
Integrated Semantic and Event-based Reasoning

for Emergency Response Applications

Anna Hristoskova
1
, Wim Boffé

2
, Tom Tourwé

3
 and Filip De Turck

1

1
Department of Information Technology, IBCN - iMinds, Ghent University, G.

Crommenlaan 8/201, 9050 Ghent, Belgium, e.mail: {anna.hristoskova,

filip.deturck}@intec.ugent.be

2
IOS International nv, Wetenschapspark 5, 3590 Diepenbeek, Belgium, e.mail:

wim.boffe@iosint.be

3
Software Engineering & ICT Group, Sirris, A. Reyerslaan 80, 1030 Brussels,

Belgium, e.mail: tom.tourwe@sirris.be

Abstract

Emergency response applications require the processing of large amounts of data

in order to provide an accurate and concise view of the situation at hand. In this

context, the adoption of semantic technologies is essential as it allows focusing on

the definition of a formal model and intelligent data processing and reasoning.

This paper presents a novel approach to emergency response applications, such as

performed by the fire department, integrating a semantic reasoning engine into an

event-based system supporting the use of a formal domain definition. A semantic

model is used to automatically generate Java objects which are consumed by the

rest of the application. Object manipulations automatically update the underlying

model. Additionally inference on the model performed by the reasoning engine is

dynamically synchronized with the other architectural components triggering

events based on predefined conditions. Validation is executed on a fire fighting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55826331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

scenario where the state of a fire fighter is constantly monitored based on new de-

vice and sensor measurements such as body temperature, heart rate, location.

While the reasoning engine keeps track of the fire fighter’s context, the event-

based engine issues alerts to the rest of the team in case his state deteriorates.

1 Introduction

Emergency responders regularly face large amounts of data, generated by a di-

verse set of sensors and devices that need to be processed in a timely manner in

order to form astute decisions during a disaster. For instance, during a fire fighting

scenario, the fire fighters are continuously exposed to various risks and dangerous

situations. Regular updates of their state to their team are essential. Vital for such

settings are context-aware decision support systems able to provide an accurate

and concise view of the situation at hand. Relevant information, captured from

various devices and sensors, should be pushed pro-actively and presented in a us-

er-specific and context-aware way [Tsiporkova et al(2012)] supporting the situa-

tional awareness of the actors involved. Situational Awareness is a field of re-

search defined as the perception of elements in the environment within a volume

of time and space, the comprehension of their meaning, and the projection of their

status in the near future [Endsley(1995)]. It is about being aware of the current

context and the future objectives of the user. Situation-aware applications should

be able to optimize the available choices while keeping the user in control.

Current emergency response research focuses on two main categories of appli-

cations: crisis simulation environments [Indigo(2012)] and decision support sys-

tems [Coates et al(2011), Lijnse et al(2012)]. Usually, such efforts construct

emergency management systems built on top of crisis databases. These attempts

however provide limited information processing and reasoning. The adoption of

semantic technologies enables the formal definition of the required domain con-

cepts and their properties and supports the specification of rules and intelligent

reasoning on the available data inferring valuable insights on the current context.

The proposed approach in this paper builds on these principles through the

seamless integration of a domain-specific semantic model into a decision support

system for emergency response by the fire department in the view of the ASTUTE

project [ASTUTE(2011-2014)]. This multidisciplinary project aims at the devel-

opment of an advanced and innovative pro-active HMI (Human-Machine Inter-

face) interface and reasoning engine for improving user efficiency and safety in

various industrial sectors such as automotive, avionics, and emergency services,

all operating in data intensive and critical environments. The main contribution of

the developed application is the integration of semantic and rule-based reasoning.

A proof-of-concept implementation of this integration is developed through a Java

Beans Code Generator automatically creating Java classes out of the concepts de-

fined in the semantic model. A Context Engine incorporates a semantic reasoner

encapsulating the low level generic reasoning on this model. Results of this rea-

soning are automatically forwarded to a Decision Engine. This engine includes an

Semantic and Event-based Reasoning for Emergency Response 11

event-based system defining the high level application-specific rules responsible

for triggering events and responding to alarms. This approach is validated by

means of an illustrative example, including the development of an initial semantic

model for emergency dispatching.

2 Related Work

Current emergency response applications focus on various issues such as dis-

tributed communication between mobile devices, simulation environments for

training purposes, decision support systems processing events from numerous

sources (devices, sensors, social media), and formal domain modelling.

Interdroid [Bal et al(2012)] aims at building a platform for distributed applica-

tions on Android devices. An example is Raven [Palmer et al(2012)] which sup-

ports the use of smart phones for collaborative disaster data collection and sharing.

Applications are shared by sharing the database and corresponding schema. The

current disaster management application consists of a user interface for editing

records in a database used to track lost and found people. Similarly SocEDA

[SocEDA(2012), Paraiso et al(2012)] enables the exchange of contextual infor-

mation between heterogeneous services according to social network information.

Its DiCEPE platform supports the interaction of different complex event pro-

cessing engines simultaneously, while enabling communication among them

through a distributed system. Currently, it supports an emergency response scenar-

io during a nuclear disaster simulating virtual events from the involved partners.

The suite of adaptive search methods applied by REScUE [Coates et al(2011)]

constructs in real time a near-optimal plan with an associated response team con-

sisting of individuals together with their equipment and vehicles. Input for the

methods includes detailed information about the environment such as the location,

availability, and capabilities of resources. In addition, up-to-date information of

casualties and the tasks needing to be undertaken are reported to the decision sup-

port system via emergency response agents at the scene of the event. Its agent-

based simulation environment, STORMI, evaluates the emergency response to

hypothetical major incidents. The INDIGO FP7 EU project [Indigo(2012)] also

specializes in simulation technology for crisis management and training. A white-

board is utilized to share the Common Operational Picture and associated infor-

mation between the crisis centre and the mobile devices in the field.

Incidone [Lijnse et al(2012)] consists of incident info, loose dynamic action

lists, data-based suggestions, and task composition. Intended users are coast guard

watch officers in a centralized command centre. During incidents information

about the situation and what is being done to resolve it is collected. All knowledge

of the area comes from contacts outside, or from automated systems like Automat-

ic Identification System. Additionally, Incidone disposes of plans in the form of

hierarchical to-do lists that can be used to coordinate actions to resolve incidents.

WeKnowIT [WeKnowIt(2012), Diplaris et al(2011)] extracts information in

emergency response scenarios (e.g. flooding or fire) from user-generated content.

12 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

Data is gathered from sources, such as emergency response workers at the scene,

the general public observing or through other parties publishing information. The

information is geo-located, either from metadata provided with the images or

through an analysis of textual or visual data generating tags for the information

and displayed on a map. An Emergency Alert service [Ovelgönne et al(2010)]

works as an emergency call agent and informs social contacts and public authori-

ties about the emergency situation. All the events and user interactions are repre-

sented by means of the WeKnowIt core ontology, CURIO1, which defines re-

sources holding user generated content. Likewise, the FP7 EU project PRONTO

[Pronto(2012), Moi and Marterer(2012)] focuses on event recognition for intelli-

gent resource management. It supports the extraction of relevant data from fire

fighter radio chatter. Its semantic data store has an ontology of events defining the

status of the system. Events are gathered from various kinds of sources, such as

hardware devices (e.g. GPS) and user interaction with the system as well as from

audio and video data streams. After aggregation, relevant information is filtered

out for the users calculating events as output.

The ontology described by [Dilo and Zlatanova(2010), Fan and

Zlatanova(2011)] presents a data model for the organization of dynamic data (op-

erational and situational) for emergency response developed within the RGI-239

project ’Geographical Data Infrastructure for Disaster Management’ (GDI4DM).

It is early stage work on the possibility of applying ontologies to resolve the se-

mantic interoperability inherent in emergency management. The model is derived

from the organization of emergency response in the Netherlands investigating the

information flow from processes performed by first responders: fire brigade, par-

amedics, police and municipality. It captures the type of disaster, the involvement

of response sectors including their locations, consequences of the disaster for peo-

ple, animals and infrastructure. The main objective of the model is to enable the

extraction and processing of the information from spatial data sets and its distribu-

tion to different response units.

The novelty of the described approach in this paper is the seamless combination

of a semantic reasoner and an event-based system. Incoming real-time data from

device and sensor measurements during an emergency is updated into a semantic

domain model. The reasoner automatically derives new knowledge from a formal

definition of an emergency response model. Based on the inferred context the

event-based system triggers events and alarms forwarded to the right units.

3 Layered Approach to Context-aware Event-based
Reasoning

The proposed layered approach in this paper supports the advantages of both

worlds of event-based and semantic reasoning. It splits up the reasoning on the

domain model from the application-specific actions.

1 http://socsem.open.ac.uk/ontologies/curio/

Semantic and Event-based Reasoning for Emergency Response 13

Figure 1 presents an overview of the architectural layers of the ASTUTE pro-

ject focusing on the importance of the semantic domain model used by the rest of

the application. The lowest layer consists of the semantic model covering the on-

tological definition of the domain concepts. The layer above, the Context Engine,

encapsulates the translation of the semantic concepts into Java Bean objects. The-

se objects are queried by the Decision Engine which utilizes Drools for the rule-

based reasoning. This enables the transparent use of an actual semantic model by

Drools resulting in triggering rules on the created objects in a timely manner. The

Data Aggregator is responsible for capturing data from devices and sensors and

formatting it as defined by the semantic model using the encapsulated concepts

from the Context Engine.

Figure 1: The layers of the reasoning framework of the ASTUTE project focus-

ing on the importance of the semantic model used by the rest of the application.

The main purpose of the Context Engine is the low level domain model defini-

tion and inference through the use of rules. These rules are responsible for infer-

ring knowledge from new data flowing into the system. The Decision Engine cap-

tures domain knowledge in the form of rules in order to determine which

information needs to be send to whom at what moment. It relies on the Context

Engine for delivering the interpreted raw context data.

4 Enriching a Rule-based Engine with Semantic
Reasoning

This section details the encapsulation of a semantic model into the rule-based rea-

soning of a Drools engine.

4.1 Motivation for Integrating Semantic Reasoning into Rule-based

Engines

Rule-based engines such as Drools [Bali(2009)] use forward chaining providing

an integrated platform for rules, workflows and event processing. However, de-

14 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

spite its light weight paradigm, Drools lacks support for a formal model definition

enabling inference of knowledge at runtime through reasoning on the model.

Semantic technologies support the definition of a domain model by capturing in

a formal way the required context between different parties in a machine-

processable common vocabulary also known as an ontology. A typical ontology

language is OWL (Web Ontology Language) [McGuinness et al(2004)], which is

a well-defined vocabulary for describing a domain having a foundation in descrip-

tion logics. An OWL ontology can be created using the Protégé Editor [Stan-

ford(2011)] which provides support for OWL, RDF and XML Schema enabling

the design of ontologies through a graphical interface. Additional knowledge is

captured using rules defined through SWRL (SemanticWeb Rule Language) ex-

pressions and built-ins (SWRLB) such as comparisons (less/greater than) and

math functions [Horrocks et al(2004)].

This formal domain allows the use of existing frameworks, such as the OWL-

API [Horridge and Bechhofer(2011)] and Jena [Carroll et al(2004)], which pro-

vide a programmatic environment for RDF(S), OWL, SWRL, SPARQL and can

be extended with reasoning engines enabling common operations on ontologies.

Supported description logic reasoners such as Pellet [Sirin et al(2007)] realize the

execution of data transformations, query processing and knowledge inference.

Two main concerns of the semantic approach are that it lacks a definition of

temporal constraints in the SWRL rules and the execution of actions as result of a

rule. The latter is particularly important in case a specific event should be trig-

gered. Therefore, we aim at integrating the benefits of both approaches, a rule-

based engine and a semantic reasoner, into an application supporting the invoca-

tion of events based on an underlying semantic domain model.

4.2 Automatic Java Beans Generation from Semantic Concepts

A main requirement for working with a rule-based engine such as Drools is the

use of Java Beans. It should be possible to define rule conditions on Java objects

in the following way: FireFighter(temperature>39). Due to the Java Bean nature of

the objects, the background query uses the getTemperature method of the Fire-

Fighter object. Our goal is to define concepts such as FireFighter and

BodyTemperature through an ontology in order to enable semantic reasoning and

at the same time trigger Drools rules.

The querying of a semantic domain model usually requires the configuration of

a reasoner such as Pellet and the manual encapsulation of the necessary concepts

into Java classes in order to update and query their properties in a more general

domain independent way. This manual work may be feasible for limited models

but for larger use cases such as an emergency dispatching scenario the amount of

manual work becomes difficult to maintain. Apart from the necessary testing, one

needs to manually update the Java classes each time the ontology changes in order

to keep the system synchronized with the domain model.

Semantic and Event-based Reasoning for Emergency Response 15

We automated this process through the adaptation of the code generation li-

brary of the Protégé Editor2. This tool automatically generates Java classes from

semantic concepts translating their properties into class methods. The translation

of the FireFighter concept having a BodyTemperature property to a Java object

with corresponding convenience methods is presented in Table 1.

Table 1: Translation of semantic concepts and properties to Java classes and

convenience methods.

Semantic Concept Concept property

FireFighter hasBodyTemperature(FireFighter, BodyTemperature)

Java Class Convenience method

FireFighter() List<BodyTemperature> getHasBodyTemperature()

 boolean hasHasBodyTemperature()

 addHasBodyTemperature(BodyTemperature)

 removeHasBodyTemperature(BodyTemperature)

Clearly the translation is nowhere near a Java Bean format and needs additional

tweaking. The requirements from the proposed emergency response approach are:

1. Automatic generation of Java Bean-compliant classes, so that i) the code is

easily updated when the model is updated and ii) the instances of these classes

are consumed by the other architectural components, in particular the Drools

implementation of the Decision Engine.

2. Integration of the Decision Engine into the generated code, so that its rules

are evaluated whenever a Java Bean is updated or the model changes due to

inference by the Pellet reasoner in the Context Engine.

3. Handling automatic classification of the domain concepts as result of neces-

sary conditions or SWRL rules defined in the ontology.

In order to meet these needs, we adapted the code generation as follows:

1. Insertion of additional methods to the code generation template in accordance

to the bean formatting. For example the following methods are automatically

generated for the property hasCommander(FireFighter, Commander) which

specifies that a FireFighter has a Commander:
public interface FireFighter extends User {
 /*
 * Property http://localhost/ASTUTE.owl#hasCommander
 */

 // Gets all values for the hasCommander property.
 Collection<? extends Commander> getAllCommander();

 // Gets the value for the hasCommander property.
 Commander getCommander();

 // Checks if it has a hasCommander property value.
 boolean hasCommander();

 // Adds a hasCommander property value.

2 http://protegewiki.stanford.edu/wiki/Protege-OWL Code Generator

16 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

 void addCommander(Commander newCommander);

 // Removes a hasCommander property value.
 void removeCommander(Commander oldCommander);

 // Sets a hasCommander property value.
 void setCommander(Commander newCommander);
 ...
}

This also shows that all property definitions starting with has are automatical-

ly translated into methods without it. E.g. getBodyTemperature() instead of

getHasBodyTemperature() from the property hasBodyTemperature.

2. Insertion of arguments for each object and data property. E.g. the FireFighter

has an argument Commander additional to the generated methods which can

be queried and updated by the application.

3. Insertion of the Pellet reasoner into the generated code. This enables the que-

rying of the inferred axioms as result of the automatic reasoning on the do-

main model whenever object methods are invoked.

4. Integration of the Decision Engine into the code generation essential during

object updates. This supports the automatic synchronization between the

reasoner and the rule engine. Whenever an object is updated not only the cor-

responding semantic concept in the model is updated, but the Drools engine is

also triggered to evaluate its rules. In this way the changes in the semantic

model are propagated all the way up to Drools.

5. Automatic creation and removal of objects due to classification of concepts

by the Pellet reasoner as result of SWRL rules or necessary conditions.

 A concept is classified by the reasoner through inheritance from an-

other concept as result of a predefined rule. For example, a SWRL

rule can be stating that in case of several conditions such as high

temperature and heart rate a FireFighter is a StressedUser. This means

that the concept FireFighter should also be of the type StressedUser.

As the reasoner automatically infers this in the ontology, the Deci-

sion Engine is also notified through the creation of a StressedUser

out of the FireFighter object.

 Necessary conditions are conditions that a semantic concept must

fulfill and thus inherent to his domain specification. An example of a

necessary condition is hasSolution (FaultyLightSensor,

DoNotUseDataValue) defining that a possible solution to a faulty

light sensor is simply not using its output data. Due to this, the mo-

ment there is an object FaultyLightSensor, the concept

DoNotUseDataValue is automatically created if not present. This en-

ables the Decision Engine to query for solutions to this event in a

similar way the reasoner performs inference.

In case the necessary conditions or classifications disappear, the classified in-

dividuals are removed automatically propagating up to the Decision Engine.

6. Java classes not only extend a specific class but also implement several inter-

faces allowing for multiple concept inheritance as supported by an ontology.

Semantic and Event-based Reasoning for Emergency Response 17

7. All data and object properties lacking a referenced property subject are auto-

matically added to a main super class Thing extended by the rest of the clas-

ses. This resembles the equivalent Java Object class.

The result is the automatic translation of the semantic domain concepts into Ja-

va Beans that are used by Drools just like regular Beans. However, there is a slight

change in the mentioned query: FireFighter(temperature>39). This is not possible

as Temperature is also defined as a semantic concept and thus also translated into a

Java object. In order to retrieve the specific temperature value, one should query

its data property value hasValue and thus use: FireFight-

er(bodyTemperature.getValue()>39). On the other hand, as data properties specify

value type definitions, it is possible to use them in the following way:

BodyTemperature(value>39).

5 Illustrative Example to an Emergency Response
Application

In order to validate the proposed approach, a scenario is designed capturing the

state of a person such as a fire fighter walking through a building on fire. For this

purpose, we developed a basic ontology, partially visualized in Figure 2(a), defin-

ing concepts such as users, devices, medical measurements and the relationships

between them. Figure 2(b) presents the description of a fire fighter that can be a

user having several properties such as location, activities (extinguishing fire), and

medical measurements among which temperature, heart rate, oxygen level. Due to

the specification of several types of context, such as physical, task, medical, one

can define the criticality of a task or the level of a medical measurement. For ex-

ample the activity ExtinguishingFire that is performed by fire fighters is defined as

a Task with High Criticality as specified by the necessary condition below:
class ExtinguishingFire
 Superclasses: Task
 hasCriticality value High

Using these definitions one can define SWRL rules inferring the thresholds for

high temperature or heart rate. The following rule defines that a BodyTemperature

above 38 degrees is High.
BodyTemperature(?bt), hasValue(?bt, ?btv),
greaterThan(?btv, 38) -> hasTemperatureLevel(?bt, High)

We could also specify personalized thresholds per user where one can define a

maximum heart rate specific for each person. The following rule defines a user

HeartRate higher that his personal defined maximum as too High.
HeartRate(?mhr), HeartRate(?uhr), User(?u),
hasHeartRate(?u, ?uhr), hasMaxHeartRate(?u, ?mhr),
hasValue(?mhr, ?mhrv), hasValue(?uhr, ?hrv),
greaterThan(?hrv, ?mhrv) -> hasHeartRateLevel(?uhr, High)

The results from inferring these rules are combined into additional rules. For

example, we can define the rule that a user who performs a highly Critical Task

18 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

having High HeartRate and BodyTemperature and located in a Room with High

RoomTemperature is Stressed.

(a) Partial ontology defining

a user and device context.

(b) Specification of several user properties such

as medical measurements, activity, location.

Figure 2: Basic ontology defining concepts such as users, devices, medical

measurements and the relationships between them.

Activity(?a), hasCriticality(?a, High),
User(?u), hasActivity(?u, ?a),
BodyTemperature(?ht), HeartRate(?hh),
hasBodyTemperature(?u, ?ht), hasHeartRate(?u, ?hh),
hasHeartRateLevel(?hh, High), hasTemperatureLevel(?ht, High),
Room(?r), RoomTemperature(?hr),
hasRoomTemperature(?r, ?hr), hasTemperatureLevel(?hr, High),
hasLocation(?u, ?r) -> isStressed(?u, true)

These rules enable the tracking of a fire fighter’s state during the fire fighting

scenario. The environmental sensors sending various measurements such as tem-

perature, location and heart rate register these values via the Data Aggregator in

the Context Engine. With each new update the Context Engine fires the rules in

the Decision Engine. If the following Drools rule is defined that alerts the com-

mander that the fire fighter is stressed, it will be triggered evaluating the condition

of the fire fighter.
rule "Firefighter stressed"
no-loop
 when
 $p : FireFighter(isStressed==true)

Semantic and Event-based Reasoning for Emergency Response 19

 then
 $hmi.sendMessage($p.getCommander().getName(),
 "Firefighter " + $p.getName() + " is stressed", "ALERT");
end

The moment the Context Engine receives a new update, inferring that the fire

fighter is actually stressed because of for instance elevated heart rate, the Decision

Engine fires this rule and the commander is alerted of his team member’s state.

6 Conclusions

This paper presents a novel approach to an emergency response application used

in scenarios such as performed by a fire department. The approach implements the

integration of a semantic reasoning engine into an event-based system supporting

the use of a formal domain definition. The semantic model describing the users

and device context is used to automatically generate corresponding Java Bean ob-

jects. These objects are consumed by the rest of the application just like normal

objects with the exception that the underlying model is updated together with the

object updates. Additionally, inference on the model performed by the semantic

reasoner is automatically synchronized with the other architectural components re-

sulting in the triggering of events based on scenario specific conditions.

The approach is validated on a fire fighting scenario where the state of a fire

fighter is constantly monitored based on new device and sensor measurements

such as body temperature, heart rate, and location. While the reasoner keeps track

of the fire fighter’s context, the event-based engine issues alerts to the rest of the

team in case his state deteriorates.

Future work should incorporate an extensive evaluation of the proposed scenar-

io consisting of capturing the state of a complete team of fire fighters using real-

time device and sensor readings during an emergency.

Acknowledgement

A. Hristoskova would like to thank the Special Research Fund of Ghent Universi-

ty (BOF) for financial support through her PhD grant. This work is funded by the

ASTUTE project from the ARTEMIS Joint Undertaking, Grant agreement no.:

269334.

References
ASTUTE (2011-2014), Pro-active decision support for data-intensive environments.

http://www.astute-project.eu/ .

Indigo (2012), Crisis Management Solutions. http://indigo.diginext.fr/ .

Pronto (2012), Event Recognition for Intelligent Resource Management. http://www.ict-

pronto.org/ .

SocEDA (2012). SOCial Event Driven Architecture.

http://research.petalslink.org/display/soceda/SocEDA+Overview/ .

20 A. Hristoskova, W. Boffé, T. Tourwé and F. De Turck

WeKnowIt (2012). http://www.weknowit.eu/ .

Bal, H., Kielmann, T., Palmer, N., and Kemp, R., (2012). Interdroid. http://interdroid.net/ .

Bali (2009). Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, Limited.

Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., and Wilkinson, K. (2004).

Jena: implementing the semantic web recommendations. In: 13th International World

Wide Web conference on Alternate track papers & posters, ACM, pp 74–83.

Coates, G., Hawe, G., Wilson, D., and Crouch, R. (2011). Adaptive co-ordinated emergen-

cy response to rapidly evolving large-scale unprecedented events (rescue). In: Proceed-

ings of 8th International Conference on Information Systems for Crisis Response and

Management–ISCRAM.

Dilo, A., and Zlatanova, S. (2010). Data modelling for emergency response.

Diplaris, S., Sonnenbichler, A., Kaczanowski, T., Mylonas, P., Scherp, A., Janik, M., Papa-

dopoulos, S., Ovelgoenne, M., and Kompatsiaris, Y. (2011). Emerging, collective in-

telligence for personal, organisational and social use. Next Generation Data Technolo-

gies for Collective Computational Intelligence pp 527–573.

Endsley, M.R. (1995). Toward a theory of situation awareness in dynamic systems. Human

Factors: The Journal of the Human Factors and Ergonomics Society 37(1): 32–64.

Fan, Z., and Zlatanova, S. (2011). Exploring ontologies for semantic interoperability of data

in emergency response. Applied Geomatics 3(2):109–122.

Horridge, M., and Bechhofer, S. (2011). The owl api: A java api for owl ontologies. Se-

mantic Web 2(1):11–21.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004).

SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/.

Lijnse, B., Jansen, J.M., and Plasmeijer, R. (2012). Incidone: A task-oriented incident coor-

dination tool. In: 9th International Conference on Information Systems for Crisis Re-

sponse and Management.

McGuinness, D., Van Harmelen, F., et al (2004). OWL web ontology language overview.

http://www.w3.org/TR/owl-features/.

Moi, M., and Marterer, R. (2012). An architecture for distributed, event-driven systems to

collect and analyze data in emergency operations and training exercises. In: Proceed-

ings of 8th International Conference on Information Systems for Crisis Response and

Management–ISCRAM.

Ovelgönne, M., Sonnenbichler, A., and Geyer-Schulz, A. (2010). Social emergency alert

service-a location-based privacy-aware personal safety service. In: 2010 Fourth Inter-

national Conference on Next Generation Mobile Applications, Services and Technolo-

gies (NGMAST), IEEE, pp 84–89.

Palmer, N., Kemp, R., Kielmann, T., and Bal, H. (2012). Raven: Using smartphones for

collaborative disaster data collection. In: 9th International Conference on Information

Systems for Crisis Response and Management.

Paraiso, F., Hermosillo, G., Rouvoy, R., Merle, P., Seinturier, L., et al (2012). A middle-

ware platform to federate complex event processing. In: Sixteenth IEEE International

EDOC Conference.

Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical owldl

reasoner.Web Semantics: science, services and agents on theWorldWideWeb 5(2):51–

53.

Stanford University (2011). Protégé, Stanford University. http://protege.stanford.edu/

Tsiporkova, E., Tourwé, T., González-Deleito, N., and Hristoskova, A. (2012). Ontology-

driven Multimodal Interface Design for an Emergency Response Application. Proceed-

ings of the 9th International ISCRAM Conference. Vancouver, Canada, April 2012.

