445 research outputs found

    TRUSTING CROWDSOURCED GEOSPATIAL SEMANTICS

    Get PDF

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Characterization and uncertainty analysis of siliciclastic aquifer-fault system

    Get PDF
    The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana, USA, is fluvial in origin. The east-west trending Baton Rouge fault and Denham Springs-Scotlandville fault cut across East Baton Rouge Parish and play an important role in groundwater flow and aquifer salinization. To better understand the salinization underneath Baton Rouge, it is imperative to study the hydrofacies architecture and the groundwater flow field of the Baton Rogue aquifer-fault system. This is done through developing multiple detailed hydrofacies architecture models and multiple groundwater flow models of the aquifer-fault system, representing various uncertain model propositions. The hydrofacies architecture models focus on the Miocene-Pliocene depth interval that consists of the “1,200-foot” sand, “1,500-foot” sand, “1,700-foot” sand and the “2,000-foot” sand, as these aquifer units are classified and named by their approximate depth below ground level. The groundwater flow models focus only on the “2,000-foot” sand. The study reveals the complexity of the Baton Rouge aquifer-fault system where the sand deposition is non-uniform, different sand units are interconnected, the sand unit displacement on the faults is significant, and the spatial distribution of flow pathways through the faults is sporadic. The identified locations of flow pathways through the Baton Rouge fault provide useful information on possible windows for saltwater intrusion from the south. From the results we learn that the “1,200-foot” sand, “1,500-foot” sand and the “1,700-foot” sand should not be modeled separately since they are very well connected near the Baton Rouge fault, while the “2,000-foot” sand between the two faults is a separate unit. Results suggest that at the “2,000-foot” sand the Denham Springs-Scotlandville fault has much lower permeability in comparison to the Baton Rouge fault, and that the Baton Rouge fault plays an important role in the aquifer salinization

    Seismic reverse-time migration in viscoelastic media

    Get PDF
    Seismic images are key to exploration seismology. They help identify structures in the subsurface and locate potential reservoirs. However, seismic images suffer from the problem of low resolution caused by the viscoelasticity of the medium. The viscoelasticity of the media is caused by the combination of fractured solid rock and fluids, such as water, oil and gas. This viscoelasticity of the medium causes attenuation of seismic waves, which includes energy absorption and velocity dispersion. These two attenuation effects significantly change the seismic data, and thus the seismic imaging. The aim of this thesis is to deepen the understanding of seismic wave propagation in attenuating media and to further investigate the method for high-resolution seismic imaging. My work, presented in this dissertation, comprises the following three parts. First, the determination of the viscoelastic parameters in the generalised viscoelastic wave equation. The viscoelasticity of subsurface media is succinctly represented in the generalised wave equation by a fractional temporal derivative. This generalised viscoelastic wave equation is characterised by the viscoelastic parameter and the viscoelastic velocity, but these parameters are not well formulated and therefore unfavourable for seismic implementation. The causality and stability of the generalised wave equation are proved by deriving the rate-of-relaxation function. On this basis, the viscoelastic parameter is formulated based on the constant Q model, and the viscoelastic velocity is formulated in terms of the reference velocity and the viscoelastic parameter. These two formulations adequately represent the viscoelastic effect in seismic wave propagation. Second, the development of a fractional spatial derivatives wave equation with a spatial filter. This development aims to effectively and efficiently solve the generalised viscoelastic wave equation with fractional temporal derivative, which is numerically challenging. I have transferred the fractional temporal derivative into fractional spatial derivatives, which can be solved using the pseudo-spectral implementation. However, this method is inaccurate in heterogeneous media. I introduced a spatial filter to correct the simulation error caused by the averaging in this implementation. The numerical test shows that the proposed spatial filter can significantly improve the accuracy of the seismic simulation and maintain high efficiency. Moreover, the proposed wave equation with fractional spatial derivatives is applied to compensate for the attenuation effects in reverse-time migration. This allows the dispersion correction and energy compensation to be performed simultaneously, which improves the resolution of the migration results. Finally, the development of reverse-time migration using biaxial wavefield decomposition to reduce migration artefacts and further improve the resolution of seismic images. In reverse-time migration, the cross-correlation of unphysical waves leads to large artefacts. By decomposing the wavefield both horizontally and vertically, and selecting only the causal waves for cross-correlation, the artefacts are greatly reduced, and the delicate structures can be identified. This decomposition method is also suitable for reverse-time migration with attenuation compensation. The migration results show that the resolution of the final seismic image is significantly improved, compared to conventional reverse-time migration.Open Acces

    Ultra-high-resolution optical imaging for silicon integrated-circuit inspection

    Get PDF
    This thesis concerns the development of novel resolution-enhancing optical techniques for the purposes of non-destructive sub-surface semiconductor integrated-circuit (IC) inspection. This was achieved by utilising solid immersion lens (SIL) technology, polarisation-dependent imaging, pupil-function engineering and optical coherence tomography (OCT). A SIL-enhanced two-photon optical beam induced current (TOBIC) microscope was constructed for the acquisition of ultra-high-resolution two- and three-dimensional images of a silicon flip-chip using a 1.55μm modelocked Er:fibre laser. This technology provided diffraction-limited lateral and axial resolutions of 166nm and 100nm, respectively - an order of magnitude improvement over previous TOBIC imaging work. The ultra-high numerical aperture (NA) provided by SIL-imaging in silicon (NA=3.5) was used to show, for the first time, the presence of polarisation-dependent vectorialfield effects in an image. These effects were modelled using vector diffraction theory to confirm the increasing ellipticity of the focal-plane energy density distribution as the NA of the system approaches unity. An unprecedented resolution performance ranging from 240nm to ~100nm was obtained, depending of the state of polarisation used. The resolution-enhancing effects of pupil-function engineering were investigated and implemented into a nonlinear polarisation-dependent SIL-enhanced laser microscope to demonstrate a minimum resolution performance of 70nm in a silicon flip-chip. The performance of the annular apertures used in this work was modelled using vectorial diffraction theory to interpret the experimentally-obtained images. The development of an ultra-high-resolution high-dynamic-range OCT system is reported which utilised a broadband supercontinuum source and a balanced-detection scheme in a time-domain Michelson interferometer to achieve an axial resolution of 2.5μm (in air). The examination of silicon ICs demonstrated both a unique substrate profiling and novel inspection technology for circuit navigation and characterisation. In addition, the application of OCT to the investigation of artwork samples and contemporary banknotes is demonstrated for the purposes of art conservation and counterfeit prevention

    Numerical Simulations

    Get PDF
    This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation

    Air Force Institute of Technology Research Report 2003

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 278)

    Get PDF
    This bibliography lists 414 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1992

    Assisted history matching using pattern recognition technology

    Get PDF
    Reservoir simulation and modeling is utilized throughout field development in different capacities. Sensitivity analysis, history matching, operations optimization and uncertainty assessment are the conventional analyses in full field model studies. Realistic modeling of the complexities of a reservoir requires a large number of grid blocks. As the complexity of a reservoir increases and consequently the number of grid blocks, so does the time required to accomplish the abovementioned tasks.;This study aims to examine the application of pattern recognition technologies to improve the time and efforts required for completing successful history matching projects. The pattern recognition capabilities of Artificial Intelligence and Data Mining (AI&DM;) techniques are used to develop a Surrogate Reservoir Model (SRM) and use it as the engine to drive the history matching process. SRM is a prototype of the full field reservoir simulation model that runs in fractions of a second. SRM is built using a small number of geological realizations.;To accomplish the objectives of this work, a three step process was envisioned:;• Part one, a proof of concept study: The goal of first step was to prove that SRM is able to substitute the reservoir simulation model in a history matching project. In this part, the history match was accomplished by tuning only one property (permeability) throughout the reservoir.;• Part two, a feasibility study: This step aimed to study the feasibility of SRM as an effective tool to solve a more complicated history matching problem, particularly when the degrees of uncertainty in the reservoir increase. Therefore, the number of uncertain reservoir properties increased to three properties (permeability, porosity, and thickness). The SRM was trained, calibrated, and validated using a few geological realizations of the base reservoir model. In order to complete an automated history matching workflow, the SRM was coupled with a global optimization algorithm called Differential Evolution (DE). DE optimization method is considered as a novel and robust optimization algorithm from the class of evolutionary algorithm methods.;• Part three, a real-life challenge: The final step was to apply the lessons learned in order to achieve the history match of a real-life problem. The goal of this part was to challenge the strength of SRM in a more complicated case study. Thus, a standard test reservoir model, known as PUNQ-S3 reservoir model in the petroleum engineering literature, was selected. The PUNQ-S3 reservoir model represents a small size industrial reservoir engineering model. This model has been formulated to test the ability of various methods in the history matching and uncertainty quantification. The surrogate reservoir model was developed using ten geological realizations of the model. The uncertain properties in this model are distributions of porosity, horizontal, and vertical permeability. Similar to the second part of this study, the DE optimization method was connected to the SRM to form an automated workflow in order to perform the history matching. This automated workflow is able to produce multiple realizations of the reservoir which match the past performance. The successful matches were utilized to quantify the uncertainty in the prediction of cumulative oil production.;The results of this study prove the ability of the surrogate reservoir models, as a fast and accurate tool, to address the practical issues of reservoir simulation models in the history matching workflow. Nevertheless, the achievements of this dissertation are not only aimed at the history matching procedure, but also benefit the other time-consuming operations in the reservoir management workflow (such as sensitivity analysis, production optimization, and uncertainty assessment)

    NASA Tech Briefs, November 1993

    Get PDF
    Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore