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Abstract

This dissertation documents a study of the performance characteristics of algorithms de-
signed to mitigate the effects of concept drift on online machine learning. Several super-
vised binary classifiers were evaluated on their performance when applied to an input data
stream with a non-stationary class distribution. The selected classifiers included ensembles
that combine the contributions of their member algorithms to improve overall performance.
These ensembles adapt to changing class definitions, known as “concept drift,” often present
in real-world situations, by adjusting the relative contributions of their members.

Three stream classification algorithms and three adaptive ensemble algorithms were com-
pared to determine the capabilities of each in terms of accuracy and throughput. For each
run of the experiment, the percentage of correct classifications was measured using pre-
quential analysis, a well-established methodology in the evaluation of streaming classifiers.
Throughput was measured in classifications performed per second as timed by the CPU
clock. Two main experimental variables were manipulated to investigate and compare the
range of accuracy and throughput exhibited by each algorithm under various conditions. The
number of attributes in the instances to be classified and the speed at which the definitions
of labeled data drifted were varied across six total combinations of drift-speed and dimen-
sionality.The implications of results are used to recommend improved methods for working
with stream-based data sources.

The typical approach to counteract concept drift is to update the classification models
with new data. In the stream paradigm, classifiers are continuously exposed to new data
that may serve as representative examples of the current situation. However, updating
the ensemble classifier in order to maintain or improve accuracy can be computationally
costly and will negatively impact throughput. In a real-time system, this could lead to an
unacceptable slow-down.

The results of this research showed that, among several algorithms for reducing the effect
of concept drift, adaptive decision trees maintained the highest accuracy without slowing
down with respect to the no-drift condition. Adaptive ensemble techniques were also able to
maintain reasonable accuracy in the presence of drift without much change in the throughput.
However, the overall throughput of the adaptive methods is low and may be unacceptable for
extremely time-sensitive applications. The performance visualization methodology utilized
in this study gives a clear and intuitive visual summary that allows system designers to
evaluate candidate algorithms with respect to their performance needs.
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Chapter 1

Introduction

Background

This dissertation presents experimental research that evaluates algorithmic alternatives for

a prevalent approach to analytics on streaming data. In particular, it addresses the problem

of maintaining acceptable classification accuracy and throughput in a variety of supervised

binary classifiers including ensemble approaches that continuously process input data as

it arrives. The goal is to provide designers of decision support systems with theoretically

grounded, and empirically supported basis for selecting among numerous alternatives avail-

able for this class of algorithm.

The range of acceptable performance of an analytic system is defined by the nature of

the intended application. Expected performance is subject to the constraints of specific

characteristics of the data being processed and the available hardware. These constraints

are often beyond the control of the system designer and end-user. However, due to the

significant successes of a prolific research community, the machine learning approach has

produced an embarrassment of riches when it comes to algorithms available for use. Only

recently have any significant meta-analyses been performed to determine what the specific

strengths and weaknesses of the various algorithms are in a systematic way.

In “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?”

(Fernández-Delgado, Cernadas, Barro, & Amorim, 2014), a meta-analysis of 179 classifiers

from 17 families of algorithms was conducted. This showed that decision-tree based learners
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consistently performed exceptionally well. The study focused on evaluating non-streaming

classifiers. With the continued rise of “Big Data,” The performance of data-stream classifiers

is of growing importance. Thus we need a similar principled approach to comprehensively

evaluating their performance characteristics. This study is a beginning toward that end.

This study focuses on a specific paradigm of machine learning algorithms and examines

the behavior a small set of published algorithmic alternatives for classifying non-stationary

streaming data. The results are intended to support principled guidelines for system archi-

tects to produce high-performance systems.

One of the main challenges for machine learning on streams is the need for constant

adaptation and re-training. Since the complete data set is not available in a static form,

evidence for sorting inputs into target classes changes over time. Thus data used to train

supervised classification algorithms may become obsolete, especially if the definition of the

target classes is subsequently modified. Re-defining the classes, or other factors which change

the underlying data distribution, adversely affects the performance of the classifier ensemble.

If the models learned by the component classifiers no longer reflect the current situation, the

accuracy of ensemble classification will suffer. Improving results depends on detecting when

the classifiers are no longer performing acceptably and then using new data to update the

model. However, the adaptive update or retraining of the classifiers incurs a computational

cost. Thus, model updates should only occur when it would significantly benefit the accuracy

of the results.

In the current paradigm of large-scale stream data mining, real-time analysis presents

new challenges to machine learning techniques that were developed in the context of mining

of static databases, also called “data-at-rest.” Stream based pattern recognition software

operates in-line as the data arrives. The data is usually not stored and thus not available for

re-processing by the algorithm. This type of data is commonly referred to as streaming data,

also called “data-in-motion.” The measurable indicators of underlying patterns in the data

may change over time. For large-scale computing, also known as “Big Data,” this poses new
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challenges in data mining algorithm design and implementation. The rate of data production

in information systems has already exceeded the available resources for storing such data

(Bifet et al., 2010). Also, the relevance of the data collected in many domains expires rapidly.

End users in domains such as defense and finance look to automated information processing

systems to produce timely and accurate analyses of rapidly changing data sources to support

their decisions. Therefore, solutions that adapt to changing circumstances to maintain the

accuracy of their results while continuing to process data rapidly are highly desirable. The

demand for real-time systems is only expected to increase moving forward.

This research examines open questions related to maintaining high data processing through-

put in supervised stream classification while preserving accuracy. The following sections and

chapters describe the motivation for the questions that were explored in this study. The

context in which classifier performance was examined is described briefly below. Detailed

definitions of the experimental variables are presented in the “Problem Statement” section.

An experiment framework to examine system performance is described in Chapter 3. Details

of the hardware used are provided in the “Resources” section of that chapter. Source code

and additional information is available in the appendices.

The specific aim of this research is to determine the performance bounds of adaptive

stream classifiers. The experiments described here measured the impact on classification

throughput of algorithms used to counteract concept-drift errors in single and ensemble-based

supervised binary classifiers that operate on indefinitely large streams of inputs. The limits of

performance are examined empirically and analytically to suggest a principled, quantitative

approach for evaluating and extending such systems. The measured performance is discussed

in a theoretical context of algorithmic complexity and scalability to separate the fundamental

limitations of the selected algorithms from hardware-dependent concerns.

For the purposes of this study, the term “performance” refers to two measurable system

characteristics – accuracy and throughput. For binary classification problems, acceptable

levels of false-positives and false-negatives are problem dependent. In this study, the error
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type was not relevant. Thus, the accuracy measured did not distinguish between false positive

(Type I) and false negative (Type II) error rates. In the stream paradigm, measuring the

continued accuracy of the system requires comparison of the outputs of the classifier with

ground-truth that is recent enough to be relevant (Bifet, Read, Zliobaite, Pfahringer, &

Holmes, 2013). These have been determined for each experiment by using ground-truth

labeled data over a sliding window of classification results. The experimental framework

utilizes an evaluation method known as prequential analysis to determine the evaluation

window (Bifet et al., 2010). This is described further in Chapter 2 and Chapter 3

The experiment system collects counts of correct and incorrect classifications over the

evaluation window in a contingency table also known as a confusion matrix (Chapter 3,

Table 2). Thus, the accuracy of each approach can be compared on an overall scale as well

as by individual error type. There are numerous statistics that can be computed from counts

of Type I and Type II errors (Sokolova & Lapalme, 2009). Summary statistics that take

both error types into account have been used when a single number representing accuracy

is needed. The balanced error rate (BER) is defined as the arithmetic mean of each type of

error rate. The F1-measure is a similar statistic that uses the harmonic mean of precision

and recall which are ratios derived from Type I and Type II error rates. Certain problems

and domains of interest are less forgiving of one type of error than the other. The F1-measure

is a special case of the more general weighted F-measure that has equally weight on each

error type. Additional derived accuracy measures provided by the MOA framework are κ

statistics described further in Chapter 3. This study is interested in general results so neither

error type is assumed to be more harmful. Thus, the simple prequential accuracy, p0 was

used as a summary of accuracy since it is readily available in the standard MOA prequential

evaluation output. The computation of κ, as well as a brief discussion of using κ vs. p0 for

algorithms that measure accuracy in streams, is developed further in Chapters 3 and 5.

For evaluation purposes, the stream of inputs provided to the system was synthesized

and assigned ground-truth categories (labels) by a concept-drift simulating data generator.
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The adaptive classifiers in this study use various strategies that compare the classification

outputs against ground-truth over a moving window of recent results to determine whether

the current accuracy of the system is acceptable or if an update to one or more of the classifier

models is needed.

Although platform differences affect the rate of data processing, the CPU and network

resources of the experiment system were held constant during each major trial of the com-

parative evaluation. The ensemble throughput was measured for only a single input/output

(I/O) stream with a different pseudorandom seed in each major trial. Possible speed gains

from parallelizing the classification process are beyond the scope of this study but may be

explored in future research. Thus, throughput is defined as the number of inputs processed

per unit of time, nominally reported as “records per second.” For realistic problem sizes, the

expected number of records per second will be on the order of tens of thousands or greater

for real-time performance. Results are scaled accordingly or presented in scientific notation

in graphs and charts to keep the numbers from becoming unwieldy. The absolute baseline of

throughput is dependent on the I/O rate of the experiment framework. This was determined

for each platform prior to running the experiment and used as a normalizing factor for the

reporting of throughput.

A set of three concept drift adaptation algorithms for ensemble classifiers, and three

basic data stream classification algorithms, described in a later section of this report, were

deployed on a continuous stream of data generated by the experiment framework. The ex-

periment library contains a drift data generator that changes ground-truth label assignments

over time to produce shifts in the class boundaries at a user-specified rate. The adaptive

classifier algorithms contain drift-detection features that update the model to prevent per-

formance degradation over time. The ability of each classifier to react to the concept-drift

was investigated at different drift rates.

To produce the performance envelopes central to this study, the average throughput

of each adaptive algorithm was plotted along with its associated average accuracy as a
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point in 2D space. The time course of drift adaptation was also rendered to gain insights

into the performance of each algorithm. The details of how each algorithm varied as the

rate of concept drift increased serves to characterize the effectiveness of its method of drift

correction. Similarities between the algorithms were investigated by treating the time course

of prequential accuracy as a response to an input signal.

The details of the modifications to well-established binary classification algorithms that

have been developed to counteract the concept-drift effect mentioned above are discussed

further in Chapter 2 and Chapter 3. This study investigates the effectiveness of such adaptive

approaches to concept-drift mitigation in terms of how the speed of processing is affected

by the various methodologies. The effective frontier of speed versus accuracy, available to

each mitigation strategy, provides a basis for recommending their use in real-time systems.

A key feature of rendering the results in a multidimensional plot is that both accuracy and

throughput can be jointly assessed in a visually intuitive manner as an evaluation of overall

system performance. This provides guidelines for selecting update thresholds for a particular

algorithm as well as comparing the overall capabilities of different algorithms.

While this study focuses on binary classification, the ensemble approach is extensible

to multi-class problems. The results of this research provides a quantitative approach and

initial basis to allow system architects to make principled decisions when designing a pattern

recognition system to analyze streaming data based on the performance requirements of their

particular problem.

Problem Statement

The ongoing increase in the creation, collection, and transmission of data over networked

resources has resulted in a situation where more data is being produced and disseminated

than can be stored and examined in a practical amount of time. Therefore there is a rising

need for analysis of data streams also called “data-in-motion.” A data stream consists of

continuously arriving input information from data sources such as sensors, e-mails, or data
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about network traffic and routing (Gaber, Zaslavsky, & Krishnaswamy, 2005).

In the stream paradigm, it is possible for the definition of patterns-of-interest to change

over time. Thus, initial examples used to build the classifier model do not continue to

represent the intended interpretation of the underlying patterns in the data. This leads to

increased misclassification by the system. However, the members of the classifier ensemble

are continually exposed to new data that can serve as examples for training. Thus, in order

to continue to produce correct results, each classifier can be updated to take new examples

into account while discounting the obsolete examples. Even with algorithms designed to

continually adapt to changing definitions, updating the classifiers in the ensemble in order to

maintain or improve accuracy is computationally costly and negatively impacts throughput.

Thus, the aim of this research is the investigation of the computational cost of several

adaptive methods used to maintain the accuracy of classification. Insights on maintaining the

balance between accuracy and throughput adds to the body of knowledge in the supervised

classification of data streams.

The transient, time sensitive nature of data-in-motion makes it desirable for processing

to occur in real-time. This means that the data cannot always be assumed to be stored for

later analysis. Any processing of the data needs to be completed before a user requests the

results.

The data stream paradigm is particularly challenging to supervised pattern recognition

algorithms since examples of all categories in the data may not be present to the system at

the outset. Also in a multi-class situation new examples may not be consistent with any

previously observed category requiring the system to incorporate methods for discovering

new categories (Masud, Gao, Khan, Han, & Thuraisingham, 2010).

In such a supervised or semi-supervised machine learning system, the definition of un-

derlying categories to be learned from the training data may not be stationary in time. This

leads to a phenomenon known as “concept drift” that can adversely affect the accuracy of

an automated system when it is applied to prediction or recognition problems. Concept
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drift changes existing class boundaries. It can also introduce new categories over time. Con-

trolling sources of variation is integral to the experiments discussed in this report. The

intrinsic degradation of the classifier ensemble needs to be isolated from other sources of

variation. Thus, this study is not concerned with novel class detection but limit the drifts

to changing the definition of each class. The experiment framework modifies the output of

the labeling function over time as described below. The categories are set up to form a two-

class (binary) classification problem. However, the assignment of ground-truth labels varies

with time. This study uses the freely available Massive Online Analytics (MOA) framework

(Bifet et al., 2010) to generate a concept drifting stream of data that simulates a real-world

condition in which sensor outputs may be subject to persistent concept drifts.

This study evaluates and summarizes the performance of concept drift correction ap-

proaches to classification problems on data streams. Six stream classifiers are applied to an

input stream that has a configurable drift-rate parameter. The responses of stream-enabled

variants of Näıve Bayesian (NB), Pegasos Support Vector Machine (PEG), and a Hoeffding

Adaptive Tree (HAT) classifier are compared against the same stream segment comprising

108 instances to be classified. These classifiers were also used as components to three en-

semble classifiers described further in Chapters 2 and 3. The specific drift correction and

ensemble methodologies are also detailed in Chapters 2 and 3. The outputs of the system

were examined over time to detect changes in accuracy. Adaptive updates to the compo-

nent or combined classifiers were applied during the course of normal operation in all of the

ensemble methods in an attempt to counteract concept drift.

The classifiers, ensembles, concept-drift stream generator, and prequential evaluation

engine were implemented using the open-source, Massive Online Analysis (MOA) framework

(Bifet et al., 2010) as well as custom software in Python, Java, and Matlab written for this

effort.
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Dissertation Goal

The motivation for this research was to evaluate the impact of adaptive concept-drift mitiga-

tions on stream processing rates. As described above, for the streaming domain, throughput

is a significant factor in evaluating system performance. Ideally, processing speed must be

maintained at line-rates to be considered successful for real-time applications. To counteract

concept drift, it is important to efficiently determine the window of relevant examples for

supervised and unsupervised classification of streams. One method uses probabilistic sam-

pling to operate within space and time constraints (Aggarwal, 2006). This study focuses on

evaluating various classifiers’ responses to concept-drift. Classifier diversity has been iden-

tified as a positive contributor to the robustness of the combined answer in such ensemble

classifiers (Minku, White, & Yao, 2010). The study makes use of ensembles of a variety of

established supervised classifiers such as SVM that have been modified to handle streaming

data and new classifiers specifically developed for streams (Bifet & Kirkby, 2009). Many

stream-based ensemble algorithms have built-in adaptive strategies for retraining these clas-

sifiers when changes in the underlying class definitions occur. This study describes the effects

of these mitigations on throughput and accuracy to determine if any of these approaches can

maintain or improve throughput without sacrificing accuracy.

Demand for solutions to the data-in-motion problem is expected to increase in the coming

years since the number of available data sources and the need for rapid analysis of data are

only expected to increase in the future (Bifet & Kirkby, 2009). Future systems should benefit

from exploring new methods to efficiently adapt to evolving data streams.
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Concept Drift and Drift Mitigation

Formal Definition of Concept Drift

In the simulation provided by the experiment framework, time is measured in discrete steps,

t. At each time step, input x, is assigned a true class label, Lt(x), and an estimated class

label produced by the classifier ensemble Ct(x). The classifier ensemble combines estimated

labels produced by each of its component classifiers, Cit(x), {1 ≤ i ≤ n}, where n is the

number of classifiers, to produce a single result. Differences between the true class label and

the estimate are considered errors. The labeling function produces a two-class distribution

of examples. Type I, and Type II error rates are measured over a sliding window and used

to compute the prequential accuracy that is reported by the evaluator at regular intervals.

The main object of this study is optimizing performance of streaming classifiers under

concept drift. The set of “concepts” was operationally defined as a set of two class labels,

one of which is applied to each instance in a stream of exemplars in the form of real-valued

attribute vectors, xt, where t is an integer indicating the discrete time-step of the experiment.

The target classification labels were applied by a labeling function, using a concept-space

model provided by the MOA framework that randomly selects examples of each concept from

Gaussian-distributed hyperspheres of varying density. The MOA framework has methods to

create the initial concept space by randomly generating one or more ground-truth centroids,

g` for each class label, `. Each centroid was also assigned a standard deviation at random.

The labeling function then assigned labels to randomly selected data points depending on

their position relative to a centroid.

For each experiment run, the centroids were labeled with one of two classes, ` = class1

or ` = class2. New examples are generated by randomly selecting a centroid and then

generating a displacement vector dt that is randomly drawn from a Gaussian distribution

with the centroid’s associated standard deviation. The example attribute vector at time t is

then defined as , xt = g` +dt. The ground truth label for this vector is defined as Lt(xt) = `.

The output of this processing step is a pair 〈xt, Lt(xt)〉 representing a data point and
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its target class. Concept drifts are then produced by varying the location of the centroids.

At the beginning of each experiment, each centroid receives a random drift direction. The

centroid then moves at a specified speed over the course of the experiment. In order to

ensure a balanced training set, the labels were assigned so that approximately 50% of the

centroids belong to the class, ` = class1.

The simulation begins at initial time, t0. At each time interval, t = t0 + n∆t; {n =

0, 1, 2, . . .}, class centroids are displaced from their initial positions at a user-specified rate.

Over time, the examples labeled as class1 or class2 will come from different regions of the

attribute space. This produces the concept drifts central to the study.

Adaptive Mitigation Strategies

The adaptive behavior of the system depends on a measurement of the error rate of the

classifier ensemble. The mitigation strategies evaluated in this study monitor both the

individual classifier error rate at time t, (Ei(t)), and the ensemble classifier error rate, (E(t))

and use them to update the classifiers in order to maintain accuracy. The following different

approaches to error mitigation on the throughput of the system were investigated.

1. Dynamic Weighted Majority (DWM) (Kolter & Maloof, 2007) described further in

Chapters 2 and 3.

2. The Accuracy Updated Ensemble Algorithm (AUE) (Brzezinski & Stefanowski, 2014)

described further in Chapters 2 and 3.

3. The Accuracy Weighted Ensemble Algorithm (AWE) (H. Wang, Fan, Yu, & Han, 2003)

described further in Chapters 2 and 3.

To maintain throughput, retraining should be kept to a minimum. When available,

algorithms that can update their classification functions continuously are preferable to those

that need a large set of examples for explicit retraining. In general, an adaptive window

(ADWIN) approach was applied to detect concept drift and determine how often classifiers

need to be updated with new ground truth labels from the recent window. When the system
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starts operation, the window size is set to an initial value. If a drift to an unacceptable error

rate is detected often, the interval between classifier updates was decreased. Conversely, if

the performance of the ensemble is determined to be stable, the window size was increased

and the classifiers were not updated as frequently thus conserving resources.

Research Questions

Experiment Variables

The parameters that were varied experimentally were the rate of concept drift and the

dimensionality of the input instances. The concept-drift rate was specified at one of three

values with associated drift rate parameters described further in Chapter 3: none (0.00), low

(0.001), or high (0.010). The input instances were generated at two complexity levels: 10

attributes-per-instance or 50 attributes-per-instance.

Experiment Metrics

The research goals were explored by collecting data to investigate the following research

questions.

• What techniques for adaptively adjusting both the individual classifiers and the ensem-

ble results cause the least reduction in the main variables: accuracy and throughput?

Alternatives include selective retraining with recent labels, utilizing classifiers with on-

line learning features that adapt continuously, and adjusting the weighted contribu-

tion of low performing classifiers to the ensemble result. Evaluation of the mitigation

strategies characterizes the trade-off between throughput in records per second and

prequential accuracy, for each mitigation strategy.

• What is the joint quantitative relationship between throughput and accuracy for each

of the approaches? This can be summarized and visualized by considering each the

measured throughput and accuracy of each approach as coordinates in a 2D perfor-

mance space. A notional example of this is shown in Figure 1.1. In this example, four
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hypothetical drift mitigation methods are shown with accuracy thresholds ranging from

60% to 95% and the associated throughputs as a percentage of maximal throughput

(real-time). These represent the eponymous performance envelopes measured in this

study.

Figure 1.1: Example of Performance Envelope Visualization

Relevance and Significance

In the past few years, data mining on streaming inputs has risen to prominence in the

pattern recognition community (Gaber et al., 2005)(Aggarwal, 2006). Specific toolkits for

applying and evaluating machine-learning methods to the stream paradigm have been put

forth (Bifet & Kirkby, 2009). While, techniques to evaluate stream classifiers that react

to concept drift have been proposed (Abdualrhman & Padma, 2015), the precise nature of

the effect of drift mitigation on the throughput of an ensemble of streaming classifiers has

yet to be systematically investigated. This study explores the performance characteristics

of adaptive updating in an ensemble of supervised classifiers to provide quantitative advice
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on architectural considerations for applying this approach in the streaming domain. The

resulting performance envelopes allows system designers to make principled decisions on the

suitability of various algorithms for real-time classification problems.

This study has implications beyond the direct domain of data stream mining. Improve-

ments in real-time data processing of massive amounts of data would inform improvements

in other areas of Pattern Recognition, Artificial Intelligence and Machine Learning. These

results are also relevant to the fields of Knowledge Discovery in Databases (KDD) and De-

cision Support Systems (DSS). It is hoped that these findings will lead to improvements in

classifiers for real-time and online learning problems.

Barriers and Issues

As discussed earlier, the problem of analyzing data-in-motion is inherently difficult due to

several factors. The primary factor is the sheer volume of data being produced by information

systems worldwide. This data is being captured because it is presumed that it will be useful.

However, if it cannot be analyzed and acted on in a timely manner, then acquiring the

massive quantity of measurements becomes a wasted effort. The advent of powerful portable

devices has enabled ubiquitous computing. However, despite advances in storage technology,

portable devices do not have the capacity to store and process extensive databases. In

addition to technical barriers, there are social and political aspects of analyzing data-in-

motion because of security and privacy concerns.

Even though online learning has been investigated in the machine learning community

for some time, the problem of processing large-scale, continuous real-world data has come

to the attention of a broader community in the past three to five years. Stream mining

techniques have been an active topic of investigation but no standard solution to efficient

stream classification, especially on non-stationary data, has been arrived as yet.

As data production and collection continue to be applied to more segments of the pop-

ulation, it is critical for practical data mining techniques to keep up with a rate of data
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collection that continues to out-pace the capacity to store it. The goal of this research is to

investigate analytic methods that will scale along with this increase.

Assumptions, Limitations and Delimitations

These experiments operate under the assumption that the input data consists of a series of

real-valued inputs collected at discrete intervals of time. For simplicity, these intervals are

uniformly spaced and an input value will always be available at time t.

An essential feature of this study requires that the distribution of the underlying data

changes over time. An assumption is that the sampling experiment is conducted over enough

time samples for the distribution change to have a noticeable effect on the classification

model. The adaptive mitigations to these concept drifts described in this report are limited

to systematic shifts. The underlying distribution of the data must retain enough structure

that a model can be formed. This model is subsequently invalidated when the distribution

changes again. Corrections are applied to produce a new model when the system determines

that the error rate of the current classification model has reached an unacceptable level.

Throughput is a primary metric examined in this study. Since the heterogeneous ensemble

used by DWM, described further in Chapters 2 and 3, depends on multiple classifier types,

each with different intrinsic classification rates, the throughput of the ensemble is limited by

the throughput of the individual classifiers. In the simplest case, the maximum rate of the

ensemble is no greater than the maximum rate of its slowest component classifier. This is

controlled for by assuming the processing rate to be averaged over a sufficiently large time

interval that the result accurately reflects the long term performance of the system.

Also, the rate at which inputs are presented to the classifier represents an upper-bound to

the maximum throughput. This is controlled for by measuring the rate of a null-processor (i.e.

the stream input instances are generated but not processed). This gives the “unburdened”

baseline rate of the stream processing to which each classification strategy can be compared.
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Definition of Terms

Adaptive mitigation – changes made by the system to improve performance of the clas-

sifier when the error rate is determined to be too high.

Binary classification – automated categorization of input data into two categories. Each

item of input is assigned to either Class 1 or Class 2.

Classifier – a function that assigns a category to an input vector. Classifiers are developed

by applying a training algorithm that examines example input data and builds a model

to assign categories to previously unseen data. If the examples are provided with correct

labels already assigned, the training algorithm is known as supervised learning. If no

labels are provided, the examples are partitioned into categories based on intrinsic

features of the data. This training method is called unsupervised learning.

Concept drift – a change in the class definitions over time. For this study time is measured

in discrete intervals. Thus, an input that belonged to one category at time t now

belongs to a different category at time t+ n, where n ∈ Z.

Ensemble classifier – a classifier function that uses the results of several independent

classification models to decide the category label of each input. Various strategies can

be employed by an ensemble classifier to adjudicate the final answer. Most often it

involves some form of weighted average of the outputs of the component models.

Major Trial – a complete set of experiment data comprising results from all six candidate

classifiers in all six (3 drift rates× 2 dimensonality) experimental conditions.

Prequential Evaluation – a streaming classifier evaluation paradigm where instances

from the stream are used first to test and then to train the streaming classifier. Accu-

racy is determined either in a sliding window or in some cases from the beginning of

the stream output.
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Streaming data – data that are produced, transmitted or recorded sequentially. The data

stream is formatted as a time series where time can be interpreted as continuous (as in

streaming video) or discrete as in periodic sensor measurements. A data stream can be

denoted formally as a series of ordered pairs (x, t) where x represents an n-dimensional

data vector (x ∈ Rn) and t represents its associated time-stamp (t ∈ Z for discrete

cases; t ∈ R for continuous scenarios).

Throughput – a measure of the amount data processed per unit of time. The granularity

of elements processed and time units are defined in the context of the task.

Summary

In order to gain insights on efficient means for categorizing massive amounts of data, various

algorithms for supervised binary classification including ensembles with drift detection were

applied to a sequence of data with an underlying distribution that evolves in time. The

classification models were compared in terms of accuracy and throughput. The detailed

time course of shifts in accuracy was also examined. The insights gained in this study can be

used to recommend improved methods for working with massive stream-based data sources.
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Chapter 2

Review of the Literature

Real-time Pattern Analysis

One of the most challenging aspects of data stream mining are the time and space constraints

of processing massive amounts of data in real-time. The data typically arrive at a rate that

is too rapid to store and process offline. The relevance of the data may also have a short

time window. An example of this situation is the analysis of real-time sensor data. Also, in

some problem domains, the features of the data being analyzed may be expected to change

in time. In these cases, analyzing historical data may do more harm than good (Dulhare &

Premchand, 2010).

In many real time systems, data is not stored once it is processed (Bifet & Kirkby, 2009).

This constraint means that machine learning evaluation techniques such as n-fold cross-

validation and classical, iterative machine learning paradigms such as Self-Organizing Maps

(Kohonen, 1982) which require several passes over the data examples are not applicable.

New techniques must be feasible in the single-pass case. The single pass paradigm of stream

mining also includes the goal of processing incoming data at or faster than the rate of arrival

(Gaber et al., 2005).

Trainable pattern recognition systems are categorized as supervised or unsupervised de-

pending on whether the classifier function is built by incorporating examples that are ex-

plicitly labeled with the target class (Bishop, 2007). In the supervised case, the system is

architected to minimize the error between its output in response to an input set and a set
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of known target outputs for the same input set.

For stream processing, observations that provide discriminative features of the categories

to be learned may only become available over an extended time course. Also, the categories

of interest commonly evolve in time. This leads to the phenomenon of concept drift (Becker

& Arias, 2007). Unsupervised methods, which do not depend on ground truth, can also be

used in an attempt to discover patterns in the input values. These require the definition

of a measure of similarity between inputs. The inputs are transformed into a vector space

model that facilitates distance measurements. Items close to each other in this space are

considered members of the same class. This is known as clustering. Applying appropriately

defined distance measurements is central to the success of these methods and new metrics

are being researched and refined (Aggarwal, 2003). Stream-friendly adaptations to clustering

include incremental vs. hierarchical and iterative methods (e.g., k-means) commonly used

on data-at-rest (Ruiz, Menasalvas, & Spiliopoulou, 2009).

The non-stationary nature of data streams also requires adaptations in unsupervised

clustering techniques where the cluster centers must be continuously updated in light of new

data (Gaber et al., 2005). Clustering can also be considered multi-class classification. In

that sense, real-time incremental feedback may also pay a role in improving clustering.

Ensemble Classifiers

As with static data mining solutions, the approach of combining the outputs of multiple

classifiers has been used to increase accuracy on data stream analytics. In an influential

study (D. H. Wolpert & Macready, 1997), it was shown that no single model used for

classification can provide optimal accuracy on all data that could be used as model inputs.

The essential argument became known as the “no free lunch” theorem.

The solution to this issue is to devise methods of combining multiple classification models

and has become a well-established method to improve correct classification of input. The

optimal combination is accomplished by applying several models to the same input set and
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adjudicating the responses to create systems called ensemble classifiers. Ensemble classifiers

have since been shown to consistently outperform single classification models (Bauer &

Kohavi, 1999) (Breiman, 2001).

The ensemble approach has been used in stream based classification problems to detect

and manage concept drift in the streaming data by deferring decisions on the input data

until several examples have been aggregated by the ensemble (Masud et al., 2010). The loss

of discriminating features is a possible adverse consequence of aggregation and averaging.

The diversity of the classifiers in the ensemble has also been shown to be a significant

factor in creating robust machine learning systems for data streams since they have been

found to maintain a lower error rate after the onset of a concept drift event (Minku et al.,

2010). This study uses a variety of supervised classification models that have proved success-

ful in a variety of problem domains. The strengths, weaknesses, and adaptive modifications

of various types of supervised classifiers is discussed below. The stream-friendly versions of

these algorithms are either present in the MOA toolkit or readily implemented using MOA’s

extension API.

Selected Supervised Classifiers

This section is divided into subsections that briefly review the characteristics of the classifica-

tion algorithms used in this study. These algorithms are relevant to the overall architecture

and listed in no particular order. Further algorithmic details specific to the experiment frame-

work configuration are provided in Chapter 3. The basic operating principles, strengths, and

weaknesses are briefly summarized.

Näıve Bayes (NB)

Basic Principle – The Näıve Bayes classifier rule estimates classes of the given input based

on probability distribution of examples provided in training.

Operational Method – The class conditional probabilities for inputs, (x) and a set of k
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target classes Ck is denoted Pr(x|Ck). These are computed from the target class labels

associated with the example feature values in the training set. Then the posterior class

probabilities are determined using Bayes’ theorem in the form shown in Equation 2.1

(Bishop, 2007).

Pr(Ck|x) =
Pr(x|Ck) Pr(Ck)∑
k Pr(x|Ck) Pr(Ck)

(2.1)

Strengths – The model is efficient and can obtain the probabilities directly from the data

without extensive preprocessing. Because the model is inherently probabilistic, a quan-

titative measure of confidence in the decisions is available.

Weaknesses – The term “näıve” in the name refers to the assumption of conditional inde-

pendence. This assumption may not hold in the actual data leading to misclassification.

Adaptive Update Mechanisms – For Bayesian classifiers, online bagging and boosting

(Oza & Russell, 2001) methods have been described that only require one pass through

the training data as opposed to the multiple sampling from a static batch that these

processes usually require. Online boosting in particular can be applied to this classifi-

cation algorithm to update the current model based directly on the previous misclassi-

fication. The window of relevant results was adjusted dynamically as described below

and in Chapter 3.

Support vector machines

Basic Principle – Support vector machines (SVM) are a classification method that searches

for a decision surface that maximally separates the exemplars from each of two classes.

The examples from each class that determine the margin are known as “support vec-

tors.”

Operational Method – For the basic SVM classifier, the function that describes the de-
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cision model is linear of the form shown in Equation 2.2 (Bishop, 2007).

y(x) = wTφ(x) + b (2.2)

Training examples are given as a set of n input vectors {x1, . . . , xn} and associated

target values {t1, . . . , tn} taken from the binary set of class labels {−1, 1}. The φ(x)

are fixed transformation functions (kernels) that may be applied to convert the feature

vectors to a form that aids optimization of the model. The weight (w) and bias (b)

parameters that maximize the margin are then derived as a quadratic optimization

problem (Chang & Lin, 2011). The trained classifiers have a target output given by:

y(xn) =


< 0 if tn < −1

> 0 if tn ≥ 1

(2.3)

Thus the binary classification is performed on each unknown input x by examining the

value of sgn(y(x)) and assigning one class label to inputs that map to positive values

and another class label to inputs that map to negative values.

Strengths – SVM training selects the model that maximally separates the classes. This

should lead to lower misclassification rates. The properties of the SVM model and

training procedures have been theoretically analyzed (Burges, 1998) and shown to

have good generalization properties.

Weaknesses – SVM is an inherently binary classifier and multiple instances must be de-

ployed serially or in parallel to perform multi-class classifications. The basic SVM

model is linear and assumes that the classes are linearly separable. Non-linear class

boundaries cause misclassification errors. Modifications to linear classifiers to handle

such cases can be made by using non-linear basis functions.

Adaptive Update Mechanisms – SVM usually operates in batch mode. However, se-
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quential versions of SVM are also available (W. Wang, Men, & Lu, 2008). The se-

quential approach starts with an initial set of data points and finds an optimal kernel

transformation to apply to the SVM model given the current examples. Each new

data point from the stream is checked for consistency with the current model utilizing

a set of vectors orthogonal to the support vectors transformed by the current kernel. If

the new point falls outside the bounds of the optimal model the optimization process

is repeated otherwise the model remains unchanged. In a direct comparative study,

in addition to learning in real-time, the online SVM approach showed a lower error

rate than batch SVM (W. Wang et al., 2008). The MOA stream version of the SVM

classifier, based on an optimized gradient solver (Shalev-Shwartz, Singer, & Srebro,

2007) known as Pegasos (PEG), was used for the experiments in this study.

Hoeffding trees

Basic Principle – Hoeffding Trees (HT), invented by Domingos and Hulten (2000) are

a variety of decision tree classifiers and thus share the basic operating principles of

decision trees. The classical decision tree learns a set of classification rules by analyzing

example feature vectors and inducing rules based on the feature values that lead to

correct decisions. The HT algorithm is named after the Hoeffding bound which is

utilized to decide whether or not to split on a feature. This theoretical bound, used

in HT, states that for n observations with a given range of values R, the difference

between the sample mean and the true mean is no greater than ε where:

ε =

√
R2 ln (1

δ
)

2n
(2.4)

The condition is guaranteed with probability: (1− δ) (Domingos & Hulten, 2000).

Operational Method – During training of a classical decision tree, features that separate

the classes are identified and used in the rules. The goal is to minimize the number
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of decision nodes in the tree by using the most informative attributes to split on in

terms of information gain. Information gain is defined by measuring the entropy of the

classes discriminated by the splitting rule (Bifet & Kirkby, 2009). The entropy of a

set of n partitions of the class labels is shown in Equation 2.5. The partition is given

as a distribution of fractional values (pi, {1 ≤ i ≤ n}) that sum to 1.

n∑
i=1

−pi log2(pi) (2.5)

Hoeffding Trees allow the decision tree to be constructed on the fly from examples

examined one at a time. The inventors of the HT show that decision tree rules can be

constructed using sufficient statistics instead of storing the examples themselves. For

the HT algorithm the sufficient statistics are counts of the class label that co-occur

with each attribute value. Thus, this classifier works most efficiently on attributes with

a limited range of discrete values. The most informative feature is selected to split on

among the top two candidates by choosing the one whose average information gain is

greater within the ε bound given above.

Strengths – As with classical decision trees, an advantage of the HT is that the decision

rules are explicit and provide the human user with a transparent explanation of the

classification process. The conclusion justification can be vetted by the user to see if

the decision process seems to be sensible or accidental. It can also expose features of

the problem that may not have been readily apparent to the user. Another strength

is that they operate efficiently. The average case complexity on n examples with m

attributes is O(mn log(n)) (Bifet & Kirkby, 2009).

Weaknesses – If deployed naively, the HT would try to reevaluate the splitting rules at

every time step which incurs a computational cost. Additional methods are needed

to decide when to incorporate new examples to adjust the rules. Exploring ways to

effectively adjust the training interval is one of the prime goals of this study.
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Adaptive Update Mechanisms – The incremental learning provided by Hoeffding trees

has been extended as Hoeffding Adaptive Trees (HAT) to incorporate active detection

of and response to concept drifts (Bifet & Gavalda, 2009). Adaptation depends on

change detection which is provided by adding sentinels to each node in the Hoeffding

Tree. The most straightforward sentinel is based on the ADWIN algorithm(Bifet &

Gavalda, 2007). ADWIN monitors a window of recent examples and tests the hypoth-

esis that sub windows do not significantly differ. If this null hypothesis is rejected then

the older portion of the window is dropped. The adaptive trees show a lower memory

footprint than comparable methods however there is a definite slowdown incurred by

the adaptation (Bifet & Gavalda, 2009).

Adaptive Windows for Retraining Examples

An established approach to dealing with non-stationary concept spaces has been to apply

techniques from statistical time series analysis (Gaber et al., 2005). This study uses an

ensemble of such adaptive classifiers designed for concept-drifting data.

Adaptive correction begins with detection of the drift away from accuracy. Once the drift

is detected, it is important to determine a set of recent examples that provide a representative

sample to update the classification model. A common technique is to update the classifiers

based on data collected within a window of time whose length depends on the current

accuracy (Bifet et al., 2010). Another approach to time uses hierarchical structuring of

time periods of different resolutions. This structure provides a mechanism to facilitate the

efficient detection of drifts. The adaptive approach used to determining the update window

of relevant examples is described next in Chapter 3.

25



Prequential Accuracy Analysis

Prequential accuracy analysis is the most commonly used method to evaluate streaming

classifiers (Bifet et al., 2010). Each instance in the input stream is first used to test the clas-

sifier’s performance then as a new training example for the classifier. The windowed version

used in this study sampled the current accuracy periodically and reported the percentage of

instances correctly categorized by each algorithm over a sliding window of the past 10,000

examples classified.

Concept Drift Mitigation Strategies

The following set of concept drift correction algorithms were applied and compared at varying

rates of drift to determine the relative efficiency of the approaches. Empirical findings are

presented in Chapter 4 and implications and recommendations are discussed in Chapter 5.

Dynamic Weighted Majority (DWM)

This method was introduced by Kolter and Maloof (2007) in one of the first studies to

specifically address concept drift in the context of ensembles of stream classifiers. The

algorithm adaptively adjusts the weighted contribution of each member classifier referred to

as a decision-making unit (DMU). A specification of the algorithm is given in Algorithm

2.0.1. The following is a key to the notation given in the algorithm listing.

{< ~x, L >}n – A set of n training instances (pairs of feature vectors, ~x and associated class
labels, L);

c ∈ N – The number of classes, c ≥ 2;

β - The factor for decreasing weights, 0 ≤ β < 1;

θ - The threshold for deleting DMUs;

p - The period between DMU removal, creation, and weight update;

{< d,w >}m - A set of m DMUs and their weights;

Λ, λ ∈ 1, ..., c - global and local class predictions;
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~σ ∈ Rc - The sum of weighted predictions for each class.

Algorithm 2.0.1 Dynamic Weighted Majority (Kolter & Maloof, 2007)

1: procedure dwm({< ~x, L >}n, c, β, θ, p)
2: m← 1
3: dm ← createNewExpert()
4: wm ← 1
5: for i← 1, ..., n do . Loop over examples
6: ~σ ← 0
7: for j ← 1, ...,m do . Loop over DMUs
8: λ← classify(dj, ~xi)
9: if λ 6= yi and i mod p = 0 then
10: wj ← βwj
11: end if
12: σλ ← σλ + wj
13: end for
14: Λ← argmaxj σj
15: if i mod p = 0 then
16: w ← normalizeWeights(w)
17: d, w ← removeExperts(d, w, θ)
18: if Λ 6= yi then
19: m← m+ 1
20: dm ← createNewExpert()
21: wm ← 1
22: end if
23: end if
24: for j ← 1, ...,m do
25: dj ← train(dj, ~xi, yi)
26: end for
27: output Λ
28: end for
29: end procedure

The Accuracy Updated Ensemble Algorithm (AUE)

This method was introduced by Brzezinski and Stefanowski (2014) and aimed to be robust

against various types of concept drift. A specification of the algorithm is given in Algorithm

2.0.2.
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Algorithm 2.0.2 Accuracy Updated Ensemble (Brzezinski & Stefanowski, 2014)

Require: : S: data stream of examples partitioned into chunks, k: number of ensemble
members, m: memory limit

Ensure: : E: ensemble of k weighted incremental classifiers
1: E ← ∅;
2: for all data chunks Bi ∈ S do
3: C ′ ←new component classifier built on Bi ;
4: wC′ ← 1

MSEr+ε
;

5: for all classifiers Cj ∈ E do
6: Apply Cj on Bi to derive MSEij;
7: Compute weight wij, wij = 1

MSEr+MSEij+ε
;

8: end for
9: if |E| < k then
10: E ← E ∪ C ′;
11: else
12: Substitute least accurate classifier in E with C ′;
13: end if
14: for all classifiers Cj ∈ E \ C ′ do
15: Incrementally train classifier Cj with Bi ;
16: end for
17: if memoryUsage(E) > m then
18: Prune (decrease size of) component classifiers;
19: end if
20: end for
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The Accuracy Weighted Ensemble Algorithm (AWE)

This method was introduced by Wang (H. Wang et al., 2003) and is designed to adapt to

concept drift by re-weighting the ensemble based on the expected accuracy of its members.

Expected accuracy in this algorithm can be looked at from two perspectives. The costs of

the errors or the benefits of correct classifications. The costs based approach computes the

mean squared error of the classifier in question (MSEi) against the mean squared error of a

classifier that gives random answers (MSEr). These are computed as:

MSEi =
1

Sn

∑
(x,c)n

(1− f ic(x))2

MSEr =
∑
c

p(c)(1− p(c))2,
(2.6)

where p(c) is the probability of an input x being classified as class c. The benefits approach

assumes that you have assigned a numerical benefit for each classification of class c as being

class c′, denoted bc,c′ , and that we know the probability given by classifier Ci that input x

belongs to class c, denoted as f ic(x). The benefit is then computed as:

bi =
∑
(x,c)n

∑
c′

bc,c′ · f ic(x) (2.7)

The full specification of the algorithm is given in Algorithm 2.0.3.
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Algorithm 2.0.3 Accuracy Weighted Ensemble (H. Wang et al., 2003)

Require: : S: dataset of ChunkSize from the incoming stream, K: the number of ensemble
members, ξ: number of bins, C: a set of K previously trained classifiers

Ensure: : C: a set of of K incremental classifiers with updated weights, µ,σ:mean and
variance for each stage and each bin

1: train classifier C ′ from S
2: compute error rate/benefits of C ′ via cross-validation on S
3: derive weight w′ for C ′ using wi = MSEr −MSEi, as in equation 2.6 or wi = bi − br as

in equation 2.7
4: for all Ci ∈ C do
5: apply Ci on S to derive MSEi or bi ;
6: Compute weight wi as above;
7: end for
8: C ← K of the top weighted classifiers in C ∪ C ′;
9: return C

Summary

This chapter provided an overview of the methods and algorithms that have been published

in the literature for designing ensemble stream classifiers. Several mitigation strategies for

concept drifts were described and selected for further evaluation in this study. The next

chapter discusses the design and specification of the experimental framework used to com-

paratively evaluate the performance of these approaches.
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Chapter 3

Methodology

Overview

This investigation was conducted in the form of an empirical study of the relationship be-

tween throughput and error rates in supervised data stream classifiers including adaptive

ensembles that update their classification model in an attempt to maintain accuracy when

the underlying patterns in the data change. Experiments were executed using the MOA

framework (Bifet et al., 2010) as well as custom scripts for experiment management writ-

ten in Python. Other software utilities were used in data analysis to derive statistics and

generate graphics including Matlab, Microsoft PowerPoint and Microsoft Excel.

The MOA framework provides built-in functions for the deployment and evaluation of

stream based classifiers. These include adaptation of bagging and boosting methods on

ensembles of Bayesian classifiers (Bauer & Kohavi, 1999) and an adaptive online version

of decision trees known as Hoeffding Adaptive Trees (HAT). In this study, 3 classification

model types discussed in Chapter 2 – Näıve Bayes (NB), Pegasos Support Vector Machine

(PEG), and Hoeffding Adaptive Tree (HAT) were used alone or in conjunction with the

3 adaptive ensemble methods to solve a binary classification problem on streams. The

Adaptive Weighted Ensemble (AWE) was configured with five independent HAT members.

The Adaptive Update Ensemble also comprised five HAT members. In data plots, the

abbreviations AUE5 and AWE5 refer to these configurations.

Leveraging the diversity of individual classifier outputs is a key feature of the ensemble
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method (Brown & Kuncheva, 2010) and using a heterogeneous set of classifiers made it

possible to investigate independent trends in the evolving accuracy of each model type vs. the

accuracy of the combined classification produced when ensembled. The Dynamic Weighted

Majority (DWM) ensemble provided by MOA allows for the arbitrary specification of member

classifier types. The DWM for this study was set up as a heterogeneous collection consisting

of two HAT, two PEG, and one NB. In contrast, the MOA implementation of AWE and

AUE only allowed ensembles of classifiers in a format compatible with Hoeffding Trees.

Thus, those ensembles were assembled from five HAT classifiers.

There were four major trials executed on three separate machines. The specification of

the experiment hardware is detailed below. In each major trial, The same data stream was

presented to both the individual classifiers and the ensembles by using the same seed in the

pseudorandom generator that creates the stream. As discussed above, the goal is to discover

which algorithms produce accurate answers while preserving the maximum throughput. De-

veloping and testing reliable and repeatable methodologies to evaluate and rank data stream

classifiers was a major motivation for this research.

Experiment Framework

The availability of real-world test data is limited for stream analyses. The underlying nature

of the data-in-motion problem requires that data be delivered to the classifier indefinitely.

Thus, the data streams for this study were generated in real-time by a concept drift gen-

eration simulation framework. As discussed above, the freely available MOA software was

designed to support such experiments. MOA library functions, with systematically varied

parameters, were used to provide the stream data to be classified. In particular, the gener-

ators.RandomRBFGeneratorDrift() function of the MOA framework were used to create a

stream of classification examples drawn from a mixed RBF distribution. A fixed number of

centroids (using the MOA default of 50) are generated at random. Each centroid is randomly

assigned to an initial class label. Examples are then generated by selecting a random direc-
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tion and displacement of the example vector from the centroid. Concept drifts are induced

in the model by moving the centroids away from their initial positions at a fixed drift rate

specified by the driftRate parameter listed below.

The overall conceptual architecture of the experiment framework is shown in 3.1. Each

component is then explained further below. In the simulation provided by the experiment

framework, time is measured in discrete steps and each value of the input, true class label,

and estimated class are indexed by the current time step t. The experiment start is denoted

t = 0 and N is the time step at which the experiment is shut down. Individual features in

the n-dimensional data vector, at time t, are denoted: xit; {1 ≤ i ≤ n}.

The ground truth label is determined by the RBF Model. The estimated label produced

for input xt by the classifier, at time t, is denoted Ct(xt) and in the case of ensembles is the

adjudicated decision derived from combining individual classifiers: Cit(xt);{1 ≤ i ≤ 5}.

Figure 3.1: Experiment Framework Architecture

Drifting Concept Generator (DCG)

• Inputs – This is the first element in the pipeline and requires no input data.

• Parameters:

– mSeed – The seed for the MOA random model generator

– iSeed – The seed for the MOA random instance generator

– numCentroids – The number of centroids (fixed to the default of 50)
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– numAttributes - The dimensionality of the generated instances

– driftRate – The speed of centroid movement. Centroid positions are perturbed in

a random direction at a rate specified by this parameter.

• Outputs – The DCG outputs a labeled stream of n-dimensional vectors. At each time

step t, the DCG outputs the pair: 〈xt, Lt(xt)〉, where Lt(xt) is the class label from the

set {class1, class2} and xt is the n-dimensional feature vector consisting of real-valued

components xit; {1 ≤ i ≤ n, 0 ≤ t ≤ N}.

The Drifting Concept Generator (DCG) component produces the labeled stream of data

for the classification system to examine and classify. Input data were generated by using

the MOA generators.RandomRBFGeneratorDrift() function to create a stream of random

real-valued data vectors. The vectors at each instance are drawn from from an n-dimensional

space clustered into normally distributed densities in hyperspherical regions around randomly

positioned centroids. Each centroid g` has its own associated class label, `, and standard

deviation initialized when the experiment begins. The data dimensionality was set to 10

and 50 for different conditions as described below. For this study, the standard deviations

of each class distribution were set to the framework’s default value. The random number

generator seeds were set to a fixed, user-specified value during each major trial to allow for

repeatability of particular experiment runs.

The DCG simulates the existence of categories in data by assigning labels to each vector.

The n-dimensional vectors xt are generated as a random displacement dt from a randomly

selected centroid g`t, Lt(g`t) = `, where ` is the concept label from the set {class1, class2}

that was assigned to the cluster. Thus, the stream instance at time t is given by Equation

3.1 while the label for this instance is the label of its parent cluster given by Equation 3.2.

xt = gt + dt (3.1)
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Lt(xt) = Lt(g`t) (3.2)

The output of this processing step is a pair 〈xt, Lt(xt)〉 representing a data point and

its target class. At each time interval, t = n∆t;{n = 0, 1, 2, . . .}, the centroids change

position with a speed set by the drift rate parameter. Three settings of driftRate were used

across different trials (0.00, 0.001, and 0.010) to cover no, low, and high drift rate conditions

respectively.

Classifier (Ensemble)

• Inputs – At each time step t, the Classifier or Classifier Ensemble ingests the data

vector pair, 〈xt, Lt(xt)〉 produced by the DCG. If a classifier is in training mode, the

target class label, Lt(xt), is used in the production of the classifier function. In test

mode, the label is discarded and the data vector, xt, is assigned an estimated class label.

The MOA prequential evaluation framework manages interleaved test then train for

each example in the stream.

• Parameters – This varies according to classifier type. The MOA experiment frame-

work include the ability to store parameter settings as well as entire trained classifier

models for repeatability of experiments. Other parameters include the individual and

composite model-update intervals: ∆ti; {1 ≤ i ≤ 5} and ∆tC , respectively.

• Outputs – At each time step, t, the ensemble classifier outputs: Cit(xt), the class label

assigned to input xt by classifier i, and Ct(xt), the class label assigned by the ensemble

classifier to input xt.

During training, at each time step t, each classifier in the ensemble was presented with

a copy of the labeled vector as the pair: 〈xt, Lt(xt)〉. All classifiers are tested and trained

continuously according to the prequential scheme described in Chapter 2.
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Each classifier examined the generated inputs and produced an estimated label according

to its specific algorithm as discussed in Chapter 2. The individual classifier functions: Cit(xt),

where{1 ≤ i ≤ 5}, selected a classification label from the set {class1, class2} for each input:

xt. In ensemble conditions, individual outputs were combined and adjudicated to create the

composite response of the ensemble.

The ensemble classifier adjudicates the weighted average of the individual classifiers to

select a classification label Ct(xt) from the set {class1, class2} for each input: xt. This

corresponds to the outputs of the labeling function.

For DWM, AWE5, and AUE5, The contributions of the classifiers are adjusted over time

according to the updating schemes described in Chapter 2.

Scoring Engine

The function of the scoring engine is included as part of MOA’s prequential analysis function.

• Inputs – At each time step t, the Scoring Engine receives: Cit(xt), the class label

assigned to input xt by classifier i, and Ct(xt), the class label assigned by the ensemble

classifier to input xt, and Lt(xt) the true class label for input xt.

• Parameters – The scoring engine takes a parameter to determine the frequency of

scoring/length of the scoring window as specified below.

• Outputs – The Scoring Engine outputs accuracy as the percentage of examples correctly

classified by classifier. It also computes the κ statistic (described below), two variants

of this statistic (κM , and κT ), and metadata specific to each classifier such as ensemble

member weights at the time of scoring.

During evaluation the classifier outputs in response to each input,Cit(xt), and the compos-

ite classification Ct(xt), was compared with Lt(xt). If the results are equal, it is considered a

correct result. Otherwise, it is tallied as a missed classification. The counts in each category

are summarized in a table, known as a “confusion matrix,” as shown in Table 3.1.
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Ground Truth
Predicted Class class1 class2

class1 A B
class2 C D

Table 3.1: Confusion Matrix a.k.a Contingency Table

The values in the main diagonal (A and D) are the number of correctly classified examples

in the evaluation interval. The other values (B and C) are mis-classifications where C is the

number of examples that should have been labeled “class1” that were labeled “class2,” and B

is the number of examples that should have been labeled “class2” that were labeled “class1.”

The kappa statistic is then computed from these counts as:

p0 =

(
(A+D)

(A+B + C +D)

)
κ =

p0 − pr
1− pr

,

(3.3)

where pr is the probability of a random classifier producing a correct response. The κ

value ranges from [0,1] where 1 indicates the classifier is always correct and if the classifier

is equivalent to the random classifier. For the selected classifiers in this study, κ was not

consistently supported so the main measure used in comparison is simply the prequential

accuracy p0. A brief comparison of κ and p0 values is shown in a section of Chapter 4.

During prequential evaluation, the classifiers are continually updated, for ensemble meth-

ods (DWM, AWE5, AUE5) the contribution of the member classifiers is adapted based on

the details of the specific algorithm described in the “Selected Supervised Classifiers” section

of Chapter 2. These ensembles track error rates independently of the external score recorded

in the experiment. Adaptive ensembles change member classifier parameters over time to

mitigate performance degradation as described in the next subsection.
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Adaptive Mitigation Strategies

This portion of the framework is shown as “Feedback Mitigation” in Figure 3.1. The con-

cept drift mitigation strategy is specific to each algorithm as described in Chapter 2 and is

recounted in the summary list below.

1. Dynamic Weighted Majority (DWM) (Kolter & Maloof, 2007): If an individual clas-

sifier has fallen below its acceptable accuracy rate its contribution to the ensemble is

down-weighted. It can also excluded from the ensemble entirely (equivalent to a zero

weight). The classifier is then updated and re-evaluated at the next test interval. If the

retrained classifier would result in improved performance, it is included in the ensemble

at a higher weight again.

2. The Accuracy Updated Ensemble Algorithm (AUE) (Brzezinski & Stefanowski, 2014):

This approach is designed to maximize the performance of incremental learners. It

dispatches the various ensemble members across “chunks”, i.e. subsets of the data

stream that have been partitioned for examination by individual classifiers. As in the

(DWM) method above, accuracy is monitored for degradation. The least accurate

classifier is substituted out for a new classifier trained on a more recent chunk. The

number of classifiers in the ensemble is also constrained by available memory and a

user-specified memory limit.

3. Accuracy Weighted Ensemble (AWE) (H. Wang et al., 2003): This approach computes

an estimate of the reliability of its members in terms of the cost of its current-error rate

or the benefit of its correct classifications. The weights of each classifier’s vote in the

final ensemble decision are adjusted on this basis with the high-performing classifiers

contributing more to the final combined classification result.

The effect of running these mitigations on throughput rates was determined by comparing

the average classification rate of each algorithm to the speed at which the Drifting Concept
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Generator is able to supply instances to be classified. This represents a percentage of real-

time processing, where 100% indicates that items are being processed as fast as they arrive.

This can be used as a simple measure of the expected slow-down in system processing when

this algorithm is applied to the input stream.

Experiments and Result Formats

Since machine learning and pattern recognition libraries such as MOA are readily available,

and the concept-drift strategies were selected from methods supported in the literature as

discussed in Chapter 2, the implementation of the classification and ensemble algorithms

used in the experiment framework did not need to proceed from scratch. However, the

deployment and testing of the component algorithms and creating an overall framework to

evaluate the set of algorithms under controlled conditions was a non-trivial task and thus

contributed to the overall complexity of the research effort. Results were collected in text-

based form wherever possible to allow for human inspection and further analysis with a wide

range of tools.

The classifiers varied widely in their intrinsic speeds and accuracies. Thus it was im-

portant to establish a standard range of parameters which were feasible to execute for all

candidates in the investigation. Prior to the collection of performance data, many pilot

studies were conducted to develop and test the overall framework and establish reasonable

parameters for the free-parameters described above. The outcomes of the pilot studies are

briefly described below. Outcomes of the main experiment and analysis are then discussed

throughly in Chapters 4 and 5. Additional figures, results, and source code are provided in

appendices.
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Pilot Study Key Outcomes

This experiment phase was used to tune free parameters of the model-based input generator

such as the appropriate number of attributes per instance and drift speed to make the major

trials feasible on the available hardware. This phase was also used to test the experiment

framework for bugs and create any practical experimental scripts needed for smooth oper-

ation and data collection in subsequent steps. The chief output of this first phase was an

experiment control script that can run experiments under various conditions and parameters

required for the rest of the study with minimal low-level re-programming.

Next, general performance characteristics such as run-time and accuracy on small sets of

inputs were used to determine the fixed parameters that would be used for the rest of the

data collection. The most important output of this second phase was a set of performance

bounds and delimitations for setting the conditions and parameters required to collect the

data needed to answer the central research questions of this study.

The stream length was standardized to 10,000,000 instances per trial. Two levels of

dimensionality (numAttributes) were selected for the instances - 10 and 50. Dimensionality

greater than 50 resulted in unacceptable run times. The 50-dimensional task resulted in

runtimes ranging from less than 30 to over 150 minutes to execute the 108 classifications. This

was considered the limit for feasibly repeating the conditions while varying other conditions

such as the drift rate. Three drift rates were selected. The control case was no drift with the

driftRate parameter set to 0. A drift rate of 0.001 was selected as the “low drift” condition

since it was the minimal drift suggested by the MOA GUI built-in function. A driftRate of

0.010 was selected as “high drift” since, in the pilot studies, drift rates at this level or higher

invariably reduced the classifier’s accuracy to the level of chance ( 50%).

With these experimental parameters established, the main data collection was executed

to obtain data points across the combinatorial gamut of the values selected.
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Main Experiment – Performance Envelopes Under Concept Drift Conditions

This experiment phase was the culmination of the study in which the trade-off of accuracy

and throughput created by the corrective action of adaptive mitigations is analyzed in detail.

Raw data was streamed to standard output by the MOA framework and collected in

comma-separated values (CSV) files. These raw data files were subsequently filtered and

processed in Excel to generate summary statistics of the relevant output columns. Further

analysis and visualization was achieved using Matlab. The output of analysis in this phase

was a characterization of each candidate strategy for concept drift mitigation against the

baselines of maximal theoretic accuracy and throughput. The trade-off relationships are

presented as performance envelopes - a joint plot of throughput vs. accuracy. The results of

this empirical analysis will provide the means for system designers to select an appropriate

methodology based on the accuracy and throughput available to that approach. The differ-

ences observed in the time-series of each classifier algorithm’s accuracy is also shown as a

series plots of p0 at each prequential sample point. In Chapter 4, the findings across the var-

ious experimental conditions are discussed quantitatively. The implications of these results

and further factors to consider when choosing one algorithm over another are discussed in

Chapter 5.
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Experiment Resources

The experiments described in this report require only computer hardware and software re-

sources. No data collected directly from human subjects were utilized in this study. The data

sources were produced via real-time simulation using open-source tools. Thus, no licensing

or data ownership/privacy issues are of concern.

Four major trials were conducted on a two personal workstations and one “gaming level”

laptop. The CPU and memory resources used are as follows:

• Computer 1 (PC Workstation):

– Windows 10

– 8 CPU threads, Intel Core i7 920 @ 2.67 GHz

– 20.0 GB DDR3 RAM

• Computer 2 (PC Gaming Laptop):

– Fedora (Scientific Spin) Linux 25

– 8 CPU threads, Intel Core i7-3630QM @2.4 GHz

– 8.0 GB DDR3 RAM

• Computer 3 (Mac Pro Workstation):

– MacOS 10.12

– 12 CPU threads, 6-Core Intel Xeon E5 @3.5 GHz

– 16.0 GB DDR3 RAM

Experiments were managed and conducted using Python scripts and Java executables

on Windows and Linux. Additional software resources include integrated development envi-

ronments and tools including Eclipse, Microsoft Excel, Microsoft Paint3D, and Matlab. The

MOA framework and associated WEKA framework were used for the implementation and
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execution of published pattern-recognition algorithms such as the binary stream classifiers

described in this chapter and Chapter 2. The software products used for this research were

provided under academic license agreements or available as open-source packages from the

Internet.

This study was not designed to investigate distributed computing optimizations. Thus,

networking resources are not considered essential to the operation or evaluation of these

experiments. However, multiprocessor computing techniques may be applied to improve the

execution of similar studies in the future.
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Chapter 4

Results

Overview

The experiments performed in this study consisted of a raw-data collection phase followed

by several stages of analysis in which the raw data was cross-compared to investigate the

effects of the manipulated experiment parameters (dimensionality, and drift rate) on the

measured performance-related variables (accuracy, throughput). The mean accuracy of a

trial was computed from the 1000 prequential sample measurements generated during the

experiment. The raw throughput is obtained by taking the total CPU seconds reported for

a run and dividing by the instance count of 10,000,000. Further analysis and perspectives

on the data are detailed below in discussions accompanying the data plots. Larger versions

of the plots are included in Appendix C.
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Performance of Selected Algorithms on Concept-Drifting Data Streams

Performance on a Single Data Stream

The first set of results shows the performance of all six classifier algorithms during a single

trial - Trial B. Figure 4.1 shows Trial B’s mean accuracy on 10-Dimensional instances.

Figure 4.1: Trial B Accuracy on 10-Dimensional Instances

The first apparent trend is that accuracy rates consistently decrease as drift rate increases.

The top performers under conditions of no drift are DWM, HAT, and AUE5 with accuracy

in the 90% range. The remaining classifiers only manage to score around 70%. Under high

drift (0.010) conditions all the classifiers are basically degraded to performing at chance level

(50%). At the (0.001) drift levels the classifiers are all impacted but the effect on the high

performers is more dramatic since the lower performers were not very accurate to begin with.

Figure 4.2 shows the same measurements for the 50-Dimensional case. Interestingly, there

is a systematic increase in the accuracy of many of the classifiers in the higher dimensional

space. These algorithms are all binary classifiers and thus the nature of the problem is

fundamentally one of discriminating and sorting input instances into one of two categories.

Even though the patterns generated in the 50-dimensional problem are numerically more

complex, the algorithms now have more features to work with. Thus the overall ability
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of each algorithm to find and use information in the features to correctly discriminate the

target classes is improved. Because of this overall improvement in performance, the dynamic

range of the concept drift effect is also increased. The systems performance is systematically

reduced but many are able to achieve at least 80% accuracy and approach their performance

in the non-drifting conditions.

Figure 4.2: Trial B Accuracy on 50-Dimensional Instances

Because of this effect of dimensionality on classifier accuracy, one way to focus more

closely on the effect of concept drift is to examine the relative reduction in a classifier’s

accuracy with respect to its maximum theoretical performance on this classification problem.

If we consider the no-drift condition as a baseline for each classifier then the drift conditions

result in some percentage reduction of each classifier’s accuracy. Figure 4.3 displays this

scaled version of accuracy on 10-dimensional instances. With this view we can see that AWE5

is the most robust in that it has the least relative reduction under the drift conditions. The

NB and PEG classifiers appear to be doing well under this metric. However, it is important

to note that this does not indicate that they are high-performing since their no-drift accuracy

was not good to begin with ( 70%).

Figure 4.4 repeats this for the 50-dimensional inputs. As in the other view, the dynamic

range of the drift effect is more apparent. We see that NB and PEG actually are not as
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Figure 4.3: Trial B Relative Accuracy on 10-Dimensional Instances

robust to drift as the adaptive classifiers. Under both 10-dimensional and 50-dimensional

conditions, the performance of the DWM and the HAT seem similar. This is an indicator

that the HAT members of the DWM are probably more influential than the others which

makes sense given that NB and PEG are the weaker classifiers according to what we have

reviewed to this point.

Figure 4.4: Trial B Relative Accuracy on 50-Dimensional Instances
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The next measure of interest, throughput, is shown for Trial B in the following charts.

First, the raw throughput in instances classified per second is shown for the 10-dimensional

case in Figure 4.5

Figure 4.5: Trial B Throughput on 10-Dimensional Instances

Figure 4.6, shows the 50-dimensional raw throughput. Note that the scales in these im-

ages are very different. The complexity of generating 50 attributes-per-instance slows down

classification considerably however the relative performance of the algorithms is approxi-

mately the same with PEG and NB being the fastest by far.

Figure 4.6: Trial B Throughput on 50-Dimensional Instances
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With this result in mind, an important factor to consider when evaluating the throughput

is that the stream generator rate of instance production must be accounted for since the

classifiers can only operate as fast as the generator presents them with instances to classify.

Figure 4.7: Trial B Stream Instance Generation Rate

Figure 4.7 shows the stream generation rate for Trial B as determined by the benchmark-

ing software described in the previous chapter. Using these results the relative throughput

for each classifier was computed and is shown in Figures 4.8 and 4.9.

Figure 4.8: Trial B Scaled Throughput on 10-Dimensional Instances
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Figure 4.9: Trial B Scaled Throughput on 50-Dimensional Instances

A score of 100% on these evaluations indicates that the classifier can produce answers as

fast as it receives instances.

An interesting result of this analysis is that some of the classifiers (AUE5, DWM, and

HAT) showed an unexpected increase in throughput under drift conditions. While the stream

generator also showed an increase in throughput during drift conditions, this only happened

for the 10-dimensional case and was not monotonic. The 50-dimensional case actually shows

a decreasing rate of instance production but the same classifiers still exhibited a systematic

increase in throughput under drift. Also, as described above, the classifier throughput shown

is computed relative to this rate and shown as a percentage of the theoretical maximum

(real-time) processing speed. Thus, the effect is not explained by fluctuations in the stream

generation.

A possible reason for the increased throughput of these particular classifiers is indicated

by the fact that the algorithms explicitly designed for drift correction show more of the

effect. The specific strategies for drift mitigation are different but they all have mechanisms

to either remove or down-weight low performing members of the ensemble.

The pruning of poorly performing models would result in speed up since fewer compu-

tations would be executed per classification event. The HAT was not an adaptive ensemble
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but is an adaptive algorithm nonetheless and also prunes the decision tree as the experi-

ment proceeds resulting in a simplified model that would also account for the speed up in

classification throughput.

Average performance across all streams

In this section we examine the performance metrics as averaged across all trials. Note that

the coefficients of variance for the accuracy measures for all the algorithms across all major

trials on the various platforms were low as shown in figure 4.10.

Figure 4.10: Coefficient of Variance (CV) of Accuracy across Experiment Trials

Thus, the machine used to run the trial, and the random seed did not have a signif-

icant effect. The mean accuracy across all trials is expected to be representative of true

performance regardless of the different hardware used to collect the data. For the rest of

the discussion in this chapter, “accuracy” will refer to this across-trial mean. Examining

the averaged results over repeated trials across various platforms and data streams serves to

verify the trends discussed above.

Figure 4.11 shows the accuracy result for the 10-dimensional classification problem. In

the 10-dimensional case AUE, DWM and HAT consistently dominate as long as there is no
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Figure 4.11: Mean Accuracy on 10-Dimensional Instances

drift. Again, even moderate drifts severely impact the performance of all of these algorithms

on this classification problem.

Figure 4.12: Mean Accuracy on 50-Dimensional Instances

Figure 4.12 shows the accuracy results for the 50-dimensional case. The trend of increased

accuracy in the higher-dimensional case also showed to be consistent. The collective data

also verified that NB was overall the least robust to drift. This is expected since although

the Bayesian classifier, by its nature, constantly updates the classification model based on
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the new stream examples, it is not specifically designed to counteract concept drift like the

adaptive ensembles.

Figure 4.13: Mean Throughput as a Fraction of Real-Time Processing (10D)

Figure 4.13 shows the average relative throughput results for the 10-dimensional case.

The NB and PEG are consistently faster and there is still an apparent speed up in some of

the classifiers under drift conditions as discussed above.

Figure 4.14: Mean Throughput as a Fraction of Real-Time Processing (50D)

Figure 4.14 shows the average relative throughput results for the 50-dimensional case.

The pattern is similar to the 10 dimensional case. NB and PEG still dramatically dominate

in terms of throughput. Because of this, it is hard to see the detailed performance of the
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other classifiers. The next figures remedy this by excluding PEG and NB while zooming in

to show the others.

Figure 4.15: Mean Throughput of slower algorithms (10D)

Figure 4.15 shows the average relative throughput results for the 10-dimensional case on

the selected classifiers.

Figure 4.16: Mean Throughput of slower algorithms (50D)

Figure 4.16 shows the average relative throughput results for the 10-dimensional case on

the selected classifiers.
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In general, the speedup of adaptive classifiers under drift conditions is still apparent but

not consistent. The change in model complexity due to pruning while adapting in response

to challenge from the concept drift is still the prime suspect as discussed above.

The Eponymous Performance Envelopes

These figures summarize the performance of each classifier by rendering them as points in

a two-dimensional space. Note that the accuracy axis starts at 50% since any performance

at or below that value is considered a complete failure - no better than chance. The line

of 50% throughput and 75% correct classification rate are highlighted to divide the space

into quadrants. Classifiers which fall in the upper right quadrant are most desirable since

they are both fast and accurate. Conversely the lower left quadrant indicates the poorest

performance from a classifier algorithm.

Figure 4.17: Accuracy vs. Throughput (10D)
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Figure 4.17 shows the performance summary diagram for the 10-dimensional case. The

bold lines aid in visually ranking the candidate classifiers. The trends discussed above such

as the relatively high accuracy of HAT, the throughput costs of ensemble methods, and the

sensitivity of all algorithms to concept drift are all apparent at-a-glance in this visualization.

More importantly, The four quadrants of the diagram provide a visual classification scheme

to rank the candidates in terms of the performance measures of interest. The results of the

PEG and NB classifiers tend towards the upper left indicating that they are fast but not very

accurate. Adding drift only makes things worse for these two algorithms. HAT and DWM

appear on the lower right, along with AUE5. These are clear examples of a speed-accuracy

trade-off. At throughputs of less than 10% real-time their accuracy might not be worth the

cost in speed. These would not work for a time-sensitive system. The effect of drifts is clear

in this rendering. All of the algorithms’ scores are shifted left and most to the lower-left

in drift conditions indicating that even the adaptive ensembles could not recover acceptable

performance on this problem under even mild drift conditions.

Figure 4.18 shows the performance summary diagram for the 50 dimensional case. As was

apparent in the results discussed above, the classifiers performed differently on the higher-

dimensional problem. The results of the PEG and NB classifiers are notably improved in the

non-drift conditions. Adding drift notably damages the PEG accuracy but does not reduce

throughput very much. The NB classifier is rendered practically unusable by any drift. As

is indicated by the cluster of results on the lower right, the adaptive ensembles do well to

maintain performance under the (0.001) drift conditions. However, a drift rate of (0.010)

pushes all of the algorithms performance ratings into the lower-left quadrant showing that

they become unusable at this level of concept drift.
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Figure 4.18: Accuracy vs. Throughput (50D)

Time-series Characteristics of Classifier Error-rates

Additional insights into classifier performance can be gained by examining the time course

of their error rates.

Looking at the performance of Pegasos SVM over time in figures 4.19 and 4.20, the

damaging effect of drift on accuracy is clearly apparent. Pegasos has no active drift correction

and so, especially in figure 4.20, systematically decaying accuracy can be noted in response

to the continuous drift provided by the drift data generator until its average performance is

not much better than a uniformly random selection of one of the two classes (50%).
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Figure 4.19: Pegasos SVM Time Series (10D)

In Figures 4.21 and 4.22, there is a more constant performance level in the evolution of

the error rate in the NB classifier at 10 and 50 dimensions respectively.

While the Bayesian classifier does not have explicit drift correction, it is adaptive by

nature in its operation in that it is constantly updating its model based on the latest evidence

whether there is a drift or not. This is further evident in the 50 dimensional case where we

see wider oscillations in the drift cases since the model is struggling to keep up with the

shifting ground truth.

Figures 4.23 and 4.24 show the time courses of HAT, the first of the classifiers with

explicit drift correction.
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Figure 4.20: Pegasos SVM Time Series (50D)

Figure 4.21: Naive Bayes Time Series (10D)

As in the NB case, the accuracy of HAT does not decay past a certain point in each of

the drifts. However, it is never corrected back to its non-drift level especially when the drift

becomes high.

We now turn to DWM, the first of the ensemble methods. In the figures 4.25 and 4.26,
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Figure 4.22: Naive Bayes Time Series (50D)

Figure 4.23: Hoeffding Adaptive Tree Time Series (10D)

we see much the same effect as in the single HAT. Accuracy measures under drift conditions

are prevented from decaying and remain in a fairly acceptable range but never achieve the

levels seen with no drift.

The ensembles that are directly related to the estimated accuracy of their members,

shown in 4.27 through 4.30, exhibit the most robust drift correction. In the case of AUE,
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Figure 4.24: Hoeffding Adaptive Tree Time Series (50D)

Figure 4.25: Dynamic Weighted Majority Time Series (10D)

the performance under drift correction is close to the non-drift level.

For the 10 dimensional case shown in 4.27, the AWE classifier only performs at around

80% accuracy even without drift. The effect of concept drift, as seen in the previous sections,

is a systematic reduction in average accuracy. The time-series for drift conditions in AWE
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Figure 4.26: Dynamic Weighted Majority Time Series (50D)

Figure 4.27: Accuracy Weighted Ensemble Time Series (10D)

also show that, in general, the trend in each series is a deflection about a certain constant

level instead of a steady decay as in PEG. Thus the AWE algorithm is attempting to correct

itself over time but not necessarily succeeding especially when the drift becomes high (0.010).
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Figure 4.28: Accuracy Weighted Ensemble Time Series (50D)

In the 50 dimensional case shown in 4.28, the AWE classifier accuracy is much higher

without drift. The AWE algorithm is also able to compensate for a (0.001) drift rate over

time but is still reduced to unacceptable levels when the drift rate reaches (0.010).

Figure 4.29: Accuracy Updated Ensemble Time Series (10D)

Figure 4.29 shows the time-series for AUE in 10 dimensions. It shows a similar time

63



evolution to AWE in that the performance under drift conditions is kept from decaying but

not improved back to the levels seen without drift.

Figure 4.30 shows the 50-dimensional time-series for AUE. Of all the classifiers, this one

is best able to correct the accuracy in (0.001) drift. The high-drift condition still overwhelms

the ability of the correction mechanism to mitigate the reduction in both instantaneous and

average accuracy.

Figure 4.30: Accuracy Updated Ensemble Time Series (50D)

Kappa Statistics vs. Raw Accuracy

The MOA documentation (Bifet & Kirkby, 2009) suggests that p0 may not reflect the true

accuracy of streams since as the stream evolves, class imbalances may be present that are

induced by the random order of presentation. The κ statistic is suggested as a less biased

alternative, and MOA’s prequential evaluation function computes κ for classification algo-

rithms that support it. Since the computation of κ was not uniformly supported in the

classifiers selected for this study, p0 was used in this research with the understanding that

class imbalances could introduce a bias. This bias is expected to be slight since the simulated

data is configured to produce balanced classes as discussed in Chapter 3.
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Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Results of all experiments consistently showed that increasing levels of concept drift and

input dimensionality had adverse effects on performance. The various algorithms responded

differently in both accuracy and throughput modulation. Some approaches were clearly

better than others in terms of the trade-off between speed and accuracy. However, the

average values displayed on the Accuracy-Throughput performance envelope plots are not

indicative of the detailed adaptive response of the classifiers. The single point summaries

do not give insight into the temporal dynamics of increases in error rate over time and the

speed and degree to which the adaptive mechanisms compensate for the concept drift.

The robustness of each classifier’s dynamic response to concept drift is another dimension

on which the algorithms can and should be compared when making a selection. This is best

assessed by an examination of the time-course of the evolving error-rate as in the latter

figures in Chapter 4. When comparing against a standard input stream, spectral analysis

can also be used as shown in Figures 5.1 and 5.2 to characterize different algorithms’ temporal

response to the shifting class definitions.

The similarity between stream classifiers’ performance can also be compared quantita-

tively by examining correlations in their error rates over time as shown in Figure 5.3. While

the high correlation observed between ensemble classifiers and their member algorithms can

be expected, there are a few other interesting observations to note. The AUE and AWE show
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Figure 5.1: Welch PSD for DWM, 10 Dimensional input stream

Figure 5.2: Welch PSD for HAT, 50 Dimensional input stream

correlated errors even though they are only conceptually similar at a high level. The details

of their algorithms and even their specific definitions of “acceptable accuracy” are distinct.

The very high correlation between DWM and HAT indicates that the HAT members are

probably dominating the results of that ensemble. Given that the throughput of the single

HAT is higher than DWM, it can provide the same accuracy at higher throughput. This

was indicated in the 2D performance envelope plots and further shows the utility of such

graphical summaries as aids in algorithmic selection.

It is important to note that using these time-series methods for comparisons is only

valid if all classifiers are exposed to exactly the same input sequence. While this cannot be

expected in the real world, it is still useful for pre-deployment evaluation and testing.
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In some cases, performance was surprisingly better on higher-dimensional than lower-

dimensional inputs. As discussed in the previous chapter, this could be related to operational

features of the classifier models, some of which may gain additional information from the

increased available attributes of each example.

Figure 5.3: Correlations across classifiers, 50 Dimensional input stream at drift level (0.001)

The run times for this study, including pilot studies, exceeded 100 computer-hours. This

made an extensive search of the parameter space infeasible. The comprehensive evaluation

reported here was only performed on what could be considered “edge cases.” Thus if the run

times could be reduced by using more powerful HPC architectures or improving the algorithm

implementations further insights can be gained at a wider range of operating conditions.

Implications

In most of the classifiers examined in this study, the average classification levels were dam-

aged beyond a reasonable level of acceptability, even by mild concept drifts. The AWE and

AUE had the best resistance to concept drift at (0.001) but still were dramatically reduced

in effectiveness at level (0.010). This implies that the concept drift mitigations have room

for improvement. The lack of classifiers with scores in the upper right quadrant of the per-

formance diagrams shown in figures 4.17 and 4.18 under drift conditions shows that the
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accuracy and throughput truly become a trade-off in these situations.

This study also show that a clear difference is evident in classifiers that actively correct for

drift and those that do not. In tests of classifiers without active drift-correction mechanisms,

the accuracy quickly became unacceptable and stayed that way for the rest of the trial.

However, the most powerful adaptive classifiers such as AWE, and AUE were able to correct

themselves to near-baseline levels of performance.

Recommendations

The results of this study point to several directions for further research. First, it would

be extremely useful to investigate improved overall throughput with HPC implementations

(e.g. GPU accelerated versions) of the streaming classifiers. This would allow a detailed,

expanded exploration of the concept drift parameter space beyond the boundary conditions

studied here.

Another possible area to investigate further is the nature and limits of concept drift.

For example, a pertinent question for different forms of drift is “At what point does drift

frequency become too high to create meaningful patterns?”

Finally, there is clearly room for new or improved algorithms for more robust, active

drift detection and correction. These would be able to operate successfully even when the

drift rate is high yet there is still a pattern available to be learned. A possible avenue for

future research is to vary the weights in the training window to give higher value to newer

example instances. More stringent detection of classifier degradation may also help improve

the overall response and mitigation of the drifts.
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Summary

This dissertation report presented a comparative study of several supervised binary clas-

sification algorithms designed to maintain accuracy in the presence of concept drift. The

accuracy-throughput trade-off diagram provides a clear summary of relative performances of

the classifiers examined and can be easily used to select the appropriate algorithm for the ap-

plication of interest. With the continued rise of “Big Data,” The performance of data-stream

classifiers is of growing importance. Thus we need to adopt a principled approach to compre-

hensively evaluating the expected performance characteristics of candidate algorithms. This

study is a beginning toward that end. It is my hope that this methodology will continue

to be applied and become a valuable aid for system engineers designing high-performance

stream analytics.
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Appendix A

Algorithm Notation Guide

Algorithms are presented using the algorithmicx package (Janos, 2005) in a language neutral

pseudocode format. For example, Euclid’s greatest common denominator algorithm:

Algorithm A.0.1 Euclid’s algorithm (Janos, 2005)

1: procedure Euclid(a, b) . The g.c.d. of a and b
2: r ← a mod b
3: while r 6= 0 do . We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while
8: return b . The gcd is b
9: end procedure
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Appendix B

Source Code

The scripts used to launch experiments implemented straightforward calls to the MOA CLI
and currently have no internal logic or error checking. A more sophisticated version can be
re-factored from these prototypes if future experiments are pursued.

The Top Down Experiment Framework (TDEF.py) is a simple Python script that was
used to marshal and document the command line options for each experimental conditions
to allow for unattended data collection].

The StreamBenchmark.py script is a wrapper to MOA’s stream speed evaluator and was
used to establish a baseline for stream generation speed on each architecture used in the
study.

The StreamExample.py script is a wrapper to MOA’s stream writer and was used to
create a few low dimensional data sets to explore visual analogies of the 10 and 50 dimensional
streams used in the experiments.

1 # TDEF_main: Top -Down Experiment Framework (entry point)

2 #

3 # Author Stefan Joe -Yen(username:Amidan)

4 # Revision Date: July 2017

5 # Summary: The main experiment run file for "Performance Envelopes

of Adaptive Ensemble Stream Classifiers"

6 # This is a preliminary solution and should be refactored

in the future if re -use is needed

7 # *NOTE* This is hard -coded with Seed 2 for TRIAL B

8 #

9 import os

10

11 # Welcome Message

12 print("\n=== Welcome to TDEF ===\n")

13

14

15 # Accuracy Updated Ensembe Series with 5 member classifiers

16 print("\n=== Collecting Data for Algorithm 1 with 10 Dimensional

Input (AUE5) ===\n")

17 print("\n=== (AUE5) Drift Rate - None ===\n")

18 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa
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.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s(generators.

RandomRBFGeneratorDrift -r 2 -i 2)-i 10000000 -f 10000" > AUE5 -

T00b.txt’)

19 print("\n=== (AUE5) Drift Rate - Standard ===\n")

20 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i 10000000 -f 10000"

> AUE5 -T01b.txt’)

21 print("\n=== (AUE5) Drift Rate - High ===\n")

22 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i 10000000 -f 10000"

> AUE5 -T02b.txt’)

23

24 print("\n=== Collecting Data for Algorithm 1 with 50 Dimensional

Input (AUE5) ===\n")

25 print("\n=== (AUE5) Drift Rate - None ===\n")

26 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50 -i 10000000 -f 10000" >

AUE5 -T03b.txt’)

27 print("\n=== (AUE5) Drift Rate - Standard ===\n")

28 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > AUE5 -T04b.txt’)

29 print("\n=== (AUE5) Drift Rate - High ===\n")

30 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyUpdatedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5) -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > AUE5 -T05b.txt’)

31

32

33 # Accuracy Weighted Ensemble Series with 5 member classifiers

34 print("\n\n=== Collecting Data for Algorithm 2 with 10 Dimensional

Input (AWE5) ===\n")

35 print("\n=== (AWE5) Drift Rate - None ===\n")

36 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s(generators.

RandomRBFGeneratorDrift -r 2 -i 2)-i 10000000 -f 10000" > AWE5 -
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T00b.txt’)

37 print("\n=== (AWE5) Drift Rate - Standard ===\n")

38 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i 10000000 -f 10000"

> AWE5 -T01b.txt’)

39 print("\n=== (AWE5) Drift Rate - High ===\n")

40 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i 10000000 -f 10000"

> AWE5 -T02b.txt’)

41

42 print("\n\n=== Collecting Data for Algorithm 2 with 50 Dimensional

Input (AWE5) ===\n")

43 print("\n=== (AWE5) Drift Rate - None ===\n")

44 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50 -i 10000000 -f 10000" >

AWE5 -T03b.txt’)

45 print("\n=== (AWE5) Drift Rate - Standard ===\n")

46 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > AWE5 -T04b.txt’)

47 print("\n=== (AWE5) Drift Rate - High ===\n")

48 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.AccuracyWeightedEnsemble -l

trees.HoeffdingAdaptiveTree -n 5.0) -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > AWE5 -T05b.txt’)

49

50

51 # Dynamic Weighted Majority Series

52 print("\n\n=== Collecting Data for Algorithm 3 with 10 Dimensional

Input (DWM) ===\n")

53 print("\n=== (DWM) Drift Rate - None ===\n")

54 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -r 2 -i 2) -i 10000000 -f

10000" > DWM -T00b.txt’)

55 print("\n=== (DWM) Drift Rate - Standard ===\n")
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56 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i

10000000 -f 10000" > DWM -T01b.txt’)

57 print("\n=== (DWM) Drift Rate - High ===\n")

58 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i

10000000 -f 10000" > DWM -T02b.txt’)

59

60

61 print("\n\n=== Collecting Data for Algorithm 3 with 50 Dimensional

Input (DWM) ===\n")

62 print("\n=== (DWM) Drift Rate - None ===\n")

63 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -i 10000000 -

f 10000" > DWM -T03b.txt’)

64 print("\n=== (DWM) Drift Rate - Standard ===\n")

65 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i

10000000 -f 10000" > DWM -T04b.txt’)

66 print("\n=== (DWM) Drift Rate - High ===\n")

67 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l (meta.WeightedMajorityAlgorithm -

l trees.HoeffdingAdaptiveTree ,trees.HoeffdingAdaptiveTree ,

functions.SPegasos ,functions.SPegasos ,bayes.NaiveBayes) -s (

generators.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i

10000000 -f 10000" > DWM -T05b.txt’)

68

69 # Naive Bayes Series

70 print("\n=== Collecting Data for Algorithm 4 with 10 Dimensional

Input (NB) ===\n")

71 print("\n=== (NB) Drift Rate - None ===\n")

72 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s(generators.

RandomRBFGeneratorDrift -r 2 -i 2)-i 10000000 -f 10000" > NB -T00b

.txt’)
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73 print("\n=== (NB) Drift Rate - Standard ===\n")

74 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i 10000000 -f 10000"

> NB-T01b.txt’)

75 print("\n=== (NB) Drift Rate - High ===\n")

76 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i 10000000 -f 10000"

> NB-T02b.txt’)

77

78 print("\n=== Collecting Data for Algorithm 4 with 50 Dimensional

Input (NB) ===\n")

79 print("\n=== (NB) Drift Rate - None ===\n")

80 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50 -i 10000000 -f 10000" >

NB-T03b.txt’)

81 print("\n=== (NB) Drift Rate - Standard ===\n")

82 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > NB -T04b.txt’)

83 print("\n=== (NB) Drift Rate - High ===\n")

84 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l bayes.NaiveBayes -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > NB -T05b.txt’)

85

86

87 # Stochastic Pegasos SVM Series

88 print("\n=== Collecting Data for Algorithm 5 with 10 Dimensional

Input (PEG) ===\n")

89 print("\n=== (PEG) Drift Rate - None ===\n")

90 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s(generators.

RandomRBFGeneratorDrift -r 2 -i 2)-i 10000000 -f 10000" > PEG -

T00b.txt’)

91 print("\n=== (PEG) Drift Rate - Standard ===\n")

92 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s (generators

.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i 10000000 -f

10000" > PEG -T01b.txt’)

93 print("\n=== (PEG) Drift Rate - High ===\n")

94 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s (generators

.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i 10000000 -f
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10000" > PEG -T02b.txt’)

95

96 print("\n=== Collecting Data for Algorithm 5 with 50 Dimensional

Input (PEG) ===\n")

97 print("\n=== (PEG) Drift Rate - None ===\n")

98 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s (generators

.RandomRBFGeneratorDrift -r 2 -i 2 -a 50 -i 10000000 -f 10000" >

PEG -T03b.txt’)

99 print("\n=== (PEG) Drift Rate - Standard ===\n")

100 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s (generators

.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > PEG -T04b.txt’)

101 print("\n=== (PEG) Drift Rate - High ===\n")

102 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l functions.SPegasos -s (generators

.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i 10000000 -f

10000" > PEG -T05b.txt’)

103

104

105 # Hoeffding Adaptive Tree Series

106 print("\n=== Collecting Data for Algorithm 6 with 10 Dimensional

Input (HAT) ===\n")

107 print("\n=== (HAT) Drift Rate - None ===\n")

108 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s(

generators.RandomRBFGeneratorDrift -r 2 -i 2)-i 10000000 -f

10000" > HAT -T00b.txt’)

109 print("\n=== (HAT Drift Rate - Standard ===\n")

110 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s (

generators.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -i

10000000 -f 10000" > HAT -T01b.txt’)

111 print("\n=== (HAT) Drift Rate - High ===\n")

112 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s (

generators.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -i

10000000 -f 10000" > HAT -T02b.txt’)

113

114 print("\n=== Collecting Data for Algorithm 6 with 50 Dimensional

Input (HAT) ===\n")

115 print("\n=== (HAT) Drift Rate - None ===\n")

116 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s (

generators.RandomRBFGeneratorDrift -r 2 -i 2 -a 50 -i 10000000 -f

10000" > HAT -T03b.txt’)
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117 print("\n=== (HAT Drift Rate - Standard ===\n")

118 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s (

generators.RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i

10000000 -f 10000" > HAT -T04b.txt’)

119 print("\n=== (HAT) Drift Rate - High ===\n")

120 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "EvaluatePrequential -l trees.HoeffdingAdaptiveTree -s (

generators.RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -i

10000000 -f 10000" > HAT -T05b.txt’)

121

122

123 # Termination Message

124 print("\n=== TDEF Exiting ===\n")

125

126 # Example With Seeds

127 # "EvaluatePrequential -l functions.SPegasos -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -i 10000000 -f

10000"

Listing B.1: TDEF script

1 # Stream Speed Test

2 #

3 # Author Stefan Joe -Yen(username:Amidan)

4 # Revision Date: July 2017

5 # Summary: The stream benchmarking tool for "Performance Envelopes

of Adaptive Ensemble Stream Classifiers"

6 # This is a preliminary solution and should be refactored

in the future to collect and average data automatically (5

samples per condition on each machine )

7 # *NOTE* This is hard -coded with Seed 2 (default no-args)

for TRIAL B

8 #

9 import os

10

11 print("\n=== Stream Speed Test Starting ===\n")

12

13 print("\n=== Measuring Stream Generator Speed (Drift Rate None ,

Attributes 10) ===\n")

14 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2) -g 10000000" >

DriftGenSpeed000d10b1.txt’)

15 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2) -g 10000000" >

DriftGenSpeed000d10b2.txt’)
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16 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2) -g 10000000" >

DriftGenSpeed000d10b3.txt’)

17 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2) -g 10000000" >

DriftGenSpeed000d10b4.txt’)

18 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2) -g 10000000" >

DriftGenSpeed000d10b5.txt’)

19

20

21 print("\n=== Measuring Stream Generator Speed (Drift Rate 0.001 ,

Attributes 10) ===\n")

22 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -g 10000000" >

DriftGenSpeed001d10b1.txt’)

23 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -g 10000000" >

DriftGenSpeed001d10b2.txt’)

24 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2) -g 10000000" >

DriftGenSpeed001d10b3.txt’)

25 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001) -g 10000000" >

DriftGenSpeed001d10b4.txt’)

26 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001) -g 10000000" >

DriftGenSpeed001d10b5.txt’)

27

28

29 print("\n=== Measuring Stream Generator Speed (Drift Rate 0.010 ,

Attributes 10) ===\n")

30 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -g 10000000" >

DriftGenSpeed010d10b1.txt’)

31 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -g 10000000" >
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DriftGenSpeed010d10b2.txt’)

32 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -g 10000000" >

DriftGenSpeed010d10b3.txt’)

33 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -g 10000000" >

DriftGenSpeed010d10b4.txt’)

34 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2) -g 10000000" >

DriftGenSpeed010d10b5.txt’)

35

36

37 print("\n=== Measuring Stream Generator Speed (Drift Rate None ,

Attributes 50) ===\n")

38 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed000d50b1.txt’)

39 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed000d50b2.txt’)

40 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed000d50b3.txt’)

41 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed000d50b4.txt’)

42 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed000d50b5.txt’)

43

44

45 print("\n=== Measuring Stream Generator Speed (Drift Rate 0.001 ,

Attributes 50) ===\n")

46 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed001d50b1.txt’)

47 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.
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RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed001d50b2.txt’)

48 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed001d50b3.txt’)

49 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed001d50b4.txt’)

50 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.001 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed001d50b5.txt’)

51

52

53 print("\n=== Measuring Stream Generator Speed (Drift Rate 0.010 ,

Attributes 50) ===\n")

54 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed010d50b1.txt’)

55 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed010d50b2.txt’)

56 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed010d50b3.txt’)

57 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed010d50b4.txt’)

58 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "MeasureStreamSpeed -s (generators.

RandomRBFGeneratorDrift -s 0.010 -r 2 -i 2 -a 50) -g 10000000" >

DriftGenSpeed010d50b5.txt’)

59

60

61 print("\n=== Stream Speed Test Done ===\n")

Listing B.2: StreamBenchmark script

1 # Stream Speed Test

2 #

3 # Author Stefan Joe -Yen(username:Amidan)

4 # Revision Date: July 2017
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5 # Summary: The stream writer tool for low -D example figures for "

Performance Envelopes of Adaptive Ensemble Stream Classifiers"

6 # This is a preliminary solution and should be refactored

in the future with centralized param. passing

7 # *NOTE* This is hard -coded with Seed 1 (default no-args)

for TRIAL A

8 #

9 import os

10

11 print("\n=== Stream Demonstration Create Low Dimension Examples ===\

n")

12

13 print("\n=== Dump 2D Data to File (Drift Rate None , Attributes 2)

===\n")

14 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -a 2) -f 2D-NoDriftExample.arff -m 5000"’

)

15

16 print("\n=== Dump 2D Data to File (Drift Rate Low (0.001) , Attributes

2) ===\n")

17 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -s 0.001 -a 2) -f 2D-LowDriftExample.arff

-m 5000" ’)

18

19 print("\n=== Dump 2D Data to File (Drift Rate High (0.010) ,

Attributes 2) ===\n")

20 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -s 0.010 -a 2) -f 2D-HighDriftExample.

arff -m 5000" ’)

21

22 print("\n=== Dump 1D Data to File (Drift Rate None , Attributes 2)

===\n")

23 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -k 2 -a 1 -n 2) -f 1D-NoDriftExample.arff

-m 1000" ’)

24

25 print("\n=== Dump 1D Data to File (Drift Rate Low (0.001) , Attributes

2) ===\n")

26 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -s 0.001 -k 2 -a 1 -n 2) -f 1D-

LowDriftExample.arff -m 1000" ’)

27
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28 print("\n=== Dump 1D Data to File (Drift Rate High (0.010) ,

Attributes 2) ===\n")

29 os.system(’java -Xmx4G -cp moa.jar -javaagent:sizeofag -1.0.0. jar moa

.DoTask "WriteStreamToARFFFile -s (generators.

RandomRBFGeneratorDrift -s 0.010 -k 2 -a 1 -n 2) -f 1D-

HighDriftExample.arff -m 1000"’)

30

31 print("\n=== Stream Demo File Creator Done ===\n")

Listing B.3: StreamExample script
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Appendix C

Additional Results, Figures, and Tables

Full Sized Figures

This section reiterates some of the figures and discussion from Chapter 4 at full-page size to
show the detail in images.

The Eponymous Performance Envelopes

These figures summarize the performance of each classifier by rendering them as points in
a two-dimensional space. Note that the accuracy axis starts at 50% since any performance
at or below that value is considered a complete failure - no better than chance. The lines
of 50% throughput and 75% correct classification rate are highlighted to divide the space
into quadrants. Classifiers which fall in the upper right quadrant are most desirable since
they are both fast and accurate. Conversely the lower left quadrant indicates the poorest
performance from a classifier algorithm.

Figure C.1 shows the performance trade-off diagram for the 10-dimensional inputs.
Figure C.2 shows the performance trade-off diagram for the 50-dimensional inputs.

Time-series Characteristics of Classifier Error-rates

Additional insights into classifier performance can be gained by examining the time course
of their error rates.

Looking at the performance of Pegasos SVM over time in figures C.3 and C.4 we can
clearly see the damaging effect of drift on accuracy. Pegasos has no active drift correction
and so especially in figure C.4 systematically decaying accuracy can be noted.

In figures C.5 and C.6 we observe a flatter time course. While the Bayesian classifier
does not have explicit drift correction, it is adaptive by nature in its operation in that it is
constantly updating its model based on the latest evidence whether there is a drift or not.
This is further evident in the 50 dimensional case where we see wider oscillations in the drift
cases since the model is struggling to keep up with the shifting ground truth.

Figures C.7 and C.8 show the time courses of HAT, the first of the classifiers with explicit
drift correction. as in the NB case, the accuracy does not decay past a certain point in each
of the drifts. However, it is never corrected back to its non-drift level especially when the
drift becomes high.
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In the figures for DWM: C.9 and C.10, we see much the same effect as in the single HAT.
Accuracy levels under drift conditions are prevented from decaying and remain in a fairly
acceptable range but never achieve the levels seen with no drift.

The ensembles that are directly related to the estimated accuracy of their members shown
in C.13 through C.14. exhibit the most robust drift correction some of which, in the AUE
case, are close to the non-drift performance levels.
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