11 research outputs found

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Prediction of thermal and energy transport of MHD Sutterby hybrid nanofluid flow with activation energy using Group Method of Data Handling (GMDH)

    Get PDF
    The present research work pursues GMDH for predicting thermal and energy transport of 2-D radiative magnetohydrodynamic (MHD) flow of hybrid Sutterby nanofluid across a moving wedge with activation energy. An exclusive class of nanoparticles SWCNT-Fe(3)O(4 )and MWCNT-Fe3O4 are dispersed into the ethylene glycol as regular fluid. The hybrid nanofluid mathematical model has been written as a system of partial differential equations (PDEs), which are then converted into ordinary differential equations (ODEs) through similarity replacements. Numerical solutions are attained Runge-Kutta-Fehlberg's fourth fifth-order (RKF-45) scheme by adopting the shooting technique. The ranges of diverse sundry parameters used in our study are Hartree parameter 0.1 <= m <= 0.5, magnetic parameter 0.3 <= M <= 1, Deborah number 0.1 <= De <= 1, moving wedge parameter 0.3 <= gamma <= 0.9, Reynolds number 0 <= Re <= 2.5, solid volume fraction of Fe3O4 and CNTs0.005 <= phi(1) <= 0.1,0.005 <= phi(2) <= 0.06, Browanian motion 0.1 <= Nb <= 0.4, thermophoresis parameter 0.1 <= Nt <= 0.25, Eckeret number 0.05 <= Ec <= 1, radiation parameter 1 <= R-d <= 2.5, Lewis number 0.5 <= Le <= 1.5, chemical reaction rate 0.1 <= sigma <= 0.7, heat source parameter, 0 <= delta <= 1.5 and activation energy 1 <= E <= 4 which shows up during the speed, thermal, and focus for Fe3O4/C2H6O2 nanofluid and CNTs-Fe3O4/C2H6O2 hybrid nanofluid. Additionally, the friction coefficient (C-fx), rate of heat transport (H-tx), and rate of nanoparticle transport (Nt(x) are calculated using GMDH. The numerical results for the current analysis are illustrated via tables, graphs, and contour plots. The efficiency of the proposed GMDH models is assessed using statistical measures such as MSE, MAE, RMSE, R, Error mean and Error StD. The predicted values are very close to the numerical results, and the coefficient of determination R-2 of C-fx,N-tx, and H-tx are 1, 0.97836 and 0.9960, respectively, which shows the best settlement

    Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application

    Get PDF
    This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application"

    Non-Newtonian Microfluidics

    Get PDF
    Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses

    A numerical study of entropy generation in nanofluid flow in different flow geometries.

    Get PDF
    This thesis is concerned with the mathematical modelling and numerical solution of equations for boundary layer flows in different geometries with convective and slip boundary conditions. We investigate entropy generation, heat and mass transport mechanisms in non-Newtonian fluids by determining the influence of important physical and chemical parameters on nanofluid flows in various flow geometries, namely, an Oldroyd-B nanofluid flow past a Riga plate; the combined thermal radiation and magnetic field effects on entropy generation in unsteady fluid flow in an inclined cylinder; the impact of irreversibility ratio and entropy generation on a three-dimensional Oldroyd-B fluid flow along a bidirectional stretching surface; entropy generation in a double-diffusive convective nanofluid flow in the stagnation region of a spinning sphere with viscous dissipation and a study of the fluid velocity, heat and mass transfer in an unsteady nanofluid flow past parallel porous plates. We assumed that the nanofluids are electrically conducting and that the velocity slip and shear stress at the boundary have a linear relationship. We also consider different boundary conditions for all the flow models. The study further analyzes and quantifies the influence of each source of irreversibility on the overall entropy generation. The transport equations are solved using two recent numerical methods, the overlapping grid spectral collocation method and the bivariate spectral quasilinearization method, first to determine which of these methods is the most accurate, and secondly to authenticate the numerical accuracy of the results. Further, we determine the skin friction coefficient and the changes in the heat and mass transfer coefficients with various system parameters. The results show, inter alia that reducing the heat transfer coefficient, the particle Brownian motion parameter, chemical reaction parameter, Brinkman number, thermophoresis parameter and the Hartman number all lead individually to a reduction in entropy generation. The overlapping grid spectral collocation method gives better computational accuracy and converge faster than the bivariate spectral quasilinearization method. The fluid flow problems have engineering and industrial applications, particularly in the design of cooling systems and in aerodynamics

    Current Perspective on the Study of Liquid-Fluid Interfaces: From Fundamentals to Innovative Applications

    Get PDF
    Fluid interfaces are promising candidates for confining different types of materials - e.g., polymers, surfactants, colloids, and even small molecules - and for designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the Physico-chemical bases underlying the formation of layers at fluid interfaces, as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and dynamics features in the interfacial systems, which are far from those conventionally found in the traditional materials. This Special Issue is devoted to studies on fundamental and applied aspects of fluid interfaces, trying to provide a comprehensive perspective on the current status of the research field

    Numerical Simulation of Convective-Radiative Heat Transfer

    Get PDF
    This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students

    Advances in Heat and Mass Transfer in Micro/Nano Systems

    Get PDF
    The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems

    Investigation into stability and thermal-fluid behaviour of hybrid nanofluids as heat transfer fluids

    Get PDF
    Thesis (PhD (Mechanics))--University of Pretoria, 2021.The need to improve the poor thermal conductivity of conventional fluids to produce adequate heat transfer fluid cannot be over-emphasized, knowing fully well that heat transfer is key in any engineering process line. Hence, the birth of nanofluids, which is the formulation of a composite of suspended nanoparticles in a basefluid. Nanofluids have found wide applications ranging from heat exchangers, electronic cooling, automotive industry, medical, military, solar energy, manufacturing industry, to mention but a few. But the limitations of nanofluids led to the entrance of a new working fluid named binary nanofluid and ternary nanofluid. This study experimented with the trio influence of temperature (T), percent weight ratios (PWRs), nanoparticles size (NS) on the thermophysical behaviour of MgO–ZnO/Deionised water binary nanofluids (BNFs). 20 nm nano-size of ZnO nanoparticles were hybridised with MgO nanoparticles of nano-sizes 20 nm and 100 nm, and dispersed in deionised water to prepare 0.1 vol% binary nanofluids for percent weight ratios of MgO:ZnO (20:80, 40:60, 60:40 and 80:20). The viscosity (μ), electrical conductivity (σ), pH, and thermal conductivity (κ) of the binary nanofluids were experimentally evaluated for temperature 20 to 50 °C. Morphology was checked, and stability was monitored. The impact of temperature, PWRs, and nano-size on the pH, μ, σ, and κ of the binary nanofluid were ordered as PWR >NS >T, NS> PWR>T, T>NS >PWR, and T >NS >PWR, respectively. Using the obtained experimental dataset, correlations were proposed for the thermal property of each binary nanofluid as a function of temperature. Also, investigating the trio impact of PWR, temperature and � on the thermophysical characteristics of MgO-ZnO/DIW BNFs, to help close up the scarce literature gap. 20 nm nanoparticle sizes of MgO and ZnO were hybridized together and dissolved in deionized water to formulate 0.1 vol% and 0.05 vol.% binary nanofluids (NFs) for PWR of 20:80, 40:60, 60:40, 80:20 (MgO:ZnO). The κ for all BNFs was enhanced under the impact of rising temperature, with maximum κ enhancement of 5.60% and 22.07% relative to the deionised water (DIW) achieved for 0.05 vol% and 0.10 vol%, separately. The σ was enhanced slightly under the influence of increasing temperature, with maximum enhancement of 21.82% and 30.91% achieved for 0.050 vol% and 0.10 vol%, respectively. In addition, viscosity under temperature increase exhibited a decreasing pattern for all nanohybrids and basefluid. Furthermore, to better harness the benefit of the BNFs for thermal application, thermoelectrical conductivity (TEC) was evaluated with BNFs of 0.05 vol% observed to have higher TEC values than 0.10 vol% BNFs. The BNFs were found suitable as thermal fluids. A novel manner of furthering thermo-convection behaviour of thermal applications is the use of BNFs as heat transfer fluids. This study experimented the natural convection behaviour of MgO-ZnO NPs suspended in basefluid for � = 0.050 vol.% and 0.10 vol% at percent weight ratios of 20:80, 40:60, 60:40, 80:20 (MgO:ZnO) inside a square enclosure. Factors like Rayleigh number, Nusselt number (Nuav), coefficient of convective heat transfer (hav), and heat transfer rate (Qav) for various temperatures (20°C to 50°C) were examined. PWRs and temperature gradient of BNPs inside the binary nanofluids was observed to augment Nuav, hav, and Qav. Also, highest improvement of 72.60% (Nuav), 76.01% (hav), and 72.20% (Qav) was achieved. Employing BNFs in square enclosure yielded fine improvement for natural convection behaviour. Artificial intelligence (AI) methods, like artificial neural network (ANN) and surface fitting method were deployed to model the thermal conductivity of BNFs. For the ANN model, a learning algorithm was developed to determine the optimum neuron number. The ANN having 19 neurons in the inner layer got the optimized performance. A surface fitting method was also used on the experimental data, and the generated surface shows the behaviour of the BNFs. The outcome affirmed that the designed ANN model is best for predicting the thermal conductivity of MgO-ZnO/DIW binary nanofluids for different temperatures, nanoparticle sizes, PWRs and volume concentration over the surface fitting method.University of Pretoria Postgraduate Bursary for Doctoral Students.Olabisi Onabanjo University, Ago-Iwoye, Nigeria.Tertiary Education Trust Fund (TETFund), Abuja, Nigeria.Mechanical and Aeronautical EngineeringPhD (Mechanics)Unrestricte
    corecore