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Abstract 

 

Seismic images are key to exploration seismology. They help identify structures in the 

subsurface and locate potential reservoirs. However, seismic images suffer from the problem 

of low resolution caused by the viscoelasticity of the medium. The viscoelasticity of the media 

is caused by the combination of fractured solid rock and fluids, such as water, oil and gas. This 

viscoelasticity of the medium causes attenuation of seismic waves, which includes energy 

absorption and velocity dispersion. These two attenuation effects significantly change the 

seismic data, and thus the seismic imaging.  

The aim of this thesis is to deepen the understanding of seismic wave propagation in 

attenuating media and to further investigate the method for high-resolution seismic imaging. 

My work, presented in this dissertation, comprises the following three parts.  

First, the determination of the viscoelastic parameters in the generalised viscoelastic wave 

equation. The viscoelasticity of subsurface media is succinctly represented in the generalised 

wave equation by a fractional temporal derivative. This generalised viscoelastic wave equation 

is characterised by the viscoelastic parameter and the viscoelastic velocity, but these parameters 

are not well formulated and therefore unfavourable for seismic implementation. The causality 

and stability of the generalised wave equation are proved by deriving the rate-of-relaxation 

function. On this basis, the viscoelastic parameter is formulated based on the constant Q model, 

and the viscoelastic velocity is formulated in terms of the reference velocity and the viscoelastic 

parameter. These two formulations adequately represent the viscoelastic effect in seismic wave 

propagation. 

Second, the development of a fractional spatial derivatives wave equation with a spatial 

filter. This development aims to effectively and efficiently solve the generalised viscoelastic 
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wave equation with fractional temporal derivative, which is numerically challenging. I have 

transferred the fractional temporal derivative into fractional spatial derivatives, which can be 

solved using the pseudo-spectral implementation. However, this method is inaccurate in 

heterogeneous media. I introduced a spatial filter to correct the simulation error caused by the 

averaging in this implementation. The numerical test shows that the proposed spatial filter can 

significantly improve the accuracy of the seismic simulation and maintain high efficiency. 

Moreover, the proposed wave equation with fractional spatial derivatives is applied to 

compensate for the attenuation effects in reverse-time migration. This allows the dispersion 

correction and energy compensation to be performed simultaneously, which improves the 

resolution of the migration results. 

Finally, the development of reverse-time migration using biaxial wavefield decomposition 

to reduce migration artefacts and further improve the resolution of seismic images. In reverse-

time migration, the cross-correlation of unphysical waves leads to large artefacts. By 

decomposing the wavefield both horizontally and vertically, and selecting only the causal 

waves for cross-correlation, the artefacts are greatly reduced, and the delicate structures can be 

identified. This decomposition method is also suitable for reverse-time migration with 

attenuation compensation. The migration results show that the resolution of the final seismic 

image is significantly improved, compared to conventional reverse-time migration. 
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Chapter 1  

Background 

 

 

 

1.1 Motivation 

Seismic exploration is the main method of locating and exploring oil and gas reservoirs. 

Generally, seismic exploration includes three major steps, seismic data acquisition, processing, 

and interpretation. In the processing of the seismic data, migration is an essential method to 

generate the subsurface image based on the acquired data, and to clearly present the spatial 

patterns of subsurface structures. High-resolution seismic images are normally required for 

detailed descriptions of oil and gas reservoirs, and for the determination of the heterogeneities 

of the rocks, such as the variation of fluid content and porosity. Additionally, the quality of 

migration images directly influences the reliability and accuracy of the subsequent seismic 

interpretation. Therefore, the resolution and fidelity of migration images are of great 

importance in the seismic exploration industry. Although the development of new acquisition 

methods for high-resolution seismic data is important, significant benefits can be obtained by 

developing methods that can improve the resolution of the existing seismic dataset or the new 

dataset acquired by the existing systems. This thesis discusses one of the aspects of resolution 

enhancement, reverse time migration with attenuation compensation. 
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Viscoelasticity is an intrinsic property of earth media, which is due to the presence of 

fractured rocks, fluids, and gases. The viscoelasticity of earth media attracts a lot of research 

attention because this property is regarded as an indicator of hydrocarbons, such as potential 

oil and gas reservoirs, which provide crucial energy for the development of modern society. 

This property alters the phase and amplitude information of the seismic data. Specifically, the 

amplitude of the seismic waves decreases, and the original wavelet is modified, delayed, and 

stretched during the propagation. Thus, the recorded data shows weak amplitudes and 

broadened wavelet, leading to a low signal-to-noise ratio, considering the noise from the 

acquisition and production cannot be effectively removed. This low signal-to-noise ratio 

subsequently has a great impact on seismic images. Inaccurate and low-resolution seismic 

images will greatly hinder the seismic interpretation and subsequently harm the exploration. 

Therefore, considering that seismic attenuating effects significantly change seismic data, 

accurate seismic simulation in viscoelastic media is of great theoretical importance. Further, 

improving the quality of seismic migration images for attenuation zones is practically valuable, 

which greatly benefits seismic interpretation and subsequent production.  

The ultimate purpose of reverse time migration with attenuation compensation is to 

improve the signal-to-noise ratio and enhance the resolution of the migration images. There are 

two aspects involved. First, improving the useful information of the migration image, by 

compensating the attenuation effects. Second, reducing the noise during the migration process. 

With the development of these two aspects, the resolution of the migration images can be 

improved. 

1.2 The viscoelasticity and the fractional derivative 

When seismic waves propagate through the viscoelastic media, there are two fundamental 

attenuation effects associated: energy absorption and velocity dispersion. Energy absorption 
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means the seismic wave energy losses, or converts to heat, irreversibly, due to the intrinsic 

fraction of the media particles. This energy loss is frequency-dependent, which denotes that 

the energy dissipation of a high-frequency wave component is stronger than that of a low-

frequency one. Velocity dispersion means that different frequency waves propagate at different 

phase velocities, that is, the high frequencies travel faster than the low frequencies, and the 

phase of the wavelet varies during propagation. Therefore, a proper stress-strain relation should 

be used to describe this frequency-dependent attenuation. 

The stress-strain relation of viscoelastic media can be mathematically described in a form 

of a fractional time derivative, which can be generalised from the well-established theories. For 

an ideal elastic media, the well-known Hooke’s law describes a linear relationship between 

stress and strain as  

 ( ) ( )t E t = , (1.1) 

where ( )t  is the stress, ( )t  is the strain and E  is Young’s modulus. Eq. (1.1) can be viewed 

as the stress is related to the zero order of the time derivative of the strain. For an ideal viscous 

media, the Newtonian fluid law states that the stress is linearly related to the first-order time 

derivative of the strain as: 

 
d ( )

( )
d

t
t

t


 = , (1.2) 

where   is the viscosity coefficient. The viscoelasticity should behave in an intermediate state 

between the elasticity and the viscosity. Therefore, the stress-strain relation is generalised in a 

form of a fractional time derivative as,  

 
1 d ( )

( )
d

t
t E

t


 




 −= , (1.3) 

where   is an interpolation coefficient between zero and one. The order of the fractional time 

derivative,  , decides the magnitude of the attenuation. 
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The fractional-time-derivative form of the stress-strain relation was first introduced by 

Caputo (1967). which introduced a causal creep function that is proportional to the time power. 

The creep function describes the variation of strain when a unit step of stress is applied, and 

this time-dependent property is consistent with the viscous materials. In the frequency domain, 

this creep function produces a complex modulus that is proportional to the fractional power of 

the frequency, which accurately describes the frequency dependency of the attenuation. This 

complex modulus is consistent with the observations that stiffness and damping properties of 

viscoelastic materials are often proportional to fractional powers of frequency. Subsequently, 

the relaxation function, which represents the stress that results from a unit step in strain, can be 

derived, and this relaxation function is inversely proportional to the time power, which 

demonstrates that the material relaxation vanished along with the increasing time. Additionally, 

the causal form of these two functions indicates the causality of the viscoelastic material as 

well, which is a basic requirement for stress-strain relations. The causality, the time-dependent 

damping mechanism, and the frequency dependency of the complex modulus, demonstrate the 

rationales of the fractional-time-derivative stress-strain relation. 

Physically, the stress-strain relation in the form of a fractional time derivative can be 

viewed as a complex system of the combination of basic elements, which are springs, that 

represent an elastic response, and dashpots, that represent a viscous response. Some early 

attempts only consider the combination of a single spring and a dashpot, such as the Kelvin-

Voigt model (Figure1.1a) and the Maxwell body (Figure 1.1b). However, the attenuation of 

seismic waves in sedimentary rocks, such as in a hydrocarbon reservoir, is not likely to be 

caused by a single mechanism, which can be demonstrated by the fact that the attenuation 

dispersion curve exhibits several peaks (Liu & Greenhalgh 2019). Additionally, the 

sedimentary rocks have an obvious heterogeneous distribution of characteristic length scales  
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Figure 1.1 The simple combination of the basic mechanical elements. (a) The Kelvin-Voigt 

Model; (b) the Maxwell Model. “E” represent an elastic spring and “η” represent a viscous 

dashpot. These models cannot properly represent the complex relaxation mechanism in 

fractured rock attenuation. 

 

 

Figure 1.2 One of the fractional models proposed by Xing & Zhu (2018). The fractional models 

can better describe the frequency-dependency of the relaxation mechanism. 

 

that result in broader attenuation curves, even when only a single mechanism is considered, 

such as only the porous flow mechanism or patchy saturation mechanism. These complex 

behaviours cannot be represented by a single combination of the basic mechanical elements. 

Compared with the simple combination of the basic elements, this fractional-derivative system 

can be regarded as a complex combination of the basic mechanical elements. For example, 

Xing & Zhu (2018) introduced a fractal mechanical network (Figure 1.2) to describe 

rheological mechanisms and further proposed a corresponding fractional derivative wave 
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equation. Thus, the fractional-derivative form of stress-strain relation can better describe the 

complex mechanisms of the rocks and present the reasonable frequency dependency of the 

attenuation. 

Furthermore, the fractional-time-derivative stress-strain relation can produce an explicit 

form of the quality factor, which is a key variable to quantify attenuation. A detailed 

demonstration of the quality factor is introduced in the next section. For the fractional time 

derivative, its order represents the viscosity of the viscoelastic media, i.e., the attenuation 

magnitude, and this fractional order is a monotonic function of the quality factor. This explicit 

mapping relation between the fractional order and the quality factor leads to the convenience 

to evaluate the viscosity of the media, further allowing for the subsequent applications, such as 

seismic simulation, inverse Q filtering, or attenuation compensation migration.  

It should be noted that the fractional order and the inverse of the quality factor, 1Q− , which 

usually represents the magnitude of the attenuation, are not strictly linearly related, because the 

quality factor is theoretically frequency-dependent, while the fractional order is frequency-

independent. The fractional order is more sensitive to the same quality factor perturbation in 

strong attenuative media than in weak attenuative media. This conclusion is also consistent 

with the field data measurements. On the other hand, the fractional order can be determined by 

the quality factor, which can be obtained by Q analysis or laboratory measurements. Therefore, 

with an accurate quality factor model, the fractional-time-derivative stress-strain relation can 

represent the attenuation properties in viscoelastic media reasonably. 

To briefly conclude, the fractional-time-derivative stress-strain relation can describe the 

frequency-dependent attenuation and produce an explicit quality factor. Therefore, the 

fractional time derivative is widely adopted in various viscoelastic models for theoretical 

analysis and numerical simulation, such as the constant Q model (Kjartansson, 1979), the 

Strick-Azimi model (Y. Wang 2008), and the generalized viscoelastic model (Y. Wang, 2016). 
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Combining the fractional-time-derivative stress-strain relation, the strain-velocity-

displacement equation, and Newton’s second law, the viscoelastic wave equation may be 

derived in a form of a fractional time derivative accordingly. This viscoelastic wave equation 

can describe the seismic wave propagation in viscoelastic media accurately. 

1.3 The quality factor 

The viscoelasticity of the media causes the disturbance of the wavelets. For a plane sinusoidal 

scalar wave travelling through viscoelastic media, the attenuation is often quantitively 

described by quality factor Q, defined as 

 
p

d

2
E

Q
E

=  (1.4) 

where pE  denotes the preserved wave energy and 
dE  denotes the dissipated energy in a single 

cycle of wave propagation. Therefore, its reciprocal, Q-1, represents the magnitude of the 

attenuation. The Q-1 factor may also be defined equivalently as the tangent of the stress and 

strain phase lag, which is related to the modulus.  

There are two associated attenuation effects due to the quality factor, the energy absorption 

and the frequency dispersion. The energy absorption is measured by the attenuation coefficient, 

which shows a power discrepancy of the quality factor in general. Some laboratory experiments 

and field data measurements demonstrate an approximate linear dependency of the attenuation 

and quality factor. Considering this linear relation, the attenuation coefficient can be 

determined directly by the wavelength (Y. Wang 2008b): 

 
( )

( )
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  dB /
ln10 Q


 =  (1.5) 
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where   is the attenuation coefficient,   is the wavelength. Equation (1.5) demonstrates that 

the attenuation coefficient is approximately 127.3Q−  per wavelength, which validates the 

frequency dependency of the attenuation.  

The frequency dispersion is normally more obvious at high record times with deep 

reflectors, where there is an obvious inconsistency between the synthetic seismic trace and 

recorded data. The frequency dispersion is represented normally by the phase velocity, which 

physically means the velocity that the phase of a specific frequency component is transmitted 

at. In the viscoelastic media, the high-frequency components have larger phase velocities than 

the low frequencies, leading to the deformation and delay of the wavelet. The phase velocity is 

also related to the quality factor, as in strong attenuative media, where Q is small, the variation 

in the targeted frequency band is more significant than in the weak attenuative media. 

The attenuation and the dispersion should be present simultaneously, according to the 

principle of causality (Aki & Richards 1980). In other words, the dispersion must accompany 

absorption. The dispersion (phase velocity) and absorption (attenuation coefficient) should 

have an Hilbert transform relationship, which is referred as the Kramers-Kronig relation 

(Futterman 1962): 

 ( )( )
( )v v

 
 

 

− = −H ,                         (1.6) 

where ( )H  denotes the Hilbert transform, and v  is the unrelaxed velocity. This theoretical 

relation agrees well with the experimental data (Y. Wang 2008b), and this relation is often used 

to verified the viscoelastic models. 

In the aspect of rock physics, this attenuation is mainly due to inner energy loss, including 

friction, fluid movement, and viscosity relaxation. There are several mechanisms for this 

energy loss, such as Biot theory, Gassmann theory, and patchy theory (Mavko et al. 1998). 

Generally, these theories both consider the fluid in rocks to have viscous and inertial properties, 
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and the fluid and rock particles have different-phase movement when seismic waves propagate 

through the media, and this different-phase movement leads to dispersion and attenuation. 

Simultaneously, when seismic waves propagate in the fractured rock, the saturability and 

porosity vary, causing the redistribution of the fluid. This variation and the fluid redistribution 

also cause different attenuation property of the media.  

Thus, due to the fact that the quality factor is closely dependent on the physical properties 

of the media, such as porosity, fluid viscosity, and stress state, it already has a number of 

applications in the exploration geophysics. For example, the variation of Q can reflect the fluid 

property change, which can be used to evaluate the potential state for the fluid-filled rocks. 

Additionally, the potential fluid presence can be estimated by the quality factor, due to the 

quality factor of saturated rocks is much smaller than that of dry solid rocks, which is used to 

located the oil and gas reservoirs. In this thesis, I consider the attenuation property of the media 

as a whole while ignoring the detailed attenuation mechanism of the rock, to better understand 

the seismic wave propagation in viscoelastic media.  

For subsurface media, the propagation of different frequency waves is related to the 

different mechanisms of internal fluid flow, and attenuation is usually frequency-dependent. 

Therefore, the quality factor is also frequency dependent, especially for the broad frequency 

band (e.g. Sams et al. 1997, Molyneux & Schmitt 2000, Adam et al. 2009, Borgomano et al. 

2017). The mechanism of this frequency dependency can be described as when the solid 

skeleton is compressed by seismic waves, the viscous force occurs in the pores, and it 

diminishes exponentially along with the distance to the solid-fluid interfaces. This viscous 

force allows the different movement of the rock and fluid, and further leads to attenuation. And 

this viscous force is related to frequency. When the frequency of seismic waves is low, the 

viscous-force affected area is small compared with the pores’ radius, leading to small 

attenuation and dispersion. 
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In seismic application, a small dissipation assumption is normally adopted, which is often 

referred as the weak attenuation assumption. This assumption states that the quality factor is 

normally large, and 1 1Q−  in geophysical application. This small dissipation assumption is 

valid under the most condition of the interest in geophysics (Futterman 1962; Y. Wang 2008b). 

Under this assumption, the relation between the quality factor, the attenuation coefficient and 

phase velocity can be approximated as 

 ( )
2 ( ) ( )

Q
v




  
 ,                         (1.7) 

where the absolute value is to keep a positive quality factor. Eq. (1.7) can be used to estimate 

the frequency-dependent quality factor. 

However, some laboratory and field measurements prove that the earth materials exhibit a 

nearly constant Q behaviour over a limited frequency band (e.g., McDonal et al. 1958), which 

means the quality factor Q can be regarded as a frequency-independent variable. This 

frequency-independent Q model is rational for the seismic application, because the frequency 

band of the seismic waves is relatively low and limited, usually no more than 500 Hz, and the 

quality factor Q in the targeted frequency band is generally stable. In this thesis, only this 

frequency-independent Q is considered because it has been proven that this frequency-

independent Q is practically useful in seismological modelling and imaging applications.  

It should be noted that the quality factor Q is also related to the wave property, which 

means that different waves will have different quality factors when propagating through the 

same viscoelastic media. For example, the quality factor of the S wave is normally less than its 

P-wave counterpart. In this thesis, I only consider the acoustic case, as it is very common in 

marine seismic surveys, where only the pressure can be propagated and the shear stress cannot 

be conveyed. Theoretically, the acoustic wavefield is scalar, which can be viewed as the basis 

to investigate the seismic wave propagation law. Additionally, the media is assumed to be 
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isotropic, which is also a common simplification. With a deep understanding of the wave 

propagation law in attenuative acoustic and isotropic media, it can benefit the future expansion 

of anisotropic and vector wavefields. I only consider the intrinsic Q, instead of scattering Q, as 

the scattering waves are not considered. 

The discussion in this thesis is model-based, which assumes that the quality factor model 

is accurate. The establishment of the accurate Q model is a prerequisite of seismic simulation 

and subsequent imaging.  

1.4 Overview 

This thesis aims to develop the viscoelastic theory for seismic wave propagation in attenuating 

media and to further investigate the method for high-resolution seismic migration imaging. 

This thesis is organized as follows: 

Chapter 2 gives a literature review regarding this thesis and demonstrates the current 

research gaps. Firstly, the development of viscoelastic theories is reviewed, which leads to the 

conclusion that the generalised viscoelastic wave equation is accurate to represent 

viscoelasticity. Then, considering the implementation, the numerical methods are reviewed to 

introduce the issue that the original generalised wave equation is unsuitable for seismic 

simulation. Also, the subsequent techniques for attenuation compensation in reverse-time 

migration are reviewed. Finally, to improve the signal-to-noise ratio of migration images, the 

artefacts elimination methods are briefly introduced, which leads to the validity and the 

superiority of wavefield decomposition in reverse-time migration. 

Chapter 3 focuses on the determination of physical parameters in the generalised 

viscoelastic wave equation. This generalised viscoelastic wave equation is characterized by the 

viscoelastic parameter and the viscoelastic velocity, but these parameters are not well 

formulated and therefore unfavourable for seismic implementation. Here, the generalised wave 
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equation is proven to be causal and stable by deriving the explicit form of the rate-of-relaxation 

function. Causality and stability are two necessary conditions for the applicability of the wave 

equation in seismic simulations. On this basis, the physical parameters are established for the 

application of the generalised wave equation. First, the relationship between the viscoelastic 

parameter and the well-developed constant Q model is formulated. The proposed frequency-

independent relationship agrees with the theoretical solution and fits the field data. Then, the 

viscoelastic velocity in terms of the reference velocity and the viscoelastic parameter is 

formulated. These two formulations adequately represent the viscoelastic effect in seismic 

wave propagation and lead to an improvement in the accuracy of the numerical simulation of 

the generalised viscoelastic wave equation. 

Chapter 4 aims to investigate the method for efficiently and accurately simulating the 

generalised viscoelastic wave equation. The viscoelasticity can be represented concisely by a 

wave equation in the form of a fractional temporal derivative, which is numerically inefficient. 

An efficient implementation strategy for seismic waves propagated through a heterogeneous 

viscoelastic model is proposed in this chapter. The fractional temporal derivative is transferred 

to fractional spatial derivatives, and is implemented through fast Fourier transforms, for 

improving computational efficiency. However, the FFT implementation is not rigorously 

applicable to the heterogeneous model. Thus, a spatial-position-dependent filter is introduced. 

This spatial filter corrects the error that is caused by the assumption of non-heterogeneity in 

the FFT implementation. This filtered wave equation represents the viscoelastic effects 

appropriately in seismic wave propagation, leading to the improvement of the accuracy of 

numerical simulation. With an efficient and effective solver for the viscoelastic wave equation, 

the proposed wave equation is applied to compensate for the viscoelastic effects in attenuating 

media. The phase correction and the energy compensation can be implemented separately 

based on the proposed decoupled wave equation. Numerical results demonstrate that this 
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compensation in reverse-time migration greatly improves the signal-to-noise ratio and enhance 

the resolution of migration images. 

Chapter 5 seeks to improve the signal-to-noise ratio in the reverse-time migration by 

reducing the artefacts, which is due to the cross-correlation of irrelevant waves. Only 

performing the wavefield decomposition along the vertical axis is not sufficient to eliminate 

the artefacts. Thus, the biaxial wavefield decomposition based on the analytical wavefield via 

the Hilbert transform is introduced, which decomposes seismic wavefields in both lateral and 

vertical directions. After decomposition, the up-going source wavefield and down-going 

receiver wavefield are discarded to eliminate the strong shallow artefact, and the remaining 

four cross-correlation terms contribute to imaging the flat layers and the tilted interfaces 

separately. The remaining artefacts can be easily identified and reduced as the four terms are 

decoupled. Also, since the tilted interfaces are separated from the nearly flat layers, the 

resolution can be improved by adjusting the weights of the four terms. This Hilbert transform 

method is proven to be suitable for the viscoelastic wave equation with fractional spatial 

derivatives. Thus, this biaxial wavefield decomposition method is applicable to attenuation 

compensation reverse time migration. Numerical experiments demonstrate that the 

decomposed four images a can assist in the better presentation of the complex subsurface 

structure, and the resolution of the final migration images are greatly improved, compared with 

the conventional methods. 

Chapter 6 presents an integrated field data example of previous methods. The data 

processing method is first introduced. The dataset is interpolated for a finer time interval and 

transferred to 2D, and the migration wavelet is extracted. Subsequently, the reverse-time 

migration with the biaxial wavefield decomposition is applied to the processed dataset. This 

field data example demonstrates the proposed method is suitable for practical application.  
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Chapter 7 summarizes the main conclusion of this work and provides some relevant future 

work. In future work, the proposed viscoelastic theory is expanded to the 2D vector wavefield 

and anisotropic media, although part of the content requires further verification. Finally, some 

suggestions are provided regarding the potential future work. 
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Chapter 2  

Literature review 

 

 

 

In the previous chapter, the background of this thesis is presented. The main objective of this 

thesis is to deepen the understanding of seismic wave propagation in attenuating media and to 

further investigate the method for high-resolution seismic imaging. This chapter briefly 

reviews the related studies, including the development of mathematical viscoelastic models, 

the numerical solvers of the equation, and the artefacts elimination methods for reverse-time 

migration. Also, the relevant research gaps are identified, and the main contributions of the 

thesis are outlined. 

2.1 The physical and mathematical description of viscoelasticity  

The viscoelasticity is an intrinsic property of the subsurface media, which brings energy 

absorption and frequency dispersion of seismic waves. The viscoelasticity is mathematically 

described by the quality factor Q, which is defined as 2 multiplied by the ratio of the 

preserved wave energy to the dissipated energy in a single cycle of wave propagation. 

Theoretically, for the broad frequency band, the quality factor should be frequency dependent, 

(e.g. Sams et al. 1997, Molyneux & Schmitt 2000, Adam et al. 2009, Borgomano et al. 2017). 

However, some laboratory and field measurements prove that the earth materials exhibit a 

nearly constant Q behaviour over a limited frequency band (e.g., McDonal et al. 1958), which 
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demonstrates that the quality factor Q can be regarded as frequency-independent in seismic 

applications, due to the fact that the seismic frequency band is relatively low and limited. This 

frequency-independent Q significantly reduced the difficulty of evaluating the seismic 

attenuation, and it fits well with the field measurements. Therefore, it is widely used in seismic 

simulation and subsequent imaging process.  

The quality factor Q is naturally characterized by introducing the complex velocity in the 

frequency domain (Aki & Richards 1980). The quality factor may be determined by the ratio 

of the real and imaginary parts of the complex modulus as 

 
( )

( )
Im1

Re

M
Q

M





− =  (2.1) 

where M  is the complex modulus, the subscripts ‘Re’ and ‘Im’ denotes the real and imaginary 

parts, and   is the angular frequency. The complex modulus is the operator between the stress 

and strain in the frequency domain. In the time domain, the stress-strain relation in the 

viscoelastic wave equation is represented by a convolution with the kernel of the rate-of-

relaxation function. This convolution often requires the storage of the entire history of the 

previous wavefields, which is numerically challenging, especially for large scale or 3D 

problems. A number of studies have attempted to investigate the time-domain methods, and 

the memory problem has been alleviated to various extents. The state-of-the-art techniques can 

be categorized into two major groups as follows. 

One group attempts to use the combination of the spring (elasticity) and dashpots (viscosity) 

to physically describe the viscoelastic behaviour of subsurface materials, such as the Maxwell 

model, the Kelvin-Voigt model, and the standard linear solid (SLS) model (Zener 1948). 

Although a single mechanical element presents frequency-dependent attenuation, a distribution 

with different relaxation parameters and a combination of different patterns may approximately 

describe the frequency-independent quality factor within a limited frequency band (H.P. Liu et 
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al. 1976). However, these simple models cannot describe the complex mechanism inside of the 

fractured rocks, such as the uneven distribution of the cracks and fluid. Based on this idea, 

some generalised models are proposed, such as the generalised standard linear solid (GSLS) 

and the generalised Maxwell body (GMB) (Moczo 2005). They exhibit exponential relaxation 

functions, which may alleviate the computational issue by introducing the memory variables, 

which are normally combinations of the previous states (e.g., Carcione, 2014; Emmerich & 

Korn, 1987; Robertsson et al., 1994). Nonetheless, the memory variables require additional 

computational memory and time (Zhu et al. 2013), especially for 3D problems. Also, the 

quality factor Q is implicitly expressed by a series of relaxation parameters, which makes it 

practically difficult to inverse problems (Fichtner & van Driel 2014). 

Another group of methods is based on mathematical derivation to capture the analytical 

frequency-independent Q behaviour. For a purely elastic media, there is a linear relationship 

between stress and strain (Hooke’s law), and for an ideal viscous media, the stress is linearly 

related to the first-order time derivative of the strain (the Newtonian fluid law). The 

viscoelasticity should behave in an intermediate state between the elasticity and the viscosity. 

Thus, the fractional temporal derivative of the strain was introduced to represent this 

viscoelasticity (Caputo 1967). Based on this, Kjartansson (1979) derived a power-law 

relaxation function and proposed a frequency-independent Q model, known as the constant Q 

model. This constant Q model was proved to agree well with the field and laboratory 

attenuation coefficient, thus widely used in practical applications. This theory was soon 

expanded to wave propagation in viscoelastic (Carcione 2009) and viscoelastic-anisotropic 

media (Zhu 2017). However, this constant Q model exhibits an unrealistic phase velocity, that 

the phase velocity of the low-frequency components, where most of the seismic waves are 

concentrated, is significantly less than the high-frequency components, and the phase velocity 

for the zero frequency, i.e., direct current component, is zero. 
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Y. Wang (2016) proposed a more realistic model, which demonstrates that the subsurface 

media should be a mixture of elasticity and viscoelasticity, so it is named the generalised 

viscoelasticity model. This generalised model unifies the pure elasticity (Hooke’s law) and 

viscoelasticity (a fractional temporal derivative) into a compact form and follows the basic 

power-law attenuation. Compared with Kjartansson’s constant Q model (Kjartansson 1979) 

this generalised model not only has a similar linear-like attenuation coefficient, but more 

importantly, has a more realistic phase velocity at low frequency, even for the zero-frequency 

component. Following this, Y. Wang (2019) proposed a frequency-independent Q expression 

for better application in the narrow and low frequency band in reflection seismology, based on 

the small dissipation assumption. This model is newly developed, and some key parameters 

are not determined yet. Thus, this generalised model has not been successfully applied to 

seismic simulation and imaging. However, its attractive traits draw more and more attention. 

Thus, in this study, I focus on the development of this generalised model for seismic simulation 

and migration. 

2.2 Seismic simulation in attenuating media 

The generalised viscoelastic model describes viscoelasticity of the subsurface media 

appropriately, but the fractional time derivative is numerically challenging in practical 

application. Straightforwardly, the fractional time derivative can be evaluated in the frequency 

domain, where it can be transferred as the power of the angular frequency (e.g., Operto et al. 

2007). However, this method is equivalent to solving numerous Helmholtz equations, which 

are computationally formidable, especially in 3D cases. Therefore, the frequency domain 

solver is no longer favourable in practical application. 

In the time domain, the fractional temporal derivative is often solved by Grünwald-

Letnikov expansion, which is a linear combination of the previous states with the gamma 
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function as the coefficient. However, this Grünwald-Letnikov approximation still requires 

substantial memory space to store the wavefield history, even if it is partially truncated. An 

alternative solution is to transfer the fractional temporal derivative to an infinite integral, and 

approximated by Laguerre quadrature (Lu & Hanyga 2004). Even though this method satisfies 

the ordinary differential equations, it still requires considerable additional computational 

resources. 

The large computational memory and low-efficiency issues considerably hinder the wave 

equation with a fractional temporal derivative from practical applications. For example, 

reverse-time migration (RTM) images are generally based on the superposition of multi-shot 

migration images, and every single-shot migration is highly dependent on the simulated seismic 

wavefields of thousands of time steps. If simulating a single-step wavefield requires 

tremendous computational resources, it would be almost impractical to generate multi-shot 

migration images, especially for large geological models or 3D problems. Therefore, it is 

crucial to improve the efficiency of solving the fractional temporal derivative. 

This numerical problem for solving the fractional temporal derivative may be solved by 

transferring it to fractional spatial derivatives, or fractional Laplacian operators (W. Chen & 

Holm 2004, J. M. Carcione 2010). The fractional spatial derivatives can be efficiently solved 

by the pseudo-spectral method in the wavenumber domain as 

  / 1

x

2

x

2 ]( ) ( ) [ ( )ku u −− =x xF F ,         (2.2) 

where   is a fractional order between zero and one, 
xF  is the Fourier transform with respect 

to vector x, 1

x

−F  is the inverse of 
xF , and k is the angular wavenumber. In this way, the 

fractional derivatives may be calculated only based on the current wavefield, and storing the 

entire wavefield history is no longer necessary. Based on this transformation, Zhu & Harris 

(2014) derived the constant-Q wave equation with two fractional spatial derivatives. It proved 

that this wave equation with fractional spatial derivatives owns great accuracy with the original 
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constant-Q wave equation with a fractional time derivative. Additionally, the two fractional 

terms in this wave equation represent the energy absorption and velocity dispersion, separately. 

Decoupling the attenuation effects makes it possible to analyse these two effects separately and 

in turn, accurately compensate for the attenuation in the imaging process, such as reverse-time 

migration (Zhu 2014). 

The remaining problem for the fractional spatial derivatives is to calculate them in the 

heterogeneous media where the order of the fractional derivatives is a spatial-dependent 

variable. The order of the fractional derivative is often a function of the viscous parameters, 

which is related to the quality factor Q. It is admitted that the accurate Q value distribution is 

not easy to estimate in practice, as it is influenced by not only the media itself, but also its 

physical conditions, such as filling materials, stress state, or even temperature (Ning 2016). 

Nevertheless, there are many empirical conclusions that can be used to estimate the Q value 

based on the depth, velocity, or media materials (e.g. Y. Wang 2004). The spatially varied Q 

model leads to the varied-order fractional spatial derivatives. However, these varied-order 

derivatives cannot be directly solved by the pseudo-spectral method, theoretically, as it requires 

a constant order to implement the Fourier transform. As in Eq. (2.2), if the fractional order is 

spatial dependent ( ) x , it contains a mix-domain operator ( )k x , and the Fourier transform 

cannot be implemented directly. 

A common way to approximately evaluate the varied-order fractional derivative is to use 

the average-valued order of the model to replace the varied order (Zhu & Harris 2014), with 

the assumption that the order of the derivatives varied little and smoothly, i.e. the media with 

little Q variation. This method has shown great applicability in weak attenuative areas, as the 

attenuation is not sensitive for large Q cases. Nonetheless, this averaging scheme causes 

simulation errors. This simulation error can be significant in strong attenuation areas, for 
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example, the presence of oil or gas reservoirs, which are normally the areas of interest in 

geophysical applications.  

Therefore, the investigation of the seismic wavefield simulation in inhomogeneous Q 

media drew more and more research attention. A straightforward way is that, based on the 

locality principle, the wavefield of every time step can be obtained by interpolation of a number 

of solutions with every single constant Q value in the model (Zhu & Harris 2014). Although 

this scheme is relatively accurate, the computational time is proportional to the model size, 

which would be computationally inefficient for large complex models or 3D cases. Further, 

some studies show improved accuracy by transferring the spatial-varying order fractional wave 

equation to a constant order wave equation via Taylor expansion or a polynomial 

approximation (Chen et al.2016; Xing & Zhu 2019). These constant order wave equations can 

be evaluated via spatial pseudo-spectral method directly without the averaging assumption. 

There are also some other attempts to calculate the fractional spatial derivatives without the 

FFT implementation. For example, the Hermite distributed approximation is applied to transfer 

the spatial-varying fractional spatial derivative to an integral of the fractional derivative of the 

delta function, and this fractional derivative can be solved locally (Yao et al. 2017). Although 

these works improve the accuracy of the varied-order fractional spatial derivatives, the 

computational efficiency is reduced during the process. This inefficiency will greatly hinder 

the development of reverse-time migration as numerous seismic simulations are involved 

during the process. Taking Xing & Zhu (2019) as an example, the resultant polynomial-

approximation wave equation includes six fractional Laplacian operators, which at least triples 

the computational time, if compared with the original two-operator equation. Therefore, it is 

still necessary to investigate efficient simulation methods for seismic wave propagation in 

viscoelastic media. In this thesis, a strategy is proposed that maintains the efficiency of the 
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original pseudo-spectral method but improves the accuracy in the heterogeneous Q model. This 

efficient strategy will benefit the implementation of reverse-time migration.  

Due to the viscoelastic effect of earth media, conventional migration images suffer from 

weakened amplitude and distorted phase. Thus, how to appropriately compensate for the 

viscoelastic effects is an important topic. For any ray-path method, it is extremely difficult to 

determine correct weighting functions along the ray path, and they are only applicable to simple 

geological models (Ning 2016). Considering the frequency-dependency of the attenuation, it is 

more reasonable to compensate for the attenuation in the implementation of the wave equation. 

Early studies replaced the real-valued velocity with complex, frequency-dependent velocity in 

the one-way wave equation, and then compensate for the attenuation effects (Mittet et al. 1995, 

Y. Wang & Guo 2004a). Among those studies, inverse Q filtering migration (Y. Wang 2008b) 

is shown to be an effective method, which proposes two operators for compensation: the 

unconditionally stable phase operator, and the stabilized amplitude operator. However, this 

method is derived based on the 1D velocity model, and is not accurate enough for complicated 

geological models.  

In order to better illuminate the subsurface structures, compensation of the attenuation in 

reverse-time migration (RTM), which is based on a two-way wave equation, is proven to be 

more theoretically accurate and effective (Dutta & Schuster 2014, Sun et al. 2015). By means 

of the decoupled viscoelastic wave equation, the accurate compensation in RTM is 

implemented, which enables the amplitude and phase to be separately compensated (Zhu 2014). 

Although the phase compensator is unconditionally stable, the amplitude compensation 

exhibits numerical instability, as it is an exponential amplification. Such numerical instability 

is original from the artificial compensation of the ambient noise, especially the high frequency 

noise in seismic data, or the machine errors relative to the precision. Thus, appropriate 

stabilization should be incorporated in the frequency or wavenumber domain, to avoid this 
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frequency/wavenumber dependent instability. Straightforwardly, a low-pass filter can be 

applied, and the cur-off frequency can be determined by the noise level and the targeted 

frequency band of seismic data. Recently, some other strategies are investigated to solve this 

numerical instability, and some of them are directly referred to the inverse Q stabilization 

techniques. For example, Y. Wang et al. (2018) proposed an adaptive stabilization strategy, 

which incorporate the time variance and Q dependence, and it shows superiority over the 

conventional low-pass filtering.  

The attenuation compensation is shown be effective for correcting the phase and 

compensating for the amplitude in reverse-time migration, thus improving the signal-to-noise 

ratio, and enhancing the resolution of the migration images. 

2.3 Artefact elimination in reverse-time migration 

The attenuation compensation enhances the useful seismic signals of the migration results. To 

improve the signal-to-noise ratio, the noise, which is also referred as the artefact, should be 

reduced. RTM results are severely deteriorated by the artefact issue. Another important aspect 

of this thesis to improve the resolution of the migration results is the elimination of the artefacts. 

The migration artefact is caused by the cross-correlation of the unphysical waves, because 

RTM uses a two-way wave equation to simulate both source and receiver wavefields, and the 

cross-correlation between the irrelevant directional waves causes the undesirable high-

amplitude, low-spatial frequency false images. Especially for fine layers, faults, and small-

scale structures where the seismic reflection is relatively weak or complex, the images of these 

structures are greatly contaminated by the migration artefacts. Therefore, in recent years, 

reducing artefacts and improving the resolution of the migration images have drawn more 

attention. 
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Theoretically, there are three approaches to eliminate the artefacts: direct filtering the 

dataset, muting unphysical waves during propagation, and processing the final migration 

images. There are few studies focusing on filtering the dataset, as it is difficult to distinguish 

the useful data with the noise. Also, the useful data will again cause the artefacts in final images 

due to the two-way propagation. For processing the final migration images, a straightforward 

and practical approach is to apply Laplacian filters to the final image. However, this approach 

is only an image processing technique, and cannot eliminate the migration noise, and it 

damages the true image of structures (Guitton et al. 2007). Nowadays, the Laplacian filter often 

applied as a supplement.  

Therefore, more and more studies are focusing on reducing the artefacts during the wave 

propagation and migration process. The directional damping method is introduced to suppress 

the inner reflection, and further reduce the low-frequency noise (Fletcher et al. 2006). It is 

proposed to mute the far angle waves by using the angle domain common gathers, to achieve 

the removal of the artefacts (Zhang & Sun 2009). These early attempts did remove some 

artefacts; however, their results were limited.  

Performing the wavefield decomposition during simulating the source and receiver 

wavefield is a practical way to reduce the artefacts, as only the selected physical waves are 

used in the imaging condition. The cross correlation of the unphysical waves produces the 

artefacts. The commonest method is up-/ down-going wave decomposition, which only retains 

the down-going source wavefield and up-going receiver wavefield in the cross-correlation. 

Specifically, the cross-correlation imaging condition can be mathematically partitioned in a 

discrete form after the up-/ down- decomposition as: 

 d d d u u d u u

t

I S R S R S R S R= + + + ,                                (2.3) 

where I  is the migration image, S  and R  represent the source and receiver wavefield and 

subscript ‘d, u’ denote the down-going and up-going, respectively. In Eq. (2.3), d dS R  and 
u uS R  
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Figure 2.2 The upward-folded ray-path artefacts in reverse time migration. The red star and 

the blue circle represent the source and the receiver, respectively. The black solid line is the 

true ray-path which the black dotted line is the artefacts ray-path. The red dotted line denotes 

the upfolded artefacts of the true reflector. The cross-correlation of the up-going source and 

down-going receiver wavefields causes upfolded artefacts. 

 

produce high-amplitude and low-frequency artefacts in the shallow part, while 
u dS R  is the 

upward-folded ray-path result that has the same travel time of the true physical ray path, which 

generate incorrect RTM images (F. Liu et al. 2011, W. Wang et al. 2016), as shown in Figure 

2.1. The true-reflector image is produced by the cross-correlation of the down-going source 

and up-going receivers, 
d uS R , which is consistent with the true ray path of the seismic wave 

propagation. Therefore, a causal imaging condition was proposed to only containing the 

physical term, 
d uS R . 

Theoretically, this up-/down- going wavefield decomposition can be achieved by the 

Poynting vector, which is the product of the spatial and temporal derivatives of the wavefield. 

This Poynting vector is regarded as an indicator for the propagation direction of the seismic 

waves, as it presents the direction of wave energy propagation (Yoon & Marfurt 2006). This 

method can achieve artefact elimination in simple models, where the ray-path is relatively 

direct. However, in complex models with various reflectors, due to the overlap and 

superposition of the waveforms, the Poynting-vector decomposed wavefield is scattered, and 
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the waveform is discontinuous, which introduces noise to the image, and the migration results 

are unsatisfactory. 

To overcome the discontinuous waveform issue in decomposition, it is more achievable to 

decompose the wavefield in the frequency-wavenumber domain. The propagation velocity is 

introduced to identify the propagation direction. The vertical propagation velocity zv  is defined 

as  

 z

z

v
k


=  (2.4) 

where zk  is the vertical wavenumber. When 0zv  , the wave goes downwards, and when 

0zv  , the wave goes upwards (the z axis is vertically going downward). This method can 

achieve continuous waveform, and subsequently, generate satisfying migration images when 

eliminating the up-going source and down-going receiver wavefield. However, the 

computational cost is extremely large, as the calculation of frequency requires the storage of 

the entire wavefield history to implement Fourier transforms. For a small model with 500500 

grids and 6000 timesteps, it needs at least 5.59 Gb to store the wavefield at every time step to 

calculate the frequency. The memory issue can be formidable for large geological models or 

3D cases. 

This memory problem can be solved by constructing the analytical wavefield (Fei et al. 

2015), which can realize the explicit wavefield separation, however, dismissing the 

requirement of the storage of the entire wavefield history. As shown in Eq. (2.4), the sign of 

the propagation velocity is determined by the signs of the frequency and the wavenumber 

component. The analytical wavefield is based on the Hilbert transform, and the negative 

frequencies are eliminated. The Hilbert transform is to impart a / 2  phase shift for each 

frequency component, based on the sign of the frequency. The analytical wavefield is 

established by the original wavefield as the real part and its Hilbert-transformed wavefield as 
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the imaginary part. The spectrum of the analytical wavefield only contains non-negative half, 

with double amplitude, compared with the original wavefield.  

With the analytical wavefield, the propagation direction of seismic waves can be 

determined by the sign of the wavenumber only, which can be conveniently obtained via a 

spatial FFT, and the frequency sign in Eq. (2.4) is always positive. Thus, the storage of the 

entire wavefield can be avoided, and the computational memory can be greatly released. The 

analytical wave equation can be established from the acoustic wave equation (Shen & Albertin 

2015), with an analytical source function on the right-hand side. This analytical wave equation 

allows for the same propagation process as the conventional acoustic wave equation, and the 

analytical wavefield can be obtained in every time step, which greatly benefits the wavefield 

decomposition.  

Current research on wavefield decomposition only focuses on the up-/down- going 

wavefield decomposition, and ignores the waves propagated along the vertical direction. The 

incorrect cross-correlation between irrelevant left- and right-going waves will also cause 

artefacts, especially in complex geological models with large-tilted interfaces. Thus, the 

higher-resolution migration images can be obtained by decomposing the wavefield both 

vertically and horizontally, and selecting the appropriate cross-correlation terms into the 

imaging condition.  

Additionally, the method for establishing the analytical wavefield in viscoelastic media is 

not yet investigated, and the wavefield decomposition is not implemented in attenuation 

compensation reverse-time migration, as there is no attenuation compensation scheme for 

analytical wavefield. With both attenuation compensation and wavefield decomposition, the 

signal-to-noise ratio can be further improved and the quality of the migration images can be 

enhanced. 
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2.4 Contributions 

Based on the review above, the key objective of this thesis is to deepen the understanding of 

the viscoelastic theory and generate high-resolution reverse-time migration images by 

improving the signal-to-noise ratio. The improvement of the reverse-time migration images is 

performed in two aspects: one is compensation for attenuation based on the development of the 

viscoelastic theory, and the other is the elimination of the artefacts generated during the 

reverse-time migration algorithm. Specifically, the following contributions are made: 

1. The causality and stability of the generalised viscoelastic wave equation are proven, 

which is the necessary condition for wave equations. The viscoelastic parameters in 

the generalised wave equation are determined. 

2. A fractional spatial derivatives wave equation with a spatial filter is developed, which 

is numerically efficient in seismic simulation. This equation is effectively implemented 

in attenuation compensation in reverse-time migration. 

3. Reverse-time migration by biaxial wavefield decomposition is developed to improve 

the resolution by removing the artefacts. This method is proven to work well in a field 

dataset. 
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Chapter 3  

Determination of the viscoelastic parameters for the 

generalised viscoelastic wave equation 

 

 

 

The generalised viscoelastic wave equation combines pure elasticity and viscoelasticity in a 

compact form and follows the basic power-law attenuation, thereby accurately representing 

seismic wave propagation in attenuating media. Nevertheless, the key parameters of this 

generalised equation, the viscoelastic parameter and the viscoelastic velocity, are not well 

formulated. The aim of this chapter is to determine the viscoelastic parameters and apply this 

equation in seismic simulation. In this chapter, it is proven that the generalised wave equation 

satisfies the basic causality and stability requirements. Then the key parameters are established 

in terms of conventional viscoelastic parameters. The viscoelastic parameter is formulated 

based on the well-developed constant Q model and the viscoelastic velocity is determined in 

terms of the reference velocity. These two formulations adequately represent the viscoelastic 

effects in seismic wave propagation and lead to an accurate simulation of the generalised 

viscoelastic wave equation. 

3.1 Introduction 

The viscoelasticity of the subsurface media causes a dissipation effect that includes energy 

absorption and velocity dispersion and has a significant impact on field seismic records and 
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images. The dissipation effect is usually quantified by the quality factor Q, which is defined by 

the ratio of stored energy to lost energy per cycle. This quality factor should theoretically be 

frequency dependent, which is confirmed by some broadband seismological observations (Y. 

Wang 2008b, Adam et al. 2009, Borgomano et al. 2017) In some studies on Q observations 

from field and laboratory data, the quality factor can be considered frequency-independent 

within a relatively low and narrow frequency band, which is called the constant-Q model 

(Kjartansson 1979, Aki & Richards 1980). This frequency-independent Q is practical for 

seismic modelling and imaging. 

Conventional physical models to describe viscoelasticity use the combination of spring 

(elasticity) and dashpot (viscosity), such as the Maxwell model, the Kelvin‒Voigt model, the 

standard linear solid model (Zener 1948). Among these models, the generalised Zener model 

and the generalised Maxwell model (Emmerich & Korn 1987, Moczo et al. 2014) are most 

commonly used and they are equivalent to each other (Moczo 2005) as they produce 

exponential relaxation functions. However, the quality factor is implicitly represented by 

several relaxation parameters, which makes the inverse problem quite challenging (Fichtner & 

van Driel 2014). Mathematically, the viscoelasticity of the Earth’s media can be described 

using a fractional time-derivative (Caputo 1967) and the constant-Q model was developed 

based on this fractional time-derivative (Kjartansson 1979). The form of fractional time-

derivative is also used for the fractional Zener model to describe the mechanism of 

viscoelasticity (Liu & Greenhalgh 2019). Among these models, the Kjartansson’s constant-Q 

model is widely used in the exploration seismology because it matches well with the 

attenuation coefficients from field and laboratory data (Y. Wang 2008b). However, the phase 

velocity of this constant Q model is erroneous at low frequencies because the phase velocity at 

zero frequency is zero.  



31 

 

A condensed form of the wave equation can be established by explicitly including a 

viscoelastic parameter   in a stress-strain relationship (Y. Wang 2016). This wave equation 

combines the purely elastic and viscoelastic cases as follows:  

 
2

2 2

2
( 1

d
)

dt

u
c u

t







 
=  + 

  
,                                          (3.1) 

where u is the scalar wavefield,   is the retardation time, and ( )c   is the viscoelastic velocity. 

While the purely elastic model has a linear stress-strain relationship, the viscoelastic model 

uses a fractional temporal derivative to accurately represent the stress-strain relationship. The 

generalised viscoelastic wave equation attempts to combine elasticity and viscoelasticity into 

a single form, and this equation follows the basic power-law attenuation.  

When the viscoelastic parameter   varies between 0 and 1, the generalised wave equation 

correctly represents the general viscoelastic model and thus the wave phenomena in seismic 

simulations. If 1 = , it is the classical Kelvin-Voigt model, which is a combination of an 

“elastic (Hooke’s law) plus viscous (Newtonian fluid)” stress-strain behaviour. Although this 

model is acknowledged as a fundamental rheological model, it is incapable of incorporating 

realistic attenuation as it fails to describe an instantaneous nonzero strain response of a stress 

perturbation (Moczo et al. 2014). In this model, viscosity is represented by the first-order time-

derivative. The integer-order time-derivative is generalised into a fractional time-derivative, to 

represent a general viscoelasticity, which is referred as ‘ anelasticity ’  in some work. 

Nevertheless, the terminology of viscoelasticity is often retained in the literature. Thus, the 

generalization is not only to unify the purely elastic and viscoelastic responses, but also to 

extend the linear viscosity to a general nonlinear viscosity to describe the realistic attenuation. 

In this paper, an explicit form of the rate-of-relaxation function is presented, which proves that 

the generalised viscoelastic wave equation is stable and causal, which is a necessary condition 

for the wave equation. 
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Viscoelasticity can be represented by three parameters conventionally: the reference 

velocity, the reference frequency, and the quality factor. In the generalised viscoelastic wave 

equation (Eq. 3.1), the three parameters controlling viscosity are: the viscoelastic velocity, the 

reference frequency, and the viscoelastic parameter   (Y. Wang 2016). Therefore, there is a 

gap between the parameters in the generalised equation and their counterparts in conventional 

models. In this chapter, the viscoelastic parameter   is formulated with the quality factor Q 

by adopting Kjartansson’s constant-Q model, for an appropriate representation of 

viscoelasticity in the wave equation. The proposed Q–   relationship exhibits the same pattern 

as the theoretical solution and agrees well with the field data. The viscoelastic velocity is also 

determined based on the reference velocity, and this viscoelastic velocity is a function of the 

viscoelastic parameter  . The numerical examples, using the Grünwald–Letnikov expansion 

method, show that the proposed viscoelastic wave equation can well represent the effect of 

energy absorption and velocity dispersion. This chapter has been published in Geophysical 

Journal International (Xu & Wang 2023). 

3.2 Causality and stability of the generalised wave equation 

A rigorous derivation of the rate-of-relaxation function will prove that the generalised 

viscoelastic wave equation satisfies the basic requirements of causality and stability.  

The generalised stress-strain relation is a combination of Hooke’s law and the fractional 

time derivatives (Y. Wang 2016), 

 
d ( )

( ) ( )
d

t
t E t

t







  

 
= + 

 
,                                               (3.2) 

where ( )t  is the time-dependent stress, ( )t  is the corresponding strain, and E is the Young’s 

modulus describing the elasticity of the media. In Eq. (3.2), 1

0 −= , where 
0  is the reference 

frequency. 
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The complex modulus is the modulus in the stress‒strain relationship in the frequency 

domain. The complex modulus of the generalised viscoelastic wave equation can be calculated 

in the frequency domain as follows: 

 i sgn( ) 2

0 0

( ) 1 i 1M E E e

 

  
  

 

    
   = + = + 
       

,                              (3.3) 

where sgn( )  is the signum function. The inverse Fourier transform of the complex modulus 

is the rate-of-relaxation function in the time domain, which is the kernel of a time convolution. 

This rate-of-relaxation function (time-dependent modulus) consists of two terms: 

  ( ) ( ) ( )e vt E t t =  + ,                                                 (3.4) 

where ( )e t  is the modulus-normalized rate-of relaxation function for the elastic component, 

and ( )v t  the modulus-normalized rate-of relaxation function for the viscoelastic component.  

The rate-of relaxation function for the elastic component is obtained by taking the inverse 

Fourier transform to unity, i.e. ( ) ( ), =e t t  which is the delta function. The rate-of relaxation 

function for the viscoelastic component is related to the fractional power as 

 ( )

( )

i sgn( ) /2

0

0
i /2 i /2

0
0

i /2 i /2 0
i /2

0
0 0

( ) e e d
2

e e d e e d
2

e e
e d e e d .

2 2

i t

v

i t i t

i t i t

t
   



     



 
   

 


 




   



 
   

 



−


−

−

−
−

−

 =

 
= − + 

 

= + −



 

 

              (3.5) 

Consider two cases separately, 0t , and 0t . When 0t , Eq. (3.5) becomes 
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where ( )  is the gamma function. When 0t  , Eq. (3.5) is 
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In the inverse Fourier transform above, the following relationship is employed (Gradshteyn & 

Ryzhik 2000) 
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Combining Eqs. (3.5 - 3.7), the rate-of relaxation function ( ) t  can be written explicitly as 
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where ( )H t  is the Heaviside function. In the rate-of-relaxation function Eq. (3.9), the first term 

in the parenthesis is a delta function, representing the purely elastic response. Significantly, the 

second term is proportional to ( 1)t − + .  
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The rate-of-relaxation function in Eq. (3.9) shows two important features of the system. 

One feature is causality, since ( 0) 0  =t . The other is stability, since lim ( ) 0.
t

t
→+

 =  The rate-

of-relaxation function (Eq. 3.9), derived from the generalised stress‒strain relation, is a 

summation of two minimum-phase filters, and satisfies the requirement of causality and 

stability, which are the necessary conditions of the wave equation (Tarantola 1988). Figure 3.1 

shows the rate-of-relaxation function that corresponds to  0.01,  0.05,  0.1,  0.5 = . The rate-of-

relaxation function approaches zero slowly with a large   value. 

Eq. (3.9) is the summation of two minimum phase filters, and it can be proven that if 0 =  

and 1 = , the rate-of-relaxation function of Eq. (3.9) is the minimum phase. However, if 

0 1  , the phase property depends on  , and it is not guaranteed that the minimum delay is 

required for each   value. The minimum phase requires that both the rate-of-relaxation 

function and its inverse are causal and stable (Kailath et al. 2000).  

 

 

Figure 3.3 The rate-of-relaxation function varying with time t in the generalised viscoelastic 

wave equation. 
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Given the rate-of-relaxation function, the relaxation function itself can be obtained by 

taking the integral 
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This form of the relaxation function is proportional to t − , which is consistent with the constant 

Q model. 

3.3 Formulation of the viscoelastic parameter  

The objective of this section is to establish the relationship between the viscoelastic parameter 

  and the quality factor Q by using the well-developed Kjartansson’s constant Q model. This 

constant Q model has been shown to agree well with the measured attenuation coefficient from 

field data. However, this constant Q model has an unrealistic phase velocity at the end of the 

low frequencies. The phase velocity approaches zero as the frequency decreases from non-zero 

to zero. In contrast, Wang’s generalised viscoelastic model (Y. Wang 2019) has a phase 

velocity function that gradually decreases as the frequency decreases from non-zero to zero, 

and it has a nonzero value of ( )c   at zero frequency.  

The phase velocity ( )v   and the attenuation coefficient ( )   of the generalised 

viscoelastic model can be written analytically as (Y. Wang 2016) 
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where  
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These formulae lead to the viscoelastic velocity ( ) ( ,  0)c v  = = . The absolute value in Eq. 

(3.13) is used to satisfy the anti-Hermitian condition. 

Y. Wang (2019) proposed an analytical relationship between   and Q  based on a 

theoretical derivation as  

 1 ( 2)sin( 2)

1 cos( 2)

− =
+

 

 
Q .          (3.14) 

This frequency-independent relationship involves two basic assumptions. First, the frequency 

band is relatively narrow. Second, the frequencies in seismic exploration data are generally low 

(Futterman 1962, Morozov et al. 2020).  

For Kjartansson’s constant Q model, the phase velocity is 
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 
,             (3.15) 

where ( )1/ Q   is a parameter controlling the viscosity, 0c  is the reference velocity which 

can be set as a purely elastic velocity 
0c c= . The attenuation coefficient is 

 ( ) tan( 2)
( )
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cv


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
= .                 (3.16) 

To show the difference between the phase velocity and the attenuation coefficient of the 

two models (Figures 3.2a and 3.2b), the reference velocity is set as 2500 m/s at a reference 

frequency of 1500 Hz. As shown in Figure 3.2(a), the phase velocity of the Kjartansson’s 

constant Q model decreases significantly for the low frequency wave components, where most 

of the seismic waves are concentrated. The attenuation coefficients of the two models have a 

similar linear property, but the slope is clearly different, especially for the case of a small Q, 
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Figure 3.4 (a) The comparison of the phase velocity between Kjartansson’s constant Q (KCQ) 

model (red dotted line) and the theoretical model of Y. Wang (2019) (black solid line). (b) The 

comparison of the attenuation between the KCQ model (red dotted line) and the theoretical 

model of Y. Wang (2019) (black solid line). 

 

which corresponds to strongly attenuating media (Figure 3.2b). This difference is due to the 

fact that the Q-   relation in Y. Wang (2019) is valid under the assumption of small dissipation. 

To establish a new relationship between Q and  , the attenuation coefficients of the two 

models is matched as ( , ) ( , )c g     = , and solve them numerically: 
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Both attenuation coefficients are assumed to be linear and vanish at zero frequency, and 

0 0( , ) ( , )c g     =  can be set, Eq. (3.17) becomes  

 0 0

0 0

1 1
tan

2 2 ( )

A B

c Ac





− 
= 

 
,                            (3.18) 

where 

 
2

0 0

0 0

( ) 1 2 cos( 2) ,

( ) 1 cos( 2).

A A

B B

   

  

= = + +

= = +
                  (3.19) 

This equation may be solved numerically as  
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Taking into account the relationship ( )
1

Q 
−

= , Eq. (3.20) becomes 
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Although Eq. (3.18) is directly solvable, its nonlinearity causes computational inefficiency 

when implementation. Eq. (3.21) agrees very well with the solution of Eq. (3.18), as shown in 

Figure 3.3, and it can be efficiently implemented. Moreover, the proposed Q −  relation 

shows the same variation pattern as the theoretical solution in Y. Wang (2019), but the 

proposed new relation Eq. (3.21) shows stronger attenuation than Y. Wang (2019).  

The inverse relationship of Eq. (3.21) can also be obtained numerically as 

 

6
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1

,

{0.79788,  0.31831,  0.16787,  0.08260,  0.08730,  0.03774}.

i

i

i

i

bQ

b

 −

=

=

= − − −

    (3.22) 

The polynomial of 1/2Q−  shows that the proposed Q −  relation is consistent with the basic 

power-law attenuation (Wang 2019).  
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Figure 3.5 The established Q −  relationship, where the red solid line represents the proposed 

new relationship (Eq. 3.18), and the blue dotted line represents the numerically fitted solution 

(Eq. 3.21). It is also compared with the Q model (the black solid line) of Y. Wang (2019). 

 

To test the validity of the proposed Q −  relation, the theoretical attenuation coefficient 

is compared with field data from the Pierre Shale (McDonal et al. 1958). The field data is 

measured by 5 detectors positioned in vertical boreholes, and the measured attenuation 

coefficients were evaluated through Fourier analysis. The quality factor of the Pierre Shale rock 

is Q=32 and the P-wave velocity is 2164 m/s at the reference frequency of 100 Hz. As shown 

in Figure 3.4, the measured data of McDonal et al. (1958) are plotted as diamond points, and 

the theoretical solution with the proposed Q −  relation is plotted as a red solid line. The 

theoretical attenuation coefficient agrees well with the measured data, and the phase velocity 

does not decrease significantly ( ( ) 2064.3c  = m/s) as the frequency tends towards zero.  
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Figure 3.6 The attenuation and phase velocity with frequency for Pierre Shale with Q=32. The 

red line is the theoretical solution with the proposed new Q −  relationship, and the diamond 

points are the measured data from McDonal et al. (1958). 

 

3.4 Formulation of the viscoelastic velocity 

To solve the generalised viscoelastic wave equation (Eq. 3.1), a model of viscoelastic velocity 

( )c   is required. The viscoelastic velocity ( )c   is defined by the phase velocity at zero 

frequency since the expression of the phase velocity of Eq. (3.11) leads to the viscoelastic 

velocity ( ) ( ,  0)c v  = = . The viscoelastic velocity originally results from Young’s 

modulus in the generalised stress‒strain relation (Y. Wang 2016), 2( )E c = , so the physical 
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meaning of this viscoelastic velocity is the purely elastic contribution of the entire seismic 

response in attenuating media. In this section, the relationship is established between the 

viscoelastic velocity ( )c   and the purely elastic velocity c , which is the velocity at infinite 

frequency or ray velocity (Y. Wang 2008b). An elastic velocity model is often provided in 

practical engineering.  

The reference velocity can be defined as the phase velocity at the reference frequency, 

which is 

 0
0

0 0

2 ( )
A

c c
A B

=
+

,                  (3.23) 

where 
0A  and 

0B  for the case 0 1  =  are given by Eq. (3.19). Then, the viscoelastic velocity 

( )c   can be expressed as follows: 

 
2

0 0 0

0 2

0

1 1.80336 1.55954
( )

1 2.30336 2.336222

c A B
c c

A

 


 

+ +
=

+


++
.              (3.24) 

In this case, the second-order Padé approximation is calculated numerically, which agrees well 

with the true solution in the entire interval of  0,1  . Figure 3.5 compares the - dependence 

(Q-dependence) of the viscoelastic velocity c. The decrease of 
0( )c c  corresponding to the 

increase in   (decrease of Q) indicates a strong wavefront retardation when viscosity becomes 

important in the media. This phenomenon is consistent with laboratory and field measurements 

(McDonal et al. 1958, Sams et al. 1997b).  

Figure 3.6 illustrates the importance of viscoelastic velocity in seismic wave simulations. 

When setting 
0c c=  directly, the phase is obviously wrong (Figure 3.6a), as the waveform tends 

to advance further with stronger attenuation. This is because all the phase velocity is greater 

than the reference velocity and as the attenuation increases, the phase velocity increases 

accordingly, 
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Figure 3.7 The viscoelastic velocity. (a) The viscoelastic velocity versus the viscoelastic 

parameter. (b) The viscoelastic velocity versus. Q–1. The black solid line is the exact solution, 

and the red dotted line is the Padé approximation. 

 

accordingly, which is obviously inconsistent with field and laboratory measurements. By 

introducing the  -dependency, this velocity can adjust the phase delay in viscoelastic media. 

Applying the viscoelastic velocity ( )c   of Eq. (3.24), the waveform (Figure 3.6b) shows that 

a large   value, corresponding to a small Q, leads to a strong attenuation in amplitude and a 

significant time delay in phase. The appropriate delay in the waveform is due to the fact that  
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Figure 3.8 The influence of viscoelastic velocity on the seismic wavefront. (a) The snapshots 

of the wavefield and the associated phase velocities, when 
0c c= = 2500 m/s. (b) The snapshots 

of the wavefield and the associated phase velocities, when ( )c c = . 

 

associated phase velocity is greater than ( )c  , but less than 
0c , and when the attenuation 

becomes stronger, corresponding to a larger  , ( )c   decreases accordingly. 

The Kramers-Kronig relationship can be used to verify the accuracy of viscoelastic 

velocity. The Kramers-Kronig relation has been shown to fit field and laboratory data 

(Futterman 1962). It represents a Hilbert-transform relationship between the attenuation 

coefficient and the phase velocity as (Y. Wang 2008b) 
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 ( )( )
( )v v

 
 

 

= − +H ,                         (3.25) 

where ( )H  denotes the Hilbert transform, and v  is the unrelaxed velocity. Two phase 

velocities are compared here: one is analytically obtained from Eq. (3.11) and the other 

numerically using Eq. (3.25). Three different Q values,  10,  30,  100Q = , are considered here 

to present strong, medium, and weak attenuation. From the comparison (Figure 3.7), the 

analytical phase velocity agrees well with the Kramers-Kronig solution, showing the validity 

of the viscoelastic velocity of Eq. (3.24).  

The attenuation of seismic wave propagation is determined by the viscoelastic parameter, 

the reference velocity, and the reference frequency. The reference velocity is usually set as a 

purely elastic (acoustic) velocity. Using Taylor expansion in terms of  , the phase velocity 

can be approximated to 

 2

0

1 1
( ) 2 ( ) ( ) 1

8 2
g

A
v c c

A B




    



   
 =  + − +   

+     

.       (3.26) 

 

 

Figure 3.9 The difference in phase velocities between the analytical phase velocity (black solid 

line) and the numerical phase velocity determined by Kramers-Kronig relation (red dotted line). 
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The linearity between the phase velocity and   shows that the phase velocity approaches 

infinity at infinite frequency. However, the reference frequency cannot be set to infinity, 

otherwise, ( )0/ 0


  → . Thus, the reference velocity cannot be chosen arbitrarily. Therefore, 

a suitable reference frequency is chosen when the purely elastic (acoustic) velocity is chosen 

as the reference velocity.  

The reference frequency should be large enough for a purely elastic velocity, so the 

attenuation in the targeted frequency band is insensitive to the variation of the reference 

frequency. To discuss the sensitivity with respect to the reference frequency, two attenuation 

coefficients is considered with two reference frequencies, 
01 maxs = , and ( )02 max1s = + , 

where max  is the highest frequency in the frequency band, and the coefficient 0s   can be 

considered as the sensitivity index of the reference frequency. A suitable reference frequency 

for the purely elastic velocity should satisfy approximately identical attenuation when these 

two different reference frequencies are set. A ratio of two attenuation coefficients is set under 

the different reference frequencies that are greater than 95%. This means that the variation of 

the reference frequency does not cause a drastic change in the attenuation. So, this ratio can be 

expressed as  

 0 02 02 020

0 01 020 0

( , ) ( , ) ( , )
( ) 0.95

( , ) ( , )

g

g

A BA
r s

AA B

       

     

= −
= = 

= −
.       (3.27) 

The above inequality may be solved numerically, and its limit can be obtained as 

 3 22.882 9.885 14.302s   = − + .                (3.28) 

The increase in s with increasing  0,1   shows that strongly attenuative media are more 

sensitive to the variation of the reference frequency, and therefore require a large reference 

frequency for the purely elastic velocity in order to keep 
0( / )   relatively less variable. This 

conclusion is consistent with Y. Wang & Guo (2004b), which suggested using the highest 
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frequency as the reference frequency. For most geophysical applications with 10Q  , 0.3   

and 3.424s   are appropriate. Considering the limited frequency band in seismic applications, 

the reference frequency is proposed to set to 500 Hz, when the purely elastic (acoustic) velocity 

is the reference velocity. 

3.5 Seismic wave simulation 

The goal of this section is to intuitively represent the viscoelastic effects in geological models 

and further verify the proposed relationships in complex geological models. The seismic 

simulation in the Marmousi model is performed. Figures 3.8(a) and 3.8(c) show the acoustic 

velocity of the Marmousi model, and the Q model, based on the following empirical formula 

(Ning & Wang 2016): 

 3 1.87911.49 ( 10 ) 10.57Q c −

=   − .                  (3.29) 

This formula is derived from the Q analysis of field 3D seismic data in the Tarim basin China. 

The corresponding viscoelastic velocity model (Figure 3.8b) is obtained from Eq. (3.24), which 

is slightly smaller than the purely acoustic velocity, and the viscoelastic parameter   model 

(Figure 3.8d) is obtained from Eq. (3.22). The strongly attenuative media are in the shallow 

part of the model, while the deep part is the weakly attenuative media. 

The wave equation is solved using the finite difference method with staggered-grid to 

maintain accuracy and eliminate potential numerical dispersion. The fractional time derivative 

in the wave equation is solved with the Grünwald–Letnikov expansion (Podlubny 1999) as 

follows:  
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,          (3.30) 

where t  is the time interval. The model is discretized in 751 ×301 grid points with regular 

grid spacing of 10 m. A 20-Hz Ricker wavelet is emitted at (3800, 300) m. The time step is 0.1 
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Figure 3.10 The Marmousi model. (a) The P-wave velocity model. (b) The corresponding 

viscoelastic velocity model. (c) The Q model, generated by an empirical formula. (d) The 

corresponding   model. 
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Figure 3.11 Seismic wave simulations. (a) Snapshots of the non-attenuating wavefield at time 

0.6s, 0.8s and 1.0 s. (b) Snapshots of the attenuating wavefield at 0.6s, 0.8s and 1.0 s. 

 

ms. The convolutional perfectly matched layers (CPML) method (Komatitsch & Martin 2007) 

is applied to four model boundaries to absorb the waves reflected from the boundaries. 

Figure 3.9 shows the wavefield snapshots at time 0.6 s, 0.8 s and 1.0 s, respectively, for 

the non-attenuating and attenuating cases. There are no reflections from the model boundaries, 

which demonstrates the significance of the convolutional perfectly matched layer. However, 

there are clear reflected waves from the inner interfaces of the model, in both cases. More 

importantly, the attenuating wavefields have a significantly delayed waveform and attenuated 

amplitude, compared with their non-attenuating counterparts.  

To further verify the proposed relationships, two travel times are compared: one is 

estimated via ray-tracing method, and the other is numerical results by the generalised wave 
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equation with the proposed relations. For the ray-tracing method, the delayed travel time *t  is 

estimated as follows (Aki & Richards 1980, Matheney & Nowack 1995) 

 
d

*
( ) ( )

= S
r

s
t

c s Q s
,                         (3.31) 

where *t  is the delayed travel time due to the 1Q−  effect, ( )rc s  is the reference ray velocity, S 

is the travel distance along the ray path. In the viscoelastic case, the wave arriving time is the 

time travelling through an idealised elastic media plus the perturbation *t  caused by the 1Q−  

factor. It should be noted that this delayed travel time (Eq. 3.31) is frequency-independent, and 

it is only a reasonable estimation. 

The delayed time *t  for ray tracing-method is estimated directly from the ray path, using 

Eq. (3.31), and can be used as a benchmark for the seismic simulation with the proposed Q‒  

relation and the corresponding phase velocity, which are related to the viscoelastic parameter 

 . In seismic simulation, the delayed travel time *t  is the travel time difference between the 

purely acoustic and viscoacoustic cases. Here, the direct wave that propagating downwards is 

considered, and its ray-path is vertical and identifiable.  

As can be seen from Figure 3.10, the maximum time delay is about 13 ms at a maximum 

distance of 2700 m. Moreover, the delayed travel time increases much faster in the shallow 

zone where the attenuation is strong than in the zone with low attenuation (deep zone). More 

importantly, the general consistency of the two delayed travel times shows that the numerical 

result (black dots) is consistent with the ray-tracing result (red solid line), the accumulated error 

is less than 5%. The non-smoothness of the numerical result after a depth of 1250 m may be 

caused by the influence of the reflected waves due to velocity difference. This example shows 

that the proposed relations reasonably represent the viscoelastic effects in complex geological 

models. 
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Figure 3.12 The comparison of the delayed travel times. The red solid curve is the delay time 

estimated using the *t  ray-tracing method, and the black dots are the numerical results, which 

are the difference in arrival times from the seismic simulations of the viscoelastic and the pure 

elastic models. 

 

3.6 Conclusion 

The generalised viscoelastic wave equation can adequately represent the seismic wave 

propagation in viscoelastic media, as it unifies pure elasticity and viscoelasticity, and follows 

the basic power law attenuation. The generalised viscoelastic wave equation is characterized 

by the viscoelastic parameter   and the viscoelastic velocity. This chapter closes the gap 

between the parameters of the generalised wave equation and the normal equation. First, it has 

been proved that this generalised wave equation satisfies the basic causality and stability 

conditions. Then, an explicit Q‒   relation based on Kjartansson’s constant Q model is 

proposed, which agrees with the field data. The proposed relation also agrees with the 

analytical solution. For wave simulation using the generalised viscoelastic wave equation, the 

relationship between the viscoelastic velocity and the reference velocity is established, which 
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depends on the viscoelastic parameter. A numerical example has demonstrated that these 

formulae can correctly represent the dissipation effect of viscoelasticity on the waveforms and 

improve the accuracy of the seismic simulation. 
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Chapter 4  

Wave equation formed with fractional spatial derivatives 

 

 

 

In the previous chapter for seismic simulation, the generalised viscoelastic wave equation has 

the form of a fractional temporal derivative. However, the fractional time derivative is 

numerically inefficient because it requires a huge amount of memory to store the entire 

wavefield history. This inefficiency significantly hinders its practical implementation in 

migration. In this chapter, an efficient implementation strategy for solving the generalised wave 

equation with fractional temporal derivative is proposed. The fractional temporal derivative 

(FTD) is transferred into fractional spatial derivatives (FSD), implemented by fast Fourier 

transforms (FFT), which leads to a significant improvement in computational efficiency. 

However, a FFT implementation is not rigorously applicable to the heterogeneous model. 

Therefore, a spatial-position-dependent filter is proposed to correct the error caused by the 

assumption of non-heterogeneity. Moreover, the proposed wave equation is applied to 

compensate for the viscoelastic effects in attenuating media. This compensation in reverse-

time migration significantly improves the resolution of the migration images. 

4.1 Introduction 

The viscoelasticity of subsurface media causes dissipation effect including the energy 

absorption and velocity dispersion, and has a significant impact on field seismic records and 
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subsequent seismic images. Conventional models for describing viscoelasticity include 

Kjartansson’s constant-Q model (Kjartansson 1979), the Kolsky model (Kolsky 1953), the 

Kelvin-Voigt model, the standard linear solid model (Zener 1948), the Cole–Cole model (Cole 

& Cole 1941) etc. Recently, Y. Wang (2016, 2019) proposed the generalised viscoelastic wave 

equation, which reasonably represents the attenuation effects in viscoelastic media. In this 

equation, the viscosity is represented in the form of a fractional temporal derivative (FTD).  

The FTD was introduced to describe the viscoelasticity of subsurface media by Caputo 

(1967). The FTD form is used also for the fractional Zener model to describe the mechanism 

of the viscoelasticity (X. Liu & Greenhalgh 2019). However, directly solving wave equation 

with FTD presents a numerical challenge in seismic wave simulation. The FTD might be solved 

in the frequency domain, but the computation is extremely intensive as it requires to solve 

numerous Helmholtz equations (Vasilyeva et al. 2019). An alternative, but still expensive, 

method is to solve a convolution equation in the time domain (Carcione et al. 2002). The 

Grünwald-Letnikov expansion can also be used to calculate the FTD but this expansion 

requires large computational memory to store the wavefield history, even if it is truncated 

(Podlubny 1999).  

A practical way to reduce the computational cost of the FTD is that, when the attenuation 

is weak, one can transfer the FTD to fractional spatial derivatives (FSDs) (Chen & Holm 2004, 

Treeby & Cox 2010), and then solve FSDs by Fourier pseudo-spectral method, which greatly 

lowers the computation memory threshold (Carcione 2010). The FSDs in the wave equation 

can also be decoupled into velocity dispersion and energy dissipation respectively (Zhu & 

Harris 2014), and this decoupled wave equation can be further expanded to viscoelastic and 

tilted transversely isotropic (TTI) media (Zhu & Carcione 2014, Qiao et al. 2019, Zhu & Bai 

2019). Further, Mu et al.. (2022)improved the accuracy of the FSDs in highly attenative media 

by Taylor series expansion.  
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When using the pseudo-spectral method to solve the FSDs in the wave equation, it requires 

that the viscoelastic parameter ( ) x  is a constant in the space. In practice, the viscoelastic 

parameter ( ) x  is averaged over the space x , to generate a constant   for the purpose of the 

spatial Fourier transform. This averaging scheme will cause errors in numerical calculation. 

Based on the locality principle, Zhu & Harris (2014) propose to interpolate the constant-order 

solutions generated with each single parameter in whole model. The spatially varying order of 

FSD is a function of ( ) x . Chen et al. (2016) and Xing & Zhu (2019) use either the Taylor 

expansion or a polynomial approximation to transfer the spatial-varying order FSD into the 

constant order FSDs, and then implement the pseudo-spectral method directly. Yao et al. (2017) 

apply the Hermite distributed approximation to transfer the spatial-varying FSD to an integral 

of the fractional derivative of the Delta function, and this fractional derivative can be solved 

locally. But all these schemes aforementioned sacrifice the efficiency for accuracy to some 

extent. For example, when using the polynomial approximation to derive the constant-order 

wave equation (Xing & Zhu 2019), the resultant wave equation includes six fractional 

Laplacian operators. This scheme greatly lowers the efficiency, compared to the original two-

operator equation.  

In this chapter, a strategy to solve the FSDs in heterogeneous media is proposed, which 

would be straightforward in philosophy and simpler in realization. This strategy is to build a 

spatially varying correction function, and to insert this spatial filter directly into the averaging 

scheme. Because this spatial filter is frequency-independent, it is efficiently implemented as a 

coefficient multiplied to the wave equation. Therefore, this filter improves the accuracy and 

maintains the high efficiency of FFT implementation. Further, the viscoelastic wave equation 

with the proposed strategy is implemented to attenuation compensated reverse-time migration, 

which greatly improves the resolution of the seismic images. This chapter has been published 

in Pure and Applied Geophysics (Xu & Wang 2022). 
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4.2 Wave equation formed with fractional spatial derivatives 

The wave equation presented in terms of FTD may be transferred to a wave equation formed 

with FSDs. The ultimate purpose of this transformation is to have an efficient implementation 

of this wave equation.  

The generalised viscoelastic wave equation with FTD (Y. Wang 2016) may be expressed 

explicitly as the following 
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where u is the scalar wavefield, 
0  is the reference frequency,   is the viscoelastic parameter, 

and ( )c   is the viscoelastic velocity, which means the phase velocity at zero frequency. In the 

media where the medium parameters are spatially invariant, Eq. (4.1) can be rewritten in the 

frequency-wavenumber domain as  
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where k is the wavenumber, and û   is the frequency-wavenumber domain wavefield. Now, 

making an approximation based on the weak attenuation assumption (Zhu & Harris 2014) 
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where 
0c  is the reference velocity, Eq. (4.2) is approximated to  
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where 
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Applying an inverse Fourier transform to Eq. (4.4), the generalised wave equation in the 

temporal-spatial domain may be presented as FSDs: 
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where u  is the time-space domain wavefield. Eq. (4.6) decouples the dissipation effect, as the 

1C  term is from the real part of FTD, which represents the velocity dispersion and the 
2C  term 

is from the imaginary part of the FTD, which represents the amplitude absorption (Zhu & 

Harris 2014). In this equation, 1( )C    and 
2( )C    are assumed to be spatially independent. 

However, when forming the FSDs for a general viscoelastic case, both terms are spatially 

variable, because ( ) x  is a spatial function.  

For the derivation above, the approximation Eq. (4.3) is a key condition, so that the 

complex wavenumber k  could be replaced with the real wavenumber 
Rek k= . This 

approximation to the complex wavenumber is made based on the weak-attenuation assumption. 

For the complex wavenumber k , the real and imaginary part may be written analytically as (Y. 

Wang 2019) 
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where ( , ) v  is the phase velocity, ( , )    is the attenuation coefficient, and the absolute 

value is for satisficing the anti-Hermitian property of the complex wavenumber.  
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Figure 4.113 Variation of the weak-attenuation assumption, illustrated by the ratio Re / | |= kR k  

versus the viscoelastic parameter  . The upper side of the yellow square represent 1.0R = . 

 

Figure 4.1 illustrates the accuracy of this weak-attenuation assumption with the ratio 

/ | |R kk= . Following Y. Wang & Guo (2004b), the reference frequency is set as the highest 

frequency 0  and then 0/ 1   . Figure 4.1 shows that the ratio R is close to 1, for 0.75  , 

and the relative error is less than 0.5%. When 0.351  , the ratio R is approaching to 1 with 

decreasing  . But when 0.351  , the ratio R is increasing with an increasing  . Therefore, 

the weak-attenuation assumption is valid for 0.351  , for most area of interest to seismic 

application (Kolsky 1953, Mason 1956, Futterman 1962, Y. Wang 2019).  

4.3 Accuracy validation 

To evaluate the accuracy of FSDs of Eq. (4.6), the wavenumber domain Eq. (4.4) is treated as 

a non-linear equation ( ) 0f k = . The numerically solved wavenumber is compared to the exact 

wavenumber of FTD presented analytically in Eqs. (4.7) and (4.8). 

Figure 4.2 demonstrates the accuracy evaluation using an arbitrarily chosen pure acoustic 
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velocity 
0c =2500 m/s, and considering cases of weak, median, and strong attenuation with 

 = (0.010, 0.190, 0.351), which is corresponding to Q = (100,30,10), respectively, according 

to Y. Wang (2019). The accuracy of the phase velocity is high in general, as the root-mean-

square (RMS) error in three cases together is 4.169 m/s. The accuracy of the attenuation 

depends on the   value. The RMS errors in the attenuation coefficient are 3 10.0501 10 m− −  

for 0.010 =  and 3 10.3405 10 m− −  for 0.190 = . However, the RMS error in the attenuation 

coefficient is 3 16.769 10 m− −  for the extreme case with 0.351 = . This error existed in the 

most attenuating case is caused by the approximation 
0/ c k    (Eq. 4.3) used in the 

transformation from FTD to FSDs.  

 

 

Figure 4.214 Comparison between the wave equations formed with FTD (solid black curves) and 

with FSDs (dashed red curves). (a) The attenuation ( )  . (b) The phase velocity ( )v  . 
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To investigate the reliability of the FSDs, the analytical solutions of two types of wave 

equations presented as FTD and FSDs, respectively, are compared. Considering a 

homogeneous case with constant  , the one-dimensional analytical solution for FTD in 

frequency domain is derived as (see Appendix A) 

 
1 0i

1

i ˆˆ( , ) ( )
2

x x
e

u x f


 


 −

= −  ,                                          (4.9) 

with 

 

1/2

0

1

1
1

i







−

  
   

 
= +

 
 

c
,                   (4.10) 

where ˆ( , )u x  is the wavefield in the frequency domain, and ˆ ( )f   is the source signature in 

the frequency domain. For FSDs, the corresponding analytical solution is formed using the 

Green’s function ( , , )G t k  as (see Appendix B) 
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where ˆ( , )u t k  is the wavefield in the wavenumber domain. The Green’s function is derived as 
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where 

 1

2 22

22 1
1

4

  = −+ck c k Ck C .               (4.13) 

An inverse Fourier transform of ˆ( , )u t k  with respect to the wavenumber k  produces the time-

space domain wavefield ( , )u t x . Note that the Green’s function in Eq. (4.12) is presented in 

terms of a sinc function.  
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Considering a homogeneous model with the velocity of 2500 m/s, and assuming that the 

source signature is a Ricker wavelet with the peak frequency of 20 Hz (Y. Wang 2015), Figure 

4.3 displays the waveform at travel distance 200 m, and demonstrates that two equations match 

very well in general, and only a minor discrepancy exists in the strong attenuation case. The 

RMS differences corresponding to the cases with  =(0.010, 0.144, 0.190, 0.351) are 

( 25.576 10− , 26.538 10− , 27.295 10− , 222.878 10− ), respectively. This observation is 

consistent with that shown in Figure 4.2, that only large error occurs in strongly attenuating 

media. 

 

 

Figure 4.315 Comparison between the wave equation formed with the FTD (solid red curves) 

and one with FSDs (dashed black curves). The travel distance is 200 m. The   value and the 

corresponding RMS differences are listed in the plots. 
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Noted that the above equation with FSDs (Eq. 4.6) is derived based on homogeneous 

media where the viscoelastic parameter   is constant. When forming the FSDs for a general 

viscoelastic case, ( ) x  is a spatial function. Based on the small perturbation assumption, FSDs 

is still approximatedly valid for a general viscoelastic case (Zhu & Carcione 2014, Xing & Zhu 

2019). 

4.4 Spatial filter for implementation in heterogeneous media 

For the numerical calculation of Eq. (4.6), the pseudo-spectral method is commonly applied to 

solve the FSD. In practice, the viscoelastic parameter ( ) x  in the heterogeneous media is 

assumed to be smoothly varied and then the average parameter   is adopted for calculating 

the FSD: 
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where 
xF  is the Fourier transform with respect to vector x, and 1

x

−F  is the inverse of 
xF . It 

should be noted that the smoothly varied heterogeneity assumption here is to employ the 

averaging method, which is not necessary in FTD wave equation as FTD can be directly solved 

by finite difference method without performing spatial Fourier transform. The wavefield in the 

space domain and in the wavenumber domain are listed in pairs as the following: 
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The pseudo-spectral method has been used widely in wave simulation (Carcione 2010). 

Therefore, the numerical advantage of the FSD is to overcome the memory issue related to the 

numerical calculation of the FTD in the original wave equation.  
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In order to correct the errors caused by the averaging scheme of the FFT implementation, 

a correction function ( ( ))f  x  may be introduced as a spatial filter to correct the wavenumber 

as 

 ( ) ( ( ))k k f =x x .                                (4.16) 

Multiplying either k  or 2k  to both sides, (1 1) ( ( ))k f k + +=x
x  and (2 2) ( ( ))k f k + +=x x . 

Therefore, a corrected wave equation which corresponds to Eq. (4.6) is 
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It should be noted that this spatial filter is applied to correct both phase and velocity. 

In order to construct the spatial filter, the case of weak attenuation with Im / | |  1k k  can 

be reasonably assumed and the approximation Rek k  can be made. The real wavenumber Rek  

in Eq. (4.7) can be expanded to the first order as  
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Then, the spatial filter ( ( ))f  x  is evaluated at each grid by 
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where m  is the mean frequency of the seismic band. The central-frequency approximation in 

the last line is made based on an assumption ( ) 1 −x , so that the spatial filter ( ( ))f  x  

is frequency independent and avoids any extra Fourier transform. Thus, this spatial filter does 
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not affect the efficiency of the algorithm, but greatly improves the accuracy in heterogeneous 

media.  

4.5 Numerical example 

In this section, three numerical examples are presented. The main objective of the numerical 

examples is to demonstrate that the filtered averaging scheme produces higher numerical 

accuracy than the conventional averaging scheme The first example is for validating the 

effectiveness of the spatial filter. 

A constant velocity is set to be 2500 m/s, and consider a model with the viscoelastic 

parameter values  = (0.351, 0.190, 0.131), which is corresponding to Q= (10, 30, 60) based 

on Y. Wang (2019). The source signature is a 20-Hz Ricker wavelet, and the waveforms are 

recorded at distances of 500 m and 2000 m. These two accurate waveforms are plotted in a 

single trace in Figure 4.4 (black solid curves).  

To mimic the approximation in the viscoelastic wave equation, a “heterogeneous” model 

with the average value of  = (0.237, 0.152, 0.112) is assumed, which is corresponding to Q= 

(20, 45, 80). The approximated solutions (in red dots) are overlaid with the accurate trace, as 

shown in Figure 4.4(a). Three cases have RMS differences of 23.95 210− , 9.09 210− , and 4.74

210− . These differences are mainly due to the phase discrepancy but is also due to the 

amplitude difference at large   values.  

Adopting the correction with the spatial filter, calculated waveforms (in blue dots) are 

close to the true waveforms, as shown in Figure 4.4(b). The RMS differences are (2.85 210− , 

1.05 210− , 0.52
210− ) for the three cases respectively. Both the phase and the amplitude are 

corrected remarkably. This example shows that the correction function can improve the 

accuracy of waveform simulation in heterogeneous media, especially in highly-attenuative 

areas.  
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Figure 4.416 The correction function of wave equation for heterogeneous media. (a) Comparison 

between the averaging scheme without correction (red dots) and the accurate solution (black 

solid curves). (b) Comparison between the averaging plus correction scheme (the blue dots) 

and the accurate solution. 
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Next, a two-layer model is adopted to validate the scheme. The model is shown in Figure 

4.5(a). A reference is set by directly solving Eq. (4.1) using Grünwald-Letnikov expansion 

(Podlubny 1999) as follows: 
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where t  is the time interval. A 20-Hz Ricker wavelet is emitted at the centre of the model. 

The model is discretized into 801 × 801 grids with grid spacings of 2.5 m. This fine spacing is 

equivalent to 16 nodes per wavelength ( min min / (2.5 )pv f = = 40 m). The time step is set as t

=0.25 ms, which is also finer than the numerical requirement max/ ( 2 ) 0.59t x v   = . Fine 

interval in spatial and temporal axes is set in order to minimize the discrepancy between the 

Grünwald-Letnikov expansion and the pseudo-spectral method.  

Figure 4.5 also displays the wavefield snapshots at 0.35 s of the layered model. The result 

without correction by the spatial filter (Figure 4.5b) shows significant discrepancy from the 

reference, which proves that the conventional averaging scheme causes errors. However, after 

correction (Figure 4.5c), the accuracy is significantly improved. This example further 

demonstrates the importance of the proposed spatial filter for seismic simulation in 

heterogeneous media. Any remaining weak residual in Figure 4.5(c) is attributed to the 

transformation from FTD to FSDs.  

In the final example, FSDs of Eq. (4.25) is applied to simulate the wavefield of the 

Marmousi model. Figure 4.6 displays the acoustic velocity of the Marmousi model, and the   

model. The   model is built based on an analysis of the attenuation versus velocity from a 

field 3D seismic data in the Tarim basin. The model is discretized into 751 × 301 grid points 

with regular vertical and horizontal grid spacings of 10 m. The source signature is a 20-Hz 

Ricker wavelet and is emitted at (3800, 150) m. The receivers are located at a depth of 150 m 

and in a spatial range of 0~7500 m with 10 m spacing. The time step is 1 ms.  
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Figure 4.5 17A layered model and wavefield snapshots at 0.35 s. (a) the model parameter and 

reference wavefield; (b) the wavefield without correction and its residual to reference; (c) the 

wavefield with correction and its residual to reference. 
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Figure 4.618 The Marmousi model. (a) The P-wave velocity model. (b) The   model, generated 

through an empirical formula. 

 

Figure 4.719 Seismic wave simulation. (a) Snapshots of non-attenuating wavefield at 0.6 s, 0.8 

s and 1.0 s. (b) Snapshots of attenuating wavefield at 0.6 s, 0.8 s and 1.0 s. 
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Figure 4.7 shows snapshots of the wavefield without attenuation and the wavefield with 

attenuation at 0.6 s, 0.8 s and 1.0 s, respectively. There are no free-surface reflections from the 

top boundary and other three boundaries, since a convolutional perfectly matched layer (CPML) 

absorbing condition is adopted in the numerical calculation. However, there are clear 

reflections from the interfaces within the model, for both cases; this observation indicates the 

high quality of the simulation with negligible numerical dispersion. More importantly, these 

snapshots demonstrate that the attenuating wavefields have a clearly delayed wavefront and 

reduced amplitude, if compared to its non-attenuation counterparts.  

Comparison between the non-attenuating and attenuating shot gathers (Figure 4.8a and 

4.8b) demonstrates the accumulative effect of attenuation. Moreover, comparison between 

residuals of the conventional averaging scheme and the corrected scheme with the proposed 

spatial filter (Figures 4.9a and 4.9b) demonstrates the significance of the spatial filter. The 

residuals shown in Figure 4.9 are the discrepancy from the Grünwald-Letnikov expansion. 

Whereas the proposed wave equation is applicable to complex geological models, the reflection 

events from the interior interfaces are very weak in amplitude.  

Table 1 shows the maximum relative error of the layered model and the Marmousi model 

examples, which again demonstrates that the filtered averaging scheme has better the accuracy 

than the conventional averaging scheme. The error in Marmousi model is larger than that in 

layered model, because the Marmousi   model is varied in a larger range (from 0.01 to 0.3), 

thus the average   approximates all the ( ) x  less effectively. The accurate wave simulation 

will lead to correct subsurface images from seismic migration, as it leads to correct 

compensation to the viscoelasticity of the subsurface media 

Table 2 compares the computational time of FTD and FSD. The computation time of FTD 

is increase exponentially along with increasing simulation time, as the wavefield of every 

timestep needs to be stored and it needs plenty of time saving and reading files. For FSD, the 
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averaging scheme and the correct averaging scheme have the same computational process only 

with different coefficients, so they have the same computational time. From the comparison, 

the FSD solver costs much less computational time than the FTD solver, as spatial FFT 

implementation is extremely efficient, which shows the priority of this method. An efficient 

numerical solver allows for the application of the generalised viscoelastic wave equation to 

reverse-time migration.  

It should be noted that accounting for viscoelasticity leads to more accurate subsurface 

images, but only if the correct underlying Q model parameters are specified. Seismic simulation 

is more sensitive to Q variation in strongly attenuative media. Therefore, further research on 

building an accurate Q model should be conducted to benefit the seismic simulation and further 

imaging.  

 

Table 1 The maximum relative error of the filtered averaging scheme and the conventional 

averaging scheme 

Model Conventional  Filtered 

Layered model 15.12% 2.94% 

Marmousi model 19.38% 4.11% 

 

Table 2 The comparison of computation time in the seismic simulation of the Marmousi model. 

Simulation Time (ms) FTD FSD 

500 45 min 1 min 3 s 

1000 2 h 51 min 1min 58 s 

2000 11 h 48 min 4 min 1 s 
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Figure 4.820 The effect of attenuation in seismic wavefield. (a) The non-attenuating shot gather. 

(b) The attenuating shot gather, generated by the corrected scheme. 

 

 

Figure 4.921 The significance of the correction function. (a) The residual of the conventional 

averaging scheme. (b) The residual of the corrected averaging scheme. The reference is the 

solution of Grünwald-Letnikov expansion of FTD. 
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4.6 Attenuation compensation reverse-time migration  

Reverse-time migration (RTM) is a seismic imaging technique which produces high quality 

subsurface images, even in complex geological conditions. The RTM image is generated by 

cross-correlating the source wavefield and backward propagated receiver wavefield. Due to the 

associated attenuation effects, velocity dispersion and energy absorption, in real subsurface 

media, the conventional migration result suffers from weak amplitude and distorted phase, 

which greatly lowers the resolution and fidelity of the seismic images. Thus, it is important to 

compensate for these viscoelastic effects during the migration process.  

In this section, the proposed viscoelastic wave equation with FSDs is applied to 

compensate the attenuation effects in RTM. The attenuation-compensated RTM allows the 

attenuation effect to be mitigated during seismic simulations, to improve the resolution of the 

seismic images, especially for high-attenuation structures.  

In the generalised viscoelastic wave equation with FSDs, Eq. (4.17), the 1C  term represent 

the frequency dispersion and the 
2C  term represents the amplitude absorption. This decoupled 

form allows the attenuation compensation to be separated from velocity dispersion. “Switches” 

to control two effects can be added as: 
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where 1S  and 2S  are two coefficients controlling velocity dispersion and amplitude absorption. 

If 1 0S = , Eq. (4.21) becomes absorption-only wave equation, and if 
2 0S = , Eq. (4.21) 

becomes dispersion-only wave equation. 

To intuitively demonstrate the method for compensating the seismic attenuation effects, a 

simple model with a single horizontal reflector can be considered and seismic rays are adopted 

to describe the wave propagation.  
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Velocity dispersion means the high-frequency wave components travel faster than the 

low-frequency counterparts. As illustrated by Figure 4.10, the high frequencies are recorded 

earlier than the low frequencies, if they are emitted from the source simultaneously. In 

backward propagation, the recorded data is reversely ordered, and the low frequencies are 

propagated prior to high frequencies. If the phase velocity for each frequency is identical to 

that in the source wavefield propagation, the high frequencies and low frequencies can meet at 

the source location. This means the 1C  term, which controls the phase velocity, should be the 

same in both source and receiver wavefields, and 
1 1S =  should be adopted in both forward and 

backward propagation. 

 

 

Figure 4.1022 The correction for velocity dispersion. (Top) Forward propagation in attenuating 

media. (Bottom) Backward propagation with time-reversed data. The labels ‘H’ and ‘L’ 

represent high-frequency and low-frequency waves, and the red solid and blue dashed lines 

denote the ray path of the high and low frequencies, respectively. “t” denotes travel time, and 

“T” denotes total recording time. To correct the velocity dispersion effects, the dispersion term, 

controlling the phase velocity of the wave, must remain unchanged. 
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Figure 4.1123 The compensation for energy absorption. (Top) Forward propagation with 

attenuation. (Bottom) Backpropagation wavefield with compensation. The subscripts ‘S’ and 

‘R’ represent the source and receiver wavefield, and ‘U’ and ‘D’ represent the down-going and 

up-going attenuation, respectively. To correct the energy absorption effects, the absorption 

term must be reversed 

 

Energy absorption represents the intrinsic energy loss in wave propagation. The field and 

laboratory measurements show that attenuation follows the power law. As illustrated in Figure 

4.11, for a single–frequency wave, the attenuation follows a basic power law, and the recorded 

data contains both down-going and upgoing attenuation. To compensate for the energy loss in 

the receiver wavefield, the amplitude should be amplified to the exact same scale as the forward 

propagation, to restore the lost energy. Thus, in the wave equation, the sign of the energy 

absorption term should be reversed, which means 2 1S = −  in backward propagation. 

For the simulation of the source wavefield, it is proposed to use the dispersion-only wave 

equation, 
2 0S = , so the wave equation becomes  
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The reason is that this forward modelling does not include attenuation, and it is equivalent to 

compensating the wavefield. Also, the smaller number of calculations for the fractional spatial 

derivatives increases the efficiency. It is worth mentioning that some study suggests amplifying 

the amplitude in the source wavefield, i.e., 2 1S = − , which means the total wave energy is 

increasing during the propagation and it is obviously unphysical.   

In the receiver wavefield, the amplitude loss in the recorded original data is compensated 

by setting 2 1S = − . Therefore, the attenuation-compensation wave equation used in receiver 

wavefield propagation is written as 
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It should be noted that during the attenuation compensation, the high-frequency noise will be 

exponentially amplified, which will cause numerical instability. So, low-pass filters in the 

wavenumber domain should be applied to suppress the noise. The imaging condition is the 

source-normalized cross-correlation between source and receiver wavefields, which has been 

proven to be capable of illustrating the real reflector and to be numerically stable. 

To validate the attenuation compensation, the same Marmousi model (Figure 4.6) is 

adopted to demonstrate the RTM scheme. There are 70 Ricker wavelet sources with a peak 

frequency of 20 Hz. The shot interval is 100 m, whereas the receiver spacing is 10 m with a 

total of 751 receivers. The synthetic data are generated by the forward modelling and recorded 

for a total time of 4 s, and the sampling rate is 1 ms. The direct waves are muted from the data. 

A Tukey filter with taper ratio of 0.2 and cut-off frequency of 120 Hz is applied to prevent 

high-frequency wave component from growing exponentially. Laplacian filters are applied to 

remove 
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Figure 4.1224 Reverse-time migration (RTM). (a) The reference RTM image (the conventional 

RTM by using the non-attenuation data). (b) The conventional RTM (without compensation) 

by using the attenuation data. (c) Attenuation-compensated RTM with the attenuation data. 

 

remove the low-wavenumber artefacts in the final image. The final images are normalized by 

the maximum value to better compare the results. 

Figure 4.12 shows the resultant RTM images. The reference is set as the conventional 

reverse-time migration by using the non-attenuating data (Figure 4.12a). Compared to the 

reference image, the overall amplitude in the non-compensated image (Figure 4.12b) is much 

weaker, the interfaces located at the lower part of the model are poorly illuminated and the 

anticlined structure beneath the high-attenuation zone is almost invisible in the non-
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compensated image. With attenuation compensation (Figure 4.12c), the interfaces and 

structures are correctly located and better illuminated, and this compensated result is very 

similar to the reference.  

Figure 4.13 compares the image traces at difference lateral distance. Compared with the 

reference (black line), which is the conventional RTM image of the non-attenuation data, 

directly using conventional RTM to attenuation data (green line) leads to inaccurate phase and 

low resolution, especially in the deeper part of the result. The attenuation-compensated RTM 

(red line) can compensate for the weak amplitude and correct phases, appropriately. This 

example shows the attenuation compensation can effectively compensate for the weakened 

amplitude and distorted phase in reverse-time migration, leading to the improvement of the 

resolution of seismic images. 

 

 

Figure 4.1325 Seismic image traces at 3 km, 4 km, and 5 km. The black line represents the 

reference traces; the green line is obtained by the conventional RTM of attenuation data, and 

the red line is obtained by attenuation-compensated RTM of attenuation data. 
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4.7 Conclusion  

The generalised wave equation with FTD is numerically challenging to solve and not suitable 

for reverse-time migration. In this chapter, an efficient implementation strategy is proposed. 

When transferring the wave equation in the FTD form to the FSDs form, the wave simulation 

can be implemented via FFT to the wavenumber domain. This FFT implementation greatly 

improves the computation efficiency, but it causes errors when applied to heterogeneous media. 

To improve the accuracy of this implementation, it is proposed to insert a frequency-

independent correction function into the wave equation as a spatial filter to correct for the error 

caused by the heterogeneity of the model. This spatial filter can be easily implemented and an 

equation including the correction improves the accuracy of the simulation. Numerical examples 

have demonstrated that this strategy may properly represent the dissipation effect of the 

viscoelasticity on the waveforms, improve accuracy, and maintains the high efficiency of the 

FFT implementation. With efficient and accurate seismic modelling, the attenuation 

compensation is implemented in reverse-time migration. Thanks to the decoupling effect of the 

FSDs, the energy absorption and phase distortion can be compensated separately. The 

numerical migration result demonstrates that attenuation compensation is capable of 

amplifying the energy and correcting the distorted phase, subsequently improving the 

resolution and fidelity of the migration images. 
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Chapter 5  

Reverse-time migration by biaxial wavefield 

decomposition 

 

 

 

In the previous chapter, an efficient and accurate equation for viscoelastic waves was derived 

and used in attenuation compensation in reverse-time migration (RTM). In this chapter, another 

strategy to improve the resolution of migration images is proposed, namely the reduction of 

migration artefacts. Conventional RTM images are extremely contaminated by artefacts. 

Therefore, the main objective of this chapter is to investigate an efficient artefacts elimination 

method for reverse-time migration to generate high-resolution seismic images. In this chapter, 

the biaxial wavefield decomposition is introduced, which is based on the analytical wavefield 

via the Hilbert transform and decomposes seismic wavefields in both lateral and vertical 

directions. After decomposition, the up-going source wavefield and down-going receiver 

wavefield are eliminated to reduce shallow artefacts. The remaining four terms can contribute 

separately to imaging flat layer and tilted interfaces. With the separate terms, the remaining 

artefacts can be easily identified and reduced. The resolution can be further improved by 

adjusting the weights of the four terms. This Hilbert transform method has been shown to be 

suitable for the viscoelastic wave equation with fractional spatial derivatives. Therefore, this 

biaxial wavefield decomposition method is suitable for decomposing wavefields for the 
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attenuation compensation RTM. The decomposed and recombined migration results can better 

image the complex structure of the subsurface with high resolution. 

5.1 Introduction 

In the reservoir areas with high attenuation media and complex structures, traditional migration 

methods based on geometry seismology or one-way wave equations is inadequate to provide 

high-fidelity seismic images. Reverse-time migration (RTM) (Baysal et al. 1983, McMechan 

1983), based on two-way wave equation, becomes one of the most popular seismic migration 

techniques because of its ability to image complex subsurface structure without dip limitation. 

The quality of the migration result is often characterized by resolution of the image. High-

resolution seismic images can provide accurate locations and clear patterns of subsurface 

structures, which greatly benefit the subsequent seismic interpretation. 

Reverse-time migration uses the zero-lag cross correlation between the source wavefield, 

which is to forward propagate the source signature, and the receiver wavefield, which is to 

backward propagate the recorded data, and generates the high-resolution image. Conventional 

RTM images are contaminated by the undesirable high-amplitude, low-spatial frequency 

artefacts, because it uses a two-way wave equation to propagate both source and receiver 

wavefields and the cross-correlation between the irrelevant and unphysical waves causes the 

false images. Especially for fine layers, faults, and small structures where the seismic reflection 

is relatively weak, the resolution is greatly decreased due to the migration artefacts. Therefore, 

in recent years, improving the resolution of the migration images and reducing artefacts have 

drawn more attention.  

Many studies have attempted to address this RTM artefact issue. Fletcher et al. (2006) 

introduced a directional damping method to reduce the low-frequency noise by suppressing the 

internal reflection. Zhang & Sun (2009) proposed the use of angle domain common gathers 
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(ADCIGs) and to reduce the noise by muting the far angles. A straightforward and practical 

approach is to apply Laplacian filters to the final image, but this approach is unphysical and 

damages the true image of structures (Guitton et al. 2007). A more physical way is to perform 

the up-/ down-going wave decomposition during the propagation and only cross-correlate the 

physical wave components in the imaging condition, such as between the down-going source 

wavefield and the up-going receiver wavefield.  

One category for the up/down going wavefield decomposition is to use the Poynting vector 

as an indicator for the wave decomposition, as it is represented the direction of wave energy 

propagation (Yoon & Marfurt 2006). Further, the Poynting vector method has been improved 

by Horn-Schunck optical flow algorithm (Zhang 2014), and weight function illumination (Kim 

et al. 2019). This type of method achieved good results in simple models, but it fails to generate 

satisfying results in complex subsurface models, because the discontinuous separated 

waveforms bring noise to the migration image. 

Another category for up/down going wavefield decomposition is based on the sign of the 

apparent propagation velocity. This involves filtering the wavefield in the frequency-

wavenumber domain. This method obtains relatively high-quality migration images, but the 

computational cost is extremely large because calculating frequency needs storge of the entire 

wavefield history. Therefore, to avoid this computational memory problem, the analytical 

wavefield method is developed based on the Hilbert transform that the real part is the original 

wavefield and the imaginary part is the Hilbert transform of the real part (Fei et al. 2015). 

Because the analytical wavefield only contains non-negative frequency components, the 

up/down going wavefield decomposition can be conveniently implemented via spatial Fourier 

transform in terms of depth. In recent years, various studies on this analytical wavefield have 

been conducted. Shen & Albertin (2015) proposed to construct the imaginary part of the 

analytical wavefield by applying the temporal Fourier transform to the source term in the 
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acoustic wave equation and following the conventional propagation process. This method has 

been tested and proved to be effective and efficient in removing low-frequency artefacts. 

The existing studies on the wavefield decomposition only focus on the up-down going 

wave decomposition, which ignores the artefacts caused by incorrect correlation between left-

/right-going waves. This chapter introduced the biaxial wavefield decomposition that further 

decomposed the wavefield into four directions, the four terms have different contributions to 

imaging the flat and tilted layers, respectively, and the artefacts can be further identified and 

filtered as the four terms are decoupled. Also, since the tilted faults and layers are separated 

from nearly flat layers, the resolution can be further improved by adjusting weights. 

Additionally, it is proven that this biaxial wavefield decomposition method based on the Hilbert 

transform is suitable for the viscoelastic wave equation with fractional spatial derivatives, and 

subsequently applicable to attenuation compensation RTM. This strategy may provide further 

guidance for seismic interpretation and subsequent exploration. This chapter has been 

submitted to Geophysics. 

5.2 Artefacts in reverse-time migration 

RTM is an advanced developed technique for imaging subsurface geological and velocity 

complexities. The zero-lag cross-correlation between extrapolated source wavefields and back-

propagated receiver wavefields is the commonest imaging condition(Claerbout 1971). Since 

both source and receiver wavefields contain up- and down-going wave components, the cross-

correlation imaging condition can be mathematically partitioned in a discrete form: 

 
T

d d d u u d u u

t t

S R S R S R S R= = + + + I S R ,                                (5.1) 

where ( ),
T

d uS S=S  and ( ),
T

d uR R=R  denotes the source and receiver wavefield and 

subscript d, u denote the down-going and up-going, respectively. In Eq. (5.1), d dS R  and 
u uS R  



83 

 

produces high-amplitude and low-frequency artefacts in the shallow part, while 
u dS R  is the 

upward-folded ray-path result that has the same travel time of the true physical ray path, which 

generate incorrect RTM images.(F. Liu et al. 2011, W. Wang et al. 2016). Therefore, a causal 

imaging condition (Fei et al. 2015, Revelo & Pestana 2019) is proposed by only maintaining a 

single term in Eq. (5.1) as 

 causal d u

t

S R=I .                                                 (5.2) 

However, this causal imaging condition ignores the artefacts produced by the unphysical cross-

correlation of the incident and reflected waves from incorrect lateral directions. To demonstrate 

this statement specifically, the ray path of a horizontal layer reflector (Figure 5.1) may be 

considered. The cross-correlation imaging condition of RTM will ideally enhance the true 

reflection point O, but cause artefacts O’ along the ellipse whose focus points are the source 

and receiver. With the superposition of different receiver wavefields and multiple shots, the 

artefacts may become large and hinder the true migration image.  

If the wavefield decomposition can be performed in terms of both lateral and vertical 

direction, the artefacts can be further reduced. The zero-lag cross-correlation imaging condition 

(Eq. 5.1) may be written in a matrix form as:  

 ( )( )
T

T , , , , , ,r l l r r l l r

d d u u d d u u

t t

S S S S R R R R= = I S R ,     (5.3) 

 

 

Figure 5.126 The imaging condition of RTM will ideally enhance the reflection point but cause 

artefacts along the ellipse. The red star (S) represents the source, the blue dot (R) denotes the 

receiver, O denotes the true reflection point and O’ denotes the artefacts. 
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where ( )
T

, , ,r l l r

d d u uS S S S=S  and ( )
T

, , ,r l l r

d d u uR R R R=R  denotes the source and receiver 

wavefield and the superscript l, r denote the left-, right- going waves and the subscript d, u 

denote the down- and up- respectively. This form of imaging condition is equivalent to the 

summation of 16 terms. To adjust the flexibility, a coefficient matrix W may be added as 

 ( )

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4T

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

, , ,

r
S R S R S R S R d

l
S R S R S R S Rr l l r d

d d u u l
t t S R S R S R S R u

r
S R S R S R S R u

w w w w w w w w R

w w w w w w w w R
S S S S

w w w w w w w w R

w w w w w w w w R

  
  
  = =
  
   

  

 I S WR ,   (5.4) 

where in the coefficient matrix W, the subscripts S, R denote the source and receiver and the 

subscripts 1,2,3 and 4 denote the right-down, left-down, left-up and right-up going waves, 

respectively. Conventional cross-correlation imaging condition is equivalent to that all the 

elements in W are 1/16. The causal imaging condition (Eq. 5.2) is equivalent to “switching off” 

the up-going source wavefield and the down-going receiver wavefield, and the coefficient 

matrix becomes: 

 causal

0 0 1 1

0 0 1 11

0 0 0 04

0 0 0 0

 
 
 =
 
 
 

W .                (5.5) 

The coefficient 1/4 in Eq. (5.5) is for normalization. To add extra flexibility, the weights of 

four term may be introduced, and the coefficient matrix can be revised as  

 

3 4

1 2

deco

0 0

0 0

0 0 0 0

0 0 0 0

W W

W W

 
 
 =
 
 
 

W ,             (5.6) 

where iW  denotes the weight coefficient to balance the four terms, with the constraint 

4

1

1i

i

W
=

= . 

Assigning weights to different terms may illuminate some fine structures. The imaging 

condition Eq. (5.6) can be simplified as: 
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deco 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l l l r r l r r

d u d u d u d u

t t t t

I W S R W S R W S R W S R= + + +   x x x x x x x x x   (4.7) 

where ( ) ( )l l

d uS Rx x  and ( ) ( )r r

d uS Rx x  denotes the single-directional terms, as the source 

wavefield and receiver wavefield propagate to the same lateral direction; ( ) ( )l r

d uS Rx x  and 

( ) ( )r l

d uS Rx x  denotes the cross-directional term, as the source and receiver wavefield propagate 

to the opposite lateral directions. The decomposition term images can provide a further 

reference in addition to the conventional RTM. Noted that the imaging condition Eq. (5.7) is 

suitable for the source and receivers placed on the near surface, and the coefficient matrix (5.6) 

may be revised according to the acquisition design.  

In Eq. (5.7), the weights iW  can be assigned based on numerical inversion. In this chapter, 

it is proposed to match the structural similarity index of the combined image (Eq. 5.7) with that 

of the conventional RTM image (Eq. 5.1). Structural similarity index is a statistical property of 

a image, which is based on the distribution and overall variation. If directly matching the 

overall residual with the conventional RTM which presents large amplitude artefacts, the 

weights of the artefact terms will be large and the amplitude of the remaining artefacts will be 

greatly amplified.  

To demonstrate the artefacts produced by the wrong cross-correlation between irrelevant 

wave components, a simple flat-layer model (Figure 5.2a) is constructed. The 24 shots and the 

receivers are in the depth of 300m. The wavefield decomposition method is discussed in the 

next section. Figure 5.2(b) is the conventional RTM image from the cross-correlation of full 

source and receiver wavefield, where there are large artefacts in the shallow part of the image. 

After decomposition, the artefacts in Figure 5.2(c) are greatly reduced compared with the 

conventional RTM algorithm. More importantly, this example shows that only the single-

directional terms contribute to the true image of the layer, while the cross-directional terms 

( r l l r

d u d uS R S R+ ) introduce artefacts in the flat-layer case. This example demonstrates that for the 
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horizontal reflectors, the single-directional terms are able to show the flat layer, while the 

artefacts are often presented in the cross-directional terms. Therefore, by selecting appropriate 

terms for the imaging condition, the biaxial wavefield decomposition can further reduce the 

RTM artefacts and subsequently improve the resolution of the images. 

Even though the cross-directional terms are the artefacts in the flat-layer area, they 

contribute to better image faults and tilted layers. As shown in the schematic diagram of the 

ray path of a tilted layer (Figure 5.3), for small offset data where the quality of the migration 

image is better, the cross-correlation between left-down going source wavefield l

dS  and right-

up going receiver wavefield r

uR  in this case can show the true layer. By separating these terms, 

the fault and tilted layers may be separated from the flat layers. 

 

 

Figure 5.227 A flat layer example. (a) The velocity model; (b) conventional RTM with cross 

correlation imaging condition; (c) l l r r

d u d uS R S R+  image; (c) r l l r

d u d uS R S R+  image. 



87 

 

 

 

Figure 5.328 Seismic wave ray path of a tilted reflector at small offset receivers. The correlation 

between down-left going source wavefield and up-right going receiver wavefield represent 

accurate reflection points. S denotes the source, and R denotes the receiver. 

 

 

Figure 5.429 A simple fault example. (a)The velocity model; (b) conventional RTM with cross-

correlation imaging condition; (c) l l

d uS R  image; (d) r l

d uS R  image; (e) l r

d uS R  image; (f) r r

d uS R  

image. 
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To demonstrate the contribution of each term in Eq. (5.7), a simple fault model is built 

(Figure 5.4a). The large artefacts in the conventional RTM image (Figure 5.4b) are not shown 

in the decomposition results (Figures 5.4c-5.4f). Additionally, the single-directional images, 

l l

d uS R  and r r

d uS R  (Figures 5.4c and 5.4f), show the correct image of the flat layer, and the upper-

left part of the image is from the scattering waves of the corner. The r l

d uS R  term (Figure 5.4d) 

shows the tilted fault with high resolution, while the l r

d uS R  term (Figure 5.4e) is mainly artefact. 

This example shows that the four terms in the imaging condition play different roles in 

presenting the subsurface layers. The single-directional terms are capable of imaging the nearly 

flat layers, while the cross terms can image the faults and large tilted layers.  

5.3 Biaxial wavefield decomposition  

The decomposed wave components in Eq. (5.7) are separated according to the apparent 

propagation velocities along both x and z axis (Hu & McMechan 1987). The apparent velocities 

are calculated using the dispersion relation, which requires frequency and corresponding 

wavenumber components. However, calculating the frequency requires to complete wave 

propagation and the whole wavefield snapshot being stored, which is computationally intensive.  

Building the analytical wavefield is an effective way to avoid calculating frequency in 

wavefield decomposition. An analytical signal is constructed by using the original real-valued 

seismic trace as the real part, and the Hilbert transform of the original trace as the imaginary 

part. Figure 5.5 shows a 20-Hz Ricker wavelet, which has a symmetric amplitude spectrum in 

the frequency domain (Figure 5.5a). After the Hilbert transform, the amplitude spectrum keeps 

unchanged, with only a 90° phase shift to the original trace (Figure 5.5b). The complex trace 

is built by the original wavelet and its Hilbert transform (Figure 5.5c), whose amplitude 

spectrum is zero at the negative frequency and double at positive frequency.  
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Figure 5.530 Complex trace and its spectrum. (a) The original 20-Hz Ricker wavelet and its 

amplitude spectrum; (b) the Hilbert transform of (a) and its corresponding amplitude spectrum; 

(c) the complex trace and its amplitude spectrum. 

 

To build the analytic wavefield, the scalar viscoelastic wave equation (Xu & Wang 2022) 

with source term can be considered as 

 
2 1 )

2
2

1 22

2

2
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    (5.8) 

where p is the scalar wavefield,   is the viscoelastic parameter, c  is the viscoelastic velocity, 

0 0( , )x z  is the source location, and ( )f t  is the source function, and the two coefficients are 
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and 0c  is the reference velocity which usually set as pure acoustic velocity, 
0  is the reference 

frequency which set as highest frequency of the frequency band normally (Y. Wang & Guo 

2004b). 

Performing the Hilbert transform along the time axis for both sides in Eq. (5.8), it becomes: 

( )2 1 /2 2 (1
2

2

1 22

)/2

0 02
( ) ( ) ( ) ( ) ( )

1
( )t t t f t x

p
C C p

c t t
x z z   + +     

−


− = − −  + − + + 
  

 
  

H H H , 

(5.10) 

where ( )t H  denotes the Hilbert transform in terms of time. Using the linear property of 

Hilbert transform and derivatives and the independence of different variables, the above 

equation becomes: 

( )2 1 /2 2 (1
2

)/2

02 0

2

1 22

1
)

( )
( ) ( ) ( ) ( ) (( ) ( )t

t t tC C
p

p f x x
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z z
c t

   + +− −


  
+ − + + 

 
−


= −

H
H H , 

(5.11) 

Combining Eqs. (5.8) and (5.11) together, it satisfies a similar equation: 
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
.   (5.12) 

where ˆ ( )tp p p= +H  is the analytic wavefield, and  ˆ ( ) ( ) ( )tf t f t f t= +H  is the analytic 

source. Thus, the analytical wavefield can be built at every time step, where the frequency is 

non-negative.  

The physical meaning of Eq. (5.12) is that for a certain frequency of wave, the velocity 

dispersion effect for the real and imaginary part of the wavefield is the same and the real and 

imaginary wavefields have a constant 90-degree phase shift during the propagation. The 

attenuation compensation in RTM of Eq. (5.12) is straightforward, which keeps the frequency 

dispersion term (
1C  term) unchanged but reverses the sign of the energy absorption term (

2C  
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term) (Zhu, et al., 2014). Since the imaginary wavefield is a constant phase-shifted propagation 

process, it can also be compensated via the same approach.  

Since the calculation of the fractional spatial derivatives requires 2D Fourier transforms in 

terms of x and z directions, it is convenient to separate the wavefield in both lateral and vertical 

direction as: 

 ( )
( )ˆ , ,     if 0 && 0

, ,
0                    otherwise              

r x z z x
d x z

P t k k k k
P t k k

  
= 


,                       (5.13a) 

 ( )
( )ˆ , ,     if 0 && 0

, ,
0                    otherwise              

l x z z x
d x z

P t k k k k
P t k k

  
= 


,                        (5.13b) 

 ( )
( )ˆ , ,     if 0 && 0

, ,
0                    otherwise              

r x z z x
u x z

P t k k k k
P t k k

  
= 


,                       (5.13c) 

 ( )
( )ˆ , ,     if 0 && 0

, ,
0                    otherwise              

l x z z x
u x z

P t k k k k
P t k k

  
= 


.                       (5.13d) 

where P  denote the scalar wavefield in the wavenumber domain, P̂  is the analytical 

wavefield in the wavenumber domain, and ( , )x zk k  are wavenumber components. 

To test the performance of the wavefield decomposition, a homogeneous model with the 

centre-located source is built (Figure 5.6). The wavefield is decomposed into four directions 

according to Eq. (5.13). A Hann window is applied in the wavenumber domain to avoid the 

Gibbs phenomenon. One potential problem of the decomposed wave is the limited aperture, as 

the vertically propagated waves are weakened. This problem can be solved by the superposition 

of multi-shots, and only effects the deep boundary area of the migration image. This limited 

aperture problem may be compensated by the gradient of the conventional RTM results, which 

is the secondary product of decomposition RTM.  
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Figure 5.631 The wavefield decomposition results based on the sign of the wavenumber. (a) 

Left-up going wave; (b) right-up going wave; (c) left-down going wave; (d) right-down going 

wave. 

 

5.4 Synthetic non-attenuating RTM in Marmousi model  

This section aims to test the validity of the biaxial wavefield decomposition reverse-time 

migration. The purely acoustic data is generated to eliminate the potential effect of 

viscoelasticity, for validation of the applicability of this method itself. 

Figure 5.7(a) shows the velocity model of the fault area in the Marmousi model. Based on 

a profile through the North Quenguela, the Marmousi model contains multiple fine layers and 

large faults. Therefore, this model is chosen for testing the biaxial wavefield decomposition 

RTM method, which is proposed to better image fine layers and large tilted faults. There are 

70 shots and 710 receivers both located in the depth of 300m. The migration model is obtained 

by smoothing the true velocity model.  
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Figure 5.7(b) presents the conventional RTM result, where the large artefacts significantly 

hinder the presentation of thin layers and faults. Applying the Laplacian filter (Figure 5.7c) can 

greatly reduce the low-frequency artefact, but it is only a nonphysical imaging process, and the 

continuous layers are damaged and broken. Also, the Laplacian filter changes the phase 

information of the migration image. 

 

 

Figure 5.732 The fault area in the Marmousi model. (a) The velocity model; (b) the conventional 

RTM image; (c) the conventional RTM image with a Laplacian filter. 
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Figure 5.833 The four decomposed terms in the Marmousi example. (a) l l

d uS R ; (b) r r

d uS R ; (c) l r

d uS R ; 

(d) filtered l r

d uS R ; (e) r l

d uS R ; (f) filtered r l

d uS R . 

 

After the wavefield decomposition, the separated four term images are shown in Figure 

5.8. The single-directional terms (Figure 5.8a and 5.8b) show the image of nearly flat layers 

with few artefacts. The r l

d uS R  term (Figure 5.8c) shows the clear three faults with high 

resolution, and the l r

d uS R  term (Figure 5.8e) presents the tilted layers in the fault area. The 

artefacts in the Figure 5.8(c) and 5.8(e) are easy to be identified as they are located in the flat 

layer zone corresponding to the single-directional terms, and the directional filter can be 

applied to eliminate these artefacts, which are shown in Figures 5.8(d) and 5.8(f). 
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Figure 5.934 The RTM images of the fault area of the Marmousi model. (a) The summation of 

the four filtered terms in Figure 5.8; (b) the weighted summation of Eq. (5.7); (c) after aperture 

compensation by the gradient of conventional RTM images (Figure 5.7b). 

 

Figure 5.9 shows the recombination and further processing of the migration images based 

on the filtered four terms. Figure 5.9(a) shows the direct summation of the four terms, where 

the artefacts are greatly reduced, and the thin layers are much clearer than the conventional 

RTM results. Theoretically, the simple summation of these four terms is identical to the simple 

up/down going wave decomposition result. However, the simple up/down decomposition result 

lacks flexibility, as it is incapable of filtering each term and further reducing the artefacts. 
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Figure 5.9(b) shows the weighted images (Eq. 5.7), where the four weights are obtained 

numerically by inversion, which is to match the structural similarity index with the 

conventional RTM results:  

( ) ( )1 2 3 4,  ,  ,  0.160,  0.293,  0.387,  0.160W W W W = . 

In the weighted image, the thin layers and faults are further illuminated. Figure 5.9(c) shows 

the aperture-compensated image, which is obtained from Figure 5.9(b) compensated by the 

gradient of the conventional RTM image to solve the limited aperture problem. This limited 

aperture problem is due to the weakened amplitude of the vertically propagated waves in 

wavefield decomposition. This aperture-compensated image exhibits high resolution and less 

artefacts than the conventional RTM results, and the thin layers and faults are clearly 

illuminated. This example demonstrates that this decomposition method is suitable for 

improving the resolution of the fault and thin layers and removing the artefacts. 

5.5 Synthetic attenuating RTM in Sigsbee model 

This section aims to test the performance of the biaxial wavefield decomposition method in 

attenuative media. The synthetic data is generated by the seismic simulation in attenuative 

media using the wave equation with fractional spatial derivatives (Eq. 5.8).  

The Sigsbee model was created according to the geology of the Gulf of Mexico. It contains 

a series of sedimentary layers and an attenuating salt body. This example is difficult due to the 

complexed salt body and several normal and thrust faults contained in the model. This model 

is chosen for testing the effectiveness (of the proposed method) of attenuation compensation in 

fine layers and structures imaging. The true velocity and quality factor Q models are displayed 

in Figure 5.10. The salt body is a highly attenuative medium compared with its surrounding 

rocks. There are 135 shots, and 1320 receivers located at the depth of 300m. There are small 

structures (dots) in the depth of 3 km and 4.5 km in the true velocity model, which are 
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unidentifiable in the migration model. The migration model is smoothed from the true velocity 

model.  

 

 

Figure 5.1035 The Sigsbee models. (a) The P-wave velocity model; (b) Q model. 

 

 

Figure 5.1136 The filtered four decomposed terms in the Sigsbee model. (a) l l

d uS R ; (b) r r

d uS R . (c) 

l r

d uS R ; (d) r l

d uS R .  
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Figure 5.11 presents the filtered four terms after attenuation compensation and wavefield 

decomposition. These four terms do not contain any strong artefacts in the shallow zone, and 

the layers and structures are highly illuminated in all terms. The single-directional terms 

(Figure 5.11a and 5.11b) show the image of nearly flat layers with little artefacts. The l r

d uS R  

term (Figure 5.11c) and r l

d uS R  (Figure 5.11d) present the tilted boundaries of the salt body, the 

tilted interfaces, and the small structure in the depth of 3 km and 4.5 km.  

Figure 5.12 shows the comparison of several RTM images. When directly using the 

conventional RTM to the attenuating data, only the top interfaces are shown but located at the 

wrong position (Figure 5.12a). There are strong artefacts in the shallow zone, the dense 

sedimentary layers are not identifiable, and the whole salt body cannot be appropriately imaged. 

Even after applying the Laplacian filter (Figure 5.12b), only the shallow part layers are 

presented, and the top boundary of the salt body is obviously distorted.  

After attenuation compensation (Figure 5.12c), the whole salt body is clearly identifiable, 

and the boundaries are located in the correct position. However, it is impossible to ignore the 

formidable strong artefacts in the shallow part, and the layer interfaces are indistinct. This 

unfavourable artefacts issue can be eased by the Laplacian filter (Figure 5.12d), which 

illuminates the thin layers and the faults, and the small structures (the dots) can be identified. 

Figure 5.12(e) shows the wavefield decomposition RTM images (Eq. 5.7), the four weights 

are obtained numerically as:  

( ) ( )1 2 3 4,  ,  ,  0.142,  0.359,  0.357,  0.142W W W W = . 

This decomposed image eliminates the large artefacts and produces clear boundaries of the salt 

body. Surprisingly, underneath the salt body, the faults, interfaces, and small structures are also 

visible. After compensation for the limited aperture issue, the final migration images (Figure 

5.12f) present distinct layers and structures. This example shows that the proposed wavefield 

decomposition method can successfully apply to attenuation compensation RTM.  
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Figure 5.1237 The RTM images of Sigsbee model, the attenuated data is generated by 

viscoelastic wave Eq. (5.8). (a) Conventional RTM images; (b) applying the Laplacian filter to 

Figure (a); (c) Q compensated RTM images; (d) applying the Laplacian filter to Figure (c); (e) 

RTM image with Q compensated RTM images and wavefield decomposition; (f) aperture 

compensation for the boundary areas of Figure (e). 
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5.6 Conclusion 

Migration artefacts greatly impact the quality of seismic images. In this chapter, the biaxial 

wavefield decomposition is introduced to decomposed wavefields in both lateral and vertical 

directions to reduce the artefact caused by the cross-correlation of unphysical waves. After 

eliminating the up-going source wavefield and down-going receiver wavefield, the remaining 

four terms have different contributions to the migration results: the single-directional terms are 

capable of imaging the flat layer, while the cross-directional terms can well present the tilted 

interfaces and faults. Another advantage is that the artefacts can be identified much easier and 

reduced as the four terms are decoupled. The weight can also be adjusted to illuminate the thin 

and delicate subsurface structures, as the tilted layers and faults are separated. The 

decomposition method can be implemented efficiently by the Hilbert transform method, which 

builds the analytical wavefield and eliminates the negative frequency components. 

Additionally, this wavefield decomposition method can be applied to attenuation compensation 

RTM by exploiting the viscoelastic wave equation with fractional spatial derivatives. The 

synthetic examples demonstrate that the artefacts are effectively reduced after wavefield 

decomposition, and the resultant four decomposed images and final RTM images better present 

the complex subsurface structure, and the resolution is greatly improved compared with 

conventional RTM results.  
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Chapter 6  

Practical application  

 

 

 

In the previous chapters, the biaxial wavefield decomposition method is introduced and 

implemented to attenuation compensation reverse-time migration. The synthetic examples 

present effective artefact elimination after performing the wavefield decomposition. This 

chapter presents a field data migration example. First, the migration settings and data 

processing methods are introduced, and the migration results are compared. Further, the 

potential problems are discussed.  

6.1 Survey configuration 

The field data is a 2D line extracted from a 3D survey dataset in the area of a solid salt 

body. This dataset includes 93 shots with the interval of 150m. Each shot is followed by a 

streamer with 324 hydrophones, with a trace interval of 25 m. The depth of the source and 

hydrophones are 10 m and 12 m. The total record length is cut to 6 seconds to save 

computational time. The true velocity model is displayed in Figure 6.1(a), and the migration 

velocity model is obtained by smoothing the true model. The Q model is generated from the 

empirical formula (Figure 6.1b): 

 

1.879

011.49 10.57
1000

Q
c 

− 


=


, (6.1) 
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where 
0c  is the pure acoustic velocity. The water is assumed to be purely acoustic, and the Q 

value is given as 1000. The density model is calculated by Gardner's equation as 0.25

00.31c =

(Gardner et al. 1974), except for the density of the water layer setting as 1000 kg/m3.  

It should be noted that the quality factor model (Figure 6.1b) may not be accurate, as the 

empirical formula Eq. (6.1) is based on Tarim basin China. However, several projects have 

proven that this model is applicable to field data. Also, as the salt body is solid and weakly 

attenuative, the quality factor is relatively large, so the seismic data is less sensitive to the small 

perturbation of the quality factor, making the compensation of the attenuation relatively 

reasonable. 

 

 

Figure 6.138 The models used in field data example. (a) The P-wave velocity model; (b) Q model. 
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6.2 Data processing 

The chosen dataset is a pre-processed dataset. Although this data set has already been 

denoised, de-bubbled, and de-multiples, and the direct wave has been cut, considering the large 

time interval and 3D survey, the following process is performed. 

 

1. Data interpolation 

First, the original data is interpolated from 8 ms to 1 ms in time interval. The original data 

is resampled by sinc interpolation to avoid numerical instability. The sinc interpolation is 

equivalent to applying the low-pass filter in the frequency domain. The following is an example 

of the interpolated trace section. The original time interval of the field data is 8 ms, and the 

interpolated time interval is 1 ms. Figure 6.2 shows a segment of the data series before and 

after sinc interpolation, which demonstrates that the interpolated data have great continuity and 

match well with the original data.  

 

 

Figure 6.239 A segment of the original recorded data with time interval of 8 ms and the sinc 

interpolated data with time interval of 1 ms. 
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2. Data compensation from 3D to 2D 

Second, the 3D data is transferred to 2D. The original 3D survey dataset cannot be directly 

applicable to the 2D migration algorithm, because not only the amplitude is inconsistent due to 

geometric spreading, but also the phase shift. Therefore, partial compensation should be 

adopted to transfer the 3D data to 2D before migration. This data compensation from 3D to 2D 

can be implemented based on the Green’s function of the wave equation (Y. Wang & Rao 

2009). Considering the viscoelastic wave equation with fractional time derivative in the 

frequency domain: 
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Eq. (6.2) may be rewritten as a Helmholtz equation as 
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The Green’s function of the 2D and 3D cases is 
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where ( )(2)

0H   denote the zero-order Hankel function of second kind. The compensation 

operator can be formulated as 
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where  
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In the derivation above, the asymptotic form for the Hankel function is applied: 
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It can be assumed that the travel distance is proportion to the travel time: 0 ( )Av t− =x x , where 

( )v   is the phase velocity, and A is a scaling factor. Therefore, the compensation operator (Eq. 

6.6) may be rewritten as: 
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When 0 = , the above compensation operator is the purely elastic transform compensator, 

which is consistent with Y. Wang & Rao (2009) 
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In the seismic profile, the viscoelastic velocity is time/depth dependent, therefore, this 

compensator is dependent on both time t and frequency f. Therefore, the time-frequency 

spectrum of the data series is required to do the partial compensation. The Gabor transform can 

be used to obtain the time-frequency spectrum (Y. Wang 2008b; 2022). Figure 6.3 shows the 

time-frequency spectrum of a selected data series in Figure 6.4(a). During the compensation,  
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Figure 406.3 A segment of recorded data and its time-frequency spectrum by Gabor transform. 

 

the RMS value of the viscoelastic velocity and viscoelastic parameter is used. Figure 6.4 shows 

the comparison between the original 3D trace and compensated 2D trace. There are both 

amplitude changes and phase shifts in the two traces. 

6.3 Wavelet estimation 

Wavelet estimation is significant for reverse-time migration. An unsuitable seismic wavelet 

may cause severe noise and distortion in migration images. For the marine seismic survey, the 

water can be viewed as purely acoustic material. And the wavelet can be obtained from the 

direct wave. The direct wave is initially cut from the recorded data of the smallest offset 

receiver, for the preparation of the wavelet extraction. 
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Figure 416.4 The effect of the partial compensation. (a) A trace section; (b) the amplitude 

spectrum. 

 

A mature method for wavelet estimation is the Weiner filtering method (Gray et al. 2019). 

Weiner filtering method is to build a filter function between the predicted data and the real data, 

which is corresponding with the relationship between the predicted wavelet and the true 

wavelet. A filter f  is defined that satisfies the following approximation 

 pred real d f d , (6.11) 

where predd  is the predicted data from propagating a known source wavelet 
0w , reald  is the real 

seismic data, and the operator “” denotes for convolution. In this example, the direct wave is 
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considered. An initial known wavelet 
0w , is used to generate predicted data, and it is a 20-Hz 

Ricker wavelet. This source wavelet is then propagated through the water layer to generate a 

direct wave to the receiver. The filter f  is then calculated by solving the equation: 

 1

pred real

− f d d . (6.12) 

The estimated wavelet can be obtained from the filter and the predicted wavelet as: 

 
est 0*=w f w , (6.13) 

where 
estw  is the estimated wavelet. The estimated wavelet 

estw  is shown in Figure 6.5.  

The direct Weiner-filtered wavelet (Figure 6.5) has a long-time duration, which is not 

favourable for reverse-time migration, as a long-lasting wavelet will cause severe artefacts, 

further greatly lowering the resolution of the final images. The reason for this unfavourable 

wavelet is that the direct wave contains large noise, which cannot be fully eliminated.  

To reform the wavelet, the frequency spectrum of traces is considered, which is plotted as 

the black solid line in Figure 6.6(b). The amplitude spectrum contains notches, which are 

generally caused by anomalies (Y. Wang 2008a). Therefore, a shaping filter is applied to modify 

the amplitude as a smoothed curve (the red solid line in Figure 6.6b), with the total energy 

remaining unchanged. The phase information is identical to the previous wavelet. The final 

filtered wavelet is shown in Figure 6.6(a). The reshaped wavelet is relatively smooth and short, 

thus suitable for seismic migration.  

The direct Wiener-filter wavelet (Figure 6.5) is based on the direct wave, and due to the 

noise and multiples, this wavelet presents several peaks and an unsmooth spectrum. This will 

greatly harm the final migration result. On the contrary, the final wavelet (Figure 6.6a) has less 

time duration and a smooth spectrum, which will generate higher-resolution images. 

Additionally, the final wavelet has an explicit peak and trough, making it easier to identify of 

the layers and boundaries. The final wavelet is also consistent with the result obtained from the 

first arrival. 
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Figure 426.5 The wavelet estimated directly form the Wiener filter. 

 

Figure 436.6 Reshaping the wavelet. (a) The reshaped wavelet using for migration; (b) 

Amplitude spectrum comparison between the selected trace and reshaped wavelet. The 

energies of these two spectra are identical.  
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6.4 Migration results 

This section presents the migration results using the field data and source wavelet obtained 

above. The conventional RTM is first performed and then the attenuation compensation and 

wavefield decomposition are implemented.  

The conventional RTM result is shown in Figure 6.7(a). Although the top boundary of the 

salt body can be roughly identified, the extremely strong artefacts in the shallow part are non-

ignorable. The image of the deep zone is extremely weak, which is not only due to the 

geometric spreading, but also the attenuation. To reduce the large-amplitude low-frequency 

artefacts, the Laplacian filter is applied (Figure 6.7b). However, only the water bottom and top 

boundary of the salt body are visible, and its lower boundary is too weak to be identified.  

 

Figure 446.7 The conventional RTM results of field data. (a) Conventional RTM results; (b) after 

applying the Laplacian filter to (a). 
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Figure 456.8 The attenuation compensation RTM results. (a) Attenuation compensation RTM; 

(b) after applying the Laplacian filter to (a). 

 

After attenuation compensation, as shown in Figure 6.8(a), the amplitude in the deep part 

is greatly amplified and the lower boundary of the salt body is identifiable. Not surprisingly, 

there are still a large number of artefacts in the shallow part. After the Laplacian filtering 

(Figure 6.8b), the low-wavenumber artefacts are partly reduced, and become scattered and 

dense dotted noise on the top of the salt body, hindering the presentation of the structures.  
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Figure 466.9 The four decomposed terms in field data example. (a) l l

d uS R ; (b) l r

d uS R ; (c) r l

d uS R ; (d)

r r

d uS R . 
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Figure 6.9 shows the filtered four terms after attenuation compensation and wavefield 

decomposition. The l l

d uS R  (Figure 6.9a) term is entire artefacts that need to be discarded, as the 

source is on the left-hand side of the receiver groups and thus this combination is unphysical. 

The image in the depth of 5 km, approximately, is probably due to the scattering waves. The 

l r

d uS R  image (Figure 6.9b) presents the roughly top boundary of the salt body. However, the 

remaining artefacts cannot be effectively reduced. The r l

d uS R  image (Figure 6.9c) contains 

similar information as the l r

d uS R  image but presents a much clearer boundary and less artefacts. 

Significantly, the r r

d uS R  image (Figure 6.9d) is the main contribution in this example, which 

demonstrate clear water bottom, top and lower boundaries.  

 

 

Figure 476.10 The wavefield decomposition migration images. (a) The combination of the four 

wavefield decomposition terms.; (b) after aperture compensation. 
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Figure 6.10(a) shows the wavefield decomposition RTM images, the four weights are 

assigned as ( ) ( )1 2 3 4,  ,  ,  0,  0,  0.750,  0.250W W W W = , as l l

d uS R  is the artefacts and also l r

d uS R  and 

r l

d uS R  shows similar boundaries but r l

d uS R  outperforms. The remaining two coefficients are 

obtained by numerically matching with attenuation compensation RTM result. This 

decomposed image eliminates the large artefacts in the shallow area and illuminates the salt 

boundaries. After compensation for the limited aperture issue, the final migration image 

(Figure6.11b) clearly shows the layers and structures. This example demonstrates that the 

proposed method is suitable for generating high-resolution RTM images for field data. 

6.5 Discussion 

The main objective of the biaxial wavefield decomposition is to reduce the artefacts in the 

migration image, which achieves satisfying results in this field data example. For eliminating 

the shallow strong artefacts, this method is very effective. Especially in this example, the 

Laplacian filter fails to remove the shallow artefacts, and brings new noise to the image. By 

decomposing the wavefield, and only considering the down-going source wavefield and the 

up-going receiver wavefield, the shallow artefacts can be reduced. The decomposition of left- 

and right-going waves allows for further identifying the artefacts. Filtering the four 

decomposed terms and adding weights provide flexibility for removing the artefacts and 

improving the resolution. In this sense, the biaxial wavefield decomposition method can 

improve the resolution of the migration image by removing the artefacts. 

Although in this example, the attenuation compensation and the wavefield decomposition 

improve the resolution of the migration result, the layers between the salt body and the water 

bottom are almost invisible, as shown in the true velocity model (Figure 6.1a). If zooming in 

the layer zone of the r r

d uS R  term (Figure 6.9d), which is the main contribution of the migration 

image, and increasing its amplitude, as shown in Figure 6.11, the migration result is still 
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consistent with the true layers, however, severely hindered by the remaining artefacts. There 

are two reasons. First, the impedance contrast between the layers is small and the variation is 

very smooth, contrary to the sharp and rigid boundary of the salt body. This leads to weak 

reflected waves and subsequent weak images. Also, due to the large impedance contrast 

between the salt body and its surrounding rock, there are strong reflected waves between the 

salt body and the water bottom, leading to strong artefacts in that area. Therefore, the strong 

artefacts lead to difficulty in the clear presentation of these layers. Still, the decomposed images 

can distinguish these layers from the artefacts. On the contrary, these layers are entirely 

invisible in the attenuation compensation RTM result. Figure 6.11 also presents a general 

consistency between the image and the model, which can be observed at the interfaces between 

the salt body and the surrounding rocks. However, the image and the interface are not perfectly 

matching to each other. This is due to the inaccuracy of models and processed data. 

 

 

Figure 6.1148 Two layered zones of the migration result in the r r

d uS R  term. The background 

colour is the true velocity model, and the front grey figure is the corresponding migration image 

in Figure 6.9(d).  
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Additionally, the aperture compensation in this field data example, as shown in Figure 

6.10(b), does not improve the visible range of the image significantly, as it functions in the 

synthetic data examples. This is due to the relative shot-receiver location and the small number 

of shots and receivers. In the synthetic example, the shots cover the whole model, and the 

receivers are located on almost every grid of the specific depth. However, in this field data 

example, the shot is always on the left side of the receivers, and the coverage of the receivers 

is also limited, resulting in useful information being missing. This can be verified by Figure 

6.9, as l l

d uS R  and l r

d uS R  images do not provide any useful structure information, thus being 

discarded. 

Also, considering the setting of this example, the following aspects may lower the 

resolution of the migration image:     

1. The field data applied in this example is the simplified version, which has been 

significantly truncated to save computational memory. The density of the hydrophone 

is reduced, which causes useful information to be lost.  

2. The number of shots is insufficient, and the range of the shots is limited. This limited 

range of shots and receivers leads to poor illumination of some parts of the image, 

especially the left boundary side. To obtain better migration results, more shots and 

recorded data should be included. 

3. The migration wavelet is estimated from the direct wave and reshaped according to 

the amplitude spectrum of the trace, and it may be inaccurate from the true source 

signature. An accurate source function for the seismic survey may greatly improve the 

quality of the migration result.  

It should be noted that reverse-time migration significantly depends on the reliability of 

the velocity model. In this example, the migration velocity is obtained by smoothing the true 

velocity model, so the migration model is accurate. In practical engineering, the migration 
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velocity model can be less accurate. The inaccuracy of the velocity model would cause severe 

deterioration of migration results. 
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Chapter 7  

Conclusion and future work 

 

 

 

The previous chapters examined the theories and methods of seismic simulation and 

subsequent reverse-time migration in attenuating media. This chapter summarises the main 

conclusions of previous work and provides an outlook for future work. 

7.1 Conclusion 

Viscoelasticity is an essential property of the subsurface media, which brings attenuation 

effects to the seismic data. Attenuated seismic data have distorted phase and weakened 

amplitude, which significantly lowers the resolution and fidelity of reverse-time migration 

images. 

The main innovative contribution of this thesis is to develop the understanding of seismic 

wave propagation in viscoelastic media, investigate attenuation compensation, and reduce the 

artefacts in reverse-time migration. My contribution presented in this thesis includes:  

1. Established the viscoelastic parameters in the generalised viscoelastic model, and 

implemented it in seismic simulation. The generalised viscoelastic wave equation 

unifies the pure elasticity and viscoelasticity into a compacted form and follows the 

basic power-law attenuation. The explicit form of the rate-of-relaxation function is 

derived first, and it is proven that this viscoelastic model is causal and stable, and as a 
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result, suitable for seismic simulation. Then, the two key parameters, viscoelastic 

parameter and viscoelastic velocity are formulated with the commonly used parameters, 

quality factor Q and reference velocity. The seismic simulation results show that the 

proposed formulae can well represent the energy absorption and velocity dispersion 

effects in viscoelastic media.  

2. Developed an effective and accurate implementation method for the generalised 

viscoelastic wave equation. This work aims to solve the numerically challenging 

fractional time derivatives in the generalised viscoelastic wave equation in seismic 

wave simulation. The fractional time derivative is transferred into fractional spatial 

derivatives, which can be solved by the pseudo-spectral implementation, and 

introduced a spatial filter to correct the simulation error caused by averaging during this 

implementation in heterogeneous media. After accurately simulating the seismic wave 

propagation, the proposed wave equation is subsequently applied to attenuation 

compensation reverse-time migration, to compensate for the weakened amplitude and 

distorted phase in the seismic migration image, thus improving the resolution of the 

migration images. 

3. Developed the biaxial wavefield decomposition method in reverse-time migration. This 

work aims to reduce the artefacts in reverse-time migration, which are caused by the 

cross-correlation of unphysical waves. It is proposed to decompose the wavefield both 

horizontally and vertically, and separate it into four directional waves. The up-going 

wavefield and down-going receiver wavefields are initially discarded, and the 

remaining cross-correlation terms may separate the flat layers and tilted layers. Then, 

weight coefficients are introduced when combining the terms, which may illuminate 

the thin and delicate layers. In the implementation of this decomposition, the Hilbert 

transform method is proved to be compatible with the viscoelastic wave equation, 



120       

demonstrating that this method is suitable for attenuation compensation in reverse-time 

migration. The synthetic data and field data examples indicate that the combination of 

attenuation compensation and wavefield decomposition greatly improves the resolution 

of the seismic images.  

7.2 Future work 1: fractional spatial derivatives in viscoelastic media 

In previous chapters, all discussion is focused on scalar wavefields, which is suitable for marine 

seismic surveys. For land seismic surveys, the seismic wavefield (particle velocity or 

displacement) should be a vector, which contains horizontal and vertical components (for 2D 

case). It would be straightforward to expand the current scalar theory to the vector wavefield.  

To determine the vector wavefield in viscoelastic media, considering its stress-strain 

relation for one-dimensional deformation of the media, the generalised viscoelastic stress-

strain relation is in a form of a fractional time differential equation (Y. Wang 2016) as 
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( ) ( )
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t E t
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





  

 
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 
,                                              (7.1) 

where ( )t  is the stress, E is Young’s modulus, ( )t  is the strain,   is the retardation time, 

and   is the viscoelastic parameter, which is a constant in homogeneous media. In the 

wavenumber-frequency domain, Eq. (7.1) becomes 

  ( ) 01( ) ( )iE
       − = +

 
,                         (7.2) 

where   is the angular frequency, 0 1/ =  is the reference frequency, and ( )  , ( )   are the 

stress and strain in the frequency domain. Making the weak attenuation assumption 0/k c , 

where k  is the wavenumber and 
0c  is the reference velocity, Eq. (7.2) may be rewritten as 
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                (7.3) 

Applying an inverse Fourier transform, Eq. (7.3) becomes 
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Eq. (7.4) defines the generalised viscoelastic stress-strain relation in terms of fractional spatial 

derivatives, instead of the fractional time derivative in Eq. (7.1), to avoid the numerical 

challenge for fractional time derivatives.  

For the 2D isotropic media, the stress-stain relation (Eq. 7.4) may be written explicitly as 
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where 
ij  and 

ij  are the components of the stress and strain tensor, respectively,  ,   are 

Lamé parameters, the subscript for P and S denotes P- and S- wave ,respectively, and the two 

operators are 
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                             (7.7) 

Combing the stress-strain relation Eq. (7.6) with the velocity-strain relation and momentum 

conservation equation, the generalised viscoelastic wave equation with fractional spatial 

derivatives for vector wavefields can be obtained. 

According to Chapter 4, the fractional spatial derivatives operator in Eq. (7.7) cannot be 

directly applied to heterogeneous media, where the viscoelastic parameters 
P  and 

S  are 

spatially varied. In order to maintain the high efficiency of the averaging method, the correction 

function ( ( ))f  x , as derived in Eq. (4.19) can also be introduced to the operator as: 
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where the correction function is formulated as 
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where 
m  is the central frequency of the seismic band and the subscript “I” represent P or S 

waves. 

To validate the proposed wave equation, here the comparison of the numerical solution of 

Eq. (7.6) and the analytical solution of the original elastic wave equation with fractional time 

derivative is conducted. The analytical solution of the fractional time derivative wave equation 

can be obtained by the Green’s function method (Carcione 2014) as 
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where u is the displacement solution, 
0F  is a constant controlling the magnitude of the force 

which acts in the positive z direction, 2 2r x z= + ,  
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where 
Pc  and 

Sc  are the complex velocities for P wave and S wave, respectively.  

A seismic simulation is performed with the P- and S-wave quality factors 50PQ =  and 

30SQ = , with the respective velocities 2500 and 1500 m/s, and the reference frequency is 500 

Hz. The model is discretized into 400 × 400 grids with the spatial interval of 5 m and the time 
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step of 0.5 ms. A 20-Hz Ricker wavelet source is emitted at the origin and a receiver is placed 

at (600 m, 600 m). From Figure 7.1, the numerical solutions of wave equation Eq. (7.6) 

perfectly match the analytical solution, which demonstrates the accuracy of the proposed wave 

equation. 

Then, to intuitively present the viscoelastic effects, the proposed viscoelastic wave 

equation is applied to the Marmousi model. The P-wave velocity and 
PQ  are shown in Figure 

7.2. The S-wave velocity and 
SQ  are obtained by 

0 0 /1.73S Pc c=  and /1.2s PQ Q= . The model 

is discretized into 1501 ×601 grid points with 5 m spacing. A 15-Hz Ricker wavelet is emitted 

at (5000 m, 250 m). The time step is 0.5 ms.  

Figures 7.3 shows snapshots of elastic and viscoelastic wavefields at 1.0s. It demonstrates 

that the viscoelastic wavefields have clearly delayed wavefront and reduced amplitude 

compared with their elastic counterparts. This example shows that the proposed viscoelastic 

wave equation for vector wavefields is applicable to complex geological models. 

 

Figure 7.1 49 Comparison of numerical results with analytical solutions in attenuating media. (a) 

Horizontal component of particle velocity. (b) Vertical component of particle velocity. 
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Figure 507.2 P-wave velocity and QP of Marmousi model. 

 

Figure 517.3 Snapshots of the particle velocity wavefields at 1.0 s. (a) The elastic wavefield; (b) 

the viscoelastic wavefield. The first row is the horizontal component, and the second row is the 

vertical component. 
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7.3 Future work 2: fractional spatial derivatives in anisotropy attenuating 

media 

In the previous chapters, only the isotropic media is considered. However, in practical 

application, anisotropy is also a very important property of earth media. Seismic anisotropy is 

the variation of the wave velocity with propagation direction. The analysis of anisotropy has 

drawn more and more attention as it is regarded as one of the indicators of potential karst, 

sedimentation, and fracture distribution. Ignoring the anisotropy of the media will also cause 

distorted and low-resolution migration images. Therefore, the viscoelastic theory proposed in 

this thesis may be further developed in anisotropic media, as follows. 

First, let’s consider the stress-strain relation in purely elastic anisotropic media, which can 

be written in a matrix form as: 
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where 
ij  and 

ij  are the stress and strain component, respectively, ijC  is the stiffness matrix. 

The quality factor Q is an intrinsic property of the subsurface media, and it is closely linked 

with the property of the material, so it is reasonable to assume that have an identical formation 

with the stiffness matrix ijC  as 
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Using the correspondence principle, the elastic modulus matrix ijC  can be substituted by the 

viscoelastic modulus matrix 
ijD , which results in the following stress-strain relation as 
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where the fractional operator is 
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Considering the relationship between the fractional time derivatives and fractional spatial 

derivatives (Chapter 4), the viscoelastic matrix can be further written as 
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For 2D modelling of P-SV waves in the x-z plane, the corresponding viscoelastic velocity 

can be defined as 1,0 11c C = , 2,0 33c C =  and ,0 55Sc C = , respectively. The stress-strain 

relation is derived from Eq. (7.16) as follows:  
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where the fractional spatial derivative operators are  
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and two corresponding fractional derivative operators are 
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The above stress-strain relation, combining the momentum conservation equation and 

velocity/displacement-strain relation, constitutes the full viscoelastic wave equation in 

anisotropic attenuating media. Using the Thomsen’s notation of the anisotropic elastic media 

(Thomsen 1986), the coefficients in the stiffness matrix (7.16) are: 
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where   and   are Thomsen anisotropic parameters. For weak anisotropic media, Y. Zhu & 

Tsvankin (2006) proposed the relation of the element in the anisotropic Q matrix (7.15) as: 
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where Q  and Q  are two parameters similar to Thomsen parameters to represent the Q 

anisotropy, and 
55 33g C C= . 
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Figure 7.4 shows the wavefield snapshot in 0.3 s in an anisotropic model, with quality 

factors 
0 50PQ =  and 

0 30SQ = , with the respective velocities 3000 and 2000 m/s, and the 

reference frequency is 500 Hz. The Thomsen parameters are 0.2 = , 0.1 = , 0.2Q =  and 

0.1Q = . The model is discretized into 500 × 500 grids with the spatial interval of 5 m and the 

time step of 0.5 ms. The wave travels much faster horizontally than vertically, which shows 

the correctness of the anisotropy. The comparison between the elastic and viscoelastic case 

shows clear delayed wavefront and reduced amplitude in the attenuating media. 

Although the wave equations for anisotropic attenuating media are derived as above, these 

formulae are not yet verified with the analytical results due to the limited research time. As 

seismic wave simulation in anisotropy media requires additional Thomsen parameters, how to 

establish the appropriate anisotropic parameter models from seismic data is also a promising 

research topic. 

 

 

Figure 527.4 Wavefields Snapshots at 0.3 s. (a) Horizontal component of particle velocity; (b) 

vertical component of particle velocity. The upper panel is the viscoelastic case, and the lower 

panel is the elastic case. 
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7.4 Suggestions for future work 

This thesis focuses on the viscoelastic theory development and its implementation in reverse-

time migration. Viscoelasticity is an intrinsic property of earth media, so the investigation of 

the viscoelastic theory will benefit a wide range of geophysical research and application. 

Expect for the ongoing future work mentioned above, many meaningful aspects are not 

involved due to the limited research time. Some potential future works are listed as follows. 

1. In the seismic simulation, the top boundary generally is set to the straight and uniform 

grids. This setting is reasonable for marine seismic surveys as the variation of the water 

surface is trivial compared with geological structures. However, in land seismic surveys, 

especially in areas with strongly varying topography, this regular setting is no longer 

suitable, as the varying surface causes scattered waves and converted waves, leading to 

distorted seismic records. Therefore, how to solve the fractional spatial derivatives in 

irregular meshes is a practical topic. 

2. In the implementation of reverse-time migration, I only consider the primary waves 

(compression waves) in this thesis. For land seismic data, the P-wave and S-wave 

decomposition should be conducted before the biaxial wavefield decomposition. The 

cross-correlation of the P wave and S wave will also produce artefacts. Currently, the 

decomposition of P and S wave depends on the divergence and curl of the wavefield. 

Efficient and effective P/S waves decomposition methods should be investigated when 

implementing the land seismic reverse-time migration. 

3. The generalised viscoelastic model can also be applied to Q analysis or other reservoir 

analysis, such as AVO analysis, in exploration geophysics.  
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Appendix A: the analytical solution for the wave equation 

with fractional time derivative 

 

 

For the wave equation formed with fractional time derivative (FTD), I consider a homogeneous 

case and derive its analytical solution. Considering the source term on the right-hand side of 

the wave equation, the generalised wave equation is written as: 
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x x , (A.1) 

where ( )f t  is a source term at position 0x . In the frequency domain, Eq. (A.1) becomes a 

Helmholtz equation (Carcione 2014) 
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where ˆ ( )U   is the wavefield in the frequency domain, and 
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For 1D case, the above Helmholtz equation Eq. (A.3) has an analytical solution as 
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and for 2D case, the solution is: 
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where (2)

0H  denotes the zero-order Hankel function of the second kind. The solution for FTD 

in time domain can be obtained by applying the inverse Fourier transform to Eqs. (A.4) or (A.5). 
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Appendix B: the analytical solution for the wave equation 

with fractional spatial derivatives 

 

 

For the equation with fractional spatial derivatives (FSD), I apply Green’s function method to 

obtain the analytical solution. Here, I only consider 1D case where the wavenumber is a scalar. 

In the wavenumber domain, the generalised wave equation with FSD becomes:  
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2
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where ( , )U t k  is the wavefield in the wavenumber domain.  

Setting a unit force at time  , and rewrite Eq. (B.1) as (Constanda 2018): 
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where ( , ; )G t k    is the Green’s function. When t   , Eq. (B.2) is a homogeneous partial 

differential equation as 
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and the solution is 
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where 
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When t  , ( , ; ) 0G t k  = . Considering the continuity of ( , ; )G t k   at t = , Eq. (B.4) leads to 



133 

 

1 0D = . Therefore, the Green’ function may be expressed as 
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where ( )H  is the Heaviside step function. To determine 2D , Eq. (B.6) can be integrated with 

respect to t over an interval  1 2,t t , where 1 20   t t , as following  
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where ( , ; )tG t k  is the first time derivative of the Green’s function. In Eq. (B.7), 
1( , ; ) 0 =G t k , 
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Let 1 2,t t → , according to the continuity of G at t = , it follows that 
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Substituting these quantities into Eq. (B.7), the coefficient 
2 21/D =   . Hence, the green 

function can be written as: 

 
( ) ( )2

2 1

2 2

2

sin
( , ; ) ( ) .

c k C tt
G t k H t e

 
 

+ −
− −  = −


  (B.10) 

Considering the source signature ( )f t , the analytical solution in time-wavenumber domain is  

 0
( , ) ( , , ) ( )d

t

U k t G k t f  =  .  (B.11) 

Performing inverse Fourier transform of ( , )U k t , the analytical solution for FSD in the time-

space domain can be obtained. 
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Appendix C: stability analysis of wave equation with 

fractional spatial derivatives 

 

 

The stability condition for the FSD can be derived by transferring Eq. (4.6) into 

wavenumber domain and using central finite difference method to approximate the second-

order time derivative. The relation between forward pressure field 1nu + , current stress field nu  

and the previous stress field 1nu −  may be expressed as 
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where n is the step index. Eq. (C.1) may be expressed in a matrix form: 
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where 22 2 2

1 1D c k c kC  += − − , 12

2 2D c C k  += − . According to the eigenvalue theory, the 

absolute value of the eigenvalue of coefficient matrix (the square matrix of the right-hand side) 

should be no larger than 1 (Gazdag 1981, Zhu & Harris 2014). Therefore, the following 

condition can be obtained: 
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Substitute 
1D , 2D  into Eq. (C.3), the above condition becomes 
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To guarantee the stability for all frequency waves, the wavenumber may be set as 

Ny /k k h= =  , where Nyk  is the Nyquist spatial wavenumber, and ( )min ,h x z =    is the 

minimum spatial grid interval. For purely acoustic case, 0 = , 1C  and 
2C  become zero and c 

becomes pure acoustic velocity 0c , so condition (C.4) becomes the stability condition of 

acoustic wave equation (Gazdag 1981): 

 
0

2 h
t

c


   . (C.5) 

This stability condition for proposed viscoelastic wave Eq. (C.4) is slightly stricter than 

condition (C.5), which demonstrates that the attenuation effect brings the constraint to stability 

condition. 
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