27 research outputs found

    Entertainment capture through heart rate activity in physical interactive playgrounds

    Get PDF
    An approach for capturing and modeling individual entertainment (“fun”) preferences is applied to users of the innovative Playware playground, an interactive physical playground inspired by computer games, in this study. The goal is to construct, using representative statistics computed from children’s physiological signals, an estimator of the degree to which games provided by the playground engage the players. For this purpose children’s heart rate (HR) signals, and their expressed preferences of how much “fun” particular game variants are, are obtained from experiments using games implemented on the Playware playground. A comprehensive statistical analysis shows that children’s reported entertainment preferences correlate well with specific features of the HR signal. Neuro-evolution techniques combined with feature set selection methods permit the construction of user models that predict reported entertainment preferences given HR features. These models are expressed as artificial neural networks and are demonstrated and evaluated on two Playware games and two control tasks requiring physical activity. The best network is able to correctly match expressed preferences in 64% of cases on previously unseen data (p−value 6 · 10−5). The generality of the methodology, its limitations, its usability as a real-time feedback mechanism for entertainment augmentation and as a validation tool are discussed.peer-reviewe

    The development of a rich multimedia training environment for crisis management: using emotional affect to enhance learning

    Get PDF
    PANDORA is an EU FP7-funded project developing a novel training and learning environment for Gold Commanders, individuals who carry executive responsibility for the services and facilities identified as strategically critical e.g. Police, Fire, in crisis management strategic planning situations. A key part of the work for this project is considering the emotional and behavioural state of the trainees, and the creation of more realistic, and thereby stressful, representations of multimedia information to impact on the decision-making of those trainees. Existing training models are predominantly paper-based, table-top exercises, which require an exercise of imagination on the part of the trainees to consider not only the various aspects of a crisis situation but also the impacts of interventions, and remediating actions in the event of the failure of an intervention. However, existing computing models and tools are focused on supporting tactical and operational activities in crisis management, not strategic. Therefore, the PANDORA system will provide a rich multimedia information environment, to provide trainees with the detailed information they require to develop strategic plans to deal with a crisis scenario, and will then provide information on the impacts of the implementation of those plans and provide the opportunity for the trainees to revise and remediate those plans. Since this activity is invariably multi-agency, the training environment must support group-based strategic planning activities and trainees will occupy specific roles within the crisis scenario. The system will also provide a range of non-playing characters (NPC) representing domain experts, high-level controllers (e.g. politicians, ministers), low-level controllers (tactical and operational commanders), and missing trainee roles, to ensure a fully populated scenario can be realised in each instantiation. Within the environment, the emotional and behavioural state of the trainees will be monitored, and interventions, in the form of environmental information controls and mechanisms impacting on the stress levels and decisionmaking capabilities of the trainees, will be used to personalise the training environment. This approach enables a richer and more realistic representation of the crisis scenario to be enacted, leading to better strategic plans and providing trainees with structured feedback on their performance under stress

    Psychophysiological Measures of Cognitive Absorption

    Get PDF
    Cognitive absorption (CA) corresponds to a state of deep involvement with a software program. CA has widely been studied over the last decade in the IT literature using psychometric instruments. Measuring ongoing CA with psychometric tools requires interrupting a subject’s ongoing usage behavior to self-evaluate their level of absorption. Such interruptions may alter or contaminate the very CA state the researcher us attempting to measure. To circumvent this problem, we are investigating the effectiveness of psychophysiological measures of cognitive absorption. This paper reports preliminary results from an ongoing research project by looking at the correlation between electrodermal activity (EDA) and several dimensions of the CA construct

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Preliminary studies for capturing entertainment through physiology in physical play

    Get PDF
    This report presents preliminary physical control experiments for capturing and modeling the affective state of entertainment — that is, whether people are having "fun" — of users of the innovative Play-ware playground, an interactive physical playground. The goal is to con-struct, using representative statistics computed from children's physio-logical hear rate (HR) signals, an estimator of the degree to which games provided by the playground engage the players. For this purpose chil-dren's HR signals, and their expressed preferences of how much "fun" particular game variants are, are obtained from experiments using games implemented on the Playware playground. Neuro-evolution techniques combined with feature set selection methods permit the construction of user models that predict reported entertainment preferences given HR features. These models are expressed as artificial neural networks and are demonstrated and evaluated on two Playware games and the pre-liminary control task requiring physical activity. Results demonstrate that the proposed preliminary control experiment is not an appropriate control for physical activity effects since it may generate HR dynamics rather easy to separate from game-play HR dynamics, and allows one to distinguish entertaining game-play from exercise purely on the artificial basis of the kind of physical activity taking place. Conclusions derived from this study constitute the basis for the design of more appropriate control experiments and user models in future studies.peer-reviewe

    Entertainment modeling in physical play through physiology beyond heart-rate

    Get PDF
    An investigation into capturing the relation of physiology, beyond heart rate recording, to expressed preferences of entertainment in children’s physical gameplay is presented in this paper. An exploratory survey experiment raises the difficulties of isolating elements derived (solely) from heart rate recordings attributed to reported entertainment and a control experiment for surmounting those difficulties is proposed. Then a survey experiment on a larger scale is devised where more physiological signals (Blood Volume Pulse and Skin Conductance) are collected and analyzed. Given effective data collection a set of numerical features is extracted from the child’s physiological state. A preference learning mechanism based on neuro-evolution is used to construct a function of single physiological features that models the players’ notion of ‘fun’ for the games under investigation. Performance of the model is evaluated by the degree to which the preferences predicted by the model match those expressed by the children. Results indicate that there appears to be increased mental/emotional effort in preferred games of children.peer-reviewe

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Psychophysiology in games

    Get PDF
    Psychophysiology is the study of the relationship between psychology and its physiological manifestations. That relationship is of particular importance for both game design and ultimately gameplaying. Players’ psychophysiology offers a gateway towards a better understanding of playing behavior and experience. That knowledge can, in turn, be beneficial for the player as it allows designers to make better games for them; either explicitly by altering the game during play or implicitly during the game design process. This chapter argues for the importance of physiology for the investigation of player affect in games, reviews the current state of the art in sensor technology and outlines the key phases for the application of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject (project no: 318803).peer-reviewe
    corecore