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ABSTRACT

The overarching goal of this project was to improve breast cancer screening protocols 

first by collecting small angle x-ray scattering (SAXS) images from breast biopsy 

tissue, and second, by applying pattern recognition techniques as a semi-automatic 

screen. Wavelet based features were generated from the SAXS image data. The 

features were supplied to a classifier, which sorted the images into distinct groups, such 

as “normal” and “tumor”.  

The main problem in the project was to find a set of features that provided sufficient 

separation for classification into groups of “normal” and “tumor.” In the original SAXS 

patterns, information useful for classification was obscured. The wavelet maps allowed 

new scale-based information to be uncovered from each SAXS pattern. The new 

information was subsequently used to define features that allowed for classification.  

Several calculations were tested to extract useful features from the wavelet 

decomposition maps. The wavelet map average intensity feature was selected as the 

most promising feature. The wavelet map intensity feature was improved by using pre-

processing to remove the high central intensities from the SAXS patterns, and by using 

different wavelet bases for the wavelet decomposition.  

The investigation undertaken for this project showed very promising results. A 

classification rate of 100% was achieved for distinguishing between normal samples 

and tumor samples. The system also showed promising results when tested on 

unrelated MRI data. In the future, the semi-automatic pattern recognition tool 
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developed for this project could be automated. With a larger set of data for training and 

testing, the tool could be improved upon and used to assist radiologists in the detection 

and classification of breast lesions.  
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1 INTRODUCTION

1.1 Thesis Outline

This thesis describes the semi-automatic pattern recognition system that was developed 

for breast cancer detection.  

Chapter one introduces the objectives of the paper. Background information on the 

limitations of current methods of breast cancer detection, as well as possible 

improvements through computer aided diagnosis (CAD) are discussed. Next, the small 

angle x-ray scattering (SAXS) data that was used for this project is introduced, 

including review of diffraction theory. Synchrotron technology, which was used to 

acquire the SAXS data, is also discussed.  

Wavelet analysis was used to parse useful information out of the SAXS data. A 

detailed introduction to wavelet analysis is presented in chapter two. Wavelets are 

introduced through a review of wavelet applications. An intuitive description is then 

followed by details on wavelet theory.

Pattern recognition techniques were employed in conjunction with the wavelet analysis 

in order to achieve a semi-automated CAD system. Chapter three focuses on pattern 

recognition. The chapter starts with an overview of some common pattern recognition 

approaches as well as an introduction to the original pattern recognition approach used 



2

for this project. Finally, a more concrete description of a generic pattern recognition 

system is given.

Chapter four is a detailed description of the methods used in the analysis of the data for 

this project. Chapter four shows how the generic pattern recognition system introduced 

in Chapter three was adapted into an original system designed to use wavelet analysis 

on SAXS data in order to create classifiable features.    

The results of the project are given in chapter five, the discussion is provided in chapter 

six, and the conclusions are given in chapter seven.  

1.2 Objectives
This project had three main objectives:

1. To develop a semi-automatic pattern recognition tool to assist radiologists in 

breast cancer detection.  

2. To investigate specialized SAXS data acquired using synchrotron imaging.

3. To investigate wavelets as a tool for parsing the SAXS data. 

1.3 Breast Cancer Detection
Breast cancer is the most frequently diagnosed cancer in Canadian women. In 2004, an 

estimated 21,200 Canadian women will be diagnosed with breast cancer and 5,200 will 

die of it. Since 1988, breast cancer incidence rates have risen by 10%, but death rates 
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have dropped by 19%.  The decline in death rates is believed to be due to the benefits of 

breast cancer screening programs and improved treatments [38].

When breast cancer is detected and treated early, the chances for recovery are better. In 

March 2002, the World Health Organization’s International Agency for Research on 

Cancer Working Group confirmed early detection and treatment are considered the 

most promising approach to reduce breast cancer mortality [4] [23]. The current

methods for early detection of breast cancer are clinical breast exams and 

mammography, which is a low-dose x-ray imaging technique. The Canadian Cancer 

Society recommends that all women between the ages of 50 and 69 have a screening 

mammogram as well as a clinical breast examination every two years. Although 

mammography is able to show changes in the breast up to two years before a patient or 

physician could feel them [41], the process is not foolproof.

Mammography is reported to have a sensitivity of 70% to90% [9]. That means that the 

false negative rate is between 10% and 30%. In other words, mammograms can miss 

over one quarter of all tumors [54] [39]. False negatives occur when the mammogram 

is interpreted as negative when cancer is present. False negatives occur most often with 

dense breasts that make the masses difficult to distinguish. Cancers are easier to detect 

in fatty breasts that are less dense [33].

False positives occur when a mammogram is read as abnormal when no cancer is 

present. Abnormal mammograms are followed up with biopsy procedures to determine 
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whether the abnormality is cancerous. The main problem with false positive results is 

that the patient is required to undergo medical procedures that would have been avoided 

with an accurate screening result. Elmore’s study showed that over a time period of ten 

years, one third of all women screened for breast cancer had an abnormal screening 

result that resulted in additional evaluation even though no cancer was present [15].  

Christiansen reported several factors that lead to false positive screening results.  

According to the study, false positives were seen more often in women who were pre-

menopausal, women who were post-menopausal and taking estrogen, women who had 

undergone previous biopsies, and women with a family history of breast cancer. The 

false positive rates were also dependent on the doctor. Some radiologists had higher 

rates of false positive diagnosis than others did. It was also reported that the false 

positive rate was higher if the radiologist did not compare the current mammogram to 

previous mammograms [10].

One method that has been suggested for reducing false positive rates is double reading 

of mammograms. Double reading requires the same mammogram to be analyzed by 

two different radiologists. Although double reading has been shown to increase the 

sensitivity of mammogram results by as much as 15%, it is a very time consuming and 

costly procedure [43]. CAD is an active area of study because it may provide the 

benefits of double reading in an efficient and cost-effective way [2]. The CAD system 

would take the place of one radiologist, saving considerable time and money.
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The goal of CAD systems is to reduce errors by drawing radiologists’ attention to 

possible abnormalities [20]. CAD systems could also be applied to biopsy screening.  

The goal of this project was to design a semi-automatic CAD system for identifying 

breast cancer from a SAXS image of a biopsy sample. The system could be used to 

assist radiologists in improving the accuracy of breast cancer diagnosis.  

1.4 Synchrotron Technology

The second objective for this project was to investigate the use of specialized data to 

improve the accuracy of breast cancer screening. The synchrotron is an exciting tool 

for collecting specialized data, and has been used to investigate problems in many areas 

including materials science, environmental science, crystallography, biology, and 

medicine. For this project, the synchrotron was used to collect SAXS images of breast 

tissue.

1.4.1 Synchrotron radiation properties

Synchrotron radiation exhibits certain properties that make it a valuable research tool.  

Some of these properties are high intensity, broad spectral range, and collimation. The 

synchrotron beam is millions of times more intense than a conventional medical x-ray 

beam. This allows for quick data collection. The spectrum is continuous, and ranges 

from infrared to x-ray wavelengths. The researcher can select the necessary wavelength 

for specific applications. Collimation means that the beam of light does not spread out, 
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as visible light would, allowing the beam to be focused on a precise area smaller than a 

micron.

1.4.2 Small angle x-ray scattering

Synchrotron radiation is an ideal source for collecting certain types of specialized data.  

One example is small angle x-ray scattering data. SAXS requires a monochromatic 

beam that is well collimated. These are two features inherent in synchrotron radiation.  

SAXS is a technique that is used to study non-crystalline biological materials such as 

proteins in solutions or biological fibers. SAXS can be distinguished from wide-angle 

x-ray scattering by the location of the scattering pattern of interest. SAXS looks at 

scattering near the primary beam, corresponding to structural features ranging in size 

from tens to thousands of angstroms [45]. Wide angle scattering typically originates 

from structural features less than 8 Å.  

In this project, breast tissue collagen provided the well-organized structure that 

produced the SAXS data. The basic unit of collagen is a triple-stranded helical 

molecule about 300nm long. In fibrous collagens, such as types I, II, III, and V, the 

basic molecules pack together side by side, forming fibrils with a diameter of 50 – 200 

nm. In fibrils, adjacent collagen molecules are displaced from one another by 67 nm 

[1]. Collagens are the major proteins present in the extracellular matrix. The 

extracellular matrix, or ECM, is an intricate network of macromolecules that fill up the 

spaces between cells in tissues. Diffraction patterns of normal breast tissue have shown 
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the ECM to contain both type I and III collagens [26]. Although the exact role of the 

ECM in cancer is not well understood, it has been shown that its structure is seriously 

disturbed in malignant breast lesions [42]. It has been shown by Pucci-Minafra [40], 

that the invasive tumour growth of breast carcinomas is characterized by drastic 

changes in the collagen scaffold. These changes are correlated with significant 

biochemical changes.

Structural changes in the collagen of the ECM caused by breast cancer allow collagen 

structure to be studied in order to detect the disease. Because of the high degree of 

order in collagen structures, they can be studied using x-ray diffraction. Changes in the 

diffraction pattern of a breast tissue sample would indicate damage to the collagen 

structure in the ECM, which could be linked to cancer.

1.4.3 Diffraction Theory

Diffraction occurs if x-rays interact with well-ordered structures. The x-rays scattered 

by the structures produce a characteristic diffraction pattern of constructive and 

destructive interference. The observable value in a diffraction pattern is the intensity 

described by equation 1.1.

2
22

)sin(
])12sin[()()()( 
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 (1.1)

The intensity, ITot, of the scattering vector, S, is a function of the number of atoms N and 

their location on a lattice a .
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For most values of aS 
 , the value of sin( aS 

 ) lies between 0.1 and 1.0 (or –0.1 and –

1.0), and sin[(2N+1) aS 
 ] oscillates approximately between 0 and 1. Therefore, the 

quotient falls in the range of –10 to 10 regardless of the value of N.

However, when sin( aS 
 ) approaches 0, the result is different. To see this, take the 

limit where 0 aS 
. If the series expansion of sin is used (sin(x)=x-x3/3!+…) and 

only the first term is kept, equation 1.1 becomes:

)()12()12()()( SfN
aS

aSNSfSFTot 



 





 (1.2)

In a crystal, N could be greater than106, so )(SFTot


becomes very large when 

0)sin(  aS 
 . This occurs each time aS 

 approaches an integer value. Compared to 

this sharp intensity peak, all other values of aS 
 are negligible.  

Only certain orientations of sample and detector, defined by the von Laue conditions, 

allow the intensity peaks to be observed. The von Laue conditions are described in 

equation 1.3:

aS 
 =h, bS


 =k and cS 

 =l where h, k and l = 0, +/-1, +/-2, … (1.3)

The von Laue conditions define three sets of planes, a , b


, and c , in reciprocal space.  

These planes are generated by successive values of the Miller indices, h, k, and l. One 
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set is perpendicular to a (spaced 
a
1 apart), one is perpendicular to b


(spaced 

b

1

apart), and the other is perpendicular to c (spaced 
c
1 apart). The intersection points of 

these three planes form the reciprocal lattice.  

The von Laue conditions can be used to derive Bragg’s Law for scattering. Three 

dimensional lattice planes exist that intersect an axis every 
h
a , another every 

k
b


, and 

another every 
l
c . These planes can be specified by the Miller indices h, k, and l. The 

spacing, d, between the planes is inversely related to the magnitude of the indices and 

indicates a quantitative relationship with the reciprocal lattice.

In Bragg’s law, an x-ray that interacts with a lattice plane at an angle  is reflected at an 

equal angle . This corresponds to the deflection angle 2 

 

Bragg’s law requires that the path difference between reflected beams from adjacent 

lattice planes be an integer number of wavelengths:

2dsin( = n (1.4)

n is and integer and d is the distance between lattice planes.
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The scattering vector, S


, is also related to the lattice plane. Consider a lattice plane that 

intersects the three axes of the unit cell at 
h
a , 

k
b


, and 
l
c . The vector r goes from the 

origin to any point on this plane. A scattered wave that satisfies the condition 1 rS 
, 

1 rS 
defines a plane perpendicular to S


, because it means that the projection of 

r onto S


is a constant. When the von Laue conditions:

1








l
cS

k
bS

h
aS 

(1.5)

are satisfied, the scattering may be observed. 

The length of the vector 0r
 defines the spacing between two adjacent planes. Since 0r



and S


are parallel,  = 0 and cos ( = 1, so the condition 0rS 
 =1 implies that 

d= 0r
 =

S

1 . (1.6)

From the definition of the scattering vector, 



 )sin(2
S


(1.7)

where = x-ray wavelength and  scattering angle

Therefore, 

2
)sin(

S



 
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d2
)sin( 

 

2dsin( =   (1.8)

Equation 1.8 is equivalent to the Bragg condition of Equation 1.4 with n=1. 

The data used for this project consisted of diffraction patterns of Bragg peaks created by 

the well-ordered structure of collagen in breast tissue. The diffraction patterns required 

special analysis to reduce the complexity of the data and emphasize important features 

in the data. Wavelet analysis was used to accomplish these tasks.
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2 WAVELETS

2.1 Introduction to wavelets
The wavelet transform is one of several types of mathematical transforms.  

Mathematical transforms are applied to signals to obtain information that is not readily 

available in the raw signal. The SAXS patterns used for this project contained 

information useful for classifying the patterns into classes such as “normal” and 

“tumor.” However, the information was not accessible in the original pattern. The 

wavelet transform was applied to the SAXS pattern to uncover the information that 

allowed for classification into the “normal” and “tumor” classes.

One of the most familiar types of transforms is the Fourier transform. Section 2.2 

introduces the concept of the wavelet transform by giving an overview of wavelet 

applications. An intuitive description of the wavelet analysis process is given in Section 

2.3. Section 2.4 compares and contrasts the wavelet transform with the Fourier 

transform. In order to understand the wavelet transform, it is important to be familiar 

with the concept of multiresolution. Multiresolution will be described in section 2.5.  

Section 2.6 describes the scaling function and wavelet function. The material up to this 

point has been presented in terms of the one-dimensional continuous wavelet transform.  

Section 2.7 introduces the discreet wavelet transform, and section 2.8 introduces the 

two-dimensional wavelet transform. Section 2.9 describes the different wavelet 
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families considered in this project. Finally, Section 2.10 discusses wavelet 

reconstruction.
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2.2 Wavelet Applications

A functional objective for this project was to investigate the use of wavelets for parsing 

the SAXS data set. Wavelets have many advantages in isolating discrete features 

contained in a dataset. Detailed analysis can be achieved by using a long time interval 

to capture low frequency information and a shorter interval to retrieve high frequency 

information. In addition, Hubbard maintains wavelets “make it easier to transmit, 

compress, and analyze information or to extract information from surrounding ‘noise’ –

even to do faster calculations [22].” Some of the areas where wavelets have been 

successfully applied include compression, de-noising, and image enhancement.  

The FBI has adopted a wavelet-based method for compressing digital fingerprints. The 

FBI currently has over two million fingerprints in its database. With each image 

requiring a resolution of 500 pixels per inch with 256 grayscale intensities, a single 

fingerprint takes up approximately 600 kilobytes [12]. The FBI’s wavelet-based 

compression standard has a ratio of around 20:1, which allows for efficient storage and 

transmission of digital fingerprint images.

Another interesting application of wavelets is in signal de-noising. Coifman and 

colleagues at Yale University were able to used wavelets to clean up a recording of 

Brahms playing his First Hungarian Dance on the piano. The original recording 

consisted of a re-recording of a radio broadcast of a 78 record copied from a partially 

melted wax cylinder, and was unrecognizable as music. However, with wavelet 
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analysis, much of the noise was removed, and Brahms’ original playing was revealed 

[12]. 

In medical imaging, wavelets have been used for many applications including feature 

extraction. One example is the extraction of microcalcifications from mammograms. A 

mammogram can be decomposed with wavelets into high and low frequency 

components. Microcalcifications appear as small bright spots on a mammogram, and 

are represented by the high frequency components of the decomposition. By 

suppressing the low-frequency components when the image is reconstructed, the 

microcalcifications are enhanced, allowing them to be segmented from the 

mammograms. This was the technique used by Wang and to enhance 

microcalcifications [50].   

For this project, the goal was to use wavelets to uncover features in the SAXS data that 

could be used to distinguish normal samples from tumor samples. Two-dimensional 

wavelet decomposition was applied to the breast tissue SAXS patterns in order to 

extract features that would be useful in classifying the patterns.

2.3 Wavelet Transform – Intuitive Description

The wavelet transform provides new information about a dataset that is not apparent in 

the original form of the dataset. For the purposes of this discussion, the original dataset 

is in the time domain. The wavelet transform reveals frequency information, called 
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scale information, as well as information about the times at which different frequencies 

occur, called translation information.  

The wavelet transform starts with a mother wavelet. The mother wavelet is an irregular, 

asymmetric waveform of limited duration. There are many different mother wavelets, 

the choice of which depends on the application. The mother wavelet can be thought of 

as a “window” that is shifted along the original signal. At each location, or translation, 

along the signal the wavelet is correlated with the signal at that particular point. Once 

the wavelet has been translated to every point along the signal, the process is repeated.  

This time the wavelet is stretched, or dilated, to a larger scale. The wavelet scale is 

inversely related to frequency. A large scale corresponds to a low frequency, while a 

short scale corresponds to a high frequency. The process continues with larger and 

larger wavelet scales. The final result of the process is a map of correlation values, 

called wavelet coefficients, corresponding to each translation (time) and scale 

(frequency).  

For example, consider an arbitrary waveform, and an arbitrary mother wavelet as shown 

on the following page in Figure 2.1. In the Step 1, the wavelet coefficient, C, is 

calculated by correlating the wavelet with the waveform at each position as it is 

translated along the waveform. In Step 2, the mother wavelet is dilated to a higher 

scale, and the process is repeated. The process is repeated for each scale. The result is 

a map of the wavelet coefficients at each scale and translation, with the light color 

representing large coefficients and the dark color representing small coefficients. The 
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coefficients at the higher scales provide information about the coarser, low frequency 

features of the dataset. The smallest scale coefficients provide information about the 

finer, high frequency information in the signal.
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Figure 2.1 Intuitive example of a wavelet transform. Step 1 shows the correlation of the 
mother wavelet at three translations along the waveform, resulting in three wavelet 
coefficients. Step 2 shows the same process with a higher scale of the mother wavelet. The 
result is the Time-Scale plot representing the coefficients by colour. Adapted from [36].

C = 0.012 C = 0.213 C = 0.035

t

t

C = 0.124 C = 0.267

Step 1:

Step 2:

Signal

Signal

Three translations of the mother wavelet

Two translations of the mother wavelet at 
a higher scale.

Result:
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2.4 Wavelet Transforms vs. Fourier Transforms

The Fourier transform is one of the best known and understood mathematical 

transforms. Therefore, it makes sense to discuss the similarities and differences 

between the Fourier transform and the wavelet transform.  

The continuous 1D Fourier transform can be written as follows:






 dtetfF ti


 )(

2
1)( (2.1)

f is the signal in the time domain, F is the signal in the frequency domain, t is time, and  

 is frequency.  

The continuous wavelet transform can be written as follows:

 dtttfsC s )()(),( ,
*

 (2.2)

Again, f is the signal in the time domain, t is time, C is the wavelet coefficient, s is 

scale, and  is translation.  *
s, is called the mother wavelet.

Both the Fourier transform and wavelet transform allow a temporal signal to be 

analyzed for its frequency content. The Fourier transform is a linear transform that 

represents a function with a basis of sine and cosine functions. Similarly, the wavelet 

transform is a linear transform that represents a function with a basis of wavelet 

functions. With both the Fourier transform and wavelet transform, an inverse transform 

returns the original signal.
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There are also key differences between the Fourier transform and the wavelet transform.  

Fourier transforms have a single set of basis functions made up of sine and cosine 

functions, while wavelet transforms have an infinite number of mother wavelets.  In 

contrast to sinusoids, wavelets are irregular, asymmetric waveforms with limited 

duration. This makes wavelets better suited to describe sharp changes and local 

features. 

It was mentioned above that both Fourier transforms and wavelet transforms provide 

frequency information about a signal. The Fourier transform can provide frequency 

information about a time domain signal, or time information about a frequency 

spectrum, but never frequency and time information at the same time. The wavelet 

transform provides both time and frequency information about a signal at the same time.  

The windowed Fourier transform was developed as a way to access both time and 

frequency information with the Fourier transform. The idea of the windowed Fourier 

transform was to multiply the signal by a window function that effectively isolated one 

section of the signal to be analyzed for its frequency content separately from the rest of 

the signal. The windowed Fourier transform can be written as follows:

 




 dtettWtftWFT ti


 )'()(

2
1),'( (2.3)

f is the signal in the time domain and t is time. WFT is the windowed Fourier transform 

which represents the signal in the frequency domain, and  is frequency.  W is the 

window function, and t' is the location in time of the window function.
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The windowed Fourier transform has resolution limitations due to the window size 

being the same for all frequencies. If a wide window is chosen, frequency resolution is 

good, but time resolution is poor. If a narrow window is chosen, time resolution is 

good, but frequency resolution is poor.  

On the other hand, wavelet function windows vary in size.  With wavelets, detailed 

analysis of localized areas of large signals can be achieved using a long time interval to 

acquire low frequency information and a shorter interval to retrieve high frequency 

information. The main advantage achieved is the ability to “zoom in” on any part of the 

signal.

The different window sizes in the wavelet transform lead up to the idea of 

multiresolution, which is discussed in the next section.  

2.5 Multiresolution

Multiresolution refers to the simultaneous presence of different resolutions in a signal 

[51]. For example, a signal can be broken down into a smooth background with 

fluctuations on top of it.  
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Figure 2.2 shows an arbitrary signal. The smooth background (low frequency) is 

known as the approximation, and the fluctuations (high frequency) are known as the 

details. Resolution increases as finer and finer details are added to a signal. At a lower 

resolution, a signal is approximated by the smooth signal, ignoring the detail 

fluctuations. The smooth, low frequency signal in Figure 2.2 is at a lower resolution 

than the original signal in Figure 2.2, because the original signal includes the high 

frequency detail fluctuations.

In a multiresolution analysis, a dataset is broken down into a hierarchy of several levels 

of approximation and detail maps. The approximation maps contain the image’s low 

frequency information and the detail maps contain the high frequency information. At 

each hierarchical level, the approximation map is decomposed into descendent detail 

and approximation maps. In the hierarchical model, the resolution is the highest at the 

Signal

DetailApproximation

Figure 2.2 Multiresolution of a Signal. An arbitrary signal can be 
decomposed into approximation and detail components.
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lowest level. As the levels increase, details are removed, and the approximation maps 

are at increasingly lower resolutions.  

Consider a multiresolution hierarchy with j levels. Each level contains an 

approximation, Aj, and details Dj. The original data can be thought of as A0.

Approximation A1 is the low frequency components of A0, and D1 is the high frequency 

components of A0. The detail can be thought of as the difference between A1 and A0 so 

that A0=A1+D1=A2+D2+D1 etc… Figure 2.3 illustrates the hierarchical model.

The mathematical description of the multiresolution hierarchy follows [51]:





j

k
kj tdtata

1
0 )()()( (2.4)

11 )()(   jjj dtata (2.5)

a0(t) is the original signal, a(t) is the approximation, d(t) is the detail, and j is the level.  

A0

A1 D1

D2A2

... ... 

Figure 2.3 Multiresolution Hierarchical Model.  A0 is the original image. A represents the 
approximation maps, D represents the detail maps, and the digits represent the 
hierarchy level.
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Equation 2.4 says that the original signal can be retrieved from the approximation map 

at a given level, j, by adding the detail maps from all previous levels to the 

approximation map aj(t).  Equation 2.5 says that the difference between the 

approximation map at a given level, j, and the approximation map at the next level, j+1, 

is the detail map at the next level, j+1.  

An original dataset is decomposed into a multiresolution hierarchy by exposing the 

dataset to a filter bank made up of a high pass and low pass filter. The original dataset 

is at the top of the hierarchy. To construct the next level of the hierarchy, the original 

dataset is exposed to a high pass filter, which removes the high frequency or detail 

information, and a low pass filter, which separates the low frequency or approximation 

information. Iteratively exposing the approximation map at each level to the high pass 

and low pass filter bank creates the next level of the hierarchy.  

Wavelet decomposition is a type of multiresolution decomposition. The wavelet 

decomposition can be thought of as a filter bank is made up of a high pass component 

called the wavelet function, and a low pass component called the scaling function.  

Figure 2.4 demonstrates what happens in frequency space during the wavelet 

decomposition. The scaling function at the first level is the original signal. At each 

subsequent level, the scaling function is split into approximation and detail information 

with wavelet and scaling filters.  
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Figure 2.4 Wavelet Decomposition Example.  HP is the high pass wavelet filter, and LP is the low 
pass scaling filter.  B, 2B, and 4B are the coefficients at each level. At each level the 
low pass approximation information is divided into another level of approximation 
and detail information by applying the low pass scaling filter and the high pass wavelet 
filter [49].

The next section describes the wavelet function and scaling function in more detail.

2.6 Wavelet Function and Scaling Function

The scaling function makes up the low pass component of the wavelet decomposition 

filter bank. The scaling function generates the basis functions for the approximation 

maps. The scaling function is defined as [51]:

)2(2)( 2/
, ktt jj
kj   (2.6)

The decomposition level is j, k represents the translation, and t is time. The scaling 

function coefficients, j,k, are the coefficients used to make the approximation maps.
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As shown by equations 2.4 and 2.5, there is a relationship between the approximation 

maps at different levels. The relationship between the scaling functions at two 

successive scales, t and 2t is called the dilation equation, or two-scale equation [51]:

)2(2)()( ,10,0 kththt
k

kk
k

k    (2.7)

The coefficients, hk, are important because they make up the low pass reconstruction 

filter that is used to construct the approximation map from the approximation

coefficients, j,k.

The wavelet function is the basis function for the detail maps in the wavelet 

decomposition. The wavelet function is defined as [51]:

)2(2)( 2/
, ktt jj
kj   (2.8)

Again, the scale is represented by j, translation by k, and time by t, and j,k are the 

coefficients for the detail maps.  

The wavelet function can be expressed in terms of the scaling function [51]:

  
k k

kkk ktgtgt )2(2)()( ,1  (2.9)

Writing the wavelet equation in this form shows the relationship between the mother 

wavelet, (t), and the scaling function at the next scale. The coefficients, gk, make up 

the high pass filter that is used with the wavelet coefficients, j,k, to reconstruct the 

detail maps in the wavelet decomposition.  
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2.7 Continuous and Discrete Wavelet Transforms

The intuitive description of the wavelet transform given in section 2.1 describes a 

continuous wavelet transform. The mother wavelet is continuously scaled and shifted 

along the data, potentially generating an infinite number of representations. This makes 

the continuous wavelet transform highly redundant and impractical to use. In practice, a 

discrete wavelet transform is used, allowing a predefined number of derivative datasets 

to be generated.  

The discrete wavelet transform allows a signal to be sampled at discrete points, 

resulting in efficient computation. Discrete wavelets are scaled and translated in 

discrete steps [13]. This is achieved using scaling and translation integers instead of real 

numbers. The following is the discrete wavelet transform equation.








 
 j
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jkj s
skt

s
t

0

00

0

,
1)(


 (2.10)

As in the previous discussion, j and k are integers with j determining the scale, and k the 

translation. The scale describes the time domain width of the wavelet and the translation 

identifies the position of the wavelet with respect to the dataset. The rate of scale 

dilation is s0, and the translation step magnitude is 0. The rate of scale dilation, 

together with the size of the dataset, governs the number of scales generated.  

Dyadic sampling is the usual approach. At each scale the number of data points is 

reduced by half. Clearly, a minimum of two points is required for a representation of 
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the data, thus establishing the maximum number of scales. Figure 2.5 gives an 

example of dyadic sampling in time-scale space.

2.8 Two-dimensional Wavelet Analysis

For this project, the dataset was not a one-dimensional signal, but a two-dimensional 

SAXS pattern. Two-dimensional wavelet analysis is based on one scaling function 

(x,y)=(x)(y), and three wavelets 1(x,y)=(x)(y), 2(x,y)= (x)(y), 

3(x,y)= (x)(y). This section describes how the wavelet transform is actually 

accomplished on an image.

The wavelet and scaling function coefficients make up a transform matrix, which is 

applied hierarchically to the original image. The odd rows of the transform matrix 

Figure 2.5 Dyadic Sampling Grid. The grid shows the location of discrete wavelets 
sampled on a dyadic grid [49].

Scale

Translation
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contain low pass filter information, and the even rows contain high pass filter 

information. Dyadic decimation occurs after each filter application. Each matrix 

application brings out a higher resolution of the data while smoothing the remaining 

data

The following algorithm describes how wavelet decomposition works on the image 

[36]. Figure 2.6 shows a block diagram of the process.

1 Convolution of raw data rows with the transform matrix of scaling filter and 

wavelet filter coefficients

2 Dyadic decimation on columns of both results

3 Convolution of columns from both results with the scaling filter and the wavelet 

filter coefficients

4 Dyadic decimation on rows of all four results

5 Final results are: low pass followed by low pass – Approximation

low pass followed by high pass – Horizontal Detail

high pass followed by low pass – Vertical Detail

high pass followed by high pass – Diagonal Detail
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6 For the next level decomposition, repeat steps 1 through 5 using the Approximation 

data for step 1

On the following page, Figure 2.7 shows the result of completing the wavelet 

decomposition on an image to eight levels. The hierarchy includes an approximation 

map as well as horizontal, vertical and diagonal detail maps for each decomposition 

level. The eight-level two-dimensional wavelet decomposition results in thirty-two 

wavelet maps.  

Approximation

Horizontal 
Detail

Vertical 
Detail

Diagonal 
Detail

Rows


LPF

Rows


HPF

Columns


LPF

Columns


HPF

Columns


LPF

Columns


HPF

21
columns

21
rows

21
columns

21
rows

21
rows

21
rows

Original
image

Figure 2.6 Block diagram of Two Dimensional Wavelet Transform. The diagram shows how the 
transform matrix is applied to an image to achieve a wavelet transform.   represents 
convolution and 21 represents dyadic decimation [36].
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2.9 Wavelet Families

Different wavelets are designed for different tasks, and are referred to as wavelet 

families. The choice of wavelet basis is an important topic in wavelet decomposition 

methods. The choice of an appropriate basis can have a significant effect on the results 

of the analysis.  

There are several well-know families of wavelet bases such as the Daubechies family, 

and the biorthogonal family. New wavelet bases have also been created for specific 

applications. For example, Lemaur investigated a new wavelet basis that improved the 

classification of microcalcifications in mammograms [30].  

Original 
Image

Level 1
Approx

... ... 

Level 2
Approx

Level 1 
Horizontal 
Detail

Level 1 
Vertical 
Detail

Level 1 
Diagonal 
Detail

Level 2 
Horizontal 
Detail

Level 2 
Vertical 
Detail

Level 2 
Diagonal 
Detail

Level 8
Approx

Level 8 
Horizontal 
Detail

Level 8 
Vertical 
Detail

Level 8 
Diagonal
Detail

Figure 2.7 Hierarchy of Approximation and Detail Maps. This diagram shows the wavelet  
feature maps produced in a two dimensional wavelet decomposition. 8 levels x 4 
views = 32 feature maps per decomposition.
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It is not often obvious which wavelet basis would best suit the application [30]. For this 

project, a literature search was conducted, but failed to provide any insight into 

appropriate wavelet bases for the analysis of SAXS data. Therefore, several of the 

classical wavelet bases were tested. This section reviews some of the commonly used 

wavelet families. 

The simplest wavelet basis is the Haar wavelet. It is discontinuous and resembles a step 

function. The Haar wavelet is the same as the Db1 wavelet of the Daubechies family.  

The Daubechies family was invented by Ingrid Daubechies and is made up of 

compactly supported orthonormal wavelets. Compact support means that the wavelet 

basis function is non-zero for a finite interval. Compact support allows for the efficient 

representation of signals with localized features. Orthonormal refers to the way the 

coefficients are calculated. A basis is orthonormal if the mother wavelet is chosen so 

that [49]:





 

0
1

)()( ,, dttt nmkj  if j=m and k=n (2.11)

  dttt nmkj )()( ,,  0 otherwise (2.12)

The biorthogonal family of wavelets also has the property of compact support.  

However, they are biorthogonal rather than orthogonal. One wavelet is used for 

decomposition, and a different wavelet is used for reconstruction. The advantage of 

biorthogonal wavelets is that they allow symmetry and exact image reconstruction.  
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For this project, several wavelet bases were tested from each of the Haar, Debauchies, 

and biorthogonal families.  Figure 2.8 shows examples of wavelet bases functions from 

each of these families.  

Figure 2.8 Wavelet Bases. These are examples of wavelet bases from the Haar, Daubechies and 
Biorthogonal wavelet families. The first Biorthogonal wavelet is used for 
decomposition and the second for reconstruction. (Adapted from [36].)

2.10Reconstruction

In some applications, such as image de-noising, it is necessary to regenerate the original 

dataset from a subset of wavelet maps. Reconstruction is possible with the discrete 

wavelet transform. The necessary and sufficient condition for reconstruction is that the 

Biorthogonal

Haar

Daubechies
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energy of the wavelet coefficients must lie between two positive bounds, A and B, 

called a frame [13].

 
kj

kj fBffA
,

22

,
2 , (2.13)

||f||2 is the energy of f(t), A>0, B<, and A and B are independent of f(t). When A=B, 

discrete wavelets behave like an orthonormal basis. When AB, a dual frame is 

necessary for reconstruction.

The inverse wavelet transform is [44]: 


kj

kj tkjtf
,

, )(),()(  (2.14)

This means that a signal can be reconstructed by summing the orthonormal wavelet 

basis functions weighted by the wavelet transform coefficients.
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3 PATTERN RECOGNITION

3.1 Common Pattern Recognition Approaches

The goal of pattern recognition is to classify patterns into classes. Classification may be 

either supervised, where the input pattern is labeled as a member of a known class, or 

unsupervised, where the input pattern is unlabeled. 

Some common approaches to pattern recognition problems are: template matching, 

syntactic pattern recognition, neural networks, and statistical pattern recognition [35].  

In template matching, a prototype of the pattern to be identified is compared to the input 

pattern and a measure of similarity, such as correlation, is used for classification. While 

template matching is one of the simplest methods of pattern recognition, it is 

computationally expensive, and it is not robust in cases where the input patterns have 

large intra-class variation [14]. Syntactic pattern recognition is a hierarchical approach 
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to pattern recognition. Each pattern class can be described by a set of primitives, which 

are combined using rules called a grammar. The syntactic approach is not effective 

with noisy data, where primitives are difficult to distinguish [14]. Neural networks are 

parallel processing systems with complex interconnections between elements. One 

advantage of neural networks is that they are able to learn complex non-linear input-

output relationships from the data. Although the implementations are different, most 

neural network architectures are based on statistical pattern recognition [35]. A 

statistical pattern recognition approach was chosen for this project. In statistical pattern 

recognition systems, each pattern is represented with d features, and is viewed as a point 

in a d-dimensional feature space. The goal is to find features that give a high level of 

separation between classes, so that a decision boundary can be constructed between the 

different classes.     

CAD is a popular area of research, and a wide range of approaches applying pattern 

recognition to breast cancer detection can be found. Some common techniques include 

morphological operations, statistical texture analysis techniques, fractal theory, and 

fuzzy logic. According to the current literature, the combination of wavelet-based 

pattern recognition with SAXS images is a unique approach to automated breast cancer 

detection. This section describes the common approaches found in the literature.

3.1.1 Morphological Operations

Morphological operations analyze images in terms of shape. The value of each pixel in 

the output image is based on a comparison of the corresponding pixel in the input image 
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with its neighbors. Structuring elements are used to choose the size and shape of the 

neighborhood, making it possible to construct morphological operations that are 

sensitive to specific shapes in the input image. Morphological operations can be used to 

perform common image processing tasks, such as contrast enhancement, noise removal, 

and segmentation. The advantage of morphological approaches is that they make use of 

geometric features of images, and the shape of these features is not lost in processing.  

Nagel used a morphological technique to enhance microcalcifications. Potential 

microcalcifications were extracted with global thresholding based on an erosion 

operator and local adaptive thresholding. False positives were then eliminated by 

texture analysis, and the remaining candidates were classified with a non-linear 

clustering algorithm. In an independent database of 50 images, at a sensitivity of 83%, 

the average number of false positive (FP) detections per image reported was 0.8 [38]. 

The main disadvantage of morphological operations is that they require a priori 

information about the feature to be enhanced in order to create an effective structuring 

element [9]. In the case of enhancing microcalcifications in an image, this information 

would not be difficult to acquire, because microcalcifications have some known 

properties such as approximate shape, size, and texture. However, with the diffraction 

data used for this project, the interesting features were not confined to certain regions of 

the image. Identifying a suitable morphological operation would have been difficult 

because geometrical shape features suitable for being extracted with morphological 

operations were not present.
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3.1.2 Fuzzy Logic

Classic logical systems are based on Boolean logic, which assumes that every element 

is either a member or a non-member of a given set. Fuzzy logic extends Boolean logic 

to handle approximate information and uncertainty in decision-making. To express 

imprecision, fuzzy logic introduces a set membership function that maps elements to 

values between zero and one. The value indicates the "degree" to which an element 

belongs to a set. A membership value of zero indicates that the element is entirely 

outside the set, and a value of one indicates that the element lies entirely inside a given 

set. Any value between the two extremes indicates a degree of partial membership to 

the set. Fuzzy logic provides a simple way to make a definite conclusion based on 

vague, imprecise, or noisy data. Fuzzy logic handles the uncertainty and imprecision 

found in mammograms, such as indistinct borders, ill-defined shapes and varying 

densities.

Cheng demonstrated a system based on fuzzy logic. Images were first fuzzified, using 

the fuzzy entropy prinicipal and fuzzy set theory to automatically determine the fuzzy 

membership function. Next the image was enhanced using a homogeneity 

measurement. The Laplacian of a Gaussian filter was used to find local maxima in the 

image that represented the possible microcalcifications. Thresholds for selecting the 

actual microcalcifications out of the candidates were determined using a neural 

network. The receiver operating characteristic curve showed that the method achieved 
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an accuracy of greater than 97% true positive rate with the false positive rate of three 

clusters per image [8].  

The major advantage of the fuzzy logic method described above was the ability to 

detect microcalcifications in breasts of various densities. One disadvantage was that the 

determination of a fuzzy membership function was complex [9]. Another disadvantage 

was that the method relied on many parameters that would require a priori information 

such as the threshold value for classification, the enhancement parameters, and the 

image normalization parameters. For mammograms, the fuzzy logic method was 

advantageous because it allowed regions to be identified even with inherent uncertainty 

in the data. The fuzzy logic approach was not chosen for this project because the 

diffraction data eliminated the problems of density variation and uncertainty due to 

indistinct borders and ill-defined shapes that would be present in a mammogram.  

3.1.3 Fractal Theory

Images can be modeled by deterministic fractals, which are attractors of sets of two-

dimensional affine transformations [32]. Fractals are ideal for modeling texture in 

images that show a high degree of self-similarity. Background breast structure in a 

mammogram has a high degree of local self-similarity, so it is an excellent candidate to 

be modeled by a fractal approach.  

Li used a deterministic fractal approach to enhance microcalcifications in 

mammograms. Deterministic fractals were used to model the breast background 
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structures. The difference of the model image and the actual image was calculated in 

order to enhance microcalcifications present in the mammogram. The approach was 

qualitatively compared to wavelet and morphological approaches, and it was 

determined that the fractal approach removed the background structure more effectively 

than the other two approaches, but did not preserve the overall shape of the 

microcalcifications as well as the wavelet approach [32].  

The advantage of this approach was that it was very effective for removing the breast 

background structure from an image. The effectiveness of the fractal approach was due 

to the fact that microcalcifications do not demonstrate the same type of self-similar 

structure that background breast tissue does, allowing microcalcifications to be 

segmented from the image. For this project, the fractal approach was not implemented 

because segmentation was not the goal. Another reason that this approach was not 

considered further is that it was very computationally intensive [9].  

3.1.4 Statistical or Texture Analysis Methods

Statistical or texture analysis approaches look at local texture in mammograms and 

measure features such as correlation, contrast, and entropy in order to distinguish 

normal tissue from cancerous structures. Statistical features based on texture introduce 

new information in addition to intensity information in an image. Texture features are 

suited to the analysis of mammograms because the different tissue structures in the 

mammogram display different statistical texture features.



41

Mendez used bilateral subtraction to identify asymmetries between left and right breast 

images. A threshold was applied to obtain a binary image of suspicious areas. A region 

growing algorithm was used to define the suspicious regions, and size and eccentricity 

tests were used to eliminate false-positives. When tested on 70 mammograms, the 

approach achieved a true-positive rate of 71% with an average number of 0.67 false 

positives per image. Using ROC analysis, the value of Az=0.667 was achieved [34].

Chan used texture features derived from spatial Grey Level Dependency (SGLD) 

matrices to classify mammograms containing microcalcifications as normal or benign. 

Several texture features were extracted from the SGLD matrices: correlation, entropy, 

angle of second moment, inertia, inverse difference moment, sum average, sum entropy, 

difference entropy. A feed-forward back propagating neural network was used as the 

classifier. The classifier achieved an area under the ROC curve of 0.88. Additionally, 

11 of the 28 benign cases were correctly identified (39% specificity) without missing 

any malignant cases (100% sensitivity) [7].

The advantage to using statistical texture features is that they provide additional 

information about a region of an image. They can be used to characterize a whole 

image, not just a small region within an image. Because of these advantages, statistical 

texture features were used for this project, although wavelet decomposition maps were 

used rather than SGLD matrices. 
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3.1.5 Wavelet Approaches

Wavelet approaches have become popular choices for the analysis of mammograms.  

One of the main advantages of wavelet decomposition is the scale space localization.  

Images can be decomposed into well-localized components that allow for “zooming in” 

on interesting features. The image is decomposed into coefficients that describe the 

image in terms of scale and orientation. Different scales and orientations of these 

details often reveal information that is obscured in the original image. Important details 

can be enhanced, and uninteresting or noisy details can be eliminated during 

reconstruction. Another advantage of wavelet decomposition is that the multiple 

decomposition scales allow for flexibility with respect to image resolution. The input 

image does not require a specific resolution for the method to be effective. A detailed 

description of wavelet decomposition can be found in Chapter 2.  

Many of the wavelet-based approaches in the literature focus on the enhancement or 

identification of microcalcifications in mammograms, such as Wang [50], and Yu [53].  

A few methods also attempted to identify masses, such as Laine [29].

Wang used wavelet decomposition to enhance microcalcifications in mammograms.  

The mammograms were decomposed using the Debauchies 4 and Debauchies 20 

wavelets. Since microcalcifications corresponded to high-frequency components of the 

decomposition, the low-frequency components were compressed and the mammogram 

was reconstructed using only the components containing high frequencies. Intensity 

thresholding was then used to segment the microcalcifications from the image [50]. 



43

Yu used a wavelet system to detect microcalcifications in mammograms. Wavelet 

features combined with gray level statistical features were used to segment potential 

microcalcifications. A neural network classified a set of 31 features extracted from the 

potential individual microcalcification objects to reduce false positives. The method 

was applied to a database of 40 mammograms containing 105 clusters of 

microcalcifications. Results showed that a 90% mean true positive detection rate was 

achieved at the cost of 0.5 false positive per image [53].

Laine used wavelet transforms to enhance microcalcifications as well as tumor masses 

in mammograms. The wavelet transform provided a hierarchy of multiscale images, 

which localized important image information at different spatial frequencies. At each 

level of resolution multiscale edges were used to emphasize the desired features. The 

results were qualitatively compared with traditional methods used for image 

enhancement such as unsharp masking and adaptive histogram equalization and showed 

that the wavelet-based processing algorithms were superior [29].

Zhen used a wavelet transform in combination with several other artificial intelligent 

techniques for detection of masses in mammograms. First, fractal dimension analysis 

was used to determine the approximate locations of the suspicious regions in the 

mammogram. In the second step, a discrete wavelet transform based segmentation 

algorithm was used to remove image noise caused by veins and fibers. In the 

classification step, features were generated from the segmentation step and a binary 
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decision tree was used to label the suspicious areas. The technique was tested with 322 

mammograms from the Mammographic Image Analysis Society Database, and resulted 

in a sensitivity of 97.3% with 3.92 false positives per image [54].

The wavelet methods described above demonstrate the effectiveness of wavelet analysis 

on mammograms. In each of the cases, wavelets were used to enhance and segment 

microcalcifications or tumor masses. For this project, SAXS data was used instead of 

conventional mammograms. Unlike mammograms, the important features in the 

diffraction patterns were not geometric shape features. Therefore, the task of 

segmentation was not the goal. 

3.1.6 Original Approach Used in this Project

For this project, a unique approach was designed to use features arrived at through 

wavelet analysis in conjunction with a naïve Bayesian classifier to detect abnormalities 

in the SAXS patterns.  

A statistical measure based on wavelet decomposition was used as the feature for 

classification. Each image was decomposed into wavelet maps representing eight levels 

with horizontal detail, vertical detail, diagonal detail, and image approximation maps.  

The average intensity of each map was calculated and used as the feature. Different 

combinations of the average wavelet map intensity features were used for classification 
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with a naïve Bayesian classifier. A complete description of the approach can be found 

in the methods and results sections.

3.2 Pattern Recognition System Tasks

The three main tasks of a pattern recognition system are: preprocessing, feature 

extraction, and classification. Preprocessing is used to define the pattern of interest, and 

could include segmentation of the pattern from the background, noise removal, 

normalization, or any other operation that would help to define the pattern. The feature 

extractor measures different attributes of the pattern that can then be used for 

classification. The classification step uses the measured features to assign the pattern to 

one of the classes based on a statistical decision rule. A generic pattern recognition 

system is depicted in Figure 3.1.
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3.3 Pattern Recognition System Performance

The performance of a pattern recognition system depends on the number of features 

used, the number of classes present, and the number of training samples available. The 

“curse of dimensionality” is a well-known problem that refers to the performance of the 

classifier being degraded if a small number of training samples are used with a large 

number of features. Although there is no exact rule to define the relationship between 

the performance of the classifier, the sample size, and the number features, a general 

guideline has been established [24].

10
d
n (3.1)

n is the number of training samples per class, and d is the number of features used. In 

other words, there should be at least ten times as many training samples per class as 

there are features. 

INPUT:
Pre-processed 
data

Classifier DECISION: 
Assignment 
to one of the 
classes

Feature Extractor

PRELIMINARY OUTPUT:
Features

Feature 
Reducer

Figure 3.1 Generic pattern recognition system. This figure shows the components required for a pattern 
recognition system, as well as the flow of the data through the system, and the output of the 
system.
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4 METHODS

4.1 Research Methods Used

This chapter introduces the research methods that were used for this project. The 

project involved the implementation of a semi-automatic pattern recognition system.  

The system is summarized using the block diagram depicted in Figure 4.1. Section 4.2 

describes the feature extractor block, Section 4.3 describes the feature reducer, and 

Section 4.4 describes the classifier. Section 4.5 describes the data set that was used, as 

well as the pre-processing steps involved.

INPUT:
Intensity-Reduced
SAXS Image

PRELIMINARY OUTPUT:
Wavelet Feature Maps

Classifier

DECISION: 
“Normal” or
“Tumor”

Wavelet
Generator

Feature 
Generator

Feature Extractor

PRELIMINARY OUTPUT:
Features

Feature 
Reducer

Figure 4.1 Automated Pattern Recognition Tool Designed for this Project. This figure shows the specific 
pattern recognition tool designed for this project including the wavelet generator, with 
preliminary output of wavelet feature maps, as well as the feature generator with preliminary 
output of features derived from the maps. The classifier includes a feature reducer. The 
final output is a label of either “normal” or “tumor”.
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4.2 Feature Extractor

The feature extractor consists of two components: the wavelet generator, which 

decomposes the input image into wavelet maps, and the feature generator, which 

measures certain aspects of the wavelet map to be used as features.

4.2.1 Wavelet Generator

The first step in the feature extraction procedure is to decompose the input image using 

wavelet analysis. Wavelet analysis decomposes an image into a hierarchical set of 

approximation and detail wavelet maps. The approximation map contains the image’s 

low frequency information, while the detail maps contain the high frequency 

information. At each level, the wavelet transform is applied to the approximation map, 

breaking it down into further approximation and detail maps.  

Each image was decomposed to eight levels, with each level resulting in four views: 

horizontal detail, vertical detail, diagonal detail, and the approximated image. For a 

detailed description of the wavelet decomposition process, refer to section 2.8. Figure 

4.2 shows the four views of the wavelet decomposition at scale level 6 for a normal 

sample. To keep track of the decomposition maps, they were labeled as follows: a 

letter represented the view (A=approximation, H=horizontal detail, V=vertical detail, 

and D=diagonal detail); a digit from 1 to 8 represented the level. For example, the map 

at level 6 in the vertical view was labeled V6.  



49

Figure 4.2 Normal Sample Wavelet Decomposition Maps. This figure shows the wavelet 
decomposition of a normal sample at decomposition Level 6 in all 4 views:  
approximation, horizontal detail, vertical detail, and diagonal detail. a digit from 1 to 8 
represented the level. The color scale represents strong or weak correlation with the 
wavelet basis at each position on the map.  
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Figure 4.3 Tumor Sample Wavelet Decomposition Maps. This figure shows the wavelet 
decomposition of a tumor sample at decomposition Level 6 in all 4 views:  
approximation, horizontal detail, vertical detail, and diagonal detail. a digit from 1 to 8 
represented the level. The color scale represents strong or weak correlation with the 
wavelet basis at each position on the map.  

4.2.1.1 Wavelet Basis Selection
As discussed in section 2.9, the wavelet maps could be created using one of many 

different wavelet bases. Wavelet bases respond differently to different data sets. No 

literature was found describing the use of wavelets with a dataset similar to the one used 

in this project. Therefore, the best wavelet basis was determined by iteratively testing 

an arbitrary set of bases.  
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The wavelet bases tested for this project were the Haar, Debauchies 2, Debauchies 4, 

Debauchies 8, Biorthogonal 2.2, Biorthogonal 3.7, and Biorthogonal 6.8 wavelet bases.  

Descriptions of these bases can be found in section 2.7. The Haar wavelet was chosen 

because it is the most simple wavelet basis. The Debauchies family bases were chosen 

because of their properties of compact support and orthonormality. The Debauchies 

family of wavelets is represented by the abbreviation “Db”. The Biorthogonal wavelets 

were chosen for their property of exact reconstruction. The Biorthogonal wavelets are 

represented by the abbreviation, “Bior”.    

Figures 4.4 through 4.0 show the level 6 wavelet decomposition maps that resulted for 

the same normal sample shown in Figure 4.2 when the different wavelet bases were 

introduced.

Figure 4.4 Haar Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Haar basis.
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Figure 4.5 Db2 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Db2 basis.

Figure 4.6 Db4 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Db4 basis.
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Figure 4.7 Db8 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Db8 basis.

Figure 4.8 Bior2.2 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Bior2.2 basis.
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Figure 4.9 Bior3.7 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Bior3.7 basis.

Figure 4.10 Bior6.8 Basis Decomposition Maps. This figure shows the wavelet decomposition of a 
normal sample at decomposition Level 6 in all 4 views using the Bior6.8 basis.
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4.2.2 Feature Generator

After the wavelet maps were generated, features useful for classification were extracted 

from the maps. Three measurements were taken: wavelet map intensity, wavelet map 

standard deviation, and Fourier transform of wavelet map. These features were 

calculated for every wavelet map generated in the wavelet decomposition. One 

additional feature was considered that did not depend on wavelet analysis. The 

diffraction image intensity profile feature was measured directly from the original 

image. A detailed description of each of these features follows.

4.2.2.1 Wavelet Map Mean Intensity
The mean intensity of each wavelet map provided a simple way to represent the texture 

of each wavelet map. Therefore, the mean intensity of the map, <I>, was then 

calculated as shown in equation 4.1, and used as a feature.    
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where m and n are the image dimensions.

4.2.2.2 Wavelet Map Standard Deviation
The standard deviation could be used to measure the surface energy of the map.  

Therefore, the standard deviation of each wavelet map was calculated according to 

equation 4.2 and used as a feature.  
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4.2.2.3 Wavelet Map Fourier Transform
The Fourier transform of the wavelet map was tested as a way to access frequency 

information inherent in the wavelet map. Several steps were involved in calculating a 

feature with the Fourier transform of the wavelet map. The two-dimensional fast 

Fourier transform was computed for each wavelet map, as shown in equation 4.3.  
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m and n are the image dimensions, u and v are the image coordinates in the frequency 

domain, x and y are the image coordinates in the time domain.

Next, the power spectrum was calculated.

22
, mnmnnm irP  (4.4)

Where m and n are the image dimensions, r is the real part of the Fourier transform, and 

i is the imaginary part.

An image was formed from the logarithm of the power spectrum (r2 + i2)1/2. Figure 

4.11 shows this image for the level six, horizontal view wavelet map from figure 4.2.  
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Figure 4.11 Fourier Transform of a Wavelet Decomposition Map. This figure shows Fourier     
transform of the Level 6, Horizontal view wavelet map depicted in Figure 4.2.

Figure 4.12 is a plot of the intensity of the first 50 points along this line. In order to use 

this as a feature, the intensities were normalized as a percentage of the maximum 

intensity, and the area under the Fourier transform intensity profile curve was

calculated.

(Hz)

(H
z)
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Figure 4.12 Intensity Profile of the Fourier Transform of the Wavelet Decomposition Map. This 
shows the normalized intensity profile of the first 50 points along the centerline 
between the 1st and 4th quadrants of the Fourier transform from Figure 4.11.

4.2.2.4 Diffraction Image Intensity Profile
The diffraction image intensity profile feature was the only one that did not involve a 

wavelet transform. This feature was used as a way to represent the original data set.  

The feature was obtained by calculating a one-dimensional curve to represent the 

intensities of the 1st quadrant of the original image. Because of the symmetry of the 

image, the intensities in the first quadrant were sufficient to represent the image. The 

first quadrant intensities were approximated by running a diagonal line from the center 

of the image to the top right corner, and summing the intensities along the x and y 

directions for each point on the line. Figure 4.13 illustrates how the intensity at each 

point along the diagonal line was calculated.  
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Figure 4.13 Diffraction Image Intensity Profile Illustration. The intensity at each point along the 
diagonal line was determined by summing all of the intensities along the x and y 
directions at that point. The symmetry of the image allowed for the intensity to be 
represented by the first quadrant intensity profile.

Figure 4.14 shows an example of the normalized intensity profile. Normalization was 

necessary for comparing sample to sample. The profile contains peaks at the 0th, 1st, 3rd

… orders. In the low angle region (pixels 250 to 350) information on collagen fiber 

spacing would be featured. In the wide angle region (beyond 400 pixels) information 

smaller than 15 angstroms would be featured. 








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Figure 4.14 Normalized Diffraction Image Intensity Profile. This figure shows the intensity profile  
of the first quadrant of the diffraction image normalized as a percentage of the 
maximum intensity.

The diffraction image intensity profile was calculated according to equation 4.5 and 

used to measure the diffraction image intensity feature. 
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Where f(x) is the curve, and m is the number of points along the curve.

The diffraction image intensity profile feature was calculated as a benchmark to 

compare the wavelet features to. It was necessary in determining whether the wavelet 

features provided any advantage over features arrived at from the original image.  
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4.3 Feature Reducer 
For every input image, thirty-two wavelet features were generated. As discussed in 

Section 3.3, the ratio of samples per class to features should be at least ten. For this 

project, the normal class consisted of twenty samples, and the tumor class consisted of 

twenty-two samples, allowing for a maximum of two features. 

In order to reduce the number of features, a variation of an exhaustive search was used.  

In an exhaustive search, given a set of features, every possible combination of features 

is tested, and the subset that leads to the lowest classification error is selected. For this 

project, every combination of the eight levels for each of the four views, and every 

combination of four views for the eight levels was tested. The combinations with the 

highest classification rates and fewest features were kept.  

4.4 Classifier

4.4.1 Naïve Bayesian Classification

A naïve Bayesian classifier was implemented for the classification step of the pattern 

recognition tool. The feature vector, x, is an element of a d-dimensional Euclidean 

space Rd called the feature space.  {c1, … , cj} is a finite set of the c possible classes.  

For this classifier, there are three classes: normal, tumor, and fibro adenoma.  

P(x| cj) is the state conditional probability density function for x conditioned on cj being 

the true state of nature.  P(cj) describes the prior probability of the state of nature being 
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cj.  P(cj |x) is the posterior probability of the state of nature being cj given the particular 

feature vector, x.

In the naïve Bayesian classifier, the posterior probability can be computed using Bayes 

rule:
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The unknown sample is assigned to the class that maximizes the posterior probability, 

P(cj |x).

4.4.2 Determining the Probabilities

The main challenge with Bayesian classifiers is determining the prior probabilities P(cj), 

and the state conditional probability densities P(x| cj). In most pattern recognition 

problems, these probabilities are unknown. General knowledge about the problem must 

be combined with training data in order to design the classifier.
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If information about the problem is known, the prior probabilities, P(cj), are determined 

based on that information. For this classifier, information on the probabilities of each of 

the three classes was not available. Therefore, the prior probabilities for the normal, 

tumor, and fibro adenoma classes were assumed to be equal

The state conditional probability densities, P(x| cj), are more difficult to estimate.  

Approaches such as maximum-likelihood estimation and Bayesian learning make the 

assumption that the form of the density is known, and then attempt to estimate the 

density parameters. For example, it could be assumed that the density is a multivariate 

normal distribution, and then the mean and covariance matrix would be estimated based 

on the training data. The problem with these methods is that the probability densities 

found in most problems rarely fit the common parametric forms. For example, all of 

the classical parametric densities have a single local maximum, and many practical 

problems involve densities with more than one local maximum.  

The naïve Bayesian classifier addresses the problem of determining the state conditional 

probability densities by assuming that they can be represented by a naïve Bayesian

network. The structure of the network is shown in Figure 4.15.
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The naïve Bayes network imposes the assumption of independence between the 

features, given a particular class, cj. The conditional probabilities for each feature xi, 

given each of the three classes, ci, are learned from the training data.  

As shown in equation 4.6, Bayes rule is then used to compute the probability of each 

class cj given the particular instance of the feature vector x1 … xn. The sample is 

assigned to the class with the highest posterior probability [17].  

It is noted frequently in the literature that the performance of naïve Bayesian classifiers 

is surprising, because of the strong independence assumption that must be made. In 

most cases, the assumption of independence between the features is unrealistic, as there 

are usually correlations between features. However, in spite of the unrealistic 

independence assumption, the naïve Bayesian classifier is one of the most effective 

classifiers [17].

Cj

xnx2x1 …

Figure 4.15 Naïve Bayesian Network Structure. Cj is the class label. x1

through xn represent the feature vector.
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4.4.3 Training Scheme

When dealing with large amounts of data, the data are usually divided into two equal 

groups, one for training and one for testing. For this project, the leave one out training 

scheme was used because the data set was relatively small. The leave one out scheme 

sets aside one sample for testing, and all other samples are used for training. The 

procedure is repeated for each of the samples in the data set to determine the percentage 

of correctly classified samples, or classification rate.

4.5 Data

SAXS data from breast biopsy tissues were collected at the Synchrotron Radiation 

Source at Daresbury, England, under the direction of Robert Lewis [31]. The literature 

suggests that invasive tumors in the breast tissue alter collagen structure. While the 

details of these changes have not been completely resolved, it appears that fundamental 

changes in collagen fiber spacing occur [31].       

4.5.1 Experimental Protocol

The details of the experimental protocol have been previously published [31]. In brief, 

breast biopsy samples (~ 1 mm diameter, and 3mm to 20mm in length) were placed in 

glass capillary tubes. The tubes were oscillated vertically through the beam over the 

length of the specimen to average tissue inhomogeneities. The beam size was 

~0.5x0.5mm at the sample and had an energy of 8 keV. The sample to detector distance 

was 6.25m, and a 200x200 mm2 imaging multiwire proportional counter operated at 
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512x512 pixels was used. The configuration allowed length scales of 70 to 1390nm to 

be sampled. Exposure times were 300 seconds [31].

4.5.2 Pre-processing

In diffraction data most of the intensity is concentrated at low diffraction angles. This 

area is expected to contain information on structures with length scales 100 – 200 Å.  

As described by Lewis in [31], the axial D spacing of the molecules within the collagen 

fibrils (649 Å
．

) resulted in intensity maxima in the diffraction patterns. The 3rd and 5th

orders were the most apparent. In order to preferentially sample this region, the low 

angle intensities were cropped from the dataset.  

As a simple intensity reduction technique, circular masks with different sized radii were 

applied to the center of the diffraction pattern. The mask was used to set all intensities 

within a given radius to the background level of the image.  The background level of 

each image was obtained by taking the average intensity of a 50 x 50 pixel square in the 

upper left corner of each image.  

Figures 4.16 and 4.17 show examples of an normal and tumor SAXS images before the 

high intensities concentrated at the center of the image were removed.  
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Figure 4.16 SAXS Pattern of a Normal Sample. The rectangular central shape is caused by the 
beam stop that absorbs non-diffracted x-rays. The vast majority of diffracted intensity 
is located in the low-angle region.

Figure 4.17 SAXS Pattern of a Tumor Sample. The rectangular central shape is caused by the 
beam stop that absorbs non-diffracted x-rays. The vast majority of diffracted intensity 
is located in the low-angle region.
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Figure 4.18 shows the same sample as in Figure 4.16 with the high intensities at the 

center “cut out” with a mask radius of 115 pixels. Because the high central intensities 

are cut out in Figure 4.18, detail is revealed that was obscured in Figure 4.16.

Figure 4.18 Intensity Reduction on Normal SAXS Image. The normal SAXS image from Figure 
4.16 with the high center intensities cut out with a mask radius of 115 pixels.

Several different sized radii were tested. However, masks with radii sizes between 50 

and 190 pixels were the most effective. These radii emphasized the third and fifth order 

intensity maxima in the diffraction pattern. Radii of 50 and 100 pixels included both 

the 3rd and 5th order maxima, while the radius of 190 pixels isolated the 5th order 

maxima.   

Figures 4.19 through 4.21 show average intensity profiles of a SAXS image. The 

intensity profile shows the average intensity of a strip 10 pixels high along the center 

line of the SAXS pattern, starting at the center of the pattern and ranging to the right
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hand edge of the pattern. Figure 4.19 shows the intensity profile when a 50 pixel radius 

is cut out of the pattern. The 3rd and 5th orders are visible, but the intensity is still much 

higher closer to the center of the pattern (or the left hand side of the intensity profile 

chart.)  

Figure 4.19 Diffraction Pattern Intensity Profile with 50 Pixel Mask Radius.

Figure 4.20 shows the intensity profile achieved with a mask radius of 100 pixels. The 

3rd and 5th orders are much more dominant in this figure than in figure 4.19.

Point Index xPoint Index 
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Figure 4.20 Diffraction Pattern Intensity Profile with 100 Pixel Mask Radius.

Figure 4.21 shows the intensity profile with a mask radius of 190 pixels. In this case 

only the 5th order was included.  

Figure 4.21 Diffraction Pattern Intensity Profile with 190 Pixel Mask Radius.

Point Index xPoint Index 

Point Index xPoint Index 
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5 RESULTS

5.1 Results Overview

The purpose of this project was to classify unknown samples into classes of normal, 

tumor, and fibro adenoma. The main problem was to find a set of features that provided 

sufficient separation for classification. The analysis consisted of three parts, each 

described by a section in this chapter. Section 5.1 describes the initial test that was used 

to narrow down the feature possibilities. Section 5.2 describes the full analysis that was 

completed for the most promising feature. Section 5.3 gives the results of the classifier 

when tested using different data sets. Section 5.4 gives the results summary.

5.2 Feature Type Selection

The initial test was used to narrow down the choices of feature type that were described 

in Section 4.1.2: Wavelet Map Mean Intensity, Wavelet Map Standard Deviation, 

Wavelet Map Fourier Transform, and Diffraction Image Intensity Profile.  

In order to get a top-level comparison of these features types, four constraints were 

used. First, a single wavelet basis (Bior 3.7) was arbitrarily selected. Since the 
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literature provided no direction on which wavelet basis would be most suitable for this 

data set, this initial test used only one arbitrarily selected wavelet basis. The wavelet 

basis refinement process was left for the full analysis. The second constraint was that 

no pre-processing was used. The pre-processing of the images also required refinement, 

which was left for the full analysis.  The third constraint was that only the normal vs. 

tumor samples were tested. It was expected that the Normal vs. Tumor samples would 

show the largest differences, and would provide the best separation for classification 

purposes no matter what feature was chosen. Additionally, the most important contrasts 

for classification are the ones involving tumor samples. The implications are more 

severe for misclassifying a tumor sample than they would be for a fibro adenoma 

sample. Therefore, the normal vs. tumor samples were given priority in choosing the 

best feature type. The fourth constraint was that the combinations of wavelet level and 

view were not analyzed or optimized. In the training process, specific levels and views 

of the wavelet features are chosen. However, the goal for this initial experiment was 

not to determine specific wavelet features, but to determine the most promising type of 

features. The specific wavelet features were analyzed and refined in the full analysis.    

These four constraints allowed for an initial evaluation of the features. Table 5.1 shows 

the highest classification rates achieved for each feature type in classifying the Normal 

vs. Tumor samples.
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Table 5.1 Normal vs. Tumor Classification Rates for Each Feature Type. The Classification 
rates are given for each feature type when classifying the Normal vs. Tumor contrast.   

Classification 
Rate (%)

Wavelet Map 
Mean Intensity 98

Wavelet Map 
Standard Deviation

81

Wavelet Map 
Fourier Transform

93
Fe

at
ur

e 
Ty

pe
Diffraction Image 
Intensity Profile

88

As seen in Table 5.1, the lowest classification rate achieved was 81% with the Wavelet 

Map Standard Deviation feature. The wavelet map standard deviation did not provide 

sufficient information to differentiate the normal samples from the tumor samples. If 

regions of interest with different textures were being selected from an image, the 

standard deviation may have been an appropriate measure. However, as expected, the 

standard deviations of the diffraction patterns for normal samples and tumor samples 

were very similar.   

The Diffraction Image Intensity Profile resulted in a classification rate of 88%. This 

result reflects the fact that the diffraction images could not be easily sorted by simply 

looking at the intensity pattern.

The wavelet map fourier transform feature was tested to try utilize frequency 

information contained in the wavelet decomposition maps. The classification rate 

achieved for this feature type was 93%, which was a promising result. However, it was 

not the highest classification rate achieved. 
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The highest classification rate achieved was 98%, with the Wavelet Map Mean Intensity 

feature. As a result, the Wavelet Map Mean Intensity feature was selected as the most

promising feature for full analysis. The wavelet map average intensity feature provided 

a simple measure to represent the texture of each wavelet map. The texture of the 

wavelet map was due to the different values of the decomposition coefficients, which 

represented the correlation between the wavelet basis at a particular scale and 

orientation and a particular point on the original image. The texture of the map revealed 

details at different scales and orientations. These details provided information that was 

not visible in the original image, but was useful in distinguishing normal samples from 

tumor samples.  

The main advantage of the wavelet map intensity feature is the ease of computation. It 

required only one step. The disadvantage of calculating the mean of the whole wavelet 

map was that additional native information contained in the map was not used. For 

example, the locations of the high intensities are not taken into consideration.   

5.3 Full Feature Analysis

Once the Wavelet Map Mean Intensity feature type was chosen as the most promising 

feature type, the full feature analysis was completed. The purpose of the full analysis 

was to refine the classification process to improve the classification rates achieved.  

Several steps were involved in the refinement process. Pre-processing was completed 

on the data, and different wavelet bases were tested. The full analysis also looked at not 
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only the normal vs. tumor contrast, but also the contrasts involving the fibro adenoma 

samples. Finally, the combinations of wavelet level and view were analyzed to 

determine the best possible feature set. This step could be referred to as feature 

reduction.

5.3.1 Pre-Processing and Wavelet Basis Selection

The pre-processing step and the wavelet basis selection were tested in combination with 

each other. The goal was to determine the pre-processing radius that would be used in 

combination with one of the wavelet bases to produce the best classification results.

For the pre-processing step, masks with radii of 50, 100, 150, 190, and 215 pixels were 

used to cut out the high center intensities from the original images. The radii were 

chosen to emphasize different orders of maxima in the diffraction pattern. The pre-

processing step is described in detail in section 4.5.2.  

Table 5.2 shows the classification rates resulting from the different combinations of 

mask radius and wavelet basis for the Normal vs. Tumor contrast. The highlighted cells 

indicate the highest classification rate achieved for each contrast.
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Table 5.2 Normal vs Tumor Classification Rates (%) for each Basis-Mask Combination. 

Mask Radii (Pixels)

50 100 150 190 215

haar 76 81 90 93 93

Db2 95 100 98 95 95

Db4 100 95 98 98 95

Db8 93 100 98 100 95

Bior2.2 98 98 98 98 95

Bior3.7 98 100 98 100 95

W
av

el
et

 B
as

is

Bior6.8 93 95 98 98 95

Table 5.2 shows that for the normal vs. tumor contrast, several combinations of mask 

radius and wavelet basis produced a classification rate of 100%. In order to choose the 

best combination for classification, the wavelet basis and mask radii combinations for 

normal vs. fibro adenoma samples and tumor vs. fibro adenoma samples were 

considered.  

Tables 5.3 and 5.4 show the same analysis as Table 5.2, but with the normal vs. fibro 

adenoma contrast, and the tumor vs. fibro adenoma contrast. The highlighted cells 

reflect the highest classification rate achieved for the contrast.    
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Table 5.3 Normal vs Fibro Adenoma Classification Rates (%) for each Basis-Mask Combination. 

Mask Radii (Pixels)

50 100 150 190 215

haar 81 81 85 85 81

Db2 89 89 89 89 89

Db4 89 89 89 89 89

Db8 93 93 96 89 93

Bior2.2 89 89 89 89 89

Bior3.7 85 89 89 89 85

W
av

el
et

 B
as

is

Bior6.8 85 85 85 85 85

Table 5.4 Tumor vs Fibro Adenoma Classification Rates (%) for each Basis-Mask Combination. 

Mask Radii (Pixels)

50 100 150 190 215

haar 86 86 90 90 90

Db2 86 90 90 90 86

Db4 97 90 90 90 86

Db8 90 93 90 93 86

Bior2.2 90 90 90 90 90

Bior3.7 90 97 90 97 90

W
av

el
et

 B
as

is

Bior6.8 90 86 93 86 90

Tables 5.3 and 5.4 show that there were several wavelet basis and mask radius 

combinations that achieved classification rates greater than 95% for these two contrasts.  
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In order for a combination of wavelet basis and mask radius to be selected for further 

analysis, it must achieve a classification of 100% in the normal vs. tumor contrast, and 

over 95% in one of the other contrasts. In other words, the best wavelet basis and mask 

radius combinations would produce the highest classification rates for the normal vs. 

tumor contrast as well as at least one of the fibro adenoma contrasts.  

Table 5.5 shows the six wavelet basis and mask radius combinations that achieved 

100% classification rates for the normal vs. tumor contrast. It shows the classification 

rates achieved for the other two contrasts as well. The highlighted rows indicate which 

wavelet basis and mask radius combinations achieved classification rates of 100% in the 

normal vs. tumor contrast and over 95% in at least on of the other two contrasts.  
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Table 5.5 Highest Classification Rates (%). This table summarizes the highest classification rates 
for each combination of wavelet basis and mask radii for each of the three contrasts.  
The highlighted combinations were selected for further testing.

Contrast

Wavelet 
Basis

Mask 
Radii 

(pixels)

Normal vs. 
Tumor

Normal vs. 
Fibro Adenoma

Tumor vs. Fibro 
Adenoma

Db2 100 100 89 90

Db4 50 100 89 97

Db8 100 100 93 93

Db8 190 100 89 93

Bior3.7 100 100 89 97

W
av

el
et

 B
as

is 
an

d 
M

as
k 

R
ad

iu
s 

C
om

bi
na

tio
n

Bior3.7 190 100 89 97

The three highlighted combinations in Table 5.5 were selected for further testing: Db 4 

with a radius of 50 pixels, Bior3.7 with radius of 100, and Bior3.7 with radius of 190 

pixels. These three combinations produced the maximum classification rates for both 

the normal vs. tumor and normal vs. fibro adenoma contrasts.  

The next step was to classify the samples when all three classes were presented at the 

same time. The ideal result would be to find an optimal feature set that would continue 

to classify the normal and tumor samples at a classification rate of 100% when the fibro 

adenoma samples were also included in the test data.  
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Each of the three wavelet-radii combinations that were selected from Table 5.5 was 

tested with normal, tumor and fibro adenoma samples all included. Table 5.6 

summarizes the results of the test.

Table 5.6 Best Rates Achieved for Simultaneous Classification of all Three Classes. The table 
shows the best rate for each wavelet–radii combination.

Wavelet Mask 
Radius 
(Pixels)

Classification 
Rate (%)

Db4 50 90

Bior3.7 100 88

Bior3.7 190 86

Table 5.6 shows that the classification rates were significantly lower when all three 

classes were considered at the same time. However, examination of the misclassified 

points showed that in all three cases, none of the normal or tumor samples were 

misclassified.  

Table 5.7 shows the details of the misclassified points. For each of the wavelet basis 

and mask radii combinations, the chart shows the number of times each sample type 

was classified as normal, tumor, or fibro adenoma. The ideal result is when each 

sample type is classified 0 times as another sample type. For example, the first line of 

the table shows the normal samples with the Db4 basis and 50 pixel radius. In this case, 

all 20 normal samples were classified as normal, with 0 being classified as tumor, and 0 

being classified as fibro adenoma.
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Table 5.7  Summary of Classification Results. The table shows the number of times the data 
samples for each of the wavelet-radii combinations were classified into each of the 
three classes. The table is shows how many samples from each class were 
misclassified, and what they were classified as.    

Number of Times Classified As:

Wavelet Basis Mask Radius 
(pixels)

Sample Normal Tumor Fibro 
Adenoma

Normal 20 0 0

Tumor 0 22 0Db4 50

Fibro 
Adenoma

4 1 2

Normal 20 0 0

Tumor 0 22 0Bior3.7 100

Fibro 
Adenoma

4 2 1

Normal 20 0 0

Tumor 0 22 0Bior3.7 190

Fibro 
Adenoma

3 4 0

Table 5.7 shows that the normal and tumor samples were correctly classified with each 

of the three combinations. Only fibro adenoma samples were misclassified. The Db4 

wavelet – 50 pixel radius combination performed the best, with two fibro adenoma 

samples being classified correctly, four being classified as normal, and only one being 

classified as tumor. The Bior3.7 wavelet – 190 pixel radius combination performed the 

worst, misclassifying all of the fibro adenoma samples, and classifying four of them as 

tumors.  
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5.3.2 Feature Reduction

The last point to consider before choosing the final feature parameters was the feature 

reduction step, as discussed in section 4.3. It should be noted that for each of the 

classification results achieved above, different combinations of the average wavelet 

map intensity features were used. The wavelet decomposition process results in 32 

average intensity features, so the features needed to be narrowed down for classification 

purposes. Testing all combinations of the features, and selecting the combinations with 

the fewest features resulting and highest classification rates accomplished this task.  

Details of the feature reduction process can be found in section 4.3.

Table 5.8 shows the specific wavelet map average intensity features that were used with 

each of the wavelet basis – mask radius combinations to achieve the classification 

results shown in Tables 5.6 and 5.7. Digits from 1 through 8 represent the wavelet 

decomposition level, and letters a, h, v, and d represent the approximation, horizontal, 

vertical, and diagonal views, respectively.

Table 5.8 Specific Intensity Features Used to Achieve the Highest Classification Rates. The 
wavelet decomposition level is represented by a digit from 1 through 8, and the wavelet 
view is represented by the letters a (approximation), h (horizontal), v (vertical) or d 
(diagonal).  

Wavelet Basis Mask Radius (pixels) Intensity Features Used

Db4 50 1 2 6 7 v

Bior3.7 100 3 4 6 7 8 v

Bior3.7 190 7 d
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According to Table 5.8, the Bior3.7 wavelet – 190 pixel mask radius combination 

performs the best. It requires only one intensity feature, the level 7 diagonal view, in

order to classify all of the normal and tumor samples correctly. This reduces the 

computation required for feature extraction. As discussed in the methods chapter in 

section 1.3, the ratio of samples per class to features should be at least 10, allowing for a 

maximum of two features for this project. The Bior3.7 7D wavelet – 190 pixel mask 

radius combination meets this goal.

In order to choose the final feature set, it needs to be decided which factor is more 

important: number of misclassified fibro adenoma samples, or number of features used.  

If number of misclassified fibro adenoma samples was more important, the Db4 wavelet 

basis and 50 pixel radius performs the best. If it is more important to use the smallest 

number of features, the Bior3.7 wavelet basis and 190 pixel radius performs the best.  

5.4 New Data Sets

Two experiments were performed to test the performance of the classifier in different 

situations. The first experiment looked at four samples from one breast, the first sample 

being located at a tumor, and each of the other three at increasing distances from the 

tumor. This was a way to test the sensitivity of the classifier to the sampling accuracy.  

The second experiment applied the pattern recognition software to an unrelated data set 

consisting of MRI images of rat brains. This showed the ability of the classifier to 

detect abnormalities in different types of images.
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5.4.1 Experiment 1: Increasing Distances from the Tumor

The purpose of this experiment was to classify four samples that were biopsied from the 

same breast. The samples were taken at increasing distances from a tumor. The first 

sample was located at the tumor, and the other three were located 20mm, 40mm and 

80mm from the tumor.  

The classifier was trained using the 20 normal samples and 22 tumor samples. The 

classifier was tested with each of the three combinations of features and mask radius –

wavelet basis combinations discussed in section 5.1.4. The classification results for 

each of the three combinations are summarized in Table 5.9.

Table 5.9 Classification of Samples at Increasing Distances from the Tumour. Results are shown 
for three feature parameter combinations.

Wavelet Basis - Mask Radius Combination

And Specific Features Used

Distance from tumor (mm)
Bior3.7-190

d7

Bior3.7-100 

v34678

Db4-50 

v1267

0 Tumor Tumor Tumor

20 Tumor Tumor Tumor

40 Normal Tumor Tumor

80 Normal Normal Normal
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Table 5.9 shows that the Bior3.7 wavelet basis, 190 pixel mask radius, and 7D feature, 

classified the sample as a tumor for samples within 20mm of the tumor. At distances of 

40mm and greater, the sample was classified as normal. The other two feature 

combinations included more intensity features, and detected the tumor at distances up to 

40mm from the tumor.  

5.4.2 Experiment 2: MRI Data

The classifier was also tested on a set of diffusion weighted MRI images of rat brains.  

The images showed time-related ischemic injury due to a nerve agent. The data set 

consisted of 29 control images with no brain damage, seven images taken 12 hours after 

the nerve agent administration, seven images taken 24 hours after the nerve agent 

administration, twelve images taken 48 hours after the nerve agent administration, and 

21 images taken seven days after the nerve agent administration. The images taken at 

12 and 24 hours after the nerve agent injection showed the greatest injury. With 

increasing time after 24 hours, the images show more resemblance to the normal 

images.

Figure 5.1 shows examples of the diffusion weighted MRI images of the rat brains.

Figure 5.1 Diffusion Weighted MRI Images. The bright spots on the 12 hour and 24 hour images 
show areas of acute ischemic injury due to the nerve agent.

12 hour 24 hour Control
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Figure 5.2 shows the mean intensities of the control, 12-hour, 24-hour, 48-hour, and 7-

day images. All of the intensities are concentrated in the same band, and no separation 

between the classes is visible.

Mean Intensities of Original Images
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Figure 5.2 Mean Intensities of Rat Brain Images. This figure shows the overlap of the control, 12-
hour, 24-hour, 48-hour, and 7-day MRI rat brain image intensities.

In order to classify the images automatically, features were needed that would provide 

separation between the classes. The wavelet bases selected in section 5.1.2 as the most 

promising, the Bior3.7 and the Db4, were tested for this experiment. For the MRI data, 

the high center intensities were not a factor, therefore the pre-processing step was not 

used.  

Table 5.10 shows the best classification results achieved for the MRI rat brain images 

with each of the wavelet bases. The 12 hour and 24 hour samples were contrasted with 
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the control samples because they were the ones that were expected to show the largest 

difference from the control samples. For each of the wavelet bases tested, only one 

intensity feature was required for 100% classification. H5 means the horizontal view at 

level 5 of the wavelet decomposition. H8 means the horizontal view at level 8 of the 

wavelet decomposition.

Table 5.10 Classification Rates (%) for Rat Brain Contrasts. Results are shown for each contrast 
with each feature.   

Contrast

Control vs 

12 hour

Control vs 

24 hour

Bior3.7 H5 100 71

Fe
at

ur
e

Db4 H8 100 100

As shown in Table 5.10, classification rates of 100% were achieved for both contrasts 

using the Db4 Horizontal view Level 8 feature. This feature was then used to classify 

all of the contrasts against each other at the same time.  

Figure 5.3 shows the performance of the Db4 H8 feature in classifying all of the 

contrasts against each other at the same time. There is overlap between the 12 hour and 

24 hour classes, as well as the 48 hour, 7 day, and Control classes. However, there is 

significant separation between the 24 hour and 48 hour classes and the other three 

classes combined. A classifier based on this feature would be successful in separating 

either of the 12 hour or 24 hour samples from the other three classes. 
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Figure 5.3 Mean Intensities of the Db4 H8 Feature of Rat Brain Images. This figure 
shows the separation achieved between the 12-hour and 24-hour, and the control, 48-
hour, and 7-day MRI rat brain images when the Db4 H8 intensity feature was used.

5.5 Results Summary

Four initial features types were evaluated including wavelet map intensity, wavelet map 

standard deviation, wavelet map Fourier transform, and diffraction image intensity. It 

was determined that the most promising feature type was the wavelet map intensity 

feature.

The wavelet map intensity feature was improved by using pre-processing to remove the 

high central intensities from the original images, and by using different wavelet bases 

for the wavelet decomposition. The combination of the Bior3.7 wavelet with a mask 

radius of 190 pixels and an intensity feature of the diagonal view at level 7 was selected 



89

as the optimal feature parameter set. It used the fewest intensity features and still 

classified the normal and tumor samples with a classification rate of 100%.

The classifier was tested with samples at increasing distances from the tumor. It was 

found that with the Bior3.7 wavelet with a mask radius of 190 pixels and the level 7 

diagonal view intensity feature, the classifier detected the tumor up to 20mm from the 

tumor. However, with the Bior3.7 wavelet basis with a 100 pixel mask radius and 

V34678 feature combination and the Db 4 wavelet basis with a 50 pixel mask radius 

and V1267 feature combination, the tumor was detected up to 40mm from the tumor.  

This suggests that the additional features could increase the sensitivity of the classifier 

to tumor data.

The final test evaluated the classifier on a set of MRI images of rat brains showing time-

related injury due to a nerve agent. The Db4 H8 feature provided sufficient separation 

to distinguish either the 12 hour or 24 hour images from the 48 hour, 7 day, and Control 

images.  
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6 DISCUSSION

6.1 Implications of Results
The classification results based on the normal, fibro adenoma, and tumor samples were 

very encouraging. Classification rates of 100% for normal vs. tumor samples, 96% for 

normal vs. fibro adenoma samples, and 97% for tumor vs. fibro adenoma samples were 

achieved. These results compared with the highest sensitivities found in the literature 

[7] [53] [54]. 

When fibro adenoma samples were included in the classification process, the 

classification rates decreased. The normal and tumor samples were still correctly 

classified 100% of the time. However, because of the misclassified fibro adenoma 

samples the overall classification rate was reduced to 90%. As only seven fibro 

adenoma samples were available, further testing with more samples would be required 

to determine more accurate classification rates when fibro adenoma samples are 

included in the data.
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Common weaknesses of the breast cancer detection systems reviewed in the literature 

were that the feature extraction processes required many complicated steps, or were 

computationally expensive. The system designed for this project does not pose those 

problems. The wavelet map average intensity feature was straightforward to calculate, 

and required only two steps: wavelet decomposition, and average intensity calculation.  

Another strength of the system designed for this project was that the feature extraction 

process did not require a priori information, as many systems do. The only a priori 

information required was for the naïve Bayesian classifier. The a priori probabilities for 

the different classes needed to be specified. However, since the wavelet features were 

so strong, the choice of classifiers may be flexible. An interesting area for further 

research would be to test a classifier based on a clustering method that would require no 

a-priori parameter estimation.

6.2 Implications of the Distance Test

The automated classification system was tested on data sampled at increasing distances 

from the tumor. There are differences in the diffraction patterns of the tissue samples at 

increasing distances from a tumor [31]. The results of the classifier implemented in this 

project agreed with those findings. The tissue was classified as tumor at distances from 

20mm to 40mm away from the tumor depending on the feature set used. At distances 

of 80mm from the tumor all feature combinations classified the tissue as normal.   
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6.3 Implications of the MRI Results

The classifier was also tested on a completely unrelated data set consisting of MRI 

images of rat brains that contained time-related pathology. The classifier was able to 

sort the MRI images into two distinct groups. One group contained the control images 

plus the images taken at time points of forty-eight hours and seven days. The other 

group contained the images at time points of 12 hours and 24 hours. These results were 

encouraging because the damage that was observed by the changes in the apparent 

diffusion coefficient of the MRIs was most pronounced for the 12 to 24 hour time 

points. The apparent diffusion coefficients gradually returned to levels close to normal 

by 7 days. These results agree with those of the classifier.

Although the classifier was designed for classifying diffraction patterns of breast tissue, 

it worked surprisingly well on a completely unrelated data set of MRI images of rat 

brain damage. This means that the method may be used to solve other classification 

problems. Another application currently being investigated is the use of this 

classification system on digitized mammograms. Preliminary results indicate 

classification rates of 94% for distinguishing between cancerous calcifications and 

normal tissue, and 90% for distinguishing between cancerous masses and normal tissue 

[11].  
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7 CONCLUSION

Breast cancer is the most commonly diagnosed type of cancer in Canadian women.  

Although the death rate is the second highest among Canadian women with cancer, 

early detection of the disease greatly improves the chance of survival. Therefore, it is 

important to develop new and improved methods for breast cancer screening.  

The overarching goal of this project was to improve breast cancer screening protocols 

by developing a semi-automatic pattern recognition tool to assist radiologists in the 

classification of breast lesions.  

Another of the objectives of the project was to use specialized data that was acquired 

using synchrotron technology. The synchrotron allowed SAXS images to be collected 

from breast biopsy tissue.  

The main task of the project was to find features in the data that would distinguish 

normal samples from those containing tumors. That is where wavelet analysis came in.  
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The third objective for this project was to use wavelets to analyze the data. Wavelet 

based features were generated from the SAXS image data. The features were supplied 

to the pattern recognition tool, and were successful in sorting the images into distinct 

groups of “normal” and “tumor”.

Meeting the three objectives for this project was a semi-automatic breast cancer 

screening tool that showed very promising results in the investigation undertaken for 

this project. A classification rate of 100% was achieved for distinguishing between 

normal samples and tumor samples. Classification rates of 96% were achieved for 

distinguishing between fibro adenoma samples and normal samples as well as fibro 

adenoma samples and tumor samples. The system also showed promising results when 

tested on unrelated MRI data, and preliminary research showed that the system may be 

effective for classifying digital mammograms.  
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