261 research outputs found

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    Application of Wavelets and Principal Component Analysis in Image Query and Mammography

    Get PDF
    Breast cancer is currently one of the major causes of death for women in the U.S. Mammography is currently the most effective method for detection of breast cancer and early detection has proven to be an efficient tool to reduce the number of deaths. Mammography is the most demanding of all clinical imaging applications as it requires high contrast, high signal to noise ratio and resolution with minimal x-radiation. According to studies [36], 10% to 30% of women having breast cancer and undergoing mammography, have negative mammograms, i.e. are misdiagnosed. Furthermore, only 20%-40% of the women who undergo biopsy, have cancer. Biopsies are expensive, invasive and traumatic to the patient. The high rate of false positives is partly because of the difficulties in the diagnosis process and partly due to the fear of missing a cancer. These facts motivate research aimed to enhance the mammogram images (e.g. by enhancement of features such as clustered calcification regions which were found to be associated with breast cancer) , to provide CAD (Computer Aided Diagnostics) tools that can alert the radiologist to potentially malignant regions in the mammograms and to develope tools for automated classification of mammograms into benign and malignant classes. In this paper we apply wavelet and Principal Component analysis, including the approximate Karhunen Loeve aransform to mammographic images, to derive feature vectors used for classification of mammographic images from an early stage of malignancy. Another area where wavelet analysis was found useful, is the area of image query. Image query of large data bases must provide a fast and efficient search of the query image. Lately, a group of researchers developed an algorithm based on wavelet analysis that was found to provide fast and efficient search in large data bases. Their method overcomes some of the difficulties associated with previous approaches, but the search algorithm is sensitive to displacement and rotation of the query image due to the fact that wavelet analysis is not invariant under displacement and rotation. In this study we propose the integration of the Hotelling transform to improve on this sensitivity and provide some experimental results in the context of the standard alphabetic characters

    Computer-Aided Breast Cancer Diagnosis

    Get PDF
    This research advances computer-aided breast cancer diagnosis. More than 50 million women over the age of 40 are currently at risk from this disease in the United States. Computer-aided diagnosis is offered as a second opinion to radiologists to aid in decreasing the number of false readings of mammograms. This automated tool is designed to enhance detection and classification. New feature extraction methods are presented that provide increased classification power. Angular second moment, a second-order gray-level histogram statistic, provides baseline accuracy. Two novel extraction methods, eigenmass and wavelets, are introduced to the field. Based on the Karhunen-Loeve Transform, eigenmass features are developed using eigenvectors to alter the data set into new coefficients. Wavelets, previously only exploited for their segmentation benefits, are explored as features for classification. Daubechies-4, Danbechies-2O, and biorthogonal wavelets are each investigated. Applied to 94 difficult-to-diagnosis digitized microcalcification cases, performance is 74 percent correct classifications. Feature selection techniques are presented which further improve performance. Statistical analysis, neural and decision boundary-based methods are implemented, compared, and validated to isolate and remove useless features. The contribution from this analysis is an increase to 88 percent correct classification in system performance

    Automated detection of breast cancer using SAXS data and wavelet features

    Get PDF
    The overarching goal of this project was to improve breast cancer screening protocols first by collecting small angle x-ray scattering (SAXS) images from breast biopsy tissue, and second, by applying pattern recognition techniques as a semi-automatic screen. Wavelet based features were generated from the SAXS image data. The features were supplied to a classifier, which sorted the images into distinct groups, such as “normal” and “tumor”. The main problem in the project was to find a set of features that provided sufficient separation for classification into groups of “normal” and “tumor.” In the original SAXS patterns, information useful for classification was obscured. The wavelet maps allowed new scale-based information to be uncovered from each SAXS pattern. The new information was subsequently used to define features that allowed for classification. Several calculations were tested to extract useful features from the wavelet decomposition maps. The wavelet map average intensity feature was selected as the most promising feature. The wavelet map intensity feature was improved by using pre-processing to remove the high central intensities from the SAXS patterns, and by using different wavelet bases for the wavelet decomposition. The investigation undertaken for this project showed very promising results. A classification rate of 100% was achieved for distinguishing between normal samples and tumor samples. The system also showed promising results when tested on unrelated MRI data. In the future, the semi-automatic pattern recognition tool developed for this project could be automated. With a larger set of data for training and testing, the tool could be improved upon and used to assist radiologists in the detection and classification of breast lesions

    Interpretable Radiomic Signature for Breast Microcalcification Detection and Classification

    Get PDF
    Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary dataset, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was discovered between the detection and classification signatures. The performance of the models was highly promising, with XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications classification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method for model introspection, enabled models' clinical validation. In fact, the most important features, namely GLCM Contrast, FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer

    A novel shape feature to classify microcalcifications

    Get PDF
    Clinical evident shows that the shape of mammographic calcification is an indicator of the pathology. Microcalcifications (MC) with rough shape are early signs of malignant breast cancer. This thesis proposed a shape metric to help radiologist in classifying regions of interest. Region growing and gradient vector flow algorithm are used to obtain the contour of MC to calculate the normalized distance signature. A three level wavelet decomposition with a Daubechies eight tap wavelet is used to provide a bandpass function and extract the desired shape feature of the MC. A comparison with previously used shape features such as compactness, moment, Fourier descriptors is provided. 58 malignant and 125 benign cases, totaling 368 individual MC, are tested by the proposed method and previously used shape features
    • …
    corecore