designs by Dukes and Ling [38].

3.1.3 Main result: packing separable graphs of bounded degree

Our main result provides a degree condition which ensures that G has an approximate

decomposition into H for any collection H of k-chromatic η-separable graphs of bounded

degree. As discussed below, our degree condition is best possible in general (unless one has

additional information about the graphs in H). By the remark at the end of Section 1.1

earlier, one can replace the condition of being η-separable by that of having bandwidth at

most ηn in Theorem 3.1.2. Thus our result implies a version of the bandwidth theorem of

[24] in the setting of approximate decompositions.

To state our result, we first introduce the approximate Kk-decomposition threshold

δreg
k for regular graphs.

Definition 3.1.1 (Approximate Kk-decomposition threshold for regular graphs). For each

k ∈ N\{1}, let δregk be the infimum over all δ ≥ 0 satisfying the following: for any ε > 0,

there exists n0 ∈ N such that for all n ≥ n0 and r ≥ δn every n-vertex r-regular graph G has

a Kk-packing consisting of at least (1− ε)e(G)/e(Kk) copies of Kk.

Roughly speaking, we will pack k-chromatic graphs H into regular host graphs G

of degree at least δreg
k n. Actually it turns out that it suffices to assume that H is ‘almost’

k-chromatic in the sense that H has a (k + 1)-colouring where one colour is used only rarely.

More precisely, we say that H is (k, η)-chromatic if there exists a proper colouring of the

graph H ′ obtained from H by deleting all its isolated vertices with k + 1 colours such that

one of the colour classes has size at most η|V (H ′)|. A similar feature is also present in [24].

Theorem 3.1.2. For all ∆, k ∈ N\{1}, 0 < ν < 1 and max{1/2, δregk } < δ ≤ 1, there exist

ξ, η > 0 and n0 ∈ N such that for all n ≥ n0 the following holds. Suppose that H is a
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collection of n-vertex (k, η)-chromatic η-separable graphs and G is an n-vertex graph such

that

(i) (δ − ξ)n ≤ δ(G) ≤ ∆(G) ≤ (δ + ξ)n,

(ii) ∆(H) ≤ ∆ for all H ∈ H,

(iii) e(H) ≤ (1− ν)e(G).

Then H packs into G.

Note that our result holds for any minor-closed family H of k-chromatic bounded

degree graphs by the separator theorem of Alon, Seymour and Thomas [4]. Moreover, note

that since H may consist e.g. of Hamilton cycles, the condition that G is close to regular

is clearly necessary. Also, the condition max{1/2, δreg
k } < δ is necessary. To see this, if

δreg
k ≤ 1/2 (which holds if k = 2), then we consider Kn/2−1,n/2+1 which does not even contain

a single perfect matching, let alone an approximate decomposition into perfect matchings. If

δreg
k > 1/2 (which holds if k ≥ 3), then for any δ < δreg

k , the definition of δreg
k ensures that

there exist arbitrarily large regular graphs G of degree at least δn without an approximate

decomposition into copies of Kk. As a disjoint union of a single copy of Kk with n − k

isolated vertices satisfies (ii), this shows that the condition of max{1/2, δreg
k } < δ is sharp

when considering the class of all k-chromatic separable graphs (though as in the case of

embedding a single copy of some H into G, it may be possible to improve the degree bound

for certain families H).

To obtain explicit estimates for δreg
k , we also introduce the approximateKk-decomposition

threshold δ0+
k for graphs of large minimum degree.

Definition 3.1.3 (Approximate Kk-decomposition threshold). For each k ∈ N\{1}, let δ0+
k

be the infimum over all δ ≥ 0 satisfying the following: for any ε > 0, there exists n0 ∈ N such

that any n-vertex graph G with n ≥ n0 and δ(G) ≥ δn has a Kk-packing consisting of at least

(1− ε)e(G)/e(Kk) copies of Kk.
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It is easy to see that δreg
2 = δ0+

2 = 0 and δreg
k ≤ δ0+

k . The value of δ0+
k has been

subject to much attention recently: one reason is that by results of [8, 49], for k ≥ 3 the

approximate decomposition threshold δ0+
k is equal to the analogous threshold δdec

k which

ensures a ‘full’ Kk-decomposition of any n-vertex graph G with δ(G) ≥ (δdec
k + o(1))n which

satisfies the necessary divisibility conditions. A beautiful conjecture (due to Nash-Williams

in the triangle case and Gustavsson in the general case) would imply that δdec
k = 1− 1/(k+ 1)

for k ≥ 3. On the other hand for k ≥ 3, it is easy to modify a well-known construction (see

Proposition 3.3.7) to show that δreg
k ≥ 1− 1/(k + 1). Thus the conjecture would imply that

δreg
k = δ0+

k = δdec
k = 1−1/(k+1) for k ≥ 3. A result of Dross [37] implies that δ0+

3 ≤ 9/10, and

a very recent result of Montgomery [85] implies that δ0+
k ≤ 1− 1/(100k) (see Lemma 3.3.10).

With these bounds, the following corollary is immediate.

Corollary 3.1.4. For all ∆, k ∈ N\{1} and 0 < ν, δ < 1, there exist ξ > 0 and n0 ∈ N such

that for n ≥ n0 the following holds for every n-vertex graph G with

(δ − ξ)n ≤ δ(G) ≤ ∆(G) ≤ (δ + ξ)n.

(i) Let T be a collection of trees such that for all T ∈ T we have |T | ≤ n and ∆(T ) ≤ ∆.

Further suppose δ > 1/2 and e(T ) ≤ (1− ν)e(G). Then T packs into G.

(ii) Let F be an n-vertex graph consisting of a union of vertex-disjoint cycles and let F be

a collection of copies of F . Further suppose δ > 9/10 and e(F) ≤ (1− ν)e(G). Then F

packs into G.

(iii) Let C be a collection of cycles, each on at most n vertices. Further suppose δ > 9/10

and e(C) ≤ (1− ν)e(G). Then C packs into G.

(iv) Let n be divisible by k and let K be a collection of n-vertex Kk-factors. Further suppose

δ > 1− 1/(100k) and e(K) ≤ (1− ν)e(G). Then K packs into G.

Note that (i) can be viewed as an approximate version of the tree packing conjecture in

the setting of dense (almost) regular graphs. In a similar sense, (ii) relates to the Oberwolfach
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conjecture, (iii) relates to the Alspach problem and (iv) relates to the existence of resolvable

designs in graphs.

Moreover, the feature that Theorem 3.1.2 allows us to efficiently pack (k, η)-chromatic

graphs (rather than k-chromatic graphs) gives several additional consequences, for example:

if the cycles of F in (ii) are all sufficiently long, then we can replace the condition ‘δ > 9/10’

by ‘δ > 1/2’.

If we drop the assumption of being G close to regular, then one can still ask for the

size of the largest packing of bounded degree separable graphs. For example, it was shown

in [35] that every sufficiently large graph G with δ(G) ≥ n/2 contains at least (n − 2)/8

edge-disjoint Hamilton cycles. The following result gives an approximate answer to the above

question in the case when H consists of (almost) bipartite graphs.

Theorem 3.1.5. For all ∆ ∈ N, 1/2 < δ ≤ 1 and ν > 0, there exist η > 0 and n0 ∈ N

such that for all n ≥ n0 the following holds. Suppose that H is a collection of n-vertex

(2, η)-chromatic η-separable graphs and G is an n-vertex graph such that

(i) δ(G) ≥ δn,

(ii) ∆(H) ≤ ∆ for all H ∈ H,

(iii) e(H) ≤ (δ+
√

2δ−1−ν)n2

4
.

Then H packs into G.

The result in general cannot be improved: Indeed, for δ > 1/2 the number of edges

of the densest regular spanning subgraph of G is close to (δ +
√

2δ − 1)n2/4 (see [30]). So

the bound in (iii) is asymptotically optimal e.g. if n is even and H consists of Hamilton

cycles. We discuss the very minor modifications to the proof of Theorem 3.1.2 which give

Theorem 3.1.5 at the end of Section 3.6.

We raise the following open questions:
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• We conjecture that the error term νe(G) in condition (iii) of Theorem 3.1.2 can

be improved. Note that it cannot be completely removed unless one assumes some

divisibility conditions on G. However, even additional divisibility conditions will not

always ensure a ‘full’ decomposition under the current degree conditions: indeed, for

C4, the minimum degree threshold which guarantees a C4-decomposition of a graph G

is close to 2n/3, and the extremal example is close to regular (see [8] for details, more

generally, the decomposition threshold of an arbitrary bipartite graph is determined

in [49]).

• It would be interesting to know whether the condition on separability can be omitted.

Note however, that if we do not assume separability, then the degree condition may

need to be strengthened.

• It would be interesting to know whether one can relax the maximum degree condition

in assumption (ii) of Theorem 3.1.2, e.g. for the class of trees.

• Given the recent progress on the existence of decompositions and designs in the

hypergraph setting and the corresponding minimum degree thresholds [62, 51, 50], it

would be interesting to generalise (some of) the above results to hypergraphs.

Our main tool in the proof of Theorem 3.1.2 will be the recent blow-up lemma for

approximate decompositions by Kim, Kühn, Osthus and Tyomkyn [63]: roughly speaking,

given a set H of n-vertex bounded degree graphs and an n-vertex graph G with e(H) ≤

(1 − o(1))e(G) consisting of super-regular pairs, it guarantees a packing of H in G (such

super-regular pairs arise from applications of Szemerédi’s regularity lemma). Theorem 3.3.15

gives the precise statement of the special case that we shall apply (note that the original

blow-up lemma of Komlós, Sárközy and Szemerédi [68] corresponds to the case where H

consists of a single graph).

Subsequently, Theorem 3.1.2 has been used as a key tool in the resolution of the
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Oberwolfach problem in [48]. This was posed by Ringel in 1967, given an n-vertex graph H

consisting of vertex-disjoint cycles, it asks for a decomposition of Kn into copies of H (if n

is odd). In fact, the results in [48] go considerably beyond the setting of the Oberwolfach

problem, and imply e.g. a positive resolution also to the Hamilton-Waterloo problem.

3.2 Outline of the argument

Consider a given collection H of k-chromatic η-separable graphs with bounded degree and

a given almost-regular graph G as in Theorem 3.1.2. We wish to pack H into G. The

approach will be to decompose G into a bounded number of highly structured subgraphs Gt

and partition H into a bounded number of collections Ht. We then aim to pack each Ht

into Gt. As described below, for each H ∈ Ht, most of the edges will be embedded via the

blow-up lemma for approximate decompositions proved in [63].

As a preliminary step, we first apply Szemerédi’s regularity lemma (Lemma 3.3.5) to G

to obtain a reduced multigraph R which is almost regular. Here each edge e of R corresponds

to a bipartite ε-regular subgraph of G and the density of these subgraphs does not depend

on e. We can then apply a result of Pippenger and Spencer on the chromatic index of regular

hypergraphs and the definition of δreg
k to find an approximate decomposition of the reduced

multigraph R into almost Kk-factors. More precisely, we find a set of edge-disjoint copies

of almost Kk-factors covering almost all edges of R, where an almost Kk-factor is a set of

vertex-disjoint copies of Kk covering almost all vertices of R. This approximate decomposition

translates into the existence of an approximate decomposition of G into ‘(almost-)Kk-factor

blow-ups’. Here a Kk-factor blow-up consists of a bounded number of clusters V1, . . . , Vkr

where each pair (Vi, Vj) with b(i− 1)/kc = b(j − 1)/kc is ε-regular of density d, and crucially

d does not depend on i, j. We wish to use the blow-up lemma for approximate decompositions

(Theorem 3.3.15) to pack graphs into each Kk-factor blow-up. Ideally, we would like to split

H into a bounded number of subcollections Ht,s and pack each Ht,s into a separate Kk-factor
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blow-up Gt,s, where the Gt,s ⊆ G are all edge-disjoint.

There are several obstacles to this approach. The first obstacle is that (i) the Kk-

factor blow-ups Gt,s are not spanning. In particular, they do not contain the vertices in the

exceptional set V0 produced by the regularity lemma. On the other hand, if we aim to embed

an n-vertex graph H ∈ H into G, we must embed some vertices of H into V0. However,

Theorem 3.3.15 does not produce an embedding into vertices outside the Kk-factor blow-up.

The second obstacle is that (ii) the Kk-factor blow-ups are not connected, whereas H may

certainly be (highly) connected. This is one significant difference to [24], where the existence

of a structure similar to a blown-up power of a Hamilton path in R could be utilised for

the embedding. A third issue is that (iii) any resolution of (i) and (ii) needs to result in a

‘balanced’ packing of the H ∈ H, i.e. the condition e(H) ≤ (1− ν)e(G) means that for most

x ∈ V (G) almost all their incident edges need to be covered.

To overcome the first issue, we use the fact that H is η-separable to choose a small

separating set S for H and consider the small components of H − S. To be able to embed

(most of) H into the Kk-factor blow-up, we need to add further edges to each Kk-factor blow-

up so that the resulting ‘augmented Kk-factor blow-ups’ have strong connectivity properties.

For this, we partition V (G)\V0 into T disjoint ‘reservoirs’ Res1, . . . , ResT , where 1/T � 1.

We will later embed some vertices of H into V0 using the edges between Rest and V0 (see

Lemma 3.4.1). Here we have to embed a vertex of H onto v ∈ V0 using only edges between

v and Rest because we do not have any control on the edges between v and a regularity

cluster Vi. We explain the reason for choosing a partition into many reservoir sets (rather

than choosing a single small reservoir) below.

We also decompose most of G into graphs Gt,s so that each Gt,s has vertex set

V (G)\(Rest ∪ V0) and is a Kk-factor blow-up. We then find sparse bipartite graphs Ft,s ⊆ G

connecting Rest with Gt,s, bipartite graphs F ′t ⊆ G connecting Rest with V0 as well as sparse

graphs G∗t ⊆ G which provide connectivity within Rest as well as between Rest and Gt,s. The

fact that Gt,s and Gt,s′ share the same reservoir for s 6= s′ permits us to choose the reservoir
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Rest to be significantly larger than V0. Moreover, as
⋃
Rest covers all vertices in V \ V0, if

the graphs F ′t are appropriately chosen, then almost all edges incident to the vertices in V0

are available to be used at some stage of the packing process. Our aim is to pack each Ht,s

into the ‘augmented’ Kk-factor blow-up Gt,s ∪ Ft,s ∪ F ′t ∪G∗t . To ensure that the resulting

packings can be combined into a packing of all of the graphs in H, we will use the fact that

the graphs Gt :=
⋃
s(Gt,s ∪ Ft,s) ∪ F ′t ∪G∗t referred to in the first paragraph are edge-disjoint

for different t.

We now discuss how to find this packing of Ht,s. Consider some H ∈ Ht,s. We first

use the fact that H is separable to find a partition of H which reflects the structure of (the

augmentation of) Gt,s (see Section 3.4). Then we construct an appropriate embedding φ∗

of parts of each graph H ∈ Ht,s into Rest ∪ V0 which covers all vertices in Rest ∪ V0 (this

makes crucial use of the fact that Rest is much larger than V0). Later we aim to use the

blow-up lemma for approximate decompositions (Theorem 3.3.15) to find an embedding φ of

the remaining vertices of H into V (G)\(Rest ∪ V0). When we apply Theorem 3.3.15, we use

its additional features: in particular, the ability to prescribe appropriate ‘target sets’ for some

of the vertices of H, to guarantee the consistency between the two embeddings φ∗ and φ.

An important advantage of the reservoir partition which helps us to overcome obstacle

(iii) is the following: the blow-up lemma for approximate decompositions can achieve a near

optimal packing, i.e. it uses up almost all available edges. This is far from being the case for

the part of the embeddings that use Ft,s, F ′t and G∗t to embed vertices into Rest ∪ V0, where

the edge usage might be comparatively ‘imbalanced’ and ‘inefficient’. (In fact, we will try to

avoid using these edges as much as possible in order to preserve the connectivity properties

of these graphs. We will use probabilistic allocations to avoid over-using any parts of Ft,s,

F ′t and G∗t .) However, since every vertex in V (G0)\V0 is a reservoir vertex for only a small

proportion of the embeddings, the resulting effect of these imbalances on the overall leftover

degree of the vertices in V (G0)\V0 is negligible. For V0, we will be able to assign only low

degree vertices of each H to ensure that there will always be edges of F ′t available to embed
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their incident edges (so the overall leftover degree of the vertices in V0 may be large).

The above discussion motivates why we use many reservoir sets which cover all vertices

in V (G)\V0, rather than using only one vertex set Res1 for all H ∈ H. Indeed, if some

vertices of G only perform the role of reservoir vertices, this might result in an imbalance

of the usage of edges incident to these vertices: some vertices in the reservoir might lose

incident edges much faster or slower than the vertices in the regularity clusters. Apart from

the fact that a fast loss of the edges incident to one vertex can prevent us from embedding

any further spanning graphs into G, a large loss of the edges incident to the reservoir is also

problematic in its own right. Indeed, since we are forced to use the edges incident to the

reservoir in order to be able to embed some vertices onto vertices in V0, this would prevent

us from packing any further graphs.

Another issue is that the regularity lemma only gives us ε-regular Kk-factor blow-ups

while we need super-regular Kk-factor blow-ups in order to use Theorem 3.3.15. To overcome

this issue, we will make appropriate adjustments to each ε-regular Kk-factor blow-up. This

means that the exceptional set V0 will actually be different for each pair t, s of indices. We

can however use probabilistic arguments to ensure that this does not significantly affect the

overall ‘balance’ of the packing. In particular, for simplicity, in the above proof sketch we

have ignored this issue.

The paper is organised as follows. We collect some basic tools in Section 3.3, and

we prove a lemma which finds a suitable partition of each graph H ∈ H in Section 3.4

(Lemma 3.4.1). We prove our main lemma (Lemma 3.5.1) in Section 3.5. This lemma

guarantees that we can find a suitable packing of an appropriate collection Ht,s of k-chromatic

η-separable graphs with bounded degree into a graph consisting of a super-regular Kk-factor

blow-up Gt,s and suitable connection graphs Ft,s, F ′t and G∗t . In Section 3.6, we will partition

G and H as described above. Then we will repeatedly apply Lemma 3.5.1 to construct a

packing of H into G.
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3.3 Preliminaries

3.3.1 Notation

We write [t] := {1, . . . , t}. We often treat large numbers as integers whenever this does not

affect the argument. The constants in the hierarchies used to state our results are chosen

from right to left. That is, if we claim that a result holds for 0 < 1/n� a� b ≤ 1, we mean

there exist non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such that the

result holds for all 0 ≤ a, b ≤ 1 and all n ∈ N with a ≤ f(b) and 1/n ≤ g(a). We will not

calculate these functions explicitly.

We use the word graphs to refer to simple undirected finite graphs, and refer to

multi-graphs as graphs with potentially parallel edges, but without loops. Multi-hypergraphs

refer to (not necessarily uniform) hypergraphs with potentially parallel edges. A k-graph is a

k-uniform hypergraph. A multi-k-graph is a k-uniform hypergraph with potentially parallel

edges. For a multi-hypergraph H and a non-empty set Q ⊆ V (H), we define multH(Q)

to be the number of parallel edges of H consisting of exactly the vertices in Q. We say

that a multi-hypergraph has edge-multiplicity at most t if multH(Q) ≤ t for all non-empty

Q ⊆ V (H). A matching in a multi-hypergraph H is a collection of pairwise disjoint edges of

H. The rank of a multi-hypergraph H is the size of a largest edge.

We write H ' G if two graphs H and G are isomorphic. For a collection H of graphs,

we let v(H) :=
∑

H∈H |V (H)|. We say a partition V1, . . . , Vk of a set V is an equipartition if

||Vi|−|Vj|| ≤ 1 for all i, j ∈ [k]. For a multi-hypergraph H and A,B ⊆ V (H), we let EH(A,B)

denote the set of edges in H intersecting both A and B. We define eH(A,B) := |EH(A,B)|.

For v ∈ V (H) and A ⊆ V (H), we let dH,A(v) := |{e ∈ E(H) : v ∈ e, e\{v} ⊆ A}|. Let

dH(v) := dH,V (H)(v). For u, v ∈ V (H), we define cH(u, v) := |{e ∈ E(H) : {u, v} ⊆ e}|. Let

∆(H) = max{dH(v) : v ∈ V (H)} and δ(H) := min{dH(v) : v ∈ V (H)}.
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For a graph G and sets X,A ⊆ V (G), we define

NG,A(X) := {w ∈ A : uw ∈ E(G) for all u ∈ X} and NG(X) := NG,V (G)(X).

Thus NG(X) is the common neighbourhood of X in G and NG,A(∅) = A. For a set X ⊆ V (G),

we define Nd
G(X) ⊆ V (G) to be the set of all vertices of distance at most d from a vertex

in X. In particular, Nd
G(X) = ∅ for d < 0. Note that NG(X) and N1

G(X) are different in

general as e.g. vertices with a single edge to X are included in the latter. Moreover, note

that NG(X) ⊆ N1
G(X). We say a set I ⊆ V (G) in a graph G is k-independent if for any two

distinct vertices u, v ∈ I, the distance between u and v in G is at least k (thus a 2-independent

set I is an independent set). If A, B ⊆ V (G) are disjoint, we write G[A,B] for the bipartite

subgraph of G with vertex classes A, B and edge set EG(A,B).

For two functions φ : A→ B and φ′ : A′ → B′ with A ∩ A′ = ∅, we let φ ∪ φ′ be the

function from A ∪ A′ to B ∪B′ such that for each x ∈ A ∪ A′,

(φ ∪ φ′)(x) :=

 φ(x) if x ∈ A,

φ′(x) if x ∈ A′.

For graphs H and R with V (R) ⊆ [r] and an ordered partition (X1, . . . , Xr) of V (H),

we say that H admits the vertex partition (R,X1, . . . , Xr), if H[Xi] is empty for all i ∈ [r],

and for any i, j ∈ [r] with i 6= j we have that eH(Xi, Xj) > 0 implies ij ∈ E(R). We say

that H is internally q-regular with respect to (R,X1, . . . , Xr) if H admits (R,X1, . . . , Xr) and

H[Xi, Xj] is q-regular for each ij ∈ E(R).

We will often use the following Chernoff bound (see e.g. Theorem A.1.16 in [5]).

Lemma 3.3.1. [5] Suppose X1, . . . , Xn are independent random variables such that 0 ≤ Xi ≤

b for all i ∈ [n]. Let X := X1 + · · ·+Xn. Then for all t > 0, P[|X −E[X]| ≥ t] ≤ 2e−t
2/(2b2n).

3.3.2 Tools involving ε-regularity

In this subsection, we introduce the definitions of (ε, d)-regularity and (ε, d)-super-regularity.

We then state a suitable form of the regularity lemma for our purpose. We will also state
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an embedding lemma (Lemma 3.3.6) which we will use later to prove our main lemma

(Lemma 3.5.1).

We say that a bipartite graph G with vertex partition (A,B) is (ε, d)-regular if

for all sets A′ ⊆ A, B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have | eG(A′,B′)
|A′||B′| − d| < ε.

Moreover, we say that G is ε-regular if it is (ε, d)-regular for some d. If G is (ε, d)-regular

and dG(a) = (d ± ε)|B| for a ∈ A and dG(b) = (d ± ε)|A| for b ∈ B, then we say G is

(ε, d)-super-regular. We say that G is (ε, d)+-(super)-regular if it is (ε, d′)-(super)-regular for

some d′ ≥ d.

For a graph R on vertex set [r], and disjoint vertex subsets V1, . . . , Vr of V (G), we

say that G is (ε, d)+-(super)-regular with respect to the vertex partition (R, V1, . . . , Vr) if

G[Vi, Vj] is (ε, d)+-(super)-regular for all ij ∈ E(R). Being (ε, d)-(super)-regular with respect

to the vertex partition (R, V1, . . . , Vr) is defined analogously. The following observations follow

directly from the definitions.

Proposition 3.3.2. Let 0 < ε ≤ δ ≤ d ≤ 1. Suppose G is an (ε, d)-regular bipartite graph

with vertex partition (A,B) and let A′ ⊆ A, B′ ⊆ B with |A′|/|A|, |B′|/|B| ≥ δ. Then

G[A′, B′] is (ε/δ, d)-regular.

Proposition 3.3.3. Let 0 < ε ≤ δ ≤ d ≤ 1. Suppose G is an (ε, d)-regular bipartite

graph with vertex partition (A,B). If G′ is a subgraph of G with V (G′) = V (G) and

e(G′) ≥ (1− δ)e(G), then G′ is (ε+ δ1/3, d)-regular.

Proposition 3.3.4. Let 0 < ε� d ≤ 1. Suppose G is an (ε, d)-regular bipartite graph with

vertex partition (A,B). Let

A′ := {a ∈ A : dG(a) 6= (d± ε)|B|} and B′ := {b ∈ B : dG(b) 6= (d± ε)|B|}.

Then |A′| ≤ 2ε|A| and |B′| ≤ 2ε|B|.

The next lemma is a ‘degree version’ of Szemerédi’s regularity lemma (see e.g. [77] on

how to derive it from the original version).
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Lemma 3.3.5 (Szemerédi’s regularity lemma). Suppose M,M ′, n ∈ N with 0 < 1/n �

1/M � ε, 1/M ′ < 1 and d > 0. Then for any n-vertex graph G, there exist a partition of

V (G) into V0, V1, . . . , Vr and a spanning subgraph G′ ⊆ G satisfying the following.

(i) M ′ ≤ r ≤M,

(ii) |V0| ≤ εn,

(iii) |Vi| = |Vj| for all i, j ∈ [r],

(iv) dG′(v) > dG(v)− (d+ ε)n for all v ∈ V (G),

(v) e(G′[Vi]) = 0 for all i ∈ [r],

(vi) for all i, j with 1 ≤ i < j ≤ r, the graph G′[Vi, Vj ] is either empty or (ε, di,j)-regular for

some di,j ∈ [d, 1].

The next lemma allows us to embed a small graph H into a graph G which is (ε, d)+-

regular with respect to a suitable vertex partition (R, V1, . . . , Vr). In our proof of Lemma 3.5.1

later on, properties (B1)3.3.6 and (B2)3.3.6 will help us to prescribe appropriate ‘target sets’

for some of the vertices when we apply the blow-up lemma for approximate decompositions

(Theorem 3.3.15). There, H will be part of a larger graph that is embedded in several stages.

(B1)3.3.6 ensures that the embedding of H is compatible with constraints arising from earlier

stages and (B2)3.3.6 will ensure the existence of sufficiently large target sets when embedding

vertices x in later stages (each edge ofM corresponds to the neighbourhood of such a vertex

x).

Lemma 3.3.6. Suppose n,∆ ∈ N with 0 < 1/n � ε � α, β, d, 1/∆ ≤ 1. Suppose that

G,H are graphs and M is a multi-hypergraph on V (H) with edge-multiplicity at most ∆.

Suppose V1, . . . , Vr are pairwise disjoint subsets of V (G) with βn ≤ |Vi| ≤ n for all i ∈ [r],

and X1, . . . , Xr is a partition of V (H) with |Xi| ≤ εn for all i ∈ [r]. Let f : E(M)→ [r] be
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a function, and for all i ∈ [r] and x ∈ Xi, let Ax ⊆ Vi. Let R be a graph on [r]. Suppose that

the following hold.

(A1)3.3.6 G is (ε, d)+-regular with respect to (R, V1, . . . , Vr),

(A2)3.3.6 H admits the vertex partition (R,X1, . . . , Xr),

(A3)3.3.6 ∆(H) ≤ ∆, ∆(M) ≤ ∆ and the rank ofM is at most ∆,

(A4)3.3.6 for all i, j ∈ [r], if f(e) = i and e ∩Xj 6= ∅, then ij ∈ E(R),

(A5)3.3.6 for all i ∈ [r] and x ∈ Xi, we have |Ax| ≥ α|Vi|.

Then there exists an embedding φ of H into G such that

(B1)3.3.6 for each x ∈ V (H), we have φ(x) ∈ Ax,

(B2)3.3.6 for each e ∈M, we have |NG(φ(e)) ∩ Vf(e)| ≥ (d/2)∆|Vf(e)|.

Note that (A4)3.3.6 implies for all e ∈ E(M) that e ∩Xf(e) = ∅.

Proof. For each x ∈ V (H), let ex := NH(x) and M′ be a multi-hypergraph on vertex set

V (H) with E(M′) = {ex : x ∈ V (H)}. Since a vertex x ∈ V (H) belongs to ey only when

y ∈ NH(x), we have dM′(x) = dH(x). SoM′ is a multi-hypergraph with rank at most ∆ and

∆(M′) ≤ ∆. LetM∗ :=M∪M′ and for each e ∈ E(M∗), define

Be :=

 Vf(e) if e ∈ E(M),

Ax if e = ex ∈ E(M′) for x ∈ V (H).

Note that by (A3)3.3.6, we have

M∗ has rank at most ∆, and ∆(M∗) ≤ ∆(M) + ∆(M′) ≤ 2∆. (3.3.1)

Let V (H) := {x1, . . . , xm}, and for each i ∈ [m], we let Zi := {x1, . . . , xi}. We will iteratively

extend partial embeddings φ0, . . . , φm of H into G in such a way that the following hold for

all i ≤ m.
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(Φ1)i3.3.6 φi embeds H[Zi] into G,

(Φ2)i3.3.6 φi(xk) ∈ Axk , for all k ∈ [i],

(Φ3)i3.3.6 for all e ∈M∗, we have |NG(φi(e ∩ Zi)) ∩Be| ≥ (d/2)|e∩Zi||Be|.

Note that (Φ1)0
3.3.6–(Φ3)0

3.3.6 hold for an empty embedding φ0 : ∅ → ∅. Assume that for some

i ∈ [m], we have already defined an embedding φi−1 satisfying (Φ1)i−1
3.3.6–(Φ3)i−1

3.3.6. We will

construct φi by choosing an appropriate image for xi. Let s ∈ [r] be such that xi ∈ Xs, and

let S := NG(φi−1(Zi ∩ exi)) ∩ Bexi
. Thus S ⊆ Vs. Since Zi−1 ∩ exi = Zi ∩ exi , we have that

(Φ3)i−1
3.3.6 implies

|S| ≥ (d/2)|Zi∩exi |αβn > (d/2)∆αβn > ε1/3n. (3.3.2)

For each e ∈ E(M∗) containing xi, we consider

Se := NG(φi−1(Zi−1 ∩ e)) ∩Be.

By (Φ3)i−1
3.3.6, we have

|Se| ≥ (d/2)∆αβn > ε1/3n. (3.3.3)

If e = NH(x) for some x ∈ Xs′ with s′ ∈ [r], then we have Se ⊆ Be ⊆ Vs′ , and (A2)3.3.6

implies that ss′ ∈ E(R). Moreover, note that if e ∈M with f(e) = s′ for some s′ ∈ [r], then

Se ⊆ Be = Vs′ , and (A4)3.3.6 implies that ss′ ∈ E(R). Thus in any case, (A1)3.3.6 implies that

G[Vs, Vs′ ] is (ε, d′)-regular for some d′ ≥ d. Hence, Proposition 3.3.2 with (3.3.2) and (3.3.3)

implies that G[S, Se] is (ε1/2, d′)-regular. Let

S ′e := {v ∈ S : dG,Se(v) < (d/2)|Se|}.

By Proposition 3.3.4, we have |S ′e| ≤ 2ε1/2n. Thus

|S \
⋃

e∈E(M∗):xi∈e

S ′e|
(3.3.1)
≥ |S| − 2∆ · 2ε1/2n

(3.3.2)
≥ 1. (3.3.4)
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We choose v ∈ S \
⋃
e∈E(M∗):xi∈e S

′
e, and we extend φi−1 into φi by letting φi(xi) := v. Since

φi(xi) ∈ S = NG(φi−1(Zi ∩ exi)) ∩Bexi
= NG(φi(Zi ∩NH(xi))) ∩ Axi ,

(Φ1)i3.3.6 and (Φ2)i3.3.6 hold. Also, for each e ∈ E(M∗), if xi /∈ e, then as we have Zi ∩ e =

Zi−1 ∩ e,

|NG(φi(Zi ∩ e)) ∩Be| = |NG(φi−1(Zi−1 ∩ e)) ∩Be|
(Φ3)i−1

3.3.6

≥ (d/2)|Zi∩e||Be|.

If xi ∈ e, then since φi(xi) /∈ S ′e and |Zi ∩ e| = |Zi−1 ∩ e|+ 1, we have

|NG(φi(Zi ∩ e)) ∩Be| ≥ |NG(φi(xi)) ∩ Se| ≥ (d/2)|Se|
(Φ3)i−1

3.3.6

≥ (d/2)|Zi∩e||Be|.(3.3.5)

Thus (Φ3)i3.3.6 holds. By repeating this until we have embedded all vertices of H, we obtain

an embedding φm satisfying (Φ1)m3.3.6–(Φ3)m3.3.6. Let φ := φm. Then (Φ2)m3.3.6 implies that

(B1)3.3.6 holds, and (Φ3)m3.3.6 together with (A3)3.3.6 and the definition of Be implies that

(B2)3.3.6 holds.

3.3.3 Decomposition tools

In this subsection, we first give bounds on δreg
k . The following proposition provides a lower

bound for δreg
k . The proof is only a slight extension of the extremal construction given by

Proposition 1.5 in [8], and thus we omit it here.

Proposition 3.3.7. For all k ∈ N\{1, 2} we have δregk ≥ 1− 1/(k + 1).

It will be convenient to use that for k ≥ 2 this lower bound implies

max{1/2, δreg
k } ≥ 1− 1/k. (3.3.6)

Given two graphs F and G, let
(
G
F

)
denote the set of all copies of F in G. A function ψ

from
(
G
F

)
to [0, 1] is a fractional F -packing of G if

∑
F ′∈(G

F):e∈F ′ ψ(F ′) ≤ 1 for each e ∈ E(G)

(if we have equality for each e ∈ E(G) then this is referred to as a fractional F -decomposition).
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Let ν∗F (G) be the maximum value of
∑

F ′∈(G
F) ψ(F ′) over all fractional F -packings ψ of

G. Thus ν∗F (G) ≤ e(G)/e(F ) and ν∗F (G) = e(G)/e(F ) if and only if G has a fractional

F -decomposition. The following very recent result of Montgomery gives a degree condition

which ensures a fractional Kk-decomposition in a graph.

Theorem 3.3.8. [85] Suppose k, n ∈ N and 0 < 1/n� 1/k < 1. Then any n-vertex graph

G with δ(G) ≥ (1− 1/(100k))n satisfies ν∗Kk
(G) = e(G)/e(Kk).

The next result due to Haxell and Rödl implies that a fractional Kk-decomposition

gives rise to the existence of an approximate Kk-decomposition.

Theorem 3.3.9. [55] Suppose n ∈ N with 0 < 1/n � ε < 1. Then any n-vertex graph G

has an F -packing consisting of at least ν∗F (G)− εn2 copies of F .

Lemma 3.3.10. For k ∈ N\{1, 2}, we have δregk ≤ δ0+
k ≤ 1 − 1/(100k). Moreover, δreg2 =

δ0+
2 = 0 and δreg3 ≤ δ0+

3 ≤ 9/10.

Proof. It is easy to see that Theorem 3.3.8 and Theorem 3.3.9 together imply that δ0+
k ≤

1 − 1/(100k). Moreover, Theorem 3.3.9 together with a result of Dross [8] implies that

δ0+
3 ≤ 9/10. As any graph can be decomposed into copies of K2, we have δ0+

2 = 0.

In the remainder of this subsection, we prove Lemma 3.3.13. In the proof of Theo-

rem 3.1.2, we will apply it to obtain an approximate decomposition of the reduced multi-graph

R into almost Kk-factors (see Section 3.6). We will use the following consequence of Tutte’s

r-factor theorem.

Theorem 3.3.11. [30] Suppose n ∈ N and 0 < 1/n� γ � 1. If G is an n-vertex graph with

δ(G) ≥ (1/2 + γ)n and ∆(G) ≤ δ(G) + γ2n, then G contains a spanning r-regular subgraph

for every even r with r ≤ δ(G)− γn.

The following powerful result of Pippenger and Spencer [86] (based on the Rödl nibble)

shows that every almost regular multi-k-graph with small maximum codegree has small

chromatic index.
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Theorem 3.3.12. [86] Suppose n, k ∈ N and 0 < 1/n � µ � ε, 1/k < 1. Suppose H is

an n-vertex multi-k-graph satisfying δ(H) ≥ (1 − µ)∆(H), and cH(u, v) ≤ µ∆(H) for all

u 6= v ∈ V (H). Then we can partition E(H) into (1 + ε)∆(H) matchings.

We can now combine these tools to approximately decompose an almost regular

multi-graph G of sufficient degree into ‘almost’ Kk-factors. All vertices of G will be used in

almost all these factors except the vertices in a ‘bad’ set V ′ which are not used in any factor.

Moreover, the factors come in T groups of equal size such that parallel edges of G belong to

different groups. As explained in Section 3.2, we will apply this to the reduced multi-graph

obtained from Szemerédi’s regularity lemma.

Lemma 3.3.13. Suppose n, k, q, T ∈ N with 0 < 1/n � ε, σ, 1/T, 1/k, 1/q, ν ≤ 1/2 and

0 < 1/n � ξ � ν < σ/2 < 1 and δ = max{1/2, δregk } + σ and q divides T . Let G be an

n-vertex multi-graph with edge-multiplicity at most q, such that for all v ∈ V (G) we have

dG(v) = (δ ± ξ)qn.

Then there exists a subset V ′ ⊆ V (G) with |V ′| ≤ εn and k dividing |V (G)\V ′|, and there

exist pairwise edge-disjoint subgraphs F1,1, . . . , F1,κ, F2,1, . . . , FT,κ with κ = (δ − ν ± ε) qn
T (k−1)

satisfying the following.

(B1)3.3.13 For each (t′, i) ∈ [T ]× [κ], we have that V (Ft′,i) ⊆ V (G)\V ′ and Ft′,i is a vertex-disjoint

union of at least (1− ε)n/k copies of Kk,

(B2)3.3.13 for each v ∈ V (G) \ V ′, we have |{(t′, i) ∈ [T ]× [κ] : v ∈ V (Ft′,i)}| ≥ Tκ− εn,

(B3)3.3.13 for all t′ ∈ [T ] and u, v ∈ V (G), we have |{i ∈ [κ] : u ∈ NFt′,i
(v)}| ≤ 1.

Proof. It suffices to prove the lemma for the case when T = q. The general case then follows

by relabelling. (We can split each group obtained from the T = q case into T/q equal groups

arbitrarily.) We choose a new constant µ such that

1/n� µ� ε, ξ, σ, 1/k, 1/q.
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For an edge colouring φ : E(G)→ [q] and c ∈ [q], we let Gc ⊆ G be the subgraph with edge set

{e ∈ E(G) : φ(e) = c}. We wish to show that there exists an edge-colouring φ : E(G)→ [q]

satisfying the following for all v ∈ V (G) and c ∈ [q]:

(Φ1)3.3.13 dGc(v) = (δ ± 2ξ)n,

(Φ2)3.3.13 Gc is a simple graph.

Recall that eG(u, v) denotes the number of edges of G between u and v. For each

{u, v} ∈
(
V (G)

2

)
, we choose a set A{u,v} uniformly at random from

(
[q]

eG(u,v)

)
. For each e ∈ E(G),

we let φ(e) ∈ [q] be such that φ is bijective between EG(u, v) and A{u,v}. This ensures that

(Φ2)3.3.13 holds. It is easy to see that (Φ1)3.3.13 also holds with high probability by using

Lemma 3.3.1.

Since δ ≥ 1/2 + σ and ξ � ν, σ, Theorem 3.3.11 implies that, for each c ∈ [q], there

exists a (δ−ν)n-regular spanning subgraph Gc
∗ of Gc. (By adjusting ν slightly we may assume

that (δ − ν)n is an even integer.) Since δ − ν > δreg
k + σ/2 and 1/n� µ, the graph Gc

∗ has a

Kk-packing Qc := {Qc
1, . . . , Q

c
t} of size

t :=
(δ − ν − µ)n2

k(k − 1)
. (3.3.7)

For each c ∈ [q], let Hc be the k-graph with V (Hc) = V (Gc
∗) and E(Hc) := {V (Qc

i) : i ∈ [t]}.

By construction of Hc, we have

∆(Hc) ≤ ∆(Gc
∗)

k − 1
≤ (δ − ν)n

k − 1
. (3.3.8)

As Qc is a Kk-packing in Gc
∗, any pair {u, v} ∈

(
V (G)

2

)
belongs to at most one edge in Hc.

Thus for {u, v} ∈
(
V (G)

2

)
,

cHc(u, v) ≤ 1. (3.3.9)

Let

V ′′ :=
⋃
c∈[q]

{
v ∈ V (G) : |{i ∈ [t] : v ∈ V (Qc

i)}| <
1

k − 1
(δ − ν − µ1/3)n

}
,
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and let V ′ be a set consisting of the union of V ′′ as well as at most k − 1 vertices arbitrarily

chosen from V (G)\V ′′ such that k divides |V (G)\V ′|. Note that for each c ∈ [q], we have

e(Gc
∗)− e(Qc) ≤

1

2
(δ − ν)n2 −

(
k

2

)
t

(3.3.7)
≤ µn2.

On the other hand, since Gc
∗ is a (δ − ν)n-regular graph, we have

|V ′| ≤ k + 1 +
∑
c∈[q]

1

µ1/3n

∑
v∈V (G)

(
dGc
∗(v)− (k − 1)dHc(v)

)
= k + 1 +

∑
c∈[q]

2(e(Gc
∗)− e(Qc))
µ1/3n

≤ 3qµn2

µ1/3n
≤ µ1/2n. (3.3.10)

Let H̃c be the k-graph with V (H̃c) := V (Gc
∗) \ V ′ and E(H̃c) := {e ∈ E(Hc) : e ∩ V ′ = ∅}.

Note that for any v ∈ V (H̃c) = V (Hc) \ V ′,

dH̃c(v) = dHc(v)±
∑
u∈V ′

cHc(u, v)
(3.3.9)

= dHc(v)± |V ′| (3.3.10),(3.3.8)
=

(δ − ν ± 2µ1/3)n

k − 1
.(3.3.11)

Note that we obtain the final equality from the definition of V ′ and the assumption that

v /∈ V ′. Thus for each c ∈ [q], we have δ(H̃c) ≥ (1− µ1/4)∆(H̃c). Together with (3.3.9) and

the fact that 1/n� µ� ε, 1/k, 1/q, this ensures that we can apply Theorem 3.3.12 to see

that for each c ∈ [q], E(H̃c) can be partitioned into κ′ := (δ−ν+ε3/q)n
k−1

matchings M c
1 , . . . ,M

c
κ′ .

Let

Mc := {M c
i : i ∈ [κ′]} and Mc

∗ := {M c
i : i ∈ [κ′], |M c

i | < (1− ε)n/k}.

As |M c
i | ≤ n/k for any i ∈ [κ′] and c ∈ [q], we have

(δ − ν − 3µ1/3)n2

k(k − 1)

(3.3.10),(3.3.11)
≤ |E(H̃c)| =

∑
i∈[κ′]

|M c
i | <

|Mc
∗|(1− ε)n
k

+
(κ′ − |Mc

∗|)n
k

.

This gives

|Mc
∗| ≤

(ε3/q + 3µ1/3)kn2

εnk(k − 1)
≤ 2ε2n

q(k − 1)
. (3.3.12)

We let

κ := min
c∈[q]
{|Mc \Mc

∗|} = κ′ −max
c∈[q]
{|Mc

∗|} =
(δ − ν)n± 2ε2n/q

k − 1
. (3.3.13)
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Thus, by permuting indices, we can assume that for each c ∈ [q], we have M c
1 , . . . ,M

c
κ ⊆

Mc \Mc
∗. For each (c, i) ∈ [q]× [κ], let

Fc,i :=
⋃

j:V (Qc
j)∈Mc

i

Qc
j.

The fact thatMc \Mc
∗ is a collection of pairwise edge-disjoint matchings of H̃c ⊆ Hc

together with (3.3.9) implies that, for each c ∈ [q], the collection {Fc,i : i ∈ [κ]} consists of

pairwise edge-disjoint subgraphs of Gc
∗ ⊆ G, each of which is a union of at least (1− ε)n/k

vertex-disjoint copies of Kk. This with (Φ2)3.3.13 shows that (B3)3.3.13 holds. As G1
∗, . . . , G

q
∗

are pairwise edge-disjoint subgraphs, {Fc,i : (c, i) ∈ [q]× [κ]} forms a collection of pairwise

edge-disjoint subgraphs of G. Thus (B1)3.3.13 holds.

Moreover, for each c ∈ [q] and each vertex v ∈ V (G) \ V ′, we have

|{i ∈ [κ] : v ∈ V (Fc,i)}| ≥ |{M ∈ {M c
1 , . . . ,M

c
κ} : v ∈ V (M)}|

≥ |{M ∈Mc : v ∈ V (M)}| − (κ′ − κ)

≥ dH̃c(v)− κ′ + κ
(3.3.11)
≥ κ− εn/q.

Thus (B2)3.3.13 holds.

3.3.4 Graph packing tools

The following two results from [63] will allow us to pack many bounded degree graphs

into appropriate super-regular blow-ups. Lemma 3.3.14 first allows us to pack graphs into

internally regular graphs which still have bounded degree, and Theorem 3.3.15 allows us to

pack the internally regular graphs into an appropriate dense ε-regular graph. The results

in [63] are actually significantly more general, mainly because they allow for more general

reduced graphs R.

Lemma 3.3.14 ([63, Lemma 7.1]). Suppose n,∆, q, s, k, r ∈ N with 0 < 1/n� ε� 1/s�

1/∆, 1/k and ε� 1/q � 1 and k divides r. Suppose that 0 < ξ < 1 is such that s2/3 ≤ ξq.
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Let R be a graph on [r] consisting of r/k vertex-disjoint copies of Kk. Let V1, . . . , Vr be a

partition of some vertex set V such that |Vi| = n for all i ∈ [r]. Suppose for each j ∈ [s], Lj

is a graph admitting the vertex partition (R,Xj
1 , . . . , X

j
r ) such that ∆(Lj) ≤ ∆ and for each

ii′ ∈ E(R), we have
s∑
j=1

e(Lj[X
j
i , X

j
i′ ]) = (1− 3ξ ± ξ)qn,

and |Xj
i | ≤ n. Also suppose that for all j ∈ [s] and i ∈ [r], we have sets W j

i ⊆ Xj
i such that

|W j
i | ≤ εn. Then there exists a graph H on V which is internally q-regular with respect to

(R, V1, . . . , Vr) and a function φ which packs {L1, . . . , Ls} into H such that φ(Xj
i ) ⊆ Vi, and

such that for all distinct j, j′ ∈ [s] and i ∈ [r], we have φ(W j
i ) ∩ φ(W j′

i ) = ∅.

Theorem 3.3.15 (Blow-up lemma for approximate decompositions [63, Theorem 6.1]).

Suppose n, q, s, k, r ∈ N with 0 < 1/n � ε � α, d, d0, 1/q, 1/k ≤ 1 and 1/n � 1/r and k

divides r. Suppose that R is a graph on [r] consisting of r/k vertex-disjoint copies of Kk.

Suppose s ≤ d
q
(1− α/2)n and the following hold.

(A1)3.3.15 G is (ε, d)-super-regular with respect to the vertex partition (R, V1, . . . , Vr).

(A2)3.3.15 H = {H1, . . . , Hs} is a collection of graphs, where each Hj is internally q-regular with

respect to the vertex partition (R,X1, . . . , Xk), and |Xi| = |Vi| = n for all i ∈ [r].

(A3)3.3.15 For all j ∈ [s] and i ∈ [r], there is a set W j
i ⊆ Xi with |W j

i | ≤ εn and for each w ∈ W j
i ,

there is a set Ajw ⊆ Vi with |Ajw| ≥ d0n.

(A4)3.3.15 Λ is a graph with V (Λ) ⊆ [s] ×
⋃r
i=1Xi and ∆(Λ) ≤ (1 − α)d0n such that for all

(j, x) ∈ V (Λ) and j′ ∈ [s], we have |{x′ : (j′, x′) ∈ NΛ((j, x))}| ≤ q2. Moreover, for all

j ∈ [s] and i ∈ [r], we have |{(j, x) ∈ V (Λ) : x ∈ Xi}| ≤ ε|Xi|.

Then there is a function φ packing H into G such that, writing φj for the restriction of φ to

Hj, the following hold for all j ∈ [s] and i ∈ [r].

(B1)3.3.15 φj(Xi) = Vi,
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(B2)3.3.15 φj(w) ∈ Ajw for all w ∈ W j
i ,

(B3)3.3.15 for all (j, x)(j′, y) ∈ E(Λ), we have that φj(x) 6= φj′(y).

3.3.5 Miscellaneous

In the proof of Theorem 3.1.2, we often partition various graphs into parts with certain

properties. The next two lemmas will allow us to obtain such partitions. Lemma 3.3.16 follows

by considering a random equipartition and applying concentration of the hypergeometric

distribution. Lemma 3.3.17 can be proved by assigning each edge of G to G1, . . . , Gs

independently at random according to (p1, . . . , ps), and applying Lemma 3.3.1. We omit the

details.

Lemma 3.3.16. Suppose n, T, r ∈ N with 0 < 1/n � 1/T, 1/r ≤ 1. Let G be an n-vertex

graph. Let V ⊆ V (G) and let V1 . . . , Vr be a partition of V . Then there exists an equipartition

Res1, . . . , ResT of V such that the following hold.

(i) For all t ∈ [T ], i ∈ [r] and v ∈ V (G), we have dG,Rest∩Vi(v) = 1
T
dG,Vi(v)± n2/3,

(ii) for all t ∈ [T ], i ∈ [r], we have |Rest ∩ Vi| = 1
T
|Vi| ± n2/3.

Lemma 3.3.17. Suppose n, s ∈ N with 0 < 1/n � ε � 1/s ≤ 1 and mi ∈ [n] for each

i ∈ [2]. Let G be an n-vertex graph. Suppose that U is a collection of m1 subsets of V (G) and

U ′ is a collection of m2 pairs of disjoint subsets of V (G) such that each (U1, U2) ∈ U ′ satisfies

|U1|, |U2| > n3/4. Let 0 ≤ p1, . . . , ps ≤ 1 with
∑s

i=1 pi = 1. Then there exists a decomposition

G1, . . . , Gs of G satisfying the following.

(i) For all i ∈ [s], U ∈ U and v ∈ V (G), we have dGi,U(v) = pidG,U(v)± n2/3,

(ii) for all i ∈ [s] and (U1, U2) ∈ U ′ such that G[U1, U2] is (ε, d(U1,U2))-regular for some

d(U1,U2), we have that Gi[U1, U2] is (2ε, pid(U1,U2))-regular.
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The following lemma allows us to find well-distributed subsets of a collection of large

sets. The required sets can be found via a straightforward greedy approach (while avoiding

the vertices which would violate (B3)3.3.18 in each step). So we omit the details.

Lemma 3.3.18. Suppose n, s, r ∈ N and 0 < 1/n, 1/s� ε� d < 1. Let A be a set of size

n, and for each (i, j) ∈ [s]× [r] let Ai,j ⊆ A be of size at least dn, and let mi,j ∈ N ∪ {0} be

such that for all i ∈ [s] we have
∑r

j=1mi,j ≤ εn. Then there exist sets B1,1, . . . , Bs,r satisfying

the following.

(B1)3.3.18 For all i ∈ [s] and j ∈ [r], we have Bi,j ⊆ Ai,j with |Bi,j| = mi,j,

(B2)3.3.18 for all i ∈ [s] and j′ 6= j′′ ∈ [r], we have Bi,j′ ∩Bi,j′′ = ∅,

(B3)3.3.18 for all v ∈ A, we have |{(i, j) ∈ [s]× [r] : v ∈ Bi,j}| ≤ ε1/2s.

The following lemma guarantees a set of k-cliques in a graph G which cover every

vertex a prescribed number of times.

Lemma 3.3.19. Let n,m, k, t ∈ N and 0 < 1/n � 1/t � σ, 1/k < 1 with k | n. Let G

be an n-vertex graph with δ(G) ≥ (1 − 1
k

+ σ)n. Suppose that for each v ∈ V (G), we have

dv ∈ [m] ∪ {0}. Then there exists a multi-k-graph H on vertex set V (G) satisfying the

following.

(B1)3.3.19 For each e ∈ E(H), we have G[e] ' Kk,

(B2)3.3.19 for each v ∈ V (G), we have dH(v)− dv = (t+ 1)m± 1.

Proof. Let

m′ := max
u,v∈V (G)

{du − dv}.

Then m′ ∈ [m]. For a multi-hypergraph H on vertex set V (G) and v ∈ V (G), let pH(v) :=

dH(v) − dv. We will prove that for each ` ∈ [m′ − 1] ∪ {0}, there exists a hypergraph H`

satisfying the following.
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(H1)`3.3.19 For each e ∈ E(H), we have G[e] ' Kk,

(H2)`3.3.19 ∆(H`) ≤ `(t+ 1),

(H3)`3.3.19 maxu,v∈V (G){pH`
(v)− pH`

(u)} ≤ m′ − `.

Note that H0 = ∅ satisfies (H1)0
3.3.19–(H3)0

3.3.19. Assume that for some ` ∈ [m′ − 2] ∪ {0}, we

have already constructed H` satisfying (H1)`3.3.19–(H3)`3.3.19. We will now construct H`+1.

If maxu∈V (G){pH`
(u)} − minu∈V (G){pH`

(u)} ≤ 1, then as ` ≤ m′ − 2, we can let

H`+1 := H`, then (H1)`+1
3.3.19–(H3)

`+1
3.3.19 hold. Thus assume that

max
u∈V (G)

{pH`
(u)} − min

u∈V (G)
{pH`

(u)} ≥ 2. (3.3.14)

Let

A := {v ∈ V (G) : pH`
(v) > min

u∈V (G)
{pH`

(u)}} and Amax := {v ∈ V (G) : pH`
(v) = max

u∈V (G)
{pH`

(u)}}.

First assume that |A| ≥ k. Let A′ ⊆ A be a set of at most k − 1 vertices such that k divides

|A|+ |A′| and pH`
(v) ≥ maxu∈A\A′ pH`

(u) for all v ∈ A′. Note that we have either A′ ⊆ Amax

or Amax ⊆ A′. Then we can take a collection A := {A1, . . . , At+1} of (possibly empty) subsets

of A such that the following hold for each i ∈ [t+ 1].

• |Ai| is divisible by k,

• |Ai| ≤ |A|/t+ k,

• every vertex in A′ belongs to exactly two sets in A and every vertex in A \ A′ belongs

to exactly one set in A.

Now, for each i ∈ [t+ 1], we have

δ(G− Ai) ≥ δ(G)− |Ai| ≥ (1− 1/k + σ)n− n/t− k ≥ (1− 1/k + σ − 2/t)n ≥ (1− 1/k)n.

Since V (G)\Ai contains at most n vertices, and |V (G)\Ai| is divisible by k, the Hajnal-

Szemerédi theorem implies that there exists a collection Ki of copies of Kk in G covering
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all the vertices in V (G)\Ai exactly once. For each i ∈ [t + 1], let Ei := {V (K) : K ∈ Ki}.

Then
⋃t+1
i=1 Ei covers every vertex in V (G)\A exactly t+ 1 times, while it covers vertices in

A \ A′ exactly t times and vertices in A′ exactly t− 1 times. Let H`+1 be the multi-k-graph

on vertex set V (G) with

E(H`+1) := H` ∪
t+1⋃
i=1

Ei.

Then the above construction with (H1)`3.3.19 implies (H1)`+1
3.3.19. Also (H2)`3.3.19 implies that

∆(H`+1) = ∆(H`) + (t+ 1) ≤ (t+ 1)(`+ 1), thus (H2)`+1
3.3.19 holds. If A′ ( Amax, then every

vertex in Amax \ A′ is covered exactly t times by
⋃t+1
i=1 Ei. Thus, by (3.3.14), we have

max
u∈V (G)

{pH`+1
(u)} = max

u∈V (G)
{pH`

(u)}+ t and min
u∈V (G)

{pH`+1
(u)} = min

u∈V (G)
{pH`

(u)}+ t+ 1.

If Amax ⊆ A′, then every vertex in Amax is covered exactly t− 1 times while every vertex in

A is covered either t− 1 times or t times by
⋃t+1
i=1 Ei. Thus, by (3.3.14), we have

max
u∈V (G)

{pH`+1
(u)} = max

u∈V (G)
{pH`

(u)}+ t− 1 and min
u∈V (G)

{pH`+1
(u)} ≥ min

u∈V (G)
{pH`

(u)}+ t.

In both cases, we have

max
u,v∈V (G)

{
pH`+1

(u)− pH`+1
(v)
}
≤ max

u,v∈V (G)
{pH`

(u)− pH`
(v)} − 1

(H3)`3.3.19
≤ m′ − `− 1.

Thus (H3)`+1
3.3.19 holds.

Next assume that |A| < k. Then we take two sets B and C in V (G) such that

B ∩ C = A and |B| = |C| = k. Then similarly as before, we can take two collections E1

and E2 of sets of size k such that E1 covers every vertex in V (G) \ B exactly once, and

E2 covers every vertex in V (G) \ C exactly once while G[e] ' Kk for all e ∈ E1 ∪ E2. Let

H`+1 be the multi-k-graph with E(H`+1) := H` ∪ E1 ∪ E2. Then, it is easy to see that both

(H1)`+1
3.3.19 and (H2)`+1

3.3.19 hold. Also E1 ∪ E2 covers all vertices in V (G) \ A exactly once or

twice, while it does not cover the vertices in A. Then as before, by using the fact that

maxu∈V (G){pH`
(u)} −minu∈V (G){pH`

(u)} ≥ 2, we can show that (H3)`+1
3.3.19 holds.

Hence, this shows that there exists a hypergraph Hm′−1 which satisfies (H1)m
′−1

3.3.19–

(H3)m
′−1

3.3.19. Let m′′ := maxv∈V (G){pHm′−1
(v)}. Then (H2)m

′−1
3.3.19 implies that m′′ ≤ (t + 1)m.
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Also, by (H3)m
′−1

3.3.19 every vertex v ∈ V (G) satisfies pHm′−1
(v) ∈ {m′′ − 1,m′′}. Recall that

δ(G) ≥ (1 − 1/k)n and k divides n. Thus the Hajnal-Szemerédi theorem guarantees a

collection E of sets of size k which covers every vertex of G exactly once, while G[e] ' Kk

for all e ∈ E. Thus, by adding all e ∈ E to Hm′−1 exactly (t+ 1)m−m′′ times, we obtain a

multi-k-graph satisfying (B1)3.3.19 and (B2)3.3.19.

The following lemma is due to Komlós, Sárközy and Szemerédi [69]. Assertion

(B3)3.3.20 is not explicitly stated in [69], but follows immediately from the proof given there

(see Section 3.1 in [69]). Given embeddings of graphs Hi and Hj into blown-up k-cliques

Qi ⊆ G and Qj ⊆ G, the ‘clique walks’ guaranteed by Lemma 3.3.20 will allow us to find

suitable connections between (the images of) Hi and Hj in G.

Lemma 3.3.20. Let r, k ∈ N \ {1}. Suppose that R is an r-vertex graph with δ(R) ≥(
1− 1

k

)
r + 1. Suppose that Q1, Q2 are two not necessarily disjoint subsets of V (R) of size k

such that Q1 = {x1, . . . , xk} and Q2 = {y1, . . . , yk} with R[Q1] ' Kk and R[Q2] ' Kk. Then

there exists a walk W = (z1, . . . , zt) in R satisfying the following.

(B1)3.3.20 3k ≤ t ≤ 3k3 and k | t,

(B2)3.3.20 for all i, j ∈ [t] with |i− j| ≤ k − 1, we have zizj ∈ E(R),

(B3)3.3.20 for each i ∈ [k], we have zi = xi and zt−k+i = yi.

The following lemma also can be proved using a simple greedy algorithm. We omit

the proof.

Lemma 3.3.21. Let ∆, k, t ∈ N \ {1}. Let H be a graph with ∆(H) ≤ ∆ and let X ⊆ V (H)

be a set with |X| ≥ ∆kt. Then there exists a k-independent set Y ⊆ X of H with |Y | = t.

Lemma 3.3.22. Let r, k, q, s ∈ N \ {1} with 0 < 1/r � 1/k, 1/q ≤ 1. Let R be an r-vertex

graph with δ(R) ≥ (1 − 1
k
)r. Let F be a multi-(k − 1)-graph on V (R) with ∆(F) ≤ q and

E(F) = {F1, . . . , Fs} such that R[Fi] ' Kk−1 for all i ∈ [s]. Then there exists a multi-k-graph

F∗ on V (R) with E(F∗) = {F ∗1 , . . . , F ∗s } and such that
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(B1)3.3.22 ∆(F∗) ≤ (k + 1)q,

(B2)3.3.22 for all i ∈ [s], we have Fi ⊆ F ∗i and R[F ∗i ] ' Kk.

Proof. Since F is a multi-(k − 1)-graph, we have s ≤ ∆(F)r/(k − 1) ≤ qr. We consider

an auxiliary bipartite graph Aux with vertex partition (E(F), V (R)× [kq]) such that Fi is

adjacent to (v, j) ∈ V (R)× [kq] if v ∈ NR(Fi). For any set X of k − 1 vertices in R, we have

dR(X) ≥ r/k. Thus, any vertex Fi of the graph Aux has degree at least kqdR(Fi) ≥ kq·(r/k) ≥

s = |E(F)|. Thus, the graph Aux contains a matching M covering every Fi ∈ E(F). For each

(Fi, (v, j)) ∈M , let F ∗i := Fi ∪ {v}. Then (B2)3.3.22 holds. On the other hand, for any vertex

v ∈ V (R), we have dF∗(v) = dF(v) + |{j ∈ [kq] : dM((v, j)) = 1}| ≤ dF(v) + kq ≤ (k + 1)q.

Thus (B1)3.3.22 holds too.

The final tool we will collect implies that a (k, η)-chromatic η-separable bounded

degree graph has a small separator S and a (k + 1)-colouring in which one colour class is

small and only consists of vertices far away from S.

Lemma 3.3.23. Suppose that n, t,∆, k ∈ N and ∆ ≥ 2. Suppose that H is an η-separable n-

vertex graph with ∆(H) ≤ ∆. If H admits a (k+ 1)-colouring with colour classes W0, . . . ,Wk

with |W0| ≤ ηn, then there exists a ∆t+2η-separator S of H with N t
H(S) ∩W0 = ∅.

Proof. As H is η-separable, there exists an η-separator S ′ of H. Consider S := (S ′ ∪

N t+1
H (W0))\N t

H(W0). It is obvious that such a choice satisfies N t
H(S)∩W0 = ∅. Furthermore,

as |W0| ≤ ηn and ∆ ≥ 2, we have |S| ≤ ∆t+2ηn. Moreover, any component of H − S is

either a subset of a a component of H −S ′ or a subset of N t
H(W0). Hence, it has size at most

∆t+2ηn, and S is a separator as desired.
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3.4 Constructing an appropriate partition of a separable

graph

In Section 3.6 we will decompose the host graph G into graphs Gt, Ft and F ′t with t ∈ [T ] for

some bounded T . We will also construct an exceptional set V0 and reservoir sets Rest.We now

need to partition each graph H ∈ H so that this partition reflects the above decomposition

of G. This will enable us to apply the blow-up lemma for approximate decompositions

(Theorem 3.3.15) in Section 3.5. The next lemma ensures that we can prepare each graph

H ∈ H in an appropriate manner. It gives a partition of V (H) into X, Y, Z,A. Later we will

aim to embed the vertices in A into V0, and vertices in Y ∪ Z will be embedded into Rest

using Lemma 3.3.6. Most of the vertices in X will be embedded into a super-regular blown-up

Kk-factor in Gt via Theorem 3.3.15, while the remaining vertices of X will be embedded

into Rest. The set Z will contain a suitable separator H0 of H. The neighbourhoods of the

exceptional vertices a` ∈ A will be allocated to Y . Moreover, (A2)3.4.1 and (A3)3.4.1 ensure

that we allocate them to sets corresponding to (evenly distributed) cliques of R−the latter

enables us to satisfy the second part of (B3)3.4.1.

Lemma 3.4.1. Suppose n,m, r, k, h,∆ ∈ N with 0 < 1/n� η � ε� 1/h� 1/k, σ, 1/∆ < 1

and 0 < η � 1/r < 1 such that k | r. Let H be an n-vertex (k, η)-chromatic graph with

e(H) = m and ∆(H) ≤ ∆. Let R and Q be graphs with V (R) = V (Q) = [r] such that Q is a

union of r/k vertex-disjoint copies of Kk. For some n′ ∈ [εn], let C1, . . . , Cn′ be subsets of [r]

of size k − 1, and C∗1 , . . . , C∗n′ be subsets of [r] of size k. Let F and F∗ be multi-hypergraphs

on [r] with E(F) = {C1, . . . , Cn′} and E(F∗) = {C∗1 , . . . , C∗n′}. Suppose that n1, . . . , nr are

integers. Suppose the following hold.

(A1)3.4.1 δ(R) ≥ (1− 1
k

+ σ)r,

(A2)3.4.1 for each ` ∈ [n′], we have C` ⊆ C∗` and R[C∗` ] ' Kk,

(A3)3.4.1 ∆(F∗) ≤ ε2/3n/r,
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(A4)3.4.1 for each i ∈ [r], we have ni = (1± ε1/2)n/r, and n′ +
∑

i∈[r] ni = n.

Then there exists a randomised algorithm which always returns an ordered partition (X1, . . . , Xr,

Y1, . . . , Yr, Z1, . . . , Zr, A) of V (H) such that A = {a1, . . . , an′} is a 3-independent set of H

and the following hold, where X :=
⋃
i∈[r] Xi, Y :=

⋃
i∈[r] Yi, and Z :=

⋃
i∈[r] Zi.

(B1)3.4.1 For each ` ∈ [n′], we have dH(a`) ≤ 2(1+1/h)m
n

,

(B2)3.4.1 for each ` ∈ [n′], we have NH(a`) ⊆
⋃
i∈C`

Yi \N1
H(Z),

(B3)3.4.1 H[X] admits the vertex partition (Q,X1, . . . , Xr), and H \ E(H[X]) admits the vertex

partition (R,X1 ∪ Y1 ∪ Z1, . . . , Xr ∪ Yr ∪ Zr),

(B4)3.4.1 for each ij ∈ E(Q), we have eH(Xi, Xj) = 2m±ε1/5n
(k−1)r

,

(B5)3.4.1 for each i ∈ [r], we have |Xi|+ |Yi|+ |Zi| = ni ± η1/4n and |Yi| ≤ 2ε1/3n/r,

(B6)3.4.1 N1
H(X) \X ⊆ Z and |Z| ≤ 4∆3k3η0.9n.

Moreover, the algorithm has the following additional property, where the expectation is with

respect to all possible outputs.

(B7)3.4.1 For all ` ∈ [n′] and i ∈ C`, we have E[NH(a`) ∩ Yi] ≤ 2(1+1/h)m
(k−1)n

.

(B1)3.4.1 and (B7)3.4.1 ensure that each embedding of some H in G does not use too

many edges incident to the exceptional set V0.

Proof. Write r′ := r/k and Q =
⋃r′

s=1Qs, where each Qs is a copy of Kk, and let
(
R
Kk

)
=

{Q′1, . . . , Q′q} be the collection of all copies of Kk in R. By permuting indices if necessary, we

may assume that V (Q′1) = {1, . . . , k}. Note that q ≤ rk. As Q is a Kk-factor on [r], for each

i ∈ [r], there exists a unique j ∈ [r′] such that i ∈ Qj . For all s ∈ [r′], s′ ∈ [q] and k′ ∈ [k], we

define qs(k′), q′s′(k′) ∈ [r] to be the k′-th smallest number in V (Qs) and V (Q′s′) respectively.

Thus

V (Qs) = {qs(1), . . . , qs(k)} and V (Q′s′) = {q′s′(1), . . . , q′s′(k)}.
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For all s ∈ [q] and k′ ∈ [k], let

Q′s,k′ := Q′s \ {q′s(k′)} and ds,k′ := |{` ∈ [n′] : C∗` = V (Q′s) and C` = V (Q′s,k′)}|. (3.4.1)

Note that for each i ∈ [r] we have

∑
s∈[q]:i∈V (Q′s)

∑
k′∈[k]

ds,k′ = dF∗(i) and
∑

(s,k′)∈[q]×[k]

ds,k′ = n′. (3.4.2)

Our strategy is as follows. Consider a (k + 1)-colouring (W0, . . . ,Wk) of H with |W0| ≤ ηn

and an ∆3k3+3ηn-separator S of H guaranteed by Lemma 3.3.23 (applied with t = 3k3 + 1).

Thus we can partition the k-chromatic graph H \W0 into H0, . . . , Ht such that each Ht′ is

small, there are no edges between Ht′ and Ht′′ whenever 0 /∈ {t′, t′′} and V (H0) = S. We

will distribute the vertices of each graph Ht′ into
⋃
i∈V (Qs) Xi or

⋃
i∈V (Q′s)(Yi ∪ Zi) for an

appropriate s. In particular, V (H0) will be allocated to
⋃
i∈V (Q′1) Zi =

⋃
i∈[k] Zi. As Q

′
s and

Qs are copies of Kk in R and Q, respectively, and as Ht′ is k-chromatic, this would allow us

to achieve (B3)3.4.1 if we ignore the edges incident to V (H0) ∪W0. In Steps 5 and 6 we will

use ‘clique walks’ obtained from Lemma 3.3.20 to connect up the Ht′ with H0 in a way which

respects the colour classes of H \W0. We can thus allocate the vertices in N3k3

H (V (H0)) in a

way that will satisfy (B3)3.4.1. Finally, we will allocate the vertices in W0. As W0 is far from

V (H0), each vertex in W0 only has its neighbours in a single Ht′ , hence it will be simple to

assign each vertex in W0 to some Zi with i ∈ [r] according to where the vertices of Ht′ are

assigned.

Step 1. Separating H. As H is (k, η)-chromatic, applying Lemma 3.3.23 with t = 3k3 + 1

implies that there exists a partition (W0,W1, . . . ,Wk) of V (H) into independent sets and an

η0.9-separator S such that

|S|, |W0| ≤ η0.9n and W0 ∩N3k3+1
H (S) = ∅. (3.4.3)

Since S is an η0.9-separator of H, it follows that there exists a partition Ṽ0, . . . , Ṽt of V (H)
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with Ṽ0 = S, such that the following hold, where Vt′ := Ṽt′ \W0 and Ht′ := H[Vt′ ] for each

t′ ∈ [t] ∪ {0}.

(H1)3.4.1 η−0.9/2 ≤ t ≤ 2η−0.9,

(H2)3.4.1 η0.9n/2 ≤ |Vt′ | ≤ 2η0.9n for t′ ∈ [t],

(H3)3.4.1 for t′ 6= t′′ ∈ [t], we have that EH(Ṽt′ , Ṽt′′) = ∅, and m− 2∆η0.9n ≤
∑

t′∈[t] e(Ht′) ≤ m.

Indeed, as S is an η0.9-separator of H, H \S only consists of components of size at most η0.9n.

By letting Ṽ0 := S (and thus V0 = S) and letting each of Ṽ1, . . . , Ṽt be appropriate unions of

components of H\S, we can ensure that both (H1)3.4.1 and (H2)3.4.1 hold. By the construction,

the first part of (H3)3.4.1 holds too. Since there are at most ∆(H)|S ∪W0| ≤ 2∆η0.9n edges

which are incident to some vertex in W0 ∪ V0, the second part of (H3)3.4.1 holds as well.

For each t′ ∈ [t] ∪ {0} and k′ ∈ [k], we let

W t′

k′ := Vt′ ∩Wk′ .

Step 2. Choosing the exceptional set A. Let

L :=

{
x ∈ V (H) : dH(x) ≤ 2(1 + 1/h)m

n

}
.

L contains the ‘low degree’ vertices within which we will choose A in order to satisfy (B1)3.4.1.

Note that 2m =
∑

x∈V (H) dH(x) ≥ 2(1+1/h)m
n

(n− |L|), thus

|L| ≥ n/(2h). (3.4.4)

For each t′ ∈ [t], let k(t′) ∈ [k] be an index such that

|L ∩W t′

k(t′)| ≥
1

k
|L ∩ V (Ht′)|. (3.4.5)

Such a number k(t′) exists as W t′
1 , . . . ,W

t′

k forms a partition of Vt′ = V (Ht′).

Now, we choose a partition H,H′1,1, . . . ,H′1,k,H′2,1, . . . ,H′q,k of {H1, . . . , Ht} satisfying

the following for each (s, k′) ∈ [q]× [k].
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(H4)3.4.1 v(H′s,k′) = ε−1/10ds,k′ + 2kη2/5n± η2/5n and∑
t′:Ht′∈H′s,k′

|V (Ht′) ∩ L| ≥ ε−1/11ds,k′ + η1/2n.

We will choose A within the vertex sets of the graphs in H′1,1, . . . ,H′q,k. Moreover, we will

allocate all the other vertices of the graphs in each H′s,k′ to Y ∪ Z.

Claim 3.4.1. There exists a partition H,H′1,1, . . . ,H′1,k,H′2,1, . . . ,H′q,k of {H1, . . . , Ht} sat-

isfying (H4)3.4.1.

Proof. For each t′ ∈ [t], we choose it′ independently at random from [q]× [k] ∪ {(0, 0)} such

that for each (s, k′) ∈ [q]× [k] we have

P[it′ = (s, k′)] =
ε−1/10ds,k′

n
+ 2kη2/5 and P[it′ = (0, 0)] = 1− ε−1/10n′

n
− 2qk2η2/5.

An easy calculation based on (3.4.2) shows that this defines a probability distribution.

For each (s, k′) ∈ [q]× [k], we let

H := {Ht′ : t′ ∈ [t], it′ = (0, 0)} and H′s,k′ := {Ht′ : t′ ∈ [t], it′ = (s, k′)}.

Then it is easy to combine a Chernoff bound (Lemma 3.3.1) with (H1)3.4.1, (H2)3.4.1, (3.4.4)

and the fact that |V (H)| = n to check that the resulting partition satisfies (H4)3.4.1 with

positive probability. This proves the claim.

By permuting indices on [t], we may assume that for some t∗ ∈ [t], we have

H = {H1, . . . , Ht∗} and
⋃

(s,k′)∈[q]×[k]

H′s,k′ = {Ht∗+1, . . . , Ht}.

For each (s, k′) ∈ [q]× [k], let

Ls,k′ :=
⋃

t′:Ht′∈H′s,k′

(L ∩W t′

k(t′)) \N3k3+2
H (V0 ∪W0). (3.4.6)

Then by (3.4.3) and (3.4.5) we have

|Ls,k′ | ≥
∑

t′:Ht′∈H′s,k′

1

k
|L ∩ V (Ht′)| − 8∆3k3+2η0.9n

(H4)3.4.1
≥ ε−1/11ds,k′/k + η1/2n/(2k) ≥ ∆3ds,k′ .
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For each (s, k′) ∈ [q]× [k], we apply Lemma 3.3.21 to Ls,k′ to obtain a subset of Ls,k′ with

size exactly ds,k′ which is 3-independent in H. Write this 3-independent set as

{a` : ` ∈ [n′], C∗` = V (Q′s) and C` = V (Q′s,k′)}. (3.4.7)

This is possible by (3.4.1) and (3.4.2) and defines vertices a1, . . . , an′ . Let A := {a1, . . . , an′}.

By (3.4.6) and (H3)3.4.1, A is still a 3-independent set in H. As a` ∈ L, we know that

dH(a`) ≤ 2(1 + 1/h)m/n. (3.4.8)

Moreover, for ` ∈ [n′] and t′ ∈ [t], we have the following.

If a` ∈ Vt′, then t′ ∈ [t] \ [t∗] and a` ∈ W t′

k(t′) \N
3k3+2
H (V0 ∪W0). (3.4.9)

In particular, we have NH(a`) ∩N3k3+1
H (V0 ∪W0) = ∅. Thus if a` ∈ Vt′ , then

NH(a`) ⊆
⋃

k′′∈[k]\{k(t′)}

W t′

k′′ \N3k3+1
H (V0 ∪W0). (3.4.10)

Step 3. Allocating the neighbourhood of A. We will allocate NH(A) to Y . We will

achieve this by suitably allocating V (H′s,k′) for each (s, k′) ∈ [q] × [k]. This will allocate

NH(A) via (3.4.10). Note that all choices until now are deterministic. Next we run the

following random procedure.

For each t′ ∈ [t]\ [t∗], let (s, k′) ∈ [q]× [k] be such that Ht′ ∈ H′s,k′, and choose a per-

mutation πt′ on [k] independently and uniformly at random among all permutations

such that πt′(k′) = k(t′).
(3.4.11)

(Note that this is the only place that our choice is random.) Thus one value of πt′ is fixed,

while all other k− 1 values are chosen at random. We choose πt′ in this way because we wish

to distribute NH(a`) to
⋃
i∈C`

Yi, so that later (B2)3.4.1 is satisfied. Setting πt′(k′) = k(t′) will

ensure that no vertex in NH(a`) will be distributed to Yi with i ∈ C∗` \C`. Moreover, as πt′ is
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chosen uniformly at random, NH(a`) will be distributed to
⋃
i∈C`

Yi in a uniform way, which

will guarantee that (B7)3.4.1 holds.

Indeed, for ` ∈ [n′], (s, k′) ∈ [q]× [k] and t′ ∈ [t] \ [t∗] such that a` ∈ Ls,k′ ∩ Vt′ , and

for any k′′ ∈ [k] \ {k′}, the number πt′(k′′) is chosen uniformly at random among [k] \ {k(t′)},

thus we have

E[|NH(a`) ∩W t′

πt′ (k
′′)|] ≤

dH(a`)

k − 1

(3.4.8)
≤ 2(1 + 1/h)m

(k − 1)n
. (3.4.12)

For each i ∈ [r], let

Ỹi :=
⋃

(s,k′):i=q′s(k′)

⋃
k′′∈[k]

⋃
Ht′∈H′s,k′′

W t′

πt′ (k
′) \ A and Ỹ :=

⋃
i∈[r]

Ỹi. (3.4.13)

Step 4. Allocating the remaining vertices to X and Y . Later the vertices in Ỹi will

be assigned to Yi (except those which are too close to V0 in H, which will be assigned to Z).

The sizes of the sets Xi will be almost identical. (Note that because of (B3)3.4.1, it is not

possible to prescribe different sizes for Xi and Xj if i and j lie in the same copy of Kk in Q.)

Thus, in order to ensure (B5)3.4.1, we need to decide how many more vertices other than Ỹi

we will assign to the set Yi. As part of this we now decide which of the Ht′ ∈ H are allocated

to X and which are allocated to Y (again, vertices close to V0 will be assigned to Z). Note

that we have

|Ỹi| ≤
∑

(s,k′):i=q′s(k′)

∑
k′′∈[k]

∑
Ht′∈H′s,k′′

|Ht′|
(H4)3.4.1
≤

∑
s:i∈V (Q′s)

∑
k′′∈[k]

(ε−1/10ds,k′′ + 3kη2/5n)

(3.4.2)
≤ ε−1/10dF∗(i) + 3k2qη2/5n

(A3)3.4.1
≤ ε1/2n/r. (3.4.14)

For each i ∈ [r], let ñ := (1− 2ε1/2)n/r, and

ñi := ni − ñ− |Ỹi|
(A4)3.4.1
≤ ε1/3n

(h+ 1)r
, then ñi

(A4)3.4.1
≥ ε1/2n/r − |Ỹi|

(3.4.14)
≥ 0.(3.4.15)

By applying Lemma 3.3.19 with R, h, σ, ε1/3n/((h+ 1)r) and ñi playing the roles of G, t, σ,m

and dv, respectively, we obtain a multi-k-graph F# on [r] such that for each Q ∈ E(F#), we
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have R[Q] ' Kk, and

for each i ∈ [r], we have dF#(i) = ñi + ε1/3n
r
± 1.

(3.4.16)

This implies

N :=
∑
i∈[r]

(ñ− ε1/3n

r
+ dF#(i))− |V0 ∪W0|

(3.4.15)
=

∑
i∈[r]

(ni − |Ỹi| ± 1)− |V0 ∪W0|

(A4)3.4.1
= n− n′ − |Ỹ | − |V0 ∪W0| ± r. (3.4.17)

Note that we have

v(H) = |V (H) \ (Ỹ ∪ A ∪ V0 ∪W0)| = N ± r. (3.4.18)

Our target is to assign roughly dF#(i) extra vertices to Yi in addition to Ỹi, and assign roughly

ñ− ε1/3n
r

vertices to Xi, and a negligible amount of vertices to Zi. Then |Xi|+ |Yi|+ |Zi| will

be close to ni as required in (B5)3.4.1.

To achieve this, we partition H = {H1, . . . , Ht∗} into H1, . . . ,Hr′ ,H#
1 , . . . ,H#

q satisfy-

ing the following for all i ∈ [r′] and s ∈ [q].

(H5)3.4.1 v(Hi) = kñ− kε1/3n

r
± η2/5n and e(Hi) =

k(m± ε2/7n)

r
,

(H6)3.4.1 v(H#
s ) = k ·multF#(V (Q′s))± η2/5n.

(Recall that multF#(V (Q′s)) denotes the multiplicity of the edge V (Q′s) in F#.) Indeed, such

a partition exists by the following claim.

Claim 3.4.2. There exists a partition H1, . . . ,Hr′ ,H#
1 , . . . ,H#

q of {H1, . . . , Ht∗} satisfying

(H5)3.4.1– (H6)3.4.1.

Proof. For each t′ ∈ [t∗], we choose it′ independently at random from {(0, 1), . . . , (0, r′), (1, 1), . . . , (1, q)}

such that for each i ∈ [r′] and s ∈ [q]:

P[it′ = (0, i)] =
kñ− kε1/3n

r
− k|V0∪W0|

r

N
and P[it′ = (1, s)] =

k ·multF#(V (Q′s))

N
.
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Since
∑

s∈[q] k · multF#(V (Q′s)) = k|E(F#)| =
∑

i∈[r] dF#(i), an easy calculation based on

(3.4.17) shows that this defines a probability distribution. For all i ∈ [r′] and s ∈ [q], we let

Hi := {Ht′ : t′ ∈ [t∗], it′ = (0, i)} and H#
s := {Ht′ : t′ ∈ [t∗], it′ = (1, s)}.

Then it is easy to combine a Chernoff bound (Lemma 3.3.1) with (H1)3.4.1, (H2)3.4.1 and

(3.4.18) to check that the resulting partition satisfies (H5)3.4.1 and (H6)3.4.1 with positive

probability. This proves the claim.

By permuting indices on [t∗], we may assume that for some t∗ ∈ [t∗] we have

⋃
i∈[r′]

Hi = {H1, . . . , Ht∗} and
⋃
s∈[q]

H#
s = {Ht∗+1, . . . , Ht∗}.

In order to obtain (B3)3.4.1–(B5)3.4.1, we need to distribute vertices of the graphs in

Hi into {Xj : j ∈ V (Qi)} and vertices of the graphs in H#
s into {Yj : j ∈ V (Q′s)} so that the

resulting vertex sets and edge sets are evenly balanced. For this, we define a permutation πt′

on [k] for each t′ ∈ [t∗] which will determine how we will distribute these vertices. We will

choose these permutations π1, . . . , πt∗ such that the following hold for all i ∈ [r′], s ∈ [q] and

k′ 6= k′′ ∈ [k].

(H7)3.4.1

∑
t′:Ht′∈Hi

|W t′

πt′ (k
′)| = ñ− ε1/3n

r
± η2/5n and

∑
t′:Ht′∈Hi

|EH(W t′

πt′ (k
′),W

t′

πt′ (k
′′))| =

2m± ε1/4n

(k − 1)r
,

(H8)3.4.1

∑
t′:Ht′∈H

#
s

|W t′

πt′ (k
′)| = multF#(V (Q′s))± η2/5n.

To see that such permutations exist we consider for each t′ ∈ [t∗] a permutation πt′ : [k]→ [k]

chosen independently and uniformly at random. Then, by a Chernoff bound (Lemma 3.3.1)

combined with (H1)3.4.1 and (H2)3.4.1, it is easy to check that π1, . . . , πt∗ satisfy (H7)3.4.1 and

(H8)3.4.1 with positive probability.

Step 5. Clique walks. Recall that V0 is a separator of both H and H \W0. The vertices

in V0 will be allocated to the sets Z1, . . . , Zk which initially correspond to the clique Q′1 ⊆ R
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(recall that V (Q′1) = {1, . . . , k}). We now identify an underlying structure in R that will be

used in Step 6 to ensure that while allocating V (H)\(V0 ∪W0 ∪ A) to X, Y and Z, we do

not violate the vertex partition admitted by R (c.f. (B3)3.4.1). (This is a particular issue

when considering edges between separator vertices and the rest of the partition.)

To illustrate this, let s ∈ S be a separator vertex allocated to Zk′ . Let x be some

vertex in some Ht′ with xs ∈ E(H). Suppose Ht′ is assigned to some clique Qi ⊆ Q and

that this would assign x to some set Xi′ , where i′ ∈ V (Qi). Furthermore, suppose i′k′ is not

an edge in R. We cannot simply reassign x to another set Xj to obey the vertex partition

admitted by R without also considering the neighbourhood of x in Ht′ . To resolve this, we

apply Lemma 3.3.20 to obtain a suitable ‘clique walk’ P between Q′1 and Qi, i.e. the initial

sement of P is V (Q′1), its final segment is V (Qi) and each segment of k consecutive vertices

in P corresponds to a k-clique in R. We initially assign x to a set Zk′′ for some k′′ ∈ [k] \ {k′}.

We then assign the vertices which are close to x to some Zk′′′ , where the choice of k′′′ ∈ [r] is

determined by P . (In order to connect Y to V0, we also choose similar clique walks starting

with Q′1 and ending with Q′s for each s ∈ [q].)

To define the clique walks formally, for each t′ ∈ [t], let

Pt′ :=


Qi if Ht′ ∈ Hi for some i ∈ [r′],

Q′s if Ht′ ∈ H#
s for some s ∈ [q],

Q′s if Ht′ ∈ H′s,k′ for some (s, k′) ∈ [q]× [k],

and
{pt′(1), . . . , pt′(k)} := Pt′ ,

where pt′(1) < · · · < pt′(k).

(3.4.19)

By using (A1)3.4.1, we can apply Lemma 3.3.20 for each t′ ∈ [t] with V (Q′1) and V (Pt′) playing

the roles of Q1 and Q2 in order to obtain a walk j(t′, 1), . . . , j(t′, bt′k) in R such that

for all distinct i, i′ ∈ [bt′k] with |i− i′| ≤ k − 1, we have j(t′, i)j(t′, i′) ∈ E(R), and

for each k′ ∈ [k] we have j(t′, k′) = πt′(k
′) and j(t′, (bt′ − 1)k + k′) = pt′(k

′).
(3.4.20)

Moreover, for each t′ ∈ [t], we have

3 ≤ bt′ ≤ 3k2. (3.4.21)
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As described above we will later distribute some vertices of Vt′∩N (bt′−1)k(V0) to
⋃
k′∈[(bt′−1)k] Zj(t′,k′)

so that we can ensure (B3)3.4.1 and (B6)3.4.1 hold.

Step 6. Iterative construction of the partition. Now, we will distribute the vertices of

each Ht′ into X1, . . . , Xr, Y1, . . . , Yr, Z1, . . . , Zr in such a way that (B1)3.4.1–(B7)3.4.1 hold. (In

particular, as discussed earlier, we will have Ỹi ⊆ Yi.) To achieve this, for each t′ = 0, 1, . . . , t,

we iteratively define sets X t′
1 , . . . , X

t′
r , Y

t′
1 , . . . , Y

t′
r , Z

t′
1 , . . . , Z

t′
r . First, for each k′ ∈ [k], let

Z0
k′ := W 0

k′ and for all i ∈ [r] and i′ ∈ [r] \ [k], let

X0
i := ∅, Y 0

i := ∅ and Z0
i′ := ∅.

We will write

V t′ :=
t′⋃

t′′=0

Vt′′ , X t′ :=
⋃
i∈[r]

X t′

i , Y t′ :=
⋃
i∈[r]

Y t′

i and Zt′ :=
⋃
i∈[r]

Zt′

i .

Assume that for some t′ ∈ [t], we have already defined a partitionX t′−1
1 , . . . , X t′−1

r , Y t′−1
1 , . . . , Y t′−1

r ,

Zt′−1
1 , . . . , Zt′−1

r of V t′−1 satisfying the following.

(Z1)t
′−1

3.4.1 For all i′ ∈ [r′] and i ∈ V (Qi′), let k′ be so that i = qi′(k
′). Then we have (where bt′′

below is the length of the walk defined in (3.4.20))⋃
t′′∈[t′−1]:Ht′′∈Hi′

W t′′

πt′′ (k
′) \N

(bt′′−1)k
H (V0) ⊆ X t′−1

i ⊆
⋃

t′′∈[t′−1]:Ht′′∈Hi′

W t′′

πt′′ (k
′),

(Z2)t
′−1

3.4.1 for each i ∈ [r], we have⋃
k′∈[k]

⋃
t′′∈[t′−1]\[t∗]:
pt′′ (k

′)=i

W t′′

πt′′ (k
′) \N

(bt′′−1)k
H (V0) ⊆ Y t′−1

i ⊆
⋃
k′∈[k]

⋃
t′′∈[t′−1]\[t∗]:
pt′′ (k

′)=i

W t′′

πt′′ (k
′),

(Z3)t
′−1

3.4.1 for all ij /∈ E(Q), we have eH(X t′−1
i , X t′−1

j ) = 0,

(Z4)t
′−1

3.4.1 for all ij /∈ E(R), we have eH(X t′−1
i , Zt′−1

j ) = eH(Y t′−1
i , Zt′−1

j ) = eH(Y t′−1
i , Y t′−1

j ) =

eH(Zt′−1
i , Zt′−1

j ) = 0,
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(Z5)t
′−1

3.4.1 N1
H(X t′−1) \X t′−1 ⊆ Zt′−1 ⊆ N3k3

H (V0),

(Z6)t
′−1

3.4.1 for each k′ ∈ [k], we have W 0
k′ ⊆ Zt′−1

k′ ,

(Z7)t
′−1

3.4.1 for each t′′ ∈ [t′ − 1], we have |{i ∈ [r] : (X t′−1
i ∪ Y t′−1

i ) ∩ Vt′′ 6= ∅}| ≤ k.

Using that Q′1 is a copy of Kk in R and V (Q′1) = {1, . . . , k}, it is easy to see that (Z1)0
3.4.1–

(Z7)0
3.4.1 hold with the above definition of X0

i , Y
0
i , Z

0
i . We now distribute the vertices of Ht′

by setting

X t′

i :=

 X t′−1
i ∪

(
W t′

πt′ (k
′) \N

(bt′−2)k+k′

H (V0)
)

if t′ ∈ [t∗] and i = pt′(k
′) for some k′ ∈ [k],

X t′−1
i otherwise,

Y t′

i :=

 Y t′−1
i ∪

(
W t′

πt′ (k
′) \N

(bt′−2)k+k′

H (V0)
)

if t′ ∈ [t] \ [t∗] and i = pt′(k
′) for some k′ ∈ [k],

Y t′−1
i otherwise,

Zt′

i := Zt′−1
i ∪

⋃
(b,k′)∈[bt′−1]×[k]:
i=j(t′,(b−1)k+k′)

(
W t′

πt′ (k
′) ∩

(
N

(b−1)k+k′

H (V0) \N (b−2)k+k′

H (V0)
))

.

Let H ′ := H \W0. Recall that N3k3+1
H (V0) does not contain any vertex in W0 (see (3.4.3)).

Hence N i
H(V0) = N i

H′(V0) for any i ≤ 3k3 + 1.

Note that the above definition of X t′
i , Y

t′
i , Z

t′
i uniquely distributes all vertices of V t′ .

Indeed, first note that either Y t′
i = Y t′−1

i for all i ∈ [r] or X t′
i = X t′−1

i for all i ∈ [r] depending

on whether Ht′ ∈ Hc for some c ∈ [r′] (in which case t′ ∈ [t∗]) or Ht′ ∈ H#
s for some s ∈ [q]

or Ht′ ∈ H′s,k′ for some (s, k′) ∈ [q]× [k] (in the latter two cases we have t′ ∈ [t] \ [t∗]). Now,

consider W t′

k′′ ∩ (Na
H(V0) \ Na−1

H (V0)) for k′′ ∈ [k] and a ∈ N. Note k′′ = πt′(k
′) for some

k′ ∈ [k]. Then either a > (bt′ − 2)k+ k′ or a ∈ [(b′− 1)k+ k′] \ [(b′− 2)k+ k′] for some unique

b′ ∈ [bt′ − 1]. Thus indeed every vertex of V t′ belongs to exactly one of X t′
i or Y t′

i or Zt′
i .

It is easy to see that the above definition with (3.4.21), (Z1)t
′−1

3.4.1 and (Z2)t
′−1

3.4.1 implies

(Z1)t′3.4.1 and (Z2)t′3.4.1. Also, (Z7)t
′

3.4.1 is obvious from the construction. Moreover, (Z3)t
′−1

3.4.1 and

(H3)3.4.1 imply (Z3)t′3.4.1 while (Z6)t
′−1

3.4.1 implies (Z6)t′3.4.1. Similarly, we have eH(Y t′
i , Y

t′
j ) = 0 if
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ij /∈ E(R). We now verify the remaining assertions of (Z4)t′3.4.1. First suppose that

EH(X t′

i , Z
t′

i′ ) \ EH(X t′−1
i , Zt′−1

i′ ) 6= ∅ or EH(Y t′

i , Z
t′

i′ ) \ EH(Y t′−1
i , Zt′−1

i′ ) 6= ∅.

Then by (H3)3.4.1, we have i = pt′(k
′) for some k′ ∈ [k] and i′ = j(t′, (b− 1)k + k′′) for some

k′′ ∈ [k] and b ∈ [bt′ − 1], and H contains an edge between

W t′

πt′ (k
′) \N

(bt′−2)k+k′

H (V0) and W t′

πt′ (k
′′) ∩N

(b−1)k+k′′

H (V0).

This means that (bt′ − 2)k+ k′ ≤ (b− 1)k+ k′′. Thus b = bt′ − 1 and k′ ≤ k′′. Moreover, since

W t′

πt′ (k
′) is an independent set of H, we have k′ 6= k′′. Since (3.4.20) implies that i = pt′(k

′) =

j(t′, (bt′−1)k+k′) and i′ = j(t′, (bt′−2)k+k′′) with 0 < (bt′−1)k+k′− ((bt′−2)k+k′′) < k,

again this with (3.4.20) implies that ii′ ∈ E(R). Now suppose that

xy ∈ EH(Zt′

i , Z
t′

i′ ) \ EH(Zt′−1
i , Zt′−1

i′ ) with x, y /∈ V0.

Then by (H3)3.4.1, we have i = j(t′, (b − 1)k + k′) and i′ = j(t′, (b′ − 1)k + k′′) for some

b, b′ ∈ [bt− 1] and k′ 6= k′′ ∈ [k]. However, the definition of Zt′
i implies that such an edge only

exists when |((b − 1)k + k′) − ((b′ − 1)k + k′′)| ≤ k − 1. In this case, (3.4.20) implies that

ii′ ∈ E(R). Finally, suppose that

xy ∈ EH(Zt′

i , Z
t′

i′ ) \ EH(Zt′−1
i , Zt′−1

i′ ) with x ∈ V0 ∩ Zt′

i .

Then the definition of Zt′
i implies that i ∈ [k], x ∈ W 0

i and i′ = j(t′, k′) for some k′ ∈ [k].

(3.4.20) implies that j(t′, k′) = πt′(k
′). As W 0

πt′ (k
′) ∪W t′

πt′ (k
′) is an independent set of H, we

have i 6= πt′(k
′). However, as R[[k]] = R[V (Q′1)] ' Kk, we know that ii′ ∈ E(R). Thus

(Z4)t′3.4.1 holds. By the definition of X t′
i and Zt′

i with (3.4.21), it is obvious that (Z5)t′3.4.1 holds

too.

Thus, by repeating this, we obtain a partition X t
1, . . . , X

t
r, Y

t
1 , . . . , Y

t
r , Z

t
1, . . . , Z

t
r of

V (H) \W0 satisfying (Z1)t3.4.1–(Z7)t3.4.1. For each i ∈ [r], let

Xi := X t
i , X := X t, Yi := Y t

i \ A, Y := Y t \ A, Z ′i := Zt
i and Z ′ := Zt.
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Note that A ⊆ Y t by (3.4.9) and (Z2)t3.4.1. Moreover, X, Y, Z ′, A forms a partition of

V (H) \W0. Now we consider the vertices in W0. For each w ∈ W0, let

Iw := {i ∈ [r] : NH(w) ∩ (Xi ∪ Yi) 6= ∅}.

By (3.4.3), we have W0 ∩ V0 = ∅. Hence, for each vertex w ∈ W0, there exists t′ ∈ [t] such

that w ∈ Ṽt′ . As W0 is an independent set, (3.4.3) with (H3)3.4.1 implies NH(w) ⊆ Vt′ . This

with (Z7)t3.4.1 implies that |Iw| ≤ k. As |NR(Iw)| > 0 by (A1)3.4.1, we can assign w to Z ′i for

some i ∈ NR(Iw). Let Z1, . . . , Zr, Z be the sets obtained from Z ′1, . . . , Z
′
r, Z

′ by assigning

all vertices in W0 in this way. By (3.4.3), (3.4.9) and (Z5)t3.4.1 for each w ∈ W0 we have

NH(w) ⊆ X ∪ Y . Thus

for all i ∈ [r], w ∈ W0∩Zi and x ∈ NH(w), we have x ∈ Xj∪Yj for some j ∈ NR(i).

(3.4.22)

The sets X, Y, Z,A now form a partition of V (H).

Step 7. Checking the properties of the partition. We now verify that this partition

satisfies (B1)3.4.1-(B7)3.4.1. Note that (3.4.8) implies (B1)3.4.1. Consider any ` ∈ [n′], and let

t′ ∈ [t] \ [t∗] and (s, k′) ∈ [q]× [k] be such that a` ∈ Ht′ ∈ H′s,k′ . Then

NH(a`)
(3.4.10)
⊆

⋃
k′′∈[k]\{k(t′)}

W t′

k′′ \N3k3+1
H (V0 ∪W0)

(3.4.11)
=

⋃
k′′∈[k]\{k′}

W t′

πt′ (k
′′) \N3k3+1

H (V0 ∪W0)

(Z2)t3.4.1, (Z5)t3.4.1
⊆

⋃
k′′∈[k]\{k′}

Ypt′ (k′′) \N
1
H(Z)

(3.4.1),(3.4.19)
=

⋃
i∈V (Q′

s,k′ )

Yi \N1
H(Z)

(3.4.7)
=

⋃
i∈C`

Yi \N1
H(Z).

This proves (B2)3.4.1. Moreover, whenever `, t′ and (s, k′) are as in the proof of (B2)3.4.1, for

each j′ ∈ C`, we have j′ = pt′(k
′′) for some k′′ ∈ [k] \ {k′}. Thus by (3.4.10) and (Z2)t3.4.1, we

have

E[|NH(a`) ∩ Yj′ |] ≤ E[|NH(a`) ∩W t′

πt′ (k
′′)|]

(3.4.12)
≤ 2(1 + 1/h)m

(k − 1)n
.

This proves (B7)3.4.1.
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Properties (Z3)t3.4.1, (Z4)t3.4.1, (Z5)t3.4.1 and (3.4.22) imply (B3)3.4.1.

For each ij ∈ E(Q), let s ∈ [r′] and k′, k′′ ∈ [k] be such that i = qs(k
′) and j = qs(k

′′).

Thus

eH(Xi, Xj)
(H3)3.4.1,(Z1)t3.4.1=

∑
t′∈[t∗]:Ht′∈Hs

|EH(W t′

πt′ (k
′),W

t′

πt′ (k
′′))| ±∆|N3k3

H (V0)| (H2)3.4.1,(H7)3.4.1
=

2m± ε1/5n

(k − 1)r
.

Thus (B4)3.4.1 holds. Moreover, given i ∈ [r], let s ∈ [r′] and k′ ∈ [k] be such that i = qs(k
′).

Then

|Xi|
(Z1)t3.4.1=

∑
t′∈[t∗]:Ht′∈Hs

|W t′

πt′ (k
′)| ± |N3k3

H (V0)| (H7)3.4.1
= ñ− ε1/3n/r ± η1/3n.

Similarly, for i ∈ [r], since by (3.4.9) the vertices of A only belong to V (Ht′) for t′ ∈ [t] \ [t∗],

|Yi|
(Z2)t3.4.1=

∑
(t′,k′):pt′ (k

′)=i,t′∈[t]\[t∗]

|W t′

πt′ (k
′) \ A| ± |N3k3

H (V0)|

(3.4.19)
=

∑
(s,k′):q′s(k′)=i

∑
t′:Ht′∈H

#
s

|W t′

πt′ (k
′)|+

∑
(s,k′):q′s(k′)=i

∑
k′′∈[k]

∑
t′:Ht′∈H′s,k′′

|W t′

πt′ (k
′) \ A| ± η1/2n

(H8)3.4.1,(3.4.13)
=

∑
(s,k′):q′s(k′)=i

multF#(V (Q′s)) + |Ỹi| ± 2qη2/5n = dF#(i) + |Ỹi| ± 2qη2/5n

(3.4.15),(3.4.16)
= ni − ñ+ ε1/3n/r ± η1/3n.

Together with (3.4.3), (Z5)t3.4.1 and (H2)3.4.1, this now implies that for each i ∈ [r]

|Xi|+ |Yi|+ |Zi| = ni ± η1/4n.

Also, the definition of ñ with (A4)3.4.1 implies that |Yi| ≤ 2ε1/3n/r. Thus (B5)3.4.1 holds.

Finally, (3.4.3) and (Z5)3.4.1 imply (B6)3.4.1.

3.5 Packing graphs into a super-regular blow-up

In this section, we prove our main lemma. Roughly speaking, this lemma says the following.

Suppose we have disjoint vertex sets V , Rest and V0 and suppose that we have a super-regular

Kk-factor blow-up G[V ] on vertex set V , and suitable graphs G[Rest], G[V,Rest], F [V,Rest]

158



and F ′[Rest, V0] are also provided. Then we can pack an appropriate collection H of graphs

into G ∪ F ∪ F ′. Here V0 is the exceptional set obtained from an application of Szemerédi’s

regularity lemma and Rest is a suitable ‘reservoir’ set where V0 is much smaller than Rest,

which in turn is much smaller than V . The k-cliques provided by the multi-k-graph C∗t below

will allow us to find a suitable embedding of the neighbours of the vertices mapped to V0.

When we apply Lemma 3.5.1 in Section 6, the reservoir set Rest will play the role of the set

U ∪ U0 below. U0 will correspond to a set of exceptional vertices in Rest. (A9)3.5.1 will allow

us to embed the neighbours of the vertices mapped to U0.

Note that the packing φ is designed to cover most of the edges of the blown-up

Kk-factor G[V ], but only covers a small proportion of the edges of G incident to U. (A7)3.5.1

provides the edges incident to the vertices mapped to V0, and (A8)3.5.1 allows us to embed

the neighbourhoods of these vertices.

Lemma 3.5.1. Suppose n, n′, k,∆, r, T ∈ N with 0 < 1/n, 1/n′ � η � ε � 1/T � α �

d� 1/k, σ, ν, 1/∆ < 1 and η � 1/r � σ and k | r. Suppose that R and Q are graphs with

V (R) = V (Q) = [r] such that Q is a union of r/k vertex-disjoint copies of Kk. Suppose that

V0, . . . , Vr, U0, . . . , Ur is a partition of a set of n vertices such that |V0| ≤ εn, |U0| ≤ εn and

for all i ∈ [r]

n′ = |Vi| =
(1− 1/T ± 2ε)n

r
and |Ui| =

(1± 2ε)n

Tr
.

Let V :=
⋃
i∈[r] Vi and U :=

⋃
i∈[r] Ui. Suppose that G,F, F ′ are edge-disjoint graphs such that

V (G) = V ∪ U ∪ U0, F is a bipartite graph with vertex partition (V, U), and F ′ is a bipartite

graph with vertex partition (V0, U) such that F ′ =
⋃
t∈[T ]

⋃
v∈V0 F

′
v,t, where all the F ′v,t are

pairwise edge-disjoint stars with centre v.

Suppose that H is a collection of (k, η)-chromatic η-separable graphs on n vertices,

and for each t ∈ [T ] we have a multi-(k − 1)-graph Ct on [r] and a multi-k-graph C∗t on [r]

with E(Ct) = {Cv,t : v ∈ V0} and E(C∗t ) = {C∗v,t : v ∈ V0}. Assume the following hold.

(A1)3.5.1 For each H ∈ H, we have ∆(H) ≤ ∆ and e(H) ≥ n/4,
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(A2)3.5.1 n7/4 ≤ e(H) ≤ (1− ν)(k − 1)αn2/(2r),

(A3)3.5.1 G[V ] is (T−1/2, α)-super-regular with respect to the vertex partition (Q, V1, . . . , Vr),

(A4)3.5.1 for each ij ∈ E(R), the graphs G[Vi, Uj] and G[Ui, Uj] are both (ε1/50, (d3))+-regular,

(A5)3.5.1 δ(R) ≥ (1− 1/k + σ)r,

(A6)3.5.1 for all ij ∈ E(Q) and u ∈ Ui, we have dF,Vj(u) ≥ d3n′,

(A7)3.5.1 for all v ∈ V0 and t ∈ [T ] and i ∈ Cv,t, we have dF ′v,t,Ui
(v) ≥ (1− d)α|Ui|,

(A8)3.5.1 for all v ∈ V0 and t ∈ [T ], we have Cv,t ⊆ C∗v,t, R[C∗v,t] ' Kk, and ∆(C∗t ) ≤ ε3/4n
r

,

(A9)3.5.1 for each u ∈ U0, we have

|{i ∈ [r] : dG,Vj(u) ≥ d3n′ for all j ∈ NQ(i)}| > ε1/4r.

Then there exists a packing φ of H into G ∪ F ∪ F ′ such that

(B1)3.5.1 ∆(φ(H)) ≤ 4k∆αn/r,

(B2)3.5.1 for each u ∈ U , we have dφ(H)∩G(u) ≤ 2∆ε1/8n/r,

(B3)3.5.1 for each i ∈ [r], we have eφ(H)∩G(Vi, U ∪ U0) < ε1/2n2/r2.

Roughly, the proof of Lemma 3.5.1 will proceed as follows. In Step 1 we define a

partition of U0 and an auxiliary digraph D. In Step 2 we define a partition of each H ∈ H. For

each graph H ∈ H we apply Lemma 3.4.1 to partition V (H) into XH , Y H , ZH , AH . We will

embed AH into V0 and the remainder of H into V ∪U∪U0. In Step 3, we apply Lemma 3.3.6 to

find an appropriate function φ′ packing {H[Y H ∪ZH ∪AH ] : H ∈ H} into G[U ]∪F ′. Guided

by the auxiliary digraph D, in Step 4 we modify the partition by removing a suitableWH from

XH (so that we can later embed XH\WH into V ). We will also find a function φ′′ packing

{H[WH ] : H ∈ H} into G[U ] in an appropriate way, which ensures that later we can also
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pack {H[XH \WH ,WH ] : H ∈ H} into F [V, U ]∪G[V, U ]. In Step 5 we will partition H into

subcollections H1,1, . . . ,HT,w and use Lemma 3.3.14 to pack {H[XH \WH ] : H ∈ Ht,w′} into

an internally q-regular graph Ht,w′ (for some suitable q). Finally, in Step 6 we apply the blow-

up lemma for approximate decompositions (Theorem 3.3.15) to pack {Ht,w′ : t ∈ [T ], w′ ∈ [w]}

into G[V ] such that the packing obtained is consistent with φ′ ∪ φ′′.

Proof. Let r′ := r/k and Q1, . . . , Qr′ be the copies of Kk in Q. Let n0 := |V0| and V0 =:

{v1, . . . , vn0}. By (A1)3.5.1, for each H ∈ H, we have

e(H) ≤ ∆n. (3.5.1)

Moreover,

κ := |H|
(A1)3.5.1,(A2)3.5.1

≤ 2(1− ν)(k − 1)αn/r. (3.5.2)

Step 1. Partition of U0 and the construction of an auxiliary digraph D. In Step 2,

we will find a partition of each H ∈ H which closely reflects the structure of G. However

we need the partitions to match up exactly. The following auxiliary graph will enable us to

carry out this adjustment in Step 4. Let D be the directed graph with V (D) = [r] and

E(D) = {~ij : i 6= j ∈ [r], NQ(i) ⊆ NR(j)}. (3.5.3)

For each ij ∈ E(R), we let

Ui(j) := {u ∈ Ui : dG,Vj(u) ≥ (d3 − ε1/50)n′}.

Then (A4)3.5.1 with Proposition 3.3.4 implies that |Ui(j)| ≥ (1−2ε1/50)|Ui|. For each ~ij ∈ E(D),

we define

UD
j (i) :=

⋂
i′∈NQ(i)

Uj(i
′), (3.5.4)
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then we have

|UD
j (i)| ≥ (1− 2(k − 1)ε1/50)|Uj| ≥ n/(2Tr). (3.5.5)

In Step 4 we will map some vertices x ∈ V (H) whose ‘natural’ image would have been in Vi

to UD
j (i) instead, in order to ‘balance out’ the vertex class sizes.

Claim 3.5.1. There exists a set I∗ = {i∗1, . . . , i∗k} ⊆ [r] of k distinct numbers such that for

any k′ ∈ [k] and j ∈ [r], there exists a directed path P (i∗k′ , j) from i∗k′ to j in D.

Proof. First, we claim that all i 6= j ∈ [r] satisfy that N−D(i) ∩ N−D(j) 6= ∅. Indeed, as

|NR({i, j})| ≥ 2δ(R)− r ≥ (1− 2/k + 2σ)r, we have that

|{s ∈ [r′] : |NR,V (Qs)({i, j})| ≥ k − 1}| ≥ σr ≥ 3.

Thus there exists s ∈ [r′] such that i, j /∈ V (Qs) while |NR,V (Qs)({i, j})| ≥ k − 1. We choose

j′ ∈ V (Qs) such that Qs \ {j′} ⊆ NR({i, j}), then (3.5.3) implies that i, j ∈ N+
D (j′).

Now, we consider a number i ∈ [r] which maximizes |A(i)|, where

A(i) = {j ∈ [r] : there exists a directed path from i to j in D}.

If there exists j ∈ [r] such that j /∈ A(i), then by the above claim, there exists j′ ∈ [r] such

that i, j ∈ N+
D(j′). Then A(i) ∪ {j} ⊆ A(j′), which is a contradiction to the maximality of

A(i). Thus, we have A(i) = [r]. Let i∗1 := i.

Since dR(i∗1) ≥ δ(R) ≥ (1− 1/k + σ)r by (A5)3.5.1, we have |{s ∈ [r′] : NR,V (Qs)(i
∗
1) =

k}| ≥ σr. Thus, there exists s ∈ [r′] such that V (Qs) ⊆ NR(i∗1), and this with (3.5.3) implies

that V (Qs) ⊆ N−D(i∗1). We let i∗2, . . . , i∗k be k − 1 arbitrary numbers in V (Qs). Then for all

k′ ∈ [k] and j ∈ [r], there exists a directed path from i∗k′ to i∗1 and a directed path from i∗1 to

j in D. Thus there exists a directed path from i∗k′ to j in D. This proves the claim.

We will now determine the approximate class sizes ñi that our partition of H will

have. For this, we first partition U0 into U ′1, . . . , U ′r in such a way that the vertices in U ′i are
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‘well connected’ to the blow-up of the k-clique in Q to which i belongs.

For all i ∈ [r], u ∈ U ′i and j ∈ NQ(i), we have dG,Vj(u) ≥ d3n′ and |U ′i | ≤ 2ε3/4n/r. (3.5.6)

Indeed, it is easy to greedily construct such a partition by using the fact that |U0| ≤ εn and

(A9)3.5.1.

For i ∈ I∗, we will slightly increase the partition class sizes (cf. (3.5.9) and (X5)3.5.1)

as this will allow us to subsequently move any excess vertices from classes corresponding to

I∗ to another arbitrary class via the paths provided by Claim 3.5.1. For each i ∈ [r], we let

ni := n′ + |Ui|+ |U ′i | = |Vi|+ |Ui|+ |U ′i |, (3.5.7)

then we have

ni = (1− 1/T ± 2ε)n/r + (1± 2ε)n/(Tr)± 2ε3/4n/r = (1± ε2/3/2)n/r and
∑
i∈[r]

ni = n− n0.

(3.5.8)

For each i ∈ [r] we let

ñi :=

 ni + (r′ − 1)η1/5n if i ∈ I∗,

ni − η1/5n if i ∈ [r] \ I∗.
(3.5.9)

This with (3.5.8) implies that for each i ∈ [r],

ñi =
(1± ε2/3)n

r
and

∑
i∈[r]

ñi =
∑
i∈[r]

ni = n− n0. (3.5.10)

Step 2. Preparation of the graphs in H. First, we will partition H into T collections

H1, . . . ,HT . Later we will pack each Ht into G ∪ F ∪
⋃
v∈V0 F

′
v,t. (Recall that the F ′v,t form a

decomposition of F ′.) As G ∪ F ∪ F ′ has vertex partition V0, . . . , Vr, U1, . . . , Ur, U
′
1, . . . , U

′
r,

for each H ∈ H, we also need a suitable partition of V (H) which is compatible with the

partition of the host graph G ∪ F ∪ F ′. To achieve this, we will apply Lemma 3.4.1 to each

graph H ∈ Ht with the hypergraphs Ct and C∗t to find the desired partition of V (H).
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By (3.5.1) we can partition H into H1, . . . ,HT such that for each t ∈ [T ],

e(Ht) = e(H)/T ±∆n
(A2)3.5.1
≤ (1− 2ν/3)α(k − 1)n2/(2Tr), and

|Ht|
(A1)3.5.1
≤ 4e(Ht)/n ≤ 2α(k − 1)n/(Tr). (3.5.11)

For each t ∈ [T ], we wish to apply the randomised algorithm given by Lemma 3.4.1 with the

following objects and parameters independently for all H ∈ Ht.

object/parameter H R Q Ct C∗t n0 Cv`,t C∗v`,t d3/de η ε k ∆ r ñi

playing the role of H R Q F F∗ n′ C` C∗` h η ε k ∆ r ni

Indeed, (A5)3.5.1, (A8)3.5.1 imply that (A1)3.4.1, (A2)3.4.1 and (A3)3.4.1 hold with the

above objects and parameters, respectively. Moreover, (3.5.10) implies that (A4)3.4.1 holds

too. Thus we obtain a partition XH
1 , . . . , X

H
r , Y

H
1 , . . . , Y H

r , Z
H
r , . . . , Z

H
r , A

H of V (H) such

that AH = {aH1 , . . . , aHn0
} is a 3-independent set of H and the following hold, where XH :=⋃

i∈[r] X
H
i , Y

H :=
⋃
i∈[r] Y

H
i , and ZH :=

⋃
i∈[r] Z

H
i .

(X1)3.5.1 For each ` ∈ [n0], we have dH(aH` ) ≤ (2+d)e(H)
n

,

(X2)3.5.1 for each ` ∈ [n0], we have NH(aH` ) ⊆
⋃
i∈Cv`,t

Y H
i \N1

H(ZH),

(X3)3.5.1 H[XH ] admits the vertex partition (Q,XH
1 , . . . , X

H
r ), and H \ E(H[XH ]) admits the

vertex partition (R,XH
1 ∪ Y H

1 ∪ ZH
1 , . . . , X

H
r ∪ Y H

r ∪ ZH
r ),

(X4)3.5.1 for each ij ∈ E(Q), we have eH(XH
i , X

H
j ) = 2e(H)±ε1/5n

(k−1)r
,

(X5)3.5.1 for each i ∈ [r], we have |Y H
i | ≤ 2ε1/3n/r and |XH

i | + |Y H
i | + |ZH

i | = ñi ± η1/4n; in

particular, this with (3.5.9) implies that for each i ∈ [r], we have

n̂Hi := |XH
i |+ |Y H

i |+ |ZH
i | ∈


[
ni, ni + η1/6n

]
if i ∈ I∗,[

ni − η1/6n, ni
]

otherwise,

(X6)3.5.1 N1
H(XH) \XH ⊆ ZH , and |ZH | ≤ 4∆3k3η0.9n,
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(X7)3.5.1 for all ` ∈ [n0] and i ∈ Cv`,t, we have E[NH(aH` ) ∩ Y H
i ] ≤ (2+d)e(H)

(k−1)n
.

By applying this randomised algorithm independently for each H ∈ H1 ∪ · · · ∪HT , we

obtain that for all t ∈ [T ], ` ∈ [n0] and i ∈ Cv`,t, we have E[
∑

H∈Ht
|NH(aH` )∩Y H

i |] ≤
(2+d)e(Ht)

(k−1)n
.

Note that for each H ∈ Ht, we have |NH(aH` ) ∩ Y H
i | ≤ ∆. As our applications of the

randomised algorithm are independent for all H ∈ Ht, a Chernoff bound (Lemma 3.3.1)

together with (A2)3.5.1 implies that for all t ∈ [T ], ` ∈ [n0] and i ∈ Cv`,t, we have

P
[ ∑
H∈Ht

|NH(aH` )∩Y H
i | ≥

2(1 + d)e(Ht)

(k − 1)n

]
≤ 2 exp(−d

2e(Ht)
2/((k − 1)2n2)

2∆2|Ht|
)

(3.5.11),(A2)3.5.1
≤ e−n

1/3

.

By taking a union bound over all t ∈ [T ], ` ∈ [n0] and i ∈ Cv`,t, we can show that the

following property (X8)3.5.1 holds with probability at least 1− kTn0e
−n1/3

> 0.

(X8)3.5.1 For all t ∈ [T ], ` ∈ [n0] and i ∈ Cv`,t, we have
∑

H∈Ht
|NH(aH` ) ∩ Y H

i | ≤
2(1+d)e(Ht)

(k−1)n
.

Thus we conclude that for all H ∈ H there exist partitions XH
1 , . . . , X

H
r , Y

H
1 , . . . , Y H

r ,

ZH
r , . . . , Z

H
r , AH of V (H) such that AH = {aH1 , . . . , aHn0

} is a 3-independent set of H and

such that (X1)3.5.1–(X6)3.5.1 and (X8)3.5.1 hold.

Note that
∑

i∈[r] n̂
H
i = |V (H)|− |AH | = n−n0. This with (3.5.8) implies that for each

H ∈ H, we have ∑
i∈I∗

(n̂Hi − ni) =
∑

i∈[r]\I∗
(ni − n̂Hi ). (3.5.12)

The following claim determines the number of vertices that we will redistribute via D.

Claim 3.5.2. For each H ∈ H, there exists a function fH : E(D)→ [η1/7n] ∪ {0} such that

for each i ∈ [r], we have ∑
j∈N+

D(i)

fH(~ij)−
∑

j∈N−D (i)

fH(~ji) = n̂Hi − ni.

Proof. By (X5)3.5.1, for each i ∈ I∗, we have n̂Hi − ni ≥ 0 and for each i ∈ [r] \ I∗, we have

ni − n̂Hi ≥ 0. Thus by (3.5.12), there exists a bijection gH from⋃
i∈I∗
{i} × [n̂Hi − ni] to

⋃
i∈[r]\I∗

{i} × [ni − n̂Hi ].
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For all i ∈ I∗ and m ∈ [n̂Hi − ni], let gH(i,m) =: (gH1 (i,m), gH2 (i,m)) and let Pi,m be a

directed path from i to gH1 (i,m) in D, which exists by Claim 3.5.1. As gH is a bijection, for

each i ∈ [r], we have

|(gH1 )−1(i)| =

 0 if i ∈ I∗,

ni − n̂Hi otherwise.
(3.5.13)

For each ~ij ∈ E(D), we let

fH(~ij) := |{(i′,m) : i′ ∈ I∗,m ∈ [n̂Hi′ − ni′ ] and ~ij ∈ E(Pi′,m)}|.

Then for each ~ij ∈ E(D), we have

fH(~ij) ≤
∣∣∣ ⋃
i′∈I∗
{i′} × [n̂Hi′ − ni′ ]

∣∣∣ (X5)3.5.1
≤ kη1/6n ≤ η1/7n.

Note that for any i ∈ I∗ and m ∈ [n̂Hi −ni], the path Pi,m starts from a vertex in I∗ and ends

at [r] \ I∗. Thus for each i ∈ [r] we have

∑
j∈N+

D(i)

fH(~ij)−
∑

j∈N−D (i)

fH(~ji)

= |{(i′,m) : m ∈ [n̂Hi′ − ni′ ], i = i′ ∈ I∗}| − |{(i′,m) : i′ ∈ I∗,m ∈ [n̂Hi′ − ni′ ], gH1 (i′,m) = i}|

=

 (n̂Hi − ni)− 0 = n̂Hi − ni if i ∈ I∗,

0− (gH1 )−1(i)
(3.5.13)

= n̂Hi − ni otherwise.

This proves the claim.

For each H ∈ H, we fix a function fH satisfying Claim 3.5.2. For each ~ij /∈ E(D), it

will be convenient to set fH(~ij) := 0.

We aim to embed vertices in XH
i ∪ Y H

i ∪ ZH
i into Vi ∪ Ui ∪ U ′i . As |Vi ∪ Ui ∪ U ′i | = ni,

by (3.5.7), it would be ideal if |XH
i ∪ Y H

i ∪ ZH
i | = ni and |XH

i | = n′. However, (X5)3.5.1

only guarantees that this is approximately true. In order to deal with this, we will use D

and fH to assign a small number of ‘excess’ vertices u ∈ XH
i into Uj when ~ij ∈ E(D). The
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definition ofD will ensure that the image of u still has many neighbours in Vi′ for all i′ ∈ NQ(i).

Step 3. Packing the graphs H[Y H ∪ ZH ∪ AH ] into G[U ] ∪ F ′. Now, we aim to

find a suitable function φ′ which packs {H[Y H ∪ ZH ∪ AH ] : H ∈ H} into G[U ] ∪ F ′.

In order to find φ′, we will use Lemma 3.3.6. Moreover, we choose φ′ in such a way

that we can later extend φ′ into a packing of the entire graphs H ∈ H. One important

property we need to ensure is the following: for any vertex x ∈ XH
j which is not embedded

by φ′, and any vertices y1, . . . , yi ∈ NH(x) ∩ (Y H ∪ ZH) which are already embedded by

φ′, we need NG(φ′({y1, . . . , yi})) ∩ Vj to be large, so that x can be later embedded into

NG(φ′({y1, . . . , yi})) ∩ Vj. For this, we will introduce a hypergraph NH which encodes

information about the set NH(x) ∩ (Y H ∪ ZH) for each vertex x ∈ XH . In order to describe

the structure of G and H more succinctly, we also introduce a graph R′ on [2r] such that

E(R′) = {ij : (i− r)(j − r) ∈ E(R) or i(j − r) ∈ E(R)} .

For all i ∈ [r] and H ∈ H, let Vi+r := Ui and XH
i+r := Y H

i ∪ ZH
i . Note that (X3)3.5.1 and

(A4)3.5.1 imply that for each H ∈ H,

H[Y H ∪ ZH ] admits the vertex partition (R′, ∅, . . . , ∅, XH
r+1, . . . , X

H
2r), and

G is (ε1/50, (d3))+-regular with respect to the partition (R′, V1, . . . , V2r).
(3.5.14)

For all H ∈ H and x ∈ XH , let

eH,x := NH(x) \XH (X6)3.5.1
= NH(x) ∩ ZH .

Let NH be a multi-hypergraph on vertex set ZH with

E(NH) := {eH,x : x ∈ N1
H(ZH) ∩XH}, (3.5.15)

and let fH : E(NH)→ [r] be a function such that for all x ∈ XH , we have that x ∈ XH
fH(eH,x).

Then ∆(NH) ≤ ∆ and NH has edge-multiplicity at most ∆. Note that, as NH is a multi-

hypergraph, there could be two distinct vertices x 6= x′ ∈ XH such that eH,x and eH,x′ consists

of exactly the same vertices while fH(eH,x) 6= fH(eH,x′).
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Our next aim is to construct a function φ′ which packs {H[Y H ∪ ZH ∪ AH ] : H ∈ H}

into G[U ] ∪ F ′ in such a way that the following hold for all H ∈ H.

(Φ′1)3.5.1 For each e ∈ E(NH), we have |NG(φ′(e)) ∩ VfH(e)| ≥ d5∆|VfH(e)|,

(Φ′2)3.5.1 for each v ∈ V (G), we have |{H ∈ H : v ∈ φ′(H[Y H ∪ ZH ])}| ≤ ε1/8n/r,

(Φ′3)3.5.1 for all i ∈ [r] and H ∈ H, we have φ′(Y H
i ∪ ZH

i ) ⊆ Ui, and

(Φ′4)3.5.1 φ′(AH) = V0.

Claim 3.5.3. There exists a function φ′ packing {H[Y H ∪ZH ∪AH ] : H ∈ H} into G[U ]∪F ′

which satisfies (Φ′1)3.5.1–(Φ′4)3.5.1.

Proof. Let φ′0 : ∅ → ∅ be an empty packing. Let H1, . . . , Hκ be an enumeration of H. For

each s ∈ [κ], let

Hs := {Hs′ [Y
Hs′ ∪ ZHs′ ∪ AHs′ ] : s′ ∈ [s]}.

Our aim is to successively extend φ′0 into φ′1, . . . , φ′κ in such a way that each φ′s satisfies the

following.

(Φ′1)s3.5.1 φ′s packs Hs into G[U ] ∪ F ′,

(Φ′2)s3.5.1 for all s′ ∈ [s] and e ∈ E(NHs′
), we have |NG(φ′s(e)) ∩ VfHs′

(e)| ≥ d5∆|VfHs′
(e)|,

(Φ′3)s3.5.1 for each v ∈ V (G), we have |{s′ ∈ [s] : v ∈ φ′s(Hs′ [Y
Hs′ ∪ ZHs′ ])}| ≤ ε1/8n/r,

(Φ′4)s3.5.1 for all i ∈ [2r] \ [r] and s′ ∈ [s], we have φ′s(X
Hs′
i ) ⊆ Vi,

(Φ′5)s3.5.1 for all s′ ∈ [s] and ` ∈ [n0], we have φ′s(a
Hs′
` ) = v`,

(Φ′6)s3.5.1 for all s′ ∈ [s], t ∈ [T ] with Hs′ ∈ Ht, we have φ′s(Hs′ [Y
Hs′ ∪ ZHs′ ∪ AHs′ ]) ⊆ G[U ] ∪⋃

v∈V0 F
′
v,t.
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Note that φ′0 vacuously satisfies (Φ′1)0
3.5.1–(Φ′6)0

3.5.1. Assume we have already con-

structed φ′s satisfying (Φ′1)s3.5.1–(Φ′6)s3.5.1 for some s ∈ [κ− 1] ∪ {0}. We will show that we

can construct φ′s+1. Let

G(s) := G \ φ′s(Hs).

For all ` ∈ [n0] and aHs+1

` ∈ AHs+1 , we first let

ψ(a
Hs+1

` ) := v`. (3.5.16)

For each i ∈ [2r] \ [r], let

V bad
i :=

{
v ∈ Vi : |{s′ ∈ [s] : v ∈ φ′s′(Hs′ [Y

Hs′ ∪ ZHs′ ])}| ≥ ε1/8n

r
− 1
}
.

Note that

|V bad
i |

(Φ′4)s3.5.1
≤

∑
s′∈[s] |Y

Hs′
i−r ∪ Z

Hs′
i−r |

ε1/8n
r
− 1

(X5)3.5.1,(X6)3.5.1
≤ 3ε1/3−1/8κ

(3.5.2)
≤ ε1/5n

r
. (3.5.17)

Let t ∈ [T ] be such that Hs+1 ∈ Ht. For all i ∈ [2r] \ [r] and x ∈ XHs+1

i , we let

Bx :=

 NF ′v`,t
,Vi(v`) \ (Nφ′s(Hs)(v`) ∪ V bad

i ) if x ∈ NHs+1(a
Hs+1

` ) ∩XHs+1

i for some ` ∈ [n0],

Vi \ V bad
i otherwise.

We will later embed x into Bx. Note that if x ∈ NHs+1(a
Hs+1

` ), then x /∈ NHs+1(a
Hs+1

`′ ) for any

`′ ∈ [n0] \ {`} as AHs+1 is a 3-independent set in Hs+1. Also, if x ∈ NHs+1(a
Hs+1

` ) ∩XHs+1

i ,

then by (X2)3.5.1 we have i− r ∈ Cv`,t. Thus in this case

|Bx| ≥ dF ′v`,t,Vi
(v`)− dφ′s(Hs)∩F ′v`,t,Vi

(v`)− |V bad
i |

(A7)3.5.1,(3.5.17)
≥ (1− d)α|Ui−r| − dφ′s(Hs)∩F ′v`,t,Vi

(v`)− ε1/5n/r

(X2)3.5.1,(Φ′4)s3.5.1,
(Φ′5)s3.5.1,(Φ

′6)s3.5.1
≥ (1− d)α|Ui−r| −

∑
s′∈[s],Hs′∈Ht

|NHs′
(a
Hs′
` ) ∩ Y Hs′

i−r | − ε1/5n/r

(X8)3.5.1
≥ (1− d)α|Ui−r| −

2(1 + d)e(Ht)

(k − 1)n
− ε1/5n/r

(3.5.11)
≥ (1− d)α|Ui−r| −

(1 + d)(1− 2ν/3)αn

Tr
− ε1/5n/r ≥ α2|Ui−r| = α2|Vi|.
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If x /∈ NHs+1(a
Hs+1

` ) for any ` ∈ [n0], then |Bx| ≥ |Vi| − |V bad
i | ≥ (1 − ε1/10)|Vi|. So, for all

i ∈ [2r] \ [r] and x ∈ XHs+1

i , we have

Bx ⊆ Vi, and |Bx| ≥ α2|Vi|. (3.5.18)

For each i ∈ [r], let Pi := ∅, and for each i ∈ [2r] \ [r], let Pi := X
Hs+1

i . We wish

to apply Lemma 3.3.6 with H[Y Hs+1 ∪ ZHs+1 ] playing the role of H and with the following

objects and parameters.

object/parameter G(s) R′ Vi Pi ε1/60 ∆ n′ α2 d3 NHs+1 fHs+1 1/(2T ) Bx

playing the role of G R Vi Xi ε ∆ n α d M f β Ax

Let us first check that we can indeed apply Lemma 3.3.6. Note that for each ij ∈ E(R′)

with i ∈ [2r] \ [r],

eG(s)(Vi, Vj) ≥ eG(Vi, Vj)−∆
∑
v∈Vi

|{s′ ∈ [s] : v ∈ φ′s(Hs′ [Y
Hs′ ∪ ZHs′ ])}|

(Φ′3)s3.5.1
≥ eG(Vi, Vj)−∆ε1/8n|Vi|/r

(A4)3.5.1
≥ (1− ε1/9)eG(Vi, Vj).

Thus (3.5.14) with Proposition 3.3.3 implies that (A1)3.3.6 of Lemma 3.3.6 holds. Again

(3.5.14) implies that (A2)3.3.6 holds. Conditions (A3)3.3.6 and (A4)3.3.6 are obvious from

(A1)3.5.1, (X3)3.5.1 and the definition of NHs+1 . Moreover, (3.5.18) implies that (A5)3.3.6 also

holds. Thus by Lemma 3.3.6, we obtain an embedding ψ′ : Hs+1[Y Hs+1 ∪ ZHs+1 ]→ G(s)[U ]

satisfying the following.

(P1)s+1
3.5.1 For each x ∈ Y Hs+1 ∪ ZHs+1 , we have ψ′(x) ∈ Bx,

(P2)s+1
3.5.1 for each e ∈ E(NHs+1), we have |NG(ψ′(e)) ∩ VfHs+1

(e)| ≥ (d3/2)∆|VfHs+1
(e)|.

Let φ′s+1 := φs∪ψ∪ψ′. By (3.5.16) with the definitions of G(s) and Bx, this implies (Φ′1)s+1
3.5.1

and (Φ′6)s+1
3.5.1. As d� 1, (P2)s+1

3.5.1 implies (Φ′2)s+1
3.5.1, and the definitions of Bx and V bad

i with

(P1)s+1
3.5.1 and (Φ′3)s3.5.1 imply (Φ′3)s+1

3.5.1. Property (P1)s+1
3.5.1 and (3.5.18) imply that (Φ′4)s+1

3.5.1
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holds. (Φ′5)s+1
3.5.1 is obvious from (3.5.16). By repeating this for each s ∈ [κ− 1], we can obtain

our desired packing φ′ := φ′κ. Since (Φ′1)κ3.5.1–(Φ′5)κ3.5.1 imply that φ′ is a packing of Hκ into

G[U ] ∪ F ′ satisfying (Φ′1)3.5.1–(Φ′4)3.5.1, this proves the claim.

Step 4. Packing a 3-independent set WH ⊆ XH into U ∪ U0. In the previous step, we

constructed a function φ′ packing {H[Y H ∪ ZH ∪ AH ] : H ∈ H} into G[U ] ∪ F ′. However,

for each graph H ∈ H, the set φ′(H) only covers a small part of U . Eventually we need to

cover every vertex of G with a vertex of H. Hence, for each H ∈ H we will choose a subset

WH ⊆ XH of size exactly |U ∪ U0| − |Y H ∪ ZH |, and we will construct a function φ′′ which

packs {H[WH ] : H ∈ H} into G[U ∪ U0]. As later we will extend φ′ ∪ φ′′ into a packing of H

into G ∪ F ∪ F ′, we again have to make sure that for any x ∈ XH
i \WH with neighbours

in WH , there is a sufficiently large set of candidates to which x can be embedded. In other

words, the set Vi ∩N(φ′′(NH(x) ∩WH)) needs to be reasonably large. To achieve this, we

choose WH to be a 3-independent set, so |NH(x) ∩WH | ≤ 1, and we will map each vertex

y ∈ NH(x) ∩WH into a vertex v which has a large neighbourhood in Vi.

Accordingly, for all H ∈ H and i ∈ [r], we choose a subset WH
i ⊆ XH

i satisfying the

following:

(W1)3.5.1

⋃
i∈[r] W

H
i is a 3-independent set of H,

(W2)3.5.1 for each i ∈ [r], we have

|WH
i | = |XH

i | − n′
(X5)3.5.1

= ni − n′ − |Y H
i | − |ZH

i | ± η1/6n
(3.5.7),(3.5.6),(X5)3.5.1

=
(1± ε1/4)n

Tr
,

(W3)3.5.1

⋃
i∈[r] W

H
i ∩N2

H(ZH) = ∅.

Indeed, the following claim ensures that there exist such sets WH
i .

Claim 3.5.4. For all H ∈ H and i ∈ [r], there exists WH
i ⊆ XH

i such that (W1)3.5.1–(W3)3.5.1

hold.
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Proof. We fix H ∈ H. Assume that for some i ∈ [r], we have already defined WH
1 , . . . ,W

H
i−1

satisfying the following.

(W′1)i−1
3.5.1

⋃
i′∈[i−1]W

H
i′ is a 3-independent set of H,

(W′2)i−1
3.5.1 for each i′ ∈ [i− 1], we have |WH

i′ | = |XH
i′ | − n′ =

(1±ε1/4)n
Tr

,

(W′3)i−1
3.5.1

⋃
i′∈[i−1]W

H
i′ ∩N2

H(ZH) = ∅.

Consider W ′H
i := XH

i \ (
⋃
i′∈[i−1]N

2
H(WH

i′ ) ∪ N2
H(ZH)). Note that (X6)3.5.1 implies that

|N2
H(ZH)| ≤ 8∆3k3+2η0.9n. Also, (X3)3.5.1 with (X6)3.5.1 implies that⋃

i′∈[i−1]

N2
H(WH

i′ ) ∩XH
i ⊆ N1

H(ZH) ∪
⋃

i′∈NQ(i)∩[i−1]

N2
H(WH

i′ ).

Thus

|W ′H
i | ≥ |XH

i | − |N2
H(ZH)| −

∑
i′∈NQ(i)∩[i−1]

|N2
H(WH

i′ )|

(W′2)i−1
3.5.1

≥ |XH
i | − 8∆3k3+2η0.9n− 2k∆2n

Tr

(X5)3.5.1,(3.5.10)
≥ ∆3(|XH

i | − n′).

Thus, by Lemma 3.3.21, W ′H
i contains a 3-independent set WH

i of size |XH
i | − n′. Then, by

the choice of WH
i , (W′1)i3.5.1–(W′3)i3.5.1 hold. By repeating this for all i ∈ [r] in increasing

order, we obtain WH
i satisfying (W′1)r3.5.1–(W′3)r3.5.1, and thus satisfying (W1)3.5.1–(W3)3.5.1.

This proves the claim.

For all H ∈ H and i ∈ [r], let WH :=
⋃
i′∈[r] W

H
i′ and Wi :=

⋃
H∈HW

H
i , where we

consider the sets V (H) to be disjoint for different H ∈ H. Note that for all H ∈ H and

i ∈ [r], Claim 3.5.2 implies that 0 ≤
∑

j∈N+
D(i) f

H(~ij) ≤ rη1/7n. For all H ∈ H and i ∈ [r], we

choose a partition WH,F
i ,WH,U ′

i ,WH,D
i of WH

i such that

|WH,U ′

i | = |U ′i | and |W
H,D
i | =

∑
j∈N+

D(i)

fH(~ij) ≤ rη1/7n. (3.5.19)

Such partitions exist by (3.5.6), (W2)3.5.1 and the fact that η � ε � 1/T . For each

S ∈ {F,D,U ′}, we let WH,S :=
⋃
i∈[r] W

H,S
i .
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We now construct a function φ′′ which maps all the vertices of WH into U0 ∪ (U \

φ′(Y H ∪ ZH)) for each H ∈ H. (In Step 6 we will then apply Theorem 3.3.15 to embed all

the vertices of XH \WH into V .) We will define φ′′ separately for WH,F ,WH,D and WH,U ′ .

We first cover the ‘exceptional’ set U0 with WH,U ′ . (3.5.19) implies that for all H ∈ H and

i ∈ [r], there exists a bijection φ′′HU ′,i from WH,U ′

i to U ′i . We let φ′′U ′ :=
⋃
H∈H

⋃
i∈[r] φ

′′H
U ′,i. Then

(3.5.6) implies the following.

For all i ∈ [r] and H ∈ H, the function φ′′U ′ is bijective between WH,U ′

i and U ′i .

Moreover, for all x ∈ WH,U ′

i and j ∈ NQ(i), we have dG,Vj(φ′′U ′(x)) ≥ d3n′.
(3.5.20)

We intend to embed the neighbours of WH
i into

⋃
j∈NQ(i) Vj. Thus it is natural to embed

WH
i into Ui and make use of (A6)3.5.1. This is in fact what we will do for WH,F

i . However,

the vertices of WH,D
i will first be mapped to a suitable set of vertices in UD

j (i) ⊆ Uj for

j ∈ N+
D (i). The definition of D and fH will ensure that the remaining uncovered part of each

Uj matches up exactly with the size of each WH,F
j .

By (3.5.5), for all ~ij ∈ E(D) and H ∈ H, we have

|UD
j (i) \ φ′(Y H ∪ ZH)| ≥ n/(2Tr)− |Y H

j ∪ ZH
j |

(X5)3.5.1,(X6)3.5.1
≥ |Uj|/3.

For i ∈ [r] and H ∈ H, we let

bHi :=
∑

j∈N−D (i)

fH(~ji)
Claim 3.5.2

≤ rη1/7n ≤ η1/10|Ui|.

Thus, for each i ∈ [r], we can apply Lemma 3.3.18 with the following objects and parameters.

object/parameter κ r H ∈ H Ui j ∈ [r] UDi (j) \ φ′(Y H ∪ ZH) η1/10 fH(~ji) bHi 1/3

playing the role of s r i ∈ [s] A j ∈ [r] Ai,j ε mi,j
∑

j∈[r]mi,j d

(Recall that fH(~ji) = 0 if ~ji /∈ E(D).) Then we obtain sets UH
i,j ⊆ Ui satisfying the

following for each i ∈ [r], where UH
i :=

⋃
j∈[r] U

H
i,j.

(U1)3.5.1 For each j ∈ [r] and H ∈ H, we have |UH
i,j| = fH(~ji) and UH

i,j ⊆ UD
i (j) \ φ′(Y H ∪ ZH),
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(U2)3.5.1 for j 6= j′ ∈ [r] and H ∈ H, we have UH
i,j ∩ UH

i,j′ = ∅,

(U3)3.5.1 for each v ∈ Ui, we have |{H ∈ H : v ∈ UH
i }| ≤ η1/20|H|

(3.5.2)
≤ η1/20n.

Now for all H ∈ H and i ∈ [r], we partition WH,D
i into WH,D

i,1 , . . . ,WH,D
i,r in such a way that

|WH,D
i,j | = fH(~ij). Clearly, this is possible by (3.5.19). Thus (U1)3.5.1 implies that for all

(i, j) ∈ [r]× [r] and H ∈ H, we have |WH,D
i,j | = fH(~ij) = |UH

j,i|. Thus there exists a bijection

φ′′HD,i,j : WH,D
i,j → UH

j,i. Let φ′′D :=
⋃

(i,j)∈[r]×[r]

⋃
H∈H φ

′′H
D,i,j. Then, for ~ij ∈ E(D), H ∈ H and

y ∈ WH,D
i,j , we have that

φ′′D(y) ∈ UH
j,i ⊆ UD

j (i) \ φ′(Y H ∪ ZH).

Thus, (3.5.4) with (U1)3.5.1 and (U2)3.5.1 implies the following.

For each H ∈ H, the function φ′′D is bijective between
⋃
i∈[r] W

H,D
i = WH,D and⋃

i∈[r] U
H
i . Moreover, for all x ∈ WH,D

i and j′ ∈ NQ(i), we have dG,Vj′ (φ
′′
D(x)) ≥

d3n′/2.
(3.5.21)

Now, for all H ∈ H and i ∈ [r]

|WH,F
i | = |WH

i | − |W
H,U ′

i | − |WH,D
i | (3.5.19),(W2)3.5.1

= (|XH
i | − n′)− |U ′i | −

∑
j∈N+

D(i)

fH(~ij)

(X5)3.5.1
= n̂Hi −

∑
j∈N+

D(i)

fH(~ij)− |Y H
i | − |ZH

i | − n′ − |U ′i |

Claim 3.5.2
= ni −

∑
j∈N−D (i)

fH(~ji)− |Y H
i | − |ZH

i | − n′ − |U ′i |

(3.5.7),(U1)3.5.1
= |Ui| − |Y H

i | − |ZH
i | −

∑
j∈N−D (i)

|UH
i,j|

(Φ′3)3.5.1
= |Ui \ (φ′(Y H

i ∪ ZH
i ) ∪ UH

i )|.

Thus, there exists a bijection φ′′HF,i from WH,F
i to Ui \ (φ′(Y H

i ∪ ZH
i ) ∪ UH

i ). Let φ′′F :=⋃
H∈H

⋃
i∈[r] φ

′′H
F,i . Then (A6)3.5.1 implies the following.

For all H ∈ H and i ∈ [r], the function φ′′F is bijective betweenWH,F
i and Ui\(φ′(Y H

i ∪

ZH
i )∪UH

i ). Moreover, for all x ∈ WH,F
i and j ∈ NQ(i), we have dF,Vj (φ′′F (x)) ≥ d3n′.

(3.5.22)

174



We define

φ′′ := φ′′U ′ ∪ φ′′D ∪ φ′′F and φ∗ := φ′ ∪ φ′′. (3.5.23)

Then (3.5.20), (3.5.21) and (3.5.22) imply that φ′′ is bijective between WH and (U ∪ U0) \

φ′(Y H ∪ ZH), when restricted to WH for each H ∈ H. Thus, we know that

φ∗ is bijective between WH ∪ Y H ∪ ZH ∪ AH and U ∪ U0 ∪ V0 for each

H ∈ H.
(3.5.24)

Moreover, (3.5.20), (3.5.21) and (3.5.22) imply that the following hold for all i ∈ [r] and

H ∈ H.

(Φ∗1)3.5.1 If x ∈ WH,F
i , then φ∗(x) ∈ U and, for each j ∈ NQ(i), we have dF,Vj(φ∗(x)) ≥ d3n′,

(Φ∗2)3.5.1 if x ∈ WH,D
i , then φ∗(x) ∈ U and, for each j ∈ NQ(i), we have dG,Vj(φ∗(x)) ≥ d3n′/2,

(Φ∗3)3.5.1 if x ∈ WH,U ′

i , then φ∗(x) ∈ U0 and, for each j ∈ NQ(i), we have dG,Vj(φ∗(x)) ≥ d3n′.

Furthermore, (Φ′2)3.5.1 with (U3)3.5.1 implies that

(Φ∗4)3.5.1 for u ∈ U , we have |{H ∈ H : u ∈ φ∗(Y H ∪ ZH ∪WH,D)}| ≤ 2ε1/8n/r.

Step 5. Packing the graphs H[XH \ WH ] into internally regular graphs. Note

that (X6)3.5.1 and (W3)3.5.1 together imply that NH(WH) ∩ (Y H ∪ ZH ∪ AH) = ∅ for each

H ∈ H. This implies that φ∗ is a function packing {H[Y H ∪ ZH ∪WH ∪ AH ] : H ∈ H}

into G[U ∪ U0] ∪ F ′. We wish to pack the remaining part H[XH \WH ] of each H ∈ H into

G[V ] by using Theorem 3.3.15. In order to be able to apply Theorem 3.3.15, we first need to

pack suitable subcollections of H into internally q-regular graphs. More precisely, for each

t ∈ [T ], we will partition Ht into Ht,1, . . . ,Ht,w and apply Lemma 3.3.14 to the unembedded

part of each graph in Ht,w′ to pack all these parts into a graph Ht,w′ on |V | vertices which is

internally q-regular. We can then use Theorem 3.3.15 to pack all the Ht,w′ into G[V ] in Step

6.
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For this purpose, we choose an integer q and a constant ξ such that 1/T � 1/q �

ξ � α and let

w :=
e(H)

(1− 3ξ)T (k − 1)qn/2

(A2)3.5.1
≤ (1− ν/2)αn′

qT
. (3.5.25)

By using (3.5.1) and (3.5.11), for each t ∈ [T ], we can further partition Ht into Ht,1, . . . ,Ht,w

such that for each (t, w′) ∈ [T ]× [w], we have

e(Ht,w′) = (1− 3ξ)(k − 1)qn/2± 2∆n = (1− 3ξ ± ξ/2)(k − 1)qn/2. (3.5.26)

By (A1)3.5.1, we have

|Ht,w′ | ≤ 2(k − 1)q ≤ (qξ)3/2. (3.5.27)

For all H ∈ H and i ∈ [r], let X̃H
i := XH

i \WH
i and X̃H :=

⋃
i∈[r] X̃

H
i . Thus, by (W2)3.5.1 we

have |X̃H
i | = n′ for all H ∈ H and i ∈ [r]. Moreover, for all t ∈ [T ], w′ ∈ [w] and ij ∈ E(Q),

we have

∑
H∈Ht,w′

e(H[X̃H
i , X̃

H
j ]) =

∑
H∈Ht,w′

(e(H[XH
i , X

H
j ])±∆(|WH

i |+ |WH
j |)

(X4)3.5.1,(W2)3.5.1
=

∑
H∈Ht,w′

(
2e(H)± ε1/5n

(k − 1)r
± 3∆n

Tr

)
(3.5.26)

= (1− 3ξ ± ξ)qn′. (3.5.28)

When packing H[X̃H ] and H ′[X̃H′ ] (say) into the same graph Ht,w′ , we need to make sure

that the ‘attachment sets’ of H[X̃H ] and H ′[X̃H′ ] are not mapped to the same vertex sets in

Ht,w′ . The attachment set for H[X̃H ] contains those vertices of X̃H which have a neighbour

in WH ∪ Y H ∪ZH ∪AH (more precisely, a neighbour in WH ∪ZH) and is defined in (3.5.29).

Keeping these attachment sets disjoint in Ht,w′ ensures that we can make the embedding of

each X̃H consistent with the existing partial embedding of H without attempting to use an

edge of F or G twice. For all i ∈ [r] and H ∈ H, we let

NH,F
i :=

⋃
i′∈NQ(i)

N1
H(WH,F

i′ ) ∩ X̃H
i and NH,G

i := N1
H(ZH ∪WH,D ∪

⋃
i′∈NQ(i)

WH,U ′

i′ ) ∩ X̃H
i .

(3.5.29)
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Note that (W1)3.5.1, (W3)3.5.1 and the fact that WH,F ,WH,D,WH,U ′ form a partition of WH

implies that

NH,F
i ∩NH,G

i = ∅. (3.5.30)

Moreover, if x ∈ NH,F
i then x has a unique neighbour in WH,F . Similarly, if x ∈ NH,G

i , then

either x has a unique neighbour in WH,D ∪WH,U ′ or x has at least one neighbour in ZH (but

not both). Note that for i ∈ [r] and H ∈ H,

|NH,F
i ∪NH,G

i | ≤
∑

i′∈NQ(i)

∆(|WH,F
i′ |+ |W

H,U ′

i′ |) + ∆(|ZH |+ |WH,D|)

(X6)3.5.1,
(W2)3.5.1,(3.5.19)

≤ 2∆kn

Tr
+ 4∆3k3+1η0.9n+ ∆r2η1/7n ≤ T−2/3n′. (3.5.31)

For each i ∈ [r], we consider a set X̂i with |X̂i| = n′ such that X̂1, . . . , X̂r are pair-

wise vertex-disjoint. For each (t, w′) ∈ [T ] × [w], let Ht,w′ =: {H1
t,w′ , . . . , H

h(t,w′)
t,w′ }. Then,

by (3.5.27), (3.5.28), (3.5.31) and (X3)3.5.1, we can apply Lemma 3.3.14 with the following

objects and parameters for each (t, w′) ∈ [T ]× [w].

object/parameter Hj
t,w′ [X̃

Hj

t,w′ ] X̃
Hj

t,w′
i X̂i n′ q ξ T−2/3 h(t, w′) N

Hj

t,w′ ,F

i ∪N
Hj

t,w′ ,G

i Q

playing the role of Lj Xj
i Vi n q ξ ε s W j

i R

Then for each (t, w′) ∈ [T ]× [w], we obtain a function Φt,w′ packing {H[X̃H ] : H ∈

Ht,w′} into some graph Ht,w′ which is internally q-regular with respect to the vertex partition

(Q, X̂1, . . . , X̂r). Moreover, for all i ∈ [r] and H ∈ Ht,w′ we have Φt,w′(X̃
H
i ) = X̂i and for

distinct H,H ′ ∈ Ht,w′ and i ∈ [r], we have

Φt,w′(N
H,F
i ∪NH,G

i ) ∩ Φt,w′(N
H′,F
i ∪NH′,G

i ) = ∅. (3.5.32)

Note that for all (t, w′) ∈ [T ]× [w], the graphs Ht,w′ have same vertex set
⋃
i∈[r] X̂i. For all
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i ∈ [r] and (t, w′) ∈ [T ]× [w], we let

Lt,w
′

i :=
⋃

H∈Ht,w′

Φt,w′(N
H,F
i ) and M t,w′

i :=
⋃

H∈Ht,w′

Φt,w′(N
H,G
i ). (3.5.33)

Then by (3.5.30) and (3.5.32) we have

Lt,w
′

i ∪M t,w′

i ⊆ X̂i and Lt,w
′

i ∩M t,w′

i = ∅. (3.5.34)

By (3.5.27) and (3.5.31), for all (t, w′) ∈ [T ]× [w] and i ∈ [r]

|Lt,w
′

i ∪M t,w′

i | ≤ q3/2T−2/3n′ ≤ T−1/2n′. (3.5.35)

Step 6. Packing the internally regular graphs Ht,w′ into G[V ]. In the previous step, we

constructed a collection Ĥ := {H1,1, . . . , HT,w} of internally q-regular graphs on |V | vertices.

We now wish to apply Theorem 3.3.15 to pack Ĥ into G[V ]. However, our packing needs to

be consistent with the packing φ∗. Note that for each H ∈ H the set WH ∪ Y H ∪ ZH ∪ AH

consists of exactly those vertices of H which are already embedded by φ∗. Thus by (X3)3.5.1,

(X6)3.5.1, (3.5.29) and (3.5.33), it follows that whenever x ∈ X̂i is a vertex of Ht,w′ such that

the set Φ−1
t,w′(x) of pre-images of x contains a neighbour of some vertex which is already

embedded by φ∗, then x ∈ Lt,w
′

i ∪M t,w′

i . Thus in order to ensure that our packing of Ĥ is

consistent with φ∗, for each i ∈ [r], each (t, w′) ∈ [T ]× [w] and each y ∈ Lt,w
′

i ∪M t,w′

i we will

choose a suitable target set At,w′y of vertices of G[V ] and will map y into this set.

For all (t, w′) ∈ [T ] × [w], i ∈ [r] and any vertex y ∈ Lt,w
′

i ∪M t,w′

i , (3.5.32) implies

that there exists a unique graph H t,w′
y ∈ Ht,w′ and a unique vertex xt,w′y ∈ NHt,w′

y ,F
i ∪NHt,w′

y ,G
i

such that y = Φt,w′(x
t,w′
y ). Let

J t,w
′

y := N
Ht,w′

y
(xt,w

′

y )∩ (WHt,w′
y ∪ZHt,w′

y ) = N
Ht,w′

y
(xt,w

′

y )∩ (WHt,w′
y ∪ Y Ht,w′

y ∪ZHt,w′
y ∪AH

t,w′
y ).

The final equality follows from (X6)3.5.1. For all (t, w′) ∈ [T ] × [w], i ∈ [r] and any vertex

y ∈ Lt,w
′

i ∪M t,w′

i , we define the target set

At,w
′

y :=

 NF (φ∗(J
t,w′
y )) ∩ Vi if xt,w′y ∈ NHt,w′

y ,F
i ,

NG(φ∗(J
t,w′
y )) ∩ Vi if xt,w′y ∈ NHt,w′

y ,G
i .
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Note that At,w′y is well-defined as (3.5.30) implies that exactly one of the above cases holds.

Moreover, the following claim implies that these target sets are sufficiently large.

Claim 3.5.5. For all (t, w′) ∈ [T ]× [w], i ∈ [r] and any vertex y ∈ Lt,w
′

i ∪M t,w′

i , we have

|At,w′y | ≥ d5∆|Vi|.

Proof. We fix (t, w′) ∈ [T ] × [w], i ∈ [r] and a vertex y ∈ Lt,w
′

i ∪M t,w′

i . For simplicity, we

write H := H t,w′
y , x := xt,w

′
y and J := J t,w

′
y . Then (3.5.30) implies that exactly one of the

following two cases holds.

Case 1. x ∈ NH,F
i . In this case, (W1)3.5.1 and (W3)3.5.1 imply that

J = NH(x) ∩WH,F (X3)3.5.1
= NH(x) ∩

⋃
i′∈NQ(i)

WH,F
i′ and |J | = 1.

Then by (Φ∗1)3.5.1, we know |At,w′y | ≥ d3|Vi|.

Case 2. x ∈ NH,G
i . In this case, by (3.5.29) and (W3)3.5.1, we have exactly one of the

following cases.

Case 2.1 x ∈ N1
H(ZH). In this case, NH(x) ∩ WH = ∅ by (W3)3.5.1. Thus we have

J = NH(x)∩ZH . Then (3.5.15) and (Φ′1)3.5.1 imply that |At,w′y | = |NG(φ′(eH,x))∩VfH(eH,x)| ≥

d5∆|Vi|.

Case 2.2 x ∈ N1
H(WH,D∪WH,U ′). In this case, again (W1)3.5.1, (W3)3.5.1 and (X3)3.5.1 imply

that

J = NH(x) ∩ (WH,D ∪WH,U ′) = NH(x) ∩
⋃

i′∈NQ(i)

(WH,D
i′ ∪WH,U ′

i′ ) and |J | = 1.

Thus (Φ∗2)3.5.1 or (Φ∗3)3.5.1 imply that |At,w′y | ≥ d3|Vi|/2. This proves the claim.

Let S := [T ]× [w]. Let Λ be the graph with

V (Λ) := {(~s, y) : ~s ∈ S, y ∈
⋃

~s∈S,i∈[r]

L~si ∪M~s
i }

and

E(Λ) :=
{

(~s, y)(~t, y′) : ~s 6= ~t ∈ S, i ∈ [r], (y, y′) ∈ (L~si × L
~t
i) ∪ (M~s

i ×M
~t
i ) and φ∗(J~sy) ∩ φ∗(J

~t
y′) 6= ∅

}
.
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Note that Λ is the graph indicating possible overlaps of images of distinct edges when

we extend φ∗. Indeed, if (~s, y) and (~t, y′) are adjacent in Λ, there are z ∈ NH~s
y
(x~sy) and

z′ ∈ N
H~t

y′
(x~ty′) such that φ∗(z) = φ∗(z

′). If we embed y and y′ onto the same vertex, then the

two edges x~syz and x~ty′z′ would be embedded onto the same edge of G ∪ F . Thus we need to

ensure that φ(y) 6= φ(y′).

Note that for all (~s, y) ∈ V (Λ) and ~t ∈ S, we have

|{(~t, y′) ∈ NΛ((~s, y))}| ≤ |{y′ : H~t
y′ ∈ H~t, φ∗(J

~t
y′) ∩ φ∗(J~sy) 6= ∅}|

≤
∑

v∈φ∗(J~s
y)

|{y′ : H~t
y′ ∈ H~t, v ∈ φ∗(J

~t
y′)}|

≤
∑

v∈φ∗(J~s
y)

∑
H∈H~t

|{x ∈ V (H) : v ∈ φ∗(NH(x))}|

≤
∑

v∈φ∗(J~s
y)

∑
H∈H~t

|{x ∈ NH(x′) : v = φ∗(x
′), x′ ∈ V (H)}|

(3.5.24)
≤

∑
v∈φ∗(J~s

y)

∑
H∈H~t

∆ ≤ ∆2|H~t|
(3.5.27)
≤ ∆2(ξq)3/2 ≤ q2. (3.5.36)

(Here the third inequality holds by the definition of J~ty′ and the definition of x~ty′ , the fifth

inequality holds since (3.5.24) implies that there is at most one x′ ∈ V (H) with φ∗(x′) = v,

and the sixth inequality holds since |J~sy | ≤ |NH~s
y
(x~sy)| ≤ ∆.)

Consider any (~s, y) ∈ V (Λ). Then similarly as above we have

dΛ((~s, y)) ≤
∑

v∈φ∗(J~s
y)

∑
H∈H

|{x ∈ NH(x′) : v = φ∗(x
′), x′ ∈ V (H)}| ≤ ∆2|H|

(3.5.2)
≤ α1/2n′.

This shows that

∆(Λ) ≤ α1/2n′ < d5∆n′/2. (3.5.37)

We can now apply the blow-up lemma for approximate decompositions (Theorem 3.3.15)

with the following objects and parameters.
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object/parameter G[V ] Vi X̂i Ht,w′ S= [T ]× [w] q T−1/2 Q

playing the role of G Vi Xi Hi [s] q ε R

object/parameter r Lt,w
′

i ∪M t,w′

i At,w
′

y α d5∆ ν Λ n′

playing the role of r W j
i Ajw d d0 α Λ n

Indeed, (A3)3.5.1 implies that (A1)3.3.15 holds, and (A2)3.3.15 holds by the definition of Ht,w′ .

Claim 3.5.5 and (3.5.35) imply that (A3)3.3.15 holds, and (3.5.35), (3.5.36) and (3.5.37) imply

that (A4)3.3.15 holds. Moreover, (3.5.25) implies that the upper bound on s in the assumption

of Theorem 3.3.15 holds.

Thus by Theorem 3.3.15 we obtain a function φ∗ that packs {H~s : ~s ∈ S} into G[V ]

and satisfies the following, where φ∗~s denotes the restriction of φ∗ to H~s.

(Φ∗1)3.5.1 for each ~s ∈ S and y ∈
⋃
i∈[r] L

~s
i ∪M~s

i , we have φ∗~s(y) ∈ A~sy,

(Φ∗2)3.5.1 for any (~s, y)(~t, y′) ∈ E(Λ), we have that φ∗~s(y) 6= φ∗~t (y
′).

We let

φ := φ∗(
⋃
~s∈S

Φs) ∪ φ∗.

Recall from Step 3 and (3.5.23) that φ∗ = φ′ ∪ φ′′, and that φ′ packs {H[Y H ∪ ZH ∪ AH ] :

H ∈ H} into G[U ] ∪ F ′. Since each Φ~s is a packing of {H[XH \WH ] : H ∈ H~s} into H~s and

φ∗ is a packing of {H~s : ~s ∈ S} into G[V ], we know that φ packs {H[XH \WH ] : H ∈ H} into

G[V ]. Moreover, (Φ∗1)3.5.1, (Φ∗2)3.5.1 with the definitions of A~sy and Λ imply that φ packs

{H[XH \WH ,WH,F ] : H ∈ H} into F , and φ packs {H[XH \WH ,WH,U ′ ] : H ∈ H} into

G[V, U0], and φ packs {H[XH \WH ,WH,D ∪ ZH ] : H ∈ H} into G[V, U ]. Thus, we have the

following.

φ(
⋃
H∈H

EH(Y H ∪ ZH ∪ AH)) ⊆ EG(U) ∪ E(F ′), φ(
⋃
H∈H

EH(XH \WH)) ⊆ EG(V ),

φ(
⋃
H∈H

EH(XH \WH ,WH,F )) ⊆ EF (V, U), φ(
⋃
H∈H

EH(XH \WH ,WH,U ′)) ⊆ EG(V, U0),
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φ(
⋃
H∈H

EH(XH\WH ,WH,D ∪ ZH)) ⊆ EG(V, U). (3.5.38)

Also, it is obvious that the restriction of φ to V (H) is injective for each H ∈ H. As

G[U ] ∪ F ′, G[V ], F,G[V, U0] and G[V, U ] are pairwise edge-disjoint, we conclude that φ packs

H into G∪F ∪F ′. Moreover, by (3.5.2) we have ∆(φ(H)) ≤ ∆|H| ≤ 4k∆αn/r, thus (B1)3.5.1

holds. By (3.5.38) and (Φ′4)3.5.1, for u ∈ U , we have

dφ(H)∩G(u) ≤ ∆|{H ∈ H : u ∈ φ∗(Y H ∪ ZH ∪WH,D)}|
(Φ∗4)3.5.1
≤ 2∆ε1/8n

r
.

Thus (B2)3.5.1 holds.

Finally, for i ∈ [r], by (X3)3.5.1, (X6)3.5.1, (3.5.38) we have

eφ(H)∩G(Vi, U ∪ U0) ≤
∑
H∈H

∆
(
|ZH |+

∑
j∈NQ(i)

|WH,U ′

j |+
∑

j∈NQ(i)

|WH,D
j |

)
(3.5.2),(X6)3.5.1,
(3.5.6),(3.5.19)
≤ 2k∆αn

r

(
4∆3k3η0.9n+ 2(k − 1)ε3/4n/r + (k − 1)rη1/7n

)
≤ ε1/2n2

r2
,

which shows that (B3)3.5.1 holds.

3.6 Proof of Theorem 3.1.2

The proof of Theorem 3.1.2 proceeds in three steps. In the first step we will apply the results

of Section 3 to construct suitable edge-disjoint subgraphs Gt,s, G
∗
t , Ft,s and F ′t of G, where Gt,s

is a Kk-factor blow-up spanning almost all vertices while G∗t , Ft,s and F ′t are comparatively

sparse. In the (straightforward) second step, we simply partition H into collections Ht,s such

that the e(Ht,s) are approximately equal to each other. Finally, in the third step we will pack

each Ht,s into Gt,s ∪G∗t ∪ Ft,s ∪ F ′t via Lemma 3.5.1.

Proof of Theorem 3.1.2. Let σ := δ−max{1/2, δreg
k } > 0. By (3.3.6), we have δ ≥ 1−1/k+σ

for any k ≥ 2. Without loss of generality, we may assume that ν < σ/2. For given ν, σ > 0
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and ∆, k ∈ N\{1}, we choose constants n0, ξ, η,M,M ′, ε, T, q, d such that q | T and

0 < 1/n0 � η � 1/M � 1/M ′ � ε� 1/T � 1/q � ξ � d� ν, σ, 1/∆, 1/k ≤ 1/2.

(3.6.1)

Suppose n ≥ n0 and let G be an n-vertex graph satisfying condition (i) of Theorem 3.1.2.

Furthermore, suppose H is a collection of (k, η)-chromatic η2-separable graphs satisfying

conditions (ii) and (iii) of Theorem 3.1.2. We will show that H packs into G. Note that we

assume H to consist of η2-separable graphs here (instead of η-separable graphs). This is more

convenient for our purposes, but still implies Theorem 1.2.

Step 1. Decomposing G into host graphs. In this step, we apply Szemerédi’s regularity

lemma to G and then apply Lemma 3.3.16 to obtain a partition of V (G)\V0 into T reservoir

sets Rest, where V0 is the exceptional set obtained from Szemerédi’s regularity lemma. We

use Lemma 3.3.13 to obtain an approximate decomposition of the reduced multi-graph R′multi

of G into almost Kk-factors and partition these factors into T collections. Each such almost

Kk-factor Q gives us an ε-regular Q-blow-up Gt,s in G, and we modify it into a super-regular

Q-blow-up. We also put aside several sparse ‘connection graphs’ Ft,s and F ′t , which will be

used to link vertices in the reservoir and exceptional set with vertices in the rest of the graph.

These connection graphs will play the roles of F and F ′ in Lemma 3.5.1. We also put aside a

further sparse connection graph G∗t which provides additional connections within V (G) \ V0.

We apply Szemerédi’s regularity lemma (Lemma 3.3.5) with (ε2, d) playing the role of

(ε, d) to obtain a partition V ′0 , . . . , V ′r′ of V (G) and a spanning subgraph G′ ⊆ G such that

(R1) M ′ ≤ r′ ≤M,

(R2) |V ′0 | ≤ ε2n,

(R3) |V ′i | = |V ′j | = (1± ε2)n/r′ for all i, j ∈ [r′],

(R4) for all v ∈ V (G) we have dG′(v) > dG(v)− 2dn,
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(R5) e(G′[V ′i ]) = 0 for all i ∈ [r′],

(R6) for any i, j with 1 ≤ i ≤ j ≤ r′, the graph G′[V ′i , V ′j ] is either empty or (ε2, di,j)-regular

for some di,j ∈ [d, 1].

Let R′ be the graph with

V (R′) = [r′] and E(R′) := {ij : eG′(V
′
i , V

′
j ) > 0}.

Note that for i, j ∈ [r′], ij ∈ E(R′) if and only if G′[V ′i , V ′j ] is (ε2, di,j)-regular with di,j ≥ d.

Now, we let R′multi be a multi-graph with V (R′multi) = [r′] and with exactly

qi,j := b(1− 6d)di,jqc (3.6.2)

edges between i and j for each ij ∈ E(R′). Note that R′multi has edge-multiplicity at most q.

For each i ∈ [r′], we have

dR′multi
(i) =

∑
j∈NR′ (i)

b(1− 6d)q(
eG′(V

′
i , V

′
j )

|V ′i ||V ′j |
± ε2)c (R3),(R5)

=

∑
v∈V ′i

(1− 6d)qdG′,V (G)\V0(v)

|V ′i |2
± ε2qr′ ± r′

(R2),(R4)
=

q

|V ′i |2
∑
v∈V ′i

(dG(v)± 10dn)± 2r′
(i)
=

(δ ± 11d)qn

|V ′i |
± 2r′

(R3)
= (δ ± d3/4)qr′. (3.6.3)

We apply Lemma 3.3.13 with R′multi, r
′, ε2, k, σ, d3/4, ν/5, T and q playing the roles of

G,n,ε, k, σ, ξ, ν, T and q, respectively. Then, by permuting indices in [r′] if necessary, we ob-

tain Rmulti ⊆ R′multi and a collection Q := {Q1,1, . . . , Q1,κ/T , Q2,1, . . . , QT,κ/T} of edge-disjoint

subgraphs of Rmulti such that the following hold.

(Q1) Rmulti = R′multi[[r]] with (1− ε2)r′ ≤ r ≤ r′, and k | r,

(Q2) κ = (δ−ν/5±ε2)qr′

k−1
= (δ−ν/5±ε)qr

k−1
and T | κ,

(Q3) for each (t, s) ∈ [T ]× [κ/T ], Qt,s is a vertex-disjoint union of at least (1− ε)r/k copies

of Kk,

(Q4) for each i ∈ [r], we have |{(t, s) ∈ [T ]× [κ/T ] : i ∈ V (Qt,s)}| ≥ κ− εr,
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(Q5) for all t ∈ [T ] and i, j ∈ [r], we have |{s ∈ [κ/T ] : j ∈ NQt,s(i)}| ≤ 1.

For each t ∈ [T ], let Qt := {Qt,1, . . . , Qt,κ/T}. We define R := R′[[r]] to be the induced

subgraph of R′ on [r]. Note that each Qt,s ∈ Q can be viewed as a subgraph of R. Moreover,

for fixed t ∈ [T ], (Q5) implies that the graphs Qt,1, . . . , Qt,κ/T are pairwise edge-disjoint when

viewed as subgraphs of R. Also, we have

δ(R) ≥ q−1δ(R′multi)− (r′ − r)
(3.6.3),(Q1)
≥ (δ − d1/2)r. (3.6.4)

We need to modify the sets V ′i later to ensure that we obtain appropriate super-regular

Qt,s-blow-ups. For this, we need to move some ‘bad’ vertices in V ′i into V ′0 . For each i ∈ [r]

and each j ∈ NR(i), we define

Ui(j) := {v ∈ V ′i : dG′,V ′j (v) 6= (di,j ± ε2)|V ′j |} and U ′i := {v ∈ V ′i : |{j : v ∈ Ui(j)}| > εr}.(3.6.5)

By Proposition 3.3.4 and (R6), for any i ∈ [r] and j ∈ NR(i) we have

|Ui(j)| ≤ 5ε2n/r and |U ′i | ≤ (εr)−1
∑

j∈NR(i)

|Ui(j)| ≤ 5εn/r. (3.6.6)

For each i ∈ [r], we let Vi := V ′i \ U ′i and V0 := V ′0 ∪
⋃r
i=1 U

′
i ∪
⋃r′

i=r+1 V
′
i .

By (R2) and (R3), for each i ∈ [r], we have

(1− 6ε)n/r ≤ |Vi| ≤ n/r and |V0| ≤ 6εn. (3.6.7)

We apply Lemma 3.3.16 withG′, V (G)\V0, {Vi}ri=1 and T playing the roles ofG, V, {Vi}ri=1

and t to obtain a partition {Res1, . . . , ResT} of V (G)\V0 satisfying the following, where we

define V t
i := Vi ∩Rest.

(Res1) For all t ∈ [T ] and v ∈ V (G), we have dG′,V t
i
(v) = 1

T
dG′,Vi(v)± n2/3,

(Res2) for all t ∈ [T ] and i ∈ [r], we have |V t
i | = ( 1

T
± ε2)|Vi|

(3.6.7)
= (1±7ε)n

Tr
,

(Res3) for all t ∈ [T ], we have |Rest| ∈ {bn−|V0|T
c, bn−|V0|

T
c+ 1}.
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Next, we partition the edges in G′ \V0 into L1, . . . , L7 which will be the building blocks

for the graphs G,F and F ′ in Lemma 3.5.1. Let p1 := 1 − 6d and pj := d for 2 ≤ j ≤ 7.

Apply Lemma 3.3.17 with G′ \ V0, {V t
i : i ∈ [r], t ∈ [T ]}, {(Vi, Vj) : ij ∈ E(R)} and 7 playing

the roles of G, U , U ′ and s. Then we obtain a decomposition L1, . . . , L7 of G′\V0 satisfying

the following for all t ∈ [T ], i ∈ [r], ` ∈ [7] and v ∈ V (G) \ V0:

(L1) dL`,V
t
i
(v) = p`dG′,V t

i
(v)± n2/3,

(L2) for each ij ∈ E(R), we have that L`[Vi, Vj] is (4ε2, di,jp`)-regular.

Let G′′ := L1. For each t ∈ [T ], let G∗t , Ft and F ∗t be the graphs on vertex set V (G) \ V0 with

E(G∗t ) :=
t−1⋃
t′=1

E(L2[Rest, Rest′ ]) ∪
T⋃

t′=t+1

E(L3[Rest, Rest′ ]) ∪ L2[Rest], (3.6.8)

E(Ft) :=
t−1⋃
t′=1

E(L4[Rest, Rest′ ]) ∪
T⋃

t′=t+1

E(L5[Rest, Rest′ ]),

E(F ∗t ) :=
t−1⋃
t′=1

E(L6[Rest, Rest′ ]) ∪
T⋃

t′=t+1

E(L7[Rest, Rest′ ]).

For each t ∈ [T ], we let Ft,1, . . . , Ft,κ/T be subgraphs of Ft such that for all s ∈ [κ/T ]

Ft,s :=
⋃

i∈V (Qt,s)

⋃
j∈NQt,s (i)

Ft[V
t
i , Vj \Rest]. (3.6.9)

Note that (Q5) implies that for s 6= s′ ∈ [κ/T ], the graphs Ft,s and Ft,s′ are edge-disjoint.

Thus G′′, G∗1, . . . , G∗T , F1,1, . . . , FT,κ/T , F
∗
1 , . . . , F

∗
T form edge-disjoint subgraphs of G′ \V0. The

edges in G∗t will be used to satisfy condition (A4)3.5.1 when applying Lemma 3.5.1. The graphs

Ft,s will play the role of F in Lemma 3.5.1. The graphs F ∗t will be used in the construction

of the graph F ′t , which will play the role of F ′ in Lemma 3.5.1.

We will now further partition the edges in G′′ = L1. Note that for each ij ∈ E(R),

by (3.6.2) we have qi,j = bdi,jp1qc. To further partition G′′, we apply Lemma 3.3.17 for each

ij ∈ E(R) with the following objects and parameters.
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object/parameter G′′[Vi, Vj ] {V t
i , V

t
j : t ∈ [T ]} {(Vi, Vj)} qi,j + 1 1/(di,jp1q) 1− qi,j/(di,jp1q)

playing the role of G U U ′ s pi : i < s ps

Then by (L2), for each ij ∈ E(R), we obtain edge-disjoint subgraphs E1
i,j, . . . , E

qi,j+1
i,j

of G′′[Vi, Vj] satisfying the following for all t ∈ [T ] and ` ∈ [qi,j]:

(E1) for each v ∈ Vi, we have dE`
i,j ,V

t
j
(v) = 1

di,jp1q
dG′′,V t

j
(v)± n2/3,

(E2) E`
i,j is (8ε2, 1/q)-regular.

Recall that we have chosen a collection Q = {Q1,κ/T , . . . , QT,κ/T} of edge-disjoint subgraphs

of Rmulti satisfying (Q1)–(Q5). Let ψ : E(Rmulti)→ N be a function such that

ψ(ERmulti
(i, j)) = [qi,j].

For all ij ∈ E(R′), there are exactly qi,j edges between i and j in Rmulti, so such a function ψ

exists. Now, for all t ∈ [T ], s ∈ [κ/T ], we let

Gt,s :=
⋃

ij∈E(Qt,s)

E
ψ(ij)
i,j . (3.6.10)

SinceQ is a collection of edge-disjoint subgraphs of Rmulti and E1
i,j, . . . , E

qi,j+1
i,j are edge-disjoint

subgraphs of G′′, the graphs G1,1, . . . , GT,κ/T form edge-disjoint subgraphs of G′′.

We would like to use Gt,s \ Rest and Rest to play the roles of G[
⋃
i∈[r] Vi] and U in

Lemma 3.5.1, respectively. However, E`
i,j \Rest is not necessarily super-regular and the sizes

of Vi \Rest are not necessarily the same for all i ∈ [r]. To ensure this, we will now choose an

appropriate subset V t,s
i of Vi which can play the role of Vi in Lemma 3.5.1.

For all t ∈ [T ], i ∈ [r] and s ∈ [κ/T ], let

Vi(t, s) := Vi \ (Rest ∪
⋃

j∈NQt,s (i)

Ui(j)) and m :=
(T − 1)n

Tr
− 10εn

r
. (3.6.11)

Then by (3.6.6), (3.6.7) and (Res2), we have

0 ≤ |Vi(t, s)| −m ≤ 15εn/r. (3.6.12)
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For all t ∈ [T ] and i ∈ [r], we apply Lemma 3.3.18 with the following objects and parameters.

object/parameter κ/T 1 s ∈ [κ/T ] Vi \Rest Vi(t, s) 20ε |Vi(t, s)| −m d

playing the role of s r i ∈ [s] A Ai,1 ε mi,1 1/2

Then we obtain setsWi(t, 1), . . . ,Wi(t, κ/T ) such thatWi(t, s) ⊆ Vi(t, s) with |Vi(t, s)\

Wi(t, s)| = m and for any v ∈ Vi \Rest, we have

|{s ∈ [κ/T ] : v ∈ Wi(t, s)}| ≤ 10ε1/2κ/T. (3.6.13)

For all t ∈ [T ], s ∈ [κ/T ] and i ∈ V (Qt,s), let V t,s
i := Vi(t, s) \Wi(t, s). Let

V t,s
0 := V0 ∪

⋃
i∈[r]

⋃
j∈NQt,s (i)

(Ui(j) \Rest) ∪
⋃
i∈[r]

Wi(t, s) ∪
⋃

i∈[r]\V (Qt,s)

(Vi \Rest).

Then the sets V t,s
0 , {V t,s

i : i ∈ V (Qt,s)}, Rest form a partition of V (G), and for each i ∈ V (Qt,s)

|V t,s
i | = m :=

(T − 1)n

Tr
− 10εn

r
, and (3.6.14)

|V t,s
0 |

(3.6.6),
(3.6.7),(3.6.12)
≤ 6εn+ (k − 1)r(5ε2n/r) + 15εn+ (r − |V (Qt,s)|)n/r

(Q3)
≤ 25εn. (3.6.15)

We now further modify V t
i into U t,s

i which can play the role of Ui in Lemma 3.5.1. For

all (t, s) ∈ [T ]× [κ/T ] and i ∈ V (Qt,s), we define

U t,s
i := V t

i \
⋃

j∈NQt,s (i)

Ui(j) and U t,s
0 :=

⋃
i∈[r]\V (Qt,s)

V t
i ∪

⋃
i∈V (Qt,s)

⋃
j∈NQt,s (i)

Ui(j).

Note that for each (t, s) ∈ [T ]× [κ/T ], the sets {U t,s
0 } ∪ {U

t,s
i : i ∈ V (Qt,s)} form a partition

of Rest. By (3.6.6), for all (t, s) ∈ [T ]× [κ/T ] and i ∈ V (Qt,s), we have

|U t,s
i | = |V t

i | ± 5kε2n/r
(Res2)

=
(1± 8ε)n

Tr
and |U t,s

0 |
(3.6.6)
≤

∑
i∈[r]\V (Qt,s)

|V t
i |+ 5kε2n

(Q3)
≤ 2εn. (3.6.16)
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Note that for all (t, s) ∈ [T ] × [κ/T ] and i ∈ V (Qt,s), we have U t,s
i , V t,s

i ⊆ Vi. Thus

Proposition 3.3.2 with (3.6.14), (3.6.16), (L2) and the definition of p` implies that for all

(t, s) ∈ [T ]× [κ/T ], ij ∈ E(R[V (Qt,s)]) and i′j′ ∈ E(Qt,s), we have

G∗t [U
t,s
i , U t,s

j ], G∗t [V
t,s
i , U t,s

j ] and Ft,s[V t,s
i′ , U

t,s
j′ ] are (ε, (d2))+-regular. (3.6.17)

Moreover, for all (t, s) ∈ [T ]× [κ/T ], ij ∈ E(Qt,s) and u ∈ U t,s
i , we have

dFt,s,V
t,s
j

(u)
(3.6.9),(3.6.14),(Res2)

≥ dFt[V t
i ,Vj\Rest](u)− n/(Tr)

(L1),(Res1)

≥ d · dG′,Vj(u)− 3n/(Tr)

(3.6.5),(3.6.6)
≥ d · (di,j − ε2)|Vj| − 4n/(Tr)

(Res2)

≥ (2d2/3)|Vj \Rest|.(3.6.18)

We obtain the third inequality from the definition of U t,s
i and the fact that ij ∈ E(Qt,s).

Claim 3.6.1. For all t ∈ [T ], s ∈ [κ/T ] and ij ∈ E(Qt,s), the graph Gt,s[V
t,s
i , V t,s

j ] is

(ε1/2, 1/q)-super-regular.

Proof. Let ` ∈ [qi,j] be such that Gt,s[Vi, Vj] = E`
i,j. Such an ` exists by the definition

of Gt,s and the assumption that ij ∈ E(Qt,s). Note that for i′ ∈ {i, j} we have V t,s
i′ ⊆

Vi′ with |V t,s
i′ | = m > 1

2
|Vi′ | by (3.6.14). Thus Proposition 3.3.2 with (E2) implies that

Gt,s[V
t,s
i , V t,s

j ] = E`
i,j[V

t,s
i , V t,s

j ] is (16ε2, 1/q)-regular.

Consider v ∈ V t,s
i . By the definition of V t,s

i , we have v /∈ Ui(j). Thus

dGt,s,V
t,s
j

(v)
(3.6.6),(3.6.12)

= dE`
i,j ,Vj\Rest(v)± 16εn

r
=

∑
t′∈[T ]\{t}

dE`
i,j ,V

t′
j

(v)± 16εn

r

(E1)
=

∑
t′∈[T ]\{t}

1

di,jp1q
dG′′,V t′

j
(v)± 17εn

r

(L1)
=

∑
t′∈[T ]\{t}

1

di,jq
dG′,V t′

j
(v)± 18εn

r

(Res1)
=

(T − 1)

di,jqT
dG′,Vj(v)± 19εn

r

(3.6.5)
=

(T − 1)

di,jqT
((di,j ± ε2)|V ′j | ± |U ′j|)±

19εn

r

(3.6.6)
=

(T − 1)n

qTr
± 30εn

r

(3.6.14)
= (

1

q
± ε1/2)|V t,s

j |.

Similarly, for v ∈ V t,s
j , we have dGt,s,V

t,s
i

(v) = (1
q
±ε1/2)|V t,s

i |. Thus Gt,s[V
t,s
i , V t,s

j ] is (ε1/2, 1/q)-

super-regular. This proves the claim.
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For all t ∈ [T ], v ∈ Rest and s ∈ [κ/T ], we know that

dG∗t ,V
t,s
i

(v) = dG∗t ,Vi(v)± |Vi \ V t,s
i |

(L1)
=
∑
`∈[T ]

(d · dG′,V `
i
(v)± n2/3)± |Vi \ V t,s

i |

(Res1),(3.6.14)
= d · dG′,Vi(v)± 2n/(Tr).

This implies that

|{i ∈ V (Qt,s) : dG∗t ,V
t,s
i

(v) ≥ d2m/2}| ≥ |{i ∈ V (Qt,s) : dG′,Vi(v) ≥ d|Vi|}|

≥ dG′(v)− |V0| − dn
maxi∈[r] |Vi|

− |[r] \ V (Qt,s)|
(3.6.7),(Q3)
≥ (1− 1/k + σ/2)r. (3.6.19)

We obtain the final inequality since δ(G′) ≥ (δ − ξ − 2d)n ≥ (1− 1/k + 3σ/4)n by (i) and

(R4). This together with (3.6.17) and Claim 3.6.1 will ensure that Gt,s ∪G∗t can play the role

of G in Lemma 3.5.1, and (3.6.18) shows that Ft,s can play the role of F in Lemma 3.5.1.

The remaining part of this step is to construct a graph which can play the role of F ′

in Lemma 3.5.1. F ′ needs to contain suitable stars centred at v whenever v ∈ V t,s
0 . (For each

t, the number of stars we will need for v in order to deal with all s ∈ [κ/T ] is bounded from

above by (3.6.23).) For all t ∈ [T ], s ∈ [κ/T ], v ∈ V (G) and u ∈ Rest, let

It(v) := {s′ ∈ [κ/T ] : v ∈ V t,s′

0 } and ist(v) := |It(v) ∩ [s]|,

Jt(u) := {s′ ∈ [κ/T ] : u ∈ U t,s′

0 } and jst (u) := |Jt(u) ∩ [s]|. (3.6.20)

Note that if v ∈ V0, then It(v) = [κ/T ]. If v ∈ Vi\Rest for some i ∈ [r], then s ∈ It(v) means

v ∈ Wi(t, s) ∪
⋃
j∈NQt,s (i) Ui(j) ∪

⋃
i′∈[r]\V (Qt,s) Vi′ . Together with the fact that U ′i ⊆ V0 and so

v /∈ U ′i , this implies

|It(v)|
(Q5)
≤ |{s ∈ [κ/T ] : v ∈ Wi(t, s)}|+ |{j ∈ [r] : v ∈ Ui(j)}|+ |{s ∈ [κ/T ] : i /∈ V (Qt,s)}|

(3.6.5),(3.6.13),(Q4)
≤ 10ε1/2κ/T + εr + εr

(Q2)
≤ 20ε1/2r. (3.6.21)

Similarly, for u ∈ V t
i , we have

|Jt(u)| ≤ |{j ∈ [r] : u ∈ Ui(j)}|+ |{s ∈ [κ/T ] : i /∈ V (Qt,s)}|
(3.6.5),(Q4)
≤ εr + εr ≤ 2εr. (3.6.22)
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For each v ∈ V (G) \Rest, let

κv :=

 (1 + d)κ if v ∈ V0,

dr/(2k)e if v /∈ V0.
(3.6.23)

κv is the overall number of stars centred at v that we will construct for given t. Note

that for all t ∈ [T ] and s ∈ [κ/T ], no edge of E(G′[V0, Rest]) belongs to any of the graphs

Gt,s, G
∗
t , Ft, F

∗
t . Now for each t ∈ [T ], we use these edges and edges in F ∗t to construct stars

F ′t(v, s) centred at v, and subsets Ct
v,s, C∗,tv,s of [r] for all v ∈ V (G) \ Rest and s ∈ [κv], in

such a way that the following hold for all t ∈ [T ] and v ∈ V (G) \Rest.

(F′1) For each s ∈ [κv], we have Ct
v,s ⊆ C∗,tv,s, |Ct

v,s| = k − 1, |C∗,tv,s| = k and R[C∗,tv,s] ' Kk,

(F′2) for each i ∈ [r], we have |{s ∈ [κv] : i ∈ C∗,tv,s}| ≤ (k + 1)q,

(F′3) for each s ∈ [κv], if i ∈ Ct
v,s, then dF ′t (v,s),V t

i
(v) ≥ |V t

i |
q
.

Claim 3.6.2. For all t ∈ [T ], v ∈ V (G) \ Rest and s ∈ [κv], there exist edge-disjoint stars

F ′t (v, s) ⊆ G′[V0, Rest]∪F ∗t centred at v, and subsets Ct
v,s, C∗,tv,s of [r] which satisfy (F′1)–(F′3).

When applying Lemma 3.5.1 in Step 3 to pack Ht,s, we will only make use of those stars

F ′t (v, s) with v ∈ V
t,s

0 , but it is slightly more convenient to define them for all v ∈ V (G)\Rest.

Proof. First, consider t ∈ [T ] and v ∈ V0. Then we have

dG′,Rest(v) =
∑
i∈[r]

dG′,V t
i
(v)

(Res1)
=

1

T

∑
i∈[r]

dG′,Vi(v)± rn2/3

(i),(R4),
(Res3),(3.6.7)

= (δ ± 3d)|Rest|. (3.6.24)

For all v ∈ V0, t ∈ [T ] and i ∈ [r], let qtv,i := b
q·d

G′,V t
i

(v)

|V t
i |
c. Consider edge-disjoint subsets

Et
v,i(1), . . . , Et

v,i(q
t
v,i) of EG′({v}, V t

i ) such that |Et
v,i(q

′)| = 1
q
|V t
i | for each q′ ∈ [qtv,i]. Let Rt

v

be an auxiliary graph such that

V (Rt
v) := {(i, q′) : i ∈ [r], q′ ∈ [qtv,i]} and E(Rt

v) := {(i, q′)(j, q′′) : ij ∈ E(R), q′ ∈ [qtv,i], q
′′ ∈ [qtv,j]}.
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Note that each (i, q′) corresponds to the star Et
v,i(q

′) centred at v. We aim to find a

collection of vertex-disjoint cliques of size k − 1 in Rt
v, which will give us edge-disjoint stars

in EG′({v}, Rest). From the definition, we have

|V (Rt
v)| =

∑
i∈[r]

qtv,i
(Res2)

=
(1± 10ε)dG′,Rest(v)q

n/(Tr)
± r (3.6.24)

=
(δ ± 4d)q|Rest|

n/(Tr)

(Res3)
= (δ ± 5d)qr. (3.6.25)

Then, for (i, q′) ∈ V (Rt
v), we have

dRt
v
((i, q′)) ≥ q

∑
j∈NR(i)

dG′,V t
j
(v)|V t

j |−1 − dR(i)
(Res2)

≥ Tqr

(1 + 7ε)n

∑
j∈NR(i)

dG′,V t
j
(v)− r

≥ Tqr

(1 + 7ε)n

( ∑
j∈NR(i)

|V t
j | −

∑
j∈[r]

(|V t
j | − dG′,V t

j
(v))

)
− r

(3.6.4),(3.6.24),
(Res2),(Res3)

≥ (2δ − 2d1/2 − 1)qr − r
(3.6.25)
≥ (1− 1

k − 1
+ σ)|V (Rt

v)|. (3.6.26)

Here, the final inequality follows from (3.3.6). By the Hajnal–Szemerédi theorem, Rt
v contains

at least

|V (Rt
v)|/(k − 1)− 1

(3.6.25)
≥ (δ − 5d)qr/(k − 1)− 1

(Q2)
≥ (1 + d)κ

(3.6.23)
= κv

vertex-disjoint copies of Kk−1. Let Ct
v(1), . . . , Ct

v(κv) be such vertex-disjoint copies of Kk−1

in Rt
v. For each s ∈ [κv], we let

F ′t(v, s) :=
⋃

(i,q′)∈V (Ct
v(s))

Et
v,i(q

′) and Ct
v,s := {i : (i, q′) ∈ V (Ct

v(s)) for some q′ ∈ [qtv,i]}.

By construction |Ct
v,s| = k − 1 and R[Ct

v,s] ' Kk−1. Moreover, the maximum degree of the

multi-(k − 1)-graph {Ct
v,s : s ∈ [κv]} is at most q. Thus we can apply Lemma 3.3.22 with

{Ct
v,s : s ∈ [κv]}, R, q and k playing the roles of F , R, q and k. Then we obtain sets C∗,tv,s

satisfying the following for all s ∈ [κv] and i ∈ [r]:

Ct
v,s ⊆ C∗,tv,s, R[C∗,tv,s] ' Kk, and |{s ∈ [κv] : i ∈ C∗,tv,s}| ≤ (k + 1)q. (3.6.27)

It is easy to see that for all s ∈ [κv] the sets Ct
v,s, C∗,tv,s and the stars F ′t (v, s) satisfy (F′1)–(F′3).
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Now, we consider t ∈ [T ] and v ∈ Vi\Rest with i ∈ [r]. Let Stv := NR(i)\{j : v ∈ Ui(j)},

and for each j ∈ Stv, let Et
v,j be a subset of EF ∗t ({v}, V t

j ) with |Et
v,j| = 1

q
|V t
j |. We can choose

such a star as there exists ` ∈ {6, 7} such that

dF ∗t ,V t
j
(v) = dL`,V

t
j
(v)

(L1)
= d · dG′,V t

j
(v)± n2/3 (Res1),(Res2)

= (1± 10ε)d · di,j|V t
j | >

1

q
|V t
j |.

Here, the third equality follows since v /∈ Ui(j). By (3.6.4), (3.6.5) and the fact that v /∈ U ′i ,

we have |Stv| ≥ (δ − 2d1/2)r. Thus

δ(R[Stv]) ≥ |Stv| − (r − δ(R))
(3.6.4)
≥ (1− 1

k − 1
)|Stv|.

Again, by the Hajnal–Szemerédi theorem, R[Stv] contains (at least) κv = dr/(2k)e vertex-

disjoint copies of Kk−1. Denote their vertex sets by Ct
v,1, . . . , C

t
v,κv . We apply Lemma 3.3.22

with {Ct
v,s : s ∈ [κv]}, R, 1 and k playing the roles of F , R, q and k respectively, to extend

each Ct
v,s into a C∗,tv,s with R[C∗,tv,s] ' Kk and such that |{s ∈ [κv] : i ∈ C∗,tv,s}| ≤ k + 1 for

each i ∈ [r]. For each s ∈ [κv], let F ′t(v, s) :=
⋃
j∈Ct

v,s
Et
v,j. Again, it is easy to see that for

all s ∈ [κv] the sets Ct
v,s, C∗,tv,s and the stars F ′t(v, s) satisfy (F′1)–(F′3). This proves the

claim.

Altogether we will apply Lemma 3.5.1 κ times in Step 3. In each application, we want

the leaves of the stars that we use to be evenly distributed (see condition (A8)3.5.1). This will

be ensured by Claim 13. More precisely, for each v ∈ V (G) \ Rest, our aim is to choose a

permutation πtv : [κv]→ [κv] satisfying the following.

(F′4) For all t ∈ [T ], i ∈ [r] and s ∈ [κ/T ], we have C(t, s, i) ≤ ε4/5n/r, where C(t, s, i) :=

|{v ∈ V t,s
0 : i ∈ C∗,tv,πt

v(s′) for some s′ with (ist(v)− 1)T + 1 ≤ s′ ≤ ist(v)T}|,

(F′5) for all t ∈ [T ], s ∈ [κ/T ] and t′ ∈ [T ], we have that⋃
v∈V t,s

0
C∗,tv,πt

v((ist (v)−1)T+t′) ⊆ V (Qt,s).

Recall from (3.6.20) that ist (v) counts the number of s′ ∈ [s] for which v ∈ V t,s′

0 . The number

C(t, s, i) is well-defined because ist(v) ≤ κv/T for all v ∈ V (G) \Rest by (3.6.21).

193



Claim 3.6.3. For each t ∈ [T ] and each v ∈ V (G) \ Rest, there exists a permutation

πtv : [κv]→ [κv] satisfying (F′4)–(F′5).

Proof. We fix t ∈ [T ]. We claim that for each s ∈ [κ/T ] ∪ {0} the following hold. For each

v ∈ V (G) \Rest, there exists an injective map πtv,s : [ist(v)T ]→ [κv] satisfying the following.

(F′4)ts For all i ∈ [r] and ` ∈ [s], we have

|{v ∈ V t,`
0 : i ∈ C∗,tv,πt

v,s(s′) for some s′ with (i`t(v)− 1)T + 1 ≤ s′ ≤ i`t(v)T}| ≤ ε4/5n/r,

(F′5)ts for all ` ∈ [s] and t′ ∈ [T ], we have that
⋃
v∈V t,`

0
C∗,t
v,πt

v,s((i`t(v)−1)T+t′)
⊆ V (Qt,`).

Note that both (F′4)t0 and (F′5)t0 hold by letting πtv,0 : ∅ → ∅ be the empty map for all

v ∈ V (G) \ Rest. Assume that for some s ∈ [κ/T − 1] ∪ {0} we have already constructed

injective maps πtv,s for all v ∈ V (G)\Rest which satisfy (F′4)ts and (F′5)ts. For each v ∈ V
t,s+1

0 ,

we consider the set

Av := {s′ ∈ [κv] \ πtv,s([ist(v)T ]) : C∗,tv,s′ ⊆ V (Qt,s+1)}.

Then we have

|Av|
(F′2)
≥ κv − ist(v)T − (k + 1)q(r − |V (Qt,s+1)|)

(3.6.21),(Q3)
≥ min{d · κ, r/(2k)− 20Tε1/2r} − (k + 1)qεr ≥ r/(4k). (3.6.28)

We choose a subset Iv ⊆ Av of size T uniformly at random. Then (F′2) implies that for each

i ∈ V (Qt,s+1) we have

P[i ∈
⋃
s′∈Iv

C∗,tv,s′ ] ≤ (k + 1)qT/|Av| ≤ 10qk2T/r.

Thus

E[|{v ∈ V t,s+1
0 : i ∈

⋃
s′∈Iv

C∗,tv,s′}|] ≤ 10qk2T |V t,s+1
0 |/r

(3.6.15)
≤ ε4/5n/(2r).

A Chernoff bound (Lemma 3.3.1) gives us that for each i ∈ V (Qt,s+1)

P
[
|{v ∈ V t,s+1

0 : i ∈
⋃
s′∈Iv

C∗,tv,s′}| ≥ ε4/5n/r
]
≤ exp(−(ε4/5n/(2r))2

2|V t,s+1
0 |

)
(3.6.15)
≤ e−n/r

3

.
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Since 1− |V (Qt,s+1)|e−n/r3 > 0, the union bound implies that there exists a choice of Iv for

each v ∈ V t,s+1
0 such that for all i ∈ V (Qt,s+1), we have that

|{v ∈ V t,s+1
0 : i ∈

⋃
s′∈Iv

C∗,tv,s′}| ≤ ε4/5n/r. (3.6.29)

If v ∈ V (G) \ (Rest ∪ V t,s+1
0 ) (and thus is+1

t (v) = ist(v)), we let πtv,s+1 := πtv,s. For each

v ∈ V t,s+1
0 , we extend πtv,s into πtv,s+1 by defining πtv,s+1 : [is+1

t (v)T ] \ [ist(v)T ] → Iv in an

arbitrary injective way. Then, by the choice of Iv, we have that πtv,s+1 is an injective map from

[is+1
t (v)T ] to [κv] satisfying (F′5)ts+1. Moreover, (3.6.29) implies that for any i ∈ V (Qt,s+1),

we have

|{v ∈ V t,s+1
0 : i ∈ C∗,t

v,πt
v,s+1(s′)

for some s′ with (is+1
t (v)− 1)T + 1 ≤ s′ ≤ is+1

t (v)T}|

= |{v ∈ V t,s+1
0 : i ∈

⋃
s′∈Iv

C∗,tv,s′}|
(3.6.29)
≤ ε4/5n/r.

This with (F′4)ts implies (F′4)ts+1. By repeating this, we obtain injective maps πtv,κ/T satisfying

both (F′4)tκ/T and (F′5)tκ/T . For each v ∈ V (G) \Rest, we extend πtv,κ/T into a permutation

πtv : [κv]→ [κv] by assigning arbitrary values for the remaining values in the domain. It is easy

to see that (F′4)tκ/T implies (F′4) and (F′5)tκ/T implies (F′5). We can find such permutations

for all t ∈ [T ]. Thus such collection satisfies both (F′4) and (F′5).

For each t ∈ [T ], let

Gt := G∗t ∪
⋃

s∈[κ/T ]

Gt,s and F ′t :=
⋃

v∈V (G)\Rest

⋃
s∈[κv ]

F ′t(v, s).

Then G1, . . . , GT , F1, . . . , FT , F
′
1, . . . , F

′
T form edge-disjoint subgraphs of G. (Recall that G∗t

was defined in (3.6.8), Gt,s in (3.6.10) and F ′v(t, s) in Claim 3.6.2.)

Step 2. Partitioning H. Now we will partition H. Recall that the graphs in H are

η2-separable. By packing several graphs from H with less than n/4 edges suitably into a

single graph in a way that no edges from distinct graphs intersect each other, we can assume
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that all but at most one graph in H have at least n/4 edges, and that all graphs in H are

(k, η)-chromatic, η-separable and have maximum degree at most ∆. By adding at most n/4

edges to at most one graph if necessary, we can then assume that all graphs in H have at

least n/4 edges. Moreover, if e(H) is too small, we can add some copies of n-vertex paths to

H to assume that

εn2 ≤ e(H)
(iii)

≤ (1− ν)e(G) + n/4.

We partition H into κ collections H1,1, . . . ,HT,κ/T such that for all t ∈ [T ] and s ∈ [κ/T ], we

have

n7/4
(Q2)
≤ εn2

κ
−∆n ≤ e(Ht,s) <

1

κ
(1− ν)e(G) + 2∆n

(i),(Q2)
≤ (1− 2ν/3)(k − 1)n2

2qr
. (3.6.30)

Indeed, this is possible since e(H) ≤ ∆n for all H ∈ H. Now, we are ready to construct the

desired packing.

Step 3. Construction of packings into the host graphs. AsG1, . . . , GT , F1, . . . , FT , F
′
1, . . . , F

′
T

are edge-disjoint subgraphs of G, and H1,1, . . . ,HT,κ/T is a partition of H, it suffices to show

that for each t ∈ [T ], we can pack Ht :=
⋃κ/T
s=1Ht,s into Gt ∪

⋃
s∈[κ/T ] Ft,s ∪ F ′t . (Recall from

(3.6.9) that Ft,1, . . . , Ft,κ/T are edge-disjoint subgraphs of Ft.) We fix t ∈ [T ] and will apply

Lemma 3.5.1 κ/T times to show that such a packing exists.

Assume that for some s with 0 ≤ s ≤ κ/T − 1, we have already defined a function φs

packing
⋃s
s′=1Ht,s′ into Gt ∪ Ft ∪ F ′t and satisfying the following, where Φs :=

⋃s
s′=1 φs(Ht,s′)

and jst (u) is defined in (3.6.20) and G∗t is defined in (3.6.8).

(G1)s For each u ∈ Rest, we have dΦs∩G∗t (u) ≤ 4k∆jst (u)n

qr
+ ε1/9sn

r
,

(G2)s for each i ∈ [r], we have eΦs∩G∗t (Vi\V t
i , Rest) ≤ ε1/3sn2

r2
,

(G3)s for s′ ∈ [κ/T ] \ [s], we have E(Φs) ∩ (E(Gt,s′) ∪ E(Ft,s′)) = ∅,

(G4)s for v ∈ V (G) \Rest, s′′ ∈ [κv] with s′′ > ist(v) · T , we have E(Φs) ∩ F ′t(v, πtv(s′′)) = ∅.
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Note that (G1)0–(G4)0 trivially hold with an empty packing φ0 : ∅ → ∅. For each t′ ∈ [T ]

and v ∈ V (G) \Rest, let `(v, t′) := πtv((i
s+1
t (v)− 1)T + t′). (Note that `(v, t′) is well-defined

since (is+1
t (v)− 1)T + t′ ≤ κv by (3.6.21).) Let

V :=
⋃

i∈V (Qt,s+1)

V t,s+1
i , U :=

⋃
i∈V (Qt,s+1)

U t,s+1
i , (3.6.31)

Ĝ := (Gt,s+1[V ] ∪G∗t [V ∪Rest]) \ E(Φs), and F̂ ′ :=
⋃

v∈V t,s+1
0

⋃
t′∈[T ]

F ′t(v, `(v, t
′))[{v}, U ].

(3.6.32)

Note that (G3)s implies that E(Ft,s+1) ∩ E(Φs) = ∅. Let R̂ be the graph on vertex set

V (Qt,s+1) with

E(R̂) := {ij ∈ E(R[V (Qt,s+1)]) : |EG∗t (Vi, Vj) ∩ E(Φs)| < ε1/10n2/r2}.

We wish to apply Lemma 3.5.1 with the following objects and parameters.

object/parameter Ĝ Ft,s+1[V,U ] F̂ ′ V t,s+1
0 U t,s+1

0 V t,s+1
i U t,s+1

i R̂

playing the role of G F F ′ V0 U0 Vi Ui R

object/parameter 1/q Ht,s+1 d C∗,tv,`(v,t′) Ctv,`(v,t′) F ′t(v, `(v, t
′))[{v}, U ] k ∆

playing the role of α H d C∗v,t Cv,t F ′v,t k ∆

object/parameter Qt,s+1 η 25ε σ/2 T ν/2 m

playing the role of Q η ε σ T ν n′

Thus Rest \ U t,s+1
0 plays the role of U =

⋃r
i=1 Ui in Lemma 3.5.1, and t′ ∈ [T ] stands

for t ∈ [T ]. By (3.6.1), (3.6.14), (3.6.15), (3.6.16), (Q3) and (F′5) we have appropriate

objects and parameters as well as the hierarchy of constants required in Lemma 3.5.1. Now

we show that (A1)3.5.1–(A9)3.5.1 hold. (A1)3.5.1 is obvious from Theorem 3.1.2 (ii) and our

assumption in Step 2. (A2)3.5.1 holds by (3.6.30). (A3)3.5.1 follows from Claim 3.6.1 and (G3)s.

Consider ij ∈ E(R̂), then Ĝ[U t,s+1
i , U t,s+1

j ] = G∗t [U
t,s+1
i , U t,s+1

j ] \E(Φs). Since U t,s+1
i ⊆ Vi and
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U t,s+1
j ⊆ Vj, the properties (3.6.16), (3.6.17) and the definition of R̂ imply that

eG∗t (U t,s+1
i , U t,s+1

j )− eΦs∩G∗t (Vi, Vj) ≥ (1− ε1/15)eG∗t (U t,s+1
i , U t,s+1

j ).

Thus, Proposition 3.3.3 with (3.6.17) implies that Ĝ[U t,s+1
i , U t,s+1

j ] is (ε1/50, (d2))+-regular.

The calculation for Ĝ[V t,s+1
i , U t,s+1

j ] is similar. Thus (A4)3.5.1 holds with the above objects

and parameters. By (G1)s, for each i ∈ [r] we have

eφs∩G∗t (V t
i ,

⋃
j∈[r]\{i}

Vj) ≤
∑
v∈V t

i

(4k∆jst (v)n

qr
+
ε1/9sn

r

) (Q2),(3.6.22),(Res2)

≤ ε1/9n2

r
. (3.6.33)

Thus, for i ∈ V (Qt,s+1) = V (R̂), we have

dR(i)− dR̂(i) ≤
eΦs∩G∗t (Vi\V t

i , Rest) + eΦs∩G∗t (V t
i ,
⋃
j∈[r]\{i} Vj)

ε1/10n2/r2
+ |V (R) \ V (R̂)|

(G2)s,(Q3),(3.6.33)
≤ ε1/3sn2/r2 + ε1/9n2/r

ε1/10n2/r2
+ εr

(Q2)
≤ ε1/100r.

This with (3.6.4) and (3.3.6) implies that (A5)3.5.1 holds for R̂. For all ij ∈ E(Qt,s+1) and

u ∈ U t,s+1
i , by (3.6.18), we have

dFt,s+1,V
t,s+1
j

(u) ≥ 2d2|Vj \Rest|/3
(Res2),(3.6.14)
≥ d3m.

Thus (A6)3.5.1 holds. By (F′1), (F′4) and the fact that is+1
t (v) = ist(v) + 1 for all v ∈ V t,s

0 ,

(A8)3.5.1 holds (for C∗,tv,`(v,t′), C
t
v,`(v,t′) and all v ∈ V t,s

0 ). If v ∈ V t,s
0 , t′ ∈ [T ] and i ∈ Ct

v,`(v,t′) ⊆

C∗,tv,`(v,t′) then (F′5) implies that i ∈ V (Qt,s+1). Moreover, by (3.6.16) we have |U t,s+1
i | ≥

|V t
i | − 5kε2n/r. Together with (F′3) this implies that dF ′

t′ (v,`(v,t
′)),Ut,s+1

i
(v) ≥ (1− ε)|U t,s+1

i |/q.

Thus (A7)3.5.1 holds. To check (A9)3.5.1, note that for each u ∈ U t,s+1
0 , we have

dG∗t∩Φs(u)
(G1)s
≤ 4k∆jst (u)n/(qr) + ε1/9sn/r

(Q2),(3.6.22)
≤ ε1/10n.

Thus,

|{i ∈ V (Qt,s+1) : dĜ,V t,s+1
i

(u) ≥ d2m/3}| ≥ |{i ∈ V (Qt,s+1) : dG∗t ,V
t,s+1
i

(u) ≥ d2m/2}| −
dG∗t∩Φs(u)

d2m/6
(3.6.19)
≥ (1− 1/k + σ/2)r − ε1/10n

d2m/6

(3.6.14)
≥ (1− 1/k + σ/3)r.
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This implies that

|{i ∈ V (Qt,s+1) : dĜ,V t,s+1
j

(u) ≥ d3m for all j ∈ NQt,s+1(i)}| ≥ σ2r.

This shows that (A9)3.5.1 holds. Hence, by Lemma 3.5.1, we obtain a function ψs+1 packing

Ht,s+1 into Ĝ ∪ Ft,s+1 ∪ F̂ ′ and satisfying the following.

(B1) ∆(ψs+1(Ht,s+1)) ≤ 4k∆n/(qr),

(B2) for each u ∈ Rest \ U t,s+1
0 , we have dψs+1(Ht,s+1)∩Ĝ(u) ≤ 10∆ε1/8n/r,

(B3) for each i ∈ V (Qt,s), we have eψs+1(Ht,s+1)∩Ĝ(V t,s+1
i , Rest) < 10ε1/2n2/r2.

Moreover, (G3)s with (G4)s implies that ψs+1(Ht,s+1) is edge-disjoint from Φs, thus the map

φs+1 := φs ∪ ψs+1 packs
⋃s+1
s′=1Ht,s′ into Gt ∪

⋃κ/T
s′=1 Ft,s′ ∪ F ′t . Now it remains to show that

φs+1 satisfies (G1)s+1–(G4)s+1.

Consider any vertex u ∈ Rest. If u ∈ U t,s+1
0 , then we know that js+1

t (u) = jst (u) + 1.

Thus (G1)s together with (B1) implies (G1)s+1 for the vertex u. If u ∈ Rest \ U t,s+1
0 , then

we have js+1
t (u) = jst (u), thus (G1)s together with (B2) implies (G1)s+1.

For each i ∈ [r], (3.6.31) implies that the vertices in Vi \ (V t,s+1
i ∪ V t

i ) ⊆ V t,s+1
0 are

not incident to any edges in Φs+1 ∩ G∗t . Thus it is easy to see that (G2)s together with

(B3) implies (G2)s+1. As ψs+1 packs Ht,s+1 into Ĝ∪ Ft,s+1 ∪ F̂ ′, (3.6.32) together with (G3)s

implies (G3)s+1. Moreover, we have

is+1
t (v) =

 ist(v) + 1 if v ∈ V t,s+1
0 ,

ist(v) otherwise.

Thus, (3.6.32) together with (G4)s and the definition of `(v, t′) implies (G4)s+1.

By repeating this for each s ∈ [κ/T ] in order, we obtain a function φκ/T which packs

Ht into Gt ∪ Ft ∪ F ′t . By taking the union of such functions over all t ∈ [T ], we obtain a

desired function packing H into
⋃
t∈[T ]

Gt ∪ Ft ∪ F ′t ⊆ G. This completes the proof.
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The proof of Theorem 3.1.5, follows almost exactly the same lines as that of Theo-

rem 3.1.2, with one very minor difference. Indeed, the only place where we need the condition

that G is almost regular is when we apply Lemma 3.3.13 in Step 1 to obtain (Q1)–(Q5).

Thus to prove Theorem 3.1.5, we only need to replace the application of Lemma 3.3.13 with

an application of the following result. (Note that (B1) below implies both (Q3) and (Q4).)

Lemma 3.6.1. Suppose n, q, T ∈ N with 0 < 1/n � ε, 1/T, 1/q, ν ≤ 1/2 and 0 < 1/n �

ν < σ/2 < 1 and δ = 1/2 + σ and q divides T . Let G be an n-vertex multi-graph with

edge-multiplicity at most q, such that for all v ∈ V (G) we have dG(v) ≥ qδn.

Then there exists a subset V ′ ⊆ V (G) with |V ′| ≤ 1 and |V (G)\V ′| being even,

and there exist pairwise edge-disjoint matchings F1,1, . . . , F1,κ, F2,1, . . . , FT,κ of G with κ =

(δ+
√

2δ−1−ν)qn
2T

± 1 satisfying the following.

(B1) For each (t′, i) ∈ [T ]× [κ], we have that V (Ft′,i) = V (G)\V ′,

(B2) for all t′ ∈ [T ] and u, v ∈ V (G), we have |{i ∈ [κ] : u ∈ NFt′,i
(v)}| ≤ 1.

The proof of the above lemma is very similar (but simpler) than that of Lemma 3.3.13.

We proceed as in the proof of Lemma 3.3.13 to obtain simple graphs Gc with δ(Gc) > δn−ν2n.

We let V ′ ⊆ V (G) be such that |V ′| ≤ 1 and |V (G)\V ′| is even. The difference is that we

now apply the following result of [30] to each Gc
∗ := Gc[V (G)\V ′] to obtain the desired

matchings M c
i : for every α > 0, any sufficiently large n-vertex graph with minimum degree

δ ≥ (1/2 + α)n contains at least (δ − αn+
√
n(2δ − n))/4 edge-disjoint Hamilton cycles.
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