276 research outputs found

    Identification of quasi-optimal regions in the design space using surrogate modeling

    Get PDF
    The use of Surrogate Based Optimization (SBO) is widely spread in engineering design to find optimal performance characteristics of expensive simulations (forward analysis: from input to optimal output). However, often the practitioner knows a priori the desired performance and is interested in finding the associated input parameters (reverse analysis: from desired output to input). A popular method to solve such reverse (inverse) problems is to minimize the error between the simulated performance and the desired goal. However, there might be multiple quasi-optimal solutions to the problem. In this paper, the authors propose a novel method to efficiently solve inverse problems and to sample Quasi-Optimal Regions (QORs) in the input (design) space more densely. The development of this technique, based on the probability of improvement criterion and kriging models, is driven by a real-life problem from bio-mechanics, i.e., determining the elasticity of the (rabbit) tympanic membrane, a membrane that converts acoustic sound wave into vibrations of the middle ear ossicular bones

    Parallel surrogate-assisted global optimization with expensive functions – a survey

    Get PDF
    Surrogate assisted global optimization is gaining popularity. Similarly, modern advances in computing power increasingly rely on parallelization rather than faster processors. This paper examines some of the methods used to take advantage of parallelization in surrogate based global optimization. A key issue focused on in this review is how different algorithms balance exploration and exploitation. Most of the papers surveyed are adaptive samplers that employ Gaussian Process or Kriging surrogates. These allow sophisticated approaches for balancing exploration and exploitation and even allow to develop algorithms with calculable rate of convergence as function of the number of parallel processors. In addition to optimization based on adaptive sampling, surrogate assisted parallel evolutionary algorithms are also surveyed. Beyond a review of the present state of the art, the paper also argues that methods that provide easy parallelization, like multiple parallel runs, or methods that rely on population of designs for diversity deserve more attention.United States. Dept. of Energy (National Nuclear Security Administration. Advanced Simulation and Computing Program. Cooperative Agreement under the Predictive Academic Alliance Program. DE-NA0002378

    A Distributed Surrogate Methodology for Inverse Most Probable Point Searches in Reliability Based Design Optimization

    Get PDF
    Surrogate models are commonly used in place of prohibitively expensive computational models to drive iterative procedures necessary for engineering design and analysis such as global optimization. Additionally, surrogate modeling has been applied to reliability based design optimization which constrains designs to those which provide a satisfactory reliability against failure considering system parameter uncertainties. Through surrogate modeling the analysis time is significantly reduced when the total number of evaluated samples upon which the final model is built is less than the number which would have otherwise been required using the expensive model directly with the analysis algorithm. Too few samples will provide an inaccurate approximation while too many will add redundant information to an already sufficiently accurate region. With the prediction error having an impact on the overall uncertainty present in the optimal solution, care must be taken to only evaluate samples which decrease solution uncertainty rather than prediction uncertainty over the entire design domain. This work proposes a numerical approach to the surrogate based optimization and reliability assessment problem using solution confidence as the primary algorithm termination criterion. The surrogate uncertainty information provided is used to construct multiple distributed surrogates which represent individual realizations of a lager surrogate population designated by the initial approximation. When globally optimized upon, these distributed surrogates yield a solution distribution quantifying the confidence one can have in the optimal solution based on current surrogate uncertainty. Furthermore, the solution distribution provides insight for the placement of supplemental sample evaluations when solution confidence is insufficient. Numerical case studies are presented for comparison of the proposed methodology with existing methods for surrogate based optimization, such as expected improvement from the Efficient Global Optimization algorithm

    Iterative Kriging-based Methods for Expensive Black-Box Models

    Get PDF
    Reliability-Based Design Optimization (RBDO) in electromagnetic field problems requires the calculation of probability of failure leading to a huge computational cost in the case of expensive models. Three different RBDO approaches using kriging surrogate model are proposed to overcome this difficulty by introducing an approximation of the objective function and constraints. These methods use different infill sampling criteria (ISC) to add samples in the process of optimization or/and in the reliability analysis. Several enrichment criteria and strategies are compared in terms of number of evaluations and accuracy of the solution

    Otimização eficiente global dirigida por metamodelos combinados : novos caminhos abertos pela aproximação por mínimos quadrados

    Get PDF
    Orientador: Alberto Luiz SerpaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: O presente trabalho representa a compilação dos resultados anteriores dessa pesquisa no campo de metamodelos combinados e otimização eficiente global (EGO), os quais foram sumetidos para publicação em periódicos especializados. Recentemente foi implementado nesse trabalho de doutorado o algoritmo LSEGO que é uma abordagem para conduzir algoritmos tipo EGO, baseando-se em metamodelos combinados através da aproximação por mínimos quadrados (metamodelos combinados LS). Através dos metamodelos combinados LS é possível estimar a incerteza da aproximação usando qualquer tipo de metamodelagem (e não somente do tipo kriging), permitindo estimar a função de expectativa de melhora para a função objetivo. Nos experimentos computacionais anteriores em problemas de otimização sem restrições, a abordagem LSEGO mostrou-se como uma alternativa viável para conduzir otimização eficiente global usando metamodelos combinados, sem se restringir a somente um ponto adicional por ciclo de otimização iterativa. Na presente tese o algoritmo LSEGO foi extendido de modo a tratar também problemas de otimização com restrições. Os resultados de testes numéricos com problemas analíticos e de referência e também em um estudo de caso de engenharia em escala industrial mostraram-se bastante promissores e competitivos em relação aos trabalhos similares encontrados na literaturaAbstract: In this work we review and compile the results of our previous research in the fields of ensemble of metamodels and efficient global optimization (EGO). Recently we implemented LSEGO that is an approach to drive EGO algorithms, based on LS (least squares) ensemble of metamodels. By means of LS ensemble of metamodels, it is possible to estimate the uncertainty of the prediction by using any kind of model (not only kriging) and provide an estimate for the expected improvement function. In previous numerical experiments with unconstrained optimization problems, LSEGO approach has shown to be a feasible alternative to drive efficient global optimization by using multiple or ensemble of metamodels, not restricted to kriging approximation or single infill point per optimization cycles. In the present work we extended the previous LSEGO algorithm to handle constrained optimization problems as well. Some numerical experiments were performed with analytical benchmark functions and also for industry scale engineering problems with competitive resultsDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

    Get PDF
    Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases
    corecore