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1. Introduction 

Breast cancer is the second leading cause of cancer deaths in women today (after lung 
cancer) and is the most frequently diagnosed cancer among women, excluding skin cancers. 
According to the American Cancer Society, an estimated of 230,480 new cancer cases are 
expected to be diagnosed in 2011; about 2,140 new cases are expected in men. In addition to 
invasive breast cancer, 57,650 new cases of in situ breast cancer are expected to occur among 
women in 2011. Of these, approximately 85% will be ductal carcinoma in situ (DCIS). An 
estimated 39,970 breast cancer deaths (39,520 women, 450 men) are expected in 2011. Death 
rates for breast cancer have steadily decreased in women since 1990, with larger decreases in 
women younger than 50 (a decrease of 3.2% per year) than in those 50 and older (2.0% per 
year), representing progress in both earlier detection and improved treatment. 

Breast imaging has a key role in the early detection of breast cancer, which in conjunction 

with increased public awareness (prompting for monthly self-breast examination and 

annual examination by physician) yields the reduction in mortality from breast cancer.  

Screen-film (SF) mammography is currently the most effective imaging modality for the 

early detection of breast cancer, challenged however by the presence of dense breast 

parenchyma. Furthermore, radiologist accuracy in diagnostic task (discrimination of 

malignant from benign lesions) is relatively low and is also differentiated with respect to 

lesion type (masses versus microcalcifications) (Cole et al., 2003). Despite the advantages 

offered by digital mammography the diagnosis of indeterminate lesions is still a challenging 

task. Breast ultrasound and Dynamic Contrast Enhanced Magnetic Resonance Imaging 

(DCE-MRI) are significant adjuncts to mammography providing additional diagnostic 

information by exploiting 3D structural and functional tissue properties related to lesion 

angiogenesis.  

Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) schemes have 

been proposed across breast imaging modalities to improve radiologist performance in 

detection and diagnosis tasks (Bassett, 2000; Cheng et al., 2003; Sampat et al., 2005; Chan et 
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al., 2005; Giger et al., 2008; Costaridou et al., 2008; Elter & Horsch, 2009). These schemes also 

aim to reduce intra- and inter-observer variability by quantifying information that the 

human observer can perceive but in an objective and reproducible way (“mimic the human 

eye”), or to further quantify any information that may not be readily perceived by human 

eyes. The challenges of the CADx approaches are differentiated across breast imaging 

modalities and lesion types.  

The American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-
RADS) lexicon (ACR BIRADS 2003) defines masses, microcalcification (MC) clusters, 
architectural distortion and bilateral asymmetry as the major breast cancer signs in X-ray 
mammography. A mass is a space occupying lesion seen at least in two different 
mammographic projections. If a mass is seen only in a single projection is called asymmetric 
density. When a focal area of breast tissue appears distorted with spiculations radiating 
from a common point and focal retraction at the edge of the parenchyma, while no central 
mass is definable, it is called architectural distortion. 

Calcifications are small deposits of calcium within the breast tissue and as masses are 
associated with both malignant and benign underlying biological processes (Kopans, 2007). 
Calcifications appear as high Signal-to-noise-ratio (SNR) bright structures, due to the high 
attenuation coefficient of calcium (higher than other breast constituents such as water, fat 
and glandular tissue). Calcifications can be large (>1mm) referred to as macro-calcifications 
and are commonly associated with benign conditions. MCs are tiny deposits of calcium in 
the breast with size ranging from 0.1mm to 1mm. A number of MCs grouped together is 
termed as a cluster and it may be a strong indication of cancer. A cluster is defined as at 
least three MCs within a 1 cm2 area. Benign MCs are usually larger and coarser with round 
and smooth contours. Malignant MCs tend to be numerous, clustered, small, varying in size 
and shape, angular, irregularly shaped and branching in orientation. 

In x-ray mammography, the automated interpretation of MCs is an open issue and more 
difficult than the corresponding task for masses (Cheng et al., 2003; Sampat et al., 2005). 
Difficulty in automated MCs interpretation is attributed to MCs fuzzy nature (varying size 
and shape), low contrast and low distinguishability from their surroundings (Cheng et al., 
2003) rendering the accurate segmentation of MCs a challenging task. CADx schemes for 
MC clusters can be categorized into two major approaches: morphology-based and texture-
based approaches. The morphology-based CADx schemes are highly dependent on the 
robustness of the employed segmentation algorithm. Texture-based CADx schemes assume 
that the presence of MCs alters the texture of the background tissue that MCs are embedded 
in; focused on extracting texture features from Regions of Interest (ROI) containing the 
cluster, these approaches do not depend on the robustness of a segmentation algorithm (i.e. 
the segmentation step is omitted). Since it is the breast tissue surrounding MCs that is 
subjected to histopathological analysis, to derive a malignant or a benign outcome, 
mammographic image texture analysis seems a more natural choice, while the bias induced 
by the presence of MCs on the texture pattern of the ROI being analyzed should also be 
considered (Thiele et al., 1996).  

The following sections provide the current state-of-the-art approaches towards computer-
aided diagnosis of MC clusters. Specifically, morphology-based and texture-based 
approaches are reviewed and an application paradigm focusing on their inter-comparison is 
provided. 
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2. Computer-aided detection and diagnosis of breast lesions in x-ray 
mammography 

While SF mammography is currently the most effective breast imaging modality for the 

early detection of breast cancer (detection of breast abnormalities/lesions), its specificity in 

differentiating malignant from benign lesions is relatively low resulting in a high number of 

unnecessary biopsies.  

Digital mammography allows the separation of image acquisition, processing, and display 

and represents a solution to many of the inherent limitations of SF mammography (Pissano, 

2000). The digital detector has a linear response to x-ray intensity, in contrast to the 

sigmoidal response of screen-film systems. As a result, use of a digital detector provides a 

broader dynamic range of densities and higher contrast resolution. Through image 

processing, display parameters may be chosen independently from image acquisition 

factors. Small differences in attenuation between normal and abnormal breast tissue can be 

amplified, rendering digital mammography most suitable for screening of dense breast. 

Despite the advantages offered by digital mammography, the radiologic interpretation of 

MCs still remains a major issue and is more challenging than the interpretation of breast 

masses. Studies have shown that the performance of radiologists in interpreting breast 

lesions is highly dependent on lesion type (masses vs. MCs) even with the use of image 

post-processing techniques (Cole et al., 2003). Specifically, it has been shown that radiologist 

performance in MCs interpretation is reduced as compared to masses interpretation, 

independent of the post-processing method used (Cole et al., 2003). Furthermore, inter- and 

intra-observer variability is higher in MCs interpretation as compared to masses 

interpretation (Skaane et al., 2008), and is also similar to observer variability in SF 

mammography (Baker et al., 1996;  Skaane et al., 2008). 

CADe and CADx schemes have a key role in detection and diagnosis of breast lesions 

aiming to improve radiologist performance, reduce observer variability and quantify lesion 

properties (Bassett, 2000; Cheng et al., 2003; Sampat et al., 2005; Chan et al., 2005; Costaridou 

et al., 2008; Costaridou, 2011). They were originally proposed and applied on digitized 

images with proven benefits, but as being better suited to digitally acquired images they are 

expected to cast further insights towards breast cancer detection and management. These 

systems act only as “second readers” and the final decision is made by the radiologist. The 

term “CADe/x” refers to formulating the clinical detection or diagnosis problem into the 

context of quantitative image feature extraction and pattern classification with the goal of 

solving it automatically (Duncan &Ayache, 2000). 

CADe schemes have been developed to improve radiologists’ performance in detecting 

breast lesions, by identifying suspicious regions of masses and MC clusters in an image (i.e. 

by placing prompts over areas of concern). The input to a CADe scheme is an image and the 

output is a location of a possible abnormality. Recent CADe schemes also provide the lesion 

boundary.  CADx schemes in breast imaging aim to assist radiologists in the diagnostic task 

of lesion characterization (malignancy vs. benignity), thus affecting patient management 

(follow-up vs. biopsy). The input to a CADx scheme is a ROI indicating a breast 

lesion/abnormality. The output of a CADx scheme is a probability of malignancy for the 
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lesion considered. Both CADe and CADx schemes share similar processing stages, such as 

segmentation, feature extraction and classification adjusted however to the specific task at 

hand. Figure 1 depicts the typical architecture of a CADe and a CADx scheme. 

The high performances achieved by CADe schemes for breast lesions in x-ray 

mammography have led to their incorporation in commercially available FDA approved 

systems. These systems have shown to improve the performance of radiologists in detecting 

breast lesions, however, the high rate of false positives reported by some studies arise 

controversies concerning their exact impact on radiologist interpretation (Gur et al., 2004, 

Fenton et al., 2007). On the other hand, the development of commercially available CADx 

systems is still ongoing (Sampat et al., 2005).  

 

Fig. 1. Flowchart depicting the typical architecture of a CADe and a CADx scheme. Optional 
steps are indicated with dashed line 

3. CADx schemes for MC clusters 

3.1 Morphology-based CADx schemes  

In the clinical practice the diagnosis of MC clusters in based on morphology (shape, size and 
intensity) properties and distribution properties of individual particles within a MC cluster, 
thus, most CADx schemes are also focused on the automated quantification of such 
properties (Cheng et al., 2003; Sampat et al., 2005; Costaridou et al., 2008; Elter & Horsch, 
2009; Costaridou, 2011). 
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A number of authors have utilized a wide range of quantitative individual MC morphology 
properties (Patrick et al., 1991; Shen et al., 1994; Papadopoulos et al., 2008; Sklansky et al., 
2000; Jiang et al., 1996). Specifically, size and shape features (area, perimeter, elongation, 
circularity, compactness, eccentricity, moment ratio, axis ratio, concavity index, effective 
thickness and volume as well as, shape signature) and MC intensity features (mean 
intensity, background intensity, contrast and edge strength) have been exploited.  

CADx schemes that classify MC clusters are based on two categories of cluster features: 

 Category I: Cluster features based on descriptive statistics (e.g. average, standard 
deviation, coefficient of variation, maximum, median, range) of individual MC 
morphology properties. 

 Category II: Cluster features describing cluster morphology considering the cluster as 
an entire object (cluster area, diameter, perimeter, circularity, eccentricity, elongation, 
solidity and cluster background intensity). In this category the spatial distribution of 
individual MC particles within a cluster is also considered (number of MCs, structural 
index, proximity to the nearest MC, cluster density, as well as distance to pectoral and 
breast edge). 

Table 1. summarizes morphology-based CADx schemes for MCs in terms of discriminant 
features (derived from Category I and/or Category II) including feature selection and 
classification techniques employed. Classification performance is also provided in terms of 
area under Receiver Operating Characteristic - ROC curve (Az index) on patient and cluster-
basis. Performance in patient-basis is derived by considering decision scores by both 
mammographic views (mediolateral oblique and craciocaudal). A disadvantage of these 
methods is that their performance is dependent on the accuracy of the segmentation method 
used. Specifically, the segmentation accuracy of less robust segmentation methods reduces 
the performance of morphology-based CADx schemes (Paquerault et al., 2004; Arikidis et 
al., 2008; Arikidis et al., 2009). 

3.2 Texture-based CADx schemes 

Another approach that overcomes limitations associated to segmentation issues is texture 
analysis applied on ROIs containing the MC cluster.  This approach is based on the 
hypothesis that a malignancy (e.g. the MC) would cause changes in the texture of tissue 
surrounding it. Aiming at capturing such tissue texture alterations, CADx schemes have 
exploited various texture feature sets as well as feature selection and classification 
algorithms (Cheng et al., 2003; Sampat et al., 2005; Elter & Horsch, 2009), summarized in 
Table 2. Table 2 also provides classification performance of reported CADx schemes in a 
cluster-basis. Since a direct comparison of the reported CADx methodologies is not feasible, 
mainly due to the heterogeneous datasets analyzed, the attempted comparisons in the 
following paragraphs are only indicative of existing trends in texture analysis.  

The grey level co-occurrence matrix (GLCM) characterizes the spatial distribution of grey 
levels in an image (Haralick et al., 1973). Features extracted from GLCMs provide 
information concerning image texture heterogeneity and coarseness, which is not 
necessarily visually perceived. The discriminating ability of GLCMs features, as extracted 
from original image ROIs containing MCs, has been demonstrated by most studies (Dhawan 
et al., 1996; Kocur et al., 1996; Kramer & Aghdasi 1999; Chan et al., 1997; Chan et al., 1998; 
Soltanian-Zadeh et al., 2004), with specific GLCMs feature combinations achieving an 
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Study Discriminant Features Feature selection /
Classification 

Performance  
(Az index) 

Jiang, et al. 1996 
 

IMean area and effective volume, 
Standard Deviation (SD) of 
effective thickness and effective 
volume, 2nd highest MC-shape-
irregularity measure. 
IINumber of MCs, circularity, area.

Qualitative 
correlation with 
radiologist’s 
experience /  
Artificial Neural 
Network (ANN)

0.92 (patient) 
0.83 (cluster) 

Betal, et al. 1997 IPercentage of irregular and round 
MCs, inter-quartile range of MC 
area. 
IINumber of MCs.

Exhaustive search / 
k-nearest-neighbour 

0.84 (patient) 

Chan, et al. 1998 ICoefficient of mean density 
variation, moment ratio variation 
and area variation, maximum 
moment ratio and area. 

Genetic algorithm 
and stepwise 
discriminant analysis 
/ Linear Discriminant 
Analysis (LDA)

0.79 (cluster) 

Veldkamp, et al. 
2000 

ISD of individual MC area, 
orientation and contrast, mean of 
individual MC area and 
orientation, cluster area. 
IINumber of MCs, distance to 
pectoral edge and breast edge.

Sequential forward 
feature selection 
based on Az value / 
k-nearest-neighbour 

0.83 (patient) 
0.73 (cluster) 

Sklansky, et al. 
2000 

IMean area, aspect ratio and 
irregularity. 
IINumber of MCs.

Genetic algorithm / 
ANN 

0.75 (cluster) 

Leichter, et al. 
2000 

IMean shape factor, SD of shape 
factor,  brightness and area 
IIMean number of neighbours, 
mean distance to the nearest MC.

Stepwise 
discriminant analysis 
/ LDA 

0.98 (cluster) 

Buchbinder, et al. 
2002 

IAverage of length extreme values. Stepwise 
discriminant analysis 
/ LDA

0.81 (cluster) 

Paquerault, et al. 
2004 

IMean area and effective volume, 
relative SD of effective thickness 
and effective volume, 2nd highest 
MC-shape-irregularity. 
IINumber of MCs, circularity, area.

Qualitative 
correlation with 
radiologist’s 
experience / LDA 
and Bayesian ANN

0.86 (patient) 
0.82 (cluster) 

Arikidis, et al. 
2008 

ISD of length extreme values. Exhaustive search / 
LDA

0.86 (patient) 
0.81 (cluster) 

Table 1. Morphology-based CADx schemes for MC clusters 

Az of 0.88 in discriminating malignant from benign MC clusters (Chan et al., 1997). In 
addition, GLCMs feature have shown to be more effective than morphology-based features 
(Chan et al., 1998), while their combination can provide an even higher classification 
performance. Soltanian-Zadeh et al. (2004) demonstrated that GLCMs extracted from ROIs 
containing the MCs were superior to GLCMs extracted from segmented MCs and suggested 
that “there may be valuable texture information concerning the benignity or malignancy of 
the cluster in those areas that lie outside the MCs”. 

Aiming at capturing tissue texture alterations in multiscale representation, studies have also 
exploited first order statistics (FOS) (i.e. energy, entropy and square root of the coefficients 
norm) extracted from wavelet (Dhawan et al., 1996; Kocur et al., 1996; Soltanian-Zadeh et al., 
2004) or multi-wavelet (Soltanian-Zadeh et al., 2004 transform subimages. Wavelet/ 
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Study Features 
Feature selection / 
Classification 

Performance 
(Az±SE) 

Dhawan  et 
al., 1996 

 GLCMs features 

 Entropy, Energy (wavelet 
packets; Daubechies 6/20)  

 Cluster features 

Genetic Algorithm-
based method / 
Backpropagation 
Neural Network, 
Linear classifier, k-
Nearest Neighbor  

Combined: 
0.86±0.05 
(cluster) 

Kocur  et 
al., 1996 

 SRN (DWT; \Daubechies4 & 
Biorthogonal 9.7)  

 GLCMs feature (angular second 
moment). 

 Eigenimages (Karhunen-Loeve 
coefficients) 

ANN, Decision 
Boundary Analysis 
/ Multilayer 
Perceptron Neural 
Network  

Wavelet: 
88%* 
(cluster) 

Chan  et 
al., 1997 

 GLCMs features  
 

Stepwise 
Discriminant 
Analysis /  
Artificial Neural 
Network  

0.88 
(cluster) 

Chan  et 
al., 1998 

 GLCMs features  

 Cluster features 
(Morphological) 

Genetic Algorithm, 
Stepwise 
Discriminant 
Analysis / Linear 
Discriminant 
Analysis  

Combined: 
0.89±0.03 
(cluster) 
0.93±0.03 
(patient) 

Kramer & 
Aghdasi, 
1999 

 GLCMs features 

 Entropy, Energy (DWT;  
Daubechies 4/6/20 & 
Biorthogonal 2.8) 

 Co-occurrence-based (DWT;  
Daubechies 4/6/20 & 
Biorthogonal 2.8)  

Sequential Forward 
Selection/ ANN, k-
Nearest Neighbor  

Combined: 
94.8%* 
(cluster) 

Soltanian-
Zadeh  et 
al., 2004  

 GLCMs features from 
segmented MCs and from 
ROIs containing the MCs 

 Entropy, Energy (wavelet 
packets; Daubechies 6/10/12) 

 Entropy, Energy (multi-wavelet, 
3 Filters)  

 Cluster features (shape)  

Genetic Algorithm /  
k-Nearest Neighbor  
 
 
 

 
Multi-
wavelet:  
0.89 
(cluster) 

Karahaliou 
et al., 2008 

 First order statistics 

 GLCMs features 

 Laws’ texture energy measures 

 Energy, Entropy (redundant 
DWT; B-spline)  

 Co-occurrence based 
(Decomposition: redundant 
DWT; Filter: B-spline; Levels: 
1-3)  

Exhaustive search/  
Probabilistic  Neural 
Network 

 
0.98±0.01  
(cluster) 

 
 

*Performance provided in % classification accuracy; GLCMs: Grey-level co-occurrence matrices; SRN: 
Square Root of the Norm of coefficients; DWT: Discrete Wavelet Transform. 

Table 2. Texture-based CADx schemes for MC clusters 
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multiwavelet FOS have shown to be more effective than GLCMs features (Kocur et al., 
1996; Soltanian-Zadeh et al., 2004) and shape features (Soltanian-Zadeh et al., 2004) 
suggesting the advantages offered by the multiscale representation of the tissue analyzed. 
Dhawan et al. (1996) demonstrated that the combination of GLCMs with FOS wavelet 
features, representing global and local texture respectively, is superior to cluster features; 
however, best performance was achieved by a selected feature set including GLCMs, 
wavelet and cluster features. An obvious extension of wavelet FOS is the computation of 
co-occurrence matrix features from wavelet decomposed subimages, to describe 
coefficients second order statistics (Van de Wouwer et al., 1998). Kramer and Aghdasi 
(1999) demonstrated that co-occurrence matrices features extracted from wavelet 
decomposed subimages were superior to GLCMs and wavelet FOS in discriminating 
malignant from benign MC clusters. 

3.2.1 Texture analysis of the tissue surrounding MCs 

As opposed to the previously described CADx approaches which analyze the texture 

pattern of ROIs containing the MC cluster, the MCs surrounding tissue analysis approach 

focuses on the investigation of the “net texture pattern” of the underlying breast tissue 

removing any bias induced by the presence of MCs. 

The biological basis of the hypothesis is that as the tissue surrounding MCs is the one 

sampled and subjected to histopathological analysis to decide on benignity or malignancy, 

this tissue area should be subjected to texture analysis. The hypothesis was introduced by 

Thiele et al. (1996) who investigated texture properties of the tissue surrounding MCs on 

digital scout views acquired during the stereotactic biopsy procedure. The hypothesis was 

tested on a dataset of 54 cases (18 malignant/36 benign) exploiting GLCMs and fractal 

geometry based features and achieved a classification performance 85% (sensitivity 89%, 

specificity 83%) employing Linear and Logistic Discriminant analysis. Since its introduction 

on digital scout views, the feasibility of the MCs surrounding tissue analysis hypothesis has 

been further investigated on screening mammograms (Karahaliou et al., 2007a, 2007b, 2008).  

In the following sections (4.1, 4.2 and 4.3) the potential contribution of this approach in 
CADx of MC clusters  is investigated and compared to current state-of-the-art approaches, 
by means of a meta-analysis application paradigm of the sample analysed in (Karahaliou et 
al., 2007a, 2008; Arikidis et al., 2008). 

4. Application paradigm 

4.1 Texture vs. morphology analysis for MC cluster diagnosis 

Methods performance inter-comparison is tested on a pilot dataset of 92 MC clusters. 49 MC 
clusters were malignant (as proven by biopsy) while 43 MC clusters were benign (either 
biopsy proven or without call-back). Mammograms were originated from the Digital 
Database for Screening Mammography (DDSM) (Heath et al., 2000) and correspond to 
digitization with a single laser scanner (LUMISIS) at a pixel depth of 12 bits and 50 μm pixel 
resolution. Mammograms correspond to extremely dense and heterogeneously dense breast 
parenchyma (density 3 and 4 according to ACR BIRADS lexicon). Figure 2 depicts the 
distribution of the 92 MC clusters with respect to malignancy assessment. 
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Fig. 2. Distribution of the dataset of 92 MC clusters with respect to malignancy rating 
provided in the DDSM. 1: negative, 2: benign, 3: probably benign, 4: suspicious abnormality, 
5: highly suggestive of malignancy 

a. Texture analysis of tissue surrounding MCs 

The “MCs surrounding tissue” area is provided by MC segmentation and subsequent 
“exclusion” of the segmented MC areas from the ROI containing the cluster (Figure 3).  As 
the approach requires only a “coarse” MC segmentation, requirements for accurate 
segmentation are relaxed, as compared to the corresponding ones of morphology-based 
CADx schemes. Wavelet based signatures (Van de Wouwer et al., 1998) were employed for 
quantification of the “net texture pattern” of the breast tissue. The specific texture feature 
category was selected due to its improved discriminating ability over three robust texture 
feature categories (first order statistics features (Gonzalez & Woods, 2000), Laws’ texture 
energy measures (Laws, 1979)) and grey level co-occurrence matrices (Haralick et al., 1973) 
previously adopted in CADx approaches for the differentiation of malignant form benign 
MC clusters.  

Wavelet coefficient co-occurrence matrices (WCCMs) (Van de Wouwer et al., 1998) features 
were generated employing the redundant dyadic wavelet transform whose wavelet filter is 
the first-order derivative of a cubic B-spline (Mallat & Zhong, 1992). The transform was 
implemented using the ‘algorithme `a trous’ (algorithm with holes), which does not involve 
down-sampling. The gradient magnitude coefficients of the 2nd and 3rd dyadic scale were 
considered for co-occurrence matrices feature extraction. Co-occurrence matrices were 
generated for 4 angles (0°, 45°, 90°,135°) and for various displacement vector values d. From 
each co-occurrence matrix 16 features were extracted. For each d, the mean and range value 
of each feature over the four co-occurrence matrices were calculated. In order to define the 
“MCs surrounding tissue” area, wavelet decomposition was performed on original 
mammogram ROIs (513x513 pixels) containing the MC clusters. To deal with contaminated 
pixels adjacent to MC areas, the “coarsely” segmented MC areas were dilated in proportion 
to the filter lengths used to derive wavelet gradient magnitude coefficients. Figure 4 
illustrates ST-ROIs on original mammogram and on gradient magnitude coefficients of the 
2nd and 3rd dyadic scale of the wavelet transform employed. 
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The Stepwise Discriminant Analysis (SDA) was then employed to select one single feature 
subset from extracted WCCMs features. The selected subset referred here in as WCCMs*, is 
comprised of 3 WCCMs features corresponding to: Mean of Shade (d=18, scale 2), Range of 
Difference Variance (d=14, scale 3) and Mean of Information Measure of Correlation 1 (d=18, 
scale 3).  

 

Fig. 3. Illustrative example of ST-ROI definition. (a) 513x513 pixel part of original 
mammogram containing a MC cluster (DDSM: volume cancer_09, case B_3406, RIGHT_CC). 
(b) Segmented MC areas (in black) of the cluster and 129x129 pixel ROI (black rectangle) 
containing the cluster. (c) Magnified ROI of figure (b). Surrounding tissue ROI (i.e. ST-ROI) 
corresponds to the area resulting from exclusion of segmented MC areas from the 129x129 
pixel ROI. Borders of excluded MC areas are indicated with solid line 

 

Fig. 4. ST-ROIs (129x129 pixels) on original (a) and wavelet gradient magnitude coefficients 
of the 2nd (b) and 3rd (c) dyadic scale. Borders of excluded MC areas are indicated with 
solid line 

b. Texture analysis of ROIs containing the MCs 

This approach is similar to the “MCs surrounding tissue” one with respect to texture feature 
extraction and classification without however requiring the “coarse” MC segmentation step. 
Specifically, 129x129 pixel ROIs centered at each cluster, identical to the ones employed in 
the “MC surrounding tissue” apporach, were subjected to texture feature extraction by 
means of wavelet based signatures. The SDA was then employed to select one single feature 
subset. The selected subset referred here in as WCCMs**, is comprised of 4 WCCMs features 
corresponding to: Range of Inverse Difference Moment (d=1, scale 2), Mean of Difference 
Variance (d=6, scale 2), Range of Prominence (d=6, scale 2) and Mean of Contrast (d=18, scale 2).  
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c. Morphology analysis of MCs 

A recently proposed segmentation algorithm was employed to segment individual MCs 
within each cluster, details of which can be found elsewhere (Arikidis et al., 2008). Briefly, 
the method is based on implementation of active rays on B-spline wavelet representation to 
identify MC contour point estimates in a coarse-to-fine strategy at two levels of analysis. An 
iterative region growing method is then used to delineate the final MC contour curve, with 
pixel aggregation constrained by the MC contour point estimates.  

Ten (10) individual MC features were extracted from each segmented MC corresponding to: 
area, length, eccentricity, compactness, radial standard deviation, relative contrast, 2 
regional moments (one related to the spread and one related to the eccentricity of object 
mass), one moment of region boundary and a shape roughness measure provided by 
Fourier descriptors. Twenty (20) MC cluster features were then generated by computing the 
mean and range of the above feature values over the entire cluster. The SDA was then 
employed to select one single feature subset from the 20 cluster features. The selected subset 
comprised of 3 cluster features corresponding to: mean of relative contrast, range of relative 
contrast and the regional moment related to object mass eccentricity.  

The discriminating ability of the three selected feature subsets was investigated using a least 
squares minimum distance (LSMD) classifier, using the Leave-One-Out (LOO) (Theodoridis 
& Koutroumbas 1999) training-testing methodology. Classification performance of the three 
feature subsets (morphology, WCCMs* and WCMMs**) was evaluated by means of the Az 
index (area under ROC curve).  

The morphology-based feature subset achieved an Az±standard error (SE) of 0.809±0.046 
with lower and upper 95% Confidence Interval (CI) values of 0.698 and 0.882, respectively. 
On the same dataset (of 92 MC clusters) the “MCs surrounding tissue texture analysis” 
approach achieved Az±SE of 0.882±0.036 (95% CI values: 0.788, 0.936) employing the 
WCCMs* subset. The commonly adopted approach of analysing tissue ROIs containing the 
MCs achieved Az±SE of 0.803±0.048 (95% CI values: 0.688, 0.879) employing the WCCMs** 
subset. ROC curves corresponding to the three feature subsets are provided in Fig. 5. Table 3 
provides classification performance comparison among the three selected feature subsets. 

 

Fig. 5. ROC curves corresponding to the morphology, the WCCMs* (MCs surrounding 
tissue) and the WCCMs** (tissue containing the MCs) selected feature subsets 
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 Az ± SE p-value 

Morphology vs.   WCCMs* 0.809±0.046   vs.   0.881±0.036 0.15 

Morphology vs.   WCCMs** 0.809±0.046   vs.   0.803±0.048 0.92 

WCCMs*    vs.    WCCMs** 0.881±0.036   vs.   0.803±0.048 0.11 

Table 3. p-values (z-test) for classification performance comparison among selected subsets 
from the three approaches 

4.2 Texture plus morphology analysis for MC cluster diagnosis 

In order to investigate the combined performance of texture- and morphology-based 

analysis two additional feature sets were generated by (a) merging the morphology-based 

selected subset with the WCCMs* subset and (b) merging the morphology-based selected 

subset with the WCCMs** subset. 

From each merged feature set one subset was generated by means of an exhaustive search 

procedure. Specifically, the LSMD classifier was designed with all possible feature 

combinations, from 2 up to 6 features, and for each combination the classifier performance 

was evaluated by means of the LOO training-testing methodology. The feature combination 

with the highest classification performance (by means of Az index) and the minimum 

number of features was selected. 

Table 4 summarizes classification performance of the two selected subsets by means of Az ± 

SE and 95% asymmetric CI values. No statistically significant difference was observed in 

classification performance of the two approaches (p>0.05). 

 

 Features included in subset Az ± SE [Lower, Upper] 95% 
asymmetric CI 

Morphology and  
WCCMs* 

Regional Moment (eccentricity) 0.899±0.035 [0.802, 0.950]  

Mean of Shade (d=18, scale 2) 

Range of Difference Variance (d=14, 
scale 3) 

Mean of Information Measure of 
Correlation 1 (d=18, scale 3)

Morphology and   
WCCMs** 

Mean of Relative Contrast 0.868±0.038 [0.771, 0.926] 

Range of Relative Contrast 

Regional Moment (eccentricity) 

Mean of Difference Variance (d=6, 
scale 2) 

Mean of Contrast (d=18, scale 2) 

Table 4. Classification performance of the two combined (texture and morphology) selected 
subsets by means Az ± SE and 95% asymmetric Confidence Interval (CI) values. WCCMs*: 
selected texture feature subset employing the “MCs surrounding tissue” approach. 
WCCMs**: selected texture feature subset employing the commonly adopted approach of 
analysing tissue ROIs containing the MCs 
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4.3 Discussion 

Texture analysis is ultimately concerned with automated methods that can derive image 
information from a purely computational point of view. As such, is nothing than numeric 
manipulation of digital or digitized images to get quantitative measurements (Tourassi, 
1999). However, in contrast to morphology analysis, texture analysis can potentially 
improve decision making by capturing clues “beyond the human eye”. Morphology 
analysis based schemes quantify visually perceived properties, mimicking radiologist 
decision making in an objective and reproducible way. Texture analysis has a divergent role 
when considered in decision making. It can mimic radiologist perception of image texture 
(when texture differences are visually perceived) or it can augment the visual skills of the 
radiologists by extracting/quantifying image features that may be relevant to the diagnostic 
problem, but are not visually extractable.  

In case of CADx schemes based on morphology analysis of MCs the first approach is 
applicable. Specifically, image analysis approaches are employed to quantify individual 
MCs properties that are commonly assessed by the radiologist to provide a final decision 
concerning diagnosis and patient management. In case of CADx schemes based on texture 
analysis of ROIs including MCs the second approach is applicable. Specifically, image 
analysis approaches are employed to quantify the texture properties of ROIs, e.g. to capture 
the increased heterogeneity, due to presence of large number of MCs within ROI, but also 
capture texture alterations of tissue surrounding MCs. The first is visually perceived, and in 
a sense is also one of the diagnostic criteria adopted in clinical practice for MCs. The second 
(i.e. the MCs surrounding tissue heterogeneity) is not currently evaluated in the clinical 
practice but accounts for an approach worthy of being further exploited.  

Nonetheless, texture analysis is not a panacea for the diagnostic interpretation of 
radiographic images. As the pursuit of texture analysis is based on the hypothesis that the 
texture signature of an image is relevant to the diagnostic task at hand, the hypothesis 
should always be tested (Tourassi, 1999).  

In the current application paradigm, we tested the hypothesis that wavelet texture 
signatures of tissue surrounding MCs as depicted on screening mammograms is relevant to 
the diagnostic task. Results have demonstrated the feasibility of the “MCs surrounding 
tissue” texture analysis approach in the differentiation of malignant from benign MC 
clusters on screening mammograms, in support of the hypothesis originally formulated by 
(Thiele et al., 1996) on stereotactic scout views. While a direct comparison with the results of 
this study (Thiele et al., 1996) is not feasible, due to the different nature of the datasets 
analyzed, comparable performance is achieved.  

As compared to other texture-based CADx schemes analyzing ROIs containing the cluster 
(Dhawan et al., 1996; Kocur et al., 1996; Chan et al., 1997; Chan et al., 1998; Kramer & 
Aghdasi 1999; Soltanian-Zadeh et al., 2004), the performance achieved by the wavelet 
texture signatures, employing the MCs surrounding tissue approach, is also comparable. 
However, heterogeneity of the datasets analyzed renders direct comparison not feasible. 

As compared to the morphology-based CADx schemes, the “MCs surrounding tissue” 
texture analysis approach has the advantage of relaxing segmentation accuracy 
requirements. However, the current study demonstrated the advantages of combining 
wavelet texture signatures derived from the tissue surrounding MCs with morphology 
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features of MC clusters, in accordance to Chan et al. (1998) who combined GLCMs features 
(from ROIs containing the cluster) with morphology-based ones. 

While no statistically significant difference between the two texture-based approaches was 

observed, the results of this study demonstrate a trend in favour of the “MCs surrounding 

tissue” texture analysis approach over the commonly adopted one of analysing ROIs 

containing the MCs. We attribute this trend to the fact that the “MCs surrounding tissue 

texture analysis” allows an investigation of the net texture pattern of the underlying tissue, 

which is the one that generates the MCs, removing bias due to the number and distribution 

of MCs within the depicted tissue. 

Additional research efforts are required for validating/establishing the computer-extracted 

image features (morphology-based or texture-based) of MC clusters as diagnostic image-

based biomarkers for breast cancer. Specifically, research should be focused on investigating 

the relationship between quantitatively extracted features and histopathological indices.  

5. Migration to computer-aided prognosis 

Computer-aided diagnosis of mammographic MCs has also been extended from the task of 

differentiating malignant from benign MC clusters to prognostic tasks towards the 

identification of potential mammographic image-based prognostic markers. 

Specifically, morphology-based analysis of MC clusters applied on magnification 

mammograms has been exploited for the classification of 58 MC clusters into fibroadenoma, 

mastopathy, noninvasive carcinoma of the noncomedo type, noninvasive carcinoma of the 

comedo type and invasive carcinoma (Nakayama  et al., 2004). Features considered are (i) 

the variation in the size of microcalcifications within a cluster, (ii) the variation in pixel 

values of microcalcifications within a cluster, (iii) the shape irregularity of 

microcalcifications within a cluster, (iv) the extent of the linear and branching distribution of 

microcalcifications, and (v) the distribution of microcalcifications in the direction toward the 

nipple. The Bayes decision rule was employed for distinguishing between five histological 

categories demonstrating promising results. 

The potential contribution of follow-up mammograms in this specific prognostic task (i.e. in 

identifying the histological classification of clustered MCs) was also evaluated (Nakayama  

et al., 2006). Specifically, the previously defined five morphology features were extracted 

from previous and current magnification mammograms. The ten features were merged by 

means of a Modified Bayes discriminant function for the histological classification of 93 MC 

clusters (55 malignant and 38 benign).  

Classification results were improved by employing a nearest neighbor criterion and by 

augmenting the feature set (i.e. adding the number of microcalcifications within the cluster) 

(Nakayama  et al., 2007). 

The identification of potential image-based prognostic markers for breast cancer, i.e. 

quantitative image features capable of predicting biological behaviour and disease 

aggressiveness, accounts for an emerging research area, expected to have a significant 

impact on patient management and treatment response assessment. 
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6. Conclusions  

Only a few research efforts (Chan et al., 1998; Soltanian-Zadeh et al., 2004) have focused on 

comparing state-of-the-art approaches for computer-aided diagnosis of breast cancer, 

including the presented application paradigm which considered a pilot dataset. Thus, the 

systematic evaluation of proposed methods performance utilizing large and publicly 

available datasets is a necessity. Furthermore, method inter-comparison should consider 

testing on datasets generated by multicenter studies to ensure a large size, inclusion of 

varying case subsets with respect to lesion types (e.g. MCs of varying morphology and 

distribution) and image acquisition systems (i.e. digitized vs. FFDM). 

It is important to investigate the effect of reported CADx schemes on radiologist 

performance in breast cancer diagnosis task, by considering a radiologist’s diagnosis task 

aided by a specific CADx scheme and an un-aided corresponding one, also taking into 

account issues related to interaction of radiologist with a CADx scheme. The contribution 

of CADx schemes in reducing intra- and inter-observer variability should also be 

investigated. 

Advances in breast imaging have broadened the role of computer-based approaches in 

breast cancer diagnosis further suggesting multimodality and multi-parametric approaches. 

Multi-modality CADx schemes that combine features extracted from different imaging 

modalities, each one capturing additional tissue properties, may be advantageous to single-

modality CADx in the task of differentiating between malignant and benign lesions (Yuan et 

al., 2010), especially in the case of benign and malignant lesions with overlapping imaging 

features on a single imaging modality. Finally, the multi-modality approach has an 

increased potential towards identification of potential new diagnostic and prognostic 

biomarkers for breast cancer. 
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