527 research outputs found

    A Review of Principal Component Analysis Algorithm for Dimensionality Reduction

    Get PDF
    Big databases are increasingly widespread and are therefore hard to understand, in exploratory biomedicine science, big data in health research is highly exciting because data-based analyses can travel quicker than hypothesis-based research. Principal Component Analysis (PCA) is a method to reduce the dimensionality of certain datasets. Improves interpretability but without losing much information. It achieves this by creating new covariates that are not related to each other. Finding those new variables, or what we call the main components, will reduce the eigenvalue /eigenvectors solution problem. (PCA) can be said to be an adaptive data analysis technology because technology variables are developed to adapt to different data types and structures. This review will start by introducing the basic ideas of (PCA), describe some concepts related to (PCA), and discussing. What it can do, and reviewed fifteen articles of (PCA) that have been introduced and published in the last three years

    Desarrollo de algoritmos para mejorar el desempeño en svm en conjuntos de datos no balanceados

    Get PDF
    La tarea de clasificación es un problema ampliamente estudiado en la literatura. Los problemas donde se requiere decidir si nuevas muestras pertenecen a una clase o no, pueden verse como problemas de clasificación de conjuntos binarios, donde sólo existen dos clases. Regularmente estos datos son etiquetados como "+1" las muestras positivas o que pertenecen a la clase y "-1" las muestras negativas o que no pertenecen a la clase

    Multiclass Classification of Brain MRI through DWT and GLCM Feature Extraction with Various Machine Learning Algorithms

    Get PDF
    This study delves into the domain of medical diagnostics, focusing on the crucial task of accurately classifying brain tumors to facilitate informed clinical decisions and optimize patient outcomes. Employing a diverse ensemble of machine learning algorithms, the paper addresses the challenge of multiclass brain tumor classification. The investigation centers around the utilization of two distinct datasets: the Brats dataset, encompassing cases of High-Grade Glioma (HGG) and Low-Grade Glioma (LGG), and the Sartaj dataset, comprising instances of Glioma, Meningioma, and No Tumor. Through the strategic deployment of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) features, coupled with the implementation of Support Vector Machines (SVM), k-nearest Neighbors (KNN), Decision Trees (DT), Random Forest, and Gradient Boosting algorithms, the research endeavors to comprehensively explore avenues for achieving precise tumor classification. Preceding the classification process, the datasets undergo pre-processing and the extraction of salient features through DWT-derived frequency-domain characteristics and texture insights harnessed from GLCM. Subsequently, a detailed exposition of the selected algorithms is provided and elucidates the pertinent hyperparameters. The study's outcomes unveil noteworthy performance disparities across diverse algorithms and datasets. SVM and Random Forest algorithms exhibit commendable accuracy rates on the Brats dataset, while the Gradient Boosting algorithm demonstrates superior performance on the Sartaj dataset. The evaluation process encompasses precision, recall, and F1-score metrics, thereby providing a comprehensive assessment of the classification prowess of the employed algorithms

    Physiologically-Motivated Feature Extraction Methods for Speaker Recognition

    Get PDF
    Speaker recognition has received a great deal of attention from the speech community, and significant gains in robustness and accuracy have been obtained over the past decade. However, the features used for identification are still primarily representations of overall spectral characteristics, and thus the models are primarily phonetic in nature, differentiating speakers based on overall pronunciation patterns. This creates difficulties in terms of the amount of enrollment data and complexity of the models required to cover the phonetic space, especially in tasks such as identification where enrollment and testing data may not have similar phonetic coverage. This dissertation introduces new features based on vocal source characteristics intended to capture physiological information related to the laryngeal excitation energy of a speaker. These features, including RPCC, GLFCC and TPCC, represent the unique characteristics of speech production not represented in current state-of-the-art speaker identification systems. The proposed features are evaluated through three experimental paradigms including cross-lingual speaker identification, cross song-type avian speaker identification and mono-lingual speaker identification. The experimental results show that the proposed features provide information about speaker characteristics that is significantly different in nature from the phonetically-focused information present in traditional spectral features. The incorporation of the proposed glottal source features offers significant overall improvement to the robustness and accuracy of speaker identification tasks

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum - Classical Neural Network

    Full text link
    Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet's superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management
    • …
    corecore