10,391 research outputs found

    Prototype/topic based Clustering Method for Weblogs

    Full text link
    [EN] In the last 10 years, the information generated on weblog sites has increased exponentially, resulting in a clear need for intelligent approaches to analyse and organise this massive amount of information. In this work, we present a methodology to cluster weblog posts according to the topics discussed therein, which we derive by text analysis. We have called the methodology Prototype/Topic Based Clustering, an approach which is based on a generative probabilistic model in conjunction with a Self-Term Expansion methodology. The usage of the Self-Term Expansion methodology is to improve the representation of the data and the generative probabilistic model is employed to identify relevant topics discussed in the weblogs. We have modified the generative probabilistic model in order to exploit predefined initialisations of the model and have performed our experiments in narrow and wide domain subsets. The results of our approach have demonstrated a considerable improvement over the pre-defined baseline and alternative state of the art approaches, achieving an improvement of up to 20% in many cases. The experiments were performed on both narrow and wide domain datasets, with the latter showing better improvement. However in both cases, our results outperformed the baseline and state of the art algorithms.The work of the third author was carried out in the framework of the WIQ-EI IRSES project (Grant No. 269180) within the FP7 Marie Curie, the DIANA APPLICATIONS Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) project and the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Perez-Tellez, F.; Cardiff, J.; Rosso, P.; Pinto Avendaño, DE. (2016). Prototype/topic based Clustering Method for Weblogs. Intelligent Data Analysis. 20(1):47-65. https://doi.org/10.3233/IDA-150793S476520

    The Knowledge Graph Construction in the Educational Domain: Take an Australian School Science Course as an Example

    Get PDF
    The evolution of the Internet technology and artificial intelligence has changed the ways we gain knowledge, which has expanded to every aspect of our lives. In recent years, Knowledge Graphs technology as one of the artificial intelligence techniques has been widely used in the educational domain. However, there are few studies dedicating the construction of knowledge graphs for K-10 education in Australia, and most of the existing studies only focus on at the theory level, and little research shows practical pipeline steps to complete the complex flow of constructing the educational knowledge graph. Apart from that, most studies focused on concept entities and their relations but ignored the features of concept entities and the relations between learning knowledge points and required learning outcomes. To overcome these shortages and provide the data foundation for the development of downstream research and applications in this educational domain, the construction processes of building a knowledge graph for Australian K-10 education were analyzed at the theory level and implemented in a practical way in this research. We took the Year 9 science course as a typical data source example fed to the proposed method called K10EDU-RCF-KG to construct this educational knowledge graph and to enrich the features of entities in the knowledge graph. In the construction pipeline, a variety of techniques were employed to complete the building process. Firstly, the POI and OCR techniques were applied to convert Word and PDF format files into text, followed by developing an educational resources management platform where the machine-readable text could be stored in a relational database management system. Secondly, we designed an architecture framework as the guidance of the construction pipeline. According to this architecture, the educational ontology was initially designed, and a backend microservice was developed to process the entity extraction and relation extraction by NLP-NER and probabilistic association rule mining algorithms, respectively. We also adopted the NLP-POS technique to find out the neighbor adjectives related to entitles to enrich features of these concept entitles. In addition, a subject dictionary was introduced during the refinement process of the knowledge graph, which reduced the data noise rate of the knowledge graph entities. Furthermore, the connections between learning outcome entities and topic knowledge point entities were directly connected, which provides a clear and efficient way to identify what corresponding learning objectives are related to the learning unit. Finally, a set of REST APIs for querying this educational knowledge graph were developed

    The Semantic Web MIDI Tape: An Interface for Interlinking MIDI and Context Metadata

    Get PDF
    The Linked Data paradigm has been used to publish a large number of musical datasets and ontologies on the Semantic Web, such as MusicBrainz, AcousticBrainz, and the Music Ontology. Recently, the MIDI Linked Data Cloud has been added to these datasets, representing more than 300,000 pieces in MIDI format as Linked Data, opening up the possibility for linking fine-grained symbolic music representations to existing music metadata databases. Despite the dataset making MIDI resources available in Web data standard formats such as RDF and SPARQL, the important issue of finding meaningful links between these MIDI resources and relevant contextual metadata in other datasets remains. A fundamental barrier for the provision and generation of such links is the difficulty that users have at adding new MIDI performance data and metadata to the platform. In this paper, we propose the Semantic Web MIDI Tape, a set of tools and associated interface for interacting with the MIDI Linked Data Cloud by enabling users to record, enrich, and retrieve MIDI performance data and related metadata in native Web data standards. The goal of such interactions is to find meaningful links between published MIDI resources and their relevant contextual metadata. We evaluate the Semantic Web MIDI Tape in various use cases involving user-contributed content, MIDI similarity querying, and entity recognition methods, and discuss their potential for finding links between MIDI resources and metadata

    Using SCXML to integrate semantic sensor information into context-aware user interfaces

    Get PDF
    This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor We

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    An Automated Method to Enrich and Expand Consumer Health Vocabularies Using GloVe Word Embeddings

    Get PDF
    Clear language makes communication easier between any two parties. However, a layman may have difficulty communicating with a professional due to not understanding the specialized terms common to the domain. In healthcare, it is rare to find a layman knowledgeable in medical jargon, which can lead to poor understanding of their condition and/or treatment. To bridge this gap, several professional vocabularies and ontologies have been created to map laymen medical terms to professional medical terms and vice versa. Many of the presented vocabularies are built manually or semi-automatically requiring large investments of time and human effort and consequently the slow growth of these vocabularies. In this dissertation, we present an automatic method to enrich existing concepts in a medical ontology with additional laymen terms and also to expand the number of concepts in the ontology that do not have associated laymen terms. Our work has the benefit of being applicable to vocabularies in any domain. Our entirely automatic approach uses machine learning, specifically Global Vectors for Word Embeddings (GloVe), on a corpus collected from a social media healthcare platform to extend and enhance consumer health vocabularies. We improve these vocabularies by incorporating synonyms and hyponyms from the WordNet ontology. By performing iterative feedback using GloVe’s candidate terms, we can boost the number of word occurrences in the co-occurrence matrix allowing our approach to work with a smaller training corpus. Our novel algorithms and GloVe were evaluated using two laymen datasets from the National Library of Medicine (NLM), the Open-Access and Collaborative Consumer Health Vocabulary (OAC CHV) and the MedlinePlus Healthcare Vocabulary. For our first goal, enriching concepts, the results show that GloVe was able to find new laymen terms with an F-score of 48.44%. Our best algorithm enhanced the corpus with synonyms from WordNet, outperformed GloVe with an F-score relative improvement of 25%. For our second goal, expanding the number of concepts with related laymen’s terms, our synonym-enhanced GloVe outperformed GloVe with a relative F-score relative improvement of 63%. The results of the system were in general promising and can be applied not only to enrich and expand laymen vocabularies for medicine but any ontology for a domain, given an appropriate corpus for the domain. Our approach is applicable to narrow domains that may not have the huge training corpora typically used with word embedding approaches. In essence, by incorporating an external source of linguistic information, WordNet, and expanding the training corpus, we are getting more out of our training corpus. Our system can help building an application for patients where they can read their physician\u27s letters more understandably and clearly. Moreover, the output of this system can be used to improve the results of healthcare search engines, entity recognition systems, and many others

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web
    • 

    corecore