5,048 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Tietojenkäsittelytieteen päivät 2010

    Get PDF

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework
    corecore