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Abstract

The volume and velocity of data is increasing at astonishing rates. In order to extract
knowledge from this huge amount of information there is a need for efficient on-line learn-
ing algorithms. Rule-based algorithms produce models that are easy to understand and can
be used almost offhand. Ensemble methods combine several predicting models to improve
the quality of prediction. In this paper, a new on-line ensemble method that combines
a set of rule-based models is proposed to solve regression problems from data streams.
Experimental results using synthetic and real time-evolving data streams show the pro-
posed method significantly improves the performance of the single rule-based learner, and
outperforms two state-of-the-art regression algorithms for data streams.

Keywords: Data Streams, Regression, Ensembles, Rule Learning.

1. Introduction

Data stream mining is an important and active research area which aims to discover pat-
terns from time-evolving data produced continuously and at high-speed (Gama, 2010). The
possible applications are enormous since nowadays data is generated everywhere. A few ex-
amples are electronic mailing, sensor networks, financial transactions, news feeds, TCP/IP
traffic, etc. Traditional off-line algorithms assume data is obtained from a stationary dis-
tribution. Thereby, on-line learning algorithms are replacing batch learning algorithms in
solving several tasks, especially in rapidly changing environments.

Decision trees and rule-based systems are very useful to the end-user as they require
little effort for data preparation: feature selection is performed automatically, and there is
no need for attribute scaling. Another advantage is that the resulting model can be easily
interpreted. Some decision trees (Domingos and Hulten, 2000; Ikonomovska et al., 2011)
and rule-based algorithms (Kosina and Gama, 2012) have been designed to handle data
streams.
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Ensembles methods improve the performance of learning algorithms (Dietterich, 2000;
Mendes-Moreira et al., 2012) both for classification and regression tasks. These methods
combine a set of learning models to produce a more accurate prediction. Several strategies
for designing ensemble methods have been proposed, many of them using decision trees as
base learners (Bibimoune et al., 2013).

In this paper, an on-line ensemble regression method which learns from high-speed data
streams is presented. Experimental results show the proposed ensemble method significantly
outperforms its single learner version, and two state-of-the-art regression algorithms for
data streams. The remaining of this paper is organized as follows. In Section 2 related
work is presented and the data stream ensemble problem is defined. Section 3 describes
the rule-based algorithm that will be used by the ensemble method proposed in Section 4.
The experimental evaluation of the proposed method is presented in Section 5. Section 6
concludes this work.

2. Related Work

Let D = {(x1, y1), (x2, y2), ...} be an unbounded data set where xi is a d-dimensional vector
[xi1, xi2, · · · , xid]> describing the explanatory variables and yi is the corresponding response
variable. A predictor is a function f̂(x) which maps the input variable x to an output
variable ŷ and approximates the true unknown function f(x) = y. The algorithm used to
build a predictor is called learner. When the output variable y takes continuous values the
learning problem is called regression. When y is categorical the learning problem is referred
as classification. In this work we are interested in the former. A good predictor performs
the mapping f̂(x) = ŷ accurately. The accuracy is usually measured using a cost function
where low cost correspond to high accuracy. Two common measures of performance used to
evaluate regression models are the mean absolute error (MAE) and the root-mean-squared
error (RMSE). The MAE and RMSE performance measures are defined as

MAE =
1

n

n∑
i=1

|ŷi − yi| , (1)

and

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (2)

respectively, where yi is the true value of the response variable of the ith example, ŷi the
predicted value, and n the number of examples evaluated.

2.1. Regression algorithms for data streaming

Despite many classification algorithms have been proposed for data streams, not many
can be found for solving regression tasks. Some methods, such as Kalman and particle
filters (Chen, 2003), and artificial neural networks (Briegel and Tresp, 2000), are suitable
for on-line regression tasks. However, these techniques do not properly handle concept
drifts, which are one important aspect that distinguishes data stream learning from on-
line learning. Potts and Sammut (2005) proposed an algorithm that incrementally induces
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linear model trees. The tree grows only if the confidence of two linear models, one for each
side of a possible split, being better estimators than the linear model of the correspondent
node is higher than a given threshold. Ikonomovska et al. (2011) proposed an incremental
regression algorithm for time-evolving data streams (FIMT-DD) based on the Hoeffding tree
classification algorithm (Domingos and Hulten, 2000). Instead of using information gain
or the Gini index as split evaluation measure, the algorithm uses the standard deviation
reduction measure and, similarly to the Hoeffding tree algorithm, the Hoeffding bound is
used to guarantee that the best split is chosen. Shaker and Hüllermeier (2012) proposed
an instance-based learning algorithm for data streams (IBLSTREAMS) which can handle
both classification and regression problems. It follows the nearest-neighborhood estimation
principle which predicts the output value for a new example as an aggregation of the outputs
of its nearest examples. The algorithm adaptation and memory management is performed
by adding or removing examples to the case base considering three indicators of usefulness:
temporal relevance, spacial relevance and consistency.

2.2. Ensemble models for data streaming

An ensemble model F is composed of a set of predictors f̂m of the true function f , F =
{f̂1 · · · , f̂k}. An ensemble predictor f̂∗ is obtained by integrating the base learners f̂m.
According to Mendes-Moreira et al. (2012), the ensemble process can be divided into three
steps: generation, pruning and integration. In the generation step a set of models F is
generated using one or several learning algorithms. In the pruning step redundant models
f̂m may be removed from F . Finally, the strategy to obtain a joint prediction is determined
by the integration step.

Some of the most popular ensemble methods are Bagging, Boosting and Random Forests.
Batch learning Bagging algorithms build k different versions of the original dataset by
resampling with replacement (Breiman, 1996). The ensemble prediction is obtained by
majority voting (classification) or averaging the base learners predictions (regression). This
approach reduces variance and minimizes the effect of overfitting. Bagging approaches have
been adapted to handle data streams by updating each predictor f̂m a random number of
times pm, such that pm is sampled from a Poisson distribution (Oza and Russell, 2001). Off-
line Boosting methods learn prediction models sequentially by adapting the weights of the
training examples according to the error on previous iterations. Examples harder to predict
are given more importance while building future predictors (Freund and Schapire, 1997).
The weights of the examples may be used to obtain resampled versions of the original data
set or used directly by the base learner if it supports examples’ weights. Boosting methods
are known to reduce the bias of the base learners. Oza and Russell (2001) also proposed an
on-line Boosting algorithm. However, when compared to the original versions, the results
were not so satisfactory as the on-line Bagging approach. Random Forests (Breiman, 2001),
like Bagging, increase diversity among the set ensemble by resampling with replacement.
The name of this ensemble method is related with the type of base learners it combines:
decision trees. The key difference from the previous ensemble methods is that, at each node
of a tree, only a random subset of the features are selected as candidates for splitting. A
version of on-line Random Forests has already been proposed and combines the randomized
FIMT-DD algorithm with on-line Bagging (Ikonomovska, 2012).
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3. Adaptive Model Rules for High-Speed Data Streams

In this section, an incremental algorithm for learning model rules is presented: the Adaptive
Model Rules for High-Speed Data Streams (AMRules) (Almeida et al., 2013). The algorithm
is able to adapt a current rule to changes of the data stream and to detect anomalous
examples. It also allows differentiating the importance of training examples by handling
weights. This feature is exploited by the ensemble method proposed in Section 4.

A rule R is an implication in the form A⇒ C. A is a conjunction of conditions based on
attribute values. These conditions are called literals L and have different forms depending
on the type of the attribute. For numerical attributes they may have the form L = (Xj > v),
meaning that the jth attribute of an example xi must be greater than a real value v, or
L = (Xj ≤ v) meaning that xij must be less or equal to v. For categorical data a literal is
in the form of L : (Xj = v), where v is a value in the domain of Xj . The C part of the rule
is a function that returns the prediction ŷi if the example xi meets the conditions given by
A. Let I(·) be a function that returns 1 if the argument is true, and 0 otherwise. Formally,

a rule Rl covers an example xi if
(∏

L∈Al
L(xi)

)
= 1, where L(xi) is a function that returns

1 if xi satisfies L, and 0 otherwise:

L(xi) =


I(xij > v) if L is in the form (Xj > v)

I(xij ≤ v) if L is in the form (Xj ≤ v)

I(xij = v) if L is in the form (Xj = v)

0 otherwise.

(3)

Each rule Rl has associated a data structure Ll containing the information needed to make
predictions, find changes, detect anomalies, and the sufficient statistics used for expanding
the rule.

3.1. Learning a rule set

Let R = {R1, · · · , Rr} be a set of r rules and D a default rule. The order of the rules in
the set is related with its creation time (R1 was created before R2, R2 before R3, and so
on). A rule set may be ordered or unordered. For the former, only the first rule covering
the example should be considered. For the latter, all rules covering the example are taken
into account. Let the support Su(xi) of an unordered rule set R for a given example xi be
the set of all rules that covers xi:

Su(xi) =

Rl :

∏
L∈Al

L(xi)

 = 1

 . (4)

The support So(xi) of an ordered rule set is the first rule of Su or an empty set ∅ if Su is
also an empty set,

So(xi) =

{
{R1}, R1 ∈ Su(xi) if |Su(xi)| > 0

∅ otherwise,
(5)

where | · | is the cardinality of a set.
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The algorithm starts with an empty rule set R = ∅ and a default rule D, whose associ-
ated data structure LD is initialized to NULL. When a new training example xi is available,
the rules belonging to the set S(xi) are updated. For each rule Rl ∈ S(xi), the first step is
to verify if xi is an anomalous example (see subsection 3.5). If so, xi is not used to update
Rl. The second step is to test Rl for change by monitoring the rule’s on-line error (see
subsection 3.6). If change is detected Rl is removed from the rule set R. Otherwise, the
data structure Ll associated with Rl is updated and the rule is expanded. In fact, the rule
expansion is considered only from time to time (every Nmin examples) in order to reduce
the computational cost. If xi is covered by no rule (S(xi) = ∅) the data structure of the
default rule LD is updated. D may also be expanded if the number of instances seen by
it is a multiple of Nmin. If D expands it is added to the rule set, R = R ∪D, and a new
default rule D is created.

3.2. Expanding a rule

The process of expanding a rule Rl consists of adding a new literal L to the set of conjunc-
tions Al. This literal is chosen by determining the attribute and split-point that minimizes
some cost-function based on the examples seen so far. Also, a predetermined confidence-level
on the split must be guaranteed so that a rule can be expanded.

We use the variance reduction (VR) to determine the merit of a split, which is a variation
of the standard deviation reduction measure described in (Ikonomovska et al., 2011). The
formula of VR for splitting an numerical attribute Xj using v as split-point is given by

V R(Xj , v) = var(E)− |EL|
|E|

var(EL)− |ER|
|E|

var(ER), (6)

var(E) =
1

|E|

|E|∑
i=1

(yi − ȳ)2 =
1

|E|

|E|∑
i=1

yi
2 − 1

|E|

 |E|∑
i=1

yi

2

, (7)

where E is the set of examples seen by the rule since its last expansion, EL is the set
of examples {xi ∈ E : xij ≤ v}, ER is the set of examples {xi ∈ E : xij > v}, and

y = 1
|E|
∑|E|

i=1 yi. For a categorical attribute EL is the set of examples whose jth attribute
equals v, and ER is its complement set.

The number of examples n required to expand a rule is given by the Hoeffding bound (Ho-
effding, 1963), presented in Equation 8. It guarantees that the true mean of a random
variable r, with range R, will not differ from the sample mean more than ε with probability
1− δ.

ε =

√
R2 ln (1/δ)

2n
(8)

The best two potential splits are compared, dividing the second-best VR score by the best
one to generate a ratio r in the range 0 to 1. To decide if the rule is expanded or not, it is
verified if the upper bound of the ratio of the sample average (r+ = r + ε) is below 1. If
r+ < 1 the true mean is also below 1, meaning that with confidence 1− ε the best attribute
and split-point of the data are the ones being tested. Nevertheless, the measurements of
the two best splits are often extremely similar and, despite ε decreases considerably as more

202



Random AMRules

examples are seen, it is not possible to select which one is better with certainty. In this
case, a threshold τ on the error is used, and if ε < τ the split option with higher VR is
chosen to expand the rule.

A modified version of the extended binary search tree (Ikonomovska et al., 2011) was
used to maintain the sufficient statistics needed to compute VR. We limited the maximum
number of split-points to a predefined value in order to reduce the memory consumption and
speed-up the split selection procedure while having low impact in the error of the learning
algorithm. Also, weights of the examples are considered while updating the statistics.

3.3. Rule prediction strategies

The rules implement three distinct strategies to make prediction: (1) the weighted target
attribute mean of the examples previously covered by the rule; (2) the output of a linear
model built with the same examples; and (3) an adaptive strategy which selects at each
moment one of the previous strategies based on the on-line estimation of its MAE. Hence,
these prediction functions output not only the prediction for a given instance but also
the current estimation of the error, which can be used to measure the confidence of the
prediction.

The target mean of a rule is computed as ŷi = 1
Z

∑n
j=1wjyj , Z =

∑n
j=1wj , where n is the

number of examples seen by the rule since its last expansion, and wi is the weight associated
to the ith example. To learn the linear model ŷi = β0+

∑d
j=1 βjxij the perceptron algorithm

is used and is trained using an incremental gradient descent method. When a new training
example is available it is standardized considering the means and standard deviations of
the attributes of the examples seen so far. Next, the output is computed using the current
weights β. Then, the weights are updated using the Delta rule: βj ← βj + ηwi(ŷi − yi)xij ,
where ŷi is the output of the linear model, yi the real value and η is the learning rate. The
prediction is computed as the “denormalized” value of ŷi.

The on-line estimation of the weighted error, e, follows a fading factor strategy. In order
to do so, two values are monitored: the total sum of absolute deviations T and the total sum
of the weights of the objects used for learning W . When a new example (xi, yi) arrives for
training, T and W are updated as follows: T ← αT +wi|ŷi− yi| and W ← αW +wi, where
0 < α < 1 is a parameter that controls the importance of the oldest/newest examples.

3.4. Rule set prediction strategies

As mentioned before, a rule set may be ordered or unordered. The prediction of an ordered
rule set is simply the prediction of the first rule that covers xi if So(xi) 6= ∅, or the prediction
of the default rule D otherwise. The prediction of an unordered set is given by a weighted
vote approach, such that the contribution of rules with lower error are higher.

The weights of the votes θl ∈ [0, 1] for the unordered rule sets are inversely proportional
to the estimated mean absolute error el of each rule Rl. The weighted prediction of an
unordered set is computed as

ŷi =
∑

Rl∈S(xi)

θlŷ
l
i, θl =

(el + ε)−1∑
Rj∈S(xi)

(ej + ε)−1
, (9)
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where ŷli is the prediction of Rl, and ε is a small positive number used to prevent numerical
instabilities. The prediction uncertainty ui is estimated as the current weighted error of the
rules that cover xi:

ui =
∑

Rl∈S(xi)

θlel. (10)

An ordered set has usually less rules than an unordered set because it specializes one
rule at time. The ordered rules also need to consider the previous rules which makes the
interpretation of complex sets harder. Unordered rule sets are more modular since they can
be interpreted alone.

3.5. Detection of anomalies

Detection of outliers or anomalous examples are very important in on-line learning be-
cause of the potential impact in the performance of the learner. AMRules detects context
anomalies and prevents from using them in the learning process.

Given xi, for each attribute Xj , the probability Pr(Xj = xij |Ll) of observing the value
xij in a rule Rl ∈ S(xi) is computed using the respective data structure Ll. The univariate
anomaliness score for Xj is given by

Uj = 1− Pr(Xj = xij |Ll). (11)

The statistics maintained in Ll include the mean Xj and standard deviation σj of each at-
tribute. Therefore, Equation 11 may be computed using several strategies, such as, Normal
distribution and Z-scores. From a set of experiments not described here, using the Cantelli’s
inequality (Bhattacharyya, 1987) seems to be an effective strategy. For any real number
b > 0,

Pr(|xij −Xj | ≥ b) ≤
σ2j

σ2j + b2
. (12)

Therefore, Uscorei may be computed as Uscorej = 1 − σ2
j

σ2
j+|xij−Xj |2

. If Uscorej is higher

than a threshold λU (typically 90%), xij is considered an anomaly for the context of Rl.
Assuming the attributes are independent, the joint degree of anomaliness is computed

over all attributes whose univariate score is higher than λU :
∏
j:Uscorej>λU

Uscorej . In order
to avoid numerical instabilities logarithms are applied. Equation 13 presents the degree of
anomaliness, normalized into the interval [0, 1], where 1 corresponds to all attributes being
anomalous and 0 means none of the attributes are anomalous. If Ascore is higher than a
threshold λM (typically 0.99) the example is discarded from training.

Ascore =

∑
j:Uscorej>λU

log (Uscorej)

d∑
j=1

log (Uscorej)

(13)

An anomaly is more likely to be reported when Ll as seen few examples. Hence, only
rules trained with more than a predefined number of examples (after the last expansion)
are used for anomaly detection.
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3.6. Change detection

The Page-Hinkley (PH) test (Page, 1954) is used to monitor the evolution of the on-line
error ei of a rule. PH test considers a cumulative variable mn which is defined as the accu-
mulated difference between the observed values ei and their mean at the current moment:

mn =

n∑
i=1

ei − en − γ, en =
1

n

n∑
i=1

ei (14)

where γ correspond to the magnitude of changes that are allowed. The minimum value
of mn at the current moment is also maintained: Mn = min

i=1,··· ,n
mi. When the difference

(mn −Mn) is greater than a giver threshold λ a change is signaled and the correspondent
rule is removed from R.

4. Random AMRules: an ensemble of rule sets

In this section, an ensemble of rules model is presented. The motivation is to boost the
performance of AMRules since ensemble methods are known to be a general approach to
improve the performance of learning algorithms.

Important insights may be obtained by performing the bias-variance decomposition of
the error of a learning algorithm (Domingos, 2000). This information is very useful for
designing the ensemble strategy. On one hand, regression models with an high-variance
profile may be improved by perturbing the set of examples used for training. On the other
hand, models with low-variance profile benefit from perturbing the set of attributes used
while training the model. We observed that AMRules has a low-variance profile. As such,
the ensemble of AMRules model is designed following the Random Forests idea in order to
take advantage of both the attributes’ and examples’ perturbation. The proposed ensemble
method is referred as Random AMRules.

4.1. Training an ensemble of rule sets

Random AMRules starts by initializing an ensemble F with k models f̂m built using the
AMRules regression algorithm. When a rule Rl is created or expanded a subset of the data
attributes with size d′, 1 ≤ d′ ≤ d, is randomly chosen. The next split decision for Rl
consider only the attributes belonging to this subset. This procedure prevents the models
from being correlated.

Every time a training example (x, y) is available, the on-line error estimation of each
predictor f̂m is updated, and it is sent to each individual AMRules learner f̂m for training.
The on-line error of each f̂m is estimated using a fading factor strategy, identically to the
rule’s error estimation described in Subsection 3.3. In order to perturb the training set for
each model, we apply an on-line Bagging approach similar to the one described in (Oza
and Russell, 2001). For each learning model f̂m a different weight pm is sampled from the
Poisson distributions, pm ∼ Poisson(1), but instead of updating each model pm times,
we make use of the AMRules capability of handling instance weights. Since the model is
only updated once, or never if pm = 0, the computation time for training the algorithm is
reduced. The algorithm use for training Random AMRules is presented in Algorithm 1.
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Algorithm 1: Training Random AMRules
Input: D - Stream of examples, k - size of the ensemble, α - fading factor
Result: F - a set of predictors
begin

Initialize F ← {f̂1, · · · , f̂k} using AMRules as base learner
Initialize Tm ← 0, Wm ← 0, m ∈ {1, · · · , k}
foreach (x, y) ∈ D do

foreach m ∈ {1, · · · , k} do
pm ∼ Poisson(1)
if pm > 0 then

Update on-line error Tm ← αTm + pm|f̂m(x)− y|, Wm ← αWm + pm
Update predictor f̂m ← AMRules(f̂m,x, y, pm)

4.2. Predicting with an ensemble of rule sets

The prediction ŷ∗ of Random AMRules is computed as a linear combination of the estima-
tions produced by the models f̂m ∈ F : ŷ∗ = f̂∗(x) =

∑k
m=1 θmf̂m(x). The weights θm can

be computed using different weighting functions V. The most straightforward approach is
using an uniform weighting function, such that all the predictors have the same importance,
θm = 1

k . However, the current information about the on-line error em of each individual

predictor f̂m can be used define the weights. It is expected that predictors with lower er-
ror should output more accurate predictions. Therefore, its contribution in the weighting
function should be higher. Instead of using em, which measures the overall current error
of the rule set associated to f̂m, the prediction uncertainty um defined in Equation 10 may
also be used. For the former case, the weighting function is constant in the sense that no
matter the example x, the weights are already defined. For the later case, the weighting
function is dynamic since the weights depend on x because the prediction uncertainty is
computed regarding the rules covering x. Any weighting function V that considers an er-
ror/uncertainty measure can be used to obtain the weights for the ensemble’s prediction.
For instance, similarly to Equation 9, the weights for an inverse-error weighting function
may be defined as:

θm =
(bm + ε)−1

k∑
m=1

(bm + ε)−1

, (15)

where bm is em or um, depending if the voting type T is static or dynamic. The pseudo-code
of the prediction mechanism is presented in Algorithm 2.

5. Experimental Evaluation

In this section, the experimental evaluation of Random AMRules is presented. The influence
of the number of attributes and size of the ensemble is analyzed, and variants of the proposed
ensemble method are assessed. Also, the performance of Random AMRules is compared
with the performance of its base learner.
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Algorithm 2: Predicting with Random AMRules
Input: x - example, V - weighting function, T - voting type.
Result: ŷ∗ - the prediction
begin

foreach m ∈ {1, · · · , k} do
(ŷm, um)← f̂m(x)

if T = static then

em ← Tm
Wm

, ∀m ∈ {1, · · · , k}
{θ1, · · · , θk} ← V({e1, · · · , ek})

else
{θ1, · · · , θk} ← V({u1, · · · , uk}) ; // T = dynamic

ŷ∗ =
∑k

m=1 θmf̂m

5.1. Data sets

Three data sets were used to evaluate Random AMRules and variants. FriedD is an ar-
tificial dataset composed of 256000 examples generated similarly to the dataset described
in (Breiman et al., 1984), but contains a drift that starts at the 128001st instance. Wave-
formD is an artificial data set also containing 256000 examples generated as described
in (Breiman et al., 1984), and a drift which starts at the 128001st instance. The data set
has 3 classes of waves labeled, and the examples are characterized by 21 attributes that
include some noise plus 19 attributes that are all noise. Airlines1M uses the data from
the 2009 Data Expo competition. The dataset consists of a huge amount of records, con-
taining flight arrival and departure details for all the commercial flights within the USA,
from October 1987 to April 2008. This is a large dataset with nearly 120 million records
(11.5 GB memory size) (Ikonomovska et al., 2011). In our experiments we used only the
first million examples of the original data set in order to perform our experiments quicker.

5.2. Experimental results

The experimental results presented in this subsection were obtained using prequential eval-
uation with a sliding window of 10000 examples. The sliding window is only used to store
the MAE and RMSE measurements, so, it does not influence the behavior of the learning
algorithms. AMRules and Random AMRules algorithms were implemented using MOA:
Massive Online Analysis framework (Bifet et al., 2010). The values of the main parameters
of AMRules were set to δ = 10−7, τ = 0.05, Nmin = 200, λ = 35 and γ = 0.05. The α
parameter for the estimation of the on-line errors was set to α = 0.99. For each rule and
attribute, the maximum number of split-points was defined as 50.

5.2.1. Number of attributes and size of the ensemble

A study on the influence of the ensemble size and the number of attributes was performed
for the purpose of evaluating the behavior of Random AMRules with variations of these
parameters. Figure 1 presents the average MAE of ten runs of Random AMRules using
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Figure 1: Average MAE values for 10 runs of Random AMRules using different numbers
of attributes and sizes of the ensemble, both for ordered (RAMRuleso) and un-
ordered (RAMRulesu) rule sets.

uniform-weighted voting, with ordered and unordered rule sets, for each combination of
k ∈ {1, 10, 20, 30, 40, 50} and d ∈ {b0.2nc, b0.4nc, b0.6nc, b0.8nc, n}, where n is the number
of examples of the data set.

As the size of the ensemble k increases, the error is expected to converge to its minimum.
However, the more base learners are trained the higher the computational requirements will
be. Thus, k should be determined by increasing the value of k until the error stabilizes. It
can be seen that when the ensemble is a singleton (k = 1) the average MAE is clearly higher
than when several predictors are combined. For k ≥ 30 the MAE seems to stabilize for all
numbers of attributes and data sets. The best results for FriedD data set were obtained using
60% and 40% of the attributes by combining ordered and unordered rules sets, respectively.
For the WaveformD data set the best performances were achieved using 80% of the attributes
for the ordered rule sets and 60% for the unordered rule sets. In both these data sets, using
a subset of the features for expanding the rules is clearly advantageous. However, the lowest
average MAE for the Airlines1M data set was obtained using all attributes.

5.2.2. Comparison between Random AMRules, AMRules, FIMT-DD and
IBLSTREAMS

The prequential RMSE of AMRules Random AMRules algorithms for FriedD, WaveformD
and Airlines1M data sets are shown in Figure 2, considering both ordered (AMRuleso,
RAMRuleso) and unordered (AMRulesu, RAMRulesu) rule sets. Also, the RMSE of FIMT-DD
and IBLSTREAMS algorithms are presented for comparison. The results for FIMT-DD
were obtained using the available implementation in MOA framework. The experiments
with IBLSTREAMS were performed using the code available at www.uni-marburg.de/
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fb12/kebi/research/software/iblstreams. For Random AMRules, the size of the en-
sembles was set to k = 30 since it provides a good trade-off between error and computational
cost, and the number of features varies depending on the data set and the type of rule sets.
The number of features was selected according to the best results presented before.

As expected, the ensemble methods outperform the single-learner versions in all data
sets. The behavior of FIMT-DD is unstable, achieving the poorest performance in all
data sets. The reason for this instability should be related with the linear model in the
leaves of the tree (a Perceptron trained using an incremental stochastic gradient descent
method, identical to the one use by AMRules). This linear model requires the observation
of some examples before being reliable. The adaptive approach of AMRules prevents these
instabilities from occurring. The Random AMRules and AMRules models using ordered
rule sets obtained lower RMSE than the models obtained using unordered rule sets for the
FriedD and WaveformD data sets. It can be seen that the RMSE increases after the drifts
occur and then decreases as more examples are evaluated. For the FriedD data set, the best
results were achieved by RAMRuleso, followed by RAMRulesu and IBLSTREAMS. When
comparing RAMRulesu with IBLSTREAMS, the former obtained lower RMSE before the
drift, and the later performed better after the drift occur. For the WaveformD data set, the
best results were again obtained by RAMRuleso, followed by RAMRulesu, AMRuleso and
AMRulesu. In this data set, these algorithms clearly perform better than IBLSTREAMS
and FIMT-DD. For the Airlines1M data set, the Random AMRules outperformed the other
algorithms. However, in this case, the behavior of the ensemble method using ordered and
unordered rule sets is very similar. In fact, the unordered rule set version achieved a little
less RMSE (19.556) than the ordered version (19.595).

5.2.3. Comparison between weighting vote functions

Figure 3 compares the performance of different weighting vote functions for Random AM-
Rules: uniform (U), and inverse-error weighting function both for static (IS) and dynamic
(ID) voting types. For ordered rule sets, the U and IS voting strategies have very similar
behaviors (the lines almost perfectly overlap). Nonetheless, the IS strategy achieved slightly
less RMSE than U in all data sets. For unordered rule sets, the best strategy for FriedD
data set was IS. In this case, it can be seen that the RMSE using IS is clearly smaller than
U, specially after the drift occurs. For the WaveformD data set, the best strategy was ID,
followed by IS, which clearly outperformed the uniform voting approach. In this case, using
a dynamic voting type was beneficial. For the Airlines1M dataset, the results were very
similar for all cases but, again, IS strategy obtained slightly less RMSE than the others.

6. Conclusions

A new rule-based ensemble method for regression capable of detect change and anomalous
examples in a data stream was proposed. The proposed method perturbs both the set of
examples and the set of attributes in order to reduce the error on regression tasks. The
method was evaluated using different weighting vote functions for obtaining the ensembles’
predictions, and compared to its base learner and two state-of-the-art regression algorithms
for data streams.
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(b) WaveformD
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Figure 2: Prequential root-mean-squared error of AMRules and Random AMRules for
FriedD, WaveformD and Airlines1M data sets.

210



Random AMRules

0 50000 100000 150000 200000 250000

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

Examples

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

RAMRuleso U
RAMRulesu U
RAMRuleso IS

RAMRulesu IS
RAMRuleso ID
RAMRulesu ID

Drift 

(a) FriedD

0 50000 100000 150000 200000 250000

0.
50

0.
55

0.
60

0.
65

Examples

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

RAMRuleso U
RAMRulesu U
RAMRuleso IS

RAMRulesu IS
RAMRuleso ID
RAMRulesu ID

Drift 

(b) WaveformD

0 200000 400000 600000 800000 1000000

15
20

25
30

35
40

45

Examples

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

RAMRuleso U
RAMRulesu U
RAMRuleso IS

RAMRulesu IS
RAMRuleso ID
RAMRulesu ID

(c) Airlines1M

Figure 3: Prequential root-mean-squared error of Random AMRules using different weight-
ing vote functions for FriedD, WaveformD and Airlines1M data sets.
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Experimental results in two synthetic data sets and one real non-stationary data stream
shown that combining the predictions of several rule sets lead to better predictions. In two
of the data sets, ensembles built using ordered rule sets obtained clearly better performances
than using unordered rule sets. For the other data set, the behavior of both types of rule
sets was similar, but with a little advantage for the unordered version. Also, the proposed
ensemble method outperformed the other two state-of-the-art algorithms. Regarding the
weighting vote functions used for aggregating the estimates of the set of predictors, assigning
more relevance to the predictors with less on-line error was a good strategy, especially when
using unordered rule sets.
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