345 research outputs found

    Dynamic evolving neural fuzzy inference system equalization scheme in mode division multiplexer for optical fiber transmission

    Get PDF
    The performance of optical mode division multiplexer (MDM) is affected by inter-symbol interference (ISI), which arises from higher-order mode coupling and modal dispersion in multimode fiber (MMF). Existing equalization algorithms in MDM can mitigate linear channel impairments, but cannot tackle nonlinear channel impairments accurately. Therefore, mitigating the noise in the received signal of MDM in the presence of ISI to recover the transmitted signal is important issue. This paper aims at controlling the broadening of the signal from MDM and minimizing the undesirable noise among channels. A dynamic evolving neural fuzzy inference system (DENFIS) equalization scheme has been used to achieve this objective. Results illustrate that nonlinear DENFIS equalization scheme can improve the received distorted signal from an MDM with better accuracy than previous linear equalization schemes such as recursive‐least‐square (RLS) algorithm. Desirably, this effect allows faster data transmission rate in MDM. Additionally, the successful offline implementation of DENFIS equalization in MDM encourages future online implementation of DENFIS equalization in embedded optical systems

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    Dynamic evolving neural fuzzy inference system equalization scheme in mode division multiplexing for optical fiber transmission

    Get PDF
    The performance of optical mode division multiplexing (MDM) is affected by intersymbol interference (ISI) from nonlinear channel impairments arising from higherorder mode coupling and modal dispersion in multimode fiber. However, the existing MDM equalization algorithms can only mitigate the linear distortion, but they cannot address nonlinear distortion in the signal accurately. Therefore, there is a need to explore how ISI can be mitigated to recover the transmitted signal. This research aims to control the broadening of the MDM signal and minimize the undesirable distortion among channels in MMF by signal reshaping at the receiver. A dynamic evolving neural fuzzy inference system (DENFIS) equalization scheme has been used to achieve this objective. This research was conducted through a few steps commencing with modelling the MDM system in Optsim and collecting the data. Then, the signal reshaping parameters were determined. After that, DENFIS equalization, least mean square (LMS) and recursive least squares (RLS) equalizations were implemented and evaluated. Results illustrated that nonlinear DENFIS equalization scheme can improve MDM signal at a higher accuracy than previous linear equalization schemes. DENFIS equalization demonstrates better signal reshaping accuracy with an average root mean square error (RMSE) of 0.0338 and outperformed linear LMS and RLS equalization schemes with high average RMSE values of 0.101 and 0.1914 respectively. The reduced RMSE implies that DENFIS equalization scheme mitigates ISI more effectively in a nonlinear channel. This effect can hasten data transmission rates in MDM. Moreover, the successful offline implementation of DENFIS equalization in MDM encourages future online implementation of DENFIS equalization in embedded optical systems

    Adaptive Equalization for UWB communication System based on ANFIS

    Get PDF
    Ultra-wideband (UWB) communication systems cover enormous bandwidths that have strongly low-power spectral densities. At UWB communication system with high data rate, owing to multipath propagation, the spread delay in inter symbol interference (ISI) will raise the bit error rate (BER) considerably. ISI which is formed via the UWB channels can be removed by equalization, which is one of the most significant signal processing techniques. Furthermore, LMS algorithm represents a very efficient tool for determining adaptive equalizer coefficients values in communication systems, in spite of that, the LMS adaptive equalizer encounters response diminishing besides slow convergence rate. The current paper adopts an adaptive equalizer based adaptive neuron-fuzzy inference system (ANFIS). The simulation outcomes reveal that the convergence rates as well as accuracy of identification of ANFIS based algorithm are surpass the traditional LMS algorithm, moreover, simulation outcomes prove that ISI is effectively limited and the performance of the system is clearly improved.                                          &nbsp

    Bacterial Foraging Based Channel Equalizers

    Get PDF
    A channel equalizer is one of the most important subsystems in any digital communication receiver. It is also the subsystem that consumes maximum computation time in the receiver. Traditionally maximum-likelihood sequence estimation (MLSE) was the most popular form of equalizer. Owing to non-stationary characteristics of the communication channel MLSE receivers perform poorly. Under these circumstances ‘Maximum A-posteriori Probability (MAP)’ receivers also called Bayesian receivers perform better. Natural selection tends to eliminate animals with poor “foraging strategies” and favor the propagation of genes of those animals that have successful foraging strategies since they are more likely to enjoy reproductive success. After many generations, poor foraging strategies are either eliminated or shaped into good ones (redesigned). Logically, such evolutionary principles have led scientists in the field of “foraging theory” to hypothesize that it is appropriate to model the activity of foraging as an optimization process. This thesis presents an investigation on design of bacterial foraging based channel equalizer for digital communication. Extensive simulation studies shows that the performance of the proposed receiver is close to optimal receiver for variety of channel conditions. The proposed receiver also provides near optimal performance when channel suffers from nonlinearities

    A study on different linear and non-linear filtering techniques of speech and speech recognition

    Get PDF
    In any signal noise is an undesired quantity, however most of thetime every signal get mixed with noise at different levels of theirprocessing and application, due to which the information containedby the signal gets distorted and makes the whole signal redundant.A speech signal is very prominent with acoustical noises like bubblenoise, car noise, street noise etc. So for removing the noises researchershave developed various techniques which are called filtering. Basicallyall the filtering techniques are not suitable for every application,hence based on the type of application some techniques are betterthan the others. Broadly, the filtering techniques can be classifiedinto two categories i.e. linear filtering and non-linear filtering.In this paper a study is presented on some of the filtering techniqueswhich are based on linear and nonlinear approaches. These techniquesincludes different adaptive filtering based on algorithm like LMS,NLMS and RLS etc., Kalman filter, ARMA and NARMA time series applicationfor filtering, neural networks combine with fuzzy i.e. ANFIS. Thispaper also includes the application of various features i.e. MFCC,LPC, PLP and gamma for filtering and recognition

    A robust approach for acoustic noise suppression in speech using ANFIS

    Get PDF
    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.Web of Science66631030

    Development of Fuzzy System Based Channel Equalisers

    Get PDF
    Channel equalisers are used in digital communication receivers to mitigate the effects of inter symbol interference (ISI) and inter user interference in the form of co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of additive white Gaussian noise (AWGN). An equaliser uses a large part of the computations involved in the receiver. Linear equalisers based on adaptive filtering techniques have long been used for this application. Recently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and radial basis functions (RBF) have shown encouraging results in this application. This thesis presents the development of a nonlinear fuzzy system based equaliser for digital communication receivers. The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbolby-symbol maximum a-posteriori probability (MAP) equaliser based on Bayes’s theory. This MAP equaliser is also called Bayesian equaliser. Its decision function uses an estimate of the noise free received vectors, also called channel states or channel centres. The fuzzy equaliser developed here can be implemented with lower computational complexity than the RBF implementation of the MAP equaliser by using scalar channel states instead of channel states. It also provides schemes for performance tradeoff with complexity and schemes for subset centre selection. Simulation studies presented in this thesis suggests that the fuzzy equaliser by using only 10%-20% of the Bayesian equaliser channel states can provide near optimal performance. Subsequently, this fuzzy equaliser is modified for CCI suppression and is termed fuzzy–CCI equaliser. The fuzzy–CCI equaliser provides a performance comparable to the MAP equaliser designed for channels corrupted with CCI. However the structure of this equaliser is similar to the MAP equaliser that treats CCI as AWGN. A decision feedback form of this equaliser which uses a subset of channel states based on the feedback state is derived. Simulation studies presented in this thesis demonstrate that the fuzzy–CCI equaliser can effectively remove CCI without much increase in computational complexity. This equaliser is also successful in removing interference from more than one CCI sources, where as the MAP equalisers treating CCI as AWGN fail. This fuzzy–CCI equaliser can be treated as a fuzzy equaliser with a preprocessor for CCI suppression, and the preprocessor can be removed under high signal to interference ratio condition
    corecore