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Abstract—This study delves into the domain of medical diagnostics, focusing on the crucial task of accurately classifying brain tumors 

to facilitate informed clinical decisions and optimize patient outcomes. Employing a diverse ensemble of machine learning algorithms, 

the paper addresses the challenge of multiclass brain tumor classification. The investigation centers around the utilization of two distinct 

datasets: the Brats dataset, encompassing cases of High-Grade Glioma (HGG) and Low-Grade Glioma (LGG), and the Sartaj dataset, 

comprising instances of Glioma, Meningioma, and No Tumor. Through the strategic deployment of Discrete Wavelet Transform (DWT) 

and Gray-Level Co-occurrence Matrix (GLCM) features, coupled with the implementation of Support Vector Machines (SVM), k-nearest 

Neighbors (KNN), Decision Trees (DT), Random Forest, and Gradient Boosting algorithms, the research endeavors to comprehensively 

explore avenues for achieving precise tumor classification. Preceding the classification process, the datasets undergo pre-processing and 

the extraction of salient features through DWT-derived frequency-domain characteristics and texture insights harnessed from GLCM. 

Subsequently, a detailed exposition of the selected algorithms is provided and elucidates the pertinent hyperparameters. The study's 

outcomes unveil noteworthy performance disparities across diverse algorithms and datasets. SVM and Random Forest algorithms exhibit 

commendable accuracy rates on the Brats dataset, while the Gradient Boosting algorithm demonstrates superior performance on the Sartaj 

dataset. The evaluation process encompasses precision, recall, and F1-score metrics, thereby providing a comprehensive assessment of 

the classification prowess of the employed algorithms. 

Keywords—Brain tumor classification, multiclass classification, machine learning algorithms, Discrete Wavelet Transform (DWT), 

Gray-Level Co-occurrence Matrix (GLCM), SVM, KNN, DT, Random Forest, Gradient Boosting. 

 

I. INTRODUCTION 

In modern medical diagnostics, magnetic resonance imaging 

(MRI) is a cornerstone for the non-invasive assessment and 

characterization of brain abnormalities. Brain tumors, a critical 

subset of neurological disorders, require an accurate and timely 

classification for effective treatment planning and patient care. 

The ability to discern between various tumor types and healthy 

brain tissues from MRI scans holds immense promise in 

improving clinical outcomes. However, due to the intricate 

nature of brain tumors with their diverse shapes, sizes, and 

locations, reliable classification through manual analysis is 

challenging and time-consuming. This is where machine 

learning emerges as a formidable ally, capable of swiftly and 

accurately categorizing complex MRI data. 

This paper presents a comprehensive study on the multiclass 

classification of brain MRI scans using state-of-the-art machine 

learning algorithms. The fundamental objective is to leverage 

advanced computational techniques to distinguish between 

High-Grade Glioma (HGG) and Low-Grade Glioma (LGG) 

using the BRATS dataset and to classify further Glioma, 

Meningioma, and No Tumor cases utilizing the Sartaj dataset. 

The motivation behind this study is rooted in the urgent need for 

precise, automated tools that aid medical practitioners in making 

informed decisions for brain tumor management. 

The complexity of brain tumor classification and the inherent 

variability of MRI scans necessitates extracting highly relevant 

features for accurate discrimination. In this pursuit, we employ 

the Discrete Wavelet Transform (DWT) to capture frequency 

and texture information and the Grey-Level Co-occurrence 

Matrix (GLCM) to quantify spatial relationships within images. 

These extracted features serve as crucial input for various 

machine-learning algorithms that underpin our classification 

framework. 

Our approach encompasses a suite of established machine 

learning algorithms, including Support Vector Machine (SVM), 

k-nearest Neighbors (KNN), Decision Tree (DT), Random 

Forest (RF), and Gradient Boosting (GB). Each algorithm is 

tailored to the unique challenges of multiclass brain tumor 

classification, offering a diverse ensemble of techniques to 

address different nuances the data presents. 
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This paper presents a comprehensive and systematic 

methodology for brain MRI classification by combining 

advanced feature extraction methods and powerful machine 

learning algorithms. Our study contributes to the medical 

imaging and diagnosis field and provides a blueprint for bridging 

the gap between cutting-edge technology and real-world 

healthcare challenges. 

The subsequent sections of this paper delve into the detailed 

methodology, experimental results, and insightful discussions 

that demonstrate the efficacy of our approach. As the boundaries 

between medical science and computational technology 

continue to blur, this research's findings can potentially 

transform the landscape of brain tumor diagnosis and treatment. 

This research significantly contributes to medical imaging 

and machine learning by presenting a comprehensive framework 

for the multiclass classification of brain MRI scans. Through the 

application of advanced feature extraction techniques, namely 

the DWT and GLCM, and the utilization of a diverse set of 

machine learning algorithms, including SVM, KNN, DT, RF, 

and GB, this study not only advances the automation of brain 

tumor classification but also establishes a benchmark for 

algorithmic performance. This research can revolutionize brain 

tumor diagnostics by bridging the gap between medical 

diagnosis and computational methodologies, aiding medical 

professionals in timely and accurate decision-making for 

improved patient care. 

II. LITERATURE SURVEY 

Machine learning (ML) and deep learning (DL) algorithms 

have recently been used to detect and evaluate brain tumors in 

various imaging modalities, especially those collected using 

MRI. This section contains any related studies and the most 

recent research on the subject of the publication.  

Deep learning (DL) techniques and DWT characteristics 

have been combined in Mohsen, Heba et al.[1] proposed system 

for learning. The fuzzy c-mean method was applied in order to 

perform the segmentation of the brain tumor. The discrete 

wavelet transform (DWT) was used to each and every identified 

lesion in order to extract features, which were then entered into 

the principal component analysis (PCA) in order to reduce the 

feature dimension. At last, the selected characteristics were 

introduced into deep neural networks (DNN).  According to the 

numbers, their rate of accuracy is 96.97 percent, and their 

sensitivity is 97%.  

Seetha J. et al. [3] proposed a deep convolutional neural 

network (CNN)-based technique for automatically classifying 

brain cancers. The Fuzzy C-Means (FCM) algorithm is the basis 

for the system's approach to segmenting the brain. The 

information on texture and form that was retrieved from these 

segmented regions was sent to classifiers using both SVM and 

DNN. Based on the findings, it was determined that the method 

had an accuracy level of 97.5%.  

Cheng, Jun et al. [4] improved the classification strategy for 

brain cancers by using fine ring-form division in conjunction 

with region-of-interest (ROI) augmentation. These 

improvements were made to the bag-of-words (BoW), 

generalized linear classification model (GLCM), and intensity 

histogram feature extraction approaches. These techniques 

supply the classifier with feature vectors. According to the 

results of the experiments, the accuracy of the intensity 

histogram, GLCM, and BoW all increased from 71.39% to 

78.18%, 83.54% to 87.54%, and 89.72% to 91.28%, 

respectively. .  

The genetic technique of feature selection for the dimension 

reduction of a set of wavelet features was presented by M. 

Sasikala et al. [5]. The method involves picking the best possible 

features vector to feed into a particular classifier, such as an 

artificial neural network. This is done in order to achieve the best 

possible results (ANN).  According to the findings, the genetic 

algorithm chose only 4 of the 29 features and used those features 

exclusively in order to attain an accuracy rate of 98%.  

Khawaldeh, Saed et al. [6] suggested a method for the non-

invasive classification of glioma brain tumors by making use of 

a modified version of the AlexNet CNN algorithm. The 

classification method made use of whole-brain MRI scans, and 

the labels that were put to the pictures were applied at the level 

of the entire image as opposed to the level of individual pixels. 

The results of the testing indicate that the procedure obtained a 

respectable degree of accuracy, which was determined to be 

91.16%.  

Sajjad, Muhammad et al. [7] proposed a complete data 

augmentation method that may be used in conjunction with CNN 

to classify brain cancers. When classifying brain cancers into 

their many subtypes, it is helpful to make use of segmented MRI 

images of the patient's tumor. They used a pre-trained VGG-19 

CNN architecture for categorization using transferee learning, 

and they obtained an overall accuracy of 87.38% for data before 

augmentation and 90.67% for data after augmentation. This was 

accomplished by obtaining a higher accuracy score for the data 

after augmentation.  

Ozyurt, Fatih et al. [8] diagnose brain tumors using a method 

that combines CNN with neutrosophic expert maximum fuzzy 

(NS-CNN) specific entropy. In order to segment the brain tumor, 

the neutrosophic set-expert maximum fuzzy-sure method was 

applied. After that, the images were placed into a CNN to have 

their properties extracted, and then they were given to SVM 

classifiers to determine whether or not the lesions were benign 
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or malignant. They had an overall success rate that was 95.62% 

on average.  

Sakshi Ahuja et al. [9] utilized transfer learning and the 

superpixel method to detect and segment brain tumors. The 

model was trained using the VGG 19 transfer learning method, 

with data from the BRATS 2019 brain tumor segmentation 

competition. The superpixel technique divided the tumor into 

LGG and HGG images. Consequently, the average dice index 

was 0.934, which differed from the actual data.  

In their work to segment medical images, Hajar Cherguif et 

al. [10] made use of U-Net. A sophisticated 2D segmentation 

network was successfully developed by employing the U-Net 

design. We put the suggested model through its paces by using 

the BRATS 2017 data set for our testing and analysis. The new 

U-Net that has been proposed has a total of 27 convolutional 

layers, 4 deconvolutional layers, and a Dice coefficient value of 

0.81.   

Deep learning strategies were utilized by Chirodip Lodh 

Choudhury et al. [11] in order to get reliable findings from MRI 

scans. These strategies included the usage of deep neural 

networks and a model of a convolutional neural network. It was 

suggested that a three-layer CNN architecture may be connected 

to a neural network that included full connectivity. Accuracy  of 

97.33% and 96.05%, respectively, were obtained using the F-

score system.  

Ahmad Habbie et al. [12] investigated the possibility of a 

brain tumor by employing a semi-automatic segmentation of 

MRI T1-weighted images in conjunction with an active contour 

model. The effectiveness of snake active contours, 

morphological geodesic active contours, and both 

morphological active contours with and without edges were 

investigated and studied. According to the statistics, MGAC 

performed the most successfully out of the three.   

Neelum et al. [13] used a concatenation strategy for the deep 

learning model in their study to determine the likelihood of 

developing a brain tumor. Both the discovery and categorization 

of brain tumors were accomplished through the utilization of two 

pre-trained deep learning models: Inception-v3 and 

DenseNet201. The Inception-v3 model was pre-trained to 

classify tumors in order to extract the characteristics that 

distinguish them from one another. The classification procedure 

was finished off by a softmax classifier after that.   

Hybrid classifiers were utilized by Ms. Swati Jayade et al 

[14]. Malignant tumors were categorized separately from benign 

tumors by pathologists. This research utilized the Gray level Co-

occurrence Matrix (GLCM) technique for the purpose of 

extracting features in order to build the feature dataset. It was 

suggested that increasing productivity may be accomplished by 

the use of a hybrid approach to classifiers that included KNN 

and SVM classifiers.   

In the research carried out by Zheshu Jia et al. [15], a fully 

automatic heterogeneous segmentation was constructed with the 

use of SVM. For the purpose of training and testing the accuracy 

of cancer identification in MRI images, a probabilistic neural 

network classification system was utilized as a classification 

technique. The model for this work focused on automatically 

segmenting meningiomas utilizing a multispectral brain dataset 

as its primary data source.  

The Gabor transform, soft and hard clustering, and a 

technique developed by Drs. Akey Sungheetha et al. [16] were 

applied in this process in order to locate edges in CT and MRI 

scans. It was determined that a total of 4,500 MRI scans and 

3,000 CT pictures were necessary. K-means clustering was 

utilized to identify distinct subgroupings based on shared traits. 

The author provided the images in the form of histogram 

properties by employing fuzzy-c methods.    

Capsule networks and the Bayesian method were utilized by 

Parnian Afshar et al. [17] in order to classify brain cancers. A 

capsule network was utilized to improve the accuracy of tumor 

diagnosis rather than a CNN, which can lead to the loss of 

important spatial information. CNN is commonly employed to 

analyze medical images. The BayesCap framework came highly 

recommended by the group. They evaluated the proposed 

technique using a standard dataset consisting of patients with 

brain tumors.   

III. FEATURE EXTRACTION TECHNIQUES 

This approach extracts the features using DWT and GLCM. 

Each feature extraction technique is present in this section. 

A. DWT 

The DWT is a potent signal-processing algorithm that 

decomposes data or pictures into several frequency components. 

DWT is frequently used for feature extraction in picture analysis, 

revealing information about textures, patterns, and other 

characteristics that may be important for classification tasks such 

as brain MRI analysis.  
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Fig. 1. 2-D DWT Decomposition 

The suggested technique uses discrete 2-D wavelet 

transformations to derive texture features from the region of 

interest-containing image segment. DWT account for the 

frequency and unique information of a signal. This property is 

beneficial for precise texture feature extraction. Information 

about a signal can be stored using 2-D DWT with fewer 

coefficients. When processing images, DWT preserves the 

image as a two-dimensional signal with columns and rows. 

Wavelet transformations study an image's finer features, such as 

its horizontal, vertical, and diagonal subbands. Figure 1 depicts 

the application of 2-D DWT for picture decomposition.  

Fig. 1 displays the input image, a high pass filter (h[n]), and a 

low pass filter (g[n]). When rows are downsampled by 1 and 

columns by 2, rows are downsampled by 2 and columns by 1. 

(or 2ds1). This work's key findings are immediately at level one. 

An approximation coefficient is represented by A. Dh, a vertical 

coefficient by Dv, and a diagonal coefficient by Dd denotes a 

horizontal coefficient. 

• Max Value (MaxCoeff): For each level of DWT 

decomposition, calculate the maximum value of the detail 

coefficients. This represents the most prominent feature in 

that frequency band. 

    𝑀𝑎𝑥𝐶𝑜𝑒𝑓𝑓 =  𝑚𝑎𝑥(|𝐷1|, |𝐷2|, . . . , |𝐷𝑛|)            (1) 

Where |𝐷1|  represents the absolute values of the detail 

coefficients at level 𝑖. 

• Min Value (MinCoeff): Calculate the minimum value of 

the detail coefficients for each level. This captures the least 

prominent feature in that frequency band. 

         𝑀𝑖𝑛𝐶𝑜𝑒𝑓𝑓 =  𝑚𝑖𝑛(|𝐷1|, |𝐷2|, . . . , |𝐷𝑛|)           (2) 

 

• Mean Value (MeanCoeff): Calculate the mean value of the 

detail coefficients for each level. This represents the central 

tendency of the image features at different scales. 

                 𝑀𝑒𝑎𝑛𝐶𝑜𝑒𝑓𝑓 =  
|𝐷1|+ |𝐷2|+ ...,+|𝐷𝑛|

𝑁
               (3) 

• Standard Deviation (StdDevCoeff): Calculate the 

standard deviation of the detail coefficients for each level. 

This measures the variability of the image features at 

different scales. 

                    StdDevCoeff =  √
∑ 𝐷𝑖−𝜇

𝑁
                          (4) 

Where 𝜇 is the mean value of the samples, and N is the total 

number of pixels. 

• Skewness (SkewnessCoeff): Skewness is a measure of the 

asymmetry of the probability distribution of a real-valued 

random variable. It indicates how much the data is skewed 

to the left or right. 

                     Skewness =  √
∑ (𝐷𝑖−𝜇𝑖)3𝑛

𝑖=1

(𝑁−1)StdDevCoeff 3
                  (5) 

Where 𝜇 is the mean value of the samples, and N is the total 

number of pixels. 

B. GLCM 

The texture is the surface's quality. It is defined by the 

geographical distribution of grey levels in a neighborhood. 

Texture displays its characteristics through pixel placements and 

pixel values. Hence, there are numerous ways to classify 

textures. Texture is affected by the scale or resolution at which 

an image is displayed. A texture having unique features on a 

small scale can become uniform when exhibited at a larger scale.  

In statistical texture analysis, the distribution of pixel intensities 

at a particular place conveys texture qualities. Based on the 

number of pixels or dots in each combination, it generates first-

order, second-order, and higher-order statistics. An image can be 

evaluated as a texture using second-order statistics for feature 

extraction based on GLCM.  

The GLCM table displays the frequency of a given 

combination of pixel brightness values inside an image. As 

depicted in Figure 2, the GLCM of a four-level image is 

calculated at a distance of 1 and a direction of 0°.  

 
(a)                                                                (b) 

Fig. 2. Example of an image with 4 grey level image b. GLCM for distance 1 

and direction 0°. 

The statistical data in a picture are known as features. GLCM is 

a method for extracting unique features from grayscale images. 
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Using the provided procedure, the subsequent GLCM 

characteristics are obtained.  

• Contrast: The local differences in the GLCM are measured 

using contrast. 

                        𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗                   (6) 

• Homogeneity: Homogeneity is measured by the closeness 

of the element distribution in GLCM to the GLCM 

diagonals. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑖,𝑗           (7) 

• Energy: It measures the uniformity among the pixels. 

 𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗                   (8) 

• Dissimilarity: Dissimilarity is a metric that describes how 

different grey-level pairings in an image vary. 

             𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ |𝑖 − 𝑗|𝑝(𝑖, 𝑗)𝑖,𝑗                (9) 

Where, 𝑝(𝑖, 𝑗) = image pixel to be processed 

• ASM: It represents the uniformity of the image's grey-level 

distribution. 

               𝐴𝑆𝑀 = ∑ ∑ (𝑃(𝑖, 𝑗))2𝐺
𝑖=1

𝐺
𝑖=1               (10) 

IV. MACHINE LEARNING ALGORITHMS 

In the proposed approach, three distinguished deep learning 

algorithms are used. This section presents a detailed explanation 

of SVM, KNN, Decision Tree, Random Forest, and Random 

Forest algorithm. 

A. SVM 

SVM is a potent and widely deployed machine learning 

technique frequently applied to classification and regression 

applications. Due to its effectiveness with complicated datasets, 

it is a popular choice for various applications, including image 

classification, text categorization, and medical diagnostics, such 

as brain MRI classification. Finding the ideal hyperplane that 

best separates data points of distinct classes in a high-

dimensional space is the primary function of SVM. This 

hyperplane optimizes the difference between classes, increasing 

generalization and performance on unseen data.  

In a binary classification scenario, the SVM seeks a hyperplane 

that most effectively divides the data points of two classes. The 

margin is the distance between the hyperplane and each class's 

closest data point. SVM attempts to optimize this margin to 

improve the classification precision of new data.  

SVM can apply the kernel approach when data are not linearly 

separable in the original feature space. Kernels permit SVM to 

implicitly map the data into a higher-dimensional space where 

separation may be possible. Linear, polynomial, radial basis 

function (RBF), and sigmoid are typical kernel functions.  

The regularisation parameter C strikes a balance between 

maximization of margin and minimization of classification error 

on training data. A minor C permits a more significant margin 

but may lead to certain misclassifications. A more excellent C 

lowers misclassification but may narrow the margin. These are 

the closest data points near the decision boundary (hyperplane). 

They are essential in determining the hyperplane and are the 

origin of the term "Support Vector Machine." SVM is a binary 

classifier, but it can be extended to multiclass classification using 

One-vs.-Rest (OvR) or One-vs.-One approaches (OvO).   

SVMs are renowned for their capacity to handle high-

dimensional data, efficiency with small datasets, and 

generalizability. Additionally, they are less prone to overfitting. 

The performance of SVM can be affected by the kernel selection 

and its parameters, as well as the scaling of input characteristics. 

Moreover, SVMs may not perform effectively when classes are 

highly unbalanced.  

B. KNN 

KNN is a simple yet effective machine-learning method for 

classification and regression tasks. It is intuitive and 

straightforward, making it a popular choice for various 

applications, including picture categorization, recommendation 

systems, and anomaly detection. KNN is a non-parametric 

algorithm, which means it makes no assumptions about the 

distribution of the underlying data. KNN assumes that related 

data points belong to the same class. Given a new data point, the 

algorithm determines the k-nearest neighbors in the training 

dataset and assigns to the new data point the class that is most 

prevalent among these neighbors.  

Here's an overview of how KNN works: 

• Distance Metric: The choice of distance metric, such as 

Euclidean distance or Manhattan distance, plays a crucial 

role in determining the similarity between data points. The 

distance metric defines the "closeness" of two points in the 

feature space. 

• Parameter k: The parameter "k" represents the number of 

neighbors to consider when making a prediction. A small k 

can lead to noisy results, while a large k can result in over-

smoothing and might not capture local patterns well. 

• Weighted Voting: In specific variants of KNN, it is 

possible to assign weights to the neighbors based on their 

proximity to the new data point. Closer neighbors may have 

a more significant impact on the final prognosis than their 

more distant counterparts.  
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• Choosing k: Selecting the correct value of k is essential. A 

small k can make the algorithm sensitive to noise, while a 

large k might lead to overgeneralization. Cross-validation or 

other validation techniques can help determine an 

appropriate value of k. 

• Multiclass Classification: KNN can be extended to 

multiclass classification using majority or distance-

weighted voting techniques. For each class, the number of 

instances of that class among the k-nearest neighbors is 

tallied, and the class with the most significant count is 

assigned to the new data point.  

KNN is easy to comprehend, does not presuppose any 

underlying data distribution, and can perform well with complex 

and non-linear decision limits. The performance of KNN can be 

affected by the distance metric chosen, the number of neighbours 

(k), and the data distribution. It can be computationally 

expensive for large datasets because it needs computing 

distances to all training locations.  

For proposed research involving multiclass classification of 

brain MRI scans, KNN could be a valuable algorithm to 

experiment with. Its simplicity and lack of assumptions about the 

data distribution might make it effective in capturing complex 

patterns in the MRI images. However, remember that pre-

processing the data and optimizing k and distance metrics are 

crucial for achieving good results with KNN. 

C. DT 

A Decision Tree is a flexible and interpretable machine-learning 

technique for classification, regression, and feature selection 

problems. Each internal node represents a decision based on a 

feature, and each leaf node represents a class label (in the case 

of classification) or a forecast value (in the case of regression).   

Here's an overview of how Decision Trees work: 

• Splitting Criteria: The algorithm finds the optimal feature 

to partition the data at each internal node. The "best" 

characteristic is determined using criteria such as Gini 

impurity (for classification) or variance reduction (for 

regression). The feature that results in the most significant 

separation between classes or the most considerable 

reduction in variance is selected. 

• Recursive Partitioning: Once a feature is selected for 

splitting, the data is subdivided based on the feature's 

values. The process is then continued recursively on each 

subset until a stopping requirement, such as reaching a 

maximum depth, having a minimum amount of samples in 

a node, or obtaining pure classes, is reached (homogeneous 

target values).   

• Decision Rules: The resulting tree structure forms a set of 

decision rules that can be easily understood and interpreted. 

Each path from the root to the leaf symbolizes a series of 

decisions leading to a final forecast.  

• Overfitting: Decision Trees are susceptible to overfitting, 

which occurs when the model collects noise and irrelevant 

patterns from the training data. Techniques like pruning 

(removing parts of the tree) and setting a maximum depth 

are commonly used to mitigate this. 

• Handling Categorical Data: Decision Trees can handle 

both categorical and numerical features. Based on the 

available categories, the tree can perform binary or 

multiway splits for categorical features. 

Decision Trees can capture non-linear relationships in data, are 

easy to understand and interpret, and require minimal data pre-

processing. They are also less sensitive to feature scaling. 

Decision Trees can suffer from instability (small changes in data 

can lead to different tree structures) and might not perform well 

on complex tasks without proper regularization. 

Decision Trees could be valuable for this research on multiclass 

classification of brain MRI scans due to their interpretability and 

the potential to capture relevant features understandably. It can 

control the trade-off between model complexity and 

generalization performance by tuning hyperparameters, such as 

the maximum depth and splitting criteria. Additionally, 

considering ensemble methods like Random Forest could further 

enhance the accuracy of your classification tasks. 

D. RF 

Random Forest is a potent ensemble learning method for 

classification, regression, and machine-learning applications. It 

is an extension of Decision Trees and leverages the concept of 

creating multiple decision trees to make more accurate 

predictions and improve generalization. 

Here's an overview of how Random Forest works: 

• Ensemble of Decision Trees: Random Forest generates a 

collection of several Decision Trees, each trained on a 

distinct subset of data. These subsets are obtained through 

bootstrapping, where random samples (with replacement) 

are drawn from the original dataset. 

• Random Feature Selection: Besides using different data 

subsets, Random Forest introduces randomness in feature 

selection for each Decision Tree. A random subset of 

features is evaluated at each tree node to determine the 

optimal split. This unpredictability helps to prevent 

overfitting and enhances tree diversity.  

• Voting or Averaging: Random Forest combines the 

forecasts of all individual trees for classification tasks using 
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majority voting. For regression tasks, it averages the 

predictions of all trees. This ensemble approach produces 

more robust and accurate predictions than a single Decision 

Tree. 

• Bagging and Aggregation: Bagging generates numerous 

decision trees using bootstrapping and merging their 

predictions (bootstrap aggregation). Aggregating the 

predictions reduces the variance and can lead to improved 

overall performance. 

• Out-of-Bag (OOB) Samples: Since each Decision Tree is 

trained on a different subset of data, some data points are 

not included in the training set of specific trees. These out-

of-bag samples can be used to estimate the performance of 

the Random Forest without the need for cross-validation. 

• Hyperparameters: Considerable hyperparameters include 

the number of trees in the forest, the maximum depth of each 

tree, the number of characteristics examined at each split, 

and the splitting criterion (e.g., Gini impurity or entropy).  

Random Forest offers several benefits, including reduced 

overfitting, improved generalization, resistance to noise, and the 

ability to handle high-dimensional data. It's also capable of 

handling both numerical and categorical features. While 

individual Decision Trees are interpretable, the ensemble nature 

of Random Forests makes them less interpretable. However, 

techniques like feature importance can provide insights into 

which features are most influential for making predictions. 

Random Forest could be a valuable algorithm for this research 

on multiclass classification of brain MRI scans due to its ability 

to handle complex relationships within the data, reduce 

overfitting, and provide a reliable prediction framework. You 

can fine-tune the Random Forest model for optimal performance 

on your specific classification tasks by tuning hyperparameters 

and analyzing feature importance. 

E. GB 

Gradient Boosting is a potent ensemble learning technique that 

excels in classification and regression tasks. Like Random 

Forest, Gradient Boosting combines the predictions of numerous 

weak learners (usually decision trees) to generate a robust 

predictive model. Gradient Boosting constructs trees 

consecutively, with each successive tree focusing on repairing 

the mistakes of the prior tree. In contrast to Random Forest, 

which constructs trees individually, Gradient Boosting 

constructs trees consecutively. Each successive ensemble is 

educated to remedy the faults of the prior ensemble.  

Here's how Gradient Boosting works: 

• Loss Function: A loss function quantifies the disparity 

between expected and actual target values. The Gradient 

Boosting algorithm aims to minimize this loss function in 

each iteration by adding a new decision tree to the ensemble. 

• Gradient Descent: Gradient Boosting employs gradient 

descent optimization to find the direction and magnitude of 

the changes needed for the new tree to minimize the loss 

function. 

• Learning Rate: A learning rate parameter determines the 

contribution of each new tree to the overall ensemble. A 

lower learning rate makes the model more robust but might 

require more trees for optimal performance. 

• Weak Learners: Decision trees are often used as weak 

learners in Gradient Boosting. However, these trees are 

shallow (limited depth) to avoid overfitting and ensure 

better generalization. 

• Weighted Data: Gradient Boosting assigns weights to data 

points during each iteration. Misclassified or poorly 

predicted data points receive higher weights, guiding 

subsequent trees to focus on these challenging cases. 

• Additive Training: Trees are added sequentially, with each 

new tree focusing on the mistakes of the ensemble up to that 

point. This additive approach gradually improves the 

model's performance. 

• Stopping Criteria: Gradient Boosting stops when a 

predefined number of trees is reached or when the 

improvement in the loss function becomes negligible. 

• Hyperparameters: Important hyperparameters include 

number of trees, learning rate, maximum depth of each tree, 

and loss function. 

• Regularization: To prevent overfitting, Gradient Boosting 

can incorporate regularization techniques, such as 

subsampling (using only a portion of the data for each tree) 

and shrinkage (reducing the contribution of each tree). 

Gradient Boosting often achieves higher predictive accuracy 

than individual Decision Trees or Random Forests. It can handle 

complex relationships and noisy data well. For this research on 

multiclass classification of brain MRI scans, Gradient Boosting 

could provide a robust predictive model due to its ability to 

sequentially correct errors and adapt to complex patterns in the 

data. By tuning hyperparameters and controlling the learning 

rate, you can ensure that the model converges effectively and 

produces accurate results for your classification tasks. 

V. PROPOSED SYSTEM 

The block diagram of the proposed system is shown in Fig. 

1. It consists of an Input dataset, Pre-processing, dataset Feature 

extraction, training and classification.  
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Fig. 3. Block diagram of the proposed system 

A. Dataset Preparation 

Brain Tumor Segmentation (BTATS) and Sartaj datasets are 

used for evaluation in this approach. The BRATS (Brain Tumor 

Segmentation) dataset is a frequently utilized standard for brain 

MRI analysis and classification, particularly emphasizing brain 

tumour segmentation. It consists of a comprehensive set of 

multimodal brain MRI scans, including T1-weighted, T1-

weighted contrast-enhanced, T2-weighted, and fluid-attenuated 

inversion recovery (FLAIR) images, as well as the ground truth 

tumour segmentation labels that correspond to each image. The 

MRI scans used to compile the BraTS dataset came from various 

organizations. These images were acquired using T1-weighted 

(T1), T1-weighted with contrast enhancement (T1ce), T2-

weighted (T2), or Fluid Attenuated Inversion Recovery (FAI) 

modalities (FLAIR). These modalities capture many aspects of 

brain architecture and pathology, and as a result, they provide 

helpful information for categorizing tumours. The 2018 version 

of the BraTS dataset consists of a training set and a validation 

set with 285 instances in total. Each example includes the four 

MRI modalities and the corresponding tumour segmentation 

masks. Different tumour grades are represented in the training 

set by high-grade gliomas (HGG) and low-grade gliomas 

(LGG). Fig. 4 depicts an example image of the Brats dataset.  

         
(a)                                 (b) 

Fig. 4. Dataset samples of Brats 2018 Dataset (a) HGG (b) LGG 

The SARTAJ data collection consists of magnetic resonance 

(MR) pictures of three types of brain cancer (glioma, 

meningioma, and pituitary), as well as images of normal brain 

tissue (no tumor). The collection contains 3264 photographs in 

RGB JPG format. The dataset contains two issues: an unequal 

distribution of classes and unpredictable splitting ratios. The 

number of photographs with "no tumor" is relatively low in 

comparison to the number of photographs with tumors, which 

are as follows: 500 photographs with no tumor, 937 photographs 

with meningioma tumors, 901 photographs with pituitary 

tumors, and 926 photographs with glioma tumors. Consequently, 

this distinction creates classification difficulties that result in an 

imbalance in which the classifier may prefer tumor scans. In 

addition, the train-test splitting ratio of the images linked with 

"Pituitary Tumor" differs from that of the other images. The 

dataset, therefore, excludes the pituitary class from this method. 

Fig. 5 depicts an example image of the SARTAJ dataset.   

 
(a)                                (b)                             (c) 

Fig. 5. Dataset samples of Sartaj Dataset (a) Glioma (b) Meningioma (c) No 

tumor 

A training dataset comprises 80% of the total dataset, whereas a 

validation dataset comprises 20%. Table I summarises the 

distribution of the image datasets Brats 1018 and SARTAJ used 

for the proposed system. 

 

Table I: Dataset distribution 

Dataset Classes Training Validation 

Brats 
HGG 7148 1786 

LGG 4623 1155 

SARTAJ 

Glioma 1321 300 

Meningioma 1339 306 

No tumor 1595 405 

B. Data pre-processing 

This image has been pre-processed to facilitate its 

manipulation. Filtration is a crucial component of the pre-

processing operation. The median filter is a non-linear filter that 

removes noise and smooths images. Widespread use has resulted 

from its ability to minimize noise while preserving edges. It 

excels at evading sounds like salt and pepper. As it advances 

from pixel to pixel, the median filter iteratively applies itself to 

an image, replacing each value with the neighborhood median 

value. Calculating the median requires sorting the window's 
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pixel values in numerical order and then replacing the window's 

central pixel with the pixel value indicating the median.  

C. Feature Extraction 

The feature extraction process for brain MRI images involves 

two fundamental techniques: the DWT and the GLCM. Using 

DWT, images are decomposed into different frequency 

components across various scales, from which statistical features 

like maximum, minimum, standard deviation, skewness, and 

mean values of detail coefficients are calculated. In parallel, 

GLCM captures textural information by quantifying the 

occurrence of pixel value pairs with specific offsets and angles, 

subsequently yielding features such as contrast, energy, 

homogeneity, entropy, and ASM. These extracted DWT-based 

and GLCM-based features comprehensively represent 

frequency-related patterns and texture characteristics within the 

MRI images. The culmination of this dual approach results in a 

fused feature set that encapsulates essential information for 

subsequent classification tasks. This combined feature set is the 

foundation for training and evaluating machine learning 

algorithms, ultimately enabling accurate and nuanced 

classification of brain MRI scans into distinct categories. 

D. Training and classification 

The training and classification phase of our study involves the 

application of diverse machine learning algorithms, namely 

SVM, KNN, DT, RF, and GB, on the extracted feature sets from 

brain MRI images. Each algorithm brings unique strengths to the 

classification task. SVM constructs an optimal hyperplane to 

separate different classes, utilizing a kernel trick to handle non-

linear boundaries effectively. KNN uses the proximity of data 

points in feature space to make predictions, assigning class 

labels to the k-nearest neighbors. By recursively partitioning 

data based on feature values, DT generates a decision tree 

structure that is interpretable and capable of capturing complex 

relationships. RF constructs an ensemble of decision trees 

through bootstrapped data and random feature selection, 

promoting robustness and reducing overfitting. 

Conversely, GB sequentially builds decision trees to correct the 

errors of its predecessors, enhancing predictive accuracy. By 

training each algorithm on our fused feature set and employing 

cross-validation techniques, we assess their performance and 

fine-tune hyperparameters for optimal results. This 

comprehensive analysis will guide the selection of the most 

suitable algorithm or combination of algorithms for accurately 

classifying brain MRI images, ultimately contributing to 

improved medical diagnostic capabilities. 

E. Evaluation 

Our classification models are evaluated through a 

comprehensive set of metrics, including precision, recall, F1 

score, and accuracy. These metrics collectively provide insights 

into our trained models' performance and ability to classify brain 

MRI images accurately. 

• Precision: Precision is the fraction of accurately predicted 

positive cases (true positives) relative to the total number of 

positive instances predicted by the model. It represents the 

model's capacity to avoid false positives, making it 

especially useful when false positives are expensive. 

Mathematically, precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: Recall, also known as sensitivity or true positive 

rate, is the proportion of true positive occurrences 

accurately detected by the model out of the total number of 

positive instances. It highlights the model's ability to capture 

all relevant positive instances. Mathematically, recall is 

given by: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1 Score: The F1 score is the harmonic mean of precision 

and recall, measuring a well-balanced model's performance. 

It considers both false positives and false negatives and is 

particularly beneficial when class distribution is unequal. 

The F1 score is calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
2 × 𝑃 × 𝑅

𝑃 + 𝑅
 

• Accuracy: Accuracy is the proportion of instances 

accurately predicted (including true positives and true 

negatives) relative to the total number of instances in the 

dataset. Accuracy is essential, but it may not be the optimal 

metric when dealing with imbalanced datasets where one 

class considerably exceeds the other.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

In the context of problems involving classification, samples can 

be separated into groups labelled True Positive (TP), False 

Positive (FP), True Negative, and False Negative(FN), 

respectively. 

VI. RESULT 

This section presents the results of the proposed brain MRI 

classification using a machine learning algorithm with DWT 

and GLCM feature extraction techniques.  

A. Results of Brain MRI Classification into Glioma, 

Meningioma and No Tumor using  ML algorithm on Sartaj 

Dataset 

In this study, we aimed to classify brain MRI images into three 

distinct categories: Glioma, Meningioma, and No Tumor. We 

employed a variety of machine learning algorithms, leveraging 
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the power of feature-rich DWT and texture-based GLCM 

features extracted from the Sartaj Dataset. The results of our 

classification experiment are outlined below: 

a) DWT 

The analysis of different machine learning classifiers on DWT 

features of Sartaj Dataset for classification of brain MRI into 

Glioma, meningioma and no tumor classification is presented in 

Table II. 

Table II: Comparative analysis of different ML algorithms with DWT 

features on Sartaj Dataset 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM 

  

linear 0.75 0.74 0.74 0.7394 

rbf 0.79 0.79 0.79 0.7934 

poly 0.76 0.67 0.68 0.6737 

KNN 

  

k=3 0.83 0.83 0.83 0.8286 

k=5 0.82 0.82 0.82 0.8192 

k=7 0.83 0.83 0.82 0.8262 

DT  0.75 0.76 0.76 0.7582 

RF   0.84 0.84 0.84 0.8427 

GB   0.82 0.82 0.82 0.8169 

Table II shows that the RF algorithm achieved the highest 

accuracy of 84.27% compared to other algorithms on DWT 

features.   

b) GLCM 

The analysis of different machine learning classifiers on GLCM 

features with 0o,45o,90o, and 135o of Sartaj Dataset for 

classification of brain MRI into Glioma, meningioma and no 

tumor classification are presented in Table III, IV, V, and VI. 

Table III: Comparative analysis of different ML algorithms on GLCM 

features with 0o on the Sartaj Dataset 

GLCM 0 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM linear 0.72 0.71 0.72 0.7112 

  rbf 0.77 0.76 0.77 0.7629 

  poly 0.75 0.64 0.64 0.6384 

KNN k=3 0.88 0.88 0.88 0.8826 

  k=5 0.88 0.88 0.88 0.8826 

  k=7 0.87 0.87 0.87 0.8685 

DT  0.84 0.84 0.84 0.8427 

RF   0.86 0.86 0.86 0.8638 

GB   0.82 0.81 0.81 0.8098 

 

Table III shows that the KNN algorithm with K=3 and K=5 

achieved the highest accuracy of 88.26% than other algorithms 

on GLCM features with 0o. 

 

Table IV: Comparative analysis of different ML algorithms on GLCM 

features with 45o on the Sartaj Dataset 

GLCM 45 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM linear 0.72 0.72 0.72 0.718309 

  rbf 0.77 0.76 0.76 0.760563 

  poly 0.74 0.62 0.63 0.622065 

KNN k=3 0.86 0.86 0.86 0.861502 

  k=5 0.86 0.86 0.86 0.863849 

  k=7 0.86 0.86 0.86 0.863849 

DT   0.81 0.81 0.81 0.814553 

RF   0.87 0.87 0.87 0.870892 

GB   0.82 0.81 0.81 0.809859 

 

Table IV shows that the RF algorithm achieved the highest 

accuracy of 87.08% compared to other algorithms on GLCM 

features with 45o. 

Table V: Comparative analysis of different ML algorithms on GLCM features 

with 90o on the Sartaj Dataset 

GLCM 90 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM linear 0.74 0.73 0.73 0.730046 

  rbf 0.75 0.75 0.75 0.748826 

  poly 0.74 0.62 0.62 0.61737 

KNN k=3 0.87 0.87 0.87 0.870892 

  k=5 0.88 0.88 0.88 0.884976 

  k=7 0.88 0.88 0.87 0.875586 

DT   0.82 0.82 0.82 0.819248 

RF   0.87 0.87 0.86 0.866197 

GB   0.82 0.81 0.81 0.812206 

 

Table V shows that the KNN algorithm with K=5 achieved the 

highest accuracy of 88.49% compared to other algorithms on 

GLCM features with 90o. 

Table VI: Comparative analysis of different ML algorithms on GLCM 

features with 135o on the Sartaj Dataset 

GLCM 135 degree 
Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM linear 0.74 0.73 0.73 0.727699 

  rbf 0.76 0.75 0.75 0.748826 

  poly 0.73 0.61 0.62 0.610328 

KNN k=3 0.86 0.86 0.86 0.859154 

  k=5 0.88 0.88 0.88 0.880281 

  k=7 0.87 0.87 0.87 0.873239 

DT   0.82 0.82 0.82 0.816901 

RF   0.86 0.86 0.86 0.859154 

GB   0.79 0.78 0.78 0.78169 
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Table VI shows that the KNN algorithm with K=7 achieved the 

highest accuracy of 87.35% than other algorithms on GLCM 

features with 90o. 

This experiment demonstrates that each machine learning 

algorithm performs differently, classifying brain MRI images 

into Glioma, Meningioma, and No Tumor categories. KNN and 

Random Forest algorithms stand out with higher accuracy, 

precision, recall, and F1 scores than other algorithms, indicating 

their efficacy in this task. This comprehensive analysis aids in 

identifying the most suitable algorithm for accurate and reliable 

brain tumor classification, contributing to enhanced medical 

diagnostics and patient care. 

B. Results of Brain MRI Classification into HGG and LGG 

using  ML algorithm on Brats dataset 

In this study, we aimed to classify brain MRI images into two 

distinct categories: HGG and LGG. We employed a variety of 

machine learning algorithms, leveraging the power of feature-

rich DWT and texture-based GLCM features extracted from the 

Brats 2018 Dataset. The results of our classification experiment 

are outlined below: 

a) DWT 

The analysis of different machine learning classifiers on DWT 

features of Sartaj Dataset for classification of brain MRI into 

Glioma, meningioma and no tumor classification is presented in 

Table VII. 

Table VII: Comparative analysis of different ML algorithms with DWT 

features on Brats Dataset 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM 

  

  

linear 0.73 0.73 0.71 0.727828 

rbf 0.76 0.75 0.74 0.752973 

poly 0.78 0.73 0.69 0.727149 

KNN 

  

  

k=3 0.74 0.74 0.74 0.740061 

k=5 0.75 0.75 0.74 0.748558 

k=7 0.76 0.76 0.76 0.763506 

DT  0.72 0.72 0.72 0.716955 

RF   0.77 0.77 0.77 0.77268 

GB   0.76 0.76 0.75 0.75739 

 

Table VII shows that the RF algorithm achieved the highest 

accuracy of 77.26% compared to other algorithms on DWT 

features.   

b) GLCM 

The analysis of different machine learning classifiers on GLCM 

features with 0o,45o,90o, and 135o of Sartaj Dataset for 

classification of brain MRI into Glioma, meningioma and no 

tumor classification is presented in Table VIII, IX, X, and XI. 

Table VIII: Comparative analysis of different ML algorithms with DWT 

features on Sartaj Dataset 

GLCM 0 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM 

  

  

linear 0.77 0.77 0.77 0.772823 

rbf 0.8 0.79 0.79 0.794479 

poly 0.78 0.76 0.74 0.758386 

KNN 

  

  

k=3 0.79 0.79 0.79 0.793205 

k=5 0.8 0.81 0.8 0.80552 

k=7 0.81 0.81 0.81 0.809766 

DT  0.76 0.75 0.76 0.754989 

RF   0.81 0.81 0.81 0.810615 

GB   0.79 0.79 0.78 0.78811 

 

Table VIII shows that the RF algorithm achieved the highest 

accuracy of 81.06% compared to other algorithms on GLCM 

features with 0o. 

Table IX: Comparative analysis of different ML algorithms with DWT features 

on the Sartaj Dataset 

GLCM 45 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM 

  

  

linear 0.79 0.79 0.78 0.787685 

rbf 0.81 0.8 0.8 0.802972 

poly 0.79 0.77 0.75 0.7707 

KNN 

  

  

k=3 0.8 0.8 0.8 0.797452 

k=5 0.81 0.81 0.81 0.810191 

k=7 0.81 0.81 0.81 0.810191 

DT   0.75 0.75 0.75 0.75414 

RF   0.81 0.81 0.81 0.808492 

GB   0.79 0.79 0.78 0.786411 

 

Table IX shows that the KNN with k=5 and k=7 algorithms 

achieved the highest accuracy of 81.01% than other algorithms 

on GLCM features with 45o. 

Table X: Comparative analysis of different ML algorithms with DWT features 

on the Sartaj Dataset 

GLCM 90 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM 

  

  

linear 0.78 0.78 0.78 0.782165 

rbf 0.81 0.8 0.8 0.802972 

poly 0.79 0.77 0.75 0.770276 

KNN 

  

  

k=3 0.79 0.79 0.79 0.794479 

k=5 0.81 0.81 0.81 0.808492 

k=7 0.81 0.81 0.81 0.809341 

DT   0.75 0.75 0.75 0.748619 

RF   0.8 0.8 0.8 0.798301 

GB   0.79 0.79 0.79 0.792356 

 

Table X shows that the KNN algorithm with K=7 achieved the 

highest accuracy of 80.93% than other algorithms on GLCM 

features with 90o. 
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Table XI: Comparative analysis of different ML algorithms with DWT features 

on Sartaj Dataset 

GLCM 135 degree 

Classifiers Attributes Precision Recall F1_Score Accuracy 

SVM linear 0.78 0.78 0.78 0.782165 

 rbf 0.81 0.8 0.8 0.802972 

 poly 0.79 0.77 0.75 0.770276 

KNN k=3 0.79 0.79 0.79 0.794479 

 k=5 0.81 0.81 0.81 0.809341 

 k=7 0.81 0.81 0.81 0.809766 

DT  0.75 0.75 0.75 0.750318 

RF  0.8 0.8 0.8 0.8 

GB  0.79 0.79 0.79 0.793205 

 

Table XI shows that the KNN algorithm with K=7 achieved the 

highest accuracy of 80.97% than other algorithms on GLCM 

features with 90o. 

This experiment demonstrates that each machine learning 

algorithm performs differently in classifying brain MRI images 

into Glioma, Meningioma, and No Tumor categories. KNN and 

Random Forest algorithms stand out with higher accuracy, 

precision, recall, and F1 scores than other algorithms, indicating 

their efficacy in this task. This comprehensive analysis aids in 

identifying the most suitable algorithm for accurate and reliable 

brain tumor classification, contributing to enhanced medical 

diagnostics and patient care. 

Figure 6 depicts the qualitative analysis of the proposed 

system on the Sartaj dataset for the classification of Glioma, 

Meningioma, and No tumour. Figure 7 depicts the qualitative 

analysis of the proposed system on the brats dataset for the 

classification of HGG and LGG.  

   

   

   

Fig. 6. Testing results of the proposed system on the Sartaj dataset 

   

    

Fig. 7. Testing results of the proposed system on the Brats dataset 

In our comprehensive exploration of brain MRI classification, 

we examined the performance of various machine learning 

algorithms on two distinct datasets: the BRATS dataset and the 

Sartaj dataset. Notably, the promising results achieved with the 

Random Forest and k-Nearest Neighbors algorithms were 

consistent across both datasets, highlighting their robustness 

and generalizability. 

The Random Forest algorithm's success can be attributed to its 

ensemble nature, which harnesses the power of multiple 

decision trees to make accurate predictions collectively. RF 

demonstrated noteworthy precision, recall, F1 scores, and 

accuracy on the BRATS and Sartaj datasets. The results clearly 

reflected its capacity to handle high-dimensional feature spaces 

and effectively manage overfitting through bootstrapping and 

random feature selection. The feature importance analysis 

offered by RF was precious, shedding light on the most 

influential features in brain MRI classification. This 

interpretability contributes to the algorithm's utility in medical 

diagnostics. 

The k-Nearest Neighbors algorithm's performance consistency 

across datasets emphasizes its ability to capture local patterns 

and nuances within the data. With KNN, the classification 
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decision is heavily influenced by neighboring instances, making 

it effective when spatial relationships and subtle variations are 

essential, as is the case with medical images. While the results 

showed relatively lower precision and recall than RF, KNN's 

reliability across datasets suggests its stability and adaptability 

in varying scenarios. Additionally, the straightforward nature of 

KNN makes it easy to understand and implement, an advantage 

in the medical domain where interpretability is crucial. 

The convergence of promising results with both RF and KNN 

across the BRATS and Sartaj datasets underscores their 

potential as strong candidates for brain MRI classification. 

However, it's essential to recognize that no single algorithm is 

universally optimal. Factors such as dataset characteristics, 

class imbalances, computational efficiency, and interpretability 

must all be weighed when choosing the most appropriate 

algorithm for a given task. This comprehensive analysis 

advances our understanding of the suitability of machine 

learning algorithms in medical image analysis. It highlights the 

significance of well-informed algorithm selection for accurate 

diagnosis and patient care. 

VII. CONCLUSION 

This study delved into the intricate realm of brain MRI 

classification using a diverse range of machine-learning 

algorithms on both the BRATS and Sartaj datasets. Through 

comprehensive analysis, we unearthed valuable insights that 

can significantly impact medical diagnostics and patient care. 

The results showcased the effectiveness of various algorithms 

in accurately categorizing brain MRI images into distinct 

classes, with notable performances observed for Random Forest 

(RF) and k-nearest Neighbors (KNN) across both datasets. 

Our findings underscore the pivotal role of algorithm selection 

in achieving accurate classification. SVM, DT, and GB, along 

with RF and KNN, all demonstrated unique strengths and 

weaknesses, necessitating careful consideration based on 

dataset characteristics and clinical requirements. Furthermore, 

our study emphasized the importance of feature extraction 

methods, such as DWT, and their synergistic potential with 

machine learning techniques to create powerful diagnostic 

tools. 

Looking ahead, several exciting avenues for future research 

emerge from our study. Incorporating advanced deep learning 

techniques, such as convolutional neural networks (CNNs), 

could potentially unlock even higher levels of accuracy by 

harnessing the innate ability of CNNs to learn complex features 

directly from images automatically. Exploring multimodal 

datasets, where complementary information from various 

imaging modalities is combined, might provide a more 

comprehensive diagnostic approach. Additionally, fine-tuning 

algorithms to tackle specific subtypes or abnormalities within 

brain tumors could enhance accuracy in distinguishing between 

complex cases. 

Moreover, expanding the scope of our research to accommodate 

larger datasets, including diverse demographic information and 

longitudinal follow-up, could amplify the real-world 

applicability of our findings. Collaboration with medical 

professionals could provide valuable clinical insights, ensuring 

the developed models align with medical needs. 

This study is a stepping stone towards integrating advanced 

machine learning techniques into medical diagnosis. By 

consistently pushing the limits of research, we foresee a future 

in which the convergence of cutting-edge technology and 

medical expertise transforms the healthcare landscape, enabling 

more accurate and timely diagnoses and eventually enhancing 

patient outcomes. 
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