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ABSTRACT 
 

Breast cancer has transformed into a severe health problem around the world. Early diagnosis is 

an important factor to survive this disease. The earliest detection signs of potential breast cancer 

that is distinguishable by current screening techniques are the presence of microcalcifications 

(MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 

0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication 

of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This 

dissertation proposes several segmentation techniques for detecting and isolating point 

microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, 

Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to 

medical images to detect microcalcifications. In this dissertation, results from the application of 

these techniques are presented and their efficiency for early detection of breast cancer is explained. 

This dissertation also explains theories and algorithms related to these techniques that can be used 

for breast cancer detection. 
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CHAPTER 1  

INTRODUCTION 

 

Breast cancer is one of the major causes of death among women throughout the world. As indicated 

by the American Breast Cancer Society, breast cancer malignancy is the second leading cause for 

mortality among women in the US [1]. In 2016, more than 246,660 women in America will be 

affected by breast cancer, and more than 40,450 women will die from the disease [2]. In breast 

cancer, cells from a small area of the breast begin developing with a sporadic growth pattern. These 

additional cells or the unpredictable development of cells are called cancerous cells. This can be 

further sorted as benign or malignant. Early detection and treatment of this disease can increase 

the possibilities of survival. 

Breast cancer death rates, for the most part, increase with age. 95% of new cases and 97% of breast 

cancer deaths happen in women 40 years old and older [3]. The American Malignancy Society 

suggests that patients with a family history of breast cancer or who are more vulnerable against 

the illness because of different components be screened every year starting at age 40, or 10 years 

before the period of diagnosis of a first-degree relative with the disease [1]. At the point when 

screening highly vulnerable women, microcalcifications can be detected by mammography in 36% 

of the cases and they can be detected by mammography and MRI in 92.7% of the cases [4]. The 

rate of distinguishing breast cancer in highly vulnerable women utilizing mammography and 

ultrasound is 52%, contrasted with 92.7% of joined mammography and MRI [4]. In this manner, 

the consolidated adequacy for distinguishing breast cancer with mammography, ultrasound, and 
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MRI is much higher than that when using only one of these imaging methods. At the point when 

breast cancer is analyzed, an ultrasound or MRI guided biopsy can affirm the growth of the disease. 

By and large, ultrasound-guided biopsy is favored on account of its lower expense, relative 

simplicity, and higher level of patient solace. A few treatment choices are available after the 

finding of breast cancer. The most well-known treatment is breast mastectomy, which evacuates 

malignant tissues and keeps cancer from spreading. Indeed, even after a breast mastectomy, breast 

cancer may reappear and still be a reason for death [5].  

Diagnosis of breast cancer in an early stage is the essential way of surviving from this disease. 

Breast cancer diagnosis is possible utilizing advanced X-ray, ultrasound, Magnetic resonance 

imaging (MRI) or breast biopsy. As of now, X-ray mammography is the most acknowledged 

system for identifying breast MCs. For early breast cancer identification, mammography has 

turned out to be very popular and the most used technique. Detection of breast cancer malignancy 

through mammograms and segmentation of mammogram images is the key operation that 

segments that afflicted part from the tissue and background. The objective is to discover the area 

of interest for mammograms and to find the suspicious region. The segmentation of mammograms 

becomes difficult because of differing densities of breast tissue structures. At the point when pixels 

are not effectively segmented, it results in false positive and false negative results [5]. 

Then again, this imaging methodology exhibits a few weaknesses and impediments. 

Mammography exposes patients to ionizing radiation and is generally ineffective in women with 

dense breasts [6]. As of late, new imaging strategies have been utilized to supplement X-ray 

mammography and overcome some of its constraints and drawbacks. In addition, just around 10 - 

25% of mammographically suspicious lesions are observed to be harmful from tissue biopsy, 
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bringing about pointless and excessive biopsy procedures [7]. Ultrasound imaging, then again, is 

a non-ionizing strategy and hence could be a safer technique for breast MCs identification [8]. 

However, current cutting edge clinical ultrasound scanners cannot distinguish MCs in the size 

scope of clinical interest (0.1-0.5 mm). The low detection rate of MCs with ultrasounds is because 

of the low spatial resolution of the ultrasound images and the presence of spatial noise, which 

covers the small MCs. Ultrasound imaging has low image resolution and does not have adequate 

information which can be found in computerized X-rays. Because of this reason, ultrasound is not 

recommended by the U.S Food and Drug Administration (FDA) as a strategy for breast cancer 

diagnosis in earlier stages [7].  

Calcifications are very significant findings on X-rays. Many radiologists consider calcifications 

0.5 mm or less to have great possibilities of being related to cancer; and calcifications of 2.0 mm 

or bigger are considered non-threatening. The minimum observable calcifications on a 

mammogram are around 0.2 - 0.3 mm. The quantity of calcifications that make up a bunch has 

been utilized as a pointer of benign or malignancy. While the real number itself is discretionary, 

radiologists have a tendency to concur that the base number of calcifications be four, five, or six 

to be of importance. Any number of calcifications under four will seldom prompt the recognition 

of breast cancer all by itself. Once more, as with all criteria in mammographic investigation, no 

number is supreme and a few calcifications may justify more prominent suspicion on the off 

chance that they show troubling morphologies. The morphology of calcifications is thought to be 

the most critical marker in separating benign from harmful. Round and oval formed calcifications 

that are additionally uniform size will probably be on the benign end of the range. Calcifications 

that are unpredictable in size fall closer to the malignant, calcifications have been portrayed as 

little parts of broken glass and are once in a while round or smooth [7].  
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Up to this point, the best methodology for identifying and diagnosing breast cancer has been 

mammography [9]. On the other hand, there are several limitations of mammography in breast 

cancer detection. Numerous pointless (65–85%) biopsy operations are done because of the low 

specificity of mammography [6]. The superfluous biopsies build the expense, as well as make the 

patients experience the ill effects of emotional stress. Mammography has likewise been less 

successful in distinguishing breast cancer in women with dense breasts. Moreover, the ionizing 

radiation of mammography may be destructive for both patients and radiologists.  

Ultrasound (US) imaging is an imperative distinct option for mammography. Scientists and 

specialists are demonstrating an expanding enthusiasm for the utilization of ultrasound images for 

breast cancer detection [10, 11]. Insights demonstrate that more than one out of four studies on 

breast cancer detection depends on ultrasound images, and the extent is quickly expanding [12]. 

Studies have shown that utilizing US pictures can segregate benign and malignant masses with a 

high precision [6, 13]. Utilization of ultrasound can increment overall cancer identification by 17% 

[8] and lessen the quantity of pointless biopsies by 40%, which can save up to $1 billion every 

year in the United States alone [14]. Breast ultrasound (BUS) imaging is better than mammography 

in many ways. Since it uses a non-ionizing radiation, ultrasound examination is more helpful and 

more secure than mammography for patients and radiologists for regular examination [15]. It is 

additionally less expensive and quicker than mammography. Along these lines, ultrasound is 

particularly suitable for use in developing countries in many continents.  Ultrasound methods are 

more effective than mammography for identifying variations from the norm in dense breasts; 

hence, it is more significant for women younger than 35 years old [4]. There is a high rate of false 

positives in mammography, which causes a great deal of superfluous biopsies [6]. In comparison, 

the accuracy rate of breast ultrasound imaging for detecting cysts is much more than 
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mammography [7]. Hence, ultrasound imaging is one of the most significant diagnostic tools for 

breast cancer detection. 

Still, medical ultrasound imaging techniques are able to reliably distinguish between tumors of 

different sizes, regardless of a significant number of millimeters in size. This is because of their 

low resolution, the presence of speckle noise in their images, phase aberration, and attenuation. 

On the other hand, Ultrasound has greater effect as a result of its low cost, minimal effort, 

availability and movability. Primary caution of conceivable breast cancer growth can be 

recognizable by late therapeutic detecting as microcalcifications advance.  In less than 40% of all 

breast cancer, they are the first indication of the disease, and it's truly difficult to distinguish them 

in view of their little size. So early identification of breast cancer is imperative to keep this ailment 

from turning into an explanation behind death of numerous patients [5]. 

Because of their small size, microcalcifications detection is very critical for early detection of 

breast cancer. Therefore, the goal of this dissertation is to improve the quality of breast images in 

order to detect microcalcifications. This goal was achieved through the following objectives: 

Firstly, image processing techniques for detecting and isolating point microcalcifications were 

investigated. Secondly, signal processing techniques to increase the image resolution for detecting 

point microcalcifications were investigated. 

The following segmentation techniques were used for detecting and isolating point 

microcalcifications: Otsu’s, Balanced, Iterative, Maximum Entropy, Moment Preserving, and 

Genetic Algorithm. These methods were applied to X-ray, MRI and ultrasound images as well as 

on numerical phantoms.  



 

6   

In this dissertation, different image segmentation techniques were used for early detection of breast 

cancer. Segmentation is an important development in automated investigation where structures of 

interest are identified and differentiated from background tissue. It is also helpful for feature 

extraction, image property calculation and image presentation. In this dissertation, several image 

segmentation techniques for microcalcification detections are presented. Signal processing 

techniques were used to improve the resolution of ultrasound images.  
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CHAPTER 2 

 STATE OF THE ART 

 

X-ray Mammography is the most widely used medical imaging modality for early detection of 

breast cancer. X-ray Mammography uses X-ray radiation in the frequency range of 30 petahertz to 

30 exahertz (3×1016 Hz to 3×1019 Hz). It produces an image that is a projection of the entire breast 

(3D to 2D). Its spatial resolution of the mammogram image is approximately 20 lines pairs/mm.  

This method can detect approximately 78% of invasive breast cancer [4] and its sensitivity is as 

high as 98% in women over 50 years old with fatty breasts [4]. One of the major limitations of X-

ray mammography is its low sensitivity in dense breasts.  Mammograms of dense breast tissue 

common in younger women are difficult to interpret. Dense breasts are more likely to develop 

breast cancer and the sensitivity of mammography in these dense breasts can be as low as 30%-

48% [9]. Another disadvantage of mammography is the exposure of patients to the X-ray ionizing 

radiation, which may induce cancerous cells. In addition, the mammography screening process is 

sometimes uncomfortable because the breast has to be compressed between flat surfaces to 

improve image quality.  

Digital mammography has shown better results for screening breast cancer for the women with 

dense breasts and it’s more sensitive in women with dense parenchyma and premenopausal women 

and for those women who are under 50 [16]. However, digital mammography does not eliminate 

the fact that small, non-calcified breast cancers can be obscured by dense parenchyma [17]. Among 

almost 50,000 women who participated in the Digital Mammographic Imaging Screening Trial 

http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Hertz
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(DMIST), the overall sensitivity of the screening mammography was only 55% [16]. With the 

errors approximately half of the cancers are visible in retrospect due to the lack of recognition of 

the suspicious nature of the lesion. By using double reading one can improve detection by 7% to 

15% [12]. Physician experience also plays an important role for detecting breast cancer in the early 

stage. Due to wrong interpretations sometimes breast cancer is not detected. Despite improvements 

and technological modifications done regarding mammography, still now at least 10% of breast 

cancers remain unidentified mostly due to dense parenchyma [13]. For this reason, ultrasound 

imaging and magnetic resonance imaging have been used for further confirmation of breast cancer 

when screening a patient along with mammography. For wider excisions and even mastectomies 

improved identification of disease extent is necessary[18]. 

 

Figure 2.1: On mammogram images (a), (b) arrows shows a 7 mm (c) and 10mm (d), grade I, stage 1, invasive ductal 

carcinoma in situ on right and left breast respectively [9]. 

With ultrasound imaging, breasts are irradiated with sound waves through a probe containing an 

array of transducers. The frequency of sound waves is of 2- 20 MHz, which is much lower than 
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the frequency range of X-ray, and, thus is safer. Ultrasound imaging systems produce images of a 

single plane. These systems provide images in real time with a frame rate of 25 frames per 

second. Because of advances in transducers and ultrasound technology, current ultrasound 

imaging systems can detect breast cancers as small as 3 mm [4]. Recent studies suggest a predictive 

value of almost 98% for detecting invasive lobular carcinomas when both mammography and 

ultrasound imaging are used for screening [8]. In another recent study, 88% of invasive lobular 

carcinomas that were identified mammographically were also detected with ultrasound imaging 

[14].  Other studies showed that additional cancers were detected with ultrasound screening of 

women who had already been screened mammographically. Results of a recent study show that 

with an increase in breast density, the detection rate of breast cancer also increases with the use of 

ultrasound screening.  

 

Figure 2.2: Longitudinal grayscale ultrasound images show two irregular hypoechoic masses (arrows), measuring 1.5 

cm and 0.6 cm at the 10- and 12-o’clock positions respectively in the right breast. Ultrasound-guided core needle 

biopsies revealed intermediate grade ductal carcinoma in situ at both sites [4]. 

In a more recent study, women with heterogeneously dense and extremely dense parenchyma who 

had negative mammograms were found to have bilateral breast cancers when screened with 
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ultrasound. Overall, ultrasound screening of mammographically negative dense breasts 

contributed to an additional cancer detection rate of 20% in asymptomatic women, compared with 

mammography alone, while maintaining a very low surgical biopsy rate (0.9%) [15]. The 

contribution was substantially greater for younger women than for older ones in the proportion of 

cancers detected (an additional 41.3% for under 50 years relative to an additional 13.5% over 50 

years) [19]. These findings suggest that routine ultrasound screening in asymptomatic women 

might provide the greatest relative cancer detection yield if applied to women under 50 years of 

age with dense breasts [4]. Although ultrasound screening is very helpful in detecting breast 

cancer, in some cases it has a higher false positive rate and lower specificity. In addition, 

ultrasound imaging is highly operator-dependent, requiring real-time adjustments of gain, focal 

zones, dynamic range, pressure, patient positioning, and, most importantly, recognition of 

abnormalities. Therefore, ultimately, if ultrasound imaging is to be used as a supplemental 

screening tool, the current model of physician-performed scanning using hand-held transducers 

will likely need to be changed [8].  

Automated ultrasound imaging allows for reproducible image quality and consistency, and 

removes user variability [6]. However, there are limitations to using this technique because the 

resolution of the images obtained by most automated scanners is sometimes limited [5]. 

Furthermore, there is a learning curve with automated ultrasound imaging, as physicians need to 

gain familiarity with interpreting the data sets on a workstation. As vendors continue to improve 

image quality, automated breast ultrasound is likely to become a helpful tool for breast cancer 

screening [20]. Older technology enabled only differentiation of “cyst” versus “solid,” whereas 

the higher-frequency transducers available today provide greater shape and margin definition, 

internal characteristics, and vascular patterns of solid masses such that better differentiation of 
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benign and malignant is possible. Hence, further recommendations for biopsy or follow-up can be 

more confidently made. Ultrasound also provides the best guidance method for biopsy of 

suspicious lesions in terms of cost, ease, and patient comfort. Use of ultrasound imaging can 

determine the need for costlier stereotactic and MRI-guided procedures. As discussed previously, 

there are efforts being made to supplement mammography with other imaging tests in some 

women. Although those women at greater risk can be candidates for undergoing MRI, the majority, 

at low or intermediate risk, do not qualify. For these women, primarily those with dense tissue, 

screening with ultrasound imaging is suggested for early detection of breast cancer. 

Magnetic resonance imaging (MRI) is a valuable tool for local staging before breast cancer 

surgery. Small invasive cancers and ductal carcinoma in situ can be detected using breast MRI due 

to remarkable advances in temporal resolution and spatial resolution [21]. For high-risk women, 

when supplemental screening is planned, MRI is performed in lieu of ultrasound imaging. The 

American Cancer Society has updated its breast cancer imaging guidelines and now advocates 

breast MRI for certain groups of high-risk women [22]. MRI uses a large magnet of 3-5 Tesla and 

RF coils to produce 3D images of the breast. The signals received are processed to produce the 

images. Compared to other imaging techniques, MRI is relatively expensive and requires an 

intravenous injection of gadolinium, which causes the development of nephrogenic systemic 

fibrosis in a small group of patients with impaired renal function [23]. Therefore, a patient with a 

history of renal disease may not be able to undergo breast MRI. MRI also cannot be performed for 

breast cancer detection in patients who have pacemakers or any metal implants [24]. MRI imaging 

techniques are time-consuming and produce blurred images. Misinterpreted MRI images require 

that patients undergo the same imaging process several times. Although MRI may save patients 
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from unnecessary surgery, there is a concern that findings on MRI may prompt unnecessary excess 

tissue removal or in some cases unnecessary mastectomy. 

 

Figure 2.3: Annual mammography screening done upon a 59-year-old woman with a strong family history of breast 

cancer. No suspicious mammographic findings were identified. (B) Then the patient went through MRI screening on 

the same day and an 8-mm suspicious mass at the 9-o’clock position was found using MRI screening. (C) Later on 

transverse grayscale and power Doppler ultrasound images of the right breast in the 9-o’clock region show a 

corresponding 7-mm irregular mass with peripheral vascularity. Then Ultrasound-guided biopsy was performed, 

revealing evidence of invasive ductal carcinoma [4]. 
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When lesions are identified, using MRI is a reliable method for biopsy or localization of breast 

cancer. Many breast biopsy systems are beginning to reach the market; however, they are hardly 

ubiquitous. For all the imaging techniques that have been investigated, MRI has the highest 

sensitivity for detecting invasive breast carcinoma and can provide valuable information that is not 

apparent on the mammogram. Breast MRI screening is very encouraging when applied to high risk 

groups [23].  

Using different techniques microcalcification detection can be done and those techniques can be 

categorized into two main divisions: supervised and unsupervised method. Unsupervised 

algorithms are entirely automated and regions of interest are identified with high density, whereas 

supervised algorithms depend on the operator. It involves diverse algorithms such as Image-

domain or region of interest based techniques (Split-merge techniques, Region growing, Neural-

network techniques, Edge detection), Fuzzy techniques, feature-space based technique, clustering 

based (K-means, C-means, E-means), Wavelet transforms based techniques.  
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Figure 2.4: (a) Original mammogram. (b) Effect of gradient processing. (c) Image after filtering original image. (d) 

Final segmented mammogram image after applying wavelet transform based technique [25]. 

Many other algorithms such as watershed transformation, clustering and soft computing 

techniques i.e. using Neural Network and Fuzzy Logic, and Region Growing, and Edge Detection, 

and many others can be utilized for early detection of breast cancer.  
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 (a)                                                  (b) 

 

(C)                                                 (d) 

Figure 2.5: (a) The original mammogram image, (b) enhanced image, (c) enhanced image after irrelevant breast-

structure removal, and (d) final resulting image after applying fuzzy logic [26]. 

Gabor filters can be used to process a mammogram image for microcalcifications detection 

[Rogova et al. Bhangale et al] [27]. By varying the center frequencies of the Gabor filter, this 

technique could alter the main images into different scales and coordination spaces. The filtered 

images are separated into small non-coinciding blocks. For every block, the mean and standard 

deviation of the intensities are calculated and a feature vector is formed. The method resulted in 
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93.48% true positive and 1.09% false positive detection rate on 32 mammogram database images 

[27]. 

Netsch and Peitgen [28] used a Laplacian of a Gaussian filter to process mammogram images for 

microcalcifications detection. By varying the size of the filter, this technique converts the original 

image into different levels of spaces. By the Laplacian matching before Gaussian response of 

microcalcifications with a standard value, Netsch and Peitgen [28] could determine whether a spot 

is a microcalcification or not. This technique was applied on 40 mammogram images and had an 

84% detection rate at the price of 1 false positive per image [27]. 

Another microcalcification detection technique uses a different approach. The first stage of this 

technique is to extract an area of interest that significantly corresponds to microcalcifications by 

examining the distribution of brightness over the mammogram. Then identification of 

microcalcification clusters are determined as regions of interest. Then, the final stage requires 

reconstructing the data that might have been absent in the previous stages [29].  

Meta-heuristic algorithms were proposed by Thangavel and Karnan [30] for microcalcifications 

detection. This algorithm utilizes the meta-heuristic methods such as Ant Colony Optimization 

(ACO) and Genetic Algorithm (GA) for identifying regions of interest of a mammogram image. 

This technique depends on the properties of bilateral asymmetry [30]. From this method, if the 

structural asymmetries between the left and the right breast are stronger, probabilities of 

microcalcifications are higher. Bilateral subtraction is utilized to identify the structural asymmetry. 

In this process, primarily the mammogram images are enhanced utilizing a median filter, the 

pectoral muscle region is removed, and the breast border is identified. Then the genetic algorithm 

is implemented to enhance the detected border area. Then image alignment is done following 
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border points and nipple position. After that, images are subtracted to identify the desired region 

of interest for microcalcifications detection. According to the authors these algorithms were 

implemented on 322 mammogram images to detect microcalcifications [30].  

A machine learning technique called relevance vector machine (RVM) can be used for 

microcalcifications detection in digital mammograms [31]. This method is based on Bayesian 

estimation theory, of which a distinct feature is that it can return a sparse decision function that is 

well-defined by only a very small number of relevance vectors. In this method microcalcification 

detection is identified as a supervised-learning problem, and then RVM is applied as a classifier 

to decide at each region of interest in the mammogram if microcalcifications are present or not 

[31].  

For the Region Growing method, normal histograms or region-growing algorithms are used for 

microcalcifications detection [32]. To differentiate the image into background and foreground, an 

intensity value is selected at the valley of the histogram. In the region-growing technique, a region 

of interest is developed from the starting point by summing similar adjacent pixels [33]. These 

techniques cannot create an appropriate boundary because of their very simplified strategy and are 

highly sensitive to noise. They can, however, operate as a middle step to give an irregular contour 

or can be added with later image segmentation procedures such as morphological operations, disk 

expansion, and Bayesian neural network to provide better output for microcalcifications detection. 

Another algorithm called Cuckoo search algorithm, which was developed by a nature inspired 

method and proposed by Yang and Deb (2009, 2010) [34], can be used for microcalcifications 

detection. Cuckoo search algorithm is a population related stochastic global sorting out algorithm 

that is utilized for getting a global optimal solution for a particular problem. It was found out that 
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the excellence or fitness of a solution of a problem can easily be related to the estimation of the 

objective function. Except for extensive search, this algorithm is efficient in getting the result in 

more complex problems. Hence, this algorithm can be used for non-linear problems and multi-

level optimizations. Trial results demonstrate that this technique enhances the perceptive ability of 

microcalcifications detection [34]. 

Model-based methods have robust noise-resilient capability and are comparatively steady for 

ultrasound [35]. Often utilized models consist of level set, active contours, Markov random fields 

(MRF) [36]. Sarti et al. [37] conferred a level set maximum probability technique to gain a 

maximum probability segmentation of an image. The Rayleigh probability distribution function 

was used to model gray level performance of sonography. The main purpose of this image 

segmentation is to segment an image to its minimum energy. Madabhushi and Metaxas [38] added 

intensity, texture information, and experimental domain information utilized by radiologists with 

a dynamic contour model in an effort to bound the outcomes of shadowing and false positives. 

Training is needed for implementing this method. Utilizing manual description of the quantity by 

a radiologist as a guide, and the Hausdorff space and normal space as boundary error metrics, they 

noted that their technique is not dependent on the number of training samples, can give better 

output results compared to parameters, and can provide a true positive area of 74.7%. Dynamic 

contour models have been implemented to 3-D ultrasound segmentation, such as [39]. Boukerroui 

et al. [40] utilized a Markov casual field to design the area of interest and to focus on the adaptive 

properties of the algorithm. This design implements a function to manipulate the adaptive feature 

of the segmentation procedure, and considers both local and global statistics through the whole 

segmentation procedure. Designers of this method are able to give strong manipulation of the pixel 
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correlations. Output of this segmentation result can be further enhanced using a segmentation 

approximation structure considering the Bayesian paradigm [41]. 

 

Figure 2.6: (a) Mammographic region of interest, where microcalcifications are marked with circles. (b) Output after 

applying support vector machine [18]. 

 

Machine learning techniques, like neural network and support vector machines [42] are well 

known in image segmentation. In [43], Dokur and Ölmez showed a neural network technique that 

shows segmented output results. Images were distributed into square blocks, and characteristics 

were analyzed from each block using the discrete cosine transform (DCT) process. Then a neural 

network was designed of three layers to separate the blocks into two categories, background and 
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foreground. This method can be applied on regions of interest that need to be segmented by 

operators. Kotropoulos and Pitas [42] implemented the support vector machine method with an 

outward source function kernel to categorize changed patterns and their several good output results 

showed that the support vector machine method could generate considerable segmented results for 

microcalcifications detection [18]. 

Using machine learning techniques, selection of characteristics and training could be two major 

factors that participate in a significant role on segmentation results. If these characteristics are 

distinct and the technique is well implemented, machine learning techniques can produce 

reasonable outcomes. However, excess-training or improper training procedures can significantly 

upset the segmentation results on new data, and to complete the whole segmentation process to 

detect point microcalcifications is time consuming [39]. 

Using signal and image processing we can detect microcalcifications more precisely in earlier 

stages. For signal processing, some techniques have become very popular, such as Time Reversal 

Multiple Signal Classification (TR-MUSIC), Artificial Neural Networks (ANN), Linear 

Discriminate Analysis (LDA), support vector machine method, and fuzzy logic. These computer- 

aided systems use great quantities of data to build models. Computer-aided detection or diagnosis 

(CAD) systems can take part in finding a solution for primary detection of breast cancer and can 

decrease the casualty rate among women with breast cancer. Normally computer-aided diagnosis 

can be performed in a couple of stages: preprocessing, segmentation, selection and feature 

extraction. Digital breast tomosynthesis mammography (DBT) is another method being built up to 

get better detection and characterization of breast microcalcifications particularly in women with 

non-fatty breasts. In this method, multiple protuberance images are recreated by permitting 

illustrated assessment of lean breast segments presenting the possibility to reveal cancers 
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concealed by typical tissue situated on top of and underneath the lesion. Usual full-field digital 

mammography (FFDM) has become better by improving the ability to diagnose breast cancer for 

particular breast cancer patients compared to screen film mammography (SFM). Numerous works 

have been published mentioning difficulties regarding microcalcifications detection in early stages 

of breast cancer diagnosis. Tsallis entropy (TE) based method has become more popular, which 

also has generated a lot of important results. It is confirmed that TE provides improved 

thresholding results compared with the other conventionally used methods, and suggests that TE 

is one of the best methods for detecting microcalcifications in mammograms [44]. The fuzzy 

entropy principle can be used for enhancing mammograms. Fuzzification requires conversion of 

the assessments of the strength to a period between 0 and 1. Proper implementation of this method 

can be used for detection of microcalcifications for early detection of breast cancer [44].  

To get a good ultrasound image there are some things that need to be done, such as speckle noise 

removal which generally shows the noise of the image and a lot of algorithms have been developed 

to reduce noise in order to measure tissue dislocation and optimize image registration. For image 

characteristics active contour process, Rayleigh distribution can be used to set a segmentation 

algorithm. One renowned algorithm for processing is the level SE algorithm based on gradient. 

For the analysis process of the better quality images, intensity gradient data can be used. Phases 

are accountable to attain the organization in an image and can be calculated over spatial scales. B-

mode ultrasound segmentation can be used for comparison calculations which can give the 

displacement measurement of a constant. The related data of an image configuration can be utilized 

for the calculation of an average intensity. Edge flow method is used for boundary detection and 

needed for very small parameter adjustment. These edges can be found at the local maxima by the 

gradient operative in the strength characteristics. It can determine a flow direction at each pixel 
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location where two opposite direction of edge flow has happened. It has been utilized in the 

analytical coding design to select and add the route of modification in some characteristics such 

as color, texture, and phase discontinuities [41]. 
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CHAPTER 3 

 METHODOLOGY 

 

Image segmentation plays an important role for image processing. It promotes the better quality 

of the output result for image analysis. Image segmentation is a procedure of isolating an image 

into distinctive locales. One of the popular sorts of segmentation is thresholding, which endeavors 

to order image pixels into one of the two classes, foreground and background. Toward the end of 

such thresholding, every object of the image, corresponding to an arrangement of pixels, is 

confined from whatever is left of the regions. For this situation, the point is to locate a thresholding 

point. Thresholding is used to dig out an object from its background by conveying an intensity 

value T (threshold) for each pixel such that each pixel represents a classified object point or a 

background point. Each pixel location is denoted by the function f(x,y). In general T is a function 

of f(x,y) and for global thresholding T is a function of both f(x,y) and local properties p(x,y). In 

local thresholding T depends on the coordinates of (x,y) for dynamic/adaptive thresholding. One 

procedure is to select a grayscale value as the threshold and then categorize every grayscale by 

making sure whether it is positioned over or below the threshold value [45].  

Images were analyzed by using the steps below. All algorithms were developed and implemented 

in MATLAB. For the image processing the following steps are done: 

1. Read the image. 

2. All the images were converted into 8-bit and 480×480 pixel format before analysis. 

3. Image enhancement was performed for those images which had good image resolution using a 

developed image enhancement algorithm. 



 

24   

4. Otsu's method, Iterative, Entropy based method and Genetic algorithms were applied on all 

images before analysis. 

5. Image analysis and extraction revealed high and low detection rates for microcalcifications. 

To detect microcalcifications segmentation plays a very important role by reducing speckle and 

decreasing the false detection rate of the image. Thresholding can be classified into several 

groups for breast microcalcifications detection: 

 Otsu's method 

 Iterative method 

 Maximum Entropy based method 

 Moment Preserving 

 Balanced histogram thresholding 

 Genetic Algorithm 

3.1 Otsu's method 

Otsu’s method is one of the main methods that can be used for breast microcalcifications detection. 

Using peaks, valleys and curvature this method does thresholding [46]. Optimum threshold level 

can be achieved by reducing the weighted sum inside the class variance of the foreground and 

background image [47]. The mean value of the background and foreground images are mb and mf. 

Variance values for background image are σ2
b and σ2

f for thresholding level T. Here the cumulative 

probability function P (T) can be defined as, 

      𝑃(𝑇) = ∑ 𝑝(𝑖)𝑇
𝑖=0                                            

Cumulative sum 𝑝(𝑖) for different classes define the threshold values. Otsu recommended 

reducing the weighted total of inside-class variances of the center and locale pixels to set up a most 
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favorable threshold [48]. This technique gives a suitable threshold value when the quantity of 

pixels in every class are closer to each other. The optimum threshold is described as  

𝑇𝑜𝑝𝑡 = arg max{𝑝𝑓(𝑇). 𝑃𝑏(𝑇)[𝑚𝑓(𝑇) − 𝑚𝑏(𝑇)]2} 

where 𝑝𝑓(𝑇) and 𝑃𝑏(𝑇) are the center and locale area probabilities, correspondingly. 𝑚𝑓(𝑇) and 

𝑚𝑏(𝑇) are the average intensities of the center and locale areas, correspondingly [45]. 

In Otsu's technique the threshold level that reduces the intra-class variance can be described as a 

weighted sum of variances of two different sections: 

𝜎𝜔
2 (𝑡) =  𝜔1(𝑡)𝜎1

2(𝑡) + 𝜔2(𝑡)𝜎2
2(𝑡) 

Weights 𝜔𝑖 are the probabilities of the two sections divided by a threshold t and 𝜎𝑖
2are variances 

of these sections. In this method reducing the intra-class variance is similar to the increasing 

inter-class variance:  

𝜎𝑏
2(𝑡) =  𝜎2 − 𝜎𝜔

2 (𝑡) =  𝜔1(𝑡)𝜔2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]² 

which can be presented as class probabilities of 𝜔𝑖 and class means 𝜇𝑖. 

The class probability  𝜔1(𝑡)  is computed from the histogram at t: 

 

𝜔1(𝑡) =  ∑ 𝑝(𝑖)
𝑡

0
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where the class mean is  𝜇1(𝑡): 

𝜇1(𝑡) = [∑ 𝑝(𝑖)
𝑡

0
𝑥(𝑖)] /𝜔1 

here 𝑥(𝑖) is the assessment at the middle of the ith histogram bin. The class probabilities and class 

means can be computed iteratively [49]. This idea yields an effective algorithm. Otsu's technique 

generates a threshold level on scale level of 0:1 and it can be implemented in the active range of 

pixel probability present in the image. For example, if the image has pixel ranges from 155 to 255, 

in Otsu's threshold technique the threshold can be 191 if that ranges in normal regular technique 

and full ranges from 0-255.  Algorithm for Otsu’s method: 

1. Calculate the intensity level of histogram and probabilities. 

2. Set up initial value 

3. Set possible threshold level considering maximum intensity 

4. Calculate two maxima intensity level of threshold 

5. Decide threshold level 

3.2 Iterative method 

The background and foreground are clustered into two parts in the gray level samples in this 

method. In this method iteration is based on the Gaussian mixture model. The average of the 

background and foreground image class after each iteration creates a new threshold level. The 

iteration process stops when the final value is sufficiently small. The ultimate best threshold level 

is represented by, 
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𝑇𝑜𝑝𝑡 = lim
𝑛→∞

(
𝑚𝑓(𝑇𝑛) + 𝑚𝑏(𝑇𝑛)

2
)  

The mean intensities of the background and foreground image are mf and mb. Those are measured 

as the segmentation threshold of the sub-image. 

Only threshold level cannot regard as real condition for image segmentation, when there is great 

deal sum of blurry, illuminating irregularly or locale pixel varying will affect the segmentation. 

However, if there is a suitable threshold level available for an image and it can separate that image 

into several blocks, and from those separate blocks a particular threshold level can be utilized for 

segmentation. However, this way toward finding a threshold level is not easy but it has high-quality 

results on images for segmentation, which isn’t simply segmented by universal thresholding.  Each 

pixel has a nearby pixel which is centered and discover the upper limit and lower limit in their 

nearby pixels [45] to find the appropriate threshold level.   

The algorithm for iterative method can be written as: 

1. Read input image  

2. Set up optimal threshold value 

3. Calculate mf(Tn) & mb(Tn) 

4. Calculate Topt 

5. Stop 

3.3 Maximum Entropy based method 

A better segmentation assessment should increase the uniformity of pixels inside each region of 

interest, and decrease the uniformity of other regions. The entropy based method is an assessment 

of the disarray inside a particular area of interest, which is a normal attribute to include into a 
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segmentation method. Entropy works as same as to the phrase related to the squared color 

inaccuracy that is used to measure the uniformity inside a region of interest.  When each region of 

interest has very similar luminance, same as with the squared color, and when every pixel inside a 

region of interest has the same value, then the entropy of that region of interest is zero [50].  

If a region of interest is over segmented, then the entropy threshold level of that region will be 

very small. We will be required to join the desired area entropy through an additional period or 

part that segmentations having some huge desired areas because at hand would instead of be a 

well-built bias to over-segment an image. One advance would be to employ related ideas to the 

previous work and multiply the anticipated region entropy segmentations with a huge numbers of 

areas of interest. Though the supposed region of interest entropy gives an approximation of the 

mean disarray within a region of interest of a segmented image, total encoding of the data of an 

image not only needs to encode the feature value of a pixel within the region of interest (i.e. the 

region entropy), but also encode a representation for the segmentation. To encode the segmented 

image itself, pixels need to be put in the region of interest. While the desired region of interest 

entropy normally decreases with the number of regions, but as desired the number of bits for a 

particular region of interest of a region for each pixel, a determinant we call the entropy, to 

maximize with the number of regions. Therefore, these two reasons can be used to counteract the 

results of over-segmenting or under-segmenting when evaluating a particular segmented area [50]. 

Entropy-based methods utilize the entropy of the center and the surroundings and the cross-entropy 

of the original and the binarized images. In the entropy based method the image is said to have 

reached threshold when the sum of the background and foreground image class also reaches its 

maximum and they are also considered as two different image sources. Image foreground and 
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background are considered as two different signal sources, so that when the sum of the two class 

entropies reaches its maximum, the image is said to be at optimal threshold [45]. 

This can be written as: 

𝑇𝑜𝑝𝑡 = arg max [𝐻𝑓(𝑇) + 𝐻𝑏(𝑇)] 

where 

𝐻𝑓(𝑇) = − ∑
𝑝(𝑔)

𝑝(𝑇)
𝑙𝑜𝑔

𝑝(𝑔)

𝑝(𝑇)

𝑇

𝑔=0

 

and                                              𝐻𝑏(𝑇) = − ∑
𝑝(𝑔)

(1−𝑃(𝑇))
log

𝑝(𝑔)

(1−𝑃(𝑇))
𝐺
𝑔=𝑇+1  

The purpose of characteristic-based methods is for comparison between the gray-level and binary 

based images, for instance fuzzy nature resemblance and edge concurrence. A model of similar 

technique is moment preserving where the gray-level image preserves the information of the 

original binary image [45].  

𝑇𝑜𝑝𝑡 = arg 𝑒𝑞𝑢𝑎𝑙[𝑚1 = 𝑏1(𝑇), 𝑚2 = 𝑏2(𝑇), 𝑚3 = 𝑏3(𝑇)] 

where                                𝑀𝑘 = ∑ 𝑝(𝑔)𝑔𝑘𝐺
𝑔=0  

and                                    𝐵𝑘 = 𝑃𝑓𝑀𝑓𝑘 + 𝑃𝑏𝑚𝑏𝐾 

The algorithm for Entropy based method can be written as: 

1. Read input image  

2. Set up optimal threshold value 

3. Calculate Hf(T) & Hb(T) 
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4. Calculate Topt 

5. Stop 

3.4 Moment Preserving 

The comparison between different thresholding techniques is described in many different sources 

[51]. Moment preserving is one of the most popular thresholding techniques used by Tsai [52] 

and these techniques gives a very good outcome for segmentation. Tsai determined the threshold 

level by implementing moment preserving theory and this threshold level makes sure of the 

perpetuation of moments of gray level allocation of a particular image when the thresholding 

process is done. Tsai considered that if the specific image is blurry compared to the main bi-level 

image where every pixel has either p1 or p2 grey level values where p1< p2 then if the moment-

preserving methodology applied to it can determine a threshold level in such a way that if the 

gray level is below the threshold and substituted by p1 and the other gray level values that are 

above the threshold are substituted by p2, then the moments of that specific image will be 

maintained. Tsai [52] observed thresholding as a moment-preserving image alteration which 

improves the original image. The threshold level is selected using a technique so that the moments 

of a particular image are preserved as in the original image. The allocation of gray levels inside a 

mammogram image normally is not Gaussian and can be represented with a Gamma distribution 

in a superior technique since the Gamma distribution is more universally used than Gaussian and 

can replicate similarity and non-similarity. For this purpose, the Gamma distribution is superior 

to the Gaussian distribution for setting thresholding to complete segmentation of images. Gamma 

distribution provides us more flexibility and precision for demonstration of a gray level image 

[53]. 
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To compute the optimal threshold t using the moment preserving method we can consider two 

classes. Where µk
1and µk

2 are the average of two classes by nth order moment of the two classes 

can be written as: 

𝑏𝑘 (𝑡) = 𝑃1. 𝜇1
𝑘 + 𝑃2. 𝜇2

𝑘 

Here, prior probabilities are 𝑃1and𝑃2. µ1and µ2 can also be considered as gray level values of the 

foreground and background pixels. From the moment preserving principle we can write, 

𝑑

𝑑𝑡
 𝑏𝑘 (𝑡) = 0 

From above equations we can write: 

𝑑

𝑑𝑡
 𝑃1𝜇1

𝑘 +  
𝑑

𝑑𝑡
 𝑃2𝜇2

𝑘 = 0 

We can find the derivative of average µ1and µ2 as:  

𝑑

𝑑𝑡
 μ1

k =
k h(t)

2 (m0a)2
 μ1

k−1(
t2q2

μ1
−  μ1) 

and  

𝑑

𝑑𝑡
 μ2

k =
k h(t)

2 (m0b)2
 μ2

k−1(μ2 −
t2q2

μ2
) 

Solving the above equations for t to find the optimal threshold level we get: 

𝑡 = (
(𝑝 − 𝑘)(μ2

k −  μ1
k)

kq2(μ1
k−2 −  μ2

k−2)
)1/2 
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Where µ1and µ2 are functions of t. The primary value of t is considered as the average gray level 

value and is calculated iteratively. This process continues until: 

|𝑡𝑜𝑙𝑑 − 𝑡𝑛𝑒𝑤| < 𝜖 

The process continues until it's less than the thresholded value 𝜖. The algorithm for the moment 

preserving method can be written as: 

1. Read input image  

2. Set up optimal threshold value 

3. Set up histogram 

4. Initialize gray level value 𝑡𝑜𝑙𝑑 

5. Calculate 𝑡𝑛𝑒𝑤 

6. Repeat until |𝑡𝑜𝑙𝑑 − 𝑡𝑛𝑒𝑤| < 𝜖 

7. Stop 

3.5 Balanced Histogram Thresholding 

The Balanced Histogram Thresholding method is normally used for automatic thresholding in 

image processing. Utilizing this method, we can isolate an image into many desired areas or 

objects. Segmentation of a significant image is a troublesome task in image processing and its 

precision level can be decided by the inevitable achievement or disappointment of image analysis 

and calculations of the segmentations depending on the two essential properties of intensity values, 

intermittence and comparability. Another way is to segment an image into areas that are 

comparable as indicated by a predefined criterion. Histogram thresholding methodology falls 

under this classification. Histograms are built by partitioning the information into equal-sized bins 

(called classes). At that point for all data sets, the quantity of information that falls into every bin 
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are counted. Frequency is presented in the vertical axis and response variable is placed in the 

horizontal axis. The horizontal axis consists of pixels of the image histogram and assuming that 

the grey level histogram represents an image, f(x,y), created of shady objects in the light 

background, in a manner that objects and background pixels have dark levels gathered into two 

prevailing modes. One evident approach to extricate the objects from the background is to choose 

a limit T that isolates these modes [54]. 

In balanced histogram thresholding this technique considers an image that can be separated in two 

main classes, and those are background, and foreground of a particular image. By finding an 

optimum image thresholding level this image processing technique separates the histogram into 

two different classes. In this technique the histogram is weighted, later tested for which side of the 

histogram weighs more, and then by eliminating the extra weight from that side until it gets lighter 

compared to other side of the histogram. Then it continues that process using the same procedure 

until the edges of the weighting scale meet at a balanced point which can be set as threshold. For 

its ease, this system is a decent decision as a first approach while showing the subject of an image 

thresholding automatically. 

When two foremost modes differentiate the image histogram, then it is defined as a bimodal 

histogram. When using one threshold the whole image can be partitioned into two different 

sections. For example, when an image is composed of two different kinds of objects on a shady 

background, three or more foremost modes differentiate the whole image histogram [45]. In such 

a situation the image histogram needs to be divided into multiple thresholds. Multilevel 

thresholding can divide a particular point (x,y) related to a particular object class  if T1 < f(x,y) <= 

T2 and to the other object class  if f(x,y) > T2 and to the background  if f(x,y) <= T1. Then any 

point (x,y) for which f(x,y) > T is called an object point, and if f(x,y) point of the histogram weighs 

https://en.wikipedia.org/wiki/Weighing_scale
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more, then removing the extra weight from that side of the histogram, a balanced threshold point 

is reached. The Algorithm for balanced thresholding can be written as follows: 

1. Select an initial estimate for the threshold 

2. Compare both sides of the histogram  

3. Remove extra weight from either side of the histogram 

4. Repeat step 2 and 3 to reach a balanced point of the histogram 

5. Set that balanced point as the threshold level for image segmentation 

6. Repeat steps 1 to 5   

3.6 Genetic Algorithm 

In this method the solution of a particular problem is simulated using evolution, beginning from a 

primary set of solutions or assumptions, and by creating consecutive solutions of that problem 

[55]. This method is normally considered as a function optimizer, and in different scientific areas 

this method has very good results. The application of a genetic algorithm starts with a population 

of chromosomes. After estimating these structures and assigning a reproductive system in a way 

so that chromosomes that can give a better solution of a problem will be given opportunities to 

‘reproduce’ more than those chromosomes that are not able to give a better solution. A better 

solution of a particular problem is measured by comparison with the present population [56].  

To build the procedure of natural choice using a computer, first we have to create an image of an 

element at every point during the whole process to create a generation of elements. Every element 

inside the data structure can show the genetic structure of a possible solution or assumption. 

Usually similar to a chromosome, the genetic structure of every element can be explained using 

fixed and certain structures. The binary structure 0 and 1 is normally used for a genetic algorithm.  
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This can be used as solutions of problems which we are trying to solve using Genetic Algorithm 

[57]. 

One example can be when a traveler is searching for an optimal path to travel around 10 cities. He 

can start from any city he wants and the solution of this kind of problem can be any ordering of 

the 10 cities. For example: 1-4-2-3-6-7-9-8-5-10. 

A Genetic algorithm is mainly based on a reduction of a genetic procedure of usual assortment 

from side to side operations, for instance genetic material, inhabitant’s amount, fractious pace, 

mutation rate and highest production. Processed images after using The Genetic Algorithm can be 

used for a final pathway to get better results [58].  

Fitness (x) =Numf.Numb. (Mf-Mb) 2
 

where Numf and Numb are center and locale pixels of an image. Mf stands for strength of center 

pixels 

𝑀𝑓 =
𝐼𝑓

𝑁𝑢𝑚𝑓
 

where If is the addition intensities of center pixels of an image. Mb stands for strength of locale 

pixels. 

𝑀𝑏 =
𝐼𝑏

𝑁𝑢𝑚𝑏
, 

where Ib is summation of intensities locale pixels of an image. Threshold is determined by the 

following equation: 

Fitness(x) =max {Fitness(x)} 
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where x represents threshold level. Using those imaging techniques by changing the contrast of 

image and processing the foreground and background image we can detect microcalcifications 

more effectively [45].  This assessment is gained by subtracting the strength levels of the 

segmented image. Further constraints are also utilized, including the peak pixel strength of the 

associated image, the entropy, and the combined entropy. 

𝜇 =
1

𝑁
∑ 𝑃𝑗

𝑁

𝑗=1

 

𝜎² =
1

𝑁
∑(𝑃𝑗 − 𝜇)²

𝑁

𝑗=1

 

Skewness =
1

𝑁
∑ (

𝑃𝑗−𝜇

𝜎

𝑁
𝑗=1 )³ 

Kurtosis= 
1

𝑁
∑ (

𝑃𝑗−𝜇

𝜎

𝑁
𝑗=1 )4 

Entropy= -∑ 𝑝𝑗𝑙𝑜𝑔𝑝𝑗𝑁
𝑗=1  

Joint Entropy= ∑ ∑ 𝑃𝑖𝑗𝑙𝑜𝑔(𝑃𝑖𝑗)
𝑁𝑦
𝑗=1

𝑁𝑥
𝑖=1  

where Pj is probability density of the jth bin in the histogram and N is the total number of bins.  

In the Genetic Algorithm binary coded strings are normally used. The size of the string is normally 

established with respect to the desired solution precision. It also uses objective function 

information without any gradient information. The transition scheme of the genetic algorithm is 

probabilistic, whereas traditional methods use gradient information [55]. Because of these features 

of the Genetic Algorithm, they are used as a general purpose optimization algorithm. They also 

provide means to search an irregular space and hence are applied to a variety of function 
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optimization, parameter estimation and machine learning applications [59]. Objective function and 

fitness function, and application of genetic operators are needed to get the threshold level. 

The steps of Genetic Algorithm are shown below. The most important steps involved are the 

creation of solutions, defining the objective function and fitness function and the application of 

genetic operators. They are described in detail in the following subsection. Algorithm for Genetic 

Algorithm is stated: 

1. Start 

2. Arbitrarily initialize population 

3. Calculate objective function 

4. Calculate fitness function 

5. Apply genetic operators to get desired solution 

6. Reproduction is done inside gathered solutions 

7. Crossover is done inside gathered solutions 

8. Mutation is done inside gathered solutions 

9. Repeat steps 1 to 5 

10. Stop 

A significant feature of the Genetic Algorithm is to do coding of variables that are initialized inside 

a problem. The most common coding technique is to convert the variables into binary strings or 

vectors; this algorithm works best when the solution vector space is converted into binary. Inside 

the problem if it has many variables then a different variable coding scheme is developed by 

arranging as many single variables coding as possible inside the problem [60]. This algorithm can 

process many solutions at a time. Using this algorithm many different elements of a population 
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can have a particular solution which is feasible. This is an instance of a result of a solution space 

and can be defined as an initial solution. This determines the selection of vigorous and impartial 

solutions, as it begins from many different ranges of points inside the solution space [61]. Later 

desired elements of a certain population are calculated to get the main objective function value.  

Using this principle, the significance function method can be used to convert a confined 

optimization problem to an unconfined one. It actually depends on what kind of problem we are 

solving. Later the objective function is used to get a fitness function that calculates a fitness value 

for each element of a particular population. This can be done using GA operators [55]. 
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CHAPTER 4 

 RESULTS 

 

Data Images 

The techniques described in the methodology section were implemented using the MATLAB 

platform. These techniques are: Otsu’s method, Iterative method, Maximum Entropy based 

method, Moment preserving, Balanced histogram thresholding, and Genetic algorithm. To 

evaluate the performance of these techniques and compare their efficiencies in detecting 

microcalcifications, 100 images were downloaded from different medical databases. These images 

are the results of screening breast cancer patients with X-ray, MRI, and Ultrasound technologies. 

They were classified depending on their qualities in 3 categories. Out of these 100 images 63 are 

very good quality images, 25 images are of good quality, and 12 are poor quality images.  

Images classified as very good quality images contain microcalcification spots that have brighter 

intensity levels than the intensity levels of the background. The intensity levels of 

microcalcifications in these images are high enough to apply different image segmentation 

algorithms without any prior image enhancement. An example of this type of image is shown in 

Figure 4.1. 
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Figure 4.1: Example of very good quality image with microcalcifications. 

Images classified as good quality images also contain microcalcification spots with brighter 

intensity levels than the background. For these images, the intensity levels of microcalcifications 

are slightly higher than the background levels. Thus, some of these images need enhancement 

before applying segmentation. An example of these types of images is shown in Figure 4.2. 
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Figure 4.2: Example of good quality image with microcalcifications. 

On the other hand, poor quality images are noisy, have non-uniform backgrounds, and the intensity 

levels of microcalcification spots are close to the background levels. Some images have dark 

backgrounds and other have bright backgrounds. This necessitates some prior image processing 

such as enhancement before isolating the microcalcifications. An example of this type of image is 

shown in Figure 4.3. 
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Figure 4.3: Example of poor quality image with microcalcifications. 

For poor quality images and good quality images, image enhancement is used to increase the 

intensity levels of the microcalcification spots so that the background levels have much lower 

intensity levels. For very good quality images, image enhancement is not needed to isolate 

microcalcifications from the background [27].  

Examples of results corresponding to image enhancement are shown in Figures 4.4 and 4.5. 

Figures 4.4 b) and 4.5 b) represent the output images after applying the image enhancement 

algorithm on the input images shown in Figures 4.4 a) and 4.5 a), repectively. From these images 

histograms, we can see that the pixels' intensity level of each output is stretched covering almost 

the entire range [0, 255] compared to the the pixels’ intensity level of the original image due to the 

use of the image enhancement algorithm.  
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Figure 4.4: Original and enhanced images with their respective histograms. 

From Figure 4.4 and 4.5, one can observe that the edge of the breast is sharper and the tissue is 

brighter than the background compared to those in the original images, which can help better in 

isolating the microcalcifications using the different thresholding methods. 
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Figure 4.5: Original and enhanced images with their respective histogram. 

The detection of breast microcalcifications using the different methods with results are described 

below. 

4.1 Otsu’s Method 

We applied this method to all types of images to detect point microcalcifications. Examples of 

results are shown in Figures 4.6, 4.7, and 4.8. Figure 4.6 shows an example of a very good quality 

image and the output after applying Otsu’s method. After applying Otsu's thresholding method, 

we can distinguish microcalcification spots separately from the background of the image.  
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Figure 4.6: Microcalcifications detection for very good quality image using Otsu’s method. 

Figure 4.7 is an example of results corresponding to a good quality image, and shows the original 

image and the output after applying Otsu’s method. The intensity levels of the microcalcification 

spots are slightly higher than the intensity level of the background, which makes it difficult to 

detect point microcalcificaitons in the original image.  

 

Figure 4.7: Microcalcifications detection for good quality image using Otsu’s method. 

 

Figure 4.8 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying Otsu’s method. The intensity levels of the 
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microcalcifications and the background are very close, which makes it difficult to detect point 

microcalcifications.   

 

 

Figure 4.8: Microcalcifications detection for poor quality image using Otsu’s method. 

Table I shows that Otsu's method was able to detect point microcalcifications in 65% of very good 

quality images.  For good quality images, this method was able to detect point microcalcifications 

in around 20% of the cases. However, for poor quality images, Otsu's method was able to detect 

point microcalcificaitons for only 8% of the cases.  

Table I shows the results of 100 different types of images after applying Otsu's method. 

 

Technique Very good 

quality 

Images 

(63) 

Good 

quality 

Images 

(25) 

Poor 

quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage 

poor 

quality 

image 

Otsu’s  41 5 1 65 20 8 
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4.2 Iterative Method 

The segmentation process requires a threshold to separate a particular image into background and 

foreground. Proper selection of a threshold level significantly determines the output of the final 

results. In this section, we will discuss the results of the automated iterative thresholding method 

to determine the threshold level of images to detect point microcalcifications.  The threshold level 

of a particular image was determined iteratively after considering the histogram and breast spatial 

resolution characteristics based on an image. No predetermined or experimental-based threshold 

value is needed. We applied this method to all types of images to detect point microcalcifications. 

Examples of results are shown in Figures 4.9, 4.10, and 4.11. Figure 4.9 shows an example of a 

very good quality image and the output after applying Iterative method. After applying Iterative 

thresholding method, we can distinguish microcalcification spots separately from the background 

of the image.  

 

Figure 4.9: Microcalcification detection for very good quality image using Iterative method. 

Figure 4.10 is an example of results corresponding to a good quality image. This Figure 4.10 shows 

the original image and the output after applying Iterative method. The intensity levels of the 
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microcalcification spots are slightly higher than the intensity level of the background, which makes 

it difficult to detect point microcalcifications in the original image.  

 

Figure 4.10: Microcalcifications detection for good quality image using Iterative method. 

 

Figure 4.11 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying Iterative method. The intensity levels of 

the microcalcifications and the background are very close, which makes it difficult to detect point 

microcalcifications.   

 

Figure 4.11: Microcalcifications detection for poor quality image using Iterative method. 
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The benefit of this iterative technique is that it can be utilized for different types of images without 

special necessity for image information data or operators' communication to adjust the desired 

threshold value. Data information of the current image are required to set the appropriate threshold 

value. In the beginning, we estimated local minimums of the image histogram using the algorithm. 

Proper selection of the threshold can differentiate between the foreground and background images 

at this local minimum. Moving forward from the lowest local minimum to the highest, our 

algorithm keeps evaluating until it has evaluated all local minimums and selects a proper local 

minimum. From Table II, we can see that for 63% of very good quality images, Iterative method 

was able to detect point microcalcifications.  For good quality images, this method was able to 

detect point microcalcifications around 16% of the cases. However, for poor quality images, 

Iterative method was not able to detect point microcalcificaitons.  

Table II shows the results of 100 different types of images after applying Iterative method. 

Technique Very good 

quality 

Images (63) 

Good 

quality 

Images 

(25) 

Poor quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage  

poor quality 

Images 

Iterative 40 4 0 63 16 0 

 

4.3 Balanced Histogram Thresholding 

Balanced histogram thresholding method is an automated image thresholding method for detecting 

point microcalcifications. We applied this method to all types of images to detect point 

microcalcifications. Examples of results are shown in Figures 4.12, 4.13, and 4.14. Figure 4.12 

shows an example of a very good quality image and the output after applying Balanced histogram 



 

50   

thresholding method. After applying Balanced histogram thresholding method, we can distinguish 

microcalcification spots separately from the background of the image.  

 

Figure 4.12: Microcalcifications detection for very good quality image using Balanced histogram thresholding 

method. 

Figure 4.13 is an example of results corresponding to a good quality image. This Figure 4.7 shows 

the original image and the output after applying Balanced histogram thresholding method. The 

intensity levels of the microcalcification spots are slightly higher than the intensity level of the 

background, which makes it difficult to detect point microcalcifications in the original image.  

 

Figure 4.13: Microcalcification detection for good quality image using Balanced histogram thresholding method. 
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Figure 4.14 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying balanced histogram thresholding method. 

The intensity levels of the microcalcifications and the background are very close, which makes it 

difficult to detect point microcalcifications.   

 

Figure 4.14: Microcalcification detection for poor quality image using Balanced histogram thresholding method. 

From Table III we can see that, Balanced histogram thresholding method was able to detect point 

microcalcifications for 73% of very good quality images.  For good quality images, this method 

was able to detect point microcalcifications for around 40% of the cases. However, for poor quality 

images Balanced histogram thresholding method was able to detect point microcalcifications for 

only 33% of images.  

Table III shows the results of 100 different types of images after applying Balanced histogram thresholding method. 

Technique Very good 

quality 

Images (63) 

Good 

quality 

Images 

(25) 

Poor quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage 

poor quality 

Images 

Balanced 46 10 4 73 40 33 

 



 

52   

4.4 Moment Preserving 

In this section, in order to detect point microcalcifications we applied Moment Preserving method 

as an image processing technique. Moment Preserving is another automated image segmentation 

method that keeps the moments of gray level distribution of the original image before and after 

thresholding. We applied this method to all types of images to detect point microcalcifications. 

Examples of results are shown in Figures 4.15, 4.16, and 4.17. Figure 4.15 shows an example of a 

very good quality image and the output after applying Moment Preserving method. After applying 

Moment preserving thresholding method, we can distinguish microcalcification spots separately 

from the background of the image.  

 

Figure 4.15: Microcalcification detection for very good quality image using Moment Preserving method 

Figure 4.16 is an example of results corresponding to a good quality image and shows the original 

image, and the output after applying Moment Preserving method. The intensity levels of the 

microcalcification spots are slightly higher than the intensity level of the background, which makes 

it difficult to detect point microcalcifications in the original image.  
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Figure 4.16: Microcalcification detection for good quality image using Moment Preserving method. 

Figure 4.17 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying Moment Preserving method. The intensity 

levels of the microcalcifications and the background are very close, which makes it difficult to 

detect point microcalcifications.   

 

Figure 4.17: Microcalcification detection for poor quality image using Moment preserving method. 

From Table IV we can see that Moment Preserving method was able to detect point 

microcalcifications for 65% of very good quality images.  For good quality images, this method 

was able to detect point microcalcifications for around 24% of the cases. However, for poor quality 
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images Moment preserving method was able to detect point microcalcifications for only 16% of 

cases.  

Table IV shows the results of 100 different types of images after applying Moment Preserving method. 

Technique Very good 

quality 

Images (63) 

Good 

quality 

Images 

(25) 

Poor quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage  

poor quality 

Images 

Moment 

Preserving 

41 6 2 65 24 16 

 

4.5 Maximum Entropy based method 

In this section, we applied automated Entropy based method algorithm for the image segmentation 

process to detect microcalcifications. This method uses the entropy of the center and the 

neighboring area of the original image. We applied this method to all types of images to detect 

point microcalcifications. Examples of results are shown in Figures 4.18, 4.19, and 4.20. Figure 

4.18 shows an example of a very good quality image and the output after applying Maximum 

Entropy based method. After applying Maximum Entropy based method, we can distinguish 

microcalcifications spots separately from the background of the image.  
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Figure 4.18: Microcalcification detection using Maximum Entropy based method. 

Figure 4.19 is an example of results corresponding to a good quality image and shows the original 

image, and the output after applying this method. The intensity levels of the microcalcification 

spots are slightly higher than the intensity level of the background, which makes it difficult to 

detect point microcalcifications in the original image.  

 

Figure 4.19: Microcalcification detection for good quality image using Maximum Entropy based method. 
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Figure 4.20 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying Maximum Entropy based method. The 

intensity levels of the microcalcifications and the background are very close, which makes it 

difficult to detect point microcalcifications.   

 

Figure 4.20: Microcalcification detection for poor quality image using Maximum Entropy based method. 

In this method, an image is said to have reached its threshold when the addition of background and 

foreground image regions of a particular segmented area also have reached their maximum gray 

level, and both background and foreground of a particular image are considered as two different 

image sources. In images, foreground and background are considered as two different signal 

sources, so that when the sum of the two class entropies reaches its maximum, the image is said to 

have reached its optimum threshold. From Table V we can see that Maximum Entropy based 

method was able to detect point microcalcifications for 60% of very good quality images.  For 

good quality images, this method was able to detect point microcalcifications for around 40% of 

the cases. However, for poor quality images Maximum Entropy method was able to detect point 

microcalcificaitons for only 25% of cases.  
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Table V shows the results of 100 different types of images after applying Maximum entropy based method. 

Technique Very good 

quality 

Images (63) 

Good 

quality 

Images 

(25) 

Poor quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage  

poor quality 

Images 

Maximum 

Entropy 

38 10 3 60 40 25 

 

4.6 Genetic Algorithm 

In this section, we applied the automated Genetic Algorithm (GA) technique to detect point 

microcalcifications. In Genetic Algorithm several optimal threshold levels are selected for a 

particular image. Later on if the desired threshold level is not reached, then crossover is done to 

determine the selection of a better threshold, and this process is repeated until desired threshold 

value is obtained. We applied this method to all types of images to detect point microcalcifications. 

Examples of results are shown in Figures 4.21, 4.22, and 4.23. Figure 4.21 shows an example of a 

very good quality image and the output after applying Genetic Algorithm. After applying Genetic 

Algorithm, we can distinguish microcalcifications spots separately from the background of the 

image.  
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Figure 4.21: Microcalcification detection for very good quality image using Genetic Algorithm. 

Figure 4.22 is an example of results corresponding to a good quality image and shows the original 

image, and the output after applying the Genetic Algorithm. The intensity levels of the 

microcalcification spots are slightly higher than the intensity level of the background, which makes 

it difficult to detect point microcalcifications in the original image.  

 

Figure 4.22: Microcalcification detection for good quality image using Genetic Algorithm. 

 

Figure 4.23 is an example of a poor quality image for microcalcification detection. This figure 

shows the original image and the output after applying the Genetic Algorithm. The intensity levels 
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of the microcalcifications and the background are very close, which makes it difficult to detect 

point microcalcifications.   

 

 

Figure 4.23: Microcalcification detection for poor quality image using Genetic Algorithm. 

From Table VI, we can see that the Genetic Algorithm was able to detect point microcalcifications 

for 73% of very good quality images.  For good quality images, this method was able to detect 

point microcalcifications in 32% of the cases. However, for poor quality images Genetic Algorithm 

was not able to detect point microcalcifications.  

Table VI shows the results of 100 different types of images after applying Genetic Algorithm. 

Technique Very good 

quality 

Images (63) 

Good 

quality 

Images 

(25) 

Poor quality 

Images 

(12) 

Percentage 

very good 

quality 

images 

Percentage 

good 

quality 

Images 

Percentage  

poor quality 

Images 

Genetic 

Algorithm 

46 8 0 73 32 0 
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CHAPTER 5  

Efficiency Comparison of the Image Processing Techniques 

 

Segmentation or thresholding algorithm methods can be classified into two different types, 

analytical methods and empirical methods [62]. By examining the principles and properties 

analytical methods assess thresholding algorithms. On the other hand, empirical methods assess 

the thresholding algorithms by implementing them on images and by assessing the quality of the 

results.  

Though analytical methods are better than empirical methods, by avoiding the influence created 

by the arrangement of evaluation experiments, there were not many analytical methods available 

in the literature. Many different types of empirical methods were suggested in the past. Normally, 

the empirical methods can be divided into two main types. Those are goodness methods and 

discrepancy methods [62].   

The goodness methods measure the segmented images depending on human intuition about what 

circumstances should be considered by an “ideal” segmentation. The human intuition assessment 

is mathematically defined by equations, so the “goodness” can be quantitatively measured by 

simply computing these measures. Therefore, these goodness methods can assess the algorithms 

by using the segmented images themselves without reference to the ideal images.  

The discrepancy methods measure the inequality between an actually segmented image and a 

correctly/ideally segmented image. Both images can be gathered from the same input image. In 
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some cases, if images are synthetic images, the reference images can be simply gathered from the 

image generation procedure, while in some cases where the test images are real images, manually 

(with the help of visual inspection) segmented images are often used as references [62]. 

In this dissertation, we have performed the comparison of the different segmentation techniques 

using a goodness method: visual inspection. 

Figures 5.1-5.4 gives examples of side by side comparisons. 

 

Figure 5.1: Microcalcifications detection for very good quality image using Otsu’s, Balanced, and Iterative method. 
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Figure 5.2: Microcalcifications detection for very good quality image using Moment Preserving, Maximum Entropy, 

and Genetic Algorithm. 
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Figure 5.3: Microcalcifications detection for good quality image using Otsu’s, Balanced, and Iterative method of 

another image. 
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Figure 5.4: Microcalcifications detection for good quality using Moment Preserving, Maximum Entropy, and 

Genetic Algorithm of another image. 

After analyzing 100 different images, we found that Balanced histogram thresholding works the 

best for image segmentation with around 73% efficiency for very good quality images, 40% 

efficiency for good quality images and 33% efficiency for poor quality images.   

We also got better efficiency for microcalcification detection using the Genetic Algorithm with 

73% of efficiency for very good quality images and around 32% for good quality images. 

However, the detection rate was 0% for poor quality images. 
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The efficiency of Moment Preserving method was 65% for very good quality images and around 

24% for good quality images, and around 16% for poor quality images. Compared to other 

thresholding techniques, this technique is not the best to detect point microcalcifications, but for 

some images it gave very good results compared to other techniques for detecting point 

microcalcifications. The efficiency of Otsu’s method was 65% for very good quality images and 

around 20% for good quality images, and around 8% for poor quality images. The efficiency of 

Iterative method was 63% for very good quality images and around 16% for good quality images, 

and around 0% for poor quality images. Finally, the efficiency of Maximum entropy method was 

60% for very good quality images and around 40% for good quality images, and around 25% for 

poor quality images.   

 

Table VII Comparison table after applying different thresholding techniques 

Techniques Very good 

quality 

image (63) 

Good 

quality 

image (25) 

Poor 

quality 

image (12) 

Percentage 

very good 

quality 

image  

Percentage 

good 

quality 

image 

Percentage 

poor 

quality 

image 

Otsu’s 41 5 1 65% 20% 8% 

Balanced 46 10 4 73% 40% 33% 

Iterative 40 4 0 63% 16% 0 

Moment 

Preserving 

41 6 2 65% 24% 16% 

Maximum 

Entropy 

38 10 3 60% 40% 25% 

Genetic 

Algorithm 

46 8 0 73% 32% 0 
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As one can see, for very good quality images both the Balanced Histogram and Genetic Algorithm 

algorithms have a detection rate of 73%. These are followed by the Otsu’s method and Moment 

Preserving algorithm. Iterative method has a detection rate of 63% and Maximum Entropy has the 

least detection rate of 60%. For good quality images both the Balanced Histogram and Maximum 

Entropy algorithms have a detection rate of 40%. These are followed by the Otsu’s method and 

Moment Preserving method with the detection rate of 20% and 24% respectively. The Genetic 

Algorithm has a detection rate of 32% and Iterative method has the least detection rate of 16%. 

For poor quality images Otsu’s method and Balanced Histogram Thresholding method have the 

detection rate of 8% and 33% respectively. Moment Preserving and Maximum Entropy also have 

the detection rate of 16.7% and 25% respectively. The Iterative and Genetic algorithm were not 

able to detect microcalcifications for poor quality images at all. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation we explained, developed and experimented with different image processing 

techniques that can be used for the early detection of breast cancer by detecting point 

microcalcifications. In this chapter we will summarize our research and briefly discuss some areas 

that merit future research.  

Research Summary 

     In Chapter 1, we discussed the significance of breast cancer and the necessity of early detection 

and why it's so important to detect, and prevent this disease in its early stage. We also discussed 

our objectives and approach to the early detection of breast cancer.  

    In Chapter 2, we discussed the state of the art of different techniques used for the early detection 

of breast cancer. We also discussed the efficiency and impact of those techniques on breast cancer 

detection. We also discussed signal and image processing techniques used by other researchers for 

microcalcifications detection. 

   In Chapter 3, we discussed the methodologies and theories of several techniques used in this 

dissertation for early detection of breast cancer by detecting point microcalcifications. These 

techniques are: Otsu's method, Iterative method, Maximum Entropy based method, Moment 

Preserving, Balanced Histogram Thresholding, and Genetic Algorithm.  
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In chapter 4, we discussed the results of our research. The size of the microcalcifications ranges 

from 0.1mm to 0.5mm, and average 0.3 mm. in size. Because of their small size, detection of 

microcalcifications requires proper implementation of different techniques. For some images with 

low grayscale background level, image enhancement was used to get better resolution so that 

image segmentation can be done more efficiently to detect point microcalcifications. When 

applying image enhancement, we should not enhance the image too much, otherwise it will be 

difficult to do proper image segmentation to detect microcalcifications. The brightness of 

microcalcifications and other neighboring tissues can become too high making it difficult to 

distinguish breast tissue and microcalcifications separately.  

After image processing, we compared the output results to find a better way to detect point 

microcalcifications for early detection. In order to evaluate the performance of different image 

processing techniques, we compared those techniques on 100 images. For some, image processing 

techniques worked very well and for other images some techniques did not work well. So, it is 

challenging to select a specific technique that can be used for image segmentation. Rather, 

applying different image and signal processing techniques together for varying circumstances and 

different images can be a good approach to detect point microcalcifications.  

After implementing each image processing technique, we applied other techniques as well to the 

original images to see the efficiency of different techniques for 100 images. We initially validated 

the output results from the applied image processing algorithms by applying those techniques to 

very good, good, and poor quality images. 

Our results show that the Balanced Histogram method and the Genetic Algorithm are good for 

detecting point microcalcifications for very good quality images. For good quality images, 
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Balanced Histogram and Maximum Entropy are efficient in detecting point microcalcifications. 

Only Balanced Histogram Thresholding is good for detecting point microcalcifications for poor 

quality images.  

Compared with other image processing techniques, our results show that Balanced Histogram 

method is the best method because the success rate of using this technique is above 73% for very 

good quality images. It also has the highest success rate, 40% for good quality images and a 33% 

success rate for poor quality images. Although it was not able to detect point microcalcifications 

for some images, its efficiency is more acceptable and can be considered a better image processing 

technique for detecting point microcalcifications compared to the other techniques. Our results 

also show that using just one single method does not yield the desired output. However, using a 

combination of all these image processing techniques, microcalcifications can be detected more 

efficiently. 

Future work 

As shown in this dissertation, thresholding techniques efficiency is limited because of all the 

problems affecting medical images containing microcalcifications. Furthermore, these image 

processing techniques cannot detect microcalcifications if they are not visible in the image. To 

improve the detection of these spots, techniques that process the sensors’ signals are more suitable. 

One of these techniques is the Time-reversal (TR) imaging with Multiple Signal Classification 

(TR-MUSIC) algorithm developed by Devaney [63] and that can be used to increase the resolution 

of ultrasound images. Time-reversal (TR) methods have recently received a lot of interest in the 

ultra-sound medical imaging community [64].  TR-MUSIC combines TR focusing with the 

MUSIC signal-subspace technique to increase the resolution of ultrasound images [65]. TR-
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MUSIC algorithm was investigated during this research project. Several parameters on the TR-

MUSIC efficiency, such as sound speed, sampling frequency, Eigenvalue, and number of traces 

can be examined to increase the resolution of ultrasound images [66]. One of the major limitations 

of TR-MUSIC algorithm is that it’s efficient for homogeneous medium. More investigation is 

required considering this algorithm for non-homogeneous medium to apply this technique for early 

detection of breast cancer. 
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