5,934 research outputs found

    Ensembles of Adaptive Model Rules from High-Speed Data Streams

    Get PDF
    The volume and velocity of data is increasing at astonishing rates. In order to extract knowledge from this huge amount of information there is a need for efficient on-line learning algorithms. Rule-based algorithms produce models that are easy to understand and can be used almost offhand. Ensemble methods combine several predicting models to improve the quality of prediction. In this paper, a new on-line ensemble method that combines a set of rule-based models is proposed to solve regression problems from data streams. Experimental results using synthetic and real time-evolving data streams show the proposed method significantly improves the performance of the single rule-based learner, and outperforms two state-of-the-art regression algorithms for data streams

    Boosting Classifiers for Drifting Concepts

    Get PDF
    This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. --

    From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits

    Full text link
    Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852

    Performance Envelopes of Adaptive Ensemble Data Stream Classifiers

    Get PDF
    This dissertation documents a study of the performance characteristics of algorithms designed to mitigate the effects of concept drift on online machine learning. Several supervised binary classifiers were evaluated on their performance when applied to an input data stream with a non-stationary class distribution. The selected classifiers included ensembles that combine the contributions of their member algorithms to improve overall performance. These ensembles adapt to changing class definitions, known as “concept drift,” often present in real-world situations, by adjusting the relative contributions of their members. Three stream classification algorithms and three adaptive ensemble algorithms were compared to determine the capabilities of each in terms of accuracy and throughput. For each\u3c run of the experiment, the percentage of correct classifications was measured using prequential analysis, a well-established methodology in the evaluation of streaming classifiers. Throughput was measured in classifications performed per second as timed by the CPU clock. Two main experimental variables were manipulated to investigate and compare the range of accuracy and throughput exhibited by each algorithm under various conditions. The number of attributes in the instances to be classified and the speed at which the definitions of labeled data drifted were varied across six total combinations of drift-speed and dimensionality. The implications of results are used to recommend improved methods for working with stream-based data sources. The typical approach to counteract concept drift is to update the classification models with new data. In the stream paradigm, classifiers are continuously exposed to new data that may serve as representative examples of the current situation. However, updating the ensemble classifier in order to maintain or improve accuracy can be computationally costly and will negatively impact throughput. In a real-time system, this could lead to an unacceptable slow-down. The results of this research showed that,among several algorithms for reducing the effect of concept drift, adaptive decision trees maintained the highest accuracy without slowing down with respect to the no-drift condition. Adaptive ensemble techniques were also able to maintain reasonable accuracy in the presence of drift without much change in the throughput. However, the overall throughput of the adaptive methods is low and may be unacceptable for extremely time-sensitive applications. The performance visualization methodology utilized in this study gives a clear and intuitive visual summary that allows system designers to evaluate candidate algorithms with respect to their performance needs

    CONTINUAL LEARNING FOR MULTI-LABEL DRIFTING DATA STREAMS USING HOMOGENEOUS ENSEMBLE OF SELF-ADJUSTING NEAREST NEIGHBORS

    Get PDF
    Multi-label data streams are sequences of multi-label instances arriving over time to a multi-label classifier. The properties of the data stream may continuously change due to concept drift. Therefore, algorithms must adapt constantly to the new data distributions. In this paper we propose a novel ensemble method for multi-label drifting streams named Homogeneous Ensemble of Self-Adjusting Nearest Neighbors (HESAkNN). It leverages a self-adjusting kNN as a base classifier with the advantages of ensembles to adapt to concept drift in the multi-label environment. To promote diverse knowledge within the ensemble, each base classifier is given a unique subset of features and samples to train on. These samples are distributed to classifiers in a probabilistic manner that follows a Poisson distribution as in online bagging. Accompanying these mechanisms, a collection of ADWIN detectors monitor each classifier for the occurrence of a concept drift. Upon detection, the algorithm automatically trains additional classifiers in the background to attempt to capture new concepts. After a pre-determined number of instances, both active and background classifiers are compared and only the most accurate classifiers are selected to populate the new active ensemble. The experimental study compares the proposed approach with 30 other classifiers including problem transformation, algorithm adaptation, kNNs, and ensembles on 30 diverse multi-label datasets and 11 performance metrics. Results validated using non-parametric statistical analysis support the better performance of the heterogeneous ensemble and highlights the contribution of the feature and instance diversity in improving the performance of the ensemble

    Algorithm selection on data streams

    Get PDF
    We explore the possibilities of meta-learning on data streams, in particular algorithm selection. In a first experiment we calculate the characteristics of a small sample of a data stream, and try to predict which classifier performs best on the entire stream. This yields promising results and interesting patterns. In a second experiment, we build a meta-classifier that predicts, based on measurable data characteristics in a window of the data stream, the best classifier for the next window. The results show that this meta-algorithm is very competitive with state of the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging. The results of all experiments are made publicly available in an online experiment database, for the purpose of verifiability, reproducibility and generalizability
    corecore