895 research outputs found

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    An agent-driven semantical identifier using radial basis neural networks and reinforcement learning

    Full text link
    Due to the huge availability of documents in digital form, and the deception possibility raise bound to the essence of digital documents and the way they are spread, the authorship attribution problem has constantly increased its relevance. Nowadays, authorship attribution,for both information retrieval and analysis, has gained great importance in the context of security, trust and copyright preservation. This work proposes an innovative multi-agent driven machine learning technique that has been developed for authorship attribution. By means of a preprocessing for word-grouping and time-period related analysis of the common lexicon, we determine a bias reference level for the recurrence frequency of the words within analysed texts, and then train a Radial Basis Neural Networks (RBPNN)-based classifier to identify the correct author. The main advantage of the proposed approach lies in the generality of the semantic analysis, which can be applied to different contexts and lexical domains, without requiring any modification. Moreover, the proposed system is able to incorporate an external input, meant to tune the classifier, and then self-adjust by means of continuous learning reinforcement.Comment: Published on: Proceedings of the XV Workshop "Dagli Oggetti agli Agenti" (WOA 2014), Catania, Italy, Sepember. 25-26, 201

    Ensemble Models in Forecasting Financial Markets

    Get PDF

    Defining and applying prediction performance metrics on a recurrent NARX time series model.

    No full text
    International audienceNonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the RNN neural network

    A Framework for the Verification and Validation of Artificial Intelligence Machine Learning Systems

    Get PDF
    An effective verification and validation (V&V) process framework for the white-box and black-box testing of artificial intelligence (AI) machine learning (ML) systems is not readily available. This research uses grounded theory to develop a framework that leads to the most effective and informative white-box and black-box methods for the V&V of AI ML systems. Verification of the system ensures that the system adheres to the requirements and specifications developed and given by the major stakeholders, while validation confirms that the system properly performs with representative users in the intended environment and does not perform in an unexpected manner. Beginning with definitions, descriptions, and examples of ML processes and systems, the research results identify a clear and general process to effectively test these systems. The developed framework ensures the most productive and accurate testing results. Formerly, and occasionally still, the system definition and requirements exist in scattered documents that make it difficult to integrate, trace, and test through V&V. Modern system engineers along with system developers and stakeholders collaborate to produce a full system model using model-based systems engineering (MBSE). MBSE employs a Unified Modeling Language (UML) or System Modeling Language (SysML) representation of the system and its requirements that readily passes from each stakeholder for system information and additional input. The comprehensive and detailed MBSE model allows for direct traceability to the system requirements. xxiv To thoroughly test a ML system, one performs either white-box or black-box testing or both. Black-box testing is a testing method in which the internal model structure, design, and implementation of the system under test is unknown to the test engineer. Testers and analysts are simply looking at performance of the system given input and output. White-box testing is a testing method in which the internal model structure, design, and implementation of the system under test is known to the test engineer. When possible, test engineers and analysts perform both black-box and white-box testing. However, sometimes testers lack authorization to access the internal structure of the system. The researcher captures this decision in the ML framework. No two ML systems are exactly alike and therefore, the testing of each system must be custom to some degree. Even though there is customization, an effective process exists. This research includes some specialized methods, based on grounded theory, to use in the testing of the internal structure and performance. Through the study and organization of proven methods, this research develops an effective ML V&V framework. Systems engineers and analysts are able to simply apply the framework for various white-box and black-box V&V testing circumstances

    Bidirectional Learning for Robust Neural Networks

    Full text link
    A multilayer perceptron can behave as a generative classifier by applying bidirectional learning (BL). It consists of training an undirected neural network to map input to output and vice-versa; therefore it can produce a classifier in one direction, and a generator in the opposite direction for the same data. The learning process of BL tries to reproduce the neuroplasticity stated in Hebbian theory using only backward propagation of errors. In this paper, two novel learning techniques are introduced which use BL for improving robustness to white noise static and adversarial examples. The first method is bidirectional propagation of errors, which the error propagation occurs in backward and forward directions. Motivated by the fact that its generative model receives as input a constant vector per class, we introduce as a second method the hybrid adversarial networks (HAN). Its generative model receives a random vector as input and its training is based on generative adversarial networks (GAN). To assess the performance of BL, we perform experiments using several architectures with fully and convolutional layers, with and without bias. Experimental results show that both methods improve robustness to white noise static and adversarial examples, and even increase accuracy, but have different behavior depending on the architecture and task, being more beneficial to use the one or the other. Nevertheless, HAN using a convolutional architecture with batch normalization presents outstanding robustness, reaching state-of-the-art accuracy on adversarial examples of hand-written digits.Comment: 8 pages, 4 figures, submitted to 2019 International Joint Conference on Neural Network
    • …
    corecore