49 research outputs found

    Evaluation of Dental Surface after De-Bonding Orthodontic Bracket Bonded with a Novel Fluorescent Composite: In Vitro Comparative Study

    Get PDF
    The use of a new fluorescent composite can reduce some of the problems related to procedures of de-bonding orthodontic bracket (enamel damage, dentine lesions, and composite residuals). The aim of the presented study was to compare the effect of fluorescent and conventional non-fluorescent composite on dental surface and composite remnants by in vitro de-bonding tests. De-bonding of florescent composite (DFC) and the de-bonding of standard composite (DSC) were performed by operators on an in vitro sample of 48 teeth under UV light (360–370 nm min 20 mW/cm2). Modified ARI (Adhesive Remnant Index), scored under 5.0×/235 magnification, was used for evaluation of dental surface after the procedure, and the duration required for de-bonding was measured. Significant differences in ARI between the two groups were observed (Pearson two-tailed p = 0.006 1.4 ± 0.1 95% C.I.), and the average duration of de-bonding was 38 s (DFC) and 77 s (DSC) per tooth, respectively (Mann–Whitney test p = 0.015; 57.7 ± 19.9 95% C.I.). The use of fluorescent composite could significantly improve the quality of de-bonding by reducing the quantity of composite residuals and visible enamel damage, while reducing time needed for successful procedure performance

    Women in Aerospace in India: Aerowoman

    Get PDF
    The main objective of the seminar was to bring together the Indian women in the field of aerospace and identify their scientific and technical contributions. In this context, the seminar was perhaps the first of its kind held in India. It was also aptly conducted in the x2018;Womenx2019;s Empowerment Year x2013; 2001x2019; declared by the Govt. of India.13

    Peridynamic modelling of cracking in TRISO particles for high temperature reactors

    Get PDF
    A linear-elastic computer simulation (model) for a single particle of TRISO fuel has been built using a bond-based peridynamic technique implemented in the finite element code ‘Abaqus’. The model is able to consider the elastic and thermal strains in each layer of the particle and to simulate potential fracture both within and between layers. The 2D cylindrical model makes use of a plane stress approximation perpendicular to the plane modelled. The choice of plane stress was made by comparison of 2D and 3D finite element models. During an idealised ramp to normal operating power for a kernel of 0.267 W and a bulk fuel temperature of 1305 K, cracks initiate in the buffer near to the kernel-buffer interface and propagate towards the buffer-iPyC coating interface, but do not penetrate the iPyC and containment of the fission products is maintained. In extreme accident conditions, at around 600% (1.60 W) power during a power ramp at 100% power (0.267 W) per second, cracks were predicted to form on the kernel side of the kernel-buffer interface, opposite existing cracks in the buffer. These were predicted to then only grow further with further increases in power. The SiC coating was predicted to subsequently fail at a power of 940% (2.51 W), with cracks formed rapidly at the iPyC-SiC interface and propagating in both directions. These would overcome the containment to fission gas release offered by the SiC ‘pressure vessel’. The extremely high power at which failure was predicted indicates the potential safety benefits of the proposed high temperature reactor design based on TRISO fuel

    Peridynamic modelling of cracking in TRISO particles for high temperature reactors

    Get PDF
    A linear-elastic computer simulation (model) for a single particle of TRISO fuel has been built using a bond-based peridynamic technique implemented in the finite element code ‘Abaqus’. The model is able to consider the elastic and thermal strains in each layer of the particle and to simulate potential fracture both within and between layers. The 2D cylindrical model makes use of a plane stress approximation perpendicular to the plane modelled. The choice of plane stress was made by comparison of 2D and 3D finite element models. During an idealised ramp to normal operating power for a kernel of 0.267 W and a bulk fuel temperature of 1305 K, cracks initiate in the buffer near to the kernel-buffer interface and propagate towards the buffer-iPyC coating interface, but do not penetrate the iPyC and containment of the fission products is maintained. In extreme accident conditions, at around 600% (1.60 W) power during a power ramp at 100% power (0.267 W) per second, cracks were predicted to form on the kernel side of the kernel-buffer interface, opposite existing cracks in the buffer. These were predicted to then only grow further with further increases in power. The SiC coating was predicted to subsequently fail at a power of 940% (2.51 W), with cracks formed rapidly at the iPyC-SiC interface and propagating in both directions. These would overcome the containment to fission gas release offered by the SiC ‘pressure vessel’. The extremely high power at which failure was predicted indicates the potential safety benefits of the proposed high temperature reactor design based on TRISO fuel

    Mechanical modeling of initiation of localized yielding under plane stress conditions in rigid-rigid polymer alloys

    Full text link
    Two-dimensional Finite Element Method simulations, which involve consideration of the nonlinearity of a material, have been conducted to gain understanding about the rigid-rigid polymer toughening concept we proposed. The simulation results for the plane stress condition indicate that as long as the inclusion phase possesses (i) a 60% difference in the tangent modulus from that of the matrix at any given strain level prior to failure or (ii) smaller yield or craze stain than the yield strain of the matrix, then, localized shear yielding will occur around the inclusion. A toughened rigid-rigid polymer alloy system can then be obtained. The plain strain case is also discussed with an implementation of the rigid-rigid polymer toughening concept.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38110/1/760311106_ftp.pd

    Clinical Evaluation of a Universal Adhesive in Non-Carious Cervical Lesions

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The “total-etch” or “etch-and-rinse” systems have been the gold standard of dental bonding for decades. However, these systems are very technique-sensitive and time-consuming compared to newer “self-etch” or “self-adhesive” systems and have been implicated in cases of postoperative sensitivity. The purpose of this study was to compare the effects of two surface treatment protocols (self-etch vs. selective-etch) on the clinical performance of a universal adhesive and resin composite in Class V non-carious cervical lesions (NCCLs). Thirty-three volunteer subjects (17 male; 16 female; age range = 20 to 75 years) having at least two NCCLs were selected from patients of record at Indiana University School of Dentistry. Each subject received one resin composite restoration (Tetric EvoCeram, Ivoclar Vivadent) utilizing a self-etch (SfE) universal adhesive (Adhese Universal, Ivoclar Vivadent) with no separate enamel etching and another restoration utilizing adhesive and selective enamel etching (SelE) with 37% phosphoric acid (H3PO4). Both the adhesive and composite were placed following the manufacturer’s instructions. The two techniques were compared for differences in sensitivity, retention, marginal discoloration, marginal adaptation, and clinical acceptability at baseline and 6 months using the Cochran-Mantel-Haenszel tests for stratified, ordered categorical outcomes. Seventy-four restorations (37 SfE, 37 SelE) in 30 volunteers were evaluated at 12 months. No significant differences were found between the SfE and SelE groups for any variable at the 12-month recall (p>0.21). Retention was 100% at 12 months for both groups. Marginal adaptation was significantly worse at 12 months than at baseline for SelE (p=0.0163), but there was no difference for SfE (p=0.08). Sensitivity improved significantly from baseline to 12 months for both SelE (p=0.0113) and SfE (p=0.0128). The results obtained from this study are comparable to results observed in similar studies. Like similar studies involving self-etch adhesives in non-carious cervical lesions, our study showed no restorations lost to caries and excellent retention. The deterioration of selective-etch dentin margins was a result that differed from similar studies. A likely explanation for this finding would be the difficulty of controlling precise placement of phosphoric acid gel, causing undesired etching of dentin; this could result in suboptimal bonding to dentin. This report on 12-month data for a two-year study indicates significantly reduced sensitivity for both the SelE and SfE groups, and deterioration of SelE marginal adaptation. No decreases in retention, marginal discoloration, or clinical acceptability were observed in either group

    The ACEE program and basic composites research at Langley Research Center (1975 to 1986): Summary and bibliography

    Get PDF
    Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft
    corecore