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ABSTRACT

This thesis contains several embedding results for graphs in both random and non random
settings. Most notably, we resolve a long standing conjecture that the threshold probability
for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/2.

In Chapter 2 we obtain the following perturbation result regarding the hypercube Q":
if H C Q" satisfies 6(H) > an with o > 0 fixed and we consider a random binomial subgraph
Qp of Q" with p € (0,1] fixed, then with high probability H U Q} contains k edge-disjoint
Hamilton cycles, for any fixed k£ € N. This result is part of a larger volume of work where we
also prove the corresponding hitting time result for Hamiltonicity.

In Chapter 3 we move to a non random setting. Rather than pack a small number
of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings
of more general families of graphs. More specifically, we provide a degree condition on a
regular n-vertex graph G which ensures the existence of a near optimal packing of any family
‘H of bounded degree n-vertex k-chromatic separable graphs into GG. In particular, this
yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the
Alspach problem and the existence of resolvable designs in the setting of regular host graphs

of high degree.
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Chapter 1

Introduction

The topics of this thesis are extremal graph theory and probabilistic combinatorics. Our
results all concern the following question: given two graphs G and H as input, determine
whether GG contains a subgraph isomorphic to H?

We are interested in the case where this subgraph is spanning in G. Our goal will be to
determine the existence of such subgraphs and not to find specific examples. In general, even
this is an NP-complete problem. One famous example which is known to be NP-complete is
the problem of determining whether GG contains a cycle that covers every vertex exactly once
(i.e. a Hamilton cycle). As a result of this NP-completeness, for many classes of graphs G
and H, the study of this question has moved in the direction of finding sufficient conditions,
particularly in the form of degree conditions. The classic example concerning Hamilton cycles
is the theorem of Dirac, which states that for n > 3, every n-vertex graph with minimum
degree at least n/2 is Hamiltonian. We study this question of containing a given subgraph
for the case of Hamilton cycles, but also for more general families of graphs. Moreover, we
tackle this problem in both random and non random settings.

We begin in the random setting. In graph theory, a random graph is a graph that has
been sampled via some probability distribution over a fixed collection of graphs. The most

well-known and studied random graph model is the binomial model G,, ,. One can generate a



random graph G ~ G, ,, according to this distribution by starting with the n-vertex complete
graph and deleting each edge with probability 1 — p, independently of every other edge. Given
a property of interest, the aim of study is to determine the threshold probability p* for this
model beyond which the property is realised with high probability (sometimes referred to as
the phase transition).

The threshold probability for Hamilton cycles appearing in the binomial model has
been very well understood since the 1970s. Another random graph model which can be
sampled in a similar way to the binomial model, is the model of random subgraphs of the
hypercube. This time, instead of starting with the complete graph, one starts with the
n-dimensional hypercube. In contrast to the binomial model, the problem of determining the
threshold probability for Hamiltonicity in random subgraphs of the hypercube has proven
much more difficult. In Chapter 2 we resolve this question by proving the threshold probability
occurs at p* = 1/2. Moreover, instead of embedding just a single Hamilton cycle at this
threshold, we actually prove that for any fixed k£ € N, the same threshold holds for packing &
Hamilton cycles into our random subgraph of the hypercube. Here we say that & Hamilton
cycles pack into a graph G whenever GG contains k edge-disjoint Hamilton cycles as a subgraph.

In Chapter 3 we switch to a non random setting. Instead of packing a small number
of Hamilton cycles into a fixed host graph G, our aim is now to pack the optimal number.
In fact for the case of Hamilton cycles this problem was already well understood: recently
Csaba, Kiihn, Lo, Osthus, and Treglown [35] showed that any r-regular n-vertex graph G
with r > |n/2] has a decomposition into Hamilton cycles and at most 1 perfect matching.
Here we say that a graph G decomposes into a collection of graphs H in the special case
where H packs into G and covers every edge of G (i.e. H and G have the same number
of edges). In Chapter 3, we allow for a more general class of graphs than Hamilton cycles,
characterised by the graph property of having small bandwidth. Here a graph has small
bandwidth if each vertex only has edges to vertices that are ‘nearby’ with respect to some

vertex ordering (this includes Hamilton cycles). We provide a degree condition on a regular



graph G which is sufficient to ensure the existence of a near optimal packing of such families
of graphs into G. In general, this degree condition is best possible.

Our result in Chapter 3 can be viewed as a near optimal packing version of the
bandwidth theorem of Béttcher, Schacht and Taraz [24] (which concerns embedding a single
small bandwidth graph) in the setting of regular host graphs. Several design-type corollaries
follow. One example concerns the tree packing conjecture of Gyarfas and Lehel, which asks
for decompositions of the complete graph into specific collections of trees. Our result yields
an approximate version of this conjecture for bounded degree trees, in the setting of regular
host graphs of high degree. Another long standing conjecture, the Oberwolfach problem,
which concerns decomposing the complete graph into cycles, was recently solved by Glock,
Joos, Kim, Kiihn, and Osthus [48], where our result was an important tool in their proof.

Finally, we mention some further work that has not been included in this thesis due to
word constraints. The local resilience of a graph G with respect to a property P measures how
much one has to change G locally in order to destroy P. In a sequence of two papers [33, 32]
we prove ‘resilience’ versions of several classical results for the binomial and random regular
graph models. Here we sample an n-vertex d-regular graph according to the random regular
model G, 4 by choosing a graph uniformly at random from the collection of all n-vertex
d-regular graphs.

In [32] we solve a conjecture of Ben-Shimon, Krivelevich and Sudakov by proving a
resilience version of Dirac’s theorem in the setting of random regular graphs. More precisely,
we show that, whenever d is sufficiently large compared to € > 0, with high probability the
following holds: let G’ be any subgraph of the random n-vertex d-regular graph G,, 4 with
minimum degree at least (1/2 + ¢)d. Then G’ is Hamiltonian. Here the condition that d is
large is necessary.

In [33] we consider strengthenings of Dirac’s theorem. Posa’s theorem states that any
n-vertex graph G whose degree sequence d; < ... < d,, satisfies d; > i + 1 for all ¢ < n/2 has

a Hamilton cycle. This result is generalised further by Chvatal’s theorem, which characterises



all degree sequences that ensure the existence of a Hamilton cycle. We prove a resilience
version of Posa’s Hamiltonicity condition for the binomial model G,, , and show that a natural

guess for a resilient version of Chvatal’s theorem for this model fails to be true.



Chapter 2

Hamiltonicity of random subgraphs of

the hypercube

2.1 Introduction

The n-dimensional hypercube Q" is the graph whose vertex set consists of all n-bit 01-strings,
where two vertices are joined by an edge whenever their corresponding strings differ by a
single bit. The hypercube and its subgraphs have attracted much attention in graph theory
and computer science, e.g. as a sparse network model with strong connectivity properties. It
is well known that hypercubes contain spanning paths (also called Gray codes or Hamilton
paths) and, for all n > 2, they contain spanning cycles (also referred to as cyclic Gray codes
or Hamilton cycles). Classical applications of Gray codes in computer science are described in
the surveys of Savage [89] and Knuth [65]. Applications of hypercubes to parallel computing

are discussed in the monograph of Leighton [82].

2.1.1 Spanning subgraphs in hypercubes

The systematic study of spanning paths, trees and cycles in hypercubes was initiated in the

1970’s. There is by now an extensive literature about subtrees of the hypercube; see, for



instance, results of Bhatt, Chung, Leighton, and Rosenberg [10] about embedding subdivided
trees (instigated by processor allocation in distributed computing systems).

As a generalization of Hamilton paths, Caha and Koubek [27] considered the problem
of finding a collection of spanning vertex-disjoint paths, given a prescribed set of endpoints.
After several improvements [29, 52|, this problem was recently resolved by Dvorak, Gregor,
and Koubek [40].

The applications of hypercubes as networks in computer science inspired questions
about the reliability of its properties. This led to considering ‘faulty’ hypercubes in which
some edges or vertices are missing. For instance, Chan and Lee [28] showed that, if Q™ has at
most 2n — 5 faulty edges and every vertex has (non-faulty) degree at least 2, then there is a
Hamilton cycle in Q" which avoids all faulty edges (and this condition is best possible). They
also showed that the general problem of determining the Hamiltonicity of Q™ with a larger
number of faulty edges is NP-complete. More generally, Dvorak and Gregor [39] studied
the existence of spanning collections of vertex-disjoint paths with prescribed endpoints in
faulty hypercubes. (We will apply these results in our proofs, see Section 2.7.3 for details.)
These can be seen as extremal results about the robustness of the hypercube with respect to

containing spanning collections of paths and cycles.

2.1.2 Hamilton cycles in binomial random graphs

One of the most studied random graph models is the binomial random graph G,,,,. Here we
have a (labelled) set of n vertices and we include each edge with probability p independently
of all other edges.

Given some monotone increasing graph property P, a function p* = p*(n) is said to
be a (coarse) threshold for P if P|G,,, € P] — 1 whenever p/p* — oo and P|G,,,, € P] = 0
whenever p/p* — 0. One can define the stronger notion of a sharp threshold similarly:

p* = p*(n) is said to be a sharp threshold for P if, for all ¢ > 0, we have that P|G,,, € P] — 1



whenever p > (1 4 ¢)p* and P|G,,, € P] — 0 whenever p < (1 — ¢)p*. The problem of
finding the threshold for the containment of a Hamilton cycle was solved independently by
Posa [87] and Korgunov [73]. Furthermore, Korgunov [73] determined the sharp threshold for
Hamiltonicity to be p* = logn/n. These results were later made even more precise by Komlos
and Szemerédi [72]. It is worth noting that p* = logn/n is also the sharp threshold for the
property of having minimum degree at least 2. In this sense, the results about Hamilton
cycles in G,,, can be interpreted as saying that the natural obstruction of having sufficiently
high minimum degree is also an ‘almost sufficient’ condition.

A property that generalises Hamiltonicity is that of containing k& edge-disjoint Hamilton
cycles, for some k € N. We will present more results in this direction in Section 2.1.4; for now,
let us simply note that the sharp threshold for the containment of £ edge-disjoint Hamilton
cycles in G,, ,, for some k € N independent of n, is p* = log n/n, i.e. the same as the threshold
for Hamiltonicity.

The study of robustness of graph properties has also attracted much attention recently.
For instance, given a graph G which is known to satisfy some property P, consider a random
subgraph G}, obtained by deleting each edge of G' with probability 1 — p, independently of all
other edges. The problem then is to determine the range of p for which G, satisfies P with
high probability. In this setting, a result of Krivelevich, Lee, and Sudakov [75] asserts that,
for any n-vertex graph G with minimum degree at least n/2, the graph G, is asymptotically
almost surely Hamiltonian whenever p > logn/n. This can be viewed as a robust version of

Dirac’s theorem on Hamilton cycles.

2.1.3 Hamilton cycles in binomial random subgraphs of the hyper-

cube

Throughout this paper, we will consider random subgraphs of the hypercube and show that

the hypercube is robustly Hamiltonian in the above sense. We will denote by Q) the random



subgraph of the hypercube obtained by removing each edge of Q™ with probability 1 — p
independently of every other edge.

The random graph Q) was first studied by Burtin [26], who proved that the sharp
threshold for connectivity is 1/2. This result was later made more precise by Erdds and
Spencer [42] and Bollobas [13]. As a related problem, Dyer, Frieze, and Foulds [41]| determined
the sharp threshold for connectivity in subgraphs of Q" obtained by removing both vertices
and edges uniformly at random. Later, Bollobas [15] proved that 1/2 is also the sharp
threshold for the containment of a perfect matching in Q7. As with the G,,;, model, this also
coincides with the threshold for having minimum degree at least 1.

The main goal of this paper is to study the analogous problem for Hamiltonicity in
random subgraphs of the hypercube. There is a folklore conjecture that the sharp threshold
for Hamiltonicity in Q) should be 1/2, i.e. the same as the threshold for having minimum
degree at least 2. This question was explicitly asked by Bollobés [16] at several conferences
in the 1980’s, in the ICM surveys of Frieze [46] and Kiithn and Osthus [80], as well as the

recent survey of Frieze [47]. A special case of our first result resolves this problem.

Theorem 2.1.1. For any k € N, the sharp threshold for the property of containing k

edge-disjoint Hamilton cycles in Q7 is p* = 1/2.

For k = 1, this can be seen as a probabilistic version of the result on faulty hyper-
cubes [28], and also as a statement about the robustness of Hamiltonicity in the hypercube.
While, for p < 1/2, with high probability Q) will not contain a Hamilton cycle, it
turns out that the reason for this is mostly due to local obstructions (e.g., vertices with
degree zero or one). More precisely, we prove that, for any constant p € (0,1/2), a.a.s. the

random graph Q contains an almost spanning cycle.

Theorem 2.1.2. For any 6,p € (0,1], a.a.s. the graph Q) contains a cycle of length at least
(1—20)2".

We believe that the probability bound is far from optimal, in the sense that random



subgraphs of the hypercube where edges are picked with vanishing probability should also

satisfy this property.

Conjecture 2.1.3. Suppose that p = p(n) satisfies that pn — oo. Then, a.a.s. Qp contains

a cycle of length (1 —o(1))2".

Similarly, it would be interesting to determine which (long) paths and (almost spanning)
trees can be found in Q. Moreover, our methods might also be useful to embed other large

subgraphs, such as F-factors.

Conjecture 2.1.4. Suppose € > 0 and an integer £ > 2 are fized and p > 1/2 + €. Then,
a.a.s. Qp contains a Cyc-factor, that is, a set of vertexz-disjoint cycles of length 2¢ which

together contain all vertices of Q™.

2.1.4 Hitting time results

Remarkably, the above intuition that having the necessary minimum degree is an ‘almost
sufficient’ condition for the containment of edge-disjoint perfect matchings and Hamilton
cycles can be strengthened greatly via so-called hitting time results. These are expressed in
terms of random graph processes. The general setting is as follows. Let G be an n-vertex
graph with m = m(n) edges, and consider an arbitrary labelling E(G) = {ej,...,en}. The
G-process is defined as a random sequence of nested graphs G(o) = (Gy(c)),, where
o is a permutation of [m]| chosen uniformly at random and, for each i € [m]y, we set
Gi(o) = (V(G), E;), where E; = {ey;) : j € [i]}. Given any monotone increasing graph
property P such that G € P, the hitting time for P in the above G-process is the random
variable 7p(G(0)) == min{t € [m], : G¢(c) € P}.

Let us denote the properties of containing a perfect matching by P.M, Hamiltonicity
by HAM, and connectivity by CON, respectively. For any k € N, let §k denote the property

of having minimum degree at least k, and let HMFk denote the property of containing

|k/2] edge-disjoint Hamilton cycles and, if k is odd, one matching of size |n/2] which is



edge-disjoint from these Hamilton cycles. With this notion of hitting times, many of the
results about thresholds presented in Sections 2.1.2 and 2.1.3 can be strengthened significantly.
For instance, Bollobas and Thomason [18] showed that a.a.s. Teon (Kn(0)) = 761(Kn(0))
and, if n is even, then a.a.s. Tpu(K,(0)) = 751(Kn(0)). Ajtai, Komlos, and Szemerédi [2]

and Bollobas [14] independently proved that a.a.s. Tyam(Kn(0)) = Ts2(Kn(c)). This was

later generalised by Bollobas and Frieze [17], who proved that, given any k € N, for n even

a.a.5. Tae(Kn(0)) = Tu(Kn(0)).

A hitting time result for the property of having k£ edge-disjoint Hamilton cycles when
k is allowed to grow with n is still not known, even in K,-processes. As a slightly weaker
notion, consider property H, where we say that a graph G satisfies property H if it contains
10(G)/2] edge-disjoint Hamilton cycles, together with an additional edge-disjoint matching
of size |n/2] if §(G) is odd. Knox, Kiihn, and Osthus [64], Krivelevich and Samotij [76] as
well as Kiithn and Osthus [81] proved results for different ranges of p which, together, show
that G, , a.a.s. satisfies property H.

For graphs other than the complete graph, Johansson [59] recently obtained a robust-
ness version of the hitting time results for Hamiltonicity. In particular, for any n-vertex
graph G with 6(G) > (1/2 + £)n, he proved that a.a.s. 7yam(G(0)) = 752(G(0)). This was
later extended to a larger class of graphs G and to hitting times for HM2k, for all k € N
independent of n, by Alon and Krivelevich [6].

In the setting of random subgraphs of the hypercube, Bollobas [15] determined the
hitting time for perfect matchings by showing that a.a.s. 7pu(Q"(0)) = Teon(Q"(0)) =
751(Q"(0)). One of our main results (which implies Theorem 2.1.1) is a hitting time result for
Hamiltonicity (and, more generally, property HMEk) in Q"-processes. Again, this question

was raised by Bollobéas [16] at several conferences.

Theorem 2.1.5. For all k € N, a.a.s5. Tpae(Q(0)) = 75:(Q(0)), that is, the hitting time

for the containment of a collection of |k/2| Hamilton cycles and k— 2|k /2| perfect matchings,

10



all pairwise edge-disjoint, in Q"-processes is a.a.s. equal to the hitting time for the property

of having minimum degree at least k.

We omit the proof of Theorem 2.1.5 due to word constraints. A sketch is provided in
Section 2.2.6 and the full proof can be found in [31]. We also wonder whether this is true if &
is allowed to grow with n, and propose the following conjecture which, if true, would be an

approximate version of the results of |76, 81, 64| in the hypercube.

Conjecture 2.1.6. For all p € (1/2,1] and n > 0, a.a.s. Qp contains (1/2 — n)6(Qy)

edge-disjoint Hamilton cycles.

2.1.5 Randomly perturbed graphs

A relatively recent area at the interface of extremal combinatorics and random graph theory
is the study of randomly perturbed graphs. Generally speaking, the idea is to consider a
deterministic dense n-vertex graph H (usually satisfying some minimum degree condition)
and a random graph G, , on the same vertex set as H. The question is whether H is close
to satisfying some given property P in the sense that a.a.s. H UG, , € P for some small p.
This line of research was sparked off by Bohman, Frieze, and Martin [11], who showed that,
if H is an n-vertex graph with §(H) > an, for any constant a > 0, then a.a.s. H UG, is
Hamiltonian for all p > C'(«)/n. Other properties that have been studied in this context are
e.g. the existence of powers of Hamilton cycles and general bounded degree spanning graphs
[22], F-factors [7| or spanning bounded degree trees |74, 20]. One common phenomenon in
this model is that, by considering the union with a dense graph H (i.e. a graph H with linear
degrees), the probability threshold of different properties is significantly lower than that in
the classical G,,, model. The results for Hamiltonicity [11] were very recently generalised by
Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [53] to allow « to tend to 0 with n
(that is, to allow graphs H which are not dense).

We consider randomly perturbed graphs in the setting of subgraphs of the hypercube.

11



To be precise, we take an arbitrary spanning subgraph H of the hypercube, with linear
minimum degree, and a random subgraph Q”, and consider H U Q”. (Note here that Q” is a
‘dense’ subgraph of Q" but for € < 1/2 it will contain both isolated vertices and vertices of

very low degrees.) In this setting, we show the following result.

Theorem 2.1.7. For alle,a € (0,1] and k € N, the following holds. Let H be a spanning
subgraph of Q™ such that 6(H) > an. Then, a.a.s. HU Q contains k edge-disjoint Hamilton

cycles.

We can also allow H to have much smaller degrees, at the cost of requiring a larger

probability to find the Hamilton cycles.

Theorem 2.1.8. For every integer k > 2, there exists € > 0 such that a.a.s., for every
spanning subgraph H of Q™ with §(H) > k, the graph H U Q’f/%e contains a collection of

|k/2] Hamilton cycles and k — 2| k/2] perfect matchings, all pairwise edge-disjoint.

We omit the proof of Theorem 2.1.8 due to word constraints. A full proof can be found
in [31]. Note that Theorem 2.1.8 can be viewed as a ‘universality’ result for H, meaning that
it holds for all choices of H simultaneously. It would be interesting to know whether such a
result can also be obtained for the lower edge probability assumed in Theorem 3.1.2, i.e., is it
the case that, for all ¢, € (0, 1], a.a.s. G ~ QF has the property that, for every spanning
H C Q" with 6(H) > an, G U H is Hamiltonian?

As we will prove, Theorem 2.1.1 follows straightforwardly from Theorem 2.1.7, and it
follows trivially from Theorem 2.1.5. In turn, Theorem 2.1.5 follows from Theorem 2.1.8. On
the other hand, Theorems 2.1.2, 2.1.7 and 2.1.8, while being proved with similar ideas, are

incomparable.

2.1.6 Percolation on the hypercube

To build Hamilton cycles in random subgraphs of the hypercube, we will consider a random

process which can be viewed as a branching process or percolation process on the hypercube.

12



With high probability, for constant p > 0, this process results in a bounded degree tree in Q7
which covers most of the neighbourhood of every vertex in Q", and thus spans almost all

vertices of Q™. The version stated below is a special case of Theorem 2.6.1.

Theorem 2.1.9. For any fized €,p € (0,1], there exists D = D(e) such that a.a.s. Q
contains a tree T with A(T) < D and such that |V(T) N Nga(x)| > (1 — e)n for every
xeV(Qn).

Further results concerning the local geometry of the giant component in Q7 for constant
p € (0,1/2) were proved recently by McDiarmid, Scott, and Withers [83].

The random process we consider in the proof of Theorem 2.1.9 can be viewed as
a branching random walk (with a bounded number of branchings at each step). Simpler
versions of such processes (with infinite branchings allowed) have been studied by Fill and
Pemantle [45] and Kohayakawa, Kreuter, and Osthus [66], and we will base our analysis on
these. Motivated by our approach, we raise the following question, which seems interesting

in its own right.

Question 2.1.10. Does a non-returning random walk on Q" a.a.s. visit almost all vertices

of Q"7

More generally, there are many results and applications concerning random walks on
the hypercube (but allowing for returns). For example, motivated by a processor allocation
problem, Bhatt and Cai [9] studied a walk algorithm to embed large (subdivided) trees into
the hypercube. Moreover, the analysis of (branching) random walks is a critical ingredient
in the study of percolation thresholds for the existence of a giant component in Q7. These
have been investigated e.g. by Bollobas, Kohayakawa, and Luczak [12] and Borgs, Chayes,
Hofstad, Slade, and Spencer [19] and Hofstad and Nachmias [56].
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2.2 Outline of the main proofs

2.2.1 Overall outline

We now sketch the key ideas for the proof of Theorem 2.1.7. We will first prove the case
k = 1, and later use this to deduce the case when £ > 1. Recall we are given H C Q"
with §(H) > an, and G ~ Q, with a,e € (0,1]. Our aim is to show that a.a.s. H UG is
Hamiltonian.

Our approach for finding a Hamilton cycle is to first obtain a spanning tree. By
passing along all the edges of a spanning tree T' (with a vertex ordering prescribed by a
depth first search), one can create a closed spanning walk W which visits every edge of T
twice. The idea is then to modify such a walk into a Hamilton cycle. (This approach is
inspired by the approximation algorithm for the Travelling Salesman Problem which returns
a tour of at most twice the optimal length.) More precisely, our approach will be to obtain
a near-spanning tree of Q" °, for some suitable constant s, and to blow up vertices of this
tree into s-dimensional cubes. These cubes can then be used to move along the tree without
revisiting vertices, which will result in a near-Hamilton cycle §. All remaining vertices which
are not included in $ will be absorbed into §) via absorbing structures that we carefully put
in place beforehand.

In Sections 2.2.2 to 2.2.4 we outline in more detail how we find a long cycle in G
(Theorem 2.1.2). Note that in Theorem 2.1.2 we have G ~ Q”, so a.a.s. G will have isolated
vertices which prevent any Hamilton cycle occurring as a subgraph. In Section 2.2.5 we outline
how we build on this approach to obtain the case k = 1 of Theorem 2.1.7. In Section 2.2.6

we sketch how we obtain Theorem 2.1.5.
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2.2.2 Building block I: trees via branching processes.

We view each vertex in Q" as an n-dimensional 0l-coordinate vector. By fixing the first
s coordinates, we fix one of 2° layers Ly,..., Lys of the hypercube, where s € N will be
constant. Thus, L = Q"% for each layer L. By considering a Hamilton cycle in Q°, we may
assume that consecutive layers differ only by a single coordinate on the unique elements of
Q?® which define them. Let G ~ Q. For each layer L, we let L(G) := G[V(L)] and define the
intersection graph 1(G) == (V-_, Li(G). Hence, I(G) ~ Q75" We view I(G) as a subgraph of
Q"~*. We first show that I(G) contains a near-spanning tree 7' (Theorem 2.6.1). Thus, a
copy of T'is present in each of Li(G),. .., Lss(G) simultaneously.

Since the walk 1 mentioned in Section 2.2.1 passes through each vertex x of T a total
of dr(z) times, it will be important later for 7" to have bounded degree. In order to guarantee
this, we run bounded degree branching processes (see Definition 2.6.3) from several far apart
‘corners’ of the hypercube. Roughly speaking, T" will be formed by taking a union of these
processes and removing cycles. Crucially, the model we introduce for these processes has a
joint distribution with Q".%, so that 7" will in fact appear as a subgraph of I((G). In applying
Theorem 2.6.1, we obtain a bounded degree tree T C I(G) which contains almost all of the
neighbours of every vertex of I(G). We also obtain a ‘small’ reservoir set R C V(I(G)),
which T avoids and which will play a key role later in the absorption of vertices which do not
belong to our initial long cycle. At this point, both 7" and R are now present in every layer

of the hypercube simultaneously.

2.2.3 Building block II: cube tilings via the nibble.

Let £ < sand 0 < 6 < 1 be fixed. In order to gain more local flexibility when traversing the
near-spanning tree 7', we augment 7' by locally adding a near-spanning ¢-cube factor of I(G).
One can use classical results on matchings in almost regular uniform hypergraphs of small

codegree to show that I(G) contains such a collection of Q° spanning almost all vertices
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of I(G). However, we require the following stronger properties, namely that there exists a

collection C of vertex disjoint copies of Q° in I(G) so that, for each z € V(I(Q)),
(i) C covers almost all vertices in Ngn(x);

(ii) the directions spanned by the cubes intersecting Ngn(x) do not correlate too strongly

with any given set of directions.

The precise statement is given in Theorem 2.5.7. Neither (i) nor (ii) follow from existing
results on hypergraph matchings and the proofs strongly rely on geometric properties intrinsic
to the hypercube. We will omit the proof of Theorem 2.5.7 due to word constraints but
describe the main steps of this proof below.

To prove Theorem 2.5.7, we build on the so-called Rodl nibble. More precisely, we
consider the hypergraph H, with V(H) = V(Q"*), where the edge set is given by the copies
of Q% in I(G). We run a random iterative process where at each stage we add a ‘small’
number of edges from H to C, before removing all those remaining edges of H which ‘clash’
with our selection. A careful analysis and an application of the Lovasz local lemma yield the
existence of an instance of this process which terminates in the near-spanning ¢-cube factor

with the properties required for Theorem 2.5.7.

2.2.4 Constructing a long cycle.

Roughly speaking, we will use T" as a backbone to provide ‘global’ connectivity, and will use
the near-spanning ¢-cube factor C and the layer structure to gain high ‘local’ connectivity
and flexibility. Let T'U|Joee € = I C I(G) and let I' C IV be formed by removing all leaves
and isolated cubes in IV. It follows by our tree and nibble results that almost all vertices
of I(G) are contained in I'. Note that, for each v € V(Q"*) = V(I(G)), there is a unique
vertex in each of the 2° layers which corresponds to v. We refer to these 2° vertices as clones

of v and to the collection of these 2° clones as a vertex molecule. Similarly, each ¢-cube C' € C
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contained in I' gives rise to a cube molecule. We construct a cycle in G which covers all of
the cube molecules (and, therefore, almost all vertices in Q™).

Let I'* be the graph obtained from I' by contracting each f-cube C' C ({Joee C) N T
into a single vertex. We refer to such vertices in ['* as atomic vertices, and to all other
vertices as inner tree vertices. We run a depth-first search on I'* to give an order to the
vertices. Next, we construct a skeleton which will be the backbone for our long cycle. The
skeleton is an ordered sequence of vertices in Q™ which contains the vertices via which our
cycle will enter and exit each molecule. That is, given an exit vertex v for some molecule
in the skeleton, the vertex u which succeeds v in the skeleton will be an entry vertex for
another molecule, and such that uv € E(G). Here, a vertex in the skeleton belonging to
an inner tree vertex molecule is referred to as both an entry and exit vertex. (Actually, we
will first construct an ‘external skeleton’, which encodes this information. The skeleton then
also prescribes some edges within molecules which go between different layers.) We use the
ordering of the vertices of I'* to construct the skeleton in a recursive way starting from the
lowest ordered vertex. It is crucial that our tree 7" has bounded degree (much smaller than
2%), so that no molecule is overused in the skeleton.

Once the skeleton is constructed, we apply our ‘connecting lemmas’ (Lemmas 2.7.8
and 2.7.9). These connecting lemmas, applied to a cube molecule with a bounded number of
pairs of entry and exit vertices as input (given by the skeleton), provide us with a sequence of
vertex-disjoint paths which cover this molecule, where each path has start and end vertices
consisting of an input pair. The union of all of these paths combined with all edges in G
between the successive exit and entry vertices of the skeleton will then form a cycle $ C G

which covers all vertices lying in the cube molecules (thus proving Theorem 2.1.2).
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2.2.5 Constructing a Hamilton cycle.

In order to construct a Hamilton cycle in H UG, we will absorb the vertices of V(Q™)\ V()
into ). We achieve this via absorbing structures that we identify for each vertex (see
Definition 2.7.2). To construct these absorbing structures, we will need to use some edges
of H. Roughly speaking, to each vertex v we associate a left (-cube C! C Q™ and a right
(-cube C" C Q" where C!, C" are both clones of some (-cubes C', C" € C contained in I'. We
choose these cubes so that v will have a neighbour u € V(C!) and a neighbour v’ € V(C7),
to which we refer as tips of the absorbing structure. Furthermore, u will have a neighbour
w € V(CT), which is also a neighbour of «. Our near-Hamilton cycle $) will satisfy the

following properties:
(a) $ covers all vertices in C! U C” except for u, and
(b) wu' € E(9).

These additional properties will be guaranteed by our connecting lemmas discussed in
Section 2.2.4. We can then alter §) to include the segment wuwvu’ instead of the edge wu/', thus

absorbing the vertices u and v into §). The following types of vertices will require absorption.

(i) Every vertex that is not covered by a clone of either some inner tree vertex or of some

cube C € C which is contained in I'.

(ii) The cycle $ does not cover all the clones of inner tree vertices and, thus, the uncovered

vertices of this type will also have to be absorbed.

However, we will not know precisely which of the vertices described in (i) and (ii) will
be covered by $ and which of these vertices will need to be absorbed until after we have
constructed the (external) skeleton. Moreover, many potential absorbing structures are later
ruled out as candidates (for example, if they themselves contain vertices that will need to be

absorbed). Therefore, it is important that we identify a ‘robust’ collection of many potential
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absorbing structures for every vertex in Q" at a preliminary stage of the proof. The precise
absorbing structure eventually assigned to each vertex will be chosen via an application of
our rainbow matching lemma (Lemma 2.5.4) at a late stage in the proof.

We will now highlight the purpose of the reservoir R. Suppose v € V(Q") is a vertex
which needs to be absorbed via an absorbing structure with left /-cube C! and left tip
u € V(C!). Recall that both u and C! are clones of some u* € V(I') and C' € C, where
u* € V(C'). If u* has a neighbour w* in T'— V(C'), then it is possible that the skeleton will
assign an edge from u to w for the cycle $) (where w is the clone of w* in the same layer as u).
Given that u is now incident to a vertex outside of C', we can no longer use the absorbing
structure with u as a (left) tip (otherwise, we might disconnect T"). To avoid this problem,
we show that most vertices have many potential absorbing structures whose tips lie in the
reservoir R (which 7" avoids). Here we make use of vertex degrees of H. A small number of
scant vertices will not have high enough degree into R. For these vertices we fix an absorbing
structure whose tips do not lie in R, and then alter T slightly so that these tips are deleted
from T" and reassigned to R. The fact that scant vertices are few and well spread out from
each other will be crucial in being able to achieve this (see Lemma 2.6.20).

Let us now discuss two problems arising in the construction of the skeleton. Firstly,
let Mo C Q" with C' € C be a cube molecule which is to be covered by $). Furthermore,
suppose one of the clones C! of C' belongs to an absorbing structure for some vertex v. Let u
be the tip of C! and suppose that u has even parity. We would like to apply the connecting
lemmas to cover M — {u} by paths which avoid u. But this would now involve covering
one fewer vertex of even parity than of odd parity. This, in turn, has the effect of making
the construction of the skeleton considerably more complicated (this construction is simplest
when successive entry and exit vertices have opposite parities). To avoid this, we assign
absorbing structures in pairs, so that, for each C' € C, either two or no clones of C' will be
used in absorbing structures. In the case where two clones are used, we enforce that the

tips of these clones will have opposite parities, and therefore each molecule M will have
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the same number of even and odd parity vertices to be covered by £. We use our robust
matching lemma (see Lemma 2.5.2) to pair up the clones of absorbing structures in this way.
To connect up different layers of a cube molecule, we will of course need to have suitable
edges between these. Molecules which do not satisfy this requirement are called ‘bondless’
and are removed from I" before the absorption process (so that their vertices are absorbed).

Secondly, another issue related to vertex parities arises from inner tree vertex molecules.
Depending on the degree of an inner tree vertex v € V(T'), the skeleton could contain an
odd number of vertices from the molecule M, consisting of all clones of v. All vertices in
M, outside the skeleton will need to be absorbed. But since the number of these vertices is
odd, it would be impossible to pair up (in the way described above) the absorbing structures
assigned to these vertices. To fix this issue, we effectively impose that $ will ‘go around
T twice’. That is, the skeleton will trace through every molecule beginning and finishing
at the lowest ordered vertex in I'*. It will then retrace its steps through these molecules in
an almost identical way, effectively doubling the size of the skeleton. This ensures that the
skeleton contains an even number of vertices from each molecule, half of them of each parity.

Finally, once we have obtained an appropriate skeleton, we can construct a long cycle
$ as described in Section 2.2.4. For every vertex in Q™ which is not covered by §) we have
put in place an absorbing structure, which is covered by $ as described in (a) and (b). Thus,
as discussed before, we can now use these structures to absorb all remaining vertices into $)

to obtain a Hamilton cycle ' € H U G, thus proving the case k = 1 of Theorem 2.1.7.

2.2.6 Hitting time for the appearance of a Hamilton cycle.

As mentioned in Section 2.1.4, we will omit the proof of Theorem 2.1.5 due to word constraints.
We offer the following insight into the proof by highlighting the key steps where it builds on
the proof of Theorem 2.7.1.

In order to prove Theorem 2.1.5, we consider G ~ Q?/%E. We show that a.a.s., for
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any graph H with §(H) > 2, the graph G U H is Hamiltonian. The main additional difficulty
faced here is that G U H may contain vertices having degree as low as 2. For the set U of
these vertices we cannot hope to use the previous absorption strategy: the neighbours of
v € U may not lie in cubes from C. (In fact, v may not even have a neighbour within its own
layer in G U H.) To handle such small degree vertices, we first prove that they will be few
and well spread out. We define three types of new ‘special absorbing structures’. The type of
the special absorbing structure SA(v) for v will depend on whether the neighbours a,b of v
in H lie in the same layer as v. In each case, SA(v) will consist of a short path P, containing
the edges av and bv, and several other short paths designed to ‘balance out’ P; in a suitable
way. These paths will be incorporated into the long cycle $ described in Section 2.2.4. In
particular, this allows us to ‘absorb’ the vertices of U into ). To incorporate the paths P;
forming SA(v), we will proceed as follows.

Firstly, we make use of the fact that Theorem 2.6.1 allows us to choose our near-
spanning tree 7" in such a way that it avoids a small ball around each v € U. Thus, (all clones
of) T will avoid SA(v), which has the advantage there will be no interference between T
and the special absorbing structures. To link up each SA(v) with the long cycle ), for each
endpoint w of a path in SA(v), we will choose an ¢-cube in I(G) which suitably intersects T
and which contains w (or more precisely, the vertex in I(G) corresponding to w). Altogether,
these (-cubes allow us to find paths between SA(v) and vertices of $ which are clones of
vertices in T'. The remaining vertices in molecules consisting of clones of these ¢-cubes will
be covered in a similar way as in Section 2.2.4. All vertices in these balls around ¢ which are
not part of the special absorbing structures will be absorbed into §) via the same absorbing

structures used in the proof of Theorem 2.1.7 to once again obtain a Hamilton cycle §y'.
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2.2.7 Edge-disjoint Hamilton cycles.

The results on k edge-disjoint Hamilton cycles can be deduced from suitable versions of
the case k = 1. Those versions are carefully formulated to allow us to repeatedly remove a
Hamilton cycle from the original graph. We deduce Theorem 2.1.1 from Theorem 2.7.1 in

Section 2.7.5.

2.3 Notation

For n € Z, we denote [n] ={k€Z:1<k<n}and [n]o:={k€Z:0<k<n}. Whenever
we write a hierarchy of parameters, these are chosen from right to left. That is, whenever
we claim that a result holds for 0 < a < b < 1, we mean that there exists a non-decreasing
function f: [0,1) — [0, 1) such that the result holds for all @ > 0 and all b < 1 with a < f(b).
We will not compute these functions explicitly. Hierarchies with more constants are defined
in a similar way.

A hypergraph H is an ordered pair H = (V(H), E(H)) where V(H) is called the vertex
set and E(H) C 2V the edge set, is a set of subsets of V/(H). If E(H) is a multiset, we
refer to H as a multihypergraph. We say that a (multi)hypergraph H is r-uniform if for
every e € F(H) we have |e| = r. In particular, 2-uniform hypergraphs are simply called
graphs. Given any set of vertices V' C V(H), we denote the subhypergraph of H induced by
V'as H[V'| = (V',E'), where E' :={e € E(H) : e CV'}. We write H — V' := H[V \ V'].
Given any set £ C E(H), we will sometimes write V(E) := {v € V : there exists e €
E such that v € e}

Given any (multi)hypergraph H and any vertex v € V(H), let E(H,v) = {e €
E(H) : v € e}. We define the neighbourhood of v as Ny(v) = U.cpp., e \ {v}, and
we define the degree of v by dy(v) = |E(H,v)|. We denote the minimum and maximum
degrees of (the vertices in) H by §(H) and A(H), respectively. Given any pair of vertices
u,v € V(H), we define E(H,u,v) = {e € E(H) : {u,v} C e}. The codegree of v and v
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in H is given by dy(u,v) = |E(H,u,v)|. Given any set of vertices W C V(H), we define
Ng(W) = Upew Na(w). We denote E(H,v,W) = {e € E(H) : v € e,e\ {v} € W},
Nu(0,W) = Ueepmomw) € \ {v} and dy(v, W) = |E(H,v,W)|; we refer to the latter two
as the neighbourhood and degree of v into W, respectively. Given A, B C V(H) we denote
Ey(A,B) ={ec E(H):eC AUB,eNA# @,enN B # @&} and ey(A, B) = |Ex(A, B)|.
Whenever A = {v} is a singleton, we abuse notation and write Ey(v, B) and ey (v, B). Thus,
eg(v, B) and dy(v, B) may be used interchangeably.

Given any graph G and two vertices u,v € V(G), the distance distg(u,v) between u
and v in G is defined as the length of the shortest path connecting v and v (and it is said
to be infinite if there is no such path). Similarly, given any sets A, B C V(G), the distance
between A and B is given by distg(A, B) = minye 4 yep distg(u, v). For any r € N, we denote
Bl (u) = {v € V(G) : distg(u,v) < r} and By (A) = {v € V(G) : distg(A,v) < r}; we refer
to these sets as the balls of radius r around u and A, respectively.

A directed graph (or digraph) is a pair D = (V (D), E(D)), where E(D) is a set of
ordered pairs of elements of V(D). If no pair of the form (v,v) with v € V(D) belongs
to E(D), we say that D is loopless. Given any v € V (D), we define its inneighbourhood
as Np(v) = {u € V(D) : (u,v) € E(D)}, and its outneighbourhood as N (v) = {u €
V(D) : (v,u) € E(D)}. The indegree and outdegree of v are defined as dj,(z) = |Np(x)| and
d},(z) = |N},(x)|, respectively. The minimum in- and outdegrees of (the vertices in) D are
denoted by 6~ (D) and 6 (D), respectively.

Given any multihypergraph or directed graph (V) E), a set M C FE is called a matching
if its elements are pairwise disjoint. If the edges of M cover all of V', then it is said to be a
perfect matching. Given an edge-colouring ¢ of H, we say that a matching of H is rainbow if
each of its edges has a different colour in c.

We often refer to the n-dimensional hypercube Q" as an n-cube (the n is dropped
whenever clear from the context). Given two vertices vy, v, € V(Q") = {0,1}", we write

dist(vy, vo) for the Hamming distance between vy and vy. Thus, {v1,v9} € E(Q") if and only
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if dist(v1, v2) = 1. Whenever the dimension n is clear from the context, we will use 0 to denote
the vertex {0}". Given any v € {0,1}", we will say that its parity is even if dist(v,0) =0
(mod 2), and we will say that it is odd otherwise. This gives a natural partition of V(Q")
into the sets of vertices with even and odd parities. Given any two vertices vy, vy € {0,1}",
we will write v; =, v, if they have the same parity, and v; #, v, otherwise.

We will often consider the natural embedding of V(Q") into F4, which will allow us to
use operations on the vertex set: whenever we write v 4 u, for some u,v € {0, 1}", we refer to
their sum in F%. Given a vertex v € {0,1}" and an edge e = {z,y} € E(Q"), we define v + e
to be the edge with endvertices v + x and v 4+ y. Given any two sets A, B C {0,1}", we will
use the sumset notation A+ B :={a+b:a € A, b€ B}, and we will abbreviate the k-fold
sumset A+ ...+ A by kA. Similarly, given any sets A C {0,1}" and £ C E(Q"), we write
A+ E={a+e:a€ Aec E}. Given a graph G C Q" and a set of vertices A C {0, 1}",
A+ G will denote the graph with vertex set A+ V(G) and edge set A+ E(G). Note that this
should never be confused with the notation G — A, which will be used exclusively to consider
induced subgraphs of GG. We will call the unitary vectors in F} the directions of the hypercube.
The set of directions will be denoted by D(Q™). Thus, D(Q") = {é € {0,1}" : dist(¢é,0) = 1}.
Note that two vertices vy, vy € {0,1}" are adjacent in Q™ if and only if there exists é € D(Q")
such that v; = vy + é. Given any vertex v € {0,1}" and any set D C D(Q"), we will denote
by Q"(v,D) := Q"[v+ n(D U {0})] the subcube of Q" which contains v and all vertices in
{0,1}™ which can be reached from v by only adding directions in D. Given any subcube
Q C 9", we will write D(Q) to denote the subset of D(Q™) such that, for any v € V(Q),
we have @ = Q" (v, D(Q)). Given any direction é € D(Q), we will sometimes informally say
that @ uses é. Given two vertices vy, vy € {0,1}", their differing directions are all directions
in D(vy,vy) = {é € D(Q") : dist(vy + €, vy) < dist(vy,vq)}. Observe that, if dist(vy,ve) = d,
then |D(vy,v2)| = d and Q™ (vy, D(vq,v2)) is the smallest subcube of @™ which contains both
vy and vs.

When considering random experiments for a sequence of graphs (G, ),en with |V (G,,)|
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tending to infinity with n, we say that an event £ holds asymptotically almost surely (a.a.s.)
for G, if P[£] =1 — o(1). When considering asymptotic statements, we will ignore rounding

whenever this does not affect the argument.

2.4 Probabilistic tools

Here we list some probabilistic tools that we will use throughout the paper. The following

can be proved easily with the Cauchy-Schwarz inequality.

Proposition 2.4.1. Given a non-negative random variable X with finite support, we have

that
E[X]*
E[X?]

P[X =0]<1-

Throughout the paper, we will be interested in proving concentration results for
different random variables. We will often need the following Chernoff bound (see e.g. 58,

Corollary 2.3]).

Lemma 2.4.2. Let X be the sum of n mutually independent Bernoulli random variables
and let p = E[X]. Then, for all 0 < § < 1 we have that P[X > (1 +0)u] < e M3 and

PIX < (1 —0)u] < e %#2. In particular, P[|X — p| > 6p] < 2e79°1/3.

Similar bounds hold for hypergeometric distributions (see e.g. [58, Theorem 2.10]).
For m,n, N € N with m,n < N, a random variable X is said to follow the hypergeometric
distribution with parameters N, n and m if it can be defined as X := |S N [m]|, where S is a

uniformly chosen random subset of [N] of size n.

Lemma 2.4.3. Suppose Y has a hypergeometric distribution with parameters N, n and m.

Then, P[|Y —E[Y]] > t] < 2e71/Gn),

The following bound will also be used repeatedly (see e.g. [5, Theorem A.1.12]).
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Lemma 2.4.4. Let X be the sum of n mutually independent Bernoulli random variables.
Let = E[X], and let 8 > 1. Then, P[X > Bu] < (e/B)™. In particular, we have
PX > Tu] <e ",

Finally, the Lovasz local lemma will come in useful. Let & := {&,,&,...,&,} be a
collection of events. A dependency graph for € is a graph H on vertex set [m] such that, for all
i € [m], & is mutually independent of {&; : j # 4,5 ¢ Ng(i)}, that is, if P[&] = P[&; | \;c; &)
for all J C [m]\ (Ng(i)U{i}). We will use the following version of the local lemma (it follows

e.g. from [5, Lemma 5.1.1]).

Lemma 2.4.5 (Lovasz local lemma). Let € := {&;,&,,...,En} be a collection of events and
let H be a dependency graph for €. Suppose that A(H) < d and P[&;] < p for all i € [m]. If

ep(d+1) <1, then

2.5 Auxiliary results

2.5.1 Results about matchings

We will need three auxiliary results to help us find suitable absorbing cube pairs for different
vertices. We will need to preserve the alternating parities of vertices that are absorbed by
each molecule. The first lemma (Lemma 2.5.2) presented in this section, will help us to show
that all vertices can be paired up in such a way that these parities can be preserved. The
second lemma (Lemma 2.5.3) will be used to show that, for each such pair of vertices, there
are many possible pairs of absorption cubes. Finally, the third lemma (Lemma 2.5.4) will
allow us to assign one of those pairs of absorption cubes to each pair of vertices we need to
absorb in such a way that these cube pairs are pairwise vertex disjoint.

To prove Lemma 2.5.2, as well as Lemma 2.6.16 and Theorem 2.6.19, the following

consequence of Hall’s theorem will be useful.
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Lemma 2.5.1. Let G be a bipartite graph with vertex partition AU B. Assume that there is
some integer ¢ > 0 such that, for all S C A, we have |[N(S)| > |S| —{. Then, G contains a

matching which covers all but at most { vertices in A.

Given any graph G and a bipartition (,B) of V(G), we say that (2,B) is an r-
balanced bipartition if ||2A] — |®B|| < r. Let G be a graph on n vertices, and let r,d € N with
r < d. We say that G is d-robust-parity-matchable with respect to an r-balanced bipartition
(A, B) if, for every S C V(G) such that |S| < d and |2A\ S| = B\ 5|, the graph G — S
contains a perfect matching M with the property that every edge e € M has one endpoint in
20\ S and one endpoint in B \ S.

Given two disjoint sets of vertices A and B, the binomial random bipartite graph
G(A, B, p) is obtained by adding each possible edge with one endpoint in A and the other
in B with probability p independently of every other edge. Given any two bipartite graphs
on the same vertex set, G; = (A, B, Ey) and G, = (A, B, E,), and any « € R, we define
['%, ¢, (A) as the graph with vertex set A where any two vertices x,y € A are joined by an

edge whenever |Ng, () N Ng,(y)| > «|B| or |Ng,(y) N Ng,(x)| > a|B].

Lemma 2.5.2. Let d,k,r € N and «o,e,5 > 0 be such that r < d, 1/k < 1/d,e,a and
f < e,a. Then, any bipartite graph G = G(A, B, E) with |B| = n > |A| > k such that
da(z) > an for every x € A satisfies the following with probability at least 1 — 271°%: for any
r-balanced bipartition of A into (A,B), the graph Fg’G(AB’E) (A) is d-robust-parity-matchable

with respect to (A, B).

Proof. Let I" := r?

G.G(AB 5)(14). Let I be the auxiliary digraph with vertex set A where, for

any pair of vertices z,y € A, there is a directed edge from x to y if |Ng(2) N\ Ng(a,pe) (y)| = Bn.
Observe that the graph obtained from I'" by ignoring the directions of its edges and identifying
the possible multiple edges is exactly ', which means that §(I") > 6 (I").

Given any two vertices x,y € A, by Lemma 2.4.2 we have that

P((x,y) ¢ E(I")] = P[|[Na() N No(ae)(y)| < Bn] < e,
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Furthermore, for a fixed x € A, observe that the events that (x,y) ¢ E(I"), for ally € A\ {«x},
are mutually independent. Therefore, df,(z) is a sum of independent Bernoulli random
variables. Let m = |A|. If df,(z) < 4m/5, that means that there is a set of m/5 vertices

Y C A\ {z} such that (x,y) ¢ E(I") for all y € Y. We then conclude that

Pldf (z) < 4m/5] < Z P[(z,y) ¢ E(I") forally € Y] < < W/L5> emeanm/15 < 9=20n,
m
ve(©us)

By a union bound over the choice of x, we conclude that
P[o(T) < 4m/5] < P[§T(IV) < 4m/5] < m2720" < 2710,

Now, condition on the event that the previous holds. Fix any r-balanced bipartition
(2A,8) of A and let I'(g ) be the bipartite subgraph of I' induced by this bipartition. Fix
any set S C A with [S] < d and |2\ S| = B\ S|. We have that 6(I'ge) — 5) >
4m/5 —mj2 —d —r > m/4. Therefore, by Lemma 2.5.1, I'q ) — S contains a perfect

matching. O
The second lemma will be stated in terms of directed graphs.

Lemma 2.5.3. Let ¢,C > 0 and let o € (0,1/(1 4+ ¢/C)). Let D be a loopless n-vertex

digraph such that
(i) for every A C V(D) with |A] > an we have ), ., d™(v) > can, and
(ii) for every B C V(D) with |B| < can/C we have ), 5 d"(v) < can.
Then, D contains a matching M with |M| > can/(2C).

Proof. Assume for a contradiction that the largest matching M in D has size |M| < can/(2C).
Since a < 1/(1+ ¢/C), there exists a set A C V(D) \ V(M) with |A| > an, and thus, by
(i), > pead™(v) > can. Since M is the largest matching, all edges that enter A must come
from vertices of M (otherwise, we could add one such edge to M, finding a larger matching).

However, by (ii), the number of edges going out of V(M) is less than can, a contradiction. [

28



For convenience, we state the third lemma in terms of rainbow matchings in hyper-

graphs.

Lemma 2.5.4. Let n,r € N and let H be an n-edge-coloured r-uniform multihypergraph.

Then, for any m > 10, the following holds. Suppose H satisfies the following two properties:
(i) For every i € [n], there are at least m edges of colour i.
(ii) A(H) <m/(6r).

Then, there exists a rainbow matching of size n.

Proof. The idea is to pick a random edge from each colour class and prove that with non-zero
probability this results in a rainbow matching. First, for each i € [n], let M; be a set of m
edges of colour i. We choose an edge from each M; uniformly at random, independently of
the other choices. For any 4, j € [n] with ¢ # j and for any two edges e € M; and ¢’ € M; for

which eNe’ # @, we denote by A, the event that both e and e’ are picked. We observe that

PlAey] = (%)

Moreover, note that every event A, . is independent of all other events Ay but at most
2m-r-A(H) < m?/3. Indeed, this holds because A, . can only depend on those events which
involve at least one edge from either colour ¢ or colour j. Applying now Lemma 2.4.5, we

deduce that with non-zero probability no event A, . occurs, as required. O]

2.5.2 Properties of random subgraphs of the hypercube

In this section we state and prove some basic properties of random subgraphs of the hypercube.

The first one guarantees that the degrees of all vertices are linear in the dimension.
Lemma 2.5.5. Let 0 < < e < 1/2. Then, we a.a.s. have that 6(Qf,,.) > on.

Proof. Let p:=1/2 +¢. Fix any v € {0, 1}". Throughout this proof, we write d(v) to refer

to the degree of v in QZ.
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Note that d(v) follows a binomial distribution with parameters n and p. Since 6 < 1/2,

it follows that

Using the Stirling formula, we conclude that

Pld(v) < 6n) < (1 4+ O(n™Y)) % ((%’)5 (%)H)n.

By the union bound, it now suffices to show that

O (=) = () () <

but this follows since § < ¢. O

Next we show that, in any ball of radius ¢, the number of vertices whose degree is
far from the expected is much smaller (at most a constant) if we allow larger deviations for
the degrees. Even more, we can prove a similar statement if we restrict the degrees to some
linear subsets of the total neighbourhood in Q™. Recall that, for any vertex v € {0,1}", any
graph G C Q™ and a set S C Ngn(v), we denote dg(v,S) = |Ng(v) N S|.

Lemma 2.5.6. Let ¢,6,v € (0,1) and ¢ € N. For each v € {0,1}", let S(v) C Ngn(v)
satisfy |S(v)| > yn. Let € be the event that there are no vertices v € {0,1}" for which
[{u € B“(v) : don(u, S(u)) # (1 £6)e|S(u)|}| > 100/(6%e7). Then, for n sufficiently large,
PE] > 1 — et

Proof. Throughout this proof, we write d(v) for dgr(v) and d(v, S) for do» (v, S), for any set
S.

Let C = [100/(6%¢7)]. Fix any vertex v € {0,1}" and A € (Bg”)). Observe that for
any u € A, if d(u, S(u)) # (1 £ 9)e|S(u)|, then d(u, S(u) \ A) # (1 £6/2)e|S(u)|. Observe
that E[d(u, S(u) \ A)] € [e(|S(u)| — C),e|S(u)|] for all u € A. Furthermore, the variables

{d(u,S(u) \ A) : u € A} are mutually independent, and each of them follows a binomial
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distribution. By Lemma 2.4.2, for each u € A we have that, for n sufficiently large,
Pld(u) # (14 8)=|S(w)]] < Pld(u, S(u) \ A) # (1% 6/2)e|S(w)]] < 2e~Fm/19 < =8/

We say that A is bad if d(u,S(u)) # (1 £ 0)e|S(u)| for all u € A. Since the variables

d(u, S(u) \ A) are mutually independent, it follows that
) c
P[A is bad] < <e_5 6”’”/2()) <e

Observe that £ holds if there are no bad sets A. By a union bound over all choices of v and

all choices of A, it follows that
‘
P[E] < 2" (En )6_5" <e ' O

Finally, due to word constraints, we state without proof Theorem 2.5.7. A full proof
can be found in [31|. Roughly speaking, Theorem 2.5.7 states that, for any constant £ > 0
and ¢ € N, with high probability the random graph O contains a set of /-dimensional cubes
which are vertex-disjoint, cover all but a small proportion of the vertices of Q, and are
‘sufficiently significant’ with respect to every large set of directions, while not being ‘too
significant” with respect to any given direction.

Given any £ € N, any S C D(Q") and any copy C of Q° with C' C Q", we define the
significance of C in S as o(C,S) = |D(C) N S|. Similarly, given any set C of ¢-dimensional
cubes in Q", we define the significance of C in S as 0(C,S) = Y - cc0(C,S). We also
denote X(C,S,t) = {C € C : 0(C,S) > t}. Given any = € {0,1}" and any Y C Ngn(x),
we denote C,(Y) = {C € C : dist(z,C) = 1,V(C)NY # @}. In particular, we will write
Cp = Cy(Non(z)).

Theorem 2.5.7. Let ¢,0,a, 3 € (0,1) and K,¢ € N be such that 1/{ < o < (. For each
x € {0,1}", let Ao(z) == Ngn(x) and, for each i € [K], let A;(z) C Ap(x) be a set of size
|A;(x)| > pn. Then, the graph QF a.a.s. contains a collection C of vertex-disjoint copies of

Q° such that the following properties are satisfied for every x € {0,1}":
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(M1) |Ag(z) NV (C)| > (1 —d)n;
(M2) for every é € D(Q") we have [S(Cy, {€},1)] = o(n'/?);
(M3) for every i € [K]o and every S C D(Q") with an/2 < |S| < an we have

|S(Co(Ai(2)), S, 1) > | As()]/3000.

2.6 Near-spanning trees in random subgraphs of the hy-
percube

In this section we present our results on bounded degree near-spanning trees in Q. In
Section 2.6.1 we prove the main result of this section (Theorem 2.6.1). This implies that
with high probability there exists a near-spanning bounded degree tree in Q, which covers
most of the neighbourhood of every vertex whilst avoiding a small random set of vertices, to
which we refer as a reservoir. In Section 2.6.2 we prove Theorem 2.6.19, which allows us to
extend the tree using vertices of the reservoir such that (amongst others) the proportion of
uncovered vertices is even smaller. Finally, in Lemma 2.6.20 we show that, if some number
of small local obstructions is prescribed, the tree given by Theorem 2.6.19 can be slightly
modified to avoid these obstructions. For convenience, throughout this section, we move away
from the algebraic notation for the hypercube to a more combinatorial notation.

We (re-)define the hypercube by setting V(Q") = P([n]) and joining two vertices
u,v € P([n]) by an edge if and only if ||u| — |v|| = 1 and u C v or v C w. In this setting,
directions correspond to the elements in [n], and following a direction ¢ € [n] from a vertex
v € P([n]) means adding i to v if i ¢ v, or deleting it from v if i € v. Note that there is a
natural partition of V(Q") into sets such that every vertex of a set has the same size. Given
any set S C [n], we denote S® := {X C S : |X| =t}. We will denote by L;, for i € [n]y, the

set of all vertices v € V(Q") = P([n]) with |v| =i (that is, L; = [n]®), and we will refer
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to these sets as levels. This notation is especially useful because of the natural notion of
containment of vertices, which provides a partial order on the vertices of Q™. Given any
graph G C Q" for a vertex z € L;, we refer to the neighbours of x in G lying in L;,; as
up-neighbours, and to the neighbours of x in L; | as down-neighbours, and denote these sets by
NJ(z) and N}(z), respectively. We write dl(z) == [N} ()| and d§(z) = |N(x)|. Whenever
the subscript is omitted, we mean that G = Q™. We will say that a path P =wv; ... v, in Q"
is a chain if its vertices satisfy the relation v; C ... C v, and refer to it as a v-v, chain.
In more generality, because of the symmetries of the hypercube, this notation can
be extended with respect to any vertex v € V(Q™) by defining, for each i € [nly, L;(v) =
{u € V(Q") : dist(u,v) = i}. One can then define up-neighbours and down-neighbours with
respect to v, and use the notations Ng(ac,v), Né(w,v), dg(x,v) and dé(x,v), for G C Q™.
We say that a path P = vy ... v, in Q" is a chain with respect to v if its vertices satisfy that,
if v1 € L;j(v) for some j € [n]o, then for all ¢ € [k] \ {1} we have v, € L;1,_1(v), and refer to
it as a v;-v;, chain. Given any graph G C Q", for any i € [n| and v € V(Q"), we will write
E¢(Li—1(v), L;(v)) for the set of edges of G whose endpoints lie in the levels L;_1(v) and

L;(v), respectively. We will drop the subscript whenever G = Q.

2.6.1 Constructing a bounded degree near-spanning tree

Our goal in this subsection is to prove Theorem 2.6.1 below. Given a graph G and ¢ € [0, 1],
let Res(G,d) be a probability distribution on subsets of V(G), where R ~ Res(G,J) is
obtained by adding each vertex v € V(G) to R with probability J, independently of every

other vertex. We will refer to this set R as a reservoir.

Theorem 2.6.1. Let 0 < 1/D,6 < ¢’ < 1/2, and let ¢, € (0,1] and k € N. Then, the

following holds a.a.s. Let S C V(Q™) with the following two properties:

(P1) for any distinct x,y € S we have dist(x,y) > yn, and
(P2) B(S) n{@,[n], [[n/21),[n] \ [[n/2]]} = 2.
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Let R ~ Res(Q",6). Then, there exists a tree T C Q" — (RU BE,.(8S)) such that
(T1) A(T) < D,
(T2) for all x € V(Q") \ B&.(S), we have that |[Non(z) NV (T)| > (1 —&')n.

The set S will be important in the proof of Theorems 2.1.5 and 2.1.8, where it will
play the role of the set U of vertices of small degree. In the proof of Theorems 2.1.1 and 2.1.7
we can take § = @.

To prove Theorem 2.6.1, we will consider suitable ‘branching-like’ processes which
start at the ‘bottom’ of the hypercube, and grow ‘upwards’. The tree will be formed by
considering unions of such processes. The precise definition of the model we use is given in
Definition 2.6.3. Crucially, there is a joint distribution of this branching-like process model
and the binomial model Q. These processes are analysed and constructed in the results
leading up to Lemma 2.6.12. Subgraphs obtained from the processes are then connected into
a tree in Lemma 2.6.17.

We begin with a formal description of our model. We denote by p = (po, ..., Pn_1) €
[0, 1]™ an n-component vector of probabilities. We now describe a distribution on subgraphs
of Q" which is biased with respect to the number of edges between different levels of the

hypercube.

Definition 2.6.2 (Level-biased subgraphs of Q™). Given n € N and p = (po,...,Pn-1) €
[0,1]", let W5 be a distribution on subgraphs of Q" where W ~ WYJ is generated as follows:
we set V(W) ==V (Q") and, for each i € [n— 1]y, each e € E(L;, Li+1) is included in W with

probability p;, independently of all other edges.

Roughly speaking, the above model has the advantage that, by choosing our prob-
abilities p; appropriately, it will allow us to generate subgraphs of Q" where each vertex
has the same number of up-neighbours in expectation. Moreover, note that there is a joint
distribution of Wp and Q) such that we have W C QF, where p is the maximum component

of p.
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We are now in a position to define one further distribution on subgraphs of Q™. We will

search for a near-spanning tree for QF in the graphs generated according to this distribution.

Definition 2.6.3 (Percolation graph P(n,p, M)). Givenn, M € N and p = (po,--.,Pn-1) €
[0,1]", we define P(n,p, M) to be a distribution on subgraphs of Q" where P ~ P(n,p, M)
is generated as follows. Let R ~ Res(Q",1/100) and W ~ Wp. For each x € V(Q"),
if diy(x) > M, let B(z) C N, (x) be a uniformly random set of size M (otherwise, let
B(z) = @), and let E(x) be the set of edges joining x to each y € B(x). Let W' be the
spanning subgraph of W with edge set UIGV(Q”) E(x). The graph P C Q™ is then given by
setting P .= W' — R.

Remark 2.6.4. Observe that, given any two distinct edges e, e’ € E(Q"), the events e €
EW’") and ¢ € E(W') are mutually dependent if and only if for some i € [n] we have
e, € E(Li_y,L;) with eNe = {v} for some v € L;_y. Otherwise, these events are
independent. In particular, if e € E(L;_y,L;) and € € E(L;j_y, L;) with i # j, then these

events are always independent.

Note that P(n,p, M) € Wy by definition, and therefore we have a joint distribution

of P(n,p, M) and Qp such that P(n,p, M) C Qp, where p is the maximum component of p.
Definition 2.6.5 (Feasible (n,p, M)). We say that the tuple (n,p, M) is feasible if

(i) p; =0 for all 9n/10 < i < n,

(i) mawicpm-1,ps < 1/10 and M > 1600,

(iii) there exists t € R with 600 < t < 100M such that P ~ P(n,p, M) satisfies Ple €
E(P)] = t/n for all e € Y2 B(L;, Liy1).

Remark 2.6.6. Let (n,p, M) be feasible, where p = (po, . ..,pn—1). Note that py determines
the value of p; for all i € [|9n/10]]. Furthermore, let P ~ P(n,p,M). We can generate

P by first sampling W ~ W¢ and R ~ Res(Q",1/100), and then defining the graph W' as
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described in Definition 2.6.3. Let t' = t/(g)?, where t is as in Definition 2.6.5(iii). Since

(n,p, M) is feasible, for all e € Ui%/mj E(L;, Liy1) we have
Ple € E(W")] =t'/n.
Furthermore, for all i € [|9n/10]], given e, e’ € E(L;, Li+1) with e # €', we have that
Ple,e¢’ € E(W')] <Ple € EW"))* = (¢ /n)*.

From here on, where it is clear from the context, we will use py, ..., p,_1 to denote the
components of each probability vector p, and will use ¢ to denote the value ¢ in Definition 2.6.5

and t’ to denote the value ¢’ in Remark 2.6.6.

Proposition 2.6.7. Foralle € (0,1/10), M > 1600, andn € N such that0 < 1/n < 1/M, e

there exists a tuple (n,p, M) which is feasible and such that p; < e for all i € [n — 1].

Proof. Let P ~ P(n,p, M), for some p which will be determined later. We generate P
by first sampling W ~ Wy and R ~ Res(Q",1/100). Let j € [[9n/10]]y be fixed and let
e € E(Lj,Ljt1). Let x € L; be incident with e. Let A be the event that e € E(W). For
each k € [n — jlo, let By be the event that d, (z) = k. Let C be the event that e € E(P).

For each i € [n — M]o, let

fily) = (m

n-—1

99>2 M (n—i

Then, we have that

nj
PC]= 3" P[C | AA B PLA| By P[By]
k=M
< 99\:M k (n—j ‘
= (ﬁf?n—j(nk ])pf(l—pa‘)"—]_k = fi(p;)-
k=M

Let m = mine[|9n/10]], fi(e).

Claim 2.6.1. We have % <m< %.
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Proof of Claim 2.6.1. Let i € [|9n/10]]p be such that f;(¢) = m. Clearly,

f(e) < 100M 5 <n ; z) (1 ey < 1002/

n n
k=M

Moreover, we have that

f(e) = (%):f{l n—i (n;i)gku_g)n—i—k - %(%y%’

as M <e(n—1)/2. <

For each i € [|9n/10]]p such that f;(¢) > m, since f;(z) is continuous, by the
intermediate value theorem we can choose some p; € (0,¢) such that f;(p;) = m. This
determines the probability vector p = (po,...,pn—1). By Claim 2.6.1, the tuple (n,p, M) is

feasible (with mn playing the role of ¢ in Definition 2.6.5), hence the statement is satisfied. [

In order to construct the near-spanning tree, we will generate a graph P ~ P(n,p, M),
for some feasible (n, p, M), and will be interested in whether or not there exists a chain in
P from some vertex = € L, to some vertex y € L,,, for m’ > m and x C y. Note that the
presence and absence of such chains in P are highly dependent. Thus, in order to show that
such chains exist with high probability, we will consider the number of z-y chains and bound
its variance. We do so in the following lemma. In order to state it, we first need to set up
some notation.

Given x € L,, and y € L,y with m’ > m, we denote by &, , the collection of z-y chains
in Q™. For each X € X, , and any graph G C Q", let Yx(G) be the corresponding indicator
variable which takes value 1 if X C G and 0 otherwise. Let Y;,(G) = > ¢y  Yx(G).
Whenever G is clear from the context, we will simply write Y, ,. We define

A(Y,y) = Y Cov[¥xYx/,
(X, X")ex2,
X#X'

so Var[Y,] = A(Ysy) + > xen, , Var[Yx].

37



Lemma 2.6.8. Let P ~ P(n,p, M), where (n,p, M) is feasible with 0 < 1/n < 1/M. Let

1<m<m <9In/10 withm' —m+1>n/d—1. Let x € L,, andy € L,y withx Cy. Then,

The proof of Lemma 2.6.8 makes use of the analysis in the proof of a similar lemma of
Kohayakawa, Kreuter, and Osthus [66, Lemma 7|. In order to shorten our analysis here, we
first state a partial result which follows from the analysis of [66]. For this, we first need to
give some more definitions.

Fix z € L,,, and y € L,y with m’ > m and x C y. Observe that |X, ,| = dist(z,y)! =
(m’ —m)! depends only on the distance between = and y. For each k € [n], let Ry = (k— 1)L
Given any X, X' € X, , with X # X', let (X, X') = |[V(X) NV (X")| — 2, let s(X, X’) be
the number of connected components of X — V(X’), and let ¢(X, X’) be the largest order
over these components.

Next, we define the set of possible intersection patterns for two chains. Let k& =
m' —m+1. Given any chains X, X’ € &, ,, let A(X, X’) be the collection of indices a € [k—2]
for which X and X’ agree on their (a 4+ 1)-th elements (where we consider x to be the first
element of X and X’). An admissible (i, ¢, s)-pattern is a set A C [k — 2] with |A| = i such
that the longest interval of consecutive elements in [k — 2]\ A contains exactly ¢ elements and
such that the number of maximal intervals of consecutive elements in [k — 2] \ A is exactly
s. We denote by A, the set of all admissible (7, ¢, s)-patterns. Furthermore, we define
Civs = |Aiss|. Note that any pair of chains X, X' € &, , with i(X, X') =i, {(X, X') =/
and s(X, X') = s define an admissible (7, ¢, s)-pattern A(X, X') € A; 4.

Given a chain X € &, , and a pattern A € A, ., let F'(A) be the number of chains
X' e &, , such that A(X, X’) = A. (Note that the definition of F'(A) is independent of X.)

Let F, s = maxaca,,, F'(A). Observe that F;,, is an upper bound on the number of chains

i,0,s

X' with A(X, X’) = A.
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Finally, for each triple (i, £, s) € [k — 3]y X [k — 2]?, let

Ai,f,s = Z E[YXyX/].
(X,X’)EXiy,X#X’
(X, X")=1,0(X,X")=L, s(X,X")=s

Furthermore, let

No(Yay) = > Cov[YxYy] and  Ay(Y,,)= Y Cov[YxYyl].
(X, X"ex?, (X, x"ex?,
i(X,X")=0 i(X,X")e[k-3]

Thus, A(Yz,) = Ao(Yay) + A1(Ys,). Note that, by summing A; 4, over all triples (i,4,s) €

k — 3] x [k — 2]2, we obtain an upper bound for A,(Y,,).
Y

Lemma 2.6.9 (|66]). For all M > 100 there exists ng such that, for all n > ng, the following
holds. Let x € Ly andy € L,y with x Cy. Let p > M/(2n). Let Q C Q" be a random

subgraph chosen according to any distribution such that

Ai,@,s < Oi,f,sﬂ,f,s
E[Y:'c,yP o Rn—lpi 7

for each possible choice of (i,(,s) € [k — 3] x [k — 2]?. Then,

100
Ay (Yzy) < WIE[YW]Z.

With this, we are finally ready to prove Lemma 2.6.8.

Proof of Lemma 2.6.8. Let P ~ P(n,p, M), where (n,p, M) is feasible. Recall, from Defi-
nition 2.6.3, that P is generated by first sampling a set R ~ Res(Q™,1/100) and a graph
W ~Wp. We then generate the graph W’ by choosing, for each v € U}iﬁ/ 10] L;, a set of
M up-neighbours uniformly at random from the set of up-neighbours v has in W, provided
dly,(v) > M (and by setting dl,,(v) == 0 otherwise). Let t' := t/(355)%. Thus, for all

e e U}z%/loj E(L;, Liy1) we have by Remark 2.6.6 that

Ple € W' =t'/n.
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Let k :=m' —m+ 1, and let X be a fixed z-y chain in Q™. By Remark 2.6.4 it follows

that
/ k-1 99 \*
E[Y,,] = RiP[X C P] = Ry(t'/n) <m> . (2.6.1)
Furthermore, for all (i,/,s) € [k — 3]y X [k — 2]?, we have that
99t/ 2k—i—2
in s S 7 slﬁ s\ TAn_ . 2.6.2
s < BeClipskig, (100n) (2.6.2)

To see this, note that we may first choose an z-y chain X, for which there are Ry choices.
Next, we choose an admissible (7,4, s)-pattern A € A, of which there are C; ;5. We then
have at most F; ;s choices for z-y chains X’ with A(X, X’) = A. Next, we bound the number
of vertices and edges of X U X’. It is clear that X has k vertices and k — 1 edges, and
V(X)) \ V(X)| = k —i— 2. Moreover, observe that |E(X’)\ E(X)| > k—i— 1. The bound
finally follows by considering the probability that all these vertices and edges are present in
P and by Remark 2.6.6.

We are going to compute bounds for Ay(Y,,) and Ay(Y,,) separately, and then
combine them to obtain the result. We begin with a bound for A;(Y,,). Combining (2.6.1)
and (2.6.2), it follows that, for all (i,¢,s) € [k — 3] x [k — 2],

AV CiosFios (n\i [ 1\ _ CiosFips RS
e w0 () =" ()

100 100

Note that (W)t’(%)?’ > 100. It follows that we can apply Lemma 2.6.9 with (%)t’(l‘%)?’

and m’ —m + 2 playing the roles of M and n and p = t'(55)%/n to obtain that

100

(EEmZ ) (B

AI(YMJ) < E[Yx,y]Q < E[Ym,y]Q- (2-6~3)

We now turn our attention to Ay(Y,,). For any two chains X, X’ € X, , such that
i(X,X') = 0, we have that X U X’ has 2k — 2 vertices and the same number of edges.
Therefore, by Remarks 2.6.4 and 2.6.6 we have E[YxVx/] < (32£)%~2 and by (2.6.1) we

have that

s <) (- () <evr s
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The conclusion follows immediately by combining (2.6.3) and (2.6.4). O

In order to proceed further, we will consider unions of independent graphs P ~

P(n,p, M).

Definition 2.6.10. Let n, M,C € N and p € [0,1]"*. We define P¢(n,p, M) to be a distri-
bution on subgraphs of Q™ such that P ~ P%(n,p, M) is generated by taking C independently
generated graphs P; ~ P(n,p, M) and setting P = UZC:1 P,. For each i € [C], there is a set
R; ~ Res(Q™,1/100) associated with P;. Let R := ﬂlczl R;. We say that R is the reservoir

associated with P.

It follows from Definitions 2.6.3 and 2.6.10 that there is a joint distribution of
PC(n,p, M) and Qin{1,0py Such that PC(n,p, M) C Qin{1,cpye Where p = maxe[,—1j, ;-
Note that for all z € V(Q") we have that Plz € R] = (1/100)¢.

Our next goal is to prove that, by choosing constants appropriately, there is a high
probability that there exists an 2-y chain in P ~ PY(n, p, M), even if we restrict the set of
‘valid’ chains to a significant subset of the total. For this, we will make use of Lemma 2.6.8.
Given any vertices € L,, and y € L,y with z C y, any set Z C &, ,, and any graph G C Q",

we denote the number of x-y chains X € Z such that X C G by Y(Z,G).

Lemma 2.6.11. For n,C € N and n,a > 0 such that 0 < 1/n < 1/C < n,«a and any
feasible (n,p, M) with 0 < 1/n < 1/M, the following holds. Let 1 < m < m' < 9n/10 with
m' —m+1>n/4d—1. Let x € L, andy € L,y with v Cy. Let Z,, C X, , be such that

|Zoy| > a|Xyy|. Let P~ PC(n,p, M). Then,
P[Y(Zm,yap) > 0] >1- n.

Proof. For each i € [C], let P, ~ P(n,p, M), and let P :== |, P,. Let Y; == Y,,(P,) and
Z; =Y (Z,,,P,), and let

AZ)= Y Cov[Yx(P)Yx(P)].
(X,X’)ez‘gﬁy
X#X'
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Note that
E[Y?] < A(Y;) + E[Y]] + E[ (2.65)

We also have

E[Z?] < E[Y] (2.6.6)

and, since all x-y chains are equiprobable,
E[Z]* > o*E[Y;]*. (2.6.7)

Let k :=m’' —m + 1. By (2.6.1), we have that E[Y;] = Ry(#/n)*~1(99/100)*, where ¢’
is the value given in Remark 2.6.6. Recall that Ry, = |X,,| = (k — 1)!. We have by Stirling’s
formula that E[Y;] > 1. Therefore, E[Y;] < E[Y;]?. Moreover, it follows by Lemma 2.6.8 that
A(Y;) < 2E[Y;)?. So E[Y?] < 4E[Y;]? by (2.6.5). Combining this with (2.6.6), (2.6.7) and

Proposition 2.4.1 we obtain

E[Z;]? *E[Y]] o@’E[Y]] 9
P[Z, = 0] < 1— <1-— 1 <1 4
Z=0 <1 ga <1~ g <1 Epy o/
It follows that
PY (2., P) =01 = [ PIZ (1—a?/4)° < O
1€[C]

When performing our analysis on the structure of P, the dependence of chains on
each other becomes difficult to take into account. In order to deal with this issue, we will
show that, with high probability, it suffices to consider only chains which lie in some large
subsets of the total sets of chains, with the property that the presence or absence of a chain
in one of these large subsets is independent from chains of all other subsets. (Note that
Lemma 2.6.11 works for these sets of chains as long as they are not too small.) Lemmas 2.6.12
and 2.6.16 guarantee the existence of such sets. In Lemma 2.6.12 we prove that, assuming
x, 2" € L,,, and y,y € L,,, where v,y are far apart, one can construct very large sets of
chains between the pairs x,y and z’,4’, which are independent in the sense described above.

Then, in Lemma 2.6.16 we will prove that we can pick many endpoints y € L, in such a
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way that they are suitably far apart. Moreover, we will combine Proposition 2.6.14 with
Lemma 2.6.15 to later show that these large sets of chains can be constructed in such a way
that each avoids a small fixed set of forbidden vertices. This will be important in showing
that the tree we construct for our main result can be made to avoid the forbidden set § in
the statement of Theorem 2.6.1.

Given 0 <m <m/ <n,let x,2’ € L,, and y,y € L,y with x C y and 2/ C /. We
denote by X;Z/’y' the collection of chains X € &, , for which there is no X’ € X,/ with

V(X)NV(X') £ 2.

Lemma 2.6.12. For all n > 100, the following holds. Let 1 < m < m’' <n — 1 be such that
nfd—1<k=m'—m+1<n/2. Let x,2' € L, and y,y" € L,y withx Cy and 2’ Cy’ be

such that dist(x,z') = 2 and dist(y,y’) > 9k*/(10n). Then,
' 60000
X2V > 11— —— ) | Xyl
a2 (1- S0 1

Proof. We may assume that z Uz’ C y Ny, since otherwise X;jl’y/ =X, Let b= |yny|.

We have that b < m/ — 9k%/(20n). Let H denote the smallest subcube of Q" which contains

both z Uz’ and y Ny'. For each i € [b] \ [m], let &}, C X, , be the set of chains X € A, ,
such that V(X)N L; NV (H) # @. Note that X;j/’yl 2 Xoy \ Uiepp\imy X, and

; b—m—1 P

&, | = (i—m—l)(m — )i —m)l. (2.6.8)

Indeed, there are (Y~7"}) choices to fix an element z € V/(H) N L;. (To see this, consider

that H is itself a cube of dimension b — m — 1, and we are choosing a vertex z from the

(¢ —m — 1)-th level of this cube.) Then, there are (i —m)! z-z chains, and (m’ —1)! z-y chains.

Recall that |X, ,| = (k — 1)!. By comparing this with (2.6.8) and simplifying, for all

i € [b] \ [m] we obtain

\X;3y|_ i—mi_ﬁl b—m—j <i—m (2.6.9)
x| m—m i m-m-j k-1 o
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We now split the analysis into two cases. First, when i is small, we bound (2.6.9)

directly. For all ¢ € [b] \ [m] with i < m + 64, it follows from (2.6.9) that

i
:ﬁ: < n/j‘i - < ? (2.6.10)
On the other hand, for each ¢ € [b — 1]\ [m], by (2.6.9) we have that
Aoyl ylitl—m b—i _39i+1—m|A,|
Xyl | Xyl i—m  om—i T 40 i—m | X,
For all i € [b— 1]\ [m + 64], this yields
Ly | 99 1Ayl (2.6.11)

| Xay = 100 [y [

Finally, by combining (2.6.10) and (2.6.11), and considering a geometric series we

conclude that

|Xx,y’ N ‘Xx,y’ B n

_w/’ / b i
Yoy V1 o 1ol = 3 [Xayl o 60000 -

Remark 2.6.13. Lemma 2.6.12 holds similarly if dist(z,2") > 9k*/(10n) and dist(y,y’) = 2.

Proposition 2.6.14. Let 0 < 1/n < v,1/k < 1, where n,k € N, and let S C V(Q") be
such that, for all distinct z,x’ € S, we have dist(x,z') > yn. Then, for any y € L,, such that

m >n/8, and for every ym/2 <t < (1 —~/2)m, we have |y N BE,.(S)| < |y®]277m/200,

Proof. Let m >n/8 and y € L,,,. Let ym/2 <t < (1 —~/2)m and let S’ C S be the set of
all those x € S for which BY.(z) Ny # @. We have that
|BEL(S) Ny D =D B (z) Ny?| < 2n*|S. (2.6.12)
eS8’

Moreover, for every z, 2’ € 8’ we have that Bgf/ *(z) N Bg}/ ’(2/) = @, and, therefore,

') (min| BZ* (2) 1y ) < [y, (2.6.13)

Claim 2.6.2. For every x € 8’ we have |Bgf/3(:1c) Ny®| > 20m/20,
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Proof. Let o' € BE.(z) Ny®. Let z C 2/ be such that z € L., ; (recall that ¢t > ym/2).
Since y € L,, we have that |y \ 2| =m —t. Let 2’ C y \ 2’ be such that 2’ € L,,,/7 (recall
that ¢ < (1 —+/2)m). It follows that (z'\ 2)Uz’" € Bgf/g(:ﬁ) Ny®. Note that there are (’yrri/?)

choices for z and (m*t) choices for 2. It follows that

ym/7T
m—t t
> > 97m/20,
= <vm/7) (vm/?) - <

Combining (2.6.12), (2.6.13) and the above claim we have

’Bgf/s(x) Ny®

2nF|y®|
min,es | B () Ny®)|

|B&.(S) N y(t)‘ < < 2nk|y(t)\2*7m/20 < ’y(t)‘zfﬂm/mo. O

Given z,y € V(Q") with z C y and § C V(Q"), we denote by X' the collection of

chains X € A, , for which V(X)NS = @.

Lemma 2.6.15. Let 0 < 1/n < v,1/k < 1 where n,k € N, and let S C V(Q") be such
that for all x,2’ € S we have dist(z,2') > yn. Let x,y € V(Q") \ BE.(S) with x C y and

. —~BEL(S)
m = dist(x,y) > n/8. Then, |Xpy <" | > 3m!/4.

Proof. We may assume that = @ and y = [m], where m > n/8. Let X}, denote the
collection of chains X € X, for which V(X) N L; N BE.(S) # @. We have

m—1
ﬁBkn(s) i
Xy \ Xy &) <AL (2.6.14)
=1

Furthermore, by Proposition 2.6.14 (with /2 playing the role of v), for all ym/4 < i <

(1 —~v/4)m we have that
x| < <TZ”> 9= 7m /400 (1y — )] = 9~ 7m/400 ) (2.6.15)
Next, we consider the case ¢ € [ym/4], where first we prove the following claim.
Claim 2.6.3. For alli € [4k] we have |X; | < (2n)""'(k + 1)il(m — ).

Proof. Observe that |S N UXZ{Q_l L] < 1. IfSn Uzj{z_l L; = @, then X} = @ for all

i € [4k], so assume |S N U;Ygz_l L;| = 1. Let v be the unique vertex in SN Uzjf—l L;. Then,
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B (v) N L; = BE.(S) N L; for each i € [4k]. Thus, in order to prove Claim 2.6.3, it suffices
to show that |BE.(v) N L;| < (2n)71(k + 1) for each i € [4k].

We will proceed by induction on 4. Since @ = x ¢ BE.(v), it follows that |B.(v) N
L] < k+ 1, so the base case holds.

Now, suppose that |BE. (v) N L;_;| < (2n)""2(k + 1) for some 2 < i < 4k. Consider
first the case where v € L; for some ¢ < j <i+ k. In this case, any u € L; N Bgn(v) satisfies

either
(i) u Cwvor
(ii) there is a v-u path of length at most k& whose penultimate vertex lies in L; ;.

There are (Z) < (k;”) choices for u satisfying (i), whereas by applying induction to the
penultimate vertex in such paths it follows that there are at most n(2n)""2(k + 1) choices for

u satisfying (ii). Altogether, we have

k+1
l

|BE.(v) N L] < ( ) +n2n) 2 (k+1) < (2n)" Yk +1).

The case where v € L; for some ¢ — k < j < ¢ is handled similarly. This completes the

induction step and the proof of the claim. <

Recall that |S N Bgf/zfl(:v)\ < 1. It follows that for all i € [ym/3] we have that
|B&.(S) N Lg| < nF and, therefore, |X] | < nFil(m —i)!. Suppose |S N Béﬁ:‘/?fl(xﬂ =1, and
let v be the unique vertex in S N Béﬁ?/?fl(;ﬁ). Let j € [ym/2 — 1] be such that v € L;. It

follows by Claim 2.6.3 that

ym/3 j+k SR (2n) L (k + 1)il(m — i) if j < 3k,
Dol < T
S nkil(m — 0)! if 3k < j < ym/2
4k
< (@) (k4 D)il(m — i)\, (2.6.16)
=2k
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IfSn BSZL/ *(z) = @, then this trivially holds too. By the symmetry of the hypercube, we

also have that

m 4k
Do lx <> @) (k4 1)il(m — i), (2.6.17)
i=m—ym/3 1=2k
Therefore, by (2.6.14)—(2.6.17) we have
X m—ym/3 4k
[y \ Xy ) < ST 2700 2N (20) (k4 D)il(m — i)l < ml/d. O
i=ym/3 i=2k

Lemma 2.6.16. Let 0 < 1/n < n,1/K',v < 1 and n/2 < k < n with n, k', k € N. Let
S CV(Q") be such that for all x € V(Q"), we have that |BS.(x) NS| < 1. Lety € Ly and
let s .= [(k +1)/2]. Then, there exists three sets of vertices A = {a1,...,aq_pn} < L1,
B ={b,....,ba—pn} € Non(y) and C = {c1,...,ca—gn} C Ls such that
(i) for each pairi,j € [(1 — n)n] with i # j we have dist(¢;, ¢;) > 9s*/(10n),
(i) BE.(S)NC =@, and
(iii) for each i € [(1 —n)n] we have a; C ¢; C b;.

Proof. Choose k vertices c1,...,c, € y® independently and uniformly at random. Then,
choose n — k vertices ¢ ,4,...,c, € y©~1Y independently and uniformly at random. For
each i € [n] \ [k], choose an element a; € [n] \ y such that all the a; are distinct, and let
¢; = c,U{a;} € L,. For each i € [n]\ [Kk], let b; € NT(y) be the unique vertex such that
a; € b;, so that when viewing each a; now as a l-element set, we have a; C ¢; C b; for all

Note that, for each pair i,j € [n] with ¢ # j, we have that
Ellc; N¢jl] < s*/k. (2.6.18)

Assume that we reveal each ¢; in turn. We then have that, for each ¢ € [n]\ {1}, the variables
lc; N ¢;| with j € [i — 1] are hypergeometric. Thus, by Lemma 2.4.3 and (2.6.18), for each

pair i, j € [n] with ¢ # j we have that

Plc; Nej| > 2157 /(20k)] < e7/25000,
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By a union bound, it follows that a.a.s. for all pairs i, j € [n] with ¢ # j we have |¢; N¢;| <
21s?/(20k) and, thus, dist(c;, ¢;) > 9s/10. In particular, (i) holds a.a.s.

Next, let S; = y® N Bgn(S) and S, =yt~ N ngl(S). By applying Proposi-
tion 2.6.14 first with &', S and s playing the roles of k, S and ¢, respectively, and then with
K'+1, S and s—1 playing the roles of k, S and ¢, respectively, we obtain that |.S;| < (];) 2—n/200

and |S,| < (,*,)277/200. Therefore, for all i € [k] we have

e 59 227

For all i € [n]\ [k] we have P[c; € S1] < P[c; € S, and similarly we have P[c] € Sy] < 2777/200,

_ 2—7n/200'

It now follows by a union bound that (ii) holds a.a.s.

Next, consider an auxiliary bipartite graph H with parts y* and {c;,...,c;} and the
following edge set. For each i € [k] and a € yV), let {a, ¢;} be an edge whenever a € ¢;. Thus,
for each ¢ € [k] we have that dy(c¢;) = s. Furthermore, it follows by Lemma 2.4.2 that a.a.s. for
all a € yM) we have dy(a) = (1 £n/2)s. Condition on this. Then, for each X C y!); since
we have ey (Ng(X),yV) > eyg(Ny(X), X), it follows that |N(X)| > |X| — nk/2. Therefore,
by Lemma 2.5.1 we have a matching of size (1 —n/2)k in H.

Similarly, a.a.s. we have a matching of size (1 —7/2)k in the analogous bipartite graph
H' with parts N¥(y) and {cy,...,cr}, where for each i € [k] and b € N*¥(y) we have that
{b,¢;} is an edge whenever ¢; C b. By concatenating these matchings (and relabelling the
indices if necessary), it follows that a.a.s. there is an ordering {ay,...,a;} of the elements of
y and an ordering {by,..., b} of the vertices of N*(y) such that, for all i € [(1 — n)k], we
have a; C ¢; C b;. Furthermore, as explained before, by construction, for all i € [n] \ [k], we
have a; C ¢; C b;. Thus, (iii) holds a.a.s.

Finally, given that each of (i), (ii), (iii) holds a.a.s., there must exist a choice of

1, ..., ¢, such that (i)-(iii) hold simultaneously. O

We are now in a position to combine the results we have shown so far to prove the

following key lemma, which is used to provide a base structure for the near-spanning tree
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which we seek.

Lemma 2.6.17. Let 0 < 1/n < 1/C < &' < 1/2, and 0 < 1/n < 1/K',v < 1/2, where
n,k',C € N, and let (n,p, M) be feasible with 0 < 1/n < 1/M. Moreover, let S C V(Q™)
be such that, for all z € V(Q"), we have |BY.(z) NS| < 1 and @ ¢ BY.(S). Then, with
probability at least 1 — e~ we have that P ~ PC(n,p, M) satisfies the following: for all
Yy € U}i%l/gj} L; \ BE, (S), there exists a collection of chains X, such that, for all X € X, we
have X C P — B5,.(S), one of the endpoints of X belongs to Ly, and

‘Ngn(w n U V(X)] > (1—&)n.

Xex,

Proof. Fix n > 0 such that 0 < 1/n < n < €, and let m = 480000. Fix a vertex
y € L\ B5.(S) for some n/2 < k < 9n/10. Let s := [(k+ 1)/2]. By Lemma 2.6.16
with 7/2 playing the role of 7, there exists a collection of vertices {ci,...,ca—y/2m} C Ls
such that BY.(c;) NS = @ and dist(c;, ¢;) > 9s%/(10n) for all pairs i,5 € [(1 —n/2)n] with
i # j; an ordering by, ...,b, of Non(y), and an ordering ay, ..., a, of L, such that for all
i € [(1—n/2)n] we have a; C ¢; C b;. For each i € [(1—n/2)n], we call (a;, b;, ¢;) a triple. Note
that |B%,(S) N (Ly U Ngn(y))| < 2(k" + 1), and hence we may assume for each i € [(1 — n)n]
that (a;, b, c;) forms a triple where a;,b; ¢ B, (S). We denote by T the collection of all
such triples. Partition [(1 — n)n] into two sets Z; = {i € [(1 —n)n] : b; € N*(y)} and
Ly =[(1—=nn]\Zi. Let Ay ={a; :i € L1}, Ay = {a; : i € I}, By = {b; : i € T},
By ={b;:1 €Iy}, C={c;:i €Iy} and Cy == {¢; : i € Io}. Note that k —nn < |C;| < k.

We first turn our attention to A;, By and C;. Partition A;, B; and C; into sets
AL AT B B™ and CY, ... C™, respectively, each of size at least |(k —nn)/m] and
at most 2| (k — nn)/m|, and such that, for every triple (a,b,c) € T there exists j € [m)]
such that @ € A/, b € B/ and ¢ € (7. For each i € [m], write A" = {ai,... a4},
B ={bi,...,b 4} and C* = {ci,...,c[ 4}, where the labeling is such that (a, b}, ¢;) € T for

. as the set of
J

each j € [|AY|]. For each i € [m] and j € [|.A?|], we define the set Zyi o © Xos

all chains X € X, .+ which, for all j' € [|A’]]\ {j}, neither intersect any chain X' € X, . ,

3773 3775
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nor Bgn (S). By Lemmas 2.6.12 and 2.6.15 and the definition of m, we have that

1
|Za§-,c§ > §|Xa§,c§ :

(2.6.19)

For each triple (a,b,c) € T and any graph G C Q", let [, .(G) take value 1 if Y(Z,.,G) > 0,
and 0 otherwise. (Recall that Y (Z,., G) denotes the number of chains X € Z, . with X C G.)
For each i € [m], let L;(G) = >_ e/ a1 [a;’c;(G) = el Ia;ﬁ,c;'.(G — BY.(S)).

We are now in a position to consider P ~ P%(n,p, M). Recall that P is generated by
sampling C' independent graphs P;, where P; ~ P(n,p, M). In each P, we can give bounds
on the probability that certain chains appear. Note that, for each i € [C] and each fixed
i' € [m] we have that, for every pair 7, j' € [|A”|] with j # j/, the variables Y(Za;_/7c§/, P;) and
Y(Z il P;) are independent (and, therefore, [ ot C;/(PZ-) and [ ! (P;) are independent too).
Since C' is a large constant, this independence will allow us to boost the probability that

these chains appear in P — Bgn (S). The analysis is broken into two steps.

Claim 2.6.4. With probability at least 1 — 2e~", the graph P ~ P(n,p, M) satisfies the

following.

(1) P — BE.(S) contains an a-c chain for at least (1 — &' /2)k of the triples (a,b,c) € T

with ¢ € C;.

(2) P — BY5.(S) contains a c-b chain for at least (1 —&'/2)k of the triples (a,b,c) € T with

cGCl.

Proof. We show that (1) and (2) each hold with probability 1 —e~"". The result then follows
by a union bound.

For (1), let C' := +/C. By (2.6.19), we can apply Lemma 2.6.11 with (¢')?, 1/2 and
C' playing the roles of 7, a and C, respectively. Thus, for P’ ~ P (n,p, M), for all i € [m]

and j € [|AY|] we have that

]P)[]a"r,ci.(P,) = 1] = P[Y(Za?,c"n

P >0 >1- ()
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It follows that for all i € [m] we have E[I;(P")] > (1—(¢’)?)|.AY| and, therefore, by Lemma 2.4.2,
P[L;(P') > |A'|(1 — (£')%/?)] > 1 — ¢~ ()°n/(25:10% (2.6.20)

Let P ~ P%(n,p, M), and note that P can be generated by sampling C’ independent
graphs P; ~ P (n,p, M) and considering their union. For each i € [m], let £ be the
event that I;(P) > | A% (1 — (¢)3/?). Tt follows from (2.6.20) that, for each i € [m], we have
P[E] > 1—e71%" Now let £ be the event that, for all i € [m], & holds. It follows by a union
bound that

P&} >1—e ™™

Thus, with probability at least 1 — e~"" the graph P — Bgn (S) contains an a-c chain for
at least (1 — (¢/)%?)|Cy| of the triples (a,b,c) € T with ¢ € C;. Since |G| > (1 — 2n)k,
P — BY,(S) contains an a-c chain for at least (1 — &'/2)k of the triples (a,b,c) € T with
ceC..

To show (2), for each triple (a,b,¢) € T with ¢ € Cy, one can consider the set X, and
define sets 2., and variables I.,(G) analogously to the proof of (1). Then, by Lemma 2.6.11,
Lemma 2.6.12 together with Remark 2.6.13, and Lemma 2.6.15, the same argument as above
shows that, with probability at least 1 — e~"", the graph P — Bgn (S) contains a ¢-b chain

for at least (1 —&’/2)k of the triples (a,b,c) € T with ¢ € C;. <

It follows by Claim 2.6.4 that with probability at least 1 — 2e~"" we have that
P — BE.(S) contains an a-b chain for at least (1 — &)k of the triples (a,b,c) € T with ¢ € C;.
We can prove an analogous result for the sets A,, By and C,. More specifically, we can show
that with probability at least 1 —2e¢~™", for P ~ P¢(n,p, M), the graph P — B%, (S) contains
an a-b chain for at least (1 —&)(n — k) of the triples (a,b,c) € T with ¢ € C5. Combining this
with the previous, it follows that, with probability at least 1 — 4e~7", P — Bgn (S) contains
an a-b chain for at least (1 — &’)n of the triples (a, b, c) € T. Finally, the result follows by a
union bound over all y € Ui%l/% L;\ BE.(S). O
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Let F' be the union of all chains given by Lemma 2.6.17 (applied with &’ := k). Then,
F satisfies (T2) in Theorem 2.6.1 for all vertices = € Uinﬁ/l 1/02% L; \ BE.(S). However, we need
this property to hold for every x € V(Q") \ B%.(S). Recall the discussion in the beginning
of this section where, due to the symmetries in the hypercube, we can ‘redefine’” any vertex
v € V(Q") to be the empty set @. As discussed, this leads to a redefined notion of levels
in the hypercube where, for each i € [n]y, we let L;(v) = {u € V(Q") : dist(u,v) =i}. The
notion of a chain in this setting was also discussed.

When we consider this generalised setting, by replacing L; with L;(v) in Defini-
tions 2.6.2, 2.6.3 and 2.6.10, we obtain a distribution on subgraphs of Q"™ which we denote by
PC(n,p, M). (Note, again, that there is a joint distribution of P%(n,p, M) and Qin{1.Cp)
such that P¢(n, p, M) C Qnin{1,cpy» Where p = maxiep—1), pi.) Then, for any fixed v € V(Q"),
Lemma 2.6.17 holds in this setting by replacing chains by chains with respect to v. Intuitively,
we may think of this simply as growing several branching processes rooted at different vertices
of the hypercube. This will be crucial in proving (T2).

Note that F' may have unbounded degrees and also may be disconnected. To turn

F into a bounded degree forest we will later delete suitable edges. To make it connected

without significantly raising any vertex degrees we will apply the following lemma.

Lemma 2.6.18. Forn € N such that 0 < 1/n < 6 < 1/50 and 0 < € < 1/2, the following
holds a.a.s. Let R ~ Res(Q™,0). Then, there exists a cycle in QF[(L; U Ly) \ R] which covers
L\ R.

Proof. Let R ~ Res(Q™,0). Let A be the event that |R N Ly| > n/4. By Lemma 2.4.4 we
have that P[A] < e ®™. Expose RN L; and condition on the event that A does not occur.

Note that for each pair of vertices x,y € L; there exists a unique vertex z € Ly N
Non ()N Non(y) (in particular, z = zUy). Let H be an auxiliary graph with vertex set L \ R,
where we include an edge between z and y if tUy ¢ R and {z,zUy},{y,zUy} € E(QF). By

definition, a Hamilton cycle in H would correspond uniquely to a cycle in Q*[(Ly U Ls) \ R]
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covering Ly \ R. Note that H has the same distribution as a binomial random graph
G ~ Gp_|rnLy|p, Where p = (1 — 0)e?. Let B be the event that there exists a Hamilton cycle
in H. As, after conditioning on A not holding, G,,_|znr,|p is a.a.s. Hamiltonian (see e.g. [73,

87]), it follows that
P[B] > P[B | AJP[A] > (1 —o(1))(1 — e ®™) =1 —o(1). 0
We are now in a position to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. Choose constants M,C € N such that 1/D,§ < 1/C,1/M <
¢’. By Proposition 2.6.7, there exists a tuple (n,p, M) which is feasible and such that
maX;cm-1), Pi < €/(5C). Let x1 = @, x5 := [[n/2]], x5 = [n] \ 22 and x4 = [n]. For each
J € 4], let P; ~ chcj (n, p, M) be sampled independently, and let R; be the reservoir associated

with P;. Let R = (.. R;, and note that R ~ Res(Q",1/105¢). Finally, let Q ~ Qs

€]
be independent of all other previous choices. Recall that, for each j € [4], there is a joint
distribution of Pmc; (n,p, M) and Q!5 such that chj (n,p, M) C Qs (see the discussion after
Definition 2.6.10). It follows that there is a joint distribution of Xj:1 ng(n, p, M) x Q)
and Q7 such that P,UP,UP;UP,UQ C QF. Therefore, it suffices to show that we can find
the desired tree T in (P, U P, U Py U P, U(Q — R)) — BE.(S).

For each j € [4], let A4; = Ugf{ll/g% Li(z;) \ B&.(S), and let &; be the event that, for
all y € Aj, the graph P; — B§.(S) contains a collection X7 of chains with respect to x;, where
each chain X € X7 has an endpoint in Ly(z;) (and thus in Ly (z;) \ (R; U Bg.(S))), and such
that at least (1 — €’)n of the neighbours of y in Q™ are covered by the union of the chains in
ij . Note that &; is equivalent to saying that the union of the chains in Xg satisfies (T2) for
all y € A;. For each j € [4] we have by Lemma 2.6.17 that P[£;] > 1 — e, Condition on
the event that &; holds for all j € [4].

For each j € [4], let F; C Q" be given by F; = UyeAJ_ Uxexg X. For each j € [4],
let G; C F; be defined by removing, for each y € V(F}) \ {z;}, all edges of Fj joining y to

its down-neighbours with respect to x; except for one (if y has one such down-neighbour in
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F}). In particular, it follows that each connected component of G; is a tree and contains one
vertex in L;(z;), and that A(G;) < CM +1. Since G, has the same vertex set as F};, we have
that G; satisfies (T2) for all y € A;. Furthermore, note that V(Q") \ B&.(A) = szl A;.

Therefore, the graph G := [J;(, G; satisfies (T2) and A(G) < 4CM +4.

jeld

Since BE(S) N {@, [n], [[n/2]], [n]\ [[n/2]]} = @ it follows that BY.(S) N (Ly(z;) U
Ly(xj)) = @ for each j € [4]. Let & be the event that, for each j € [4], Q[L1(x;)U La(z;)]| — R
contains a cycle C; which covers Ly(z;) \ R. By four applications of Lemma 2.6.18 (applied
with z; playing the role of @) we have that P[€] = 1 — o(1). Condition on the event that

this occurs.

Let H .= G U ¢y Cj. It follows that H is connected and A(H) < 4CM + 6. In

order to complete the proof, let T' C H be a spanning tree of H. O

2.6.2 Extending the tree

Roughly speaking, in Theorem 2.6.1 we showed that, for any € > 0, given a reservoir chosen
at random, the random graph Q” a.a.s. contains a bounded-degree tree 7" which avoids the
reservoir and satisfies the local property that, for every vertex = € V(Q"), all but a fixed
small proportion of its neighbours are covered by 7’. Our goal in this section is to show
that 7" can be extended into a tree T where the proportion of uncovered vertices (in each
neighbourhood) is even smaller, while still retaining the bounded degree property. The precise

statement is the following.

Theorem 2.6.19. For all 0 < 1/n < 1/l,e < 1, where n,{ € N, the following holds.
Let RW C V(Q") and let T" C Q" — (RUW) be a tree. For each x € V(Q™")\ W, let
Z(x) € Ngn(z) NV (T") be such that |Z(x)| > 3n/4. Then, a.a.s. there exists a tree T with
T"CT C(QrUT")—W such that

(TC1) A(T) < A(T') + 1;

(TC2) for all x € V(Q"), we have that |BS,(z) \ (V(T)UW)| < n3/4, and
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(TC3) for each x € V(T) N R, we have that dr(x) =1 and the unique neighbour x' of x in T

is such that ' € Z(x).

Proof. Let Q ~ Q. For each x € V(Q™) \ W we have 3en/4 < Eleg(x, Z(z))] < en. Let
S = {x € V(Q") : do(z) > 1len/10}, Sy = {x € V(Q")\ W : eg(x, Z(x)) < 2en/3}
and S = S; U S,. Let & be the event that there exists no vertex z € V(Q") such that
|BS. () NSy | > n'/2. By Lemma 2.5.6 we have that P[&;] > 1 —e~*". Similarly, let & be the
event that there exists no vertex x € V(Q") such that |B5.(x) N Sy| > n'/2. By Lemma 2.5.6
we have that P[&)] > 1 — e~#". Condition on & A &, holding, that is, that there is no vertex
x € V(Q") such that | B (x) N S| > n*/*.

Given & A &, let H be an auxiliary bipartite graph with parts A .= V(7”) \ S and
B =V(Q"\ (V(T")UWUS), where we include an edge between a € A and b € B whenever
{a,b} € E(Q) and a € Z(b). By definition of S we have for all a € A that

dy(a) < 11en/10 — 2en/3 < en/2.
Furthermore, we have for all b € B that
di(b) > 2en/3 —n3* > en/2.

Since for all X C B we have eg(Ngy(X), B) > ey(X, Ny(X)), it follows that [Ny (X)| > | X].
Thus, by Lemma 2.5.1, H contains a matching covering all of B. This corresponds to a
matching in @ ~ QF. The statement follows by setting 7" to be the union of 7" and this

matching. O]

2.6.3 The repatching lemma

Later we will apply Theorem 2.6.1 to obtain a tree 7" and a reservoir R in Q! which is disjoint
from V(T'). To carry out the absorption step later on, it will be important that for each
vertex some proportion of its neighbourhood consists of vertices in R. However, the tree

produced by Theorem 2.6.1 (and the subsequent application of Theorem 2.6.19) will result in
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a small number of vertices with few or no neighbours in R. The following repatching lemma
will be called on to deal with such vertices, by slightly altering 7.
Given a graph P and S C V(P) we say that S is connected in P if the vertices of S

lie in the same component of P.

Lemma 2.6.20. Let 0 < 1/n < ¢,e,1/f,1/D where f,D € N. Given a fized v € V(Q"),
let C(x) € Non(z) X Nogn(x) be such that |C(x)| > cn and such that, for all distinct
(y1,21), (Y2, 22) € C(x), we have {y1, 21} N {ys, 22} = &. Furthermore, for each (y,z) € C(z),
let B(y,z) C (Non(y) U Ngn(2)) \ {z} with |B(y,2)| < D. Then, with probability at least
1—e®, for every F C V(Q") with |F| < f, there exist a pair (y,z2) € C(x) with y,z ¢ F

and a graph P C QF — {y, z} with |V (P)| < 5D such that
(R1) B(y,z) N Ngn(y) is connected in P, and so is B(y,z) N Non(2).
(R2) V(P)NF =o.

Proof. We provide a counting argument to show there exist edge-disjoint graphs P, ..., P, C
Q" such that, if any is present in Q”, then it would satisfy (R1) and (R2) for some (y, z) € C(x).
We will then prove that, with high probability, one of the P, must be present in Q. Note
that we may assume z = &. By passing to a subset of C'(z) and replacing ¢ with ¢/(30D) if
necessary, we may also assume that |C(z)| = cn and 2Dc < 1/10. Similarly, by passing to a
suitable subset of C'(z), we may assume that, for any distinct (y, z), (v, 2’) € C(x), we have
that B(y,z) N B(y',7') = .

Fix any FF C V(Q") with |F| < f. We update C(z) by removing any pair (y, z) € C(z)
for which ({y,z} U B(y,2)) N F # @. It follows that |C(z)| > en — 2f. Now, for each
(y,2) € C(z) and for each w € {y, 2}, let A, = Ngn(w) N B(y, 2), and let a7, ...,z | be

the vertices of A,.

Claim 2.6.5. For each e = (y,z) € C(z), w € {y,z} and i € [|A,| — 1], there exists a

collection P} of subgraphs of Q™ such that the following hold:
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(RC1) |P| > n/2 and for each P € P} we have V(P)N(F U{y,z}) = @.

(RC2) Every P € P is an (x}’, x%)-path of length 4.

(2

(RC3) The graphs in P} are pairwise edge-disjoint.

)

(RC4) For every ¢ = (v, 2") € C(x) with € # e, every w' € {y/,2'} and every j € [|Aw/| — 1],

the graphs in P} are edge-disjoint from those in 73;-",.

7

(Note that we do not require the paths in P} to be edge-disjoint from those in Pﬁjl

when w,w’ € {y, 2z} are distinct and i € [|A,| — 1], ¢’ € [|Aw]| — 1].)

Proof of Claim 2.6.5. Let ey, ..., eq, be an ordering of the elements of C'(x), where for each
k € [en] we have that e, = (yg,2). Note that, for each k € [en], each w € {yg, 2z} and
all i € [|Ay]], we have that || = 2, and for each i,j € [|A,|] with i # j we have that
dist(z}’, 2¥) = 2, with 2}’ N 2% = w.

Suppose that, for some 1 < k < ¢n, every j € [k — 1], every w € {y;, 2;} and every
i € [|Ay|—1], we have found a collection P;” which satisfies (RC1)—(RC4). We now show that,
for each w € {y, 2} and each i € [|A,| — 1], a suitable choice for P} exists. We construct
the set P as follows. Let vy := 2 \ w and v, := ", \ w. For each d € [n] \ (z}' Uz, ), let

P; C Q" be the path which passes through the following vertices in successive order:
xf xf U{d}, xf U{d} Uvg, (2} U{d} Uvs) \ v1 =z, U {d}, x4

Note that each path P; has length 4 and that V(P;) N {yx, 2z} = &. Furthermore, for any
distinct d,d’ € [n] \ (¢} Uz¥,,), it is clear that P; and Py are internally disjoint, and hence,
are edge-disjoint. To avoid F' as well as the edges of any previously chosen paths we set
k—1
Py {Pd d e )\ (e Unty)al U {d}, o, U {d} ¢ N(U B(yj,zn); V(PN F = @} .
j=1
It follows that P} satisfies (RC2) and (RC3). Recall that V(P;) N {yg, 2x} = 2.

7

Therefore, to see that (RC1) holds, note that, for all distinct (v/, ), (v",2”) € C(x) and all
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e B(y,2), 2" € B(y",2"), since B(y',2') N B(y", 2") = @, we have that 2’ and z” contain
at most one common neighbour in the third level L3 of Q™. Since | Uf;ll B(y;, 2;)| < Den,
there are at most 2Dcn < n/10 choices for d such that =¥ U {d} € N(Uf;iL B(y,, #;)), or
v, U{d} €N (Uf;ll B(y;, zj)). Furthermore, since |F'| < f, it follows that there are still at
least n/2 suitable choices for d, that is, (RC1) holds as desired. Additionally, (RC4) holds by
construction; indeed, since neither the second nor the fourth vertex of each path in P/ lies in
some path in ;e Uwegy,.-3 Urega, -1 PY'. the paths in P} must be edge-disjoint from
all the paths in (J;cy Uw,e{yﬁzj} Ui’e[\Aw/lfl] P%". Thus, we can proceed by induction and

create a suitable collection P} for each k € [cn], w € {yi, 2z} and i € [|A,| — 1]. <

For each e = (y, z) € C(x), w € {y,2} and i € [|A,| — 1], let P be the collection of

subgraphs given by Claim 2.6.5. Note that, for any choice of P, € P{",..., P4, -1 € quf‘lw\—l’

|Aw|—1

we have that A, is connected in P, := szl

P;. To complete the proof, we now show that,
on passing to QF, with high probability there will exist some e = (y, 2) € C(z) and some P,
and P, of the above form such that P, U P, C Q. Moreover, note that each such choice of
P, U P, satisfies (R1) and (R2) for our fixed F and |P, U P,| < 5D. Since P,U P, C Bh.(z),
Lemma 2.6.20 will then follow by a union bound over all choices of F' C Bg,.(z) with |F| < f.

Let @ ~ Q. Consider e = (y,2) € C(z),w € {y,z} and i € [|A,| — 1]. Let P € P?
and recall that P has length 4. It follows that P[P € Q] = 1 —&*. Let &" be the event
that there exists some P € P} such that P C . Since |P}’| > n/2 and paths in P} are
edge-disjoint by (RC3), we have that P[£}”] > 1—(1—e")"/%. Let & = Ayeqyy Niciann &

Since |A,| + |A,| < 2D, we have that
PlE] >1—2D(1— )2 >1— ¢ ="/

Finally, let £ be the event that there exists some e € C(x) such that the event &, occurs.
It follows by (RC4) that, for e,e¢’ € C(x) with e # €', the event & is independent of &..

Therefore, since |C(x)[ > cn, we have that

P[] > 1 —e"en/4,
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Recall that by (RC2) it now suffices to consider a union bound over all choices of

F C B, (x) with |F| < f. The result follows since

n4 4.2
l—f(f)e_em/4>1—e_5". O

2.7 Hamilton cycles in randomly perturbed dense sub-
graphs of the hypercube

In this section, we introduce a few more auxiliary lemmas and combine them with the tools

we have developed so far to prove the following result.

Theorem 2.7.1. For every e, € (0,1] and ¢ > 0, there exists & € N such that the following
holds. Let H C Q™ be a spanning subgraph with §(H) > an and let G ~ Q. Then, a.a.s. there
is a subgraph G' C G with A(G") < ® such that, for every FF C Q" with A(F) < ¢®, the
graph (HUG) \ F) UG’ is Hamiltonian.

Note that Theorem 2.7.1 trivially implies the case £ = 1 of Theorem 2.1.7. In fact, in
Section 2.7.5 we will use Theorem 2.7.1 to prove Theorem 2.1.7 in full generality. For this
derivation, we will need the stronger conditions imposed in the statement of Theorem 2.7.1.
More precisely, the formulation of Theorem 2.7.1 involving a ‘forbidden’ graph F' and a
‘protected’ graph G’ is designed to make repeated applications of Theorem 2.7.1 possible in
order to take out k edge-disjoint Hamilton cycles. When finding the i-th Hamilton cycle, the
protected graph will contain all the essential ingredients for this, while the forbidden graph
will contain all previously chosen Hamilton cycles as well as the protected graphs for the
entire set of Hamilton cycles (see Section 2.7.5 for details).

The first step of the proof of Theorem 2.7.1 will be to consider a particular partition
of the hypercube into subcubes. The structure of this partition will be used extensively
throughout the rest of the paper, so we first introduce the necessary notation in the next

subsection. Then, in Section 2.7.2 we prove several results regarding this structure, concerning
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its properties in QF and with respect to a reservoir R ~ Res(Q",d). In Section 2.7.3, we
will prove our connecting lemmas, which provide sets of paths in (sub)cubes which (roughly
speaking) link up pairs of vertices and, together, span all vertices of these (sub)cubes. We
prove Theorem 2.7.1 in Section 2.7.4. Finally, we deduce Theorems 2.1.1, 2.1.2 and 2.1.7

from Theorem 2.7.1 in Section 2.7.5.

2.7.1 Layers, molecules, atoms and absorbing structures.

Throughout this section, given any two vectors u and v, we will write uv for their concatenation.
Consider Q" and some s € N, with s < n. We divide Q™ into 2° vertex-disjoint copies of Q"~*
as follows: for each a € {0,1}*, we consider the set of vertices V, := {av : v € {0,1}"*}, and
consider the graph Q(a) = Q"[V,]. We will refer to each Q(a) as an s-layer of Q" (s will be
dropped whenever clear from the context). Given ¢ < n — s, we will refer to any copy of a
cube Q° in one of the s-layers as an f-atom (again, ¢ will be dropped whenever clear from
the context).

Fix a Hamilton cycle C of Q°. By abusing notation, whenever necessary, we assume
that the coordinate vector of each vertex of C is concatenated with n — s 0’s. C induces a
cyclical ordering on {0, 1}*, which we will label as ay, ..., ass. In turn, this gives a cyclical
ordering on the set of layers. In this section, for each i € [2°], we denote L; = Q(a;) (as
opposed to Section 2.6, where L; denoted the i-th level of the hypercube). Given an f-atom .4
in an s-layer Q(a), we refer to M(A) := A+V(C) as an (s, {)-molecule (again, the parameters
will be dropped when clear from the context). Thus M(.A) is the vertex-disjoint union of 2°
copies of Q°. We refer to an (s, 1)-molecule as a vertex molecule and an (s, £)-molecule for
¢ > 1 as a cube molecule. Observe that, if we label the atoms in a molecule cyclically following
the labelling of the layers, then Q™ contains a perfect matching between any two consecutive
atoms where all edges are in the same direction as the corresponding edge in C. Whenever

we work with molecules, we consider this cyclical order implicitly. In particular, whenever we
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refer to a molecule M = M(A) = A;U---U Ay, the cyclical order A; U---U Ay of the A; is
that induced by C. Given a molecule M(A) = A U---UAys, a slice M* C M(A) will consist
of the subgraph of M(.A) induced by its intersection with some number of consecutive layers,
ie. M* = A1 U---UA,, for some a,t € [2°]. Alternatively, given any a € V(C), any path
P C C and any atom A C Q(a), P determines a slice of M(A) by setting M* := A+ V(P).

Consider i € [2°] and the cyclical ordering of the layers given by C. Given any
subgraph G C Q", we will often denote the restriction of G to the i-th layer by L;(G), that
is, L;(G) = G[V(L;)]. Given any v € {0,1}""°, we will refer to the vertex a;v as the i-th
clone of v. In general, when it is clear from the context, we will also refer to the i-th clone of
a cube C' C Q" * (as well as other subgraphs), which, analogously, will be the corresponding
copy in L; of C'. In particular, the ¢-th layer L; is the i-th clone of Q" %.

As we already discussed in Section 2.2, in order to prove our results we will first
construct a near-spanning cycle and then absorb the remaining vertices into this cycle. We

will achieve this by using the following absorbing structure.

Definition 2.7.2 (Absorbing (-cube pair). Let {,n € N, and let G C Q™. Given a vertex
x € V(Q"), an absorbing (-cube pair for x in G, which we denote by (C',C"), is a subgraph
of G which consists of two vertex-disjoint (-dimensional cubes C',C™ C G and three edges

e,el,e” € E(G) satisfying the following properties:
(AP1) [V(C") N Now(x)| = [V(C") N Non(2)| = 1;
(AP2) €' and e are the unique edges from x to C' and C™, respectively;
(AP3) the unique vertex y € V(C') N Ngn(x) satisfies dist(y,C") = 1, and
(AP4) e is the unique edge from y to C".

We will refer to C' as the left absorption cube and to C™ as the right absorption cube.

Given an absorbing (-cube pair (C',C") we refer to y as the left absorber tip, and to the
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unique vertex z € V(C") N Ngn(x) as the right absorber tip. We refer to the unique vertex

2 € e\ {y} as the third absorber vertex.

2.7.2 Bondless and bondlessly surrounded molecules

Given any graph G C Q", we will say that an (s, £)-molecule M = A;U---UAys C Q" where
A; is the i-th clone of some (-cube A C Q"% is bonded in G if, for all ¢ € [2°], G contains
at least 100 edges between A; and A;,; whose endpoint in 4; has even parity and at least
100 such edges whose endpoint in A; has odd parity. Otherwise, we call it bondless in G.
Furthermore, given a collection U of (s, £)-molecules in G, we say that M € U is bondlessly
surrounded in G (with respect to U) if there exists some vertex v € V(M) which has at least
n/2+% neighbours in Q" which are part of (s, £)-molecules of U which are bondless in G.
Both bondless and bondlessly surrounded molecules create difficulties in applying the rainbow
matching lemma (Lemma 2.5.4), which in turn is used to assign absorption structures to
vertices. Therefore, it will become important that we bound the number of each, and show

that they are well spread out.

Lemma 2.7.3. Let e > 0 and {,s,n € N be such that s <n, { <n—s and 1/{ < e. Then,

for any (s, 0)-molecule M C Q", the probability that it is bondless in Q" is at most 25+1-<2'/4,

Proof. Fix an (s, f)-molecule M = A;U---UAys C Q™. Consider a pair of consecutive atoms
Aiy Aiyr € M, for some i € [2°]. Let X; be the number of edges between A; and A;;; in QF
whose endpoint in A; is odd, and let Y; be the number of such edges whose endpoint in A; is

even. We have that X;,Y; ~ Bin(2¢7!,¢). By Lemma 2.4.2, it follows that
P[X; < 100] < 27°%/4,

and the same bound holds for P[Y; < 100]. By a union bound over all i € [2°], we conclude
that

P[M is bondless in Q7] < 257172/, O
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Lemma 2.7.4. Let ¢ € (0,1) and {,n € N with 0 < 1/n < 1/l < ¢, and let s = 10(.
Let M be a collection of vertez-disjoint (s, ()-molecules M C Q™. For each x € V(Q"), let

NP (z) = {M € M : dist(z, M) = 1}. Assume that the following holds for every x € V(Q"):

(BS) for any direction é € D(Q"), there are at most \/n molecules M € N™(x) such that
é € D(A) for all atoms A € M.

Then, with probability at least 1 — 27" for every x € V(Q") we have that Bgn (x) intersects

at most n'/3 molecules from M which are bondlessly surrounded in Q.

Proof. We begin by fixing an arbitrary vertex € V(Q") and an arbitrary set B C 9 of n'/3
molecules which intersect Bgn (). We will estimate the probability that all of the molecules
in B are bondlessly surrounded in Q7, by considering the neighbourhoods of the different
vertices which make up these molecules. If the probability of being bondlessly surrounded
was independent over different molecules and vertices, then this would be a straightforward
calculation. However, there are dependencies which we must consider: namely, when two
different molecules have edges to the same third molecule. We will first bound the number of
such configurations in Q™. Since the molecules in 91 O B are vertex-disjoint, it follows that,
if two of these molecules are adjacent in Q", then all of their atoms are pairwise adjacent in
each of the layers, via clones of the same edges. Thus, we can restrict the analysis to a single
layer.

Fix a layer L and let 2 be the collection of atoms obtained by intersecting each
molecule M € MM with L. Let Ag C A be the set of such atoms whose molecules lie in B. Fix
an atom A € Ap, and let y € V(A) be a fixed vertex. We say an atom A" € 2 is y-dependent
if there exists A” € A, A” # A, such that dist(y, A") = dist(A’, A”) = 1. The following

claim will allow us to bound the number of y-dependent atoms.

Claim 2.7.1. Fiz A" € Ap with A” # A. Then, the number of A" € 2 for which dist(y, A’) =
dist(A’, A”) = 1 is at most 2°(2 + \/n).
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Proof. Let z € V(A”) and let é € D(y, z). Let A" € 2 be such that dist(y, A’) = dist(z, A") =
1. Suppose first that é ¢ D(A’). Then we must have either y +é € V(A') or z + ¢ €
V(A"). Since all the atoms in 2 are vertex-disjoint, this leaves only two possibilities for A’.
Alternatively, suppose é € D(A’). Then, by (BS) applied with y playing the role of z, we
have at most \/n possibilities for A’. Finally, by considering all z € V(.A”) we prove the

claim. |

By considering all possibilities for A” € 2Ap, since [Ap| = n'/3, it follows by Claim 2.7.1
that the number of y-dependent atoms is at most n%7. For each y € V(A), let N'(y) € N™(y)
be given by removing from N¥(y) all molecules which contain a y-dependent atom. It follows
that |N'(y)| = [IN™(y)| — o(n) for every y € V(A).

Let M4 € 9 be the molecule containing A. For each vertex y € V(A), let &, be
the event that N'(y) contains at least n/2%**! molecules M € 9t which are bondless in
Qm. Then, |N'(y)| > n/25*2. Moreover, we only consider here those vertices y € V(A)
for which |[N™(y)| > n/2"5F1 since otherwise y cannot contribute towards M4 being
bondlessly surrounded. Fix such a vertex y. Let Y be the number of atoms A € N’(y) which
correspond to molecules which are bondless in Q7. Note that Y is a sum of independent
indicator variables. By Lemma 2.7.3, we have that E[Y] < 25+1-<2/4p_ In order to derive a
lower bound for E[Y], note that the probability that an (s, ¢)-molecule M is bondless can be
bounded from below by the probability that there are no edges between two fixed consecutive
atoms A;, A2 C M, whose endpoints in 4; are even. This occurs with probability (1 — 5)2271
Thus,

E[Y]> (1-¢)* '|IN(y)] > (1—e)* ' (n/277%2).

By Lemma 2.4.4, we have that P[] < 27", for some constant ¢ > 0 which depends on ¢
and e. For each atom A € g, let B4 be the event that there exists a vertex y € V(A) such

that &, holds. Let B := /\ 4y, Ba. Note that the definition of N'(y) ensures that the events
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B4 with A € g are pairwise independent. Thus,
PlE] < (2™ < 27,

In turn, this means that the probability that all molecules M € B are bondlessly surrounded
is bounded from above by 2" Lemma 2.7.4 now follows by a union bound over the 2"

2
choices for x and the at most (;‘12/3) choices for B. O

Finally, we will show that ‘scant’ molecules are not too clustered. (We will later define
a vertex molecule as ‘scant’ —with respect to a graph H and a reservoir R— if one of its

vertices v; has the property that few of its neighbours lie in the i-th clone of R.)

Lemma 2.7.5. Let C,s,n € N such that 0 < 1/n < 1/C < ,0 <1 and 1/n < 1/s. Let
H C Q" be such that 6(H) > an. For each v € V(Q"*) and each i € [2°], let v; be the i-th
clone of v, and let M, == {v; : 1 € [2°]}. Let R ~ Res(Q"*,0) and, for each i € [2°], let R;
be the i-th clone of R. Let

B={M, |veV(Q"), there exists i € [2°] : eg(v;, R;) < adn/4}.

Let € be the event that there exists some u € V(Q"*) such that Bégf,s(u) contains more

than C vertices v € V(Q"*) with M, € B. Then, P[E] < e ™.

Proof. Let u € V(Q"*) and let D C B&.(u) be a set of C' vertices. Let D' :=
Us.yepasy Non—s(x) M Ngn-s(y). Since any pair of distinct vertices share at most two neigh-
bours, we have that |D'| < 2((2)) For each i € [2°], we denote the i-th clone of D' by D, and
let R, = R; \ D..

For each z € V(Q"), let i(z) be the unique index i € [2°] such that z € V(L;). Observe
that eg(z,V(Lig))) > 2an/3 for every x € V(Q"). For each x € V(Q"), let £, be the event
that ey (z, Riz)) < adn/4, and let & be the event that ey (z, R}, ) < adn/4. It follows by
Lemma 2.4.2 that P[] < e=*"/16 for all x € V(Q"). For each v € V(Q"*), let £, and &/

be the events that there exists ¢ € [2°] such that &, and &, hold, respectively. By a union
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bound, it follows that P[E!] < 2%¢~*/16 for all v € V(Q"~*). Finally, let £p and &, be
the events that &, and &, respectively, hold for every v € D. Note that the events in the
collection {&! : v € V(Q"*)} are mutually independent. Furthermore, since the event &,

implies &, for all z € V(Q™), we have that
P[ED] < P[Sb] < (2367a6n/16)0 < efEm.

Taking a union bound over all vertices u and over all choices of D we obtain the result. [

2.7.3 Connecting cubes

The hypercube satisfies some robust connectivity properties. The problem of (almost) covering
Q" with disjoint paths has been extensively studied.

In order to create a long cycle, which can be used to absorb all remaining vertices, while
preserving the absorbing structure, we will make use of the robust connectivity properties
of the hypercube. In particular, we will need several results which guarantee that, given
any prescribed pairs of vertices in a slice, there is a spanning collection of vertex-disjoint
paths, each of which uses the vertices of one of the given pairs as endpoints. We will also
need similar results for almost spanning collections of paths, where these paths avoid a given
prescribed vertex. Throughout this subsection we denote by uv the edge between two given
adjacent vertices u and v (instead of {u,v}).

The following lemma will be essential for us. It follows from some results of Dvotak

and Gregor [39, Corollary 5.2].
Lemma 2.7.6. For all n > 100, the graph Q" satisfies the following.

(i) Letm € [25] and let {u;, v;}icpm) e disjoint pairs of vertices with u; #, v; for all i € [m].
Then, there exist m vertex-disjoint paths Py, ..., Pm C Q™ such that, for each i € [m],

Pi is a (u;, v5)-path, and e, V(Pi) = V(Q").
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(ii) Let x € V(Q"). Let m € [25] and let {u;,v;}icpm) be disjoint pairs of wvertices of
Q" — {x} such that uy, vy #, x and u; #, v; for alli € [m]\ {1}. Then, there exist m
vertex-disjoint paths Py, ..., Pm C Q" such that, for each i € [m], P; is a (u;,v;)-path,

and Ucp,y V(Pi) = V(Q") \ {z}.

(iii) Let {ui, vi}icpy be disjoint pairs of vertices with u; =p v; for all i € [2] and uy #p us.
Then, there exist two vertex-disjoint paths Py, Py C Q™ such that, for each i € [2], P; is

a (u;, v;)-path, and V(Py) UV (Py) =V (Q").

We now motivate the statement (as well as the proof) of Lemma 2.7.8, which is the
main result of this subsection. We are given a slice M* of a molecule M C Q" which is
bonded in a graph G C Q". Furthermore, we are given collections of vertices L, R (which
are part of absorbing cube structures), and S (which, when constructing a long cycle, will be

used to enter and leave M*). More specifically, we have that

e [ will have size 0 or 2, and will consist of left absorber tips. If it has size 2, the vertices
will have opposite parities. These must be avoided by our connecting paths, so that we
can make use of the absorbing structures we have put in place (see the discussion in

Section 2.2).

e R will consist of the pairs of right absorber tip and third absorber vertex. These must

be connected via an edge with the paths we find.

e S will consist of a set of pairs of vertices {u, v} with u #, v. Later, when creating a
long cycle, u will be a vertex through which we enter M* from a different molecule,
and v will be the next vertex from which we leave M* (with respect to some ordering).

Each of our paths will be a (u, v)-path, for some such pair {u, v}.

In order to find our paths, we will call on Lemma 2.7.6. To illustrate this, suppose M*
consists of the atoms Ay, ..., A, for some ¢t € N. Suppose that S = {u, v} with u € V(A;)

and v € V(A;). Furthermore, suppose that L, R = &. To construct a path from u to v, we
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will first specify the edges used to pass between different atoms. For all k& € [t — 1], we choose
an edge vluz 41 from Ay to Ajq, thus vl b uz 41+ For technical reasons, we aim to have all
the vertices u£+1 of the same parity as u. We can then apply Lemma 2.7.6 to find a path
from u£ 4 to U]I +1 which covers all of V(Agy1). Together with the edges v,lu,t 41, all these
paths will form a single path from u to v which spans V(M?*). In the more general setting
where u € V(A;) and v € V(A;) with 1 < i < j <, the (u,v)-path we construct would first
pass down to A;, then up to A; and, finally, back down to A;.

When L # @, due to vertex parities, the following issue can arise. Suppose L = {z,y}
with z € V(A;), u € V(Az), y € V(A43) and v € V(A;) for some j > 3 (and R = @).
Furthermore, suppose that both u and = have odd parity. In line with the above description,
the vertex u%, through which we enter A;, would have odd parity. It follows that, since x
also has odd parity, we cannot hope to construct a path which starts at u{ and covers all of
V(A1) \ {z}. The solution will be instead to pass up to As first (and, in general, to whichever
atom contains y). Recall that, since x has odd parity, y must have even parity. We specify a
vertex ug of odd parity, through which we enter A3, but then also specify a vertex v% of odd
parity from which we will leave A3 to reenter A;. We now arrive back in Ay with a vertex
u% of even parity. We will specify another vertex U% of odd parity from which we leave A,
and a vertex uf of even parity through which we enter A;. In this way, we can now apply
Lemma 2.7.6 to find a path which starts at u] and covers all of V(A;) \ {z}, and which can
be extended into a path from u to v covering all of V (M*)\ L.

There are several other instances which must be dealt with in a similar way. This
is formalised by Lemma 2.7.8. Before proving this lemma, however, we need the following

definition.

Definition 2.7.7 ((u,j, F, R)-alternating parity sequence). Let ¢,s,t,n € N with t < 2°
and 2 <l <n-—s. Lt G C Q" Let M = A U---UAys C Q" be an (s,l)-molecule
and let M* = A1 U - U Ay, for some a € [2°], be a slice of M. Let u € V(A;), for
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some i € [a+t]\ [a]. Let j € [a+t]\ [a], and let F,R C V(M*). Suppose i < j. Let

Ir={kelj—1io: |[RNV(Aix)| > 1}. Assume that the following properties hold:
e Forall k € [j —i]o we have that |RNV (Ai1r)| € {0,2}.

e For each k € Ir, the vertices in R NV (A;) are adjacent in Q", and we write

RNV (Aitr) = {wg, 21} so that wy, #, u.
Let 8" = (ug,v1,u1, . ..,0j_;,uj—;) be a sequence of vertices satisfying the following properties:
(PO) If u € R, then ug == wy; otherwise, uy = u.
(P1) For each k € [j —i] we have that uy =, u.
(P2) For each k € [j —i] we have that vy, € V(Ai1r—1), up € V(Aisx) and vpuy, € E(G).
(P3) The vertices of S other than uy avoid F'U R.

A (u, 7, F, R)-alternating parity sequence S in G is a sequence obtained from any
sequence 8" which satisfies (P0)—~(P3) as follows. For each k € Iz N [j — 1], replace each
segment (v, ux) of 8" by (Vg, ug, Wi, 2k).

The case i > j is defined similarly by replacing each occurrence of [j —i| and [j —i]o in

the above by [i — 7] and [i — jlo, and each occurrence of Aivx and Ajvrx—1 by Ai_p and A;_pi1.

Given an alternating parity sequence S, we will denote by S~ the sequence obtained

from S by deleting its initial element.

Lemma 2.7.8. Let n,s,{ € N be such that s > 4 and 100 < ¢ < n—s. Let G C Q"
and consider any (s,f)-molecule M = Ay U ---U A C Q" which is bonded in G. Let
M= A, 1 U---UA,yy, for some a € [2°] and t > 10, be a slice of M. Moreover, consider

the following sets.

(C1) Let L CV(M*) be a set of size |L| € {0,2} such that, if L = {x,y}, then x € V(A;)
andy € V(A;) withi # j and x #, y.
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(C2) Let R C V(M*)\ L be a (possibly empty) set of vertices with |R| < 10 such that,
for all k € [a+t]\ [a], we have [RNV (Ag)| € {0,2} and, if |[RNV (Ag)| = 2, then
RNV (Ag) = {wg, zx} satisfies that wyz, € E(M*) and, if |L| = 2, then k ¢ {i,j}.

(C3) Letm € [14] and consider m vertez-disjoint pairs {u,, vy }rejm), where u,, v, € V(M*)\ L
and u, #, v, for all v € [m], such that, for each r € [m], we have u, € V(A;,) and
vr € VI(A;,). Assume, furthermore, that for each t’ € [t] we have that |, ¢y, {ur, vr} 0

V(Awre) NR| < 1.

Then, there exist vertez-disjoint paths Py, ..., Pm C M* UG such that, for each r € [m], P,
is a (up, v )-path, U,c, V(Pr) = VIM*)\ L, and every pair {wg, z.} with k € [a+1]\ [a] is

an edge of some P,.

Proof. By relabelling the atoms, we may assume that M* = A4, U---U A;. Let S = {u,,v, :
r € [m]}. By relabelling the vertices, we may assume that i, < j, for all » € [m] and (if
LAo)i<j Letl,={ket]: LNV(Ax) # 2}, I ={ke€[t]: RNV (A)NS # @} and
R* = R\ Uycp, V(Ag). Note that I, = @ or I, = {i,j} and I N Ir = @. For each r € [m],
let I}, == {k € {ir,j,} : RNV (Ap) N {u,,v.} # @}, so that Ir = |J-, I},. Without loss of
generality, we may also assume that, for each r € [m], if u, € R, then u, = z;_, and if v, € R,
then v, = wj,. Similarly, for each k € [t] \ I, if RNV (Ay) = {wy, 2}, we may assume that
Wk, Fp Ui

For each r € [m], we will create a list £, of vertices. We will refer to £, as the
skeleton for P,.. We will later use these skeletons to construct the vertex-disjoint paths via
Lemma 2.7.6. For each r € [m|, we will write L} for the (unordered) set of vertices in £,. In
order to construct each £,, we will start with an empty list and update it in (possibly) several
steps, by concatenating alternating parity sequences. Whenever £, is updated, we implicitly
update L. In the end, for each r € [m] we will have a list of vertices £, = («f,...,x} ). For
each r € [m] and k € [t], let (k) ={h € [(, —1] : 2{ hand x}, 2}, € V(Ar)}. We will

require the £, to be pairwise vertex-disjoint. Furthermore, we will require that they satisfy
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the following properties:
(£1) For all r € [m] we have that ¢, is even.

(£2) For all r € [m] and h € [¢, — 1], if h is odd, then x}, 2}, € V(Ay), for some k € [t]; if

h is even, then z}2} ., € E(GUM*).

(£3) For all k € [t] we have that 1 < |I1(k)] <6 and |I.(k)| <1 for all r € [m]\ {1}.

(L£4); For each k € [t]\ (I UI}) and each h € I,(k), we have x; #, x}. . For each k € I, U},
for all but one h € I,(k) we have x}, #, 2}, while for the remaining index h € I, (k)
we have that zj, =, z;,, and their parity is opposite to that of the unique vertex in

LNV (Ag) if k € I, and to that of the unique vertex in {wy, zx} N {ug,v1} if k € I5.

(£4), For each r € [m]\ {1}, the following holds. For each k € [t]\ I}, and each h € I,.(k), we
have z}, #, x},,. For each k € I}, for all but one h € I.(k) we have }, #, x} ,, while
for the remaining index h € I,(k) we have that x}, =, x}, and their parity is opposite

to that of the unique vertex in {wyg, zx} N {u,, v, }.

(£5) For each r € [m], we have the following. If u, ¢ R, then u, = z]. If v, ¢ R, then
v, = xj . If u, € R (and thus u, = z; ), then w;, = 27 and u, ¢ LTU---UL;,. Ifv, € R

(and thus v, = wj,), then z;, = 2j and v, ¢ L7 U---ULy .
(L6) Every pair (wg, z) with {wy, 2z} C R* is contained in £; and z;, directly succeeds wy,.

We begin by constructing £;. Let £; .= J and let F = LURUS. If i; =1 and
R*NV(A;) = {wy, 21}, then let S; == (uy, wq,21). If i1 = 1 and uy € R, then let S; := (uy).
Otherwise, let S; be a (uy, 1, F, (RN V(A;)) U (R* NV(A;)))-alternating parity sequence.
Let £; := &;. Note that the existence of such a sequence S; is guaranteed by our assumption
that M is bonded in G. To see this, note that all edges of G required by &; (that is, the

pairs {vg, u;} in Definition 2.7.7) need to be chosen so that they do not have an endpoint
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in F'; given any particular pair of consecutive atoms, this forbids at most 30 edges between
these two atoms (26 because of S and 4 because of L U R).

We will now update £,. While doing so, we will update F' and consider several
alternating parity sequences. The existence of each of these follows a similar argument to the
above. For any given pair of consecutive atoms, every time we update F', the set of forbidden
edges will increase its size by at most 3. We will update F' at most four times, so F' will
forbid at most 42 edges between any pair of consecutive atoms. Thus, by the definition of
bondedness, each of the alternating parity sequences required below actually exists.

Let uf be the last vertex in £;. Note that ul =, u; by Definition 2.7.7(P1). We
update F' as F':= F'U Lj. For the next step in the construction of £;, there are three cases
to consider, depending on the size of L and, if |L| = 2, the relative parities of  and u;. If
iy =1 and u; € R, let R® == R* U {wy, 21 }; otherwise, let R® := R*.

Case 1: L =0.

Let S5 be a (u%,t, F, R°)-alternating parity sequence. If i; = 1 and u; € R, update £; as
Ly = 8,. Otherwise, update £y as £, = £S5, . Update F = F U L].

Case 2: |L| =2 and = #, u;.

Let S be a (u%,z',F, R°)-alternating parity sequence. If iy = 1 and u; € R, update £,
as L1 = Sy. Otherwise, update £, = £S5, . Update F' = F'U Lj. Choose any vertex
uf € V(A;) with uf #, u1, and let S5 be a (uf, j, F, R®)-alternating parity sequence. Update
Ly = LS5 and F = FUL;. Let v~ be the final vertex of S, and let v be the second
vertex of S;. Note that v~ and vt appear consecutively in £; and that v~ =, vt =, u; #, .
Finally, choose any vertex u; € V(A;) with u} =, uy, let Sy be a (u},t, F, R°)-alternating
parity sequence, and update £, = £,S; and F := F U Lj. Let w™ be the final vertex of S,
and let w™ be the second vertex of S;. We then have that w™ and w™ appear consecutively
in £, and w™ =, wt #, y,u;. Moreover, the final vertex uI of L, satisfies uI =p U1.

Case 3: |L| =2 and = =, u;.

Let S5 be a (u%,j, F, R°)-alternating parity sequence. If iy = 1 and u; € R, update £; as
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L, = &; otherwise, update £, == £,S,. Update F' == F'U L}. Next, let uj € V(A;) be

*
R

a vertex with u} #, uy and let Sz be a (uj, i, I, @)-alternating parity sequence. Update
Ly = L£;S; and F = F ULj. Finally, let uf € V(A;) be a vertex with «] =, u; and let
Sy be a (uf,t, F,R* N UZ:j+1 V (Ag))-alternating parity sequence. Update £; == £;S; and
F=FUL.

In each of the three cases, let uI denote the last vertex in £;. Note that, by Defini-
tion 2.7.7(P1), we have u) =, u1, and recall that v; #, uy. Let S5 be a (uI, J1, F, &)-alternating
parity sequence. Update £, := £S5 . Again by Definition 2.7.7(P1), we have that the final
vertex u* of £, is such that u* =, uI =p U1 #p v1. Finally, if v; € R, update £y = L4(z},);
otherwise, update it as £, := L1(v;). Observe that £ satisfies (L1)—(L3), (£4)1, (£5) and
(L6) for the case r = 1 by construction.

We now construct £, for all € [m]\ {1}. For each r € [m]\ {1}, we proceed iteratively

as follows. Let £, == @ and F, .= LURUSU|J L*. Let 8" be a (uy, j, Fr, RNV (A;))-

r'€[r—1]
alternating parity sequence and update L, as £, = S". If v, € R, update L, = L,(z;,);
otherwise, update L, := L,.(v,). Note that each sequence 8" requires the existence of at most
one edge of G, which has to avoid F;., between any pair of consecutive atoms of M*. In a
similar way to what was discussed above, at most three choices of such edges can be forbidden
every time we add a new alternating parity sequence to F. Since for each r € [m]\ {1} we
consider one new sequence, by the time we consider F,, we have increased the number of
forbidden edges by at most 3(m — 1) < 39. This gives a total of at most 81 forbidden edges
and, thus, the existence of the sequences S§" is guaranteed by the assumption that M is
bonded in G. Moreover, the lists £y, ..., £, now satisfy (£1)-(L6).

We are now in a position to apply Lemma 2.7.6. For each k € [t], let tj :== > ., [1-(K)].
Furthermore, for any r € [m] and k € [t], for each h € I.(k), we refer to the pair z},z} ,, as a
matchable pair. By (L£3), (£4)1, (£4), and Lemma 2.7.6(i), each atom Ay with k € [t]\ ([ UlR)

can be covered by t; vertex-disjoint paths, each of whose endpoints are a matchable pair

contained in Ay. Similarly, by (£3), (£4)1, (£4), and Lemma 2.7.6(ii), each atom 4, with
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k € I U IRk contains t; vertex-disjoint paths, each of whose endpoints are a matchable pair in
Ay, such that the union of these t; paths covers precisely V(Ax) \ (LU (SN R)). (Recall that
by (C2) and (C3) the set V(Ax) N (LU (SN R)) consists of a single vertex if k € I, U Ig.)
For each matchable pair x},z} | in A, let us denote the corresponding path by wazﬂ.

The paths Py, ..., P, required for Lemma 2.7.8 can now be constructed as follows.
For each r € [m], let P, be the path obtained from the concatenation of the paths Py a1
for each odd h € [¢,], via the edges x| for h € [(, — 1] even. By (£5), if P, does not
contain wu,, then P, starts in w; , and u, does not lie in any other path; therefore, we can
update P, as P, := u,P,. Similarly, if P, does not contain v,, then P, ends in z; and v,

does not lie in any other path, and thus we can update P, as P, := P,v,. It follows that
Urepm V(Pr) = V(M) \ L, and thus the paths P, are as required in Lemma 2.7.8. O

We also need the following simpler result. Its proof follows similar ideas as those
present in the proof of Lemma 2.7.8. For the sake of completeness, we include the proof
of Lemma 2.7.9 in Appendix A of the arXiv version of this paper. We point out here that

Lemma 2.7.6(iii) is only needed for this proof.

Lemma 2.7.9. Let n,s,{ € N be such that 4 < s and 100 < ¢ < n—s. Let G C Q"
and consider any (s,f)-molecule M = A; U ---U A C Q" which is bonded in G. Let
M= A, 1 U---UA,yy, for some a € [2°] and t > 10, be a slice of M. Moreover, consider

the following sets.

(C'1) Let L CV(M*) be a set of size |L| € {0,2} such that, if L = {x,y}, then x € V(A;)
and y € V(A;), with i # j and x #, y.

(C'2) Let R C V(M*)\ L be a (possibly empty) set of vertices with |R| < 10 such that,
for all k € [a+t]\ [a], we have [RNV (Ay)| € {0,2} and, if |[RNV (Ag)| = 2, then
RNV (Ag) = {wg, 2} satisfies that wgzy, € E(M*) and, if |L| = 2, then k ¢ {i,j}.
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(C'3) Consider two vertex-disjoint pairs {uy, vy freg with uy, us € V(Aqqr) \ L and vi,v9 €

V(Aatt) \ L such that uy #, us, v1 #p v2, ug =p v1, and [{ug, u2}NR|, [{v1,v2}NR| < 1.

Then, there exist two vertex-disjoint paths P1, Po C M*UG such that, for each r € [2],
P, is a (uy, v,)-path, V(P1) UV (Py) = V(M*)\ L, and every pair of the form {wy, 2} C R

with k € [a +t]\ [a] is an edge of either Py or Ps.

2.7.4 Proof of Theorem 2.7.1

Proof of Theorem 2.7.1. Let 1/D, ¢ < 1, and let
0<1l/ng<d<< 1/l <1/k*d < p,1/5 < 1/c,1/D,d ¢, q,

where ng, £, k*,S’, D € N. Our proof assumes that n tends to infinity; in particular, n > ny.
Let s :=10¢, ® := 12¢ and and ¥ := c®.

Observe that Q™[{0,1}* x {0}"*] = Q° contains a Hamilton cycle. We fix an ordering
of the layers Ly, ..., Lys of Q" induced by this Hamilton cycle (as defined in Section 2.7.1).
If we view these layers as different subgraphs on the vertex set of Q" we can define the
intersection graph of the layers I := ﬂle L; (note that I = Q™ *) and, for any G C Q", we
denote I(G) = (-, Li(G). Note that, if G C I(G), then there is a clone of G in L;(G), for
each i € [2°]. For each layer L, we denote by G, the clone of G in L(G). Observe that, for
any 7 € [0, 1], we have I(Qy) ~ q2e - We will sometimes write G for the subgraph of
where, for each e € F(I), we have e € E(Gy) whenever G contains some clone of e (thus, G
is the ‘union’ of the subgraphs that G induces on each layer).

For each i € [7], let ; := ¢/7 and let G; ~ QF, where these graphs are taken inde-
pendently. It is easy to see that U:Zl G, ~ QF for some ¢’ < ¢. Thus, it suffices to show
that a.a.s. there is a graph G’ C UZ:1 G; with A(G") < ® such that, for every FF C Q"
with A(F) < W, the graph ((HUJ_, G;) \ F) UG" is Hamiltonian. In summary, we fix a

near-spanning tree and reservoir in the intersection graph of G;. Gg is used to extend this
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tree to cover almost all of the vertices of the reservoir. (7 is then used to alter the tree
slightly at vertices which have few neighbours in the reservoir. We fix a near-spanning cube
tiling of the intersection graph of GG3 and we use G5 to fix good edge connectivity between
different layers within molecules of the cubes of this tiling. Finally, G5 and G, are used to
find and fix suitable absorbing structures for each vertex of the hypercube. We now split our

proof into several steps.

Step 1: Finding a tree and a reservoir. Consider the probability space €2 =
QZ{SS X Res(Q" %, ¢") (with the latter defined as in Section 2.6.1), so that, given R ~ Res(I,?’),
we have that (I(Gy), R) ~ Q.

Let & be the event that there exists a tree T C I(G;) — R such that the following

hold:
(TR1) A(T) < D, and
(TR2) for all x € V(I), we have that |N;(x) N V(T)| > 4(n — s)/5.

It follows from Theorem 2.6.1, with n — s, €2°, ¢, @ and 1/5 playing the roles of n, €, 6, S

and €', respectively, that Pq[&1] =1 — o(1).

Step 2: Identifying scant molecules. For each v € V(I), let M,, denote the vertex
molecule M, == {av : a € {0,1}*}. We say a vertex molecule M,, is scant if there exist some
layer L and some vertex z € V(M, N L) such that dg(z, Ry) < ad’'n/10, where Ry is the
clone of R in L. Let & be the event that there exists some = € V(I) such that there are
more than S’ vertices v € B}%(z) satisfying that M,, is scant. It follows from Lemma 2.7.5
with S” and ¢’ playing the roles of C' and § that Po[&] < e ™. Let & = & A &. Therefore,
PolEf] =1 —o(1).

Condition on & holding. Then, G; satisfies the following: there exist a set R C V(1)

and a tree T'C I(G1) — R such that the following hold:
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(T1) A(T) < D;
(T2) for all z € V(I), we have that |N;(z) N V(T)| > 4(n — s)/5, and

(T3) for every x € V(I), BI%(x) contains at most S’ vertices v such that M, is scant.

Recall this implies clones of 7" and R satisfying (T1)—(T3) exist simultaneously in each layer
of Gl.

Step 3: Finding robust matchings for each slice. Recall from Section 2.2.5 that
we will absorb vertices in pairs, where each pair consists of two clones z/, ” of the same
vertex € V/(I). In this step, for each x € V(I) and for each set of clones of  that may need
to be absorbed, we find a pairing of these clones so that we can later build suitable absorbing
(-cube pairs for each such pair of clones. We will find this pairing separately for each slice of
the vertex molecule M,. Considering each slice separately has the advantage that the chosen
pairs are ‘localised’. This will be convenient later when linking up the paths used to absorb
these vertices. Accordingly, we now partition the set of layers into sets of consecutive layers

as follows. Let

q = 2'0PK and let t=2%/q. (2.7.1)

For each j € [t], let S; = L;. Given any molecule M, we consider the slices

gi(j—l)q-i—l
S;(M) = 5; N M. We denote by S(M) the collection of all these slices of M.

Let Ve € V(I) be the set of all vertices x € V(I) such that M, is scant. Recall
Gy ~ Q7. For each v € V(I) \ Vi and each S € S(M,), we define the following auxiliary
bipartite graphs. Let H(S) = (V(S), N;(v), Ex), where Ep is defined as follows. Consider
v € V(S) and let L” be the layer which contains v'. Let w € N;(v), and let w,. be the
clone of w in LY. Then, {v/,w} € Ey if and only if w € R and {¢/,w;./} € E(H). Note
that dp(s)(v') > @d'n/10 for all v' € V(S) since S is a slice of a vertex molecule which is not

scant. Similarly, we define G5(S) = (V(S), N;(v), Eg,), where {v',w} € Eg, if and only if
{v,wy.} € E(Gy).

77



Note that the partition of V(S) into vertices of even and odd parity is a balanced
bipartition. Define the graph Fg(S%GQ(S)(V(S)) as in Section 2.5.1. Note that, by definition,

we have that V(I‘?{(s)’GQ(s)(V(S))) = V(S). Furthermore, by definition,

(RM) given any wy,ws € V(S), we have that {w,ws} € E<F?{(s),02($)(v(8))) if and only if

|Nisy(wi) N Neys)(w2)] > B(n — s) or [Ngys)(wi) N Nysy(wz)| > B(n — s).

By applying Lemma 2.5.2 with d = 24D, r =0, a = ad' /10, € = €3, n = n—s, k = q = 2190
B = B and G = H(S), we obtain that, with probability at least 1 — 2710=s) > 1 _ 2=8»
the graph Ff{( s).ca(s)(V(S)) is 24D-robust-parity-matchable with respect to the partition of
V(S) into vertices of even and odd parity.

We would like to proceed as above for slices in scant molecules; however, recall that
scant molecules contain vertices with few or no neighbours in the reservoir, and therefore
we must adapt our approach. For each v € V. and each § € §(M,), we define an auxiliary
bipartite graph H(S) and G4(S) as above, except that we omit the condition that w € R
for the existence of an edge in H(S). By applying Lemma 2.5.2 again, we obtain that, with
probability at least 1 — 278", the graph FZ(S%GQ(S)(V(S)) is 24 D-robust-parity-matchable
with respect to the partition of V(S) into vertices of even and odd parity.

By a union bound over all v € V(1) and all slices S € §(M,), we have that a.a.s. the
graph FQ(S%%(S)(V(S)) is 24 D-robust-parity-matchable (with respect to the partition of
V(S) into vertices of even and odd parity) for every slice S, where H(S) is as defined
above in each case. We condition on this event holding and call it £&. Thus, for each
slice § and each set S C V(S) with |S| < 24D which contains as many odd vertices
as even vertices, there exists a perfect matching (S, S) in the bipartite graph with
parts consisting of the even and odd vertices of V(S) \ S, respectively, and edges given
by F?_I( 8).Ga 3)(V(8)). For each slice S, we denote by M(S) the set of edges contained in the
union (over all §) of the matchings M(S,S) (without multiplicity). Furthermore, for each

e = {we, wo} € M(S), we let N(e) = (NH(S)(we) N NGQ(S)(QUO)) U (NGQ(S) (we) N NH(S)(UJO)).
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By (RM), we have |[N(e)| > B(n—s) > Bn/2. For each v € V(I), let M(v) = Uscs(p,) PUS)-

Let K = max,ev () [M(v)]. In particular, we have that K < (228)‘

Step 4: Obtaining an appropriate cube factor via the nibble. For each
x € V(I), consider the multiset A(z) := {N(e) : e € M(x)}. If |A(x)| < K, we artificially
increase its size to K by repeating any of its elements. Label the sets in (z) arbitrarily as
Wx) = {Ai(x),...,Ax(x)}. Thus, if x € V(I) \ Vi, then A;(z) C R for all i € [K].

Let C be any collection of subgraphs C of I such that C' = Qf for all C' € C. For any
vertex © € V(I) and any set Y C Ny(x), let C,(Y) C C be the set of all C' € C such that
x ¢ V(C)and Y NV (C) # @, and let C, := C,.(Ny(x)).

Recall G3 ~ QF and I(G3) ~ QZ%ZS. We now apply Theorem 2.5.7 to the graph I(Gs),
with €2°, o/, 0/2, 3/2, K and ¢ playing the roles of €, , §, 3, K and ¢, respectively, and using
the sets A;(z) given above, for each x € V(I) and 7 € [K]|. Thus, a.a.s. we obtain a collection
C of vertex-disjoint copies of Q° in I(G3), such that the following properties hold for every
zeV(I):

(N1) [C.] > (1 b)n.
(N2) For every direction é € D(I) we have that |S(C,, {¢},1)| = o(n'/?).
(N3) For every i € [K] and every S C D(I) with o/(n —s)/2 < |S| < d'(n — s) we have

12(Co(Ag()), S, 0M2)] > | As(x)] /3000 > Bn,/6000.

Condition on the above event holding and call it &5.

Step 5: Absorption cubes. For each x € V(1) and i € [K]|, we define an auxiliary
digraph © = D (A;(x)) on vertex set A;(z) — {x} (seen as a set of directions of D(I)) by
adding a directed edge from é to €' if there is a cube C" € C,(A;(x)) such that x +é € V(C")

and & € D(C"). In this way, an edge from é to €’ in D indicates that the cube C” could be
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used as a right absorber cube for z, if combined with a vertex-disjoint left absorber cube

with tip o + é’. Observe that, for all é € A;(z) — {z},
ds(é) € [{)o. (2.7.2)
Furthermore, it follows by (N3) that any set S C V(®) with |S| = o/n/2 satisfies
en(V(D),S) > £126n/6000 > (Y/25%n. (2.7.3)

Recall that A;(z) = N({x1,x2}) for some {x1, 22} € M(S), where S € S(M,,) is some
slice of M,. Note that z1, 29 € M,, and let L’ be the layer containing x; for each j € [2].
We say that x; and x5 are the vertices (or clones of ) which correspond to the pair (z,1).
Let (é,¢') € E(D) and, for each j € [2], let e; be the clone of {z + &, 2 +é +¢é} in L7. Tt
follows that there is a cube C" € C,(A;(x)) such that e; connects the clone C; of C” to the
clone of x + ¢ in L7.

Recall G4 ~ Q7. Let ® C © be the subdigraph which retains each edge (¢, ¢') € E(9D)
if and only if the edges e;, e5 described above are both present in G4. Note that each edge of ©
is therefore retained independently of every other edge with probability 3. By Lemma 2.4.2,

(2.7.2) and (2.7.3), it follows that ®’ satisfies the following with probability at least 1 —e~1:
or every A C wit = a'n/2 we have ~ (V) > € n, an
DG1) f A CV(®) with [A] = a/n/2 we have 3, _, dg 332012, and
(DG2) for every B C V(D) we have that Y _,d3,(v) < {|B.

Recall that ® = ©(A;(x)). By a union bound, (DG1) and (DG2) hold a.a.s. for all x € V(1)
and ¢ € [K]. We condition on this event and call it &;.

For each x € V(I) and i € [K], recall that (RM) and the definition of A;(z) imply
that |A;(z)| > B(n — s). Thus, it follows by Lemma 2.5.3 with |4;(z)|, 2a//8, 383012 /(2a/)
and ¢ playing the roles of n, «v, ¢ and C', respectively, that there exists a matching M"(A;(x))

of size at least %|Al(x)| > e36%n/(301/%) in ©'(Ai(z)).
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Next, for each x € V(I) and i € [K], we remove from M"(A;(x)) all edges (é,¢é") €
M"(A;(x)) such that « + € does not lie in any cube of C,(A;(z)). We denote the resulting

matching by M’(A;(x)). Note that, by (N1), we have
|M'(As(x))| > €283/ (3012) — 6n > n/t. (2.7.4)

Consider A;(x), for some x € V(I) and ¢ € [K], and let 21, x5 be the clones of z which
correspond to (z,i). As before, for each j € [2], let L’ be the layer containing z;. Recall

Definition 2.7.2 and note that, by construction, we have the following.

(AB1) For each edge (¢é,¢') € M'(A;(x)), there is an absorbing ¢-cube pair (C!,C") for x in I
such that, for each j € [2], the clone (CL, CF) of (C*,C") in L7 is an absorbing (-cube
pair for z; in H U Gy U G3 U G4. In particular, the edge joining the left absorber tip
to the third absorber vertex lies in G4. Moreover, C', C™ € C,(A;(z)) C C and (C',C")
has left and right absorber tips x + ¢’ and x + ¢é, respectively. Furthermore, for each
r € V(I)\ Vi, these tips lie in R. We refer to (C!,CT) and (C}, CF) as the absorbing

(-cube pairs for 1 and xy associated with (é,¢€’).

Thus, the graph H U Gy U G35 U G4, contains at least n/¢ absorbing ¢-cube pairs for
each of the clones x; and x9 of x associated with edges in M'(A;(x)) € D(A;(x)). Moreover,
since M'(A;(x)) is a matching, for each j € [2] these absorbing ¢-cube pairs for x; are pairwise
vertex-disjoint apart from x;.

For ease of notation, we will often consider the absorbing f-cube pair (C!, C") for z in
I which (C,C7) and (CL, C3) are clones of, and use it as a placeholder for both of its clones.
By slightly abusing notation, we will refer to (C!, C") as the absorbing (-cube pair associated

with (é,é'). Note, however, that (C!, C") is not necessarily an absorbing /-cube pair for z in

I(H UGy UG5 UGy).

Step 6: Removing bondless molecules. Recall G5 ~ QF.. In this step, we

consider the edges between the different layers.

81



For each C € C, let M denote the cube molecule consisting of the clones of C. Let
C'" C C be the set of cubes C € C for which M is bonded in G5. By an application of

Lemma 2.7.3, for each C' € C we have that
P[C ¢ C'] = P[M¢ is bondless in G5] < gstl-es2'/4 < 9=e2/30,

For each x € V(I), let Ag(z) = N;(x). For each i € [K]o, let E(z,i) be the event
that |C,(A;(z)) \ C'| > n/¢*. Since the cubes C' € C are vertex-disjoint, the events that the

molecules M are bondless in G5 are independent. Therefore, we have that

PIE(x,1)] < (n%) (27=2/30yn/t < 9=10n,

Let €1 =V cv() Viep, €(#,7). By a union bound over all x € V(I) and ¢ € [K]o, it follows
that

P&,) < 275" (2.7.5)

Let Cps C C be the set of all C' € C such that M is bondlessly surrounded in Gj
(with respect to {M¢ : C" € C}). For each x € V(I), let £(x) be the event that there are
more than n'/3 cubes C' € Cps which intersect BY (z). Let & = Viev €(z). By (N2), we

may apply Lemma 2.7.4 with €5 playing the role of € to conclude that
Ples] < 27" (2.7.6)

Now let & := E4AEs. Tt follows from (2.7.5) and (2.7.6) that £ occurs a.a.s. Condition
on this event.

Let C" :=C"\ Cps. For each x € V(I) and each i € [K], let

(AB2) M(A;(z)) € M'(A;(x)) consist of all edges (é,¢') € M'(A;(x)) whose associated absorb-

ing (-cube pair (C!, C7) satisfies that C",C! € C".

By combining (2.7.4) with the further conditioning, it follows that, for each z € V(I) and
each i € [K],
|M(Ai(z))] > n/l —njt* —n'3>n/e (2.7.7)
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Consider any = € V(I) and i € [K], and let x1, x5 be the two clones of x corresponding
to (z,7). Then, at this point, for each j € [2], H U G5 U G3 U G4 contains at least n/¢?
vertex-disjoint (apart from z;) absorbing ¢-cube pairs for z; such that each of these absorbing
(-cube pairs (C', C7) is associated with an edge of M(A;(x)), and for each C' € {C!,C"} the
corresponding cube molecule M is bonded in G5 and (within the collection {M¢ : C" € C}

of all cube molecules) M is not bondlessly surrounded in Gs.

Step 7: Extending the tree T. For each x € V(I), let Z(z) == N;(z) NV (T) N
(Ugeer V(O)). Tt follows by (T2), (N1) and our conditioning on the event £ that, for each

x € V(I), we have that
|Z(z)| > 4(n —5)/5 — dn —n/t* —n'/3 > 3n/4.

Recall G¢ ~ Q7. We apply Theorem 2.6.19 with €2, 2, T, R, @ and the sets Z(z)
playing the roles of ¢, ¢, T', R,W and Z(x), respectively. Combining this with (T1), we
conclude that a.a.s. there exists a tree 7" such that T C 7" C I(Gg) UT and the following

hold:
(ET1) A(T') < D + 1
(ET2) for all z € V(I), we have that |B?(z) \ V(T")| < n%/4;

(ET3) for each x € V(T") N R, we have that d7+(z) = 1 and the unique neighbour 2z’ of z in

T’ is such that 2’ € Z(x).

We condition on the above event holding and call it &.

At this point, for each x € V(I) and each i € [K], we redefine the set M(A;(x)).

(AB3) Let M(A;(x)) retain only those edges whose associated absorbing (-cube pair (C!, C")

satisfies that both C' and C” intersect T” in at least 2 vertices.
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It follows from (2.7.7) and (ET2) that
|M(Ai(z))| > n/* —n®/* > 4n /3. (2.7.8)

Step 8: Fixing a collection of absorbing ¢-cube pairs for the vertices in
scant molecules. Recall G; ~ QI . Consider any x € V. and j € [K]. Recall from Step 3
that the tips of the cubes of the absorbing ¢-cube pair associated with a given edge in
M (A;(x)) may not lie in the reservoir R. Roughly speaking, we will alter 7" so that the tips
are relocated from the tree 7" to the reservoir R.

We start by redefining the matchings M(A;(x)) as follows: for each x € V. and each
J € [K], remove from M(A;(x)) all edges (é,é’) such that Np(z) N{x +é,x+ €'} # 2. It
follows from (2.7.8) and (ET1) that, for all z € V/(I) and j € [K],

|M(A;(x))] > 4n/t* — D > 2n/0>. (2.7.9)

For each x € Vi, each j € [K] and each matching M’ C M(A;(x)) with |[M'| > n/63,

let £'(x,j, M) be the following event:

for every set B C V(I) with |B| < 253 WK S’ there exists an edge € € M’, whose
associated absorbing /-cube pair (C!, C") has tips z! and 2", for which there exists a
subgraph P(€, B) C I(G7)—{a!, 2"} such that |V (P(€, B))| < 21D/2, V(P(€, B))NB =

@, and both Ny (x') and Np(2") are connected in P(€, B).

For a graph P(¢, B) as above, we will refer to 2 and 2" as the tips associated with P(&, B),
and refer to (C!,CT) as the absorbing (-cube pair associated with P(&, B). (Recall that, if
€= (é,¢), thenas! =x+éand 2" =z +¢.)

By invoking Lemma 2.6.20 with n — s, €2, 1/¢3, 2/7H3WK S’ 2D + 2 and the sets
{(x+é,x+¢):(e,¢) € M'} and (Np(x + €) U Npr (2 + €))eeryemr playing the roles of
n, e, ¢, f, D, C(xz) and (B(y, 2))(y,»)ec (), respectively, we have that £'(z, j, M') holds with

probability at least 1 — 27509 Let & = A, Ajeixg Aarcarca @y znge € (@53, M').
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By a union bound over all z € V., j € [K] and M’ C M(A;(z)) such that |M'| > n/63 it
follows that P[€3] > 1 — 272",

Condition on the event that & holds. It follows that, for each = € V., j € [K],
M' C M(A;(x)) with |M'| > n/¢3 and any B C V(I) with |B| < 273U K S’ there exists a
subgraph P(z,j, M', B) C I(Gy) with |V (P(z,j, M’, B))| < 21D/2 which avoids BU{z!, 2"},
where 2! and 2" are the tips associated with P(x,j, M’, B), and such that both Nz (z!) and
Ny (z") are connected in P(x, j, M', B). Moreover, by choosing P(z,j, M’', B) minimal, we
may assume that it consists of at most two components, and each such component contains
either Ny (z') or Ny (7).

Let ¢ :== |Vi| and let z4,...,x, be an ordering of V.. For each i € [i], j € [K] and
k € [2°T10], by ranging over i first, then j, and then k, we will iteratively fix a graph
Pz, 7, k, Mi’%k7 B, j 1) as above. In particular, this graph will have an absorbing ¢-cube pair

with tips a:ﬁ]k and z7 ; ;. associated with it. After the graph P(z;, j, k, M;

1 ik Bigr) is fixed, so

are these tips. Let J; ;= ([i — 1] X [K] x 2*PY W) U{(s, 7", k) : (J, ') € [j — 1] x [2T1 ]} U
{(i,,k") : K" € [k — 1]} and suppose that we have already fixed P(zy,j', k', My, ;o 1/, Bir jo i)
for all (i', 5", k') € J; ;1 such that these P(xy,j', k', M, j, ., By jr 3r) are vertex-disjoint from
cach other and from the set {a} ;i /. ) o+ (', 5, k') € Jijx} of tips associated with all
these P(xy,j', k', M}, ;i s, Bir jr g). In order to fix P(x;,j, k, Mj ;, Bijx), we first define the
sets Bjjx and M;,,. Let M],, be obtained from M(A;(z;)) as follows. Remove all edges
whose associated absorbing (-cube pair (C', C") satisfies (V/(C*) UV(C")) N {xl, 1 o, 2l oo
(¢,5,K) € Tijr} # . Remove all edges (é,¢') € M(A;(z;)) such that {z; +é,z,+ €} N
U(i“j,,k,)ejm V(P(xi, j', k', My o 4, Bir jr i) # D too. Note that, by (2.7.9) and (T3), it
follows that [M] ;| > n/€?. Let B;; be the set of vertices y € Bﬁ/Q(wi) such that at least

one of the following holds:
(P1) there exists (¢, j', k') € Jijx such that y € V(P(xw,j', k', My, ;o 1, Bir jr 11));

(P2) there exists (7, j', k') € Jijx such that y lies in the absorbing ¢-cube pair associated
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with P(zi, 7' k', M o s Birjr i)

Note that |B;;| < 2t WKS by (T3). We then fix P(x;,j, k, M/, Bijx) to be the

graph guaranteed by our conditioning on £7. Observe that, by the choice of B, ;, we have

that P(x;, j, k, M/

: L g A
i Bijn) 1s vertex-disjoint from Uy v wne 7 . P ' K's Mi oo B o).

We denote by (C!(x;,j,k),C"(x4,7,k)) the absorbing f-cube pair for z; associated with
P(l’i,j, k, M!

+ ik Bijr). By the choice of M, we have that

(CD) for all (.5, k) € Tijx, C'xi,j k) and C"(z;,j, k) are both vertex-disjoint from

CYzy,j', k') and C"(xy, j', K').

Let € = {(C' (x4, 4, k), C (20, 4, K)) = (isjok) € [1] x [K] x [2°719]}. Let P’ =
{xé,j,lw ‘rg,j,k : (i7j7 k) S [L] X [K] X {28+1‘I/]} and P = Uz’e[L],je[K],ke[QS*l\I/} P(xiajv ka Mi,,j,kﬂ Bi,]ﬁk)‘
Recall that P(x;, j, k, M!

i ik Bijx) avoids the tips xijk and 7 ; ;. associated with it. It follows

from this, (P2), and the definition of M ,, that P'NV(P) = @. Let T" := T"[V(T") \ P'|U P.
Note that 7" is connected by the definition of &'(z, j, M"). Let T" be a spanning tree of T".
By (ET1) and the fact that the graphs P(x;, j, k, M; ; ., Bi jx) are vertex-disjoint and satisfy

Lk Bigr)) < 21D/2, it follows that

A(T") < 12D. (2.7.10)

Define the (new) reservoir R’ :== (RU P’) \ V(P).
At this point, for each x € V(I) \ Vi, and each i € [K], we redefine the set M(A;(z))

as follows.

(AB4) Let M(A;(x)) retain only those edges whose associated absorbing (-cube pair (C!, C")
satisfies that both C' and C" are vertex-disjoint from both cubes of all absorbing /-cube

pairs of C{° and both tips ! and 2" satisfy that 2!, 2" € R\ V(P) C R'.

Note that, by (T3), we have | B! (2)NV (P)| < 21-2°0 DK S and | By ()W (U1 oryeese (CU
C")| < 4-2*VKS'. Combining this with (2.7.8) and (AB1), it follows that

|M(A;(z))| > 4n/6® — (21D + 4 -252°VKS" > n/03, (2.7.11)
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Step 9: Fixing a collection of absorbing £-cube pairs for the vertices in non-
scant molecules. At this point, we still do not know which vertices will need to be absorbed
eventually into an almost spanning cycle, but we can already determine the vertices in I whose
clones the vertices to be absorbed will be (the reason for this will be apparent later, see Step 13).
Recall that ¢’ and C” were defined in Step 6. Let C” :={C € C' : V(C)NV(T") # @} and
let Vs == V(I) \ Ugeen V(C). We will now fix a collection of absorbing f-cube pairs for all
vertices in each vertex molecule M, with x € Vs \ Vie.

First, recall from (T3) that, for all x € V(I), we have that |B}%(x) N V.| < S’. Thus,
in constructing 7", we removed at most 2572WK S’ vertices in B%(z) from T". Therefore, it

follows from (ET2) that, for all x € V(I), we have
|B2(z) \ V(T")| < 2n3/4. (2.7.12)
For all # € Joeer V(C), we claim that

N () V(TN [ VIO)] = (1 =2, (2.7.13)

To see that this holds, combine (N1), (2.7.12) and the definition of bondlessly surrounded
molecules.

Recall also the definition of 9 (z) from Step 3.
Claim 2.7.2. For each x € Vs \ Ve and each e € M (x), there exists a set C*(e) of 25710

absorbing (-cube pairs (CL(e),Cr(e)) C I, for k € [2°T1V], which satisfies the following:

(i) for all ¥ € Vaps \ Vie, € € M(z) and k € [25T1V], the absorbing (-cube pair (CL(e), Ci(e))

is associated with some edge in M(A;(x)), for some j € [K], and

(i) for all z,2’ € Vs \ Vie, all e € M(x) and ' € M(2'), and all k, k' € [25T1U] with
(z,e,k) # (2,¢, k'), the absorbing (-cube pairs (CL(e), Cr(e)) are vertex-disjoint (except

for x in the case when v = a’).
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Proof. Let V =, ¢y, \v.. M(z). Let K" == [V], and let fi,..., fx» be an ordering of the
edges in V. Given any i € [K'], the edge f; corresponds to a pair (z,j(i)) (in the sense that
Ajiy(x) = N(f;), see Step 4), where x € Vi \ Vie and j(i) € [K]. Let €; be the collection of
at least n/(® absorbing (-cube pairs for z in I guaranteed by (2.7.11). In particular, each
of these absorbing ¢-cube pairs (C!, C") is associated with an edge of M (A;;)(z)) and, by
(AB2), satisfies C!,C" € C".

Let H be the 2°T1W K’-edge-coloured auxiliary multigraph with V(#) = C”, which
contains an edge between C' and C” of colour (i, k) € [K'] x [2°T10] whenever (C,C") € €; or
(C",C) € ¢;. In particular, H contains at least n/¢? edges of each colour. We now bound
A(H). Consider any C' € V(H). Note that, for each edge e of H incident to C, there exists
some = = z(e) € Vaps \ Vae such that C' together with some other cube C’ € V(H) forms an
absorbing /-cube pair for x. In particular, x must be adjacent to C' in I. Moreover, if e has
colour (i, k), then f; € M(x) (and it has corresponding pair (z,j(i)) for some j(i) € [K]).
Since f; € M(x) and |M(x)| < (2;), it follows that each vertex y which is adjacent to C'
in I can play the role of x for at most 25710 . 22 edges of H incident to C. Thus, dy(C)
is at most 2°T1W - 228 times the number of vertices y € Vs \ Vie which are adjacent to
C in I. Recall that Vi,s = V(I) \ Ugeen V(C). Together with (2.7.13), this implies that
the number of vertices in Vs which are adjacent to C is at most |C|n/2"5~1. Thus,
dyy(C) < 25710225 | | /26551 < 04,

Since each colour class has size at least n/¢* and A(H) < n/¢*, by Lemma 2.5.4,
H contains a rainbow matching of size 2°T'WK'. For each (i,k) € [K'] x [25T10], let

(CL(f:),Cr(f:)) € €; be the absorbing f-cube pair of colour (7, k) in this rainbow matching. <«

Recall that, for any « € V(I), each index i € [K] is given by a unique edge e € M(x)
via the relation N(e) = A;(z). For each z € Vips\ Vie and each i € [K], let CiP(z, i) = CiP5(e),
where e is the unique edge given by the relation above, be the set of absorbing ¢-cube pairs guar-

anteed by Claim 2.7.2. Similarly, for each k € [2°71W], let (CL(x, ), Cr(z, 1)) = (CL(e), Cr(e)).
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Let G = |J_, G;. For each & € Vyp, \ Vie and each i € [K], let G*(z,i) C I be the
graph consisting of all edges between the left absorber tip and third absorber vertex of every
absorbing (-cube pair in Ci*(z,7). Let G* C I be the graph consisting of all edges between
the left absorber tip and third absorber vertex of every absorbing ¢-cube pair in Ci°. Let
G* = G*UU,ev, v Uic G7(, 1) € 1. Recall that, given any graph G C I, for each layer
L, we denote by Gy, the clone of G in L. Let G == G4N >, G7.. Furthermore, let G C G5
consist of all edges of G5 which have endpoints in different layers. We let G’ C G be the

spanning subgraph with edge set

E(G") = E(G)UEG;) U | EMe)ul JE(TY).

cec i=1
Note that, using (2.7.10), we have that A(G") < ®.

Now, let F' C Q" be any graph with A(F) < W. Recall that we denote by F; C I the
graph which contains every edge {z,y} € E(I) such that there exists an edge e = {2/, ¢/} €
E(F) with 2’ € M, and y' € M,,.

Note that 7" C I(G"), R" C V(I), and C C I(G") for every C' € C'. Recall the
definitions of C” from Step 6 and C"” from Step 9. Combining all the previous steps, we claim

that the following hold (conditioned on the events &5, ..., EF, which occur a.a.s.).
(C1) A(T") < 12D.

(C2) Any vertex x € R'NV(T") is a leaf of T”. Furthermore, if z € R'NV(T"), then its

unique neighbour 2’ in 7" satisfies that @’ € Z(z) (where Z(z) is as defined in Step 7).
(C3) For all x € V(I), we have that |[N;(z) N V(T") N Ugeer V(C)| = (1 —2/0")n.

(C4) For each x € V. and i € [K], there is an absorbing (-cube pair (C'(z,),C"(z,1)) for x
in I, which is associated with some edge e € M (A;(z)). In particular, (C'(z,i),C"(z,1))

is as described in (AB1) (recall also (AB2)), that is, there are two absorbing ¢-cube
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pairs (C!(x,4), CY(x,4)) and (CL(z,i),C5(z,1)) in HUG, associated with e € M (A;(z)),
for the clones z; and xs of & which correspond to (z,i). Additionally, each of these

absorbing (-cube pairs (C'(z,1), C"(x,1)) satisfies the following:

(C4.1) (Ci(w,d), Cf (2,4)) U (Cy(w, 1), C3 () = V(Ma) € G

(C4.2) the tips z! of C'(x,4) and 2" of C"(z,i) lie in R’ \ V(T"), and {z,2'},{z, 2"} ¢
E(Fy); in particular, the tips 2}, 27 of (Cl(z,1), C7(x,4)) and 2}, 2% of (C(x, 1), C5(z, 1))
satisfy that {zy, 2}, {1, 27}, {xe, 25}, {ze, 25} € E(HUG) \ F);

(C4.3) CYz,1),C"(x,i) € C"NC", and

(C4.4) for any 2’ € Vi, and i’ € [K] with (2/,7') # (z,i) we have that C'(x,4), C"(z,1),

Cl(2',4') and C"(2',4') are vertex-disjoint.
Let C*¢ denote the collection of these absorbing /-cube pairs.

(C5) Foreach x € Vyps\Vie and i € [K], there is an absorbing ¢-cube pair (C*(z, ), C"(z, 1)) for
x in I, which is associated with some edge in M (A;(z)). In particular, (C'(z, i), C"(z, 1))
is as described in (AB1), that is, there are two absorbing (-cube pairs (C!(x,1), C(z,1))
and (CL(z,4),C5(z,4)) in H U G, associated with e € M (A;(z)), for the clones z; and
x9 of x which correspond to (z,7). Moreover, each of these absorbing ¢-cube pairs

(CY(x,1),C"(x,14)) satisfies the following:

(C5.1) (Ci(w,i), Cf(x,4)) U (C3(x,4), C5 (2, 1)) = V(M) € G

(C5.2) the tips 2} of C!(x,i) and 7 of C"(z,4) lie in R/, and {z,2'}, {z, 27} ¢ E(F});
in particular, the tips 4,27 of (C!(x,i),C7(x,i)) and 2}, 2% of (CL(z,i),C5(z,i))

S&tiSfy that {371, xll}a {xb 3371‘}, {x27 le}a {x27 l’g} S E((H U G) \ F)?
(C5.3) Cl(x, i), C"(x,7) € C" N C;

(C5.4) for any 2/ € Vips \ Vie and ¢ € [K] with (2/,7') # (x,i) we have that C'(z,1),

C"(z,i), C(«',i") and C"(2',7') are vertex-disjoint, and
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(C5.5) both CY(z,i) and C"(x,14) are vertex-disjoint from all cubes of absorbing ¢-cube

pairs in C*°.
Let C™¢ denote the collection of these absorbing ¢-cube pairs.

Indeed, (C1) is given in (2.7.10). (C2) holds by (ET3) and the fact that P' NV (T") = @.
(C3) follows by combining (N1), the conditioning on &}, and (2.7.12). (C4) follows from
the construction of P and 7” in Step 8. Indeed, for each x € V,. and ¢ € [K], consider
the collection of absorbing ¢-cube pairs {(C'(z,4, k), C"(x, i, k)) }reps+19 defined in Step 8.
Since A(F') < ¥, it follows that dp,(z) < 2°V, and thus there must exist some absorbing
(-cube pair in this collection such that the edges joining its tips to x do not belong to F7.
Fix one such absorbing ¢-cube pair and call it (C'(x,4),C"(z,i)). Then, (C4.1) holds by
the definition of G’ combined with (AB1), and (C4.2) holds by the definition of R’ and 7"
combined with (AB1), while (C4.4) holds by (CD). On the other hand, (C4.3) follows because
of the definition of the set M(A;(x)) in (AB2) and (AB3). Finally, consider (C5). For each
7 € Vs \ Vie and @ € [K], consider the collection C#5(z, 1) of 25710 absorbing (-cube pairs
for z in I guaranteed by Claim 2.7.2. For each of these absorbing ¢-cube pairs we have
that (C5.3) holds by (AB2), (AB3) and the fact that, by (AB4), their intersection with 7"
contains their intersection with 7”. Similarly, (C5.4) holds by Claim 2.7.2, and (C5.5) holds
because of (AB4). Finally, note that A(F;) < 2°W. It follows that there exists a choice of
(CYz,1),C"(x,1)) € C2¥(x,i) such that {z,2'}, {x,2F} ¢ E(F;). Then, (C5.1) and (C5.2)
hold by the definition of G’, (AB1) and (AB4).

Step 10: Constructing auxiliary trees T* and 7¢. From this point on, every
step will be deterministic. Let 7% be obtained from 7" by removing all leaves of 7" which lie
in R.

We will now construct an auxiliary tree 75, which will be used in the construction of

an almost spanning cycle. We start by defining an auxiliary multigraph I as follows. First,
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let I't = T UJpeer O (Recall that C' is the collection of all C' € C for which M is bonded
in G5, see Step 6.) Let I'y be the graph obtained by iteratively removing all leaves from I’y
until all vertices have degree at least 2. Observe that, after this is achieved, the resulting
graph still contains all cubes C' € C'. Let I'3 be obtained from I'y by removing all connected
components which consist of a single cube C' € C’. Now, let IV be the multigraph obtained by
contracting each cube C' € C" such that C' C I's into a single vertex. We refer to the vertices
resulting from contracting such cubes as atomic vertices, and to the remaining vertices in I"
as inner tree vertices. Given C' € C and j € [2°], we call A = M N L; an atom. We continue
to identify each inner tree vertex v with the vertex v € V(I) from which it originated in I';.

Observe that I is connected, and (C1) implies that
dr(v) < 12D for all inner tree vertices, and A(I") < 12-2°D. (2.7.14)

Given an atomic vertex v € V(I"), let C(v) € C be the cube which was contracted to
v in the construction of I, and let M(v) = Mg¢(,). Furthermore, for each j € [2°], let
A;(v) == M(v) N L;. Similarly, for any v € V(I") which is an inner tree vertex, we define
M(v) = M,. Observe that every edge e € E(I") corresponds to a unique edge ¢’ € I(G").
We say that e originates from e/. We denote by D(e) € D(I) the direction of €’ in I. By
abusing notation, we will sometimes also view D(e) as a direction in Q™.

Next, we fix any atomic vertex vy € V(I'). We define an auxiliary labelled rooted
tree 7o = 70(vp) by performing a depth-first search on I rooted at vy and then iteratively
removing all leaves which are inner tree vertices. This results in a tree 7y rooted at an atomic
vertex vy and all whose leaves are atomic vertices. Let m = |V (19)| — 1, and let the vertices
of 7y be labelled as vg, vy, ..., v,,, with the labelling given by the order in which each vertex
is explored by the depth-first search performed on I'". For each i € [m|, we define 7; as the
maximal subtree of 7o which contains v; and all whose vertices have labels which are at least
as large as i. Given any vertex x € V(I), we say that x is represented in 7y if x € V(1) or

there exists some atomic vertex v € V(1) such that x € V(C(v)). Similarly, we say that a
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cube C' € C is represented in 7 if there exists an atomic vertex v € V(1) such that C' = C(v).
We will sometimes also say that M, or M are represented in 7, respectively.

The tree 7y will be the backbone upon which we construct our long cycle. First, we
need to set up some more notation. For each i € [m]o, let p; == d,,(v;) and let N, (v;) =

{uf,... v} }. It follows from (2.7.14) that
pi < 12D — 1 if v; is an inner tree vertex, and A(7y) < 12-2°D. (2.7.15)

For each ¢ € [m]y and k € [p;], let e} = {v;,ut}, let fi == D(el), and let ji be the label
of u} in 79, that is, u} = vji - For any k € [p;], we will sometimes refer to i as the parent
indez of ji. Furthermore, for each i € [m]y such that v; is an atomic vertex, and for each
k € [p;], consider the edge in I(G’) from which e originates and let v} be its endpoint in

C(v;). Finally, for each i € [m]y, we define a parameter A(v;) recursively by setting

(

0 if v; is an atomic vertex which is a leaf of 7,

Afvy) = P A(uf) if v; is an atomic vertex which is not a leaf of 7,

| i + 14+ >0 A(uj) if v; is an inner tree vertex.

(2.7.16)
This parameter A(v;) will be used to keep track of parities throughout the following steps.
Note that A(v;) counts the number of times a depth first search of 7; (starting and ending at
v;) traverses an inner tree vertex.

Consider the partition of all molecules into slices of size ¢ introduced at the beginning
of Step 3, where ¢ is as defined in (2.7.1). Given any v € V(7), we denote the slices of its
molecule by M (v),..., M;(v), where t is as defined in (2.7.1). Thus, for each i € [t] we
have that M;(v) = Ui.q:(iil)qul A;(v). For each i € [m]y, we are going to assign an input slice

M) (vi) to each vertex v;. We do so by recursively assigning an input index b(i) € [t] to
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each i € [m]o. We begin by letting b(0) := 1. Then, for each i € [m]y and each k € [p;], we set
b(i) if v; is an inner tree vertex,

b(i)+ k—1 (modt) if v is an atomic vertex.
Note that the bound on A(7) in (2.7.15) and the definition of ¢ in (2.7.1) imply that

b(ji) # b(ji) whenever v; is an atomic vertex and k # k.

Step 11: Finding an external skeleton for T™*. Our next goal is to find an almost
spanning cycle in G’ by using 7y to explore different molecules in a given order. For this, we
are going to generate a skeleton; this will be an ordered list of vertices which we will denote
by L. In order to construct £, we will construct disjoint partial skeletons L; and L; for all
i € [m] in an inductive way. Each of these skeletons will start and end in the input slice for the
vertex v; which is being considered. These partial skeletons will depend on the starting and
ending vertices of My (v;) which are provided for each of them. Therefore, given two distinct
starting vertices z, & € V(M) (v;)) and two distinct ending vertices y, 9 € V (My (vi)), we
will denote the partial skeletons by £;(z,y) and EAZ(%, 7), respectively.

The first step in the construction of L is to construct a set of vertices L®, to which
we will refer as an external skeleton, and for which we will in turn construct partial external
skeletons in an inductive way. The external skeleton will be essential in determining which
vertices will not be covered by the almost spanning cycle, and hence need to be absorbed.

Roughly speaking, the external skeleton will contain

(i) all vertices where the almost spanning cycle enters and leaves each cube molecule

represented in 7y, and

(ii) all vertices which are not in cube molecules and are needed to connect cube molecules

to each other (that is, some clones of inner tree vertices).

On the other hand, all vertices in a vertex molecule represented in 7y by an inner tree vertex

which do not belong to the external skeleton will have to be absorbed.
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For each i € [m], given the starting and ending vertices z,y,2,9 € V(Mygu)(v;))
for £;(z,y) and ﬁi(:ﬁ,gj), we will denote the corresponding partial external skeleton by
Ly (z,y,2,9).

The external skeleton is constructed recursively. The partial external skeletons are the
result of each recursive step, assuming that the starting and ending points have been defined.
Roughly speaking, for each i € [m], we will define partial external skeletons for any possible
starting and ending vertices. The starting and ending vertices which we actually use are then
fixed by the partial external skeleton whose index is the parent of i. Ultimately, all of them
will be fixed when defining the external skeleton L°.

Let Mges € V(Q") be the union of all the clones of R’. We will construct an external

skeleton L*® which satisfies the following properties:

(ES1) For each i € [m] such that v; is an inner tree vertex, L*®* NV (M) (v;)) contains exactly

2p; + 2 vertices, half of them of each parity, and L* N (V(M(v;)) \ V(M (v:))) = @.

(ES2) For each i € [m] such that v; is an atomic vertex, L* NV (M(v;)) contains exactly
4p; + 4 vertices. If v; is not a leaf of 79, eight of these vertices (four of each parity) lie in
V(M) (v3)), and four (two of each parity) lie in each V/(My4x(v;)) with k € [p; — 1].

If v; is a leaf, then all four of these vertices lie in V(M) (v;)).

(ES3) L*NV(M(vp)) contains exactly 4py vertices, four of them (two of each parity) lying in
each V(M (vg)) with k € [po].

(ES4) The sets described in (ES1)-(ES3) partition L°®.
(ES5) L* N Mpges = 2.

We now proceed to define the partial external skeletons formally. The construction proceeds
by induction on ¢ € [m] in decreasing order, starting with i = m. We define a valid connection
sequence (x',y", 2", §") for v; as any set of distinct vertices z',y, &', 4" € V(M (v;)) which

satisfy the following:
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(V1) z* #, y* if A(v;) is even, and 2’ =, y* otherwise;
(V2) &' #, 2%, and

(V3) 4" #p v

Given any valid connection sequence (x%,", &%, 7"), we will refer to z' and 2" as starting
vertices, and to y* and §' as ending vertices. Throughout the construction ahead, observe
that, every time we use a partial external skeleton to build a larger one, its starting and
ending vertices form a valid connection sequence by construction. The vertices 2%, 3/*, etc. will
be part of £;(z",y"), and the vertices #?, §*, etc. will be part of ﬁz(:i:’, 7'). The vertices x?,
yt, 2%, ¢° will be used by the skeleton to move from the molecule represented by v; in 7
to the molecule represented by its parent. Given these vertices, the following construction
provides the vertices w} and w} (as well as z} and 2%, if applicable) which are used to move
to molecules represented by the children of v;. Given any vertices (x,y,Z,7) in Q" and any
direction f € D(Q"), we write f + (z,9,%,9) = (f + o, f +y, f + 2, f +9).

Now suppose that i € [m] and that, for each i’ € [m]\ [i], we have already constructed
a partial external skeleton L% (2%, y",2",9") for vy and every valid connection sequence
(2", 9", 2", §") for vy. We will now construct a partial external skeleton for v; and every valid
connection sequence for v;. We consider several cases.

Case 1: v; € V(1) is a leaf of 5. Assume that (z,y’, 2, ¢") is a valid connection
sequence for v;. Then, the partial external skeleton for this connection sequence is given by
Li (2", y", 2%, 9") = {a', ¢, 2%, '}

Case 2: v; € V(73) is an inner tree vertex. We construct a set of partial external

skeletons for v; as follows.

RN AN : : b i g e i
1. Suppose (2',y*, 2", 9") is a valid connection sequence for v;. Let w{ = 2, w, =y,

N

2, =" Let W§ = {wp, w), ,wp, W), }.
2. For each k € [p; — 1], iteratively choose two vertices wj, @}, € V(M (v;)) \ Wi_,
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such that f; + (wj_;,w},w; ;,w};) is a valid connection sequence for u}, and let

i i i i
Wi = Wi_, U{w;, oy}

Note that the definition of ¢ in (2.7.1) and the bound on p; in (2.7.15) ensure that we
have sufficiently many vertices to choose from (similar comments apply in the other cases).
Moreover, (2.7.16) implies that f + (w) _j, w) @} ;) ) is a valid connection sequence for
uj, . The partial external skeleton for v; and connection sequence (z*,y*,&*, ") is defined as

pi
Lyt g @, 3) = o', @} U (Tok @} U L3 + (whoy, wh @y, 04)))
k=1

Case 3: v; € V(7p) is an atomic vertex which is not a leaf. We construct a set of

partial external skeletons for v; as follows.
1. Assume (2%, y*, 2%, §%) is a valid connection sequence for v;. Let w} == x'.

2. For each k € [p;], iteratively choose distinct vertices z}, wj, 25, W}, € (V (Mpgiy+r-1(v;)) N
V(M) \{z',y", 2", 5"} satisfying that 2 #, wi_, and fi + (2}, w}, £}, 0}) is a valid
connection sequence for u}.

Then, the partial external skeleton for v; and connection sequence (x%, %", &, ) is defined as

pi
Lyt ', a'5) = oty 2,9 0 (Tehwh 3 0 U L (i + (bl 21, 00)) )
k=1

After having constructed all these partial external skeletons for all v; with ¢ € [m], we

are now ready to construct L°.

1. Choose any vertex w € V(A (vp)).

2. For each k € [py], iteratively choose four distinct vertices 2y, 22, w?, w2 € (V (M (vo)) N
V(M) satisfying that z) #, wp_, and f + (2, wy, 2,40}) is a valid connection
sequence for ul.

Then, we define

Po
= ({Zg,wg,zg,wg} UL (f) + <zg,w2,22,w2>)) :
k=1
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Observe that (ES1)—(ES4) hold by construction. In turn, (ES5) holds because of the
definition of 7p. Indeed, observe that V(7*) N R' = @ by (C2). Moreover, by the construction
above, all vertices in L*® are incident to some edge in a clone of the tree T, and thus, they

cannot lie in Mpyes.

Step 12: Constructing an auxiliary tree 73. In order to extend the external
skeleton into the skeleton and construct an almost spanning cycle, we first need to extend 7
to a new auxiliary tree 7 which encodes information about some additional molecules.

We construct 7, by appending some new leaves to 75. Note that 7y was built by
encoding all the information about 7%, and 7} will encode the information about 7”. In
particular, by (C2), each cube C' € C’ which intersects 7" and does not intersect 7* contains at
least one vertex u which is joined to T by an edge ¢’ = {u,v} € E(T") such that v € V(C"),
where C' # C’ € C". Note that the construction of 7y implies that C” is represented in 7.
For each such cube C', choose one such vertex v and append a new vertex to the atomic
vertex representing C” in 7y via an edge e which originates as ¢/ € E(T"). We say that this
newly added vertex is atomic and represents C'. The resulting tree after all these leaves are
appended is 74. In particular, 7y C 7, and it now follows that precisely the C' € C" are

represented in 7, where C"” is as defined in Step 9. Furthermore, it follows from (C1) that

dr(v) < 12D for all v € V(75) which are inner tree vertices, and
(2.7.17)
A(r)) < 122D,

For all vertices of 7, we will use the same notation for the vertices, cubes and molecules that

they represent as we did for the vertices of 75. Note that, by (C4.3) and (C5.3),
(CP) every cube C' belonging to some absorbing ¢-cube pair in C3 U C™ is represented in 7.

It will be important for us that 7 represents ‘most’ vertices of the hypercube. In
particular, for each € V(I), let A\(x) denote the number of vertices y € N;(x) which are

represented in 7} by atomic vertices. By (C3), we have that

Az) > (1—2/n. (2.7.18)
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By an averaging argument, it follows that at least (1 — 2/¢%)2"~% vertices z € V(I) are
represented in 7 by atomic vertices. We will construct an almost spanning cycle in G’ which
contains all the clones of these vertices.

Let m' == |V (7})| — 1. Label V(7)) \ V(70) = {vms1,-..,vmn} arbitrarily. For each
i € [m], we define 7/ as the maximal subtree of 7 which contains v; and all of whose
vertices have labels at least as large as i. For each i € [m]o, let p; = d./(v;) and let
N (vi) = {uf, ... ,u;; } (where the labelling is consistent with that of N, (v;)). For each
i € [m]o and k € [p] \ [pi], let e} == {v;,ul}, let f} = D(el), and let ji be the label of u} in
74. Furthermore, for each i € [m]y such that v; is an atomic vertex, and for each k € [p!] \ [pi],
consider the unique edge which e, originates from in 7(G’) and let v}, be its endpoint in C'(v;).
Finally, for each i € [m/] \ [m] we set A(v;) == 0.

As in Step 10, we consider the partition into slices for the new molecules arising from
the newly added cubes represented by 7). For each i € [m/] \ [m], we assign an input index
b(i) € [t]. To do so, for each i € [m]y such that v; is an atomic vertex and each k € [pl] \ [pi],
we set b(ji) = b(i) + k — 1 (mod ¢). Similarly to Step 10, (2.7.1) and (2.7.17) imply that
in this case b(ji) # b(ji,) for all k # k. For each i € [m’] \ [m], let ¢; be the label in 7 of
the unique vertex adjacent to v; (i.e., the parent label of i), and let m; be the label of v; in

Noy (vg,). Note that b(z) = b(¢;) + m; — 1.

Step 13: Fixing absorbing #¢-cube pairs for vertices that need to be ab-
sorbed. At this point, we can determine every vertex in V' (Q") that will have to be absorbed
into the almost spanning cycle we are going to construct. For every vertex € V(I) not
represented in 7, we will have to absorb all vertices in M,. Furthermore, for each v € V()
which is an inner tree vertex, we will also need to absorb all vertices in M, \ L*. By (ES1),
this means that, in each such molecule M,, the same number of vertices of each parity need
to be absorbed. Recall the definition of Vs from Step 9. This is precisely the set of vertices

which are not represented in 7} by an atomic vertex and, therefore, it is the set of all vertices
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x € V(I) such that some clone of x needs to be absorbed. It follows from (2.7.18) that
|Vaps| < 277 /0%, (2.7.19)

Now, for each x € Vs, we will pair the vertices in each slice which need to be absorbed (each
pair consisting of one vertex of each parity) and fix an absorbing ¢-cube pair for each such
pair of vertices. The absorbing ¢-cube pair that we fix will be the one given by (C4) or (C5)
for this pair of vertices, depending on whether x € V. or not.

For each z € Vs and S € S(M,), let S(z,S) = V(S) N L*. Tt follows by (ES1)-
(ES4) that |S(z,S)| < 24D and S(x,S) contains the same number of vertices of each parity.
(Here we also use that p; < 12D — 1 for every inner tree vertex v; by (2.7.15) and (2.7.17).)
Therefore, the matching M(S, S(z,S)) defined in Step 3 is well defined. Recall that each
edge e € M(S, S(x,8S)) gives rise to a unique index i € [K]| via the relation N(e) = A;(x).
(Here we ignore all those indices i" € [K] arising by artificially increasing the size of (x), see
the beginning of Step 4.) For each x € Vg, let J, C [K] be the set of indices i € [K] which
correspond to edges in (Ugegiu,) MUS, S(z,S)).

For each = € Vs and ¢ € J,, as stated in (C4) and (C5), we have already fixed an
absorbing (-cube pair for the clones of x corresponding to (x,7). Let

v = VM) L

wEVabs
As discussed above, this is the set of all vertices that need to be absorbed. Recall that G’ was
defined before (C1)—(C5). It follows from (C4) and (C5) that ((HUG) \ F') UG’ contains a

set C**s = {(CY(u), C"(u)) : u € V¥} of absorbing (-cube pairs such that

(Cy) for all distinct u, v € V2, the absorbing /-cube pairs (C'(u), C"(u)) and (C'(v), C"(v))
for u and v are vertex-disjoint and (C'(u), C"(u)) U (C'(v), C"(v)) — {u,v} C G';

(Cy) there exists a pairing U = {fi,..., fx:} of V" such that
(Caq) for all i € [K'), if fi = {u;,u}}, then u; #, ul;
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(Cqa) if fi = {u;, u}, then there is a vertex v € Vs such that u; and w are clones of
v which lie in the same slice of M,,, and (C'(u;), C"(u;)) and (C'(u}), C"(u})) are
clones of the same absorbing (-cube pair for v in I such that (C'(u;), C"(u;)) lies
in the same layer as u; and (C'(u}),C"(u})) lies in the same layer as u/;

(Cq3) if u,u’ € V¥ do not form a pair f € U, then (C'(u),C"(u)) and (C'(v'), C"(u'))
are clones of vertex-disjoint absorbing ¢-cube pairs in I (except in the case when

u,u’ are clones of the same vertex v € Vj,, in which case (C'(u),C"(u)) and

(CY(u"),C"(u')) are clones of absorbing ¢-cube pairs in I which intersect only in v);

(C3) if we let C* := U(Cl(u),CT(u))GCabs{Cl(u>7 C"(u)}, then C* contains either two or no clones

of each cube C' € C" NC", and every cube in C* is a clone of some cube C' € C" N C".

The pairing described in (Cs) is given by the matchings IMM(S, S(z,S)). Furthermore, it
follows from (C4.2), (C5.2) and (ES5) that

(C4) the set of all tips of the absorbing (-cube pairs in C?*® is disjoint from L°.

We denote by £, R and Ry the collections of all left absorber tips, right absorber
tips, and third absorber vertices, respectively, of the absorbing ¢-cube pairs in C?". Observe

that the following properties are satisfied:

(C*1) For all ¢ € [m]p such that v; is an atomic vertex and all j € [t], we have that
1£NV(M;(v))] € {0,2} and, if |[£NV(M;(v;))| = 2, then these two vertices u, u’ lie

in different atoms of the slice and satisfy that u #, u'.

(C*2) For all i € [m/]y such that v; is an atomic vertex and all j € [t], we have that
|(PR1 URy) NV (M,(vy))] € {0,4}. If |(R1 URy) NV (M, (v;))] = 4, then these four
vertices form two pairs such that one vertex of each pair belongs to P93, and the other
to MRy, Each of these pairs lies in a different atom of the slice and satisfies that its two

vertices are adjacent in G'.
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(C*3) For all ¢ € [m'] such that v; is an atomic vertex and all j € [t], if £NV(M;(v;)) # @,

then (%1 U %2) N V(M](UZ)) = .
(C*4) The sets described in (C*1) and (C*2) partition £ and R; U R, respectively.

Indeed, (C*1)-(C*3) follow from (Cy) and (Cs), and (C*4) follows by (CP).

For each u € V3*, we denote the edge consisting of the right absorber tip and the
third absorber vertex of (C'(u),C"(u)) by eaps(u), and we denote by P2*5(u) the path of
length three formed by the third absorber vertex, the left absorber tip, u, and the right
absorber tip, visited in this order. Note that euns(u) € E(G’) by (Cy). Moreover, recall that

C2Ps consists of absorbing (-cube pairs in ((HUG)\ F)UG’). Thus, P2*(u) C ((HUG)\F)UG".

Step 14: Constructing the skeleton. We can now define the skeleton for the
almost spanning cycle. Intuitively, this skeleton builds on the external skeleton by adding
more structure that the cycle will have to follow. In particular, the skeleton adds the edges
used to traverse from each slice in a cube molecule to its neighbouring slices, and it also
incorporates the cube molecules represented in 7 which were not represented in 75. (The
reason why these were not incorporated earlier is the following: if we already choose the
valid connection sequences for these cube molecules in Step 12, then the tips of the absorbing
cubes chosen in Step 13 might have non-empty intersection with the external skeleton, which
we want to avoid, see (S7) below.) Furthermore, the skeleton gives an ordering to its vertices,
and the cycle will visit the vertices of the skeleton in this order.

We will build a skeleton £ = (x1,...,z,), for some r € N, and write L* := {xy,...,z,}.

We will construct £ in such a way that the following properties hold:

(S1) For all distinct k, k" € [r], we have that x) # x.

(S2) {z1,z.} € E(G").

(S3) For every k € [r —1], if z;, and xj4; do not both lie in the same slice of a cube molecule
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(S6)

(S7)

represented in 7, then {zg, xp 11} € E(G’). Moreover, in this case, if x;1; lies in a cube
molecule represented in 7, then x5 lies in the same slice of this cube molecule as

Lh+1-

For every i € [m']p and every j € [t], no three consecutive vertices of £ lie in M (v;)

(here L is viewed as a cyclic sequence of vertices).

For every i € [m/] such that v; is an atomic vertex and every j € [t], we have that
[V(M;(v;)) N L is even and 4 < |[V(M;(v;)) N L®| < 12. In particular, |V (M;(vg)) N
L] = 4.

For all k € [r] except two values, we have that z; #, j4;. The remaining two values
ki, ks € [r] correspond to two pairs of vertices xy,, T, 11, Thy, Thyr1 € V (My(vg)). For

these two values, we have that zy, #, x, and either

(1) Lk =p Lhi+1 and Lky =p Lhy+1, OF

(ii) Lhy #p Lhi+1 and Ly 7ép Lho+1,
where y,, Tk, € V(Ap—1)g41(v0)) and zx 41, Try41 € V (Asg(v0)).
LN (LUR UV =g and L° C L.

As happened with the external skeleton, the skeleton is built recursively from partial

skeletons, which are defined first for the leaves. This recursive construction means that the

overall order in which the molecules are visited will be determined by a depth first search

of the tree 7). Moreover, as discussed in Section 2.2.5, for parity reasons the skeleton will

actually traverse 7 twice. These two traversals will be ‘tied together’ in the final step of the

construction of the skeleton.

Note that, for each i € [m], the starting and ending vertices z*, #*, v, 4" for the partial

skeletons for v; are determined by the external skeleton. For each i € [m/] \ [m], the starting

and ending vertices for the partial skeletons of v; will be determined when constructing the
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partial skeleton for the parent vertex vy, of v;. In particular, when constructing the partial

~

skeleton for v,,, we will define vertices 2, , 2 wei,,d)fj” € My (ve,). Then, the starting and

L 34
mi? Tm;) m;

ending vertices for the partial skeleton of v; will be

(2,9, 25, 9) = foi 4z, wii, 2o 0. (2.7.20)

m;

(Recall that ¢;, m;, b(i) and f/ were defined at the end of Step 12.)

We are now in a position to define the partial skeletons formally. The construction
proceeds by induction on i € [m/] in decreasing order, starting with i = m’. Recall from the
beginning of Step 11 that, for all i € [m], 2*,y" € V (M, (v;)) are the starting and ending
vertices for the first partial skeleton £(2, y*) for v;, respectively, and &, §* € V(M) (v;)) are
the starting and ending vertices for the second partial skeleton ﬁ(ﬁvl, ') for v;, respectively.
The vertices ¢, 9*, 2¢, §j* were fixed in the construction of the external skeleton, and they form
a valid connection sequence. For each i € [m/] \ [m], the vertices 2',y*, &', §" € V(M) (v;))
defined in (2.7.20) will also form a valid connection sequence.

Let F = £UM; UL*. For each k € [2°], let é; be the direction of the edges in
Q" between L and L. Throughout the following construction, we will often choose
vertices which are used to transition between neighbouring slices, all while avoiding the set
F. Similarly to the proof of Lemma 2.7.8, all of these choices can be made by (ES2), (ES3),
(C*1), (C*2), and because all cube molecules considered here are bonded in G5 and, therefore,
also in G’. (The latter holds since for each atomic vertex v € V(7)) the corresponding cube
C(v) satisfies C'(v) € C'.) Whenever we mention a vertex that we do not define here, we
refer to the vertex with the same notation defined when constructing the external skeleton in
Step 11.

Suppose that ¢ € [m'] and that for every i € [m/] \ ([i] U [m]) and every valid
connection sequence (z%,y", 2", 4") for vy we have already defined two partial skeletons
L(z" "), L(z7,§") for vy with this connection sequence. (As discussed above, eventually we

will only use the two partial skeletons for v; with connection sequence as defined in (2.7.20).)
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Moreover, suppose that for every i’ € [m] \ [i] we have already defined two partial skeletons
Lz, y"), L(z",§") for vy with connection sequence (z¥,y", 2", §%) (fixed by the external
skeleton). If i € [m], let (2%, ", 2, §") be the connection sequence for v; fixed by the external
skeleton. If i € [m/] \ [m], let (2%, 9%, 2", 9') be any connection sequence for v;. We will now
define the two partial skeletons for v; with connection sequence (z%,4", 2%, 4"). We consider
several cases.
Case 1: wv; is a leaf of 7). We construct the partial skeletons as follows. Let
i

zl = x' and &} = 3. For each k € [t — 1], iteratively choose any two vertices yi,Ji €

V(Ap@y+rqe(v) \ (FU{2’,y', 2", 9'}) satisfying that
Ly, #p @) and G #p 3

2. xi:—&—l = ylzc—i—é(b(l)Jrk)q §é FU{.%Z’ yia fi) gz} and i'i;_g_l = Q]Zg—i_é(b(z)Jrk)q §é Fu{xz> yia ji) gz}’

and

3’ {yifri;-‘rl}? {@iai’%ﬂ} € E<G/)

Recall that we use X to denote the concatenation of sequences. The first and second partial

skeletons for v; with connection sequence (z, %", 2%, §") are given by

Li(a',y') = (a") <>_<(y;i,x§;+1)> (y) and Li(#,9") = (&) (>_<(@i,fii+1)> (¥')-

Case 2: v; € V/(7p) is an inner tree vertex. Then, the first and second partial skeletons
for v; with connection sequence (z°,y', 2%, 4") are defined as
o P PR . " RSN PR .
Li(z',y') = (') X (Lyy (@, 97%),wp) and - Li(3",9") = (27) X (L (2%, §7), ),
k=1 k=1
where ji was defined in Step 10.
Case 3: v; € V(7p) is an atomic vertex which is not a leaf of 7. We construct the

partial skeletons for v; as follows. (Recall that, for each k € [p}] \ [pi], the vertex v} was

defined in Step 12.)
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1. For each k € [p;], iteratively choose distinct vertices yp, 75 € V(Awpu)rh—1)q(vi)) \ F

such that

L1y, #p wj, and g, #p Wy
1.2. wZH =y + (i) +k-1)g ¢ F and xk+1 = g + Ew@i)+k—1)g & F, and

13 {ylzm ‘T;q—i-l}v {@Ilgv £k+1} € E(G/>

I p; =0, let 28 == 2" and 2} = #'. For each k € [p!] \ [pi], iteratively choose distinct

vertices 2j, wy, 2, Wy € (V(Myayr-1(vi)) N V(M) \ (F U {x},%}) and distinct
vertices yi, Ui € V(Api)+r-1)q(v:)) \ (F U {2}, w}, 2, 0}, }) satisfying that

2.1. 2, i #, ot and Z}, wi =, x%;

2.2, alh yih @k ik ¢ F, where afk, yit, 29k and ¢ are defined as in (2.7.20);

2.3. y;, #p wy, and G #p ;s

24. karl =y + E(i)+h-1)g & F and $k+1 = U + i) +k—1)g & F, and

2.5. Y i b Ak T} € E(G).

As discussed earlier, observe that a choice satisfying 2.2. exists by (C*1), (C*2) and
(ES2).

. For each k € [t] \ [p}], iteratively choose distinct vertices yj, 95, € V (Awp@)1h—1)q(vi)) \ F

satisfying that

3.1. yi #, xh and g #, 5
3.2, iy = Ui+ Epirh-1)g § F and Ty = G + Epiy+n-1)g € F, and

3.3 {Wo o b Gk Bhin} € E(G),

Then, we may define the first and second partial skeletons for v; with connection sequence

(

o'y, 2 ) as

Li(z',y') = (z) <>i<(zk,ﬁ (a7, yj’i)>w?;>y;i>$?;+1)> ( X (y/iw?m))(y"),

k=1 k=p,+1
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& o t A
‘Ci(‘%zvgz) = (iﬂz) (X(élzw‘Cj}'c(jrjkag]k)?w;cag}wi‘?c-&-l))< >< (glzcaj;;c+1))(fgl)

k=1 k=p/+1

We are now ready to construct £. The idea is similar to that of Case 3, except that

we now tie together the first and second partial skeletons in Step 1.2 below.

1. Choose any two vertices z¥, 29 € V(A1 (vg)) \ F such that
1.1. 29 =, w) and 2y #, w;
1.2. ¢ =30 + é3s ¢ F and Y == 2% + é9s ¢ F, and
L3, {af, 0}, {2, u'} € E(@).

2. For each k € [po], iteratively choose two distinct vertices 43, 45 € V (Ag(vo)) \ F such
that
2.1. gy #p wy and gy 7y 0y
22, x), =yp+eéng ¢ Fand 20, = G) + éxy ¢ F, and
2.3 {y, o 3 AR 20} € B(G).

3. For each k € [p}]\ [po], iteratively choose distinct vertices 22, w?, 22 w9 € (V(My(vg)) N

V(Mo )N\ (FU{z),2?}) and distinct vertices 49, 49 € V (Agq(vo))\(FU{ 2}, wy, 25, wi})

k+1

satisfying that

3.1. 2P ) #p 2 and 20, wh) =, 2¥;

3.2, ok ik ik iR ¢ F, where o/t yik | 37 and 7% are defined as in (2.7.20);
3.3 4 #p wi and i #p @

34, a) =y + ek ¢ Fand 20, = g + éxy ¢ F, and

35 {ylgu xg—i—l}a {gl(g)a j;k+1} € E<G/)

4. For each k € [t — 1]\ [p}], iteratively choose any two vertices vy, 95 € V (Agqg(vo)) \ F

satisfying that

107



4.1. yp #p 2} and 9 #, 13;
42, ) =yp+érg ¢ F and 29, = 4§ + éxy ¢ F, and

43 {ylga I2+1}, {Q](g); i.k—f—l} S E<G,)

The final definition of £ is given by

Py t—1
-0 ) R
L= () (X(zg’ﬁjg(ﬂ’wyj’“%w;?,y;?,wiﬂ)) ( X (y;?,x%“)) (v),47)

k=1 k=ply+1
Po e t—1
>< (22’ ‘ng (i‘]k7 y]k>7 w27 @27 Zig—&—l) >< (ggv j"g—l-l) (@?)
k=1 k=ply+1

Observe that (S1)-(S6) hold by construction. In particular, (2.7.16) together with
(V1) ensure that in Case 3 the final two vertices of the two partial skeletons satisfy =}, #p, ¥’
and &, , #, §'. Moreover, the pairs «f,y7 and 27, gy will play the roles of the pairs zy,, zx, +1
and xy,, Tr,+1 in the second part of (S6). Similarly, (S7) holds by combining the construction
of £, (Cy), (ES5) and the definition of Vb5,

Recall that we write £ = (z1,...,z,). For each i € [m]y such that v; is an atomic
vertex and each j € [t], let J;; = {k € [r] : 24, x4 € V(M;(v))} and S, ; = {{zk, Tps1} :

keJi;t

Step 15: Constructing an almost spanning cycle. We will now apply the
connecting lemmas to obtain an almost spanning cycle in G’ from £ = (x4, ..., z,). For each
i € [m']p such that v; is an atomic vertex and each j € [t], except the pair (0,t), we apply
Lemma 2.7.8 to the slice M (v;) and the graph G’, with £0V (M;(v;)), (R1UR) NV (M;(v;))
and S; ; playing the roles of L, R and the pairs of vertices described in Lemma 2.7.8(C3),
respectively. Note that the conditions of Lemma 2.7.8 can be verified as follows. (C1) and
(C2) hold by (C*1) and (C*2) combined with (C*3). (C3) holds by (S1) and (S3)—(S7). For
M (vg), we apply Lemma 2.7.8 or Lemma 2.7.9 depending on whether (ii) or (i) holds in (S6)

(the conditions for Lemma 2.7.9 can be checked analogously). For each i € [m/]y such that
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v; is an atomic vertex and each j € [t], this yields |J; | vertex-disjoint paths (P}’ Jke3,, in

M;(v;) UG" = G’ such that, for each k € J, ;,
(i) P,i’j is an (zy, Tpy1)-path,
(i) Ukeai,]- V(Py) = V(M;(v;) \ £, and

(iii) any pair of second and third absorber vertices in 98; U Ry contained in the same atom

of M, (v;) form an edge in one of the paths.

Now consider the path obtained as follows by going through £. Start with z;. For
each k € [r], if there exist i € [m/]o and j € [t] such that {z,z541} € S, add P}’ to the
path; otherwise, add the edge {zx, xx+1} (this must be an edge of G’ by (S3)). Finally, add
the edge {x,,z1} of G’ (this is given by (52)) to the path to close it into a cycle $ in G’. This

cycle satisfies the following properties (recall that e,ps(u) was defined at the end of Step 13):
(HC1) [V(H)] = (1 —4/e%)2".
(HC2) V($) U £ U Vabs partitions V(Q").
(HC3) For all u € V2 we have that e.,s(u) € E($).

Indeed, note that $ covers all vertices in L*® (since L* C L* by (S7)) as well as all vertices
lying in cube molecules represented in 7} except for those in £ (by (ii)). Together with the
definition of V5 this implies (HC2). Moreover, since |£| = |V@*|, (HC1) follows from

(2.7.19). Finally, (HC3) follows by (iii).

Step 16: Absorbing vertices to form a Hamilton cycle. For each u € V2,
replace the edge e.ns(u) by the path Pups(u) (recall from the end of Step 13 that Pays(u) lies
in (HUG)\ F)UG'). Clearly, this incorporates all vertices of £ U V2 into the cycle and,

by (HC2) and (HC3), the resulting cycle is Hamiltonian. O
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2.7.5 Proofs of Theorems 2.1.1, 2.1.2 and 2.1.7

First, we show that, as a byproduct of the proof of Theorem 2.7.1, we also have a proof of

Theorem 2.1.2.

Proof of Theorem 2.1.2. Apply Steps 1, 4, 6, 7, 10, 11, 12, 14 and 15 in succession. In general,
any reference to absorbing cubes in these steps (see e.g. the end of Step 6) should be skipped

as well. O
Next, we will show how Theorem 2.7.1 can be used to prove Theorem 2.1.7.

Proof of Theorem 2.1.7. Consider a decomposition of H into k edge-disjoint subgraphs H; U
-+ U Hj, such that, for every i € [k], we have 6(H;) > an/(2k). To see that this is possible,
let us randomly partition the edges of H so that each e € E(H) is assigned to one of the
H;’s uniformly at random and independently from all other edges. Thus, for every i € [k] we
have Ple € E(H;)] = 1/k. It follows by Lemma 2.4.2 that, for every vertex x € V(Q") and
every i € [k],

Pldy, (z) < an/(2k)] < e~/ &R,

For each z € V(Q"), let B(z) be the event that dy,(z) < an/(2k) for some i € [k]. Hence,
P[B(x)] < ke B for all x € V(Q"). Observe that B(z) is independent of the collection of

events {B(y) : dist(z,y) > 2}. A simple application of Lemma 2.4.5 shows that

Pl A B)| >0

zeV(Qn)
and, therefore, such a decomposition of H exists.

We now consider a similar decomposition of Q. In particular, given Q, we partition
its edges into k edge-disjoint subgraphs, Q1 U---UQy, in such a way that, if e € E(Q”), then
e is assigned to one of the (); chosen uniformly at random and independently of all other
edges. Thus, for each e € E(Q”) we have Ple € E(Q;)] = 1/k for all i € [k]. It follows that,

for each i € [k], we have Q; ~ Q7).
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Let ® be a constant such that Theorem 2.7.1 holds with ¢/k, a/(2k) and k + 2 playing
the roles of ¢, o and ¢, respectively. For each i € [k], apply Theorem 2.7.1 with H; and Q;
playing the roles of H and G, respectively. We obtain that a.a.s. there exists a subgraph
G; C Q; with A(G;) < ® such that, for every F; C Q" with A(F;) < (k + 2)®, the graph
((H; U@;) \ F;)) UG; is Hamiltonian. Condition on the event that this holds for all i € [k]
simultaneously (which holds a.a.s. by a union bound).

We are now going to find k edge-disjoint Hamilton cycles C1, ..., Cy iteratively. For
each i € [k], we proceed as follows. Let F; := U§:1 G, U U;;ll C;. It is clear by construction
that A(F;) < k(® +2) < (k+ 2)®. By the conditioning above, there must be a Hamilton
cycle C; C ((H; UQ;) \ F;)) UG,;. Take any such C; and proceed.

It remains to prove that C,...,C} are pairwise edge-disjoint. In order to see this,
suppose that there exist ¢,j € [k] with ¢ < j such that E(C;) N E(C;) # @, and let
e € E(C;) N E(C)). In order to have e € E(C;), since G; C F; \ G;, we must have e ¢ E(G,).

However, since e € F}; by definition, we must have e € E(G,), a contradiction. O
Now, Theorem 2.1.1 follows as an immediate corollary.

Proof of Theorem 2.1.1. Tt is well known (see e.g. [15]) and easy to show that Qf, .
a.a.s. contains isolated vertices. So it suffices to consider Q’f/2 .. for any fixed € > 0 and
show that a.a.s. it contains k edge-disjoint Hamilton cycles. Let 0 < § < ¢ < 1/2. Let
H ~ Q?/2+5/2 and G ~ Q?/z' Note that H UG ~ Qp, for some 7 < 1/2 + e. Furthermore, by
Lemma 2.5.5, a.a.s. §(H) > on. Applying Theorem 2.1.7 to H U G, we obtain the desired

result. O
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Chapter 3

A bandwidth theorem for approximate

decompositions

3.1 Introduction

Starting with Dirac’s theorem on Hamilton cycles, a successful research direction in extremal
combinatorics has been to find appropriate minimum degree conditions on a graph G which
guarantee the existence of a copy of a (possibly spanning) graph H as a subgraph. On the
other hand, several important questions and results in design theory ask for the existence of
a decomposition of K, into edge-disjoint copies of a (possibly spanning) graph H, or more
generally into a suitable family of graphs Hy, ..., H;.

Here, we combine the two directions: rather than finding just a single spanning graph
H in a dense graph G, we seek (approximate) decompositions of a dense regular graph G
into edge-disjoint copies of spanning sparse graphs H. A specific instance of this is the
recent proof of the Hamilton decomposition conjecture and the 1-factorization conjecture for
large n [35]: the former states that for r > |n/2], every r-regular n-vertex graph G has a
decomposition into Hamilton cycles and at most one perfect matching, the latter provides

the corresponding threshold for decompositions into perfect matchings. In this paper, we
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restrict ourselves to approximate decompositions, but achieve asymptotically best possible

results for a much wider class of graphs than matchings and Hamilton cycles.

3.1.1 Previous results: degree conditions for spanning subgraphs

Minimum degree conditions for spanning subgraphs have been obtained mainly for (Hamilton)
cycles, trees, factors and bounded degree graphs. We now briefly discuss several of these.
Recall that Dirac’s theorem states that any n-vertex graph G with minimum degree at least
n/2 contains a Hamilton cycle. More generally, Abbasi’s proof [1] of the El-Zahar conjecture
determines the minimum degree threshold for the existence of a copy of H in G where H
is a spanning union of vertex-disjoint cycles (the threshold turns out to be |[(n + oddg)/2],
where oddy denotes the number of odd cycles in H).

Komlos, Sarkézy and Szemerédi [67] proved a conjecture of Bollobas by showing that
a minimum degree degree of n/2 + o(n) guarantees every bounded degree n-vertex tree as a
subgraph (this was later strengthened in |71, 34, 57|).

An F-factor in a graph G is a set of vertex-disjoint copies of F' covering all vertices
of G. The Hajnal-Szemerédi theorem [54] implies that the minimum degree threshold for
the existence of a Kj-factor is (1 — 1/k)n. This was generalised to kth powers of Hamilton
cycles by Komlos, Sarkozy and Szemerédi [70]. The threshold for arbitrary F-factors was
determined by Kiihn and Osthus [78], and is given by (1 —¢(F))n+ O(1), where ¢(F) satisfies
1/x(F) < ¢(F) < 1/(x(F) — 1) and can be determined explicitly (e.g. ¢(C5) = 2/5, in
accordance with Abbasi’s result).

A far-reaching generalisation of the Hajnal-Szemerédi theorem [54] would be provided
by the Bollobas-Eldridge—Catlin (BEC) conjecture. This would imply that every n-vertex
graph G of minimum degree at least (1 — 1/(A + 1))n contains every n-vertex graph H of
maximum degree at most A as a subgraph. Partial results include the proof for A = 3

and large n by Csaba, Shokoufandeh and Szemerédi [36] and bounds for large A by Kaul,
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Kostochka and Yu [61].

Bollobés and Komlés conjectured that one can improve on the BEC-conjecture for
graphs H with a linear structure: any n-vertex graph G with minimum degree at least
(1 —1/k + o(1))n contains a copy of every n-vertex k-chromatic graph H with bounded
maximum degree and small bandwidth. Here an n-vertex graph H has bandwidth b if there
exists an ordering vy,...,v, of V(H) such that all edges v;u; € E(H) satisfy |i — j| < b.
Throughout the paper, by H being k-chromatic we mean x(H) < k. This conjecture was
resolved by the bandwidth theorem of Bottcher, Schacht and Taraz [24]. Note that while
this result is essentially best possible when considering the class of k-chromatic graphs as a
whole (consider e.g. Kj-factors), the results in |1, 78] mentioned above show that there are
many graphs H for which the actual threshold is significantly smaller (e.g. the Cs-factors
mentioned above).

The notion of bandwidth is related to the concept of separability: An n-vertex graph
H is said to be n-separable if there exists a set S of at most nn vertices such that every
component of H \ S has size at most nn. We call such a set an n-separator of H. In general,
the notion of having small bandwidth is more restrictive than that of being separable (e.g. the
n-vertex star is 1/n-separable but has bandwidth |n/2]). However, for graphs with bounded

maximum degree, it turns out that these notions are actually equivalent (see [23]).

3.1.2 Previous results: (approximate) decompositions into large
graphs

We say that a collection H = {Hy,..., H} of graphs packs into G if there exist pairwise
edge-disjoint copies of Hy,..., Hs; in GG. In cases where H consists of copies of a single graph
H we refer to this packing as an H-packing in G. If H packs into G and e(H) = e(G) (where
e(H) = > pey e(H)), then we say that G has a decomposition into H. Once again, if H

consists of copies of a single graph H, we refer to this as an H-decomposition of GG. Informally,
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we refer to a packing which covers almost all edges of the host graph G as an approximate
decomposition.

As in the previous section, most attention so far has focussed on (Hamilton) cycles,
trees, factors, and graphs of bounded degree. Indeed, a classical construction of Walecki
going back to the 19th century guarantees a decomposition of K, into Hamilton cycles
whenever n is odd. As mentioned earlier, this was extended to Hamilton decompositions of
regular graphs G of high degree by Csaba, Kiihn, Lo, Osthus and Treglown [35] (based on
the existence of Hamilton decompositions in robustly expanding graphs proved in [79]). A
different generalisation of Walecki’s construction is given by the Alspach problem, which asks
for a decomposition of K, into cycles of given length. This was recently resolved by Bryant,
Horsley and Petterson [25].

A further famous open problem in the area is the tree packing conjecture of Gyéarfas
and Lehel, which says that for any collection 7 = {73, ...,T,,} of trees with |V (7})| = 4, the
complete graph K, has a decomposition into 7. This was recently proved by Joos, Kim, Kiihn
and Osthus [60] for the case where n is large and each T; has bounded degree. The crucial
tool for this was the blow-up lemma for approximate decompositions of e-regular graphs G by
Kim, Kiihn, Osthus and Tyomkyn [63]. In particular, this lemma implies that if H is a family
of bounded degree n-vertex graphs with e(H) < (1 — o(1))(5), then K, has an approximate
decomposition into H. This generalises earlier results of Bottcher, Hladky, Piguet and
Taraz [21] on tree packings, as well as results of Messuti, R6dl and Schacht [84] and Ferber,
Lee and Mousset [43] on packing separable graphs. Very recently, Allen, Bottcher, Hladky
and Piguet [3] were able to show that one can in fact find an approximate decomposition of
K, into H provided that the graphs in ‘H have bounded degeneracy and maximum degree
o(n/logn). This implies an approximate version of the tree packing conjecture when the trees
have maximum degree o(n/logn). The latter improves a bound of Ferber and Samotij [44]
which follows from their work on packing (spanning) trees in random graphs.

An important type of decomposition of K, is given by resolvable designs: a resolvable
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F-design consists of a decomposition into F-factors. Ray-Chaudhuri and Wilson [88] proved
the existence of resolvable Kj-designs in K, (subject to the necessary divisibility conditions

being satisfied). This was generalised to arbitrary F-designs by Dukes and Ling [38].

3.1.3 Main result: packing separable graphs of bounded degree

Our main result provides a degree condition which ensures that G has an approximate
decomposition into H for any collection H of k-chromatic n-separable graphs of bounded
degree. As discussed below, our degree condition is best possible in general (unless one has
additional information about the graphs in H). By the remark at the end of Section 1.1
earlier, one can replace the condition of being 7n-separable by that of having bandwidth at
most nn in Theorem 3.1.2. Thus our result implies a version of the bandwidth theorem of
[24] in the setting of approximate decompositions.

To state our result, we first introduce the approximate Kj-decomposition threshold

6,8 for regular graphs.

Definition 3.1.1 (Approximate Kj-decomposition threshold for regular graphs). For each
k € N\{1}, let 6, be the infimum over all 6 > 0 satisfying the following: for any e > 0,
there exists ng € N such that for all n > ng and r > dn every n-vertex r-reqular graph G has
a Ki-packing consisting of at least (1 — €)e(G)/e(Ky) copies of K.

Roughly speaking, we will pack k-chromatic graphs H into regular host graphs G
of degree at least §;®n. Actually it turns out that it suffices to assume that H is ‘almost’
k-chromatic in the sense that H has a (k 4 1)-colouring where one colour is used only rarely.
More precisely, we say that H is (k,n)-chromatic if there exists a proper colouring of the

graph H' obtained from H by deleting all its isolated vertices with k£ + 1 colours such that

one of the colour classes has size at most 7|V (H’)|. A similar feature is also present in [24].

Theorem 3.1.2. For all A,k € N\{1}, 0 <v <1 and max{1/2,6,"} < ¢ <1, there exist

&n > 0 and ng € N such that for all n > ng the following holds. Suppose that H is a
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collection of n-vertex (k,n)-chromatic n-separable graphs and G is an n-vertex graph such

that
(i) (6 =&n < 6(G) < A(G) < (6 +&n,
(ii) A(H) < A for all H € H,

(iii) e(H) < (1 — )e(G).

Then M packs into G.

Note that our result holds for any minor-closed family H of k-chromatic bounded
degree graphs by the separator theorem of Alon, Seymour and Thomas [4]. Moreover, note
that since H may consist e.g. of Hamilton cycles, the condition that G is close to regular
is clearly necessary. Also, the condition max{1/2,0,®} < 0 is necessary. To see this, if
6, % < 1/2 (which holds if k = 2), then we consider K, /o_1,,/24+1 which does not even contain
a single perfect matching, let alone an approximate decomposition into perfect matchings. If
6, % > 1/2 (which holds if £ > 3), then for any § < 0,®, the definition of §,"® ensures that
there exist arbitrarily large regular graphs G of degree at least on without an approximate
decomposition into copies of Kj. As a disjoint union of a single copy of K with n — k
isolated vertices satisfies (ii), this shows that the condition of max{1/2,§,} < § is sharp
when considering the class of all k-chromatic separable graphs (though as in the case of
embedding a single copy of some H into GG, it may be possible to improve the degree bound
for certain families H).

To obtain explicit estimates for §,°%, we also introduce the approximate K-decomposition

threshold 5,2+ for graphs of large minimum degree.

Definition 3.1.3 (Approximate Kj-decomposition threshold). For each k € N\{1}, let 63"
be the infimum over all § > 0 satisfying the following: for any € > 0, there exists ng € N such

that any n-vertex graph G with n > ng and 6(G) > on has a Ky-packing consisting of at least
(1 —¢e)e(GQ)/e(Ky) copies of K.
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It is easy to see that 55° = 697 = 0 and &§;® < du. The value of §;" has been
subject to much attention recently: one reason is that by results of [8, 49|, for £ > 3 the
approximate decomposition threshold 5,2+ is equal to the analogous threshold §{° which
ensures a ‘full” Ki-decomposition of any n-vertex graph G with §(G) > (6° 4 o(1))n which
satisfies the necessary divisibility conditions. A beautiful conjecture (due to Nash-Williams
in the triangle case and Gustavsson in the general case) would imply that §8¢ =1—1/(k+1)
for k > 3. On the other hand for k£ > 3, it is easy to modify a well-known construction (see
Proposition 3.3.7) to show that 0, > 1 —1/(k + 1). Thus the conjecture would imply that
6,58 = 60T = §dc =1—1/(k+1) for k > 3. A result of Dross [37] implies that 657 < 9/10, and
a very recent result of Montgomery [85] implies that §)" < 1 — 1/(100k) (see Lemma 3.3.10).

With these bounds, the following corollary is immediate.

Corollary 3.1.4. For all Ajk € N\{1} and 0 < v, < 1, there exist £ > 0 and ng € N such

that for n > ng the following holds for every n-vertex graph G with
(6— ) < 3(G) < AG) < (6+ .

(i) Let T be a collection of trees such that for all T € T we have |T| <n and A(T) < A.
Further suppose § > 1/2 and e(T) < (1 —v)e(G). Then T packs into G.

(i1) Let F be an n-vertex graph consisting of a union of vertex-disjoint cycles and let F be
a collection of copies of F. Further suppose 6 > 9/10 and e(F) < (1 —v)e(G). Then F

packs into G.

(iii) Let C be a collection of cycles, each on at most n vertices. Further suppose § > 9/10

and e(C) < (1 —v)e(G). Then C packs into G.

(iv) Let n be divisible by k and let K be a collection of n-vertex Ky-factors. Further suppose
d>1—1/(100k) and e(K) < (1 — v)e(G). Then K packs into G.

Note that (i) can be viewed as an approximate version of the tree packing conjecture in

the setting of dense (almost) regular graphs. In a similar sense, (ii) relates to the Oberwolfach
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conjecture, (iii) relates to the Alspach problem and (iv) relates to the existence of resolvable
designs in graphs.

Moreover, the feature that Theorem 3.1.2 allows us to efficiently pack (&, n)-chromatic
graphs (rather than k-chromatic graphs) gives several additional consequences, for example:
if the cycles of F' in (ii) are all sufficiently long, then we can replace the condition ‘4 > 9/10’
by ‘6 > 1/2".

If we drop the assumption of being G close to regular, then one can still ask for the
size of the largest packing of bounded degree separable graphs. For example, it was shown
in [35] that every sufficiently large graph G with §(G) > n/2 contains at least (n — 2)/8
edge-disjoint Hamilton cycles. The following result gives an approximate answer to the above

question in the case when H consists of (almost) bipartite graphs.

Theorem 3.1.5. For all A € N, 1/2 < § < 1 and v > 0, there exist n > 0 and ng € N
such that for all n > ng the following holds. Suppose that H is a collection of n-vertex

(2,n)-chromatic n-separable graphs and G is an n-vertex graph such that
(1) 6(G) = on,
(i) A(H) <A forall HE€ H,

(iii) e(H) < CHTTn?,

Then H packs into G.

The result in general cannot be improved: Indeed, for 6 > 1/2 the number of edges
of the densest regular spanning subgraph of G is close to (6 + /26 — 1)n?/4 (see [30]). So
the bound in (iii) is asymptotically optimal e.g. if n is even and H consists of Hamilton
cycles. We discuss the very minor modifications to the proof of Theorem 3.1.2 which give
Theorem 3.1.5 at the end of Section 3.6.

We raise the following open questions:

119



e We conjecture that the error term ve(G) in condition (iii) of Theorem 3.1.2 can
be improved. Note that it cannot be completely removed unless one assumes some
divisibility conditions on G. However, even additional divisibility conditions will not
always ensure a ‘full’ decomposition under the current degree conditions: indeed, for
Cjy, the minimum degree threshold which guarantees a C4y-decomposition of a graph G
is close to 2n/3, and the extremal example is close to regular (see [8] for details, more

generally, the decomposition threshold of an arbitrary bipartite graph is determined

in [49]).

e [t would be interesting to know whether the condition on separability can be omitted.
Note however, that if we do not assume separability, then the degree condition may

need to be strengthened.

e [t would be interesting to know whether one can relax the maximum degree condition

in assumption (ii) of Theorem 3.1.2, e.g. for the class of trees.

e Given the recent progress on the existence of decompositions and designs in the
hypergraph setting and the corresponding minimum degree thresholds [62, 51, 50], it

would be interesting to generalise (some of) the above results to hypergraphs.

Our main tool in the proof of Theorem 3.1.2 will be the recent blow-up lemma for
approximate decompositions by Kim, Kiihn, Osthus and Tyomkyn [63]: roughly speaking,
given a set ‘H of n-vertex bounded degree graphs and an n-vertex graph G with e(H) <
(1 —o(1))e(G) consisting of super-regular pairs, it guarantees a packing of H in G (such
super-regular pairs arise from applications of Szemerédi’s regularity lemma). Theorem 3.3.15
gives the precise statement of the special case that we shall apply (note that the original
blow-up lemma of Komlés, Sarkézy and Szemerédi [68] corresponds to the case where H
consists of a single graph).

Subsequently, Theorem 3.1.2 has been used as a key tool in the resolution of the
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Oberwolfach problem in [48]. This was posed by Ringel in 1967, given an n-vertex graph H
consisting of vertex-disjoint cycles, it asks for a decomposition of K, into copies of H (if n
is odd). In fact, the results in [48] go considerably beyond the setting of the Oberwolfach

problem, and imply e.g. a positive resolution also to the Hamilton-Waterloo problem.

3.2 Outline of the argument

Consider a given collection H of k-chromatic n-separable graphs with bounded degree and
a given almost-regular graph G as in Theorem 3.1.2. We wish to pack H into G. The
approach will be to decompose G into a bounded number of highly structured subgraphs G;
and partition H into a bounded number of collections H;. We then aim to pack each H;
into G;. As described below, for each H € H;, most of the edges will be embedded via the
blow-up lemma for approximate decompositions proved in [63].

As a preliminary step, we first apply Szemerédi’s regularity lemma (Lemma 3.3.5) to G
to obtain a reduced multigraph R which is almost regular. Here each edge e of R corresponds
to a bipartite e-regular subgraph of G and the density of these subgraphs does not depend
on e. We can then apply a result of Pippenger and Spencer on the chromatic index of regular
hypergraphs and the definition of 0, ® to find an approximate decomposition of the reduced
multigraph R into almost Kj-factors. More precisely, we find a set of edge-disjoint copies
of almost Kj-factors covering almost all edges of R, where an almost Kj-factor is a set of
vertex-disjoint copies of K} covering almost all vertices of R. This approximate decomposition
translates into the existence of an approximate decomposition of G into ‘(almost-) Kj-factor
blow-ups’. Here a Kj-factor blow-up consists of a bounded number of clusters Vi,..., Vs,
where each pair (V;,V;) with [(¢ —1)/k] = [(j — 1)/k] is e-regular of density d, and crucially
d does not depend on 7, 7. We wish to use the blow-up lemma for approximate decompositions
(Theorem 3.3.15) to pack graphs into each Kj-factor blow-up. Ideally, we would like to split

‘H into a bounded number of subcollections H, ; and pack each H, s into a separate Kj-factor
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blow-up G s, where the G C G are all edge-disjoint.

There are several obstacles to this approach. The first obstacle is that (i) the Kj-
factor blow-ups G s are not spanning. In particular, they do not contain the vertices in the
exceptional set V) produced by the regularity lemma. On the other hand, if we aim to embed
an n-vertex graph H € H into G, we must embed some vertices of H into V. However,
Theorem 3.3.15 does not produce an embedding into vertices outside the Kj-factor blow-up.
The second obstacle is that (ii) the Kj-factor blow-ups are not connected, whereas H may
certainly be (highly) connected. This is one significant difference to [24], where the existence
of a structure similar to a blown-up power of a Hamilton path in R could be utilised for
the embedding. A third issue is that (iii) any resolution of (i) and (ii) needs to result in a
‘balanced’ packing of the H € H, i.e. the condition e(H) < (1 — v)e(G) means that for most
x € V(G) almost all their incident edges need to be covered.

To overcome the first issue, we use the fact that H is n-separable to choose a small
separating set S for H and consider the small components of H — S. To be able to embed
(most of) H into the Kj-factor blow-up, we need to add further edges to each Kj-factor blow-
up so that the resulting ‘augmented Kj-factor blow-ups’ have strong connectivity properties.
For this, we partition V(G)\Vj into T disjoint ‘reservoirs’ Resy, ..., Resy, where 1/T < 1.
We will later embed some vertices of H into V; using the edges between Res; and Vj (see
Lemma 3.4.1). Here we have to embed a vertex of H onto v € Vj using only edges between
v and Res; because we do not have any control on the edges between v and a regularity
cluster V;. We explain the reason for choosing a partition into many reservoir sets (rather
than choosing a single small reservoir) below.

We also decompose most of G into graphs G, so that each G}, has vertex set
V(G)\(Res; UV;) and is a Kj-factor blow-up. We then find sparse bipartite graphs F; s C G
connecting Res; with G ,, bipartite graphs F} C G connecting Res; with Vj as well as sparse
graphs G} C G which provide connectivity within Res; as well as between Res; and Gy . The

fact that G s and Gy share the same reservoir for s # s’ permits us to choose the reservoir
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Res; to be significantly larger than V. Moreover, as | Res; covers all vertices in V' \ Vj, if
the graphs F} are appropriately chosen, then almost all edges incident to the vertices in V;
are available to be used at some stage of the packing process. Our aim is to pack each H; s
into the ‘augmented’ Kj-factor blow-up G;sU F; ;U F) U G}. To ensure that the resulting
packings can be combined into a packing of all of the graphs in H, we will use the fact that
the graphs G; == |J,(Gts U Fy5) U F} U G} referred to in the first paragraph are edge-disjoint
for different ¢.

We now discuss how to find this packing of H,,. Consider some H € H,,. We first
use the fact that H is separable to find a partition of H which reflects the structure of (the
augmentation of) G, (see Section 3.4). Then we construct an appropriate embedding ¢,
of parts of each graph H € H,, into Res; UV which covers all vertices in Res; UV} (this
makes crucial use of the fact that Res; is much larger than V). Later we aim to use the
blow-up lemma for approximate decompositions (Theorem 3.3.15) to find an embedding ¢ of
the remaining vertices of H into V(G)\(Res; U V). When we apply Theorem 3.3.15, we use
its additional features: in particular, the ability to prescribe appropriate ‘target sets’ for some
of the vertices of H, to guarantee the consistency between the two embeddings ¢, and ¢.

An important advantage of the reservoir partition which helps us to overcome obstacle
(i) is the following: the blow-up lemma for approximate decompositions can achieve a near
optimal packing, i.e. it uses up almost all available edges. This is far from being the case for
the part of the embeddings that use F; s, F] and G} to embed vertices into Res; U V), where
the edge usage might be comparatively ‘imbalanced’” and ‘inefficient’. (In fact, we will try to
avoid using these edges as much as possible in order to preserve the connectivity properties
of these graphs. We will use probabilistic allocations to avoid over-using any parts of F} ;,
F] and G}.) However, since every vertex in V(Gy)\Vj is a reservoir vertex for only a small
proportion of the embeddings, the resulting effect of these imbalances on the overall leftover
degree of the vertices in V(Gg)\Vp is negligible. For V;, we will be able to assign only low

degree vertices of each H to ensure that there will always be edges of F} available to embed
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their incident edges (so the overall leftover degree of the vertices in Vy may be large).

The above discussion motivates why we use many reservoir sets which cover all vertices
in V(G)\Vp, rather than using only one vertex set Res; for all H € H. Indeed, if some
vertices of GG only perform the role of reservoir vertices, this might result in an imbalance
of the usage of edges incident to these vertices: some vertices in the reservoir might lose
incident edges much faster or slower than the vertices in the regularity clusters. Apart from
the fact that a fast loss of the edges incident to one vertex can prevent us from embedding
any further spanning graphs into G, a large loss of the edges incident to the reservoir is also
problematic in its own right. Indeed, since we are forced to use the edges incident to the
reservoir in order to be able to embed some vertices onto vertices in Vj, this would prevent
us from packing any further graphs.

Another issue is that the regularity lemma only gives us e-regular K-factor blow-ups
while we need super-regular Kj-factor blow-ups in order to use Theorem 3.3.15. To overcome
this issue, we will make appropriate adjustments to each e-regular Kj-factor blow-up. This
means that the exceptional set V) will actually be different for each pair ¢, s of indices. We
can however use probabilistic arguments to ensure that this does not significantly affect the
overall ‘balance’ of the packing. In particular, for simplicity, in the above proof sketch we
have ignored this issue.

The paper is organised as follows. We collect some basic tools in Section 3.3, and
we prove a lemma which finds a suitable partition of each graph H € H in Section 3.4
(Lemma 3.4.1). We prove our main lemma (Lemma 3.5.1) in Section 3.5. This lemma
guarantees that we can find a suitable packing of an appropriate collection H, s of k-chromatic
n-separable graphs with bounded degree into a graph consisting of a super-regular Kj-factor
blow-up G, and suitable connection graphs F; s, F} and Gj. In Section 3.6, we will partition
G and H as described above. Then we will repeatedly apply Lemma 3.5.1 to construct a

packing of H into G.
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3.3 Preliminaries

3.3.1 Notation

We write [t] ;== {1,...,t}. We often treat large numbers as integers whenever this does not
affect the argument. The constants in the hierarchies used to state our results are chosen
from right to left. That is, if we claim that a result holds for 0 < 1/n < a < b < 1, we mean
there exist non-decreasing functions f : (0,1] — (0,1] and g : (0,1] — (0, 1] such that the
result holds for all 0 < a,b < 1 and all n € N with a < f(b) and 1/n < g(a). We will not
calculate these functions explicitly.

We use the word graphs to refer to simple undirected finite graphs, and refer to
multi-graphs as graphs with potentially parallel edges, but without loops. Multi-hypergraphs
refer to (not necessarily uniform) hypergraphs with potentially parallel edges. A k-graph is a
k-uniform hypergraph. A multi-k-graph is a k-uniform hypergraph with potentially parallel
edges. For a multi-hypergraph H and a non-empty set @) C V(H), we define multy(Q)
to be the number of parallel edges of H consisting of exactly the vertices in ). We say
that a multi-hypergraph has edge-multiplicity at most t if multy (Q) < ¢ for all non-empty
Q C V(H). A matching in a multi-hypergraph H is a collection of pairwise disjoint edges of
H. The rank of a multi-hypergraph H is the size of a largest edge.

We write H ~ G if two graphs H and G are isomorphic. For a collection H of graphs,
we let v(H) == > ey |V (H)|. We say a partition Vi,...,V; of aset V is an equipartition if
[|Vil=1V;]| < 1foralli,j € [k]. For a multi-hypergraph H and A, B C V(H), we let Ey(A, B)
denote the set of edges in H intersecting both A and B. We define ey (A, B) := |Ex (A, B)|.
For v € V(H) and A C V(H), we let dga(v) := [{e € E(H) : v € e,e\{v} C A}|. Let
dy(v) :== dyy(v). For u,v € V(H), we define cy(u,v) := [{e € E(H) : {u,v} C e}|. Let
A(H) = max{dg(v) :v € V(H)} and §(H) := min{dy(v) : v € V(H)}.
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For a graph G and sets X, A C V(G), we define
Nega(X):={we A:uw e E(G) for all u € X} and Ng(X) := Neve)(X).

Thus Ng(X) is the common neighbourhood of X in G and Ng 4(0) = A. For aset X C V(G),
we define N&(X) C V(G) to be the set of all vertices of distance at most d from a vertex
in X. In particular, N&(X) = 0 for d < 0. Note that Ng(X) and NL(X) are different in
general as e.g. vertices with a single edge to X are included in the latter. Moreover, note
that Ng(X) C NA(X). We say a set I C V(G) in a graph G is k-independent if for any two
distinct vertices u, v € I, the distance between v and v in G is at least k (thus a 2-independent
set [ is an independent set). If A, B C V(G) are disjoint, we write G[A, B] for the bipartite
subgraph of G with vertex classes A, B and edge set Fg(A, B).
For two functions ¢ : A — B and ¢' : A’ — B’ with AN A’ = (), we let $ U ¢’ be the
function from AU A’ to B U B’ such that for each x € AU A,
o(x) ifze A,
¢(x) ifzxeA.

(U ) (x) :=

For graphs H and R with V(R) C [r] and an ordered partition (X7,...,X,) of V(H),
we say that H admits the vertex partition (R, X, ..., X,), if H[X|] is empty for all i € [r],
and for any 7,7 € [r] with ¢ # j we have that ey (X;, X;) > 0 implies ij € E(R). We say
that H is internally q-reqular with respect to (R, X1, ..., X,) if H admits (R, X1,...,X,) and
H[X;, X,| is g-regular for each ij € E(R).

We will often use the following Chernoff bound (see e.g. Theorem A.1.16 in [5]).

Lemma 3.3.1. [5] Suppose X1, ..., X,, are independent random variables such that 0 < X; <

b for alli € [n]. Let X == Xy +---+ X,,. Then for allt >0, P[|X —E[X]| > ] < 2e~#/2¥*n),

3.3.2 Tools involving e-regularity

In this subsection, we introduce the definitions of (e, d)-regularity and (e, d)-super-regularity.

We then state a suitable form of the regularity lemma for our purpose. We will also state

126



an embedding lemma (Lemma 3.3.6) which we will use later to prove our main lemma
(Lemma 3.5.1).

We say that a bipartite graph G with vertex partition (A, B) is (e, d)-regular if
for all sets A C A, B C B with |A'| > ¢|A|, |B'| > ¢|BJ, we have |efAf?|Bl,3) d < e.

Moreover, we say that G is e-regular if it is (¢, d)-regular for some d. If G is (g, d)-regular
and dg(a) = (d £ ¢)|B| for a € A and dg(b) = (d £ ¢)|A| for b € B, then we say G is
(e, d)-super-regular. We say that G is (g, d)*-(super)-regular if it is (¢, d)-(super)-regular for
some d' > d.

For a graph R on vertex set [r], and disjoint vertex subsets V,...,V, of V(G), we
say that G is (g,d)"-(super)-reqular with respect to the vertex partition (R,Vy,...,V,) if
G[V;,Vj] is (g,d)"-(super)-regular for all ij € E(R). Being (e, d)- (super)-regular with respect
to the vertex partition (R, Vi, ..., V,) is defined analogously. The following observations follow

directly from the definitions.

Proposition 3.3.2. Let 0 < e < § <d < 1. Suppose G is an (g,d)-reqular bipartite graph
with vertex partition (A, B) and let A* C A, B" C B with |A'|/|A|, |B'|/|B] > 0. Then
G[A', B'] is (¢/6, d)-regular.

Proposition 3.3.3. Let 0 < ¢ < § < d < 1. Suppose G is an (g,d)-reqular bipartite
graph with vertex partition (A, B). If G’ is a subgraph of G with V(G') = V(G) and
e(G) > (1 —6)e(@), then G is (¢ + §Y/3,d)-regular.

Proposition 3.3.4. Let 0 < e < d < 1. Suppose G is an (e,d)-reqular bipartite graph with

vertex partition (A, B). Let
A":={ae€ A:dg(a) # (d+e)|B|} and B":={b e B :dg(b) # (d £ ¢)|B|}.
Then |A'| < 2¢|A| and |B'| < 2¢|B].

The next lemma is a ‘degree version’ of Szemerédi’s regularity lemma (see e.g. [77] on

how to derive it from the original version).
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Lemma 3.3.5 (Szemerédi’s regularity lemma). Suppose M, M''n € N with 0 < 1/n <
1/M < e,1/M'" <1 and d > 0. Then for any n-vertex graph G, there exist a partition of

V(G) into Vo, V1, ..., V. and a spanning subgraph G' C G satisfying the following.
(i) M' <r <M,
(i1) |Vo| < en,
(i) Vil = [Vj] for all i, j € [r],
() de/(v) > dg(v) — (d+e)n for allv € V(G),
(v) e(G'[V;]) =0 for alli € [r],

(vi) for alli,j with 1 <i < j <, the graph G'[V;,V}] is either empty or (e, d; ;)-regular for

some d; j € [d, 1].

The next lemma allows us to embed a small graph H into a graph G which is (g, d)"-
regular with respect to a suitable vertex partition (R, V3, ..., V;). In our proof of Lemma 3.5.1
later on, properties (B1)3 36 and (B2)336 will help us to prescribe appropriate ‘target sets’
for some of the vertices when we apply the blow-up lemma for approximate decompositions
(Theorem 3.3.15). There, H will be part of a larger graph that is embedded in several stages.
(B1)3.3.6 ensures that the embedding of H is compatible with constraints arising from earlier
stages and (B2)33¢ will ensure the existence of sufficiently large target sets when embedding

vertices x in later stages (each edge of M corresponds to the neighbourhood of such a vertex

Lemma 3.3.6. Suppose n,A € N with 0 < 1/n € ¢ < «,,d,1/A < 1. Suppose that
G, H are graphs and M is a multi-hypergraph on V (H) with edge-multiplicity at most A.
Suppose Vi,...,V, are pairwise disjoint subsets of V(G) with fn < |V;| < n for all i € [r],
and X1, ..., X, is a partition of V(H) with | X;| < en for alli € [r]. Let f: E(M) — [r] be
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a function, and for all i € [r] and x € X;, let A, CV;. Let R be a graph on [r]. Suppose that
the following hold.

(Al)ss6 G is (e,d)"-reqular with respect to (R, V4, ..., V,),
(A2)336 H admits the vertex partition (R, X1,...,X,),
(A3)336 A(H) <A, A(M) < A and the rank of M is at most A,
(Ad)336 foralli,je[r], if f(e) =i and enNX; # 0, then ij € E(R),
(AB)336 for alli € [r] and x € X;, we have |A,| > o|V|.
Then there exists an embedding ¢ of H into G such that
(Bl)s 36 for each v € V(H), we have ¢(z) € A,,
(B2)s5.6 for each e € M, we have [Na(¢(e)) N V)| = (d/2)3Vi(e)|-
Note that (A4)s 36 implies for all e € E(M) that e N Xy = 0.

Proof. For each z € V(H), let e, := Ny(z) and M’ be a multi-hypergraph on vertex set
V(H) with E(M’) = {e, : € V(H)}. Since a vertex x € V(H) belongs to e, only when
y € Ny(z), we have dpyy(x) = dy(x). So M’ is a multi-hypergraph with rank at most A and
A(M’) < A. Let M* := M UM’ and for each e € E(M*), define

Vf(e) ifee E(./\/l),
A, ife=e, € E(M) forx e V(H).

B, =

Note that by (A3)3.36, we have
M* has rank at most A, and A(M*) < AM) + A(M') < 2A. (3.3.1)

Let V(H) :={z1,..., 2}, and for each i € [m], we let Z; := {x1,...,2;}. We will iteratively
extend partial embeddings ¢y, ..., ¢, of H into GG in such a way that the following hold for

all 7 < m.
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(®1)5456 ¢: embeds H[Z;] into G,
(©2)456 di(zk) € Ay, for all k € [1],

(®3)i 4 for all e € M*, we have |Ng(¢i(e N Z;)) N Be| > (d/2)!%!

B..

Note that (®1)3 ;4 (®3)9 ;¢ hold for an empty embedding ¢ : ) — (). Assume that for some
i € [m], we have already defined an embedding ¢;_; satisfying (®1)5 ;' (®3)55. We will
construct ¢; by choosing an appropriate image for x;. Let s € [r| be such that z; € X, and
let S := Ng(¢i—1(Z;Neg))N B, . Thus S C V. Since Z; 1 Ne,, = Z; N ey, we have that

(®3)5 ' implies
S| > (d/2)/%" =ilapn > (d/2)>afn > /3n. (3.3.2)
For each e € E(M?*) containing x;, we consider
Se := Ng(pi—1(Zi—1Ne)) N Be.
By (93)53's, we have
1S.| > (d/2)2apn > &'/3n. (3.3.3)

If e = Ny(z) for some x € Xy with s’ € [r], then we have S, C B, C Vy, and (A2)3356
implies that ss’ € F(R). Moreover, note that if e € M with f(e) = s’ for some s’ € [r], then
Se € B, = Vg, and (A4)336 implies that ss’ € E(R). Thus in any case, (Al)s36 implies that
G[Vs, V] is (e,d')-regular for some d' > d. Hence, Proposition 3.3.2 with (3.3.2) and (3.3.3)

implies that G[S, S,] is (¢'/2, d')-regular. Let
S ={veS:dgs (v) < (d/2)|Se|}.

By Proposition 3.3.4, we have |S’| < 2¢!/2n. Thus

s\ U9

e€E(M*):z;Ee

(3.3.1) (3.3.2)
| > S| —2A 220 > 1. (3.3.4)
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We choose v € S\ U, epm) S’, and we extend ¢;_; into ¢; by letting ¢;(z;) := v. Since

¢i(zi) € S = Na(di-1(ZiNe,)) N Be,, = Na(¢i(Zi N Ny (i) N Ay,

(®1)% 54 and (92)% 54 hold. Also, for each e € E(M?*), if x; ¢ e, then as we have Z; Ne =
Zi—1Ne,

(93)53%

ING(¢:(ZiN€) N Be| = [Na(¢i1(Ziane)) N B > (df2)%"™|B,)|.

If z; € e, then since ¢;(z;) ¢ S, and |Z; Ne| = |Z;_1 Ne| + 1, we have

i—1
®3)i L,

[Ne(9i(Z;Ne)) N Be| > |NG(¢i(xi))mSe|2(d/2)|se|( )z (d/2)1%"| B,|.(3.3.5)

Thus (®3)% ; ; holds. By repeating this until we have embedded all vertices of H, we obtain
an embedding ¢, satisfying (®1)%% s (P3)55 4. Let ¢ := ¢p,. Then (92)%, 4 implies that
(B1)3.36 holds, and (®3)7 4 together with (A3)336 and the definition of B, implies that
(B2)3.3.6 holds. O

3.3.3 Decomposition tools

In this subsection, we first give bounds on §;"®. The following proposition provides a lower
bound for 6,°®. The proof is only a slight extension of the extremal construction given by

Proposition 1.5 in [§], and thus we omit it here.
Proposition 3.3.7. For all k € N\{1,2} we have 6, > 1 —1/(k+ 1).
It will be convenient to use that for k£ > 2 this lower bound implies
max{1/2,0,%} > 1—1/k. (3.3.6)

Given two graphs F' and G, let (g) denote the set of all copies of F'in GG. A function
from (g) to [0, 1] is a fractional F-packing of G if ZF,G(G),eeF, Y(F') <1 for each e € F(G)
&)

(if we have equality for each e € F(G) then this is referred to as a fractional F-decomposition).

131



Let v5(G) be the maximum value of ZF,G(G) Y(F') over all fractional F-packings ¢ of
F

G. Thus v;(G) < e(G)/e(F) and vi(G) = e(G)/e(F) if and only if G has a fractional

F-decomposition. The following very recent result of Montgomery gives a degree condition

which ensures a fractional Kj-decomposition in a graph.

Theorem 3.3.8. [85] Suppose k,n € N and 0 < 1/n < 1/k < 1. Then any n-vertex graph
G with 0(G) > (1 —1/(100k))n satisfies vy, (G) = e(G)/e(Ky).

The next result due to Haxell and R6dl implies that a fractional Kj-decomposition

gives rise to the existence of an approximate Kj-decomposition.

Theorem 3.3.9. [55] Suppose n € N with 0 < 1/n < ¢ < 1. Then any n-vertex graph G

has an F-packing consisting of at least vi(G) — en? copies of F.

Lemma 3.3.10. For k € N\{1,2}, we have 6, < §)* < 1 —1/(100k). Moreover, 6, =

65T =0 and 657 < 65T < 9/10.

Proof. Tt is easy to see that Theorem 3.3.8 and Theorem 3.3.9 together imply that (5,2+ <
1 — 1/(100k). Moreover, Theorem 3.3.9 together with a result of Dross [8] implies that

697 < 9/10. As any graph can be decomposed into copies of Ky, we have 637 = 0. n

In the remainder of this subsection, we prove Lemma 3.3.13. In the proof of Theo-
rem 3.1.2, we will apply it to obtain an approximate decomposition of the reduced multi-graph
R into almost Kj-factors (see Section 3.6). We will use the following consequence of Tutte’s

r-factor theorem.

Theorem 3.3.11. [30] Supposen € N and 0 < 1/n < v < 1. If G is an n-vertex graph with
5(G) > (1/2 +v)n and A(G) < §(G) + v2n, then G contains a spanning r-reqular subgraph

for every even r with r < 6(G) — yn.

The following powerful result of Pippenger and Spencer [86] (based on the Rodl nibble)
shows that every almost regular multi-k-graph with small maximum codegree has small

chromatic index.
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Theorem 3.3.12. [86] Suppose n,k € N and 0 < 1/n < p < &,1/k < 1. Suppose H is
an n-vertex multi-k-graph satisfying 6(H) > (1 — p)A(H), and cy(u,v) < pA(H) for all

u#veV(H). Then we can partition E(H) into (1 + ¢)A(H) matchings.

We can now combine these tools to approximately decompose an almost regular
multi-graph G of sufficient degree into ‘almost’ Kj-factors. All vertices of G will be used in
almost all these factors except the vertices in a ‘bad’ set V' which are not used in any factor.
Moreover, the factors come in 7' groups of equal size such that parallel edges of G belong to
different groups. As explained in Section 3.2, we will apply this to the reduced multi-graph

obtained from Szemerédi’s regularity lemma.

Lemma 3.3.13. Suppose n,k,q,T € N with 0 < 1/n < ¢,0,1/T,1/k,1/q,v < 1/2 and
0<l/n<Ké<Kr<o/2<1andd=max{1/2,67} + o0 and q divides T. Let G be an

n-vertex multi-graph with edge-multiplicity at most q, such that for all v € V(G) we have

dg(v) = (d £ &)qn.

Then there exists a subset V' C V(G) with |V'| < en and k dividing |V (G)\V'|, and there

exist pairwise edge-disjoint subgraphs Fyq, ..., Fy x, Foy, ..., Fr, with ks = (0 —v £ 5)T(Zﬁ1)

satisfying the following.

(B1)3313 For each (t',i) € [T] x [k], we have that V (Fy ;) C V(G)\V' and Fy ; is a vertex-disjoint

union of at least (1 — e)n/k copies of K,
(B2)33.13 for each v € V(G)\ V', we have |{(t',i) € [T] X [k] : v € V(Fy )} > Tk — en,
(B3)s3.13 for allt’ € [T] and u,v € V(G), we have [{i € [] : u € Np, (v)}] < 1.

Proof. 1t suffices to prove the lemma for the case when T" = ¢. The general case then follows
by relabelling. (We can split each group obtained from the 7' = ¢ case into T'/q equal groups

arbitrarily.) We choose a new constant p such that
I/n<p<ket o l/k1/q.

133



For an edge colouring ¢ : E(G) — [q] and ¢ € [¢], we let G¢ C G be the subgraph with edge set
{e € E(G) : ¢(e) = ¢}. We wish to show that there exists an edge-colouring ¢ : E(G) — [q]

satisfying the following for all v € V(G) and ¢ € [¢]:
(@1)5515 doe(v) = (5 +26)n,
($2)33.13 G is a simple graph.

Recall that eg(u,v) denotes the number of edges of G between u and v. For each
{u,v} € (V(QG)), we choose a set Ay, ) uniformly at random from (eG[('ﬂ’v)). For each e € E(G),
we let ¢(e) € [g] be such that ¢ is bijective between Eg(u,v) and Ay, ;. This ensures that
($2)3.3.13 holds. It is easy to see that (®1)3313 also holds with high probability by using
Lemma 3.3.1.

Since 6 > 1/2+ 0 and £ < v, 0, Theorem 3.3.11 implies that, for each ¢ € [g], there
exists a (6 —v)n-regular spanning subgraph G¢ of G°. (By adjusting v slightly we may assume
that (0 — v)n is an even integer.) Since 6 — v > 0,° 4+ 0/2 and 1/n < u, the graph G¢ has a
Kj-packing Q¢ :={Q¥Y,...,Q5} of size

2

I Gl ;(Z - i‘))” . (3.3.7)

For each ¢ € [g], let H€ be the k-graph with V(H°) = V(GS) and E(H°) = {V(Q5) : i € [t]}.

By construction of H¢, we have

_AGY _ (6=vn

AR =TT < o

(3.3.8)

As Q¢ is a Kj-packing in G¢, any pair {u,v} € (V(2G)) belongs to at most one edge in He.

Thus for {u,v} € (V(QG)),

cpe(u,v) <1 (3.3.9)

Let

V= J{vevi@): el ve V@) < ﬁ(a v},
c€lq]
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and let V' be a set consisting of the union of V" as well as at most k — 1 vertices arbitrarily

chosen from V(G)\V” such that k divides |V (G)\V’|. Note that for each ¢ € [g], we have

(3.3.7)
(6 —v)n? — (l;)t < un®.

On the other hand, since G¢ is a (§ — v)n-regular graph, we have

C C 1
e(G9) —e(@) < 3

1

VI<k+1+) 7 > (dae(v) = (k — 1)dye(v))
c€lq] veV(G)
c) __ c 2
—k+1+> 2e(G) —e(Q) _ 3aun” ey, (3.3.10)

/30 EVE

Let H¢ be the k-graph with V(H°) := V(G¢) \ V' and E(H°) := {e € E(H¢) : enV’' = 0}

Note that for any v € V(H®) = V(H ) \ V/,

3.3.9 3.3.10),3.3.8) (0 — v £ 2u3)n
de(v) = dpe(v) £ Y epie(u,0) P27 dyge(v) £ V7] FHLEHD ( k_f I (5311)
ueV’

Note that we obtain the final equality from the definition of V'’ and the assumption that
v ¢ V'. Thus for each ¢ € [q], we have §(H°) > (1 — u!/*)A(H¢). Together with (3.3.9) and

the fact that 1/n < p < ¢,1/k,1/q, this ensures that we can apply Theorem 3.3.12 to see

(6—v+e3/q)n

that for each ¢ € [¢], E(H°) can be partitioned into x' := ==

matchings M7, ..., MS.

Let
M :={Mf:i€e[r]} and MS:={Mf:ie[x],|M7| < (1—e)n/k}.
As |M¢| < n/k for any ¢ € [r'] and ¢ € [q], we have

(6 —v— 3M1/3)”2 (3.3.10),(3.3.11) (1—e)n N (K — M)

B = Y g < M

<
k(k—1 - k k
( ) 1€[K’]
This gives
(e3/q + 3ut/?)kn? 2e%n
‘< < ) 3.3.12
Ml < enk(k—1)  — qlk—1) ( )
We let
0 — + 2¢?
= min{ MO\ ME[} = & — max{|Mme]} = O E2E/ (3.3.13)
c€lq] c€[q] kE—1
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Thus, by permuting indices, we can assume that for each ¢ € [g], we have M, ..., M¢ C

M\ ME. For each (c,1) € [q] x [s], let

F.= |J @

JV(Q)EM
The fact that M\ M¢ is a collection of pairwise edge-disjoint matchings of He C HE
together with (3.3.9) implies that, for each ¢ € [g], the collection {F.; : i € [r]} consists of
pairwise edge-disjoint subgraphs of G¢ C G, each of which is a union of at least (1 —e)n/k
vertex-disjoint copies of Kj. This with (®2)5.313 shows that (B3)33.13 holds. As GL,... G?
are pairwise edge-disjoint subgraphs, {F.; : (¢,7) € [¢] x [k]} forms a collection of pairwise

edge-disjoint subgraphs of G. Thus (B1)33.13 holds.

Moreover, for each ¢ € [¢] and each vertex v € V(G) \ V', we have

Hie [kl :veV(F.)} > {Me{M;,....M}:veV(M)}

v

HM e M°:v eV (M)} — (K — k)

o (G311
> dg.(v)—K'+K > K—en/q.

Thus (B2)3.3.13 holds. ]

3.3.4 Graph packing tools

The following two results from [63] will allow us to pack many bounded degree graphs
into appropriate super-regular blow-ups. Lemma 3.3.14 first allows us to pack graphs into
internally regular graphs which still have bounded degree, and Theorem 3.3.15 allows us to
pack the internally regular graphs into an appropriate dense e-regular graph. The results
in [63] are actually significantly more general, mainly because they allow for more general

reduced graphs R.

Lemma 3.3.14 (|63, Lemma 7.1|). Suppose n,A,q,s,k,r e Nwith0 < 1/n <e << 1/s <

1/A1/k and ¢ < 1/q < 1 and k divides r. Suppose that 0 < & < 1 is such that s*/*> < &q.
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Let R be a graph on [r] consisting of r/k vertex-disjoint copies of Ki. Let Vy,...,V, be a
partition of some vertex set V' such that |V;| = n for all i € [r]. Suppose for each j € [s], L;
is a graph admitting the vertex partition (R, XJ,..., X7) such that A(L;) < A and for each

T

it € E(R), we have

s

> elLy[X] X)) = (1= 3¢ £ E)an,

j=1
and | X7 | < n. Also suppose that for all j € [s] and i € [r], we have sets W/ C X7 such that
|I/Vz»j | <en. Then there exists a graph H on V which is internally q-reqular with respect to
(R, VA,...,V.) and a function ¢ which packs {L., ..., Ly} into H such that ¢(X?) C V;, and

such that for all distinct j,j' € [s] and i € [r], we have ¢(W?) N p(WP') = 0.

Theorem 3.3.15 (Blow-up lemma for approximate decompositions [63, Theorem 6.1]).
Suppose n, q, s, k,r € N with 0 < 1/n < ¢ € a,d,dy,1/q,1/k <1 and 1/n < 1/r and k
divides r. Suppose that R is a graph on [r| consisting of r/k vertex-disjoint copies of K.

Suppose s < %(1 — a/2)n and the following hold.
(Al)33.15 G is (e,d)-super-regular with respect to the vertex partition (R, Vi, ..., V,).

(A2)3315 H={H,...,Hs} is a collection of graphs, where each H; is internally q-reqular with

respect to the vertex partition (R, X1,...,Xy), and |X;| = |Vi| = n for alli € [r].

(A3)33.15 Forall j € [s] and i € [r], there is a set W) C X; with |W?| < en and for each w € W7,

there is a set AJ, C V; with |AJ | > dgn.

(Ad)3515 A is a graph with V(A) C [s] x U,_, X; and A(A) < (1 — a)don such that for all
(4,z) € V(A) and j' € [s], we have |[{z’ : (j',2') € No((J,z))} < ¢*. Moreover, for all

Jj € [s] and i € [r], we have |{(j,z) € V(A) : z € X;}| < ¢e| X}

Then there is a function ¢ packing H into G such that, writing ¢; for the restriction of ¢ to

H;, the following hold for all j € [s] and i € [r].
(Bl)ss15 ¢;(X;) =V,
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(B2)3.3.15 ¢J(W) c A{U fOT‘ all w e le,

(B3)33.15 for all (5,7)(j',y) € E(A), we have that ¢;(x) # ¢y (y).

3.3.5 Miscellaneous

In the proof of Theorem 3.1.2, we often partition various graphs into parts with certain
properties. The next two lemmas will allow us to obtain such partitions. Lemma 3.3.16 follows
by considering a random equipartition and applying concentration of the hypergeometric
distribution. Lemma 3.3.17 can be proved by assigning each edge of G to Gy,...,Gq
independently at random according to (pi,...,ps), and applying Lemma 3.3.1. We omit the

details.

Lemma 3.3.16. Suppose n,T,r € N with 0 < 1/n < 1/T,1/r < 1. Let G be an n-vertex
graph. Let V- C V(QG) and let Vi ..., V. be a partition of V.. Then there exists an equipartition

Resy, ..., Resy of V such that the following hold.
(i) For allt € [T), i € [r] and v € V(G), we have dg,ges,nv; (V) = £dav, (v) £ n?/3,
(it) for all't € [T), i € [r], we have |Res; N V;| = £|Vi| £ n?/3.

Lemma 3.3.17. Suppose n,s € N with 0 < 1/n < ¢ < 1/s < 1 and m; € [n] for each
i € [2]. Let G be an n-vertex graph. Suppose that U is a collection of my subsets of V(G) and
U' is a collection of my pairs of disjoint subsets of V(G) such that each (Uy,Us) € U’ satisfies
\UL|, |Uz| > n3/%. Let 0 <py,...,ps <1 with Y i pi = 1. Then there exists a decomposition

G1,...,Gs of G satisfying the following.
(i) For alli € [s], U €U and v € V(G), we have dg, y(v) = pidgu(v) £ n?3,

(ii) for all i € [s] and (Uy,Us) € U' such that G[Uy,Us] is (g, dw, u,))-regular for some

dw, vy, we have that G;[Uy, Us) is (2, pid(u, 1)) -regular.
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The following lemma allows us to find well-distributed subsets of a collection of large
sets. The required sets can be found via a straightforward greedy approach (while avoiding

the vertices which would violate (B3)s3 315 in each step). So we omit the details.

Lemma 3.3.18. Suppose n,s,r € N and 0 < 1/n,1/s < e < d < 1. Let A be a set of size
n, and for each (i,j) € [s] x [r] let A;; C A be of size at least dn, and let m; ; € NU {0} be
such that for alli € [s| we have Z;zl m;; < en. Then there exist sets By 1, ..., Bs, satisfying

the following.
(B1)3318 For alli € [s] and j € [r], we have B; ; C A;; with |B; ;| = m, ;,
(B2)35.1s for alli € [s] and j' # 7" € [r], we have B; j N B; j» =0,
(B3)33.18 for allv € A, we have |{(i,7) € [s] X [r] : v € Bi;}| < &'/2s.

The following lemma guarantees a set of k-cliques in a graph GG which cover every

vertex a prescribed number of times.

Lemma 3.3.19. Let n,m,k,t € N and 0 < 1/n < 1/t < 0,1/k < 1 with k | n. Let G
be an n-vertex graph with §(G) > (1 — ¢ + o)n. Suppose that for each v € V(G), we have
d, € [m]U{0}. Then there exists a multi-k-graph H on vertex set V(G) satisfying the

following.
(Bl)33.19 For each e € E(H), we have Gle] ~ Kj,
(B2)3519 for each v € V(G), we have dy(v) —d, = (t + 1)m + 1.

Proof. Let

"= dy — dy}.
mi= max { }

Then m' € [m|. For a multi-hypergraph H on vertex set V(G) and v € V(G), let pg(v) :=
dy(v) — d,. We will prove that for each ¢ € [m’ — 1] U {0}, there exists a hypergraph H,

satisfying the following.
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(H1){ ;5,4 For each e € E(H), we have Gle] ~ Ky,
(H2)5 319 A(H) < L(t+1),

<H3)§.3.19 ma‘XU,’UGV(G){pHg (v) — PH, (u)} <m/ —¢.

Note that Hy = () satisfies (H1)3 5 ,o—(H3)$ 5 ;9. Assume that for some ¢ € [m’ — 2] U {0}, we
have already constructed H, satisfying (H1)§ 5 ,o—(H3)5 3 1. We will now construct Hy, ;.
If maxycv(ey{pm, (v)} — min,ey @ {pm,(v)} < 1, then as £ < m’ — 2, we can let

Hyyy = Hy, then (H1)55 o~ (H3)55,, hold. Thus assume that

uren%){pm (u)} — uénvi(r(l;){pw (u)} = 2. (3.3.14)

Let

A= {v e V(G) : pu,(v) > uénvi(rg;){pm (u)}} and Apax == {v € V(G) : pg,(v) = uren%){pm(w}}-

First assume that |A| > k. Let A’ C A be a set of at most k — 1 vertices such that &k divides
|A| + |A'] and pg,(v) > max,eca\ar pa,(u) for all v € A’. Note that we have either A’ C Ay
or Apax € A’ Then we can take a collection A := {A;,..., A1} of (possibly empty) subsets

of A such that the following hold for each i € [t + 1].
e |A,;| is divisible by k,
o |A| <|A|/t+k,

e every vertex in A’ belongs to exactly two sets in A and every vertex in A\ A’ belongs

to exactly one set in A.

Now, for each i € [t + 1], we have
(G —A)>0G)— Al >0 —=1/k+om—n/t—k>(1-1/k+0c—2/t)n> (1 —1/k)n.

Since V(G)\A; contains at most n vertices, and |V (G)\A4,| is divisible by k, the Hajnal-

Szemerédi theorem implies that there exists a collection IC; of copies of K} in G covering
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all the vertices in V(G)\A; exactly once. For each i € [t + 1], let E; := {V(K) : K € K,}.
Then |J/Z] E; covers every vertex in V(G)\A exactly ¢ + 1 times, while it covers vertices in
A\ A’ exactly ¢ times and vertices in A’ exactly ¢t — 1 times. Let H,y; be the multi-k-graph
on vertex set V(G) with 1

t+

E(Hp) = H U J E:.

i=1

Then the above construction with (H1) 5,4 implies (H1)55,,. Also (H2)4 4 implies that

A(Hpyy) = A(Hp) 4 (t+1) < (t+1)(0 + 1), thus (H2)55,, holds. If A’ C Ay, then every

vertex in Apay \ A’ is covered exactly ¢ times by |J'*] E;. Thus, by (3.3.14), we have

Envezg){pmﬂ( u)} =urenva(>é){pm(U)}+t and ug@}g){lﬂﬂm( u)} = i {pu, ()} +1+1.

If AnLax € A, then every vertex in A,y is covered exactly ¢ — 1 times while every vertex in

A is covered either ¢ — 1 times or ¢ times by X} F;. Thus, by (3.3.14), we have

nas {pa,, (u)} = ug%{pf{xu)} +t¢—1and uglvi(nc,){pHM(U)} > uglvi(%){sz(U)} +t

In both cases, we have

(H3)g 3.19

UQI)IEI‘%X {pH€+1( ) pHe+1 } < ufel‘%x {sz( ) sz<U)} -1 < m—f—1

Thus (H3)5%5, 4 holds.

Next assume that |A] < k. Then we take two sets B and C in V(G) such that
BNC = A and |B| = |C| = k. Then similarly as before, we can take two collections F;
and Fy of sets of size k such that F; covers every vertex in V(G) \ B exactly once, and
E, covers every vertex in V(G) \ C exactly once while Gle] ~ K, for all e € Fy U E,. Let
Hy. 1 be the multi-k-graph with E(Hy,) := HyU E; U E,. Then, it is easy to see that both
(H1)55Y, and (H2)5E,, hold. Also E; U F, covers all vertices in V(G) \ A exactly once or
twice, while it does not cover the vertices in A. Then as before, by using the fact that
max,ev(q){pm, (v)} — mingev(e) {pm, (u)} > 2, we can show that (H3)5%',4 holds.

Hence, this shows that there exists a hypergraph H,,_; which satisfies (H1)J% 5~

(H3)™ 5. Let m” := maxyev(@)ipu,, ,(v)}. Then (H2)7, 7% implies that m” < (t + 1)m
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Also, by (H3)7% 7} every vertex v € V(G) satisfies pu,, ,(v) € {m" —1,m"}. Recall that
0(G) > (1 = 1/k)n and k divides n. Thus the Hajnal-Szemerédi theorem guarantees a
collection F of sets of size k which covers every vertex of G exactly once, while G[e] ~ K},
for all e € E. Thus, by adding all e € F to H,,,_; exactly (¢t + 1)m — m” times, we obtain a

multi—k—graph satisfying (B1)3.3.19 and (B2)3'3_19. ]

The following lemma is due to Komlos, Sarkozy and Szemerédi [69]. Assertion
(B3)3.5.20 is not explicitly stated in |[69], but follows immediately from the proof given there
(see Section 3.1 in [69]). Given embeddings of graphs H; and H; into blown-up k-cliques
Q; € G and Q; C G, the ‘clique walks’ guaranteed by Lemma 3.3.20 will allow us to find

suitable connections between (the images of) H; and H; in G.

Lemma 3.3.20. Let r,k € N\ {1}. Suppose that R is an r-vertex graph with 6(R) >
(1 — %)T + 1. Suppose that QQ1, Qs are two not necessarily disjoint subsets of V(R) of size k
such that Q1 = {x1,...,xr} and Qz = {y1, ..., yx} with R[Q1] ~ K} and R[Qs2] ~ Ky. Then

there exists a walk W = (z1,...,2) in R satisfying the following.

(Bl)3390 3k <t < 3k3 and k | ¢,
(B2)3.3.90 for alli,j € [t] with |i — j| < k—1, we have z;z; € E(R),
(B3)3.3520 for each i € [k], we have z; = x; and zi—j4; = Y.

The following lemma also can be proved using a simple greedy algorithm. We omit

the proof.

Lemma 3.3.21. Let A k,t € N\ {1}. Let H be a graph with A(H) < A and let X C V(H)

be a set with | X| > Akt. Then there exists a k-independent set Y C X of H with |Y| =t.
Lemma 3.3.22. Let r,k,q,s € N\ {1} with0 < 1/r < 1/k,1/q < 1. Let R be an r-vertex
graph with §(R) > (1 — §)r. Let F be a multi-(k — 1)-graph on V(R) with A(F) < q and
E(F)=A{F,...,F,} such that R[F;| ~ Ky_1 for alli € [s]. Then there exists a multi-k-graph
F* on V(R) with E(F*) = {Fy,...,Fr} and such that
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(Bl)ss22 A(F7) < (k+1)g,
(B2)3520 for alli € [s], we have F; C F} and R[F}] ~ K}.

Proof. Since F is a multi-(k — 1)-graph, we have s < A(F)r/(k — 1) < gr. We consider
an auxiliary bipartite graph Aux with vertex partition (E(F), V(R) x [kq]) such that F; is
adjacent to (v,j) € V(R) x [kq] if v € Ng(F;). For any set X of k — 1 vertices in R, we have
dr(X) > r/k. Thus, any vertex F; of the graph Aux has degree at least kqdg(F;) > kq-(r/k) >
s = |E(F)|. Thus, the graph Auz contains a matching M covering every F; € E(F). For each
(£ (v, 7)) € M, let Fy := F; U{v}. Then (B2)332o holds. On the other hand, for any vertex
v € V(R), we have dr(v) = dz(v) + [{j € [kq] : dp((v,j)) = 1} < dx(v) + kg < (k + 1)q.
Thus (B1)3.3.29 holds too. O

The final tool we will collect implies that a (k,n)-chromatic n-separable bounded
degree graph has a small separator S and a (k + 1)-colouring in which one colour class is

small and only consists of vertices far away from S.

Lemma 3.3.23. Suppose that n,t, A,k € N and A > 2. Suppose that H is an n-separable n-
vertex graph with A(H) < A. If H admits a (k + 1)-colouring with colour classes Wy, ..., Wy

with |Wo| < nn, then there exists a A™n-separator S of H with N5 (S) N Wy = 0.

Proof. As H is n-separable, there exists an n-separator S’ of H. Consider S := (S’ U
NE (W) \ N (Wo). Tt is obvious that such a choice satisfies Nt (S) N W, = (. Furthermore,
as [Wo| < mn and A > 2, we have |S| < A"™nn. Moreover, any component of H — S is
either a subset of a a component of H — S’ or a subset of N} (). Hence, it has size at most

A*2pn, and S is a separator as desired. O
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3.4 Constructing an appropriate partition of a separable
graph

In Section 3.6 we will decompose the host graph G into graphs Gy, F; and F/ with t € [T] for
some bounded 7. We will also construct an exceptional set V[ and reservoir sets Res;. We now
need to partition each graph H € H so that this partition reflects the above decomposition
of G. This will enable us to apply the blow-up lemma for approximate decompositions
(Theorem 3.3.15) in Section 3.5. The next lemma ensures that we can prepare each graph
H € H in an appropriate manner. It gives a partition of V(H) into X,Y, Z, A. Later we will
aim to embed the vertices in A into Vg, and vertices in Y U Z will be embedded into Res;
using Lemma 3.3.6. Most of the vertices in X will be embedded into a super-regular blown-up
Kj-factor in GG; via Theorem 3.3.15, while the remaining vertices of X will be embedded
into Res;. The set Z will contain a suitable separator Hy of H. The neighbourhoods of the
exceptional vertices a; € A will be allocated to Y. Moreover, (A2)341 and (A3)3.4; ensure
that we allocate them to sets corresponding to (evenly distributed) cliques of R—the latter

enables us to satisfy the second part of (B3)3.4.

Lemma 3.4.1. Supposen,m,r k,h, A € Nwith0 < 1/n<n<e<1/h<1/k o 1/A <1
and 0 < n < 1/r <1 such that k | r. Let H be an n-vertex (k,n)-chromatic graph with
e(H)=m and A(H) < A. Let R and Q be graphs with V(R) = V(Q) = [r] such that Q is a
union of r/k vertex-disjoint copies of Ky. For some n' € [en], let Cy, ..., Cy be subsets of [r]
of size k — 1, and C§,...,C", be subsets of [r] of size k. Let F and F* be multi-hypergraphs
on [r] with E(F) = {C4,...,Cy} and E(F*) = {C{,...,C!}. Suppose that ny,...,n, are

integers. Suppose the following hold.
(A1)3_4.1 5(R) Z (1 - % + O')T,
(A2)341 for each £ € [n'], we have Cy C C} and R[C}] ~ Ky,

<A3>3_4_1 A(]:*) S 52/371/7“,
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(Ad)34.1 for each i € [r], we have n; = (1 +&?)n/r, and n' + D e i =1

Then there exists a randomised algorithm which always returns an ordered partition (Xq, ..., X,,
Yi,.... Y, Zy,..., Z., A) of V(H) such that A = {ay,...,a,} is a 3-independent set of H
and the following hold, where X :=J..., X;,Y =

i€lr] el Yoo and Z:= Uy Zs-

(B1)341 For each € € [0], we have dy(a,) < 2™

n

(B2)3.41 for each € € [n'], we have Ny (ar) € Uieq, Yi \ NE(Z2),

(B3)3.41 H[X] admits the vertex partition (Q, X1,...,X,), and H \ E(H[X]) admits the vertex
partition (R, X1 UY1 U Zy,..., X, UY, UZ,),

(B4)3.41 for each ij € E(Q), we have eg(X;, X;) = %,

(B5)3.4.1 for eachi € [r], we have | X;| + |Yi| + |Zi| = n; £ n'/*n and |Yi| < 2e°n/r,
B6)s41 NH(X)\ X C Z and |Z| < 403 n"n.
(B6) H n

Moreover, the algorithm has the following additional property, where the expectation is with

respect to all possible outputs.

(B7)3.41 For all ¢ € [n] and i € Cy, we have E[Ny(a,) NY;] < %

(B1)3.41 and (B7)3.41 ensure that each embedding of some H in G does not use too

many edges incident to the exceptional set V4.

Proof. Write r' := r/k and Q = Uzlzl Q,, where each ), is a copy of K, and let (1](1) =
{Q}, .., Q;} be the collection of all copies of K} in R. By permuting indices if necessary, we
may assume that V(Q}) = {1,...,k}. Note that ¢ < r*. As @ is a Kj-factor on [r], for each
i € [r], there exists a unique j € [r'] such that ¢ € Q);. For all s € [1'], s’ € [¢] and k' € [K], we
define ¢5(k'), ¢ (k') € [r] to be the k’-th smallest number in V(Qs) and V(Q",) respectively.

Thus
V(Qs) = {QS(1)7 cee 7QS(k)} and V(Q;/) = {q;/(l), s ,q;/(k})}.
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For all s € [g] and ¥ € [k], let
Qo= Q\{gs(F)} and dop = [{C € [n']: CF = V(Q)) and Cp = V(Q p)}|. (34.1)

Note that for each i € [r] we have

Y ) daw=dr(i) and Y dyw =1, (3.4.2)

s€[q]ieV(Q}) K €[k] (s,k")€lq] x [K]

Our strategy is as follows. Consider a (k + 1)-colouring (Wy, ..., Wy) of H with |Wy| < nn
and an A3’ T3pn_separator S of H guaranteed by Lemma 3.3.23 (applied with ¢ = 3k + 1).
Thus we can partition the k-chromatic graph H \ Wy into Hy, ..., H; such that each Hy is
small, there are no edges between Hy and Hy» whenever 0 ¢ {t',t"} and V(Hy) = S. We
will distribute the vertices of each graph Hy into UieV(QS) X; or UieV(Q;)(Yi U Z;) for an
appropriate s. In particular, V' (Hy) will be allocated to UieV(Q,l) Z; = Uie[k] Z;. As @, and
Qs are copies of K in R and @), respectively, and as Hy is k-chromatic, this would allow us
to achieve (B3)341 if we ignore the edges incident to V(Hy) U Wy. In Steps 5 and 6 we will
use ‘clique walks’ obtained from Lemma 3.3.20 to connect up the Hy with Hy in a way which
respects the colour classes of H \ Wy. We can thus allocate the vertices in N3 (V(Hp)) in a
way that will satisfy (B3)s.4.1. Finally, we will allocate the vertices in Wy. As W is far from
V' (Hy), each vertex in Wy only has its neighbours in a single Hy, hence it will be simple to
assign each vertex in Wy to some Z; with i € [r] according to where the vertices of H; are

assigned.

Step 1. Separating H. As H is (k,n)-chromatic, applying Lemma 3.3.23 with ¢ = 3k% + 1
implies that there exists a partition (Wy, Wi, ..., W) of V/(H) into independent sets and an

n"9-separator S such that
5], [Wo| < 7°%n and Wy N N3F+1(5) = 0. (3.4.3)
Since S is an n"%-separator of H, it follows that there exists a partition ‘70, e V, of V(H)
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with 170 = S, such that the following hold, where V; := 17;/ \ Wy and Hy := H[Vy] for each
t' e [t]u{0}.

(H1)341 n7%9/2 <t <2p709,

(H2)3.41 ?70'9n/2 < |Vy| < 2109, for t' € 1],

(H3)3.4.1 for ¢/ # ¢" € [t], we have that Ey(Vy, Vi) =0, and m — 2A7°%n < > vep e(Hy) <m.

Indeed, as S is an n%%-separator of H, H\ S only consists of components of size at most 7%n.
By letting Vj := S (and thus V5 = 5) and letting each of \71, e ,YZ be appropriate unions of
components of H\ .S, we can ensure that both (H1)34; and (H2)3 44 hold. By the construction,
the first part of (H3)341 holds too. Since there are at most A(H)[S U Wy| < 2A7n%%n edges
which are incident to some vertex in Wy U Vj, the second part of (H3)34 holds as well.

For each t' € [t]U {0} and k' € [k], we let

W =V 0 Wi

Step 2. Choosing the exceptional set A. Let

L {a: € V(H) : dy(x) < W}

L contains the ‘low degree’ vertices within which we will choose A in order to satisfy (Bl)34.1.

Note that 2m = Y, v dpr(2) > 2™ (0 — | L)), thus
IL| > n/(2h). (3.4.4)

For each t' € [t], let k(t') € [k] be an index such that

, 1
|LmW&ﬁzEwmvg@» (3.4.5)
Such a number k(t') exists as W{', ..., W} forms a partition of Vi, = V(Hy).
Now, we choose a partition H,Hy 1, ..., H, ., Hyy,. oo, Heyy of {Hy, ..., Hy} satisfying

the following for each (s, k') € [q] x [k].
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(Hd)s.01 v(Hip) = e 1w + 2kn*°n £ n*°n and

Zt’:Ht/eH’S . \V(Hy)NL| > g*l/UdS’k, + /2,

We will choose A within the vertex sets of the graphs in H ,,. .. ,H;k. Moreover, we will

allocate all the other vertices of the graphs in each #, ;, to Y U Z.

Claim 3.4.1. There exists a partition H,Hy 1, ..., H) y, Hoy, oo, Hyy of {Hy, ..., Hy} sat-

isfying (H4)3.4.1.

Proof. For each t' € [t], we choose iy independently at random from [q] x [k] U {(0,0)} such
that for each (s, k") € [¢] x [k] we have

571/10d5 K
Pliy = (s, k)] = ——% + 2kn?® and Pliy = (0,0)] =1 —
n

£—1/10,/

o 2(]1{32772/5.

An easy calculation based on (3.4.2) shows that this defines a probability distribution.

For each (s, k') € [g] x [k], we let
H:={Hy:t €t],ir = (0,0)} and 7-[/87,4 ={Hyp : t' €[t],ip = (s,k)}.

Then it is easy to combine a Chernoff bound (Lemma 3.3.1) with (H1)341, (H2)541, (3.4.4)
and the fact that |V (H)| = n to check that the resulting partition satisfies (H4);34, with

positive probability. This proves the claim. O]

By permuting indices on [t|, we may assume that for some ¢, € [t], we have
HZ{HIJ"'?-Ht*} and U H;,k’:{Ht*+17"'7Ht}'
(s,k")€la] x[K]
For each (s, k') € [q] x [k], let
Low=|J (LW, \ N2 uwp). (3.4.6)
t’thIGH'S,k/
Then by (3.4.3) and (3.4.5) we have
1 skdt2, g9 (431 ~1/11 1/2 3
Low| > D SLOV(H)| = 8AM 2000 > e k! P (2) 2 Ad e

t':H, eH’S’k,

148



For each (s, k') € [¢] x [k], we apply Lemma 3.3.21 to L to obtain a subset of L with

size exactly ds s which is 3-independent in H. Write this 3-independent set as

{ag: L e [n'],C; =V(Q)) and C; = V(Q, 1)} (3.4.7)

S

This is possible by (3.4.1) and (3.4.2) and defines vertices ay, ..., a,y. Let A :={ay,...,an}.

By (3.4.6) and (H3)3.4.1, A is still a 3-independent set in H. As a, € L, we know that
dy(ag) < 2(1+1/h)m/n. (3.4.8)
Moreover, for ¢ € [n] and ' € [t], we have the following,.
If ag € Vi, then t' € [t]\ [t.] and ap € Wi, \ N2 (Vo U W), (3.4.9)
In particular, we have Ny (ay) N Ni}kg“(% UWy) = 0. Thus if ay € Vpr, then

Nu(a) € | WEN\NF T (VHUWy). (3.4.10)

k7 ek\{k(t")}

Step 3. Allocating the neighbourhood of A. We will allocate Ny(A) to Y. We will
achieve this by suitably allocating V(#,,) for each (s, k') € [q] x [k]. This will allocate
Npg(A) via (3.4.10). Note that all choices until now are deterministic. Next we run the
following random procedure.
For each t' € [t]\ [t.], let (s, k') € [q] X [K] be such that Hy € H ., and choose a per-
mutation Ty on [k independently and uniformly at random among all permutations

such that mp (k') = k(t').
(3.4.11)

(Note that this is the only place that our choice is random.) Thus one value of 7y is fixed,
while all other £ — 1 values are chosen at random. We choose 7 in this way because we wish
to distribute N (ae) to U;cq, Vi, so that later (B2)34, is satisfied. Setting (k') = k(t') will

ensure that no vertex in Ng(a,) will be distributed to Y; with ¢ € C; \ C,. Moreover, as my is
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chosen uniformly at random, Ny (as) will be distributed to (J;cq, ¥; in a uniform way, which
will guarantee that (B7)3.4; holds.

Indeed, for ¢ € [n], (s, k") € [q] x [k] and ¢’ € [t] \ [t.] such that a; € L NV, and
for any k" € [k] \ {k'}, the number 7y (k") is chosen uniformly at random among [k \ {k(¢')},

thus we have

k—1 — (k—1)n

E(| N (ag) NWE o] < (3.4.12)

For each i € [r], let

Y= U U wiw\A ad Y:=[]V. (3.4.13)

(s,k"):i=q (k") k" €[K] Ht/E"H'S,k,, i€[r]

Step 4. Allocating the remaining vertices to X and Y. Later the vertices in Y; will
be assigned to Y; (except those which are too close to V; in H, which will be assigned to 7).
The sizes of the sets X; will be almost identical. (Note that because of (B3)s34.1, it is not
possible to prescribe different sizes for X; and X; if ¢ and j lie in the same copy of K}, in Q.)
Thus, in order to ensure (B5)s34.1, we need to decide how many more vertices other than EN/Z
we will assign to the set Y;. As part of this we now decide which of the Hy € H are allocated
to X and which are allocated to Y (again, vertices close to V; will be assigned to Z). Note

that we have

~ (H4)3.4.1
|}/l| S Z Z Z |Ht’ S (6_1/10d57ku + 3]{3772/571)
(s,k"):i=qs (k') K" €[k] Hy €M, s:1€V(QYL) k" €[K]
(3.4.2) (A3)3.4.1
< e V05 (i) + 3K2qn* P < eV (3.4.14)

For each i € [r], let i := (1 — 2¢¥/?)n/r, and

~ (Ad)3.41 51/3

- - . (Adsan _ (3.4.14)
i, = ny—n—Y;] < ——— thenn;, > &Yn/r—|Y;| > 0.(3.4.15)
(h+1)r

By applying Lemma 3.3.19 with R, h, o,c'/3n/((h+ 1)r) and #; playing the roles of G, t,0,m

and d,, respectively, we obtain a multi-k-graph F# on [r] such that for each Q € E(F¥), we
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have R[Q] ~ K}, and

for each i € [r], we have drx(i) = n; + 51/% + 1.
(3.4.16)

This implies

_ e . 3.4.15 ~
N o= D= e () = U Wl 2T Y (= [T 1) — [ U W
iclr] i€[r]
BL V] - U Wl £, (3.4.17)

Note that we have
v(H) = |[V(H)\(YUAUVLUW,)| =N <7 (3.4.18)

Our target is to assign roughly d# (i) extra vertices to Y; in addition to Y;, and assign roughly

n— 6113” vertices to X, and a negligible amount of vertices to Z;. Then | X;| + |Y;| + | Z;| will
be close to n; as required in (B5)34.1.

To achieve this, we partition H = {Hy, ..., H;,} into Hq, ..., H,y, ’H’f, o ,’Hff satisfy-
ing the following for all ¢ € [r'] and s € [q].

L 1/3 k + 2/7
R L5 and e(H) = M)
r r

(H5)5.41 v(H;) = ki —
(H6)3.41 v(HH) = k- multz+(V(Q.)) + n*/n.

(Recall that mult 74 (V(Q%)) denotes the multiplicity of the edge V(Q",) in F#.) Indeed, such

a partition exists by the following claim.
Claim 3.4.2. There exists a partition Hi, ..., Hy, /Hfé, - ,Hf of {Hy,...,Hy,} satisfying

(H5)3.4‘1 - <H6)3,4.1 .

Proof. Foreacht' € [t.], we choose iy independently at random from {(0,1),...,(0,7),(1,1),...,(1,¢)}

such that for each i € [r'] and s € [g]:

k’“ . kel/3p . k| VoUW | k ) lt ,
Pliv = (0.9 =~ and By = (1,5)] = 207 VIQ))
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Since > k- multz«(V(Q))) = k|E(F#)| = > _ici) AF# (1), an easy calculation based on

(3.4.17) shows that this defines a probability distribution. For all i € [r'] and s € [¢], we let
Hz‘ = {Ht/ . t, € [t*],itl - (O,Z)} and H?é = {Ht/ . t/ € [t*],itl = (173)}

Then it is easy to combine a Chernoff bound (Lemma 3.3.1) with (H1)341, (H2)34; and
(3.4.18) to check that the resulting partition satisfies (H5)34; and (H6)34; with positive

probability. This proves the claim. O

By permuting indices on [t.], we may assume that for some t* € [t,] we have
U Hi={H,....H-} and | JHE ={Hepn,... H.}.
i€(r'] s€(q]
In order to obtain (B3)341—(B5)3.4.1, we need to distribute vertices of the graphs in
H; into {X; : j € V(Q:)} and vertices of the graphs in H# into {Y; : j € V(Q,)} so that the
resulting vertex sets and edge sets are evenly balanced. For this, we define a permutation 7y
on [k] for each t' € [t,] which will determine how we will distribute these vertices. We will

choose these permutations 7y, ..., m, such that the following hold for all i € [r'], s € [q] and

K4k e [k).

1/3 ) + 1/4
4 e e n 2/5 t/ v . m 19 n
(H7)3.41 Z WTrt/(k’)| =n- , +7"”n and Z EH(th/(k’)v th/(k”))’ = W>
t’:Ht/GHi t/ZHtIGHi
(H8)sa1 Y |WE | = multzs (V(QL)) £ n**n.
t’:Ht/G?‘-[ZEié

To see that such permutations exist we consider for each ¢ € [t,] a permutation 7y : [k] — [k]
chosen independently and uniformly at random. Then, by a Chernoff bound (Lemma 3.3.1)

combined with (H1)341 and (H2)341, it is easy to check that mq, ..., 7, satisfy (H7)341 and

*

(H8)3.4.1 with positive probability.

Step 5. Clique walks. Recall that V; is a separator of both H and H \ Wj. The vertices

in Vg will be allocated to the sets Z, ..., Z; which initially correspond to the clique Q] C R

152



(recall that V(Q7) = {1,...,k}). We now identify an underlying structure in R that will be
used in Step 6 to ensure that while allocating V(H)\(Vo UWy U A) to X, Y and Z, we do
not violate the vertex partition admitted by R (c.f. (B3)s41). (This is a particular issue
when considering edges between separator vertices and the rest of the partition.)

To illustrate this, let s € S be a separator vertex allocated to Zy. Let x be some
vertex in some Hy with s € E(H). Suppose Hy is assigned to some clique @; C @ and
that this would assign x to some set X/, where i € V(Q;). Furthermore, suppose i’k is not
an edge in . We cannot simply reassign x to another set X; to obey the vertex partition
admitted by R without also considering the neighbourhood of x in Hy. To resolve this, we
apply Lemma 3.3.20 to obtain a suitable ‘clique walk’ P between @] and @), i.e. the initial
sement of P is V(Q))), its final segment is V' ((Q);) and each segment of k consecutive vertices
in P corresponds to a k-clique in R. We initially assign « to a set Zg» for some k" € [k]\ {k'}.
We then assign the vertices which are close to x to some Zj», where the choice of k" € [r] is
determined by P. (In order to connect Y to Vj, we also choose similar clique walks starting
with @) and ending with Q' for each s € [q].)

To define the clique walks formally, for each ' € [t], let

Q; if Hy € H; for some i € [1'],
{pv(1),....pe(k)} == Py,

where py (1) < -+ < py(k).

Fy:=4 Q. if Hy € H¥ for some s € [q], and
Q. if Hy € H.;, for some (s, k') € [q] x [K],
(3.4.19)
By using (A1)s.4.1, we can apply Lemma 3.3.20 for each ¢’ € [¢] with V(Q) and V (Py) playing

the roles of )1 and @, in order to obtain a walk j(¢,1),...,j(¥,byk) in R such that
for all distinct i,i" € [byk| with |i —i'| <k —1, we have j(t',1)j(t',i") € E(R), and

for each k' € [k] we have j(t', k') = mp (k') and j(t', (by — 1)k + k') = pu (k).
(3.4.20)

Moreover, for each t' € [t], we have

3 < by < 3k% (3.4.21)
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As described above we will later distribute some vertices of VNN =Dk(1}) to Uk,e[(bt/_l)k] Zjw )

so that we can ensure (B3)341 and (B6)3.4 hold.

Step 6. Iterative construction of the partition. Now, we will distribute the vertices of
each Hy into Xq,..., X, Yy,...,Y,, Z1,..., Z. in such a way that (B1)341—(B7)3.41 hold. (In
particular, as discussed earlier, we will have }71 C Y;.) To achieve this, for each ¢ =0, 1,...,t,
we iteratively define sets XV ,..., X" Y/ ..., V¥ ZV ... Z' First, for each k' € [k], let

Z0 = W) and for all i € [r] and ' € [r]\ [K], let

X):=0, Y’ :=0 and Z) := 0.

K3 (2

We will write

;
vie= v, X' ={Jx/, Y=Y ad 2z":=[]Z2
=0 i€(r] i€(r] i€(r]

Assume that for some t’ € [t], we have already defined a partition X f/’l, X Yfl’l, S (S

Z{’—17 ., ZE71 of VP satisfying the following.

(Z1)47% For all # € ['] and i € V(Qy), let k' be so that i = g (k). Then we have (where by
below is the length of the walk defined in (3.4.20))

4 (b//—lk ! "
U wow\Ny o cxitc | Wk,

t"elt!—1]:Hn€H telt’—1):Huy€H,

(Z2)4 7} for each i € [r], we have

U U Wif,, o) \ Nl(qbw_l)k(vo) cy/ ' c U U Wﬁ:,,(k/)a

kEelk] t"elt/—1]\[t*]: kelk] t"elt/—1])\[t*]:
pyr (K')=i pyr (K')=i

(Z3)4 7} for all ij ¢ E(Q), we have eH(Xf'_l,X;'—l) =0,

(Z4)4 7Y for all ij ¢ E(R), we have ey (X!, Zt,_l) = ey(Y Zt/_l) = ey(Y L, Yt/_l) =
en(Z2{ 71,27 =0,
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(Z5)531 NE(XY=H)\ X'=1C 201 C NIF (W),
(6)4 7% for each k' € [k], we have WY, C Z8,71,
(Z7)g;11 for each t” € [t — 1], we have |{i € [r] : (Xl-tl_1 U Yit,_l) NV # 0} < k.

Using that @ is a copy of Kj in R and V(Q}) = {1,...,k}, it is easy to see that (Z1)3,,~

(Z7)3 ,, hold with the above definition of X? Y Z?. We now distribute the vertices of Hy

by setting

s ( X'ty (W:—/t’(k/) \ Ngjt'_z)k%l(%)) if ' € [t*] and i = py (k') for some k' € [k],
o Xf/’l otherwise,

o ( vty (W;;(k,) \ N}}%’—”’“*’“’(Vb)) if ¢ € [t]\ [t*] and i = py (k') for some K € [k],
C vt otherwise,

\
zZl=z70 U (Wi n (VR )\ N ().

(b,k")E[by —1] % [K]:

i=j(t',(b=1)k+k')
Let H' := H \ W;. Recall that NI?}I"3+1(\/()) does not contain any vertex in Wy (see (3.4.3)).
Hence N (V) = Niy (Vo) for any @ < 3k3 + 1.

Note that the above definition of X! Y} Z! uniquely distributes all vertices of V*'.
Indeed, first note that either Y;" = Y;* = for all i € [r] or X! = X¥~! for all i € [r] depending
on whether Hy € H, for some ¢ € [r'] (in which case t' € [t*]) or Hy € H¥ for some s € [q]
or Hy € H,;, for some (s, k') € [g] x [k] (in the latter two cases we have t' € [t] \ [t]). Now,
consider W}, N (N&(Vy) \ N&'(Vp)) for k" € [k] and a € N. Note k" = mu (k') for some
k' € [k]. Then either a > (by —2)k+k or a € [(b/ — 1)k + K|\ [(b' —2)k + k'] for some unique
V' € [by — 1]. Thus indeed every vertex of V¥ belongs to exactly one of X! or Y} or Z¢'.

It is easy to see that the above definition with (3.4.21), (Z1)57} and (Z2), 7} implies

(Z1)4,, and (Z2)4, ,. Also, (Z7)4,, is obvious from the construction. Moreover, (Z3) ;! and

(H3)s.4. imply (Z3)},, while (Z6), 7} implies (Z6)}, . Similarly, we have ey (Y, Vi) =0if
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ij ¢ E(R). We now verify the remaining assertions of (Z4)% , . First suppose that
En(X{, Zi)\ En(X{ ™, Z; ") #0 or Ba(Y!, Z))\ Ea(YS ', Z;7") # 0.

Then by (H3)3.4.1, we have i = py (k") for some k' € [k] and i' = j(¢', (b — 1)k + k") for some

K" € [k] and b € [by — 1], and H contains an edge between
Wt’ ) \N(bt/ —2)k+k (%) and W (k) N N(b 1) k+k”(%)

This means that (by —2)k+ k& < (b—1)k+k”. Thus b = by — 1 and k&’ < k”. Moreover, since
Wﬁ;(k,) is an independent set of H, we have k' # k”. Since (3.4.20) implies that i = py (k') =
(' (b — Dk + k) and @ = j(t', (by — 2)k + k") with 0 < (by — 1)k + K — (b —2)k + k") < k,

again this with (3.4.20) implies that i’ € E(R). Now suppose that
vy € By(Z!, Z5)\ Ex(Z'7, Z4 1) with z,y ¢ V.

Then by (H3)341, we have i = j(¥,(b — 1)k + k') and i’ = j(¢/,(b' — 1)k + k") for some
b,V € [b,—1] and k' # k" € [k]. However, the definition of Z! implies that such an edge only
exists when [((b — 1)k + k') — ((0/ — 1)k + k")| < k — 1. In this case, (3.4.20) implies that

i7" € E(R). Finally, suppose that
wy € By(ZY, Z5)\ Ey(2Y71, 2571 with z € Vyn 22

Then the definition of Z! implies that i € [k], z € W2 and i’ = j(t', k') for some k' € [k].
(3.4.20) implies that j(t', k") = mp(K'). As W by Y W k) is an independent set of H, we
have i # my(k'). However, as R[[k]] = R[V (Q’l)] ~ K}, we know that i’ € E(R). Thus
(Z4)§ , | holds. By the definition of X! and Z! with (3.4.21), it is obvious that (Z5)}, , holds
too.

Thus, by repeating this, we obtain a partition X}{,... X! Y/ ... Y Zt ... Z! of

V(H) \ Wy satisfying (Z1)% ,,—(Z7); 4 ;. For each i € [r], let
X;i=X, X =X" Yi=Y'\A Y:=Y'"\A Z :=Z and 7 := 7"

2
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Note that A C Y* by (3.4.9) and (Z2)%,,. Moreover, X,Y, 7' A forms a partition of

V(H) \ Wy. Now we consider the vertices in Wy. For each w € Wy, let
I,:={i€[r]: Ng(w)N (X;UY;) # 0}.

By (3.4.3), we have Wy NV, = (. Hence, for each vertex w € Wy, there exists t' € [t] such
that w € V. As Wy is an independent set, (3.4.3) with (H3)341 implies Ny (w) C V.. This
with (Z7) ,, implies that |I,] < k. As |[Ng(l,)| > 0 by (Al)3.41, we can assign w to Z! for
some i € Ng(I,). Let Zy,...,Z,, Z be the sets obtained from Z],...,Z Z' by assigning
all vertices in Wy in this way. By (3.4.3), (3.4.9) and (Z5)},, for each w € Wy we have
Nyg(w) € X UY. Thus

foralli e [r], we WoNZ; and x € Ny(w), we have v € X;UY; for some j € Ng(i).
(3.4.22)
The sets X, Y, Z, A now form a partition of V(H).

Step 7. Checking the properties of the partition. We now verify that this partition
satisfies (B1)34.1-(B7)3.4.1. Note that (3.4.8) implies (B1)34;. Consider any ¢ € [n/], and let

t' € [t]\ [t.] and (s, k) € [q] x [k] be such that a, € Hy € H,;,. Then

(3.4.10) , (3.4.11) ;
Ny (ay) C U WEANFT VG uW,) U= U WL e \ NEFH (Vo UG
k" elk\{k(t')} k" e[k\{k"}
(Z2)5.4.1, (Z5)5.4. L (3.4.1),(3.4.19) 1 (3.4.7) 1
C Yo, \ N(Z2) © = U ¥i\Nu2) "=" v\ NL(2).
k" elk]\{k'} €v(Q. ) ieCy

This proves (B2)34.1. Moreover, whenever ¢, ¢ and (s, k") are as in the proof of (B2)34., for
each j' € Cy, we have j' = py (k") for some k” € [k] \ {k'}. Thus by (3.4.10) and (Z2)% ,,, we

have
(3~‘1<12) 21+ 1/h)m

E[[Nu(ae) 0 Yyl < E[[Nu(ar) W7 gl < i Dn

This proves (B7)3.4.1-
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Properties (Z3)4 41, (Z4)% 41, (Z5) ,; and (3.4.22) imply (B3)3.4.1.
For each ij € E(Q), let s € [r'] and k', k" € [k] be such that i = ¢5(k) and j = ¢s(k”).
Thus

3.4 1,(21)5 4.1

H3)3.4. ’ ’
en(X;, X;) IR N™ B (W W )] £ AINEE (V)]

te(t*:HyeHs

sa1,(HT)s0 2m +e'/Pn
B (k—1)r
Thus (B4)3.41 holds. Moreover, given i € [r], let s € [r'] and k' € [k] be such that i = ¢4(k').
Then
X TR YT W o £ IV 0] TR R g,
te[t*|:HyeHs
Similarly, for i € [r], since by (3.4.9) the vertices of A only belong to V(Hy) for ¢’ € [t] \ [t.],

(22)5 4. '
il = > WE, oy \ Al £ INFF (Vo)

(¥ k"):pyr (K" )=, €[]\ [t*]

(34.19) Z Z |W;;/ |+ Z Z Z Wt’ *) \A|j:77 n

(s,k"):qL(K")=1 t/:HtIGHs (s,k"):qL (K )=t k" e[k] t': t/E'H

B DD it V@) + 71 2% = i+ 74 2
(5,k"):q5 (K")=i

(34.15),(3.4.16) n — 7+ /3

n/r+n'*n.
Together with (3.4.3), (Z5)5,, and (H2)3.41, this now implies that for each i € [r]
|G|+ [Yil + 1 Zi] = ni £ 0" n.

Also, the definition of 7 with (A4)s 4, implies that |Y;| < 2¢'/3n/r. Thus (B5)s41 holds.
Finally, (3.4.3) and (Z5)3.4.1 imply (B6)3.4.1. O

3.5 Packing graphs into a super-regular blow-up

In this section, we prove our main lemma. Roughly speaking, this lemma says the following.
Suppose we have disjoint vertex sets V', Res; and V, and suppose that we have a super-regular

Kj-factor blow-up G[V] on vertex set V', and suitable graphs G[Res;], G[V, Res;], F[V, Res]|
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and F'[Res;, Vo] are also provided. Then we can pack an appropriate collection H of graphs
into G U F'U F’. Here Vj is the exceptional set obtained from an application of Szemerédi’s
regularity lemma and Res; is a suitable ‘reservoir’ set where V4 is much smaller than Res;,
which in turn is much smaller than V. The k-cliques provided by the multi-k-graph C; below
will allow us to find a suitable embedding of the neighbours of the vertices mapped to V4.
When we apply Lemma 3.5.1 in Section 6, the reservoir set Res; will play the role of the set
U U Uy below. Uy will correspond to a set of exceptional vertices in Res;. (A9)357 will allow
us to embed the neighbours of the vertices mapped to U.

Note that the packing ¢ is designed to cover most of the edges of the blown-up
Kj-factor G[V], but only covers a small proportion of the edges of G incident to U. (A7)35
provides the edges incident to the vertices mapped to Vy, and (A8);5; allows us to embed

the neighbourhoods of these vertices.

Lemma 3.5.1. Suppose n,n', k,A;r,T € N with0 < 1/n,1/n <K n K e < 1/T € a K
d< 1/kov,1/A<1andn < 1/r <o and k| r. Suppose that R and @ are graphs with

V(R) = V(Q) = [r] such that Q is a union of r/k vertez-disjoint copies of K. Suppose that

Voo -y Vi, Ugy ..., Uy is a partition of a set of n vertices such that |Vo| < en, |Up| < en and
for all i € [r]
1—-1/T+2 1+2
w= v = LY EER gy = LE 2 — 23
r

Let V = Uie[r] Viand U :=J 1 Ui. Suppose that G, F, F' are edge-disjoint graphs such that

i€lr

V(G) =V UUUU,, F is a bipartite graph with vertex partition (V,U), and F' is a bipartite

graph with vertex partition (Vo,U) such that F' = ey Uyey, Foys where all the F, are

veV
pairwise edge-disjoint stars with centre v.
Suppose that H is a collection of (k,n)-chromatic n-separable graphs on n vertices,

and for each t € [T we have a multi-(k — 1)-graph C; on [r] and a multi-k-graph C; on [r]
with E(C;) = {Cyy : v € Vo} and E(C;) ={Cy, : v € Vo}. Assume the following hold.

(Al)s51 For each H € H, we have A(H) < A and e(H) > n/4,
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(A2)351 n/* <e(H) < (1 —v)(k—1)an?/(2r),

(A3)351 G[V] is (T2, a)-super-reqular with respect to the vertex partition (Q,Vi,..., V),
(Ad)35, for each ij € E(R), the graphs G[V;,U;] and G[U;, U] are both (/%0 (d®))*-regular,
(AB)z51 O(R) > (1= 1/k +o)r,

(A6)35.1 for allij € E(Q) and u € U;, we have dpy,(u) > d*n/,

(AT)351 for allv e Vg andt € [T) and i € C,,, we have dF@t,Ui(U) > (1 —d)a|Uy,

(A8)351 for allv € Vy and t € [T], we have C,; C C

vt

R[Cs,) ~ Ky, and A(CP) < =22,
(A9)351 for each u € Uy, we have

[{i € [r] : dev, (u) > d’n’ for all j € Ng(i)}| > ety

Then there exists a packing ¢ of H into G U F U F' such that
(Bl)ss1 A(p(H)) < 4kAan/r,
(B2)3.5.1 for each u € U, we have dyapne(u) < 2AeY8n/r,
(B3)35.1 for each i € [r], we have eyapna(Vi, U U Uy) < e'/?n?/r?.

Roughly, the proof of Lemma 3.5.1 will proceed as follows. In Step 1 we define a
partition of Uy and an auxiliary digraph D. In Step 2 we define a partition of each H € H. For
each graph H € H we apply Lemma 3.4.1 to partition V(H) into X2, Y ZH AH We will
embed A" into V; and the remainder of H into VUUUUy. In Step 3, we apply Lemma 3.3.6 to
find an appropriate function ¢’ packing { H[Y7 U ZH U A”]: H € H} into G[U]U F’. Guided
by the auxiliary digraph D, in Step 4 we modify the partition by removing a suitable W# from
XH (so that we can later embed X#\W¥# into V). We will also find a function ¢” packing

{H[WH]: H € H} into G[U] in an appropriate way, which ensures that later we can also
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pack {H[ X7\ WH WH]: H € H} into F[V,U]UG|V,U]. In Step 5 we will partition  into
subcollections H; 1, ..., Hr., and use Lemma 3.3.14 to pack {H[ X7\ W#]: H € H;,,} into
an internally ¢-regular graph H, ,, (for some suitable ¢). Finally, in Step 6 we apply the blow-
up lemma for approximate decompositions (Theorem 3.3.15) to pack {H; v : t € [T],w’ € [w]}

into G[V] such that the packing obtained is consistent with ¢’ U ¢".

Proof. Let r' := r/k and )1,...,Q, be the copies of K} in Q). Let ng := |[Vy| and Vj =:
{v1,..., 05, }- By (Al)35.1, for each H € H, we have

e(H) < An. (3.5.1)
Moreover,

ke=lH <201 — ) (k — Dan/r. (3.5.2)

Step 1. Partition of U, and the construction of an auxiliary digraph D. In Step 2,
we will find a partition of each H € H which closely reflects the structure of G. However
we need the partitions to match up exactly. The following auxiliary graph will enable us to

carry out this adjustment in Step 4. Let D be the directed graph with V(D) = [r] and
E(D) ={ij +i #j € [r}, No(i) € Nr(j)}- (35.3)
For each ij € E(R), we let
Ui(§) == {u € Ui : dgv,(u) > (d* — "/ )n'}.

Then (A4)s 51 with Proposition 3.3.4 implies that |U;(j)| > (1—2¢'/5)|U;|. For each ij € E(D),

we define

UP(i):== ) Ui, (3.5.4)

i'€Ng (i)
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then we have
UP ()| > (1 —2(k — 1)e'/*)|U;| > n/(2T7). (3.5.5)

In Step 4 we will map some vertices x € V(H) whose ‘natural’ image would have been in V;

to U jD (1) instead, in order to ‘balance out’ the vertex class sizes.

Claim 3.5.1. There exists a set I* = {i},...,i}} C [r] of k distinct numbers such that for

any k' € [k] and j € [r], there exists a directed path P(i},, ) from i}, to j in D.

Proof. First, we claim that all i # j € [r] satisfy that N, (i) N N;(j) # 0. Indeed, as
INr({i,7})] = 26(R) —r > (1 — 2/k + 20)r, we have that

[{s € "] : [Nrvo({i;3})] =k — 1} > or > 3.

Thus there exists s € [r'] such that i, j ¢ V(Q,) while |Ngyv(q,)({7,7})] > k — 1. We choose
J € V(Q,) such that Q. \ {j'} € Nr({4,7}), then (3.5.3) implies that i, € N} (j').

Now, we consider a number i € [r] which maximizes |A()|, where
A(i) ={j € [r] : there exists a directed path from ¢ to j in D}.

If there exists j € [r] such that j ¢ A(i), then by the above claim, there exists j’ € [r] such
that 7,5 € NJ(5/). Then A(i) U {j} C A(j'), which is a contradiction to the maximality of
A(7). Thus, we have A(i) = [r]. Let i} :=i.

Since dg(i}) > 0(R) > (1 — 1/k + o)r by (A5)35.1, we have [{s € [r'] : Nrv(q,) (i) =
k}| > or. Thus, there exists s € [r’] such that V(Qs) C Ng(i}), and this with (3.5.3) implies
that V(Qs) € Np(i). We let 43, ...,i; be k — 1 arbitrary numbers in V(Qs). Then for all
k' € [k] and j € [r], there exists a directed path from i}, to ¢} and a directed path from i} to

j in D. Thus there exists a directed path from 4}, to 7 in D. This proves the claim. O]

We will now determine the approximate class sizes n; that our partition of H will

have. For this, we first partition Uy into U], ..., U/ in such a way that the vertices in U/ are
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‘well connected’ to the blow-up of the k-clique in @) to which ¢ belongs.
For alli € [r],u € U and j € Ng(i), we have dgy,(u) > d®n' and |U}| < 2e¥*n/r. (3.5.6)

Indeed, it is easy to greedily construct such a partition by using the fact that |Uy| < en and
(A9)351

For i € I'*, we will slightly increase the partition class sizes (cf. (3.5.9) and (X5)35.1)
as this will allow us to subsequently move any excess vertices from classes corresponding to

I* to another arbitrary class via the paths provided by Claim 3.5.1. For each i € [r], we let
ni ==n'+ |Ui| + |U| = [Vi| + [Us| + U], (3.5.7)
then we have

ng = (1 —1)T £ 2e)n/r + (1 £ 2e)n/(Tr) + 2e¥*n/r = (1 £*3/2)n/r and an =n — ny.

i€[r]
(3.5.8)
For each i € [r] we let
ni+ (r' — Dn'Pn if i e I,
Ay = =) (3.5.9)
n; —non ifier]\I*
This with (3.5.8) implies that for each ¢ € [r],
1+ 2/3
n; = u and Zﬁl = an =n —nyg. (3.5.10)

r

Step 2. Preparation of the graphs in H. First, we will partition H into T" collections
Hi, ..., Hr. Later we will pack each H; into GU F' U,y £y ;- (Recall that the Fy, form a
decomposition of F’.) As GU F U F’ has vertex partition V,...,V,, Uy,..., U, U{,... U/,
for each H € H, we also need a suitable partition of V/(H) which is compatible with the
partition of the host graph G U F' U F’. To achieve this, we will apply Lemma 3.4.1 to each

graph H € H; with the hypergraphs C; and C; to find the desired partition of V(H).
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By (3.5.1) we can partition H into Hy, ..., Hr such that for each ¢ € [T,
(A2)3.5.1
e(H) = e(H)/T+An < (1-2v/3)a(k—1)n?/(2Tr), and

|H,| (Algm de(Hy)/n < 2a(k — 1)n/(Tr). (3.5.11)

For each ¢ € [T, we wish to apply the randomised algorithm given by Lemma 3.4.1 with the

following objects and parameters independently for all H € H,.

object/parameter | H ‘ R ‘ Q ‘ Ce | CF | no ‘ Copt | Copr | 13/d] ‘77 ek ‘ Al r|ny
playing the role of H‘R‘Q‘f‘}"* n | Cy ‘ Cy ‘ h ‘17 € k:‘A | n;

Indeed, (A5)35.1, (A8)351 imply that (Al)s4q, (A2)341 and (A3)s.4; hold with the
above objects and parameters, respectively. Moreover, (3.5.10) implies that (A4)3 4 holds
too. Thus we obtain a partition X{, ... X7 v . YH ZH 75 AH of V(H) such
that A# = {a¥,... afl} is a 3-independent set of H and the following hold, where X :=

) no

Uie[r] XzH7 v = Uie[r] Y;-H, and YAES U ZH .
(X1)35.1 For each £ € [ng], we have dy(af) < Wrdﬂﬂ,
(X2)55.1 for cach £ € [no], we have Nig(af') € Usec,,,, Vi \ Nh(27),

(X3)35.1 H[X'] admits the vertex partition (Q, X¥,..., XH), and H \ E(H[X]) admits the

vertex partition (R, X UYHuZzZH ... XHEuYHUZHT),

. e el/5n,
(X4)351 for each 1j € E(Q), we have eH(XZ-H,Xf{) = 2elf)Fe n (gg)_il)r )

(X5)35.1 for each i € [r], we have |Y| < 2¢¥/n/r and | X2 |+ |V;H| + | ZH] = 7y £ nt/*n; in

particular, this with (3.5.9) implies that for each i € [r], we have

R ni,n; +n'/n| ifi e I*,
R X 1 VA 4 |z e ]| }
1/6

n; —mn n,ni] otherwise,

X6)s50 Ny(XM)\ X" C 2", and | 21| < 40%09n,
H
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(X7)35.1 for all £ € [ng] and i € C,, 4, we have E[Ng(all) N Y] < %.

By applying this randomised algorithm independently for each H € H,y U - --UHr, we

obtain that for allt € [T], £ € [no] and i € Cy, 4, we have B[} oy, [ Nu(af )NYH]] < %.

Note that for each H € H;, we have |Ng(al') N Y| < A. As our applications of the
randomised algorithm are independent for all H € H;, a Chernoff bound (Lemma 3.3.1)
together with (A2);5; implies that for all t € [T, ¢ € [ng] and i € C,,+, we have

2(1 + d)e(’Ht) d2€(7-[t)2/((]€ _ 1)2n2) (3.5.11),(A2)3.5.1 _pl/3

< — <
= n ) = 2exel 2A2|H,| ) =

P| Y INn(af )| >

HeH,

By taking a union bound over all ¢t € [T],¢ € [ng] and i € C,,;, we can show that the

following property (X8)s.5.1 holds with probability at least 1 — kT'nge=™"" > 0.

(X8)35.1 Forallt € [T], £ € [ng] and i € C,, 4, we have » ., INg(al)NYH| < 2(14]261—)16)(%0_

Thus we conclude that for all H € H there exist partitions X¥,... X2 Y .. YH

zH, .., ZF, AT of V(H) such that A¥ = {a{’,... all'} is a 3-independent set of H and
such that (X1)3.5_1*(X6)3.5_1 and (X8)3_5.1 hold.
Note that 37, ff = [V(H)| —|A"| = n—no. This with (3.5.8) implies that for each
H € H, we have
@ —n)= > (ni—naf"). (3.5.12)

iel* ielr\I*

The following claim determines the number of vertices that we will redistribute via D.
Claim 3.5.2. For each H € H, there exists a function f7 : E(D) — [n"/"n] U {0} such that
for each i € [r], we have

S M- Y0 G =

JEND (i) JEND(9)
Proof. By (X5)35.1, for each i € I*, we have nf —n; > 0 and for each i € [r] \ I*, we have

n; —nf > 0. Thus by (3.5.12), there exists a bijection g from

Ui x @ —n to | i} x [ —aff

el* ie[r]\I*
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For all i € I* and m € [pff — ny], let g% (i,m) =: (¢ (i,m), g4 (i,m)) and let P, be a
directed path from i to gf(i,m) in D, which exists by Claim 3.5.1. As g*! is a bijection, for
each i € [r], we have
0 iftiel”,
[(gr) 7 (@) = (3.5.13)

n; —n  otherwise.

7

For each ij € E(D), we let
FAGg) = |{(,m) " e I',m e A} —ny] and ij € E(Py)}].

Then for each ij € E(D), we have

5 (X5)3.5.1
PG < [ UL < Bl =nel| < ko0 < gt
iel*

Note that for any i € I* and m € [nff —n;], the path P, starts from a vertex in /* and ends
at [r] \ I*. Thus for each i € [r|] we have

DRI D )
JENL(4) JENL (3)
=|{(@'\m) :menf —ny,i=i eI} —|{G ,m):7 €I, menf —ny, g (i',m) =i}

0— (g1") () (3:2.19) nH —n; otherwise.

This proves the claim. O]

For each H € H, we fix a function f¥ satisfying Claim 3.5.2. For each ij ¢ E(D), it
will be convenient to set f(ij) := 0.

We aim to embed vertices in X7 UY? U ZH into V,;UU, UU]. As |V;UU; UU!| = n,,
by (3.5.7), it would be ideal if | X UY;# U ZF| = n; and | XF| = n/. However, (X5)351
only guarantees that this is approximately true. In order to deal with this, we will use D

and f to assign a small number of ‘excess’ vertices u € X} into U; when ij € E(D). The
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definition of D will ensure that the image of u still has many neighbours in Vj, for all ' € Ng(i).

Step 3. Packing the graphs H[Y U Z# U AH] into G[U] U F’. Now, we aim to
find a suitable function ¢’ which packs {H[Y? u ZH U AH] : H € H} into G[U] U F'.
In order to find ¢, we will use Lemma 3.3.6. Moreover, we choose ¢’ in such a way
that we can later extend ¢’ into a packing of the entire graphs H € H. One important
property we need to ensure is the following: for any vertex z € X JH which is not embedded
by ¢, and any vertices yi,...,y; € Ng(z) N (YH U ZH) which are already embedded by
¢, we need Ng(¢'({y1,...,v:i})) NV, to be large, so that x can be later embedded into
Ne(¢'({yr,---,ui})) NV, For this, we will introduce a hypergraph Ny which encodes
information about the set Ny (z) N (Y# U ZH) for each vertex z € X#. In order to describe

the structure of G and H more succinctly, we also introduce a graph R’ on [2r] such that
E(R)={ij:(i—r)(j—r)€ E(R)ori(j —r) € E(R)}.

For all i € [r] and H € H, let Viy, := U; and X} := V¥ U Z. Note that (X3)35; and

(A4)35.1 imply that for each H € H,
H[YH" U ZH] admits the vertex partition (R',0,...,0, X2 ,,...,X3]), and

G is (e¥/°° (d®))*-regular with respect to the partition (R', Vi, ..., Va,).

(3.5.14)
For all H € H and x € X, let
ere = Np(2) \ X7 FL5 N (1) 0 28,
Let Ny be a multi-hypergraph on vertex set Z with
E(Ny) = {en, v € Nyp(Z")yn X"}, (3.5.15)

and let fy : E(Ny) — [r] be a function such that for all z € X, we have that z € Xﬁ{(e,”)'
Then A(Ny) < A and Ny has edge-multiplicity at most A. Note that, as Ny is a multi-
hypergraph, there could be two distinct vertices  # 2’ € X ¥ such that ey, and e,/ consists

of exactly the same vertices while fy(ep.) # fu(emar).
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Our next aim is to construct a function ¢’ which packs {H[Y# U Z% U A"]: H € H}

into G[U] U F” in such a way that the following hold for all H € H.
(®'1)351 For each e € E(Ny), we have |[Ng(¢'(€)) N Vi) = Vi@l
(®'2)55.1 for each v € V(G), we have |{H € H:v € ¢'(HYH U ZA]}| < eV8n/r,
(®'3)35,1 for alli € [r] and H € H, we have ¢/(V; U Z[) C U;, and
(®'4)351 ¢'(AH) =14,

Claim 3.5.3. There exists a function ¢' packing {H[Y? UZHUAH"] . H € H} into GIUJUF’
which satisfies (®'1)351—(P'4)351.

Proof. Let ¢} : ) — 0 be an empty packing. Let Hy,..., H, be an enumeration of H. For
each s € [k], let

= (Hy[Y" U 2% U AT 5 € 5]},

Our aim is to successively extend ¢ into ¢/, ..., ¢/ in such a way that each ¢/ satisfies the

following.
(®'1)5 5, ¢, packs H?® into G[U]U F’,
(©2)35, for all 8" € [s] and e € E(Nu,,), we have |[N(d;(e)) N Vi, (o] 2 dM‘VfHS, @l
(®'3)3 5, for each v € V(G), we have |{s' € [s] : v € ¢, (Hy[YHs U ZH])} < e¥/en/r,
(9'4)3., for all i € [2¢]\ [r] and ' € [s], we have ¢/(X;") C V/,

(®'5)5 5, for all &' € [s] and £ € [ng], we have (b’s(afs') = vy,

(®'6)5 ., for all s’ € [s], t € [T] with Hy € H;, we have ¢ (Hy[YHs U ZHs U AHv]) C GIU]U

UUEV{) F’I_ﬁ,t’
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Note that ¢} vacuously satisfies (®'1)%;,—(®'6)3-,. Assume we have already con-
structed ¢/, satisfying (®'1)5 . ,—(9'6)5 5 ; for some s € [k — 1] U {0}. We will show that we

can construct ¢ ;. Let
G(s) = G\ ¢y (H).

For all £ € [ng] and a,*** € APs+1 e first let
laf ) == vy (3.5.16)

For each i € [2r] \ [r], let

o1/8

”—1}.
.

v = {ve Vi l{s' € [s] v € gl (Hy[Y ™ U 2]} > ©

Note that

H
(‘I’/Aiim Zs’e[s |Y U Z (X5)3‘5A1<(X6)345A1 921/3-1/8 (322) el/op

= /50 q = r
T

|V;Pad| (3.5.17)

Let ¢ € [T] be such that H,,, € H,. For all i € [2r] \ [r] and 2 € X", we let

Ng; v, (ve) \ (N sy (0e) UVPH) if 2 € NHS+1(afS“) N X+ for some £ € [ny),

B, =
Vi \ vbad otherwise.

We will later embed z into B,. Note that if z € Ny, (a)**™"), then = ¢ Ny, (ag*™*) for any
0 € [no) \ {¢} as A”=+1 is a 3-independent set in H,,;. Also, if x € NHS“(az sy X

then by (X2)351 we have i —r € C,, . Thus in this case

‘Bz| Z dF{) t Vl(Ug) d¢/ Hs) ﬁF’ Vi(vf) _ H/;bad’
(A7)3.5.1,(3.5.17)
> (1_ )05|U7, 7’| —dqy HS)OF’ tV( Z) 1/571/7“

(X2)3.5.1,(®'4)5 5.1,

(2'5)35.1,(2'6)5 5.1
Ve A dalUnd = YD N e Y = o
s'€[s],Hy €Hy
(X8)3.5.1 2(1 + d)e(?-[ )
> (1= Ui | = 2T = o
(3.5.11) 1+d)(1—-2v/3
> (1 B d)Oé|U7;,r| . ( + )( V/ )Oén —81/571/7’ > 062|Ui7r‘ _ O42|‘/i‘-

Tr
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Ifz ¢ NHsH(afs“) for any ¢ € [ng], then |B,| > |Vi| — [V,"*d| > (1 — £'/10)|Vj]. So, for all

e [2r]\ [r] and = € X+ we have
B, CV;, and |B,| > o?|Vj|. (3.5.18)

For each i € [r], let P; := (), and for each i € [2r] \ [r], let P, := X/™*'. We wish
to apply Lemma 3.3.6 with H[Y s+ U ZHs+1] playing the role of H and with the following

objects and parameters.

| Wi e | B,

object /parameter | G(s) ‘ R | V; THo

playing the role of € ‘A‘n‘a‘d‘ M ‘ f ‘ I} ‘Am

¢ = |v

Let us first check that we can indeed apply Lemma 3.3.6. Note that for each ij € E(R’)

with i € [2r] \ [r],

Vi V) = eV V) =AY {s' €[] : v e g (H Y Uz
veV;
(®'3)55.1 (Ad)3.5.1
> (Vi Vi) = A Vil e > (1= eY)eq(Vi, V).

Thus (3.5.14) with Proposition 3.3.3 implies that (Al)ss¢ of Lemma 3.3.6 holds. Again
(3.5.14) implies that (A2)336 holds. Conditions (A3);36 and (A4)s3¢ are obvious from
(Al)35.1, (X3)351 and the definition of Ny, ,,. Moreover, (3.5.18) implies that (A5)3 3¢ also
holds. Thus by Lemma 3.3.6, we obtain an embedding ' : Hy [V 7+t U ZHs01] — G(s)[U]

satisfying the following.
(P1)5tY For each x € Ys+1 U ZHs+1 we have ¢/(z) € B,,

(P2)355} for each e € E(Np,,,), we have [Ne(¥'(e)) N Vi, @] = (d°/2)%(V},

s+1 (e) ‘ :

Let ¢, := ¢sUy Uy, By (3.5.16) with the definitions of G(s) and B,, this implies (®'1)5t",
and (®'6)5t!. As d < 1, (P2)5t! implies (®2)5t!, and the definitions of B, and V;** with

(P1)5tY and (9'3)5, imply (®'3)5tY. Property (P1)5t! and (3.5.18) imply that (®'4)5th
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holds. (®'5)5tY is obvious from (3.5.16). By repeating this for each s € [k — 1], we can obtain
our desired packing ¢’ := ¢/.. Since (®'1)5,,—(P'5)5, imply that ¢’ is a packing of H" into

G[U] U F’ satisfying (®'1)351—(P'4)35.1, this proves the claim. O

Step 4. Packing a 3-independent set W C X into U U Uj. In the previous step, we
constructed a function ¢ packing {H[YH U Z# U AH#]: H € H} into G[U] U F'. However,
for each graph H € H, the set ¢/(H) only covers a small part of U. Eventually we need to
cover every vertex of G with a vertex of H. Hence, for each H € H we will choose a subset
WH C X*H of size exactly |U U Up| — |[Y7 U ZH|, and we will construct a function ¢” which
packs {H[WH]: H € H} into G[U U Uy]. As later we will extend ¢/ U ¢” into a packing of H
into GU F U F’, we again have to make sure that for any r € X \ W# with neighbours
in W1, there is a sufficiently large set of candidates to which x can be embedded. In other
words, the set V; N N(¢”(Ng(xz) N WH)) needs to be reasonably large. To achieve this, we
choose W to be a 3-independent set, so |[Ng(x) N WH| < 1, and we will map each vertex
y € Ny(x) N WH into a vertex v which has a large neighbourhood in V;.

Accordingly, for all H € H and i € [r], we choose a subset W/ C X satisfying the

following;:

(W1)35.4 Uiem WH is a 3-independent set of H,

)

(W2)35, for each i € [r], we have

W) = 3P = L, ] 201 gt 02D 02D 00 (2,
T

=

(W3)35.1 Uie[r} WHNNZ(ZH) = .
Indeed, the following claim ensures that there exist such sets W/,

Claim 3.5.4. For all H € H and i € [r], there exists WH C XH such that (W1)35,~(W3)35.1
hold.
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Proof. We fix H € H. Assume that for some i € [r], we have already defined W, ... WH,

satisfying the following.

(W5 U, efim1] WH is a 3-independent set of H,

(W'2)52!, for each ' € [i — 1], we have |W, |:|X§I|—n’:%,

(W3)i5h Unepy W' N N7 (ZT) = 0.

Consider W/H = X\ (Usei-1g NZ(WH) U N4(ZH)). Note that (X6)35, implies that

7

INZ(Z7)| < 8A+209n, Also, (X3)35, with (X6)s5., implies that

U Mwihnxlfcnyzhu  |J N,

i'€li—1] i'€Ng (9)N[i—1]

Thus

W > X - IR - Y N
i/ €Ng (i)Nfi—1]

2kA*n (X5)3.5.;(3.5.10)

Tr -

(W2)52h

[XH] = BATT20%, AN (X = ).

Thus, by Lemma 3.3.21, W/# contains a 3-independent set W/ of size | X| —n/. Then, by
the choice of WH  (W'1); . ,—(W’3)% ., hold. By repeating this for all i € [r] in increasing
order, we obtain WH satisfying (W'1)5 . ,—(W’3); - |, and thus satisfying (W1)35,—(W3)35..

This proves the claim. O]

For all H € H and i € [r], let WH = UZGT]W and W; := gy Wi, where we
consider the sets V(H) to be disjoint for different H € H. Note that for all H € H and
€ [r], Claim 3.5.2 implies that 0 < 37, v+ ;) FH(i7) < rn'/n. For all H € H and i € [r], we

choose a partition W WHU WP of WH such that

WA = U] and (WPl = " (i) < . (3.5.19)
JENF (i)
Such partitions exist by (3.5.6), (W2)35; and the fact that n < ¢ <« 1/T. For each

S € {F,D,U"}, we let WHS .=, ., W/°.

7
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We now construct a function ¢” which maps all the vertices of W into Uy U (U \
¢ (YH U ZH)) for each H € H. (In Step 6 we will then apply Theorem 3.3.15 to embed all
the vertices of X \ W into V.) We will define ¢ separately for WHF WHD and WHU',
We first cover the ‘exceptional’ set Uy with W7U". (3.5.19) implies that for all H € H and
i € [r], there exists a bijection ¢{/; from WY to U], We let ¢y = Upen Usep 907 Then
(3.5.6) implies the following.

For all i € [r] and H € H, the function ¢, is bijective between WY and UL

Moreover, for all z € W and j € N (i), we have dg,y,(¢f,(x)) > d*n’.
(3.5.20)

We intend to embed the neighbours of W into Uje No(i) V;. Thus it is natural to embed
WH into U; and make use of (A6)35,. This is in fact what we will do for WZ-H’F. However,
the vertices of W/™" will first be mapped to a suitable set of vertices in UP(i) € U; for
J € N (i). The definition of D and f# will ensure that the remaining uncovered part of each
U; matches up exactly with the size of each WJH’F.
By (3.5.5), for all ij € E(D) and H € H, we have
UPG\ G022 arn) — oz T s
For i € [r] and H € H, we let
b= S0 A RalA)
JEND (4)

Thus, for each i € [r|, we can apply Lemma 3.3.18 with the following objects and parameters.

object/parameter | k | r

j € lr]

meu|u UPGNS T2 || G |y

playing the role of | s | r d

i € [s] ‘ A ‘je [r] A j ‘ € ‘ mi,j ‘ > jelr] My

(Recall that f¥(ji) = 0 if ji ¢ E(D).) Then we obtain sets U/t C U; satisfying the
UH

following for each i € [r], where U := e Uig-

(U1)3s.1 For each j € [r] and H € H, we have |U/L| = f¥(ji) and UL C UP(j) \ ¢/ (Y7 U Z1),
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(U2)35.4 for j # 5 € [r] and H € H, we have UL N UL, =0,
(3.5.2)
(U3)35.1 for each v € Uy, we have |{H € H :v € UF} <n'/20|H| < n'/?n.

Now for all H € H and i € [r|, we partition WZ-H’D into Wﬁ’D, ce I/Vg’D in such a way that
|WHD| = fH(Zj) Clearly, this is possible by (3.5.19). Thus (Ul)35; implies that for all
.. H7D . H/ - H . .. .

(4,7) € [r] x [r] and H € H, we have [W; 77| = f%(ij) = [U;i]. Thus there exists a bijection
t WP = URL Let o) = Uy epwe Unen @4%;- Then, for ij € E(D), H € H and

€ Wﬁ’D, we have that
by) €U CUP @\ ¢/ (YT UZY).

Thus, (3.5.4) with (Ul)35, and (U2)35; implies the following.

For each H € H, the function ¢, is bijective between U W = WHP and

i€[r]

Uicn UHR. Moreover, for all z € WP and j' € Ng(i), we have dg v, (9h(x)) >

d3n’ /2.
(3.5.21)

Now, for all H € H and i € [r]

, (8.5.10),(W2)3 5.
WL = W Y — wt) G D IR )
JEND (4)
(X5)3.5.1 Z fH (i) YH| ]ZZH| —n' = U]
JEND ()
Claim 3.5.2 — N G - Y - 2E ) - (U
JENL (9)
(3,5.7),g1)3<5.1 |Uz| . ’YzH‘ _ |ZzH| _ Z ‘Ug (¢ ‘23‘5.1 ‘Ui \ (¢/(Y1H U ZZH) U UZH)’.

JENp (1)

7

Thus, there exists a bijection ¢ from WHE to U\ (¢ (Y U ZT) UUF). Let ¢ =
Uren Uie[r] gb’gf Then (A6)351 implies the following.
For all H € H and i € [r], the function ¢4 is bijective between W, and U;\ (¢ (YU
ZIYUUM). Moreover, for allz € W™ and j € Ng(i), we have dpy, (@5 (x)) > d*n’. |
(3.5.22
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We define
" == ¢l U P UPE and ¢, = ¢' U ¢". (3.5.23)
Then (3.5.20), (3.5.21) and (3.5.22) imply that ¢” is bijective between W and (U U Uj) \
¢ (Y7 U Z"), when restricted to WH for each H € H. Thus, we know that
¢, is bijective between WH UYH U ZH U A” and U U Uy UV} for each

(3.5.24)
HeH.

Moreover, (3.5.20), (3.5.21) and (3.5.22) imply that the following hold for all i € [r] and
HeH.

(®.1)351 If x € W/, then ¢.(z) € U and, for each j € Ny (i), we have dpy, (¢.(x)) > d®n’,

(9,2)55,1 if 2 € WP then ¢,(z) € U and, for each j € N(i), we have dav; (¢«(2)) > d*n'/2,

($,3)351 ifx € WiH’UI, then ¢.(z) € Uy and, for each j € Ng(i), we have dg v, (¢.(2)) > d*n’.
Furthermore, ($'2)351 with (U3)35; implies that

(®,4)351 for u € U, we have |[{H € H :u € ¢ (YH U ZT UWHD)} < 280 /7,

Step 5. Packing the graphs H[X"” \ W#]| into internally regular graphs. Note
that (X6)35, and (W3)35, together imply that Ng(WH)n (YH u ZH U A®) = () for each
H € H. This implies that ¢, is a function packing {H[Y# U Z# UWH U A" : H € H}
into G[U U U] U F'. We wish to pack the remaining part H[X \ W] of each H € H into
G[V] by using Theorem 3.3.15. In order to be able to apply Theorem 3.3.15, we first need to
pack suitable subcollections of H into internally g-regular graphs. More precisely, for each
t € [T, we will partition H; into Hy1, ..., Hew and apply Lemma 3.3.14 to the unembedded
part of each graph in H;,- to pack all these parts into a graph H;,, on |V/| vertices which is
internally g-regular. We can then use Theorem 3.3.15 to pack all the H;,, into G[V] in Step
6.
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For this purpose, we choose an integer ¢ and a constant ¢ such that 1/7T < 1/¢ <
¢ < o and let

o 6(7‘[) (A2)3.5.1 (1 _ 1//2)0471'
v (1-35T(k—1)gn/2 = T (3.5.25)

By using (3.5.1) and (3.5.11), for each ¢ € [T], we can further partition H; into Hy1, ..., Hew

such that for each (t,w’) € [T] x [w], we have
e(How) = (1= 38)(k — 1)qn/2 + 2An = (1 — 3¢ £ £/2)(k — 1)qn/2. (3.5.26)
By (Al)s51, we have
Hiw| <20k — 1)g < (g€)*/% (3.5.27)

For all H € H and i € [r], let X# := X7\ WH and X := Uiep X Thus, by (W2)s5, we

have | X| = n/ for all H € # and i € [r]. Moreover, for all ¢ € [T], w' € [w] and ij € E(Q),

we have
> e(HIX! X[) = S (e XX £ AW+ W)
HE,th,w/ HEHt,w’
(X4)3.5.1,(W2)3.5.1 2e(H)+Pn  3An\ (3.5.26) ,
= + ="(1-3=+ . (3.5.2
H;( TR (1-36 £ ¢&)gn'. (3.5.28)

When packing H[X"] and H'[X"'] (say) into the same graph Hy s, we need to make sure
that the ‘attachment sets’ of H[X*] and H'[X"'] are not mapped to the same vertex sets in
Hy.y. The attachment set for H[X*!] contains those vertices of X which have a neighbour
in WHUYH U ZH U AR (more precisely, a neighbour in W# U Z#) and is defined in (3.5.29).
Keeping these attachment sets disjoint in H,,, ensures that we can make the embedding of
cach X ¥ consistent with the existing partial embedding of H without attempting to use an
edge of F or G twice. For all ¢ € [r] and H € H, we let
N = NEWP) N X and N = Ny (zPowtP o ) wit ) n X
i €Ng(4) i €Ng(4)

(3.5.29)
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Note that (W1)35.1, (W3)351 and the fact that WHE WD, WHU" form a partition of WH

implies that
NIEA NG =g, (3.5.30)

Moreover, if z € N/ then z has a unique neighbour in WH¥. Similarly, if € N/, then
either o has a unique neighbour in WP U WUV or z has at least one neighbour in Z7 (but

not both). Note that for i € [r] and H € H,

[N U NS < Yo AW+ W)+ A(ZE |+ ()
#E€NQ(3)
Wahsan (3519 27K
2)3.5.1,(3.5.19
' 2 20kn F AN 09 L A2 T < T30 (3.5.31)
”
For each i € [r], we consider a set X; with |X;| = n’ such that Xi,..., X, are pair-
wise vertex-disjoint. For each (t,w’) € [T] x [w], let Hyw = {H} 0, ... ’Hgg;w’)}_ Then,

by (3.5.27), (3.5.28), (3.5.31) and (X3)35.1, we can apply Lemma 3.3.14 with the following

objects and parameters for each (t,w’) € [T] x [w].

. ~ 777 ~H’ ’ -~ HJ 2] H) e
object /parameter Htjw/[XHtvw’] X, X |0 | q|&|T723 | ht,w') | N, "™ UN, " Q
playing the role of L; ‘ Xf ‘ Vil n ‘ q ‘ 3 ‘ € ‘ s ‘ sz ‘ R

Then for each (t,w’) € [T] x [w], we obtain a function ®, ,, packing {H[X"]: H €
H: .} into some graph H,,, which is internally ¢-regular with respect to the vertex partition
(Q,)AQ, . ,)?r). Moreover, for all i € [r| and H € H;,, we have Cbuw/()?iH) — X, and for

distinct H, H' € H; .y and i € [r], we have
Oy (NPFUNIOY N @y (NF U N = g, (3.5.32)

Note that for all (t,w’) € [T] x [w], the graphs H;,, have same vertex set X;. For all

i€[r]
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i € [r]and (t,w') € [T] x [w], we let

L= | @) and M= | P (NO). (3.5.33)

HEM, HeH,

Then by (3.5.30) and (3.5.32) we have
L UM CX; and LY nMS™ =0 (3.5.34)
By (3.5.27) and (3.5.31), for all (t,w’) € [T] x [w] and i € [r]

L3 UMY | < ¢PT o < T (3.5.35)

Step 6. Packing the internally regular graphs H,,, into G[V]. In the previous step, we
constructed a collection H := {H11,...,Hrp,} of internally g-regular graphs on |V/| vertices.
We now wish to apply Theorem 3.3.15 to pack H into G [V]. However, our packing needs to
be consistent with the packing ¢,. Note that for each H € H the set W7 UYH u ZH# U AH
consists of exactly those vertices of H which are already embedded by ¢.. Thus by (X3)35.1,
(X6)35.1, (3.5.29) and (3.5.33), it follows that whenever z € X; is a vertex of Hy,, such that
the set @, 1 (z) of pre-images of z contains a neighbour of some vertex which is already
embedded by ¢,, then x € Lf’wl U Mf " Thus in order to ensure that our packing of H is
consistent with ¢,, for each i € [], each (t,w') € [T] x [w] and each y € L U M we will
choose a suitable target set A;w’ of vertices of G[V]| and will map y into this set.

For all (t,w') € [T] x [w], i € [r] and any vertex y € L" U M, (3.5.32) implies
that there exists a unique graph Hé’“’/ € H:w and a unique vertex xz’“’/ € NZ-Hélw/’F U NiH 56
such that y = @, (25""). Let

/ /

Y (W U Zm) = N YA (WH Oy H Gz G AR,

taw' t,w
Jy . (.T H;’wl

t,w
= gt Ty (

v
The final equality follows from (X6)35,. For all (t,w’) € [T] x [w], i € [r] and any vertex

y e LY UM™ we define the target set

w’ . w' H;’w/,F

gt . ) VPO OV iy e N
o tw' e b H;’w/,G
Ne(o.(J,)) NV, if zp® € N; )
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Note that AZ’“" is well-defined as (3.5.30) implies that exactly one of the above cases holds.

Moreover, the following claim implies that these target sets are sufficiently large.
Claim 3.5.5. For all (t,w') € [T] x [w], i € [r] and any vertez y € L™ U M"™ | we have
taw’ 5A
A, | = 2|V,

Proof. We fix (t,w') € [T] x [w], i € [r] and a vertex y € LM U M*". For simplicity, we
write H := H™', z:= 25" and J := J:'. Then (3.5.30) implies that exactly one of the
following two cases holds.

Case 1. z € NZH’F. In this case, (W1)357 and (W3)35, imply that

(X3)3.5.1

J = Ny(z) nWHF Ny(zyn | J W™ and |J]=1.

i"E€Ng (i)
Then by (®,1)35.1, we know |Aty’w/\ > dsﬂ/ﬂ.
Case 2. z € N 1In this case, by (3.5.29) and (W3)s51, we have exactly one of the
following cases.
Case 2.1 z € N} (Zf). 1In this case, Ny(z) N WH = @ by (W3)35,. Thus we have
J = Ny(z)NZH". Then (3.5.15) and (®'1)35, imply that |AZ’“’/| = |Na(¢'(er2)) Wig(en )| =
43|V,
Case 2.2 2 € NL(WHPUWHU") In this case, again (W1)35.1, (W3)351 and (X3)35, imply
that
J = Ny(z) 0 (WHP uWHV)y = Np(@)n | WP uw™) and [J] =1,
0]

Thus ($,2)351 or (9,3)35.1 imply that |AZ’“}/| > d*|V;| /2. This proves the claim. O
Let S := [T] x [w]. Let A be the graph with

V() ={GEy):5esye |J Lium}

seS,ieg(r]

=
=
i

{GEy):5#TeSie ] (uy) € (LT x L) UM x M) and 6,(J5) N .(J}) # 0}
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Note that A is the graph indicating possible overlaps of images of distinct edges when
we extend ¢,. Indeed, if (5,y) and (f,y’) are adjacent in A, there are z € NHg(ng) and
2 € Nyr (@ Z,) such that ¢.(z) = ¢.(2'). If we embed y and 3’ onto the same vertex, then the

two edges 22 and x! ,z would be embedded onto the same edge of G U F'. Thus we need to

ensure that ¢(y) # o(v').
Note that for all (5,y) € V(A) and £ € S, we have

{Ey) e NG} < Wy Hy € Hpo.(Jp) N 6u(T;) # 0}
< Y Wy:HyeHzveo ()}

vEP«(J3)

< Y Y KzeV(H):ved(Ny(x)}

ved. (J5) HEM;

< Y ) HzeNyla):v=0¢.(a)),2' € V(H)}
vEP.(JF) HEM;
(3.5.24)

(3.5.27)
< DD AN < AP < ¢’ (3.5.36)

vee. (J5) HEH;

(Here the third inequality holds by the definition of J;j, and the definition of :vg,, the fifth
inequality holds since (3.5.24) implies that there is at most one 2’ € V(H) with ¢.(z') = v,
and the sixth inequality holds since |J;| < [Nyz(z5)] < A.)

Consider any (5,y) € V(A). Then similarly as above we have
(3.5.2)
< Y Y HeeNu@):v=oua)o’ e VIH} < AH| < o'n
vEP«(J3) HEH

This shows that
A(A) < a'Pn! < d®®n'/2. (3.5.37)

We can now apply the blow-up lemma for approximate decompositions (Theorem 3.3.15)

with the following objects and parameters.
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object/parameter | G[V] Vi X; Hiw | S=[T)x[w] | ¢ | T7Y?| Q
playing the role of | G Vi X; H; [s] q € R
object/parameter ro [ LY UMM AYY | a d°A v A |
playing the role of r Wf Al d do Q@ A n

Indeed, (A3)35,1 implies that (Al)s 315 holds, and (A2);3315 holds by the definition of Hy .
Claim 3.5.5 and (3.5.35) imply that (A3);.315 holds, and (3.5.35), (3.5.36) and (3.5.37) imply
that (A4)33.15 holds. Moreover, (3.5.25) implies that the upper bound on s in the assumption
of Theorem 3.3.15 holds.

Thus by Theorem 3.3.15 we obtain a function ¢* that packs {Hz: § € S} into G[V/]

and satisfies the following, where ¢% denotes the restriction of ¢* to Hj.
(©*1)35.1 for each §€ S and y € U;¢, Li U M;, we have ¢%(y) € A?,
(®*2)35.1 for any (5,y)(t,y') € E(A), we have that ¢%(y) # Pr(y')-

We let
¢ = o (| &) U o

ses
Recall from Step 3 and (3.5.23) that ¢, = ¢/ U ¢”, and that ¢’ packs {H[YH U ZH U AH] .
H € H} into G[U] U F’. Since each @5 is a packing of { H[ X \ WH]: H € Hz} into Hy and
¢* is a packing of { Hy : § € S} into G[V], we know that ¢ packs { H[ X7\ W] : H € H} into
G[V]. Moreover, (®*1)55.1, (9*2)351 with the definitions of A% and A imply that ¢ packs
{H[X"\WH WHF] . H € H} into F, and ¢ packs {H[X"\ WH WU . H € H} into
G|V, U], and ¢ packs {H[ X7\ WH WHD U ZH] . H € H} into G[V,U]. Thus, we have the

following.

o(|J En(Y*uZ"UAM) CEU)UEF),  ¢(|] En(X"\WH)) C Eq(V),

HeH HeH
o(|J Ea(X\WH W) C Ep(V,U),  o(|J Ex(XT\WH W) C Eq(V,Uy),
HeH HeH
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o(|J Eu(X"\WH WHP U ZM)) € Eq(V,U). (3.5.38)
HeH

Also, it is obvious that the restriction of ¢ to V(H) is injective for each H € ‘H. As
GIUIUF',G[V], F,G[V,Uy] and G[V, U] are pairwise edge-disjoint, we conclude that ¢ packs
H into GU FUF’. Moreover, by (3.5.2) we have A(¢(H)) < A|H| < 4kAan/r, thus (Bl)s354
holds. By (3.5.38) and (®'4)35 1, for u € U, we have

(@44)3.5.1 9AL/B
dsonc(u) < A{H e Hiue g, (YT uzE oWy <7 222

r
Thus (B2>3.5.1 holds.

Finally, for i € [r], by (X3)35.1, (X6)35.1, (3.5.38) we have
esne(Vi, U U Up) < 3 A(\ZH| Y W Y ‘WJ,H,DD

HeH jENQ(i) jENQ(i)

(3.5.2),(X6)3.5.1,
(3.5.6)23.5.19) 2kAan

<4A3k3n0'9n +2(k — 1) *n/r + (k — 1)7“771/7n>

,
21/2p2
<
= 7’2 9
which shows that (B3)s5 holds. O

3.6 Proof of Theorem 3.1.2

The proof of Theorem 3.1.2 proceeds in three steps. In the first step we will apply the results
of Section 3 to construct suitable edge-disjoint subgraphs G, s, Gy, F} s and F] of G, where G
is a Kj-factor blow-up spanning almost all vertices while G}, F} ; and F] are comparatively
sparse. In the (straightforward) second step, we simply partition A into collections H; s such
that the e(H; ) are approximately equal to each other. Finally, in the third step we will pack

each M, into Gy, UGy U Fy U F] via Lemma 3.5.1.

Proof of Theorem 3.1.2. Let o := §—max{1/2,0,%} > 0. By (3.3.6), we have § > 1—1/k+o

for any k& > 2. Without loss of generality, we may assume that v < ¢/2. For given v,0 > 0
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and A, k € N\{1}, we choose constants ng, &, n, M, M’, ¢,T, q,d such that ¢ | T and

0<1l/mykn<K1I/M<I/M<e< /T /g é{<Kd<rv,0,1/A1/k<1/2.
(3.6.1)

Suppose n > ng and let G be an n-vertex graph satisfying condition (i) of Theorem 3.1.2.
Furthermore, suppose H is a collection of (k,n)-chromatic n*-separable graphs satisfying
conditions (ii) and (iii) of Theorem 3.1.2. We will show that H packs into G. Note that we
assume H to consist of n%-separable graphs here (instead of n-separable graphs). This is more

convenient for our purposes, but still implies Theorem 1.2.

Step 1. Decomposing G into host graphs. In this step, we apply Szemerédi’s regularity
lemma to G and then apply Lemma 3.3.16 to obtain a partition of V' (G)\Vj into T reservoir

sets Res;, where V) is the exceptional set obtained from Szemerédi’s regularity lemma. We

/

use Lemma 3.3.13 to obtain an approximate decomposition of the reduced multi-graph R!_ .

of G into almost Kj-factors and partition these factors into 7' collections. Each such almost
Kj-factor () gives us an e-regular @-blow-up G in GG, and we modify it into a super-regular
(Q)-blow-up. We also put aside several sparse ‘connection graphs’ Fj s and F}, which will be
used to link vertices in the reservoir and exceptional set with vertices in the rest of the graph.
These connection graphs will play the roles of /' and F” in Lemma 3.5.1. We also put aside a
further sparse connection graph G; which provides additional connections within V(G) \ V4.

We apply Szemerédi’s regularity lemma (Lemma 3.3.5) with (€2, d) playing the role of

(¢,d) to obtain a partition Vj,..., V! of V(G) and a spanning subgraph G’ C G such that
(R1) M’ <+ < M,

(R2) [Vg] < e’n,

(R3) |V/| = V]| = (1 £ &*)n/r for all 4, € ['],

(R4) for all v € V(G) we have dg/(v) > dg(v) — 2dn,
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(R5) e(G'[V/]) =0 for all i € [r],
(R6) for any 4, j with 1 <7 < j <+, the graph G'[V}, V]] is either empty or (£, d; ;)-regular

for some d, ; € [d, 1].
Let R’ be the graph with

V(R') =[r] and E(R') :={ij : eq:(V},V!) > 0}.

PRI
Note that for 7, j € ['], ij € E(R') if and only if G'[V], V]] is (¢2,d; ;)-regular with d; ; > d.

Now, we let R/ .. be a multi-graph with V(R] ;) = [’] and with exactly

multi multi

qij = (1 —6d)d; jq] (3.6.2)

edges between i and j for each ij € F(R'). Note that R/ has edge-multiplicity at most q.

multi

For each i € [r'], we have

eq/(V/, V) (R3),(R5) 2wev’ (1 —6d)qder v, (v)
dp (i) = 1—6d)g(——2 -1 +¢2 = g : +e2qr’ + 0/
Rmulti(z) jejvz()t( 6 )q( |‘/Z/”V7/’ € )J |‘/’L/|2 g QT' T
R/ (A
s ﬁ S (de(v) + 10dn) + 2" 2 (Hulfl,fl)q” +or B (5 + ¥ (3.6.3)

veV/

We apply Lemma 3.3.13 with R/ ', e k,0,d* v/5,T and ¢ playing the roles of

multi’
Gn,e k 0,6, v, T and g, respectively. Then, by permuting indices in [r’] if necessary, we ob-
tain Ry C R and a collection Q := {Q11,...,Q1x/7:Q21, -, Qr/r} of edge-disjoint

= *lmulti

subgraphs of R, such that the following hold.

(Q1) Ryt = R gil[r]] with (1 —&?)r’ <r <7/, and k| r,

(Q2) k= (67”/165}152)‘17"/ = (5*”16/31:5)‘” and T | &,

(Q3) for each (t,s) € [T] x [k/T], Q¢ is a vertex-disjoint union of at least (1 — &)r/k copies

of Kk,

(Q4) for each i € [r], we have [{(¢,s) € [T] x [k/T]:i € V(Qis)} > K —er,
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(Q5) for all t € [T] and 4,5 € [r], we have |{s € [x/T]:j € Ng, (i)} < 1.

For each t € [T], let Q; := {Q¢1,...,Qer/r}. We define R := R'[[r]] to be the induced
subgraph of R’ on [r]. Note that each Q; s € Q can be viewed as a subgraph of R. Moreover,
for fixed ¢ € [T, (Q5) implies that the graphs Qy 1, ..., Qy /1 are pairwise edge-disjoint when

viewed as subgraphs of R. Also, we have

(3:6:3),(Q1)
0(R) 2 q '0(Rype) — (' =7) = (§—d?)r. (3.6.4)

We need to modify the sets V/ later to ensure that we obtain appropriate super-regular
Q¢ s-blow-ups. For this, we need to move some ‘bad’ vertices in V; into Vj. For each i € [r]

and each j € Ng(i), we define

Ui(j) = {v €V s dgrvi(v) # (di + )|V} and U] :={v e V/:|[{j:veUlj)} >er}.(3.6.5)
By Proposition 3.3.4 and (R6), for any 7 € [r] and j € Ng(i) we have

U:(j)l <5e’n/r and U] < (er)™" > |Ui()] < Ben/r. (3.6.6)

JENR(i)
For each i € [r], we let V; := V/\ U/ and V;:=VjUlJ,_ 1U’UUZ 1V
By (R2) and (R3), for each i € [r], we have

(1 —=6e)n/r < |Vi| <n/r and [Vo| < 6en. (3.6.7)

We apply Lemma 3.3.16 with G', V(G)\ Vo, {Vi};_, and T playing the roles of G, V, {V;}7_,
and t to obtain a partition {Resy, ..., Resp} of V(G)\V} satisfying the following, where we
define V' := V; N Res;.

(Resl) For all € [T] and v € V(G), we have dg/ v (v) = Lde v, (v) £ 0?3,
(Res2) for all ¢ € [T] and i € [r], we have V| = (4 + & )|V| (L0 M,

Tr

(Res3) for all t € [T, we have |Res;| € {| %2 |, | 2=l | 41},
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Next, we partition the edges in G’ \ Vj into Ly, ..., L7 which will be the building blocks
for the graphs G, F' and F’ in Lemma 3.5.1. Let p; := 1 —6d and p; :==d for 2 < j < 7.
Apply Lemma 3.3.17 with G’ \ Vo, {Vi' :i € [r],t € [T]}, {(Vi, V) :ij € E(R)} and 7 playing
the roles of G, U, U" and s. Then we obtain a decomposition Ly, ..., L; of G'\Vj satisfying
the following for all t € [T], i € [r], £ € [7] and v € V(G) \ Vp:
(L1) dy, v (v) = peder vy (v) £ 0?3,

(L2) for each ij € F(R), we have that L,[V;, V;] is (4¢2, d; ;pe)-regular.

Let G” := L;. For each t € [T], let G, F; and F}" be the graphs on vertex set V(G) \ V; with

t—1 T
E(G}) = U E(Ly[Rest, Resy]) U U E(Ls[Res;, Resy]) U Lo[Resy], (3.6.8)
=1 t'=t+1
t—1 T
E(F,) = U E(Ly[Res;, Resy]) U U E(Ls[Res, Resy)),
=1 t'=t+1
t—1 T
E(F}) = | ) E(Ls[Res,, Resp)) U | ) E(Lq[Res,, Resy)).
=1 t'=t+1

For each t € [T, we let Fy1,..., F, /v be subgraphs of I} such that for all s € [x/T
F.= | U EVVi\ Resy. (3.6.9)
i€V (Qr.s) jENG, , (i)
Note that (Q5) implies that for s # s’ € [k/T], the graphs F; and F} s are edge-disjoint.
Thus G",GY,...,Gy, Fia, ..., Fror, FY, ..., Fp form edge-disjoint subgraphs of G"\ Vi,. The
edges in G will be used to satisfy condition (A4); 51 when applying Lemma 3.5.1. The graphs
F, ; will play the role of F' in Lemma 3.5.1. The graphs F;* will be used in the construction
of the graph F}, which will play the role of F’ in Lemma 3.5.1.
We will now further partition the edges in G” = L;. Note that for each ij € E(R),
by (3.6.2) we have ¢; ; = |d; jp1¢q]. To further partition G”, we apply Lemma 3.3.17 for each

ij € E(R) with the following objects and parameters.
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object/parameter | @[Vi, Vi) | (VA V)t (01} [ {00V} | a1 | 1/idema) | 1= gy (digmra)

playing the role of

G ‘ u ‘ u’ ‘ s ‘pi:i<s ‘ Ds

Then by (L2), for each ij € E(R), we obtain edge-disjoint subgraphs E}

qi,;+1
Z7j, L] EZ,]

of G"[V;, V] satisfying the following for all ¢t € [T] and ¢ € [g; ;]:
(E1) for each v € V;, we have dEiZyj’Vjt('U) = mda,/%z(v) + n?/3,

(E2) Ef; is (8¢%,1/q)-regular.

Recall that we have chosen a collection Q@ = {Q1 /7, ..., Qrx/r} of edge-disjoint subgraphs
of Ry satisfying (Q1)—(Q5). Let ¢ : E(Runui) — N be a function such that

¢(ERmulti (ia J)) = [Qi,j]'

For all ij € E(R'), there are exactly ¢; ; edges between ¢ and j in Ry, so such a function ¢

exists. Now, for all t € [T], s € [k/T], we let

Go= |J ELV. (3.6.10)
ijEE(Qt,S)
Since Q is a collection of edge-disjoint subgraphs of R,,;;; and El1 iy Ef’]’ 1 are edge-disjoint

subgraphs of G”, the graphs G, ..., Gr,/r form edge-disjoint subgraphs of G”.

We would like to use G, \ Res; and Res; to play the roles of G| } Vi] and U in

i€lr
Lemma 3.5.1, respectively. However, Ef ; \ Res; is not necessarily super-regular and the sizes
of V; \ Res; are not necessarily the same for all ¢ € [r]. To ensure this, we will now choose an
appropriate subset V;-t’s of V; which can play the role of V; in Lemma 3.5.1.

For all t € [T], i € [r] and s € [k/T], let

(T'—1)n  10en

Vi(t,s) :=V; \ (Res; U | U | Ui(j)) and m := T . (3.6.11)
JENG, (1)
Then by (3.6.6), (3.6.7) and (Res2), we have
0 < |Vi(t,s)] — m < 15en/r. (3.6.12)
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For all t € [T] and ¢ € [r], we apply Lemma 3.3.18 with the following objects and parameters.

object/parameter | x/T ‘ 1| sel[r/T] ‘ Vi \ Res; | Vi(t,s) ‘ 20e | |Vi(t,s)| —m ‘ d

playing the role of | s r

1€ [S] ‘ A ‘ Ai,l ‘ € ‘ m; 1 ‘ 1/2

Then we obtain sets W (¢, 1), ..., W;(t,k/T) such that W;(¢, s) C V;(t, s) with |V;(t,s)\

Wi(t, s)| = m and for any v € V; \ Res;, we have
[{s € [x/T] : v € Wit,s)}| < 102k /T. (3.6.13)
For all t € [T)], s € [/T] and i € V(Qy,), let V.= Vj(t,s) \ Wi(t, s). Let

ts'—VbUU U 7)\ Resy) U UWtsU U (Vi \ Resy).

i€(r] ]GNQt S ) i€]r] €[r\V(Qt,s)

Then the sets V;*, {V;"* - i € V(Qy..)}, Res, form a partition of V/(G), and for each i € V(Q, )

7

(T'—1)n  10en

b8 = = — n 6.14
12 m T —— and (3.6.14)
(3.6.6),
(3.6.7),(3.6.12)
|V0t’s| < 6en + (k — 1)7"(55271/7’) + 15en + (r — |V (Q4s)|)n/7
(Q3)
< 25¢en. (3.6.15)

We now further modify V}' into Uit > which can play the role of U; in Lemma 3.5.1. For
all (t,s) € [T] x [k/T] and i € V(Qy5), we define
vr=viN | i adupr= | viu U U v
i€Ng, (i) i€l\V(Qu,s) i€V (Q1.) j€NG, , (i)

Note that for each (¢,s) € [T] x [k/T], the sets {U>*} U{U* :i € V(Q,)} form a partition

of Res;. By (3.6.6), for all (t,s) € [T] x [x/T] and i € V(Q¢s), we have

1+8 (3.6.6) (Q3)
UL = V)| 4+ 5ke2n fr S ) (L8 Us°l < > V| +5ke’n < 2en. (3.6.16)

Tr ,
i€[r\V(Qt,s)

188



Note that for all (¢,s) € [T] x [k/T] and i € V(Qy,), we have U, V*® C V;. Thus
Proposition 3.3.2 with (3.6.14), (3.6.16), (L2) and the definition of p, implies that for all
(t.s) € [T] x [5/T], ij € E(R[V(Qus)]) and i'j" € E(Qy,s), we have

GiU?*, U;’S], Gy [V, U] and F [V, U;,’S] are (e, (d*))"-regular. (3.6.17)

Moreover, for all (¢,s) € [T] x [5/T), ij € E(Q;,) and u € U;*, we have

(3.6.9),(3.6.14),(Res2) (L1),(Res1)
dFt,s,Vj’s(u) > dFt[Vit,Vj\Rest](u) —-n/(Tr) > d-dgy,(uw)—3n/(Tr)
(3.6.5),(3.6.6) (Res2)
> d-(di;—e)|V;| —4n/(Tr) > (2d°/3)|V; \ Res:|.(3.6.18)

We obtain the third inequality from the definition of U* and the fact that ij € E(Q.).

Claim 3.6.1. For all t € [T],s € [k/T] and ij € E(Q:s), the graph GtvS[Vf’s,V}t’s] is

(eY/2,1/q)-super-reqular.

Proof. Let € [q;;] be such that G,,[V;,V;] = Ef;. Such an ¢ exists by the definition
of G;s and the assumption that ij € E(Qs). Note that for ' € {i,j} we have V;S -
Vi with |V;*| = m > 1Vi| by (3.6.14). Thus Proposition 3.3.2 with (E2) implies that
GralV)"™, Vjt’s] = Ef; Ve, Vjt’s] is (16e2,1/q)-regular.

Consider v € V**. By the definition of V;"*, we have v ¢ U;(5). Thus

(3.6.6),(3.6.12) 16en 16en
th,s7‘/jt,s (U) = dEfﬂj,Vj\Rest (U) :l: ” = Z dEig,j’Vjt/ (U) :l: ”
t'e[TI\{t}

(E1) 1 17en (L) 1 18en

- DRSS
velriy TP velriqy 1

Rest)  (T'—1) 19en 65 (T —1) o , 19en

= dav.(v) £ — = d; ; + Vi £ |U:|) +
it o T (i £ £ 10)

6. T—-1 30 6. 1
(326) ( )n + EN (36:14) (Ei51/2)|v}t7s|'

qT'r r

Similarly, for v € Vjt’s, we have dg;, yts(v) = (%i51/2)|V2t’8|. Thus G [V}’ Vjt’s] is (e1/2,1/q)-

super-regular. This proves the claim. O
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For all t € [T], v € Res; and s € [k/T], we know that
S L1 S
dosee®) = o (@) £ VAV ST (- dgye(o) £02) £ [V V2
Le[T)

(ResD),(36.14) der v (v) +2n/(Tr).

This implies that

{i € V(Que) : dgy yee () = Pm/2}] 2 i € V(Qu) : deri (v) > dIVi[}

> da® =Wl =dn oy v, 0% 12 1k o/ (3.6.19)

max;e) |Vi

We obtain the final inequality since 6(G') > (6 — € —2d)n > (1 — 1/k + 30/4)n by (i) and

(R4). This together with (3.6.17) and Claim 3.6.1 will ensure that G s U G} can play the role
of G in Lemma 3.5.1, and (3.6.18) shows that F}; can play the role of F' in Lemma 3.5.1.

The remaining part of this step is to construct a graph which can play the role of F’

in Lemma 3.5.1. F’ needs to contain suitable stars centred at v whenever v € V*. (For each

t, the number of stars we will need for v in order to deal with all s € [k/T] is bounded from

above by (3.6.23).) For all t € [T], s € [k/T], v € V(G) and u € Resy, let

L) :={s €[k/T]:v eV} and () := L) N]s],
Ji(u) = {s' € [x/T] :uec U} and  j/(u) := |Jp(u) N [s]]. (3.6.20)
Note that if v € Vp, then L(v) = [x/T]. If v € V;\Res; for some i € [r], then s € I;(v) means

v e W(t,s)U UjGNQt,S(i) Ui(7) YUUieppviq.,) Vir- Together with the fact that Uj C Vo and so

v ¢ U/, this implies

(@) , , :
|2 (v)] < {s € [k/T]:veWit,s)} +{jelr]:veli()}+ s elr/T]:i ¢ V(Qis)}
(3.6.5),(3.6.13),(Q4) (Q2)
< 1062k )T + er +er < 20?7, (3.6.21)

Similarly, for u € V;', we have

)| < 1 el ue UG+ s € o/T] i € VO 2% 4 er < 20r. (3.6.22)
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For each v € V(G) \ Resy, let

(I1+d)r ifvely,
Ky 1= (3.6.23)

r/2R)] itV
K, is the overall number of stars centred at v that we will construct for given ¢t. Note
that for all ¢ € [T] and s € [k/T], no edge of E(G'[Vy, Res;]) belongs to any of the graphs
Gis, Gr, Fy, Ff. Now for each t € [T], we use these edges and edges in F}* to construct stars

F/(v,s) centred at v, and subsets C!

0,87

Cytoof [r] for all v € V(G) \ Resy and s € [k,], in
such a way that the following hold for all ¢ € [T] and v € V(G) \ Res;.

(F'1) For each s € [r,], we have C},, C Cl, |C! | =k — 1, |C)t] = k and R[C] ~ Ky,

v,8)

(F'2) for each i € [r], we have [{s € [r,] : i € Cyl}| < (k+1)q,

V-t
then dpy(y vt (v) > | ; 5

(F’'3) for each s € [k,], if i € C"

v,8)

Claim 3.6.2. For allt € [T], v € V(G) \ Res; and s € [k,], there ezist edge-disjoint stars

F/(v,s) C G'[Vh, Res;]UF} centred at v, and subsets C* ,, C*t of [r] which satisfy (F'1)~(F'3).

v,s7 ~v,s

When applying Lemma 3.5.1 in Step 3 to pack H; s, we will only make use of those stars

F!(v, s) with v € V;**, but it is slightly more convenient to define them for all v € V(G)\ Res;.

Proof. First, consider ¢t € [T] and v € V. Then we have

(4),(R4),
Resl) 1 Res3),(3.6.7
deres, (0) = 3 darye(v) " =D dory,(v) £ e (ReSLBST (5 1 3d) | Resy|. (3.6.24)

i€(r] i€(r]

q'dG’,Vit (v)

For all v € Vg, t € [T] and i € [r], let ¢ ; := LTJ Consider edge-disjoint subsets
Efj,i(l), o Eﬁl(qf”) of Ec/({v}, V!) such that ]Ef”(q’)] = é\Vﬂ for each ¢ € [qu] Let R!

be an auxiliary graph such that

V(R,) ={(i,¢) :i € [r],qd €lg,]} and E(R)):={(i,d)(j,q") :ij € E(R),q € [a,].q" € la,,]}-
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Note that each (i,q') corresponds to the star Ej;(¢') centred at v. We aim to find a
collection of vertex-disjoint cliques of size k — 1 in Rf, which will give us edge-disjoint stars

in Fq ({v}, Res;). From the definition, we have

. (Res2) (1 £ 10€)dgr res, (v)q (3.6.24) (0 & 4d)q|Resy| ( Res3)
VR =D ¢, = 70T T T ) (6 + 5d)qr. (3.6.25)

i€(r]

Then, for (i,¢') € V(R!), we have

) ] (Res2) Tq7”
dry ((i,9')) 2 q Z der v (V)IVS ™ t—dg(i) > Z deryi(v) —r

1+7e)n
JENR() TN S
Tqr
> 4T V= STV = dey v )-
> el 2 V= V= de o)) =7
JENR() jelr]

(3.6.4),(3.6.24),
(Res2),(Res3) (3.6.25) 1

> (26 —2d*? — 1)gr —r > (1 — —+ o)|[V(R!)|. (3.6.26)

Here, the final inequality follows from (3.3.6). By the Hajnal-Szemerédi theorem, R!, contains

at least
(3.6.25) (Q2) ~
VRO (k-1 —1 > @ —5d)qr/(k—1)—1 > (1+d)r“E g,
vertex-disjoint copies of Kj_1. Let Ci(1),...,C!(k,) be such vertex-disjoint copies of Kj_;

in R:. For each s € [k,], we let

Flos)= |J EL) and  C) ={i:(i,q) € V(Ci(s)) for some ¢ € [g}]}.
(1,4 )EV(CL(s))

By construction |C! | = k — 1 and R[C} ] ~ K}_;. Moreover, the maximum degree of the

multi-(k — 1)-graph {C} _ : s € [s,]} is at most ¢. Thus we can apply Lemma 3.3.22 with

{Ci. s € [m]}, R, qand k playing the roles of F, R,q and k. Then we obtain sets C!

satisfying the following for all s € [k,] and i € [r]:

Crt go*t

v,87

R[C}Y] ~ Ky, and [{s € [r,] 11 € Oyl < (k+1)q. (3.6.27)

It is easy to see that for all s € [k,] the sets C

v,8?

Cyt and the stars Fy(v, s) satisfy (F'1)~(F'3).
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Now, we consider t € [T] and v € V;\Res; with i € [r]. Let S := Ng(i)\{j : v € U;(j)},
and for each j € S}, let E ; be a subset of Epx({v},V}) with |E} ;| = $|V]t| We can choose
such a star as there exists ¢ € {6,7} such that

(L1) (Resl),(Res2) 1
dpz vi(v) = dp, vi(v) = d-dG/J/jt(v):i:nz/?’ =" (1x10e)d - d;j|V]| > 5\1/;\.

Here, the third equality follows since v ¢ U;(j). By (3.6.4), (3.6.5) and the fact that v ¢ U],
we have |S!| > (0 — 2d"/?)r. Thus

S(RISL) > I8!~ (r—8(R) = (1 - ISk

Again, by the Hajnal-Szemerédi theorem, R[S!] contains (at least) x, = [r/(2k)] vertex-
disjoint copies of Kj_;. Denote their vertex sets by C’ijl, e ,C’;Hv. We apply Lemma 3.3.22
with {0575 : 8 € [ky]}, R, 1 and k playing the roles of F, R, q and k respectively, to extend
each Cf , into a Cy! with R[C}{] ~ K} and such that [{s € [r,] : i € Cpl}| < k+ 1 for
each i € [r]. For each s € [k,], let F{(v,s) := UjeC;S B} ;. Again, it is easy to see that for
all s € [r,] the sets C} ,, Oy and the stars F/(v, s) satisfy (F'1)~(F’3). This proves the

claim. O

Altogether we will apply Lemma 3.5.1 £ times in Step 3. In each application, we want
the leaves of the stars that we use to be evenly distributed (see condition (A8)s35.1). This will
be ensured by Claim 13. More precisely, for each v € V(G) \ Res;, our aim is to choose a

permutation 7 : [k,] — [k,] satisfying the following.

(F'4) For all t € [T), i € [r] and s € [k/T], we have C(t,s,i) < e*/°n/r, where C(t,s,i) :=

{veV)®:ie C’:’fr%(s,) for some ¢ with (if(v) — DT+ 1 < ¢ <7 (v)T},

(F'5) for all t € [T], s € [x/T] and t' € [T], we have that
*,t
Uuevot’s Cv,wf,((if(v)—l)T—i—t’) - V(Qt,S)'

Recall from (3.6.20) that i (v) counts the number of s’ € [s] for which v € Vot’sl. The number

C(t, s,1) is well-defined because if(v) < k,/T for all v € V(G) \ Res; by (3.6.21).
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Claim 3.6.3. For each t € [T] and each v € V(G) \ Res;, there ezists a permutation

b (ko] = [Ko] satisfying (F'4)—~(F'5).

v

Proof. We fix t € [T]. We claim that for each s € [k/T] U {0} the following hold. For each

v € V(G) \ Res, there exists an injective map 7, , : [i§ (v)T] — [,] satisfying the following.
(F’4)t For all i € [r] and ¢ € [s], we have

{ve Vit ieC!

Uﬂ't

 for some s with (i{v) = DT 4+ 1 < s’ <il(w)T} < e¥°n/r,

(F'5)t for all £ € [s] and ¢’ € [T, we have that |J, eyt C (@) —Tre) S V(Qu)

Note that both (F'4)f and (F'5)j hold by letting 7}, : @ — 0 be the empty map for all
v € V(GQ) \ Res;. Assume that for some s € [k/T — 1] U {0} we have already constructed
injective maps 7, , for all v € V(G) \ Res; which satisfy (F'4), and (F'5)}. For each v € |

we consider the set

A, = {5 € R\ 7 ([G@)T]) : O3 € V(Quarn)}.

Then we have

)

3
|v§

|Au| Ry = 4 ()T = (k+1)q(r = [V(Qrs11)1)
21),(Q3)

> min{d - x,7/(2k) — 20T} — (k + 1)ger > r/(4k).  (3.6.28)

|_|

(3.6

We choose a subset I, C A, of size T uniformly at random. Then (F’2) implies that for each

i € V(Qisy1) we have

Plic | J ] < (k+ 1)gT/|Ay| < 10k>T)r.

s'el,

Thus
6. >
E[[{ve Vy*™ie | Cril] <10qk;2T|Vt5+1|/r < Mo/ (2r).

S EI’U

A Chernoff bound (Lemma 3.3.1) gives us that for each i € V(Q;s41)

4/50 /(97))2  (3.6.15)
P[’{U c ‘/Ot,s+1 NS U C’;:;}‘ > E;4/'5>n/7,j| < exp(—w) < e,n/rs.

Tt 1 >
s'el, 2|VE) ° |
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Since 1 — |V (Qye11)|e™™"" > 0, the union bound implies that there exists a choice of I, for

cach v € V**' such that for all i € V(Qy.41), we have that

{oeVyttie | Oty <eonr (3.6.29)

s'el,

If v € V(G)\ (Res; U VY™™ (and thus 57 (v) = i5(v)), we let T, 411 = Ty, For each

v,

ts4+1
e Vy't

, we extend 7!, into 7!, by defining 7, : [i{*'(v)T] \ [i§(v)T] — I, in an

arbitrary injective way. Then, by the choice of I,,, we have that 7, ., is an injective map from
[i571 (v)T] to [k,] satisfying (F'5)%,,. Moreover, (3.6.29) implies that for any i € V(Qy 1),

we have

Hoe Vit ic C’*t for some s’ with (ift1(v) — )T +1 < & < (v)T}

( 6.29)
=|{veVtie U C’*t < onyr.

s'el,

+1()

This with (F'4); implies (F'4); ;. By repeating this, we obtain injective maps m, . satisfying
both (F'4); ;- and (F'5); ;.. For each v € V(G) \ Res;, we extend m, - into a permutation

7t i [ky] = [Ko] by assigning arbitrary values for the remaining values in the domain. It is easy

v

to see that (F'4); - implies (F'4) and (F'5); - implies (E'5). We can find such permutations

for all ¢t € [T]. Thus such collection satisfies both (F’4) and (F'5). O

For each t € [T, let
G=Giu |J Guand F/:= | U
s€[k/T)| vEV(G)\Rest sE[ky
Then Gy,...,Gp, Fy, ..., Fr, F|, ..., F} form edge-disjoint subgraphs of G. (Recall that G
was defined in (3.6.8), G;s in (3.6.10) and F) (¢, s) in Claim 3.6.2.)

Step 2. Partitioning H. Now we will partition H. Recall that the graphs in H are
n*-separable. By packing several graphs from H with less than n/4 edges suitably into a

single graph in a way that no edges from distinct graphs intersect each other, we can assume
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that all but at most one graph in H have at least n/4 edges, and that all graphs in H are
(k,n)-chromatic, n-separable and have maximum degree at most A. By adding at most n/4
edges to at most one graph if necessary, we can then assume that all graphs in H have at
least n/4 edges. Moreover, if e(H) is too small, we can add some copies of n-vertex paths to
‘H to assume that

en?® < e(H) (g) (1—-v)e(G) +n/4.
We partition H into & collections Hi 1, ..., Hr.yr such that for all t € [T] and s € [k/T], we

have

(Q2) en2 1 (1,(Q2) (1 — 2 k —1)n?
£ A <o) < 21— (@) + 280 T LZZLIEZ I (55

7/4
n
K K 2qr

Indeed, this is possible since e(H) < An for all H € H. Now, we are ready to construct the

desired packing.

Step 3. Construction of packings into the host graphs. AsGy,...,Gr, Fy,..., Fr, F|, ...

are edge-disjoint subgraphs of GG, and Hi1,..., Hr /7 is a partition of H, it suffices to show
that for each ¢ € [T], we can pack H; := Ujjg Hes into Gy U U eym Frs U Fy- (Recall from
(3.6.9) that Fy,,..., F, . r are edge-disjoint subgraphs of F;.) We fix ¢t € [T] and will apply
Lemma 3.5.1 /T times to show that such a packing exists.

Assume that for some s with 0 < s < /T — 1, we have already defined a function ¢
packing (J},_, ¢y into Gy U Fy U F} and satistying the following, where ®* := J},_, ¢s(Hy,s)

and j;(u) is defined in (3.6.20) and G7 is defined in (3.6.8).

1/9

(G1), For each u € Res;, we have dgsna:(u) < AkBii(un 4 ¢Psn

= qr r

(G2), for each i € [r], we have egsng: (Vi\V, Res;) < 51/:25"2,
(G3)s for &' € [k/T]\ [s], we have E(®*) N (E(Gy¢) U E(Fys)) =0,
(G4)s for v € V(G) \ Resy, " € [ky] with " > if(v) - T, we have E(®%) N F](v, 7 (s")) = 0.
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Note that (G1)o—(G4) trivially hold with an empty packing ¢ : ) — (. For each ¢’ € [T]
and v € V(G) \ Resy, let £(v,t') := 7! ((i5T (v) — )T +t'). (Note that £(v,t') is well-defined
since (it (v) — 1)T +t' < K, by (3.6.21).) Let

ve=|J v Uv= | urth (3.6.31)
1€V (Qt,5+1) 1€V (Qt,5+1)
G = (Gron[VIUG][V U Res)]) \ E(®*), and F':= | | | F/(v.¢(v,t)[{v},U].
vV st velT]
(3.6.32)

Note that (G3), implies that E(F,.) N E(®*) = §. Let R be the graph on vertex set

V(Qt7s+1) Wlth
E(R) = {ij € B(RIV(Qus+1)]) : |Be; (Vi, V) N B(®%)] < /%% /1%,

We wish to apply Lemma 3.5.1 with the following objects and parameters.

object /parameter G Fron[V,U] | F VJ’SH US’SH Vit’sJrl Uit’erl R
playing the role of G F F’ Vo Uy V; U; R
object /parameter | 1/q Hiorn d | Cryn | Chaway | L, ))[{0}, U] | & | A
playing the role of o' H d Cot Cht F, k A
object/parameter | Q¢ si1 n 25¢ o/2 T v/2 m
playing the role of Q n € o T v n’

Thus Res; \ Uy*™" plays the role of U = |J_, U; in Lemma 3.5.1, and ¢’ € [T] stands

for t € [T]. By (3.6.1), (3.6.14), (3.6.15), (3.6.16), (Q3) and (F’5) we have appropriate
objects and parameters as well as the hierarchy of constants required in Lemma 3.5.1. Now
we show that (Al)351—(A9)351 hold. (Al)ss; is obvious from Theorem 3.1.2 (ii) and our
assumption in Step 2. (A2)351 holds by (3.6.30). (A3)35.1 follows from Claim 3.6.1 and (G3)s.
Consider ij € E(R), then G[U*™, U] = Gy[UP**, UM\ B(®*). Since U**' C V; and
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U;’SH C Vj, the properties (3.6.16), (3.6.17) and the definition of R imply that
ec (UL U7 = epenc; (Vi V) 2 (L= e/P)eq (U7, U,
Thus, Proposition 3.3.3 with (3.6.17) implies that G[U"*™" U] is (£'/50, (d?))*-regular.

% » Mg

The calculation for G[V,***", U;’SH] is similar. Thus (A4)351 holds with the above objects

and parameters. By (G1), for each ¢ € [r] we have

AkAE(0)n Y9%n
€¢SﬂGj(‘/ita U V;) S Z < jt( ) -+

> (Q2),(3.6.22),(Res2) g1/9p,2
<
JelrN\i} veVy 7 "

- (3.6.33)

~

Thus, for i € V(Qis+1) = V(R), we have

ewsna: (ViI\VY', Resy) + easna: (Vi Usepp gy Vi)

dp(i) — dg(i) < +V(R)\ V(R)]

e1/102 /2
(G2)S7(Q2’(3‘6'33) 61/35712/7“2 + 51/9”2/r +er (Q<2) £1/100,.
= e1/102 /y2 =

This with (3.6.4) and (3.3.6) implies that (A5)354 holds for R. For all ij € E(Qts41) and
u e UM by (3.6.18), we have

(Res2),(3.6.14)
dFt 1, Vbt (u> = 2d2“/} \ Rest‘/‘g > dgm-
S IS

Thus (A6)s35, holds. By (F'1), (F’4) and the fact that 5™ (v) = i$(v) + 1 for all v € V;*,

(A8)3.5.1 holds (for Cy, s Ch g,y and all v € Vy*). Ifv € V', ' € [T] and i € L, )

N

v,t')?

C*,t

v, l(v,t!

V| = 5ke?n/r. Together with (F'3) this implies that dp (, iy peet (v) > (1= U /q.

) then (F'5) implies that i € V(Q;1). Moreover, by (3.6.16) we have |U*™| >

Thus (A7)s351 holds. To check (A9)35.1, note that for each u € US’SH, we have

(GD)s (Q2),(3.6.22)
darnes(u) < AkNG (u)n/(qr) + eYsn/r < S1/10,

Thus,
Ginds (U)

| | d
{i € V(Quora) : dgyron () = Pmy3Y| > [{i € V(Quan) t deg oo () > dPm/2}] — <52 6

(3.6.19) cl/10p, (3.6.14)
> (1-1/k+0/2)r — Em]6 > (1-1/k+a/3)r
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This implies that
i € V(Qrst1) : dé’v}t,erl(U) > d*m for all j € Ng, .., (i)} > o°r.

This shows that (A9)35.1 holds. Hence, by Lemma 3.5.1, we obtain a function ¢, packing

H; 541 into GU Fis1 U F’ and satisfying the following.

(B1) A@s(Heasn) < 4kAn/(qr),

(B2) for each u € Res; \ US*™, we have By oy oync () < 10AeY®n /r,
(B3) for each i € V(Q;s), we have ewsﬂ(%s“)méﬂ/f’sﬂ, Res;) < 10e/2n? /72,

Moreover, (G3), with (G4), implies that g1 (Hs41) is edge-disjoint from ®°, thus the map
Gsr1 = G5 U s, packs Uz,ill H:s into Gy U U://:T1 F, ¢ U F/. Now it remains to show that
¢s+1 satisfies (G1)g41-(G4)g41.

Consider any vertex u € Res;. If u € Uy*™, then we know that 75! (u) = j§(u) + 1.
Thus (G1), together with (B1) implies (G1)4y; for the vertex u. If u € Res, \ US*™", then
we have jit!(u) = ji(u), thus (G1), together with (B2) implies (G1),; 1.

For each i € [r], (3.6.31) implies that the vertices in V; \ (V;"*"' UV}) C V" are
not incident to any edges in ®**' N G}. Thus it is easy to see that (G2), together with
(B3) implies (G2)s41. As 1511 packs Hy 41 into GU Fiop1 U F’, (3.6.32) together with (G3);

implies (G3)s;1. Moreover, we have

i) +1 ifve vyt
i5 (v) otherwise.
Thus, (3.6.32) together with (G4), and the definition of ¢(v,?’) implies (G4)sy1.
By repeating this for each s € [x/T] in order, we obtain a function ¢,/ which packs
H; into G; U F;, U F{. By taking the union of such functions over all ¢ € [T], we obtain a

desired function packing H into U G, U F, U F] C G. This completes the proof. O
te[T)
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The proof of Theorem 3.1.5, follows almost exactly the same lines as that of Theo-
rem 3.1.2, with one very minor difference. Indeed, the only place where we need the condition
that G is almost regular is when we apply Lemma 3.3.13 in Step 1 to obtain (Q1)—(Q5).
Thus to prove Theorem 3.1.5, we only need to replace the application of Lemma 3.3.13 with

an application of the following result. (Note that (B1) below implies both (Q3) and (Q4).)

Lemma 3.6.1. Suppose n,q,T € N with 0 < 1/n < ,1/T,1/q,v < 1/2 and 0 < 1/n <
v<o/2<1andd =1/2+ o and q divides T. Let G be an n-vertex multi-graph with
edge-multiplicity at most q, such that for all v € V(G) we have dg(v) > qdn.

Then there exists a subset V' C V(G) with |[V'| < 1 and |[V(G)\V'| being even,
and there exist pairwise edge-disjoint matchings Fiq, ..., F\ ., Faq,..., Fr, of G with k =

WT;TP”)‘I” + 1 satisfying the following.

(B1) For each (t',i) € [T] x [k], we have that V(Fy ;) = V(G)\V’,
(B2) for allt' € [T] and u,v € V(G), we have |{i € [k] : u € Ng, (v)}] < 1.

The proof of the above lemma is very similar (but simpler) than that of Lemma 3.3.13.
We proceed as in the proof of Lemma 3.3.13 to obtain simple graphs G¢ with 6(G¢) > dn—v*n.
We let V' C V(G) be such that |V’| <1 and |[V(G)\V’| is even. The difference is that we
now apply the following result of [30] to each G¢ := G°[V(G)\V'] to obtain the desired
matchings MS: for every a > 0, any sufficiently large n-vertex graph with minimum degree

d > (1/2 + a)n contains at least (§ — an + /n(20 — n))/4 edge-disjoint Hamilton cycles.
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