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ABSTRACT

Davidson, James. M.S.Egr., Department of Mechanical and Materials Engineering, Wright State
University, 2015. A Distributed Surrogate Methodology for Inverse Most Probable Point Searches
in Reliability Based Design Optimization.

Surrogate models are commonly used in place of prohibitively expensive computational

models to drive iterative procedures necessary for engineering design and analysis such as

global optimization. Additionally, surrogate modeling has been applied to reliability based

design optimization which constrains designs to those which provide a satisfactory reliabil-

ity against failure considering system parameter uncertainties. Through surrogate modeling

the analysis time is significantly reduced when the total number of evaluated samples upon

which the final model is built is less than the number which would have otherwise been

required using the expensive model directly with the analysis algorithm. Too few samples

will provide an inaccurate approximation while too many will add redundant information

to an already sufficiently accurate region. With the prediction error having an impact on the

overall uncertainty present in the optimal solution, care must be taken to only evaluate sam-

ples which decrease solution uncertainty rather than prediction uncertainty over the entire

design domain. This work proposes a numerical approach to the surrogate based optimiza-

tion and reliability assessment problem using solution confidence as the primary algorithm

termination criterion. The surrogate uncertainty information provided is used to construct

multiple distributed surrogates which represent individual realizations of a lager surrogate

population designated by the initial approximation. When globally optimized upon, these

distributed surrogates yield a solution distribution quantifying the confidence one can have

in the optimal solution based on current surrogate uncertainty. Furthermore, the solution

distribution provides insight for the placement of supplemental sample evaluations when

solution confidence is insufficient. Numerical case studies are presented for comparison of

the proposed methodology with existing methods for surrogate based optimization, such as

expected improvement from the Efficient Global Optimization algorithm.
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Introduction

In modern engineering design, computer simulations offer a cost effective and controlled

method for the computation of system responses. This aides in the discovery of how a

structural component may fail under certain operating conditions and which system param-

eters have the most influence for avoiding of such failures. Additional considerations must

also be made regarding the uncertainties present in the system via loading, geometrical,

and material properties. Traditionally, a safety factor would be applied to a component ac-

counting for such uncertainties, however, determination of a probabilistic reliability against

failure has proven to be a more useful method of dealing with system uncertainty. For such

reliability assessment, distributions for each input parameter are propagated through the

system, yielding a distribution for performance measures from which the probability of

success can be computed.

In structural reliability based design optimization (RBDO), multiple methodologies and

problem formulations exist for the determination of an optimum design which maintains

a requested level of reliability. Many of these formulations require a most probable point

(MPP) search using the first order reliability method (FORM) in a forward or inverse reli-

ability assessment. Literature in the last decade has awarded more attention to the inverse

reliability assessment variant, referred to as the performance measure approach (PMA) op-

posed to the forward variant, the reliability index approach (RIA). Initially, the reason for
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this was due to the relative ease of locating the inverse MPP opposed to the forward MPP re-

garding the formulation of the optimization problem performing the search for each. More

recently, the increased attention has been a consequence of decoupled RBDO methodology

popularity for which a constraint shifting vector is normally computed using an inverse

MPP.

Regardless of the methodology used for RBDO, the computational expense is often con-

siderable since the computer simulations driving it typically consume large amounts of

computer resources, taking hours or even days to complete the determination of a single

response. Though using a decoupled RBDO method generally reduces the overall number

of simulation responses necessary to be computed, for many problems the computational

expense is still too overwhelming. To relive this expense, surrogate models are commonly

used in place of simulations to drive iterative analysis procedures. In order to maximize

the computational cost savings, very few responses may be sampled from the truth models

for which the surrogates must be built upon. In such cases, the accuracy of the surrogate

and solutions gained by its use must be verified. If the accuracy is found to be insuffi-

cient, supplemental evaluations may be required from the expensive model to improve the

approximation. The location of these supplemental evaluations in the design space is crit-

ical due to truth model evaluation overhead and the risk of little improvement if a poor

supplemental point is selected. This work proposes a method for the surrogate based deter-

mination of an inverse MPP for application in decoupled RBDO formulations. Due to the

nature of the inverse MPP search, it is advantageous to first model this problem as global

optimization.

The first part of the proposed method is concerned with the gathering of useful data which

can be used to approximate the uncertainty associated with the most optimal solution the

surrogate is capable of providing based on the prediction uncertainty. This involves the for-

mation of multiple surrogates, referred to as distributed surrogates, all of which are based

2



on the prediction parameters of the initial approximation. Each distributed surrogate rep-

resents one particular behavior which the true response could potentially exhibit. After

formation, each distributed surrogate is optimized upon to yield a set of distributed solu-

tions. The spread in these solutions is the quantity used to approximate the uncertainty of

the current solution at the centroid of the distributed solutions. A large spread in the dis-

tributed solutions is evidence supporting the need for more surrogate building information

to obtain an optimal solution high in confidence. This spread in the distributed solutions is

used as the primary termination criteria for the global optimization process.

The second part of the proposed method is concerned with the selection of one or more

supplemental point locations, also referred to as infills, in the event that solution confidence

is not sufficient. Since computational expense is invested in determining the distributed

solutions, it is beneficial to include this information as criteria in the supplemental sampling

procedure. Additional criteria is gained through the gathering of supplemental candidate

points. Each candidate is determined through the local maximum search over the prediction

uncertainty. A distance metric between each distributed solution region and each candidate

is measured and used for the final determination of the supplemental point locations. Using

such an infill criteria ensures that for spread out distributed solutions, a greater number of

infills will be selected, reducing the overall number of algorithm iterations required through

rapidly decreasing optimal solution uncertainty.

The remainder of this thesis is organized as follows. Background theory is then presented

for forward and inverse reliability assessment along with the RBDO formulation using

each, and surrogate based optimization. A literature review is then discussed concerning

past contributions which address surrogate based optimization and inverse reliability as-

sessment. The distributed surrogate optimization methodology is then described in detail

with numerical examples following for both global optimization and inverse reliability as-

sessment.
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Background Theory

2.1 Reliability Assessment

The reliability of a system is the probability of successful performance under uncertain

conditions. If the uncertain conditions impacting system responses can be characterized

by a continuous frequency of outcomes, then the reliability of a system may be computed

using a probabilistic approach. Utilizing probabilistic design methods can be used to re-

duce risk of failure in structural components due to uncontrollable variation in factors such

as loading, geometry, material properties, manufacturing processes, and operation environ-

ments. The counterpart, deterministic design neglects system uncertainties, instead relying

on safety factors to account for uncertainties. This section describes the traditional methods

used to assess structural reliability.

For some uncertain variable outcomes, a system may not be able to perform as required.

The performance requirements are expressed using a limit state function for which re-

sponses exceeding a specified value indicate failure. Using this formulation the margin of

safety, or lack thereof, is quantified between the resistance and loading of a structure. The

limit state, g (·), is therefore defined as

g (x) = R (x)− S (x) (2.1)
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where R is system resistance, S is system loading, and x is a vector of random variable

outcomes. A limit state response can only be computed using an individual realization

from the probability density of each random variable representing system uncertainties.

Given this, the probability of failure, Pf , corresponds to the likeliness of a less than zero

limit state response expressed as

Pf = P
[
g (X) < 0

]
=

∫
. . .

∫
fX (X1, . . . , Xn) dX1 . . . dXn (2.2)

where X is a vector of random variables and fX (X1, . . . , Xn) is the joint probability den-

sity function for all variables in X . This leads to three possible limit state outcomes for

different combinations of random variable realizations. Variable domain regions are clas-

sified for each outcome combination as g (x) < 0 → failure region, g (x) = 0 → failure

surface, and g (x) > 0 → safe region. The integration in 2.2 is performed over the fail-

ure region. In most cases, fX (·) is very difficult to integrate or not obtainable altogether

as discussed in Mahadevan (2000) [26]. Therefore, many methods have been proposed to

approximate it. The following subsections are devoted to describing the most applicable of

these methods.

2.1.1 Mean Value Method

The mean value method is a straight forward, very inexpensive way of approximating the

probability of failure of a system. Often, this method is also called the First-Order Second

Moment (FOSM) or Mean Value FOSM (MVFOSM) since it uses the first-order terms of

the Taylor series expansion at the mean value of each input variable and requires up to

the second moments of the uncertain variables. Expanding the limit state function about

the mean values and retaining the terms up to the first order provides a linearization of the

5



failure surface expressed as

g̃ (X) ≈ g (µX) +∇g (µX)T
(
Xi − µXi

)
(2.3)

where µX is a vector of the random variable means,

µX = {µX1 , . . . , µXn}
T (2.4)

and ∇g (µX) is the gradient of the limit state at the mean value,

∇g (µX) =

{
∂g (µX)

∂X1

, . . . ,
∂g (µX)

∂Xn

}T

. (2.5)

These expressions are used to approximate the distribution parameters of the limit state as

µg̃ = g (µX) (2.6)

and

σg̃ =

 n∑
i=1

(
∂g (µX)

∂Xi

σXi

)2
 1

2

(2.7)

where µg̃ is the approximate limit state response mean and σg̃ is the approximate limit state

response standard deviation. The formulation in equation 2.7 assumes all input random

variables are statistically independent. Using this method of propagating the uncertainty

through the system, a reliability index, β, can be computed as

β =
µg̃

σg̃
(2.8)
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which can further be used to compute the failure probability as

Pf = Φ (β) (2.9)

where Φ (·) is the standard normal cumulative distribution function.

Since this method utilizes a linear approximation of the limit state, it will not provide

accurate reliability estimates for highly nonlinear limit state surfaces. Although second

order terms could be added to the taylor series expansion to improve the approximation,

the increase in computational effort is generally not proportional to the increase in accuracy.

2.1.2 MPP-Based Methods

The reliability index computation can also be expressed as an optimization problem wherein

a Most Probable Point (MPP) of failure is sought. In standard normal variable space, the

MPP is the point occurring on the failure surface which is located nearest to the origin.

The Hasofer-Lind (HL) algorithm, introduced by Hasofer and Lind (1974) [19], performs

a linear transformation of the random design vector X into U , a vector of standardized

independent normally distributed variables. This yields a symmetrical joint PDF centered

at the origin in U-space. With this transformation, it becomes fairly intuitive that the point

of largest probability density in U-space with a limit state response of zero has the most

significant contribution to the probability of failure.

The transformation from a point in physical space to a point in standard normal space is

achieved using the distribution parameters of each random variable. For random variables

which are already normally distributed, the forward transform for an X-space point, x, to

7



U-space point, u, is expressed as

u = T (x,X) =
x− µX

σX
(2.10)

with the inverse transformation expressed as

x = T−1 (u,X) = (u) (σX) + µX . (2.11)

If the X-space variables are not normally distributed, an extra step must be used to deter-

mine the equivalent normal approximation such as the Rosenblatt transform, described by

Rosenblatt (1952) [34], or Nataf transform, generalized in Lebrum (2009) [23]. Using the

inverse transformation, the optimization formulation for the MPP search is expressed as

find u∗

minimize ‖u‖

subject to g
(
T−1 (u,X)

)
≤ 0

(2.12)

where u∗ is the MPP. The reliability index can now be expressed in terms of the MPP as

β =‖u∗‖ . (2.13)

This method of determining the reliability which corresponds to a response level in the

limit state is referred to as the reliability index approach (RIA).

Another method, the performance measure approach (PMA), determines the location of an

inverse MPP. Here, the probability of success is specified, and the corresponding response

level found. The performance measure approach optimization formulation for the inverse

8



MPP search is expressed as

find u∗inv

minimize g
(
T−1 (u,X)

)
subject to ‖u‖ = βt

(2.14)

where u∗inv is the inverse MPP and βt is the specified target reliability. The goal of the

operation shown in equation 2.14 is to minimize the limit state response on the surface of

a hyper-sphere which has a radius equal to the reliability index.

For both RIA and PMA, different methods can be used to approximate the response of the

limit state function for the optimization process if the response evaluations are particularly

expensive. The usage of a first order approximation at the MPP is refereed to as first

order reliability method (FORM), whereas if the second order terms are included in the

approximation, it is called second order reliability method (SORM).

Although the constrained optimization problems in equations 2.12 and 2.14 can be solved

using many general purpose numerical optimization algorithms including gradient based,

feasible directions, and penalty methods, iterative search methods developed to solve the

reliability problem may offer advantages for some problems. One of these methods is the

HL algorithm and it’s version later extended by Rackwitz and Fiessler (1978) [33] (HL-RF)

to incorporate the steps required for non-Gaussian random variables. As in RIA, there are

special algorithms to perform PMA and locate the inverse MPP such as Advanced Mean

Value (AMV) and Hybrid Mean Value (HMV) described by Youn (2004) [39].
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2.1.3 Sampling Methods

A more experimental approach for computing the failure probability is available using sam-

ple methods. These methods hold the advantage of being simple to implement and pro-

viding accurate probabilistic information for sufficiently large sample sizes since they are

numerical integrating technique using direct response evaluations without approximations.

Sampling methods propagate uncertainty through the system by evaluating the limit state

response for many trial points whose degrees of freedom are selected according to their

random distribution. Using an indicator function, the number of trials which fall within the

safe region, not returning a negative limit state, are counted and divided by the total number

of trials. This operation is expressed by

Pf =
Nf

N
(2.15)

where NF is the number of trial points which resulted in a violated limit state response

and N is the total number of trials. However, the number of trails which must be used for

accurate results is generally very large. For response evaluations which are computationally

expensive, the usage of sampling methods become unpractical. The usage of monte carlo

simulations and Latin hypercube sampling are two popular methods for selecting the trial

points.

Points sampled using a Monte carlo simulation consist of a set randomly drawn from each

random variable distribution. When randomly drawing number from a probability density,

it is obvious that the vast majority will reside somewhat near the mean, leaving the dis-

tribution tail regions sparsely populated. This can be problematic for reliability analysis

since low probabilities are computed when few of the trial points evaluated have extreme

values. To avoid error due to the nature of random sampling, very large sample sizes must

me selected.
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Stratified sampling methods such as Latin hypercube sampling maintain a certain degree

of space filling properties. This improves the coverage of the random space for a smaller

sample size and reduces the likeliness of an uneven sample set being generate. Latin hy-

percube sampling will be discussed in greater detail in the design of experiments section of

this document when the selection of sampling points to build surrogates is discussed.

2.2 Reliability-Based Design Optimization

In traditional optimization, the design variables as well as all other information provided in

the problem specification have no randomness, leading to a deterministic optimum. How-

ever, the attributes for a physical system will always have a degree of uncertainty. Deter-

ministic design solutions will require compensation to reduce risk of failure during system

operation, generally in the form of a safety factor or some other form of conservative op-

timum shift. If left unchanged, the optimal deterministic designs for symmetrically dis-

tributed uncertainties will generally have a reliability of nearly 50% since variations in

system output will cause approximately half of the performance measures to violate their

constraints.

In reliability based design optimization (RBDO), probabilistic constraints are applied to

ensure a specified reliability against failure for each performance constraint. The reliability

for each constraint must be assessed after design changes occur in an optimization loop.

Over the past decade, many formulations have appeared in the literature for performing

optimization and reliability assessment simultaneously. The following subsections are de-

voted to describing the formulations which are most applicable to the methodology which

will be proposed later in this document.
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2.2.1 Nested RBDO

The general problem formation for RBDO using a forward reliability assessment consider-

ing only probabilistic constraints can be defined as

find {d, µX}

minimize f (d,X, P )

subject to βj ≥ βt
j j = 1, 2, ..., npc

(2.16)

where f (·) is the objective response, βj is the reliability index for the ith probabilistic

constraint, βt
j is the reliability index target for the jth probabilistic constraint, d is a vector

of the deterministic design variables, X is a vector of the random design variables, and P

is a vector of the random parameters. Here, a vector of deterministic design variable values

and mean values for the random design variables are sought, represented by {d, µX} and

henceforth refereed to as the design set. The random parameters P have fixed mean values

and therefore only introduce uncertainty into the system. The evaluation of each design

set involves a reliability assessment for each probabilistic constraint. This is most easily

implemented as a nested loop operation where RIA is used in the inner loop to determine

the probability of success for each probabilistic constraint for the current design set given

the associated system uncertainty. This inner process described by

find u∗j

minimize ‖u‖

subject to gj
(
{d, xrs}

)
≤ 0

for which xrs = T−1
(
u, {X,P}

)
(2.17)
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where gj (·) is the limit state response for the jth probabilistic constraint, u is a vector of ll

random variables and parameters transformed to standard normal space, xrs is the random

set outcome in physical space corresponding to u, and u∗j is the forward MPP for the jth

probabilistic constraint. The reliability index associated with the forward MPP defined as

βj =
∥∥∥u∗j∥∥∥ (2.18)

for the jth probabilistic constraint. The probability of limit state feasibility is equal to the

probability associated with the resulting reliability index shown mathematically as

Φ
(
βj
)

= P
(
gj
(
{d, x∗rs})

)
≥ 0
)

(2.19)

for the current design set vector under evaluation in the outer optimization loop, where

x∗j,rs is the physical space forward MPP for the jth probabilistic constraint. Again, the

convention used is that in which the feasible region for each probabilistic constraint is

defined by a positive limit state response.

An alternative formulation for double loop RBDO using an inverse reliability assessment

can be defined as

find {d, µX}

minimize f (d,X, P )

subject to gj

(
d, x∗j,inv,rs

)
≥ 0 j = 1, 2, ..., npc

for which x∗j,inv,rs = T−1
(
u∗j,inv, {X,P}

)
(2.20)

where gj
(
d, x∗j,inv,rs

)
is the minimum limit state response for the current design under

evaluation which corresponds to the target reliability index and x∗j,inv,rs is the physical
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space inverse MPP corresponding to u∗j,inv, the standard normal space MPP for the jth

probabilistic constraint. A PMA inverse reliability assessment is undergone within the

inner loop after each design change for this formulation. This procedure is expressed as

find u∗j,inv

minimize gj (d, u)

subject to ‖u‖ = βt
j

(2.21)

for determination of the inverse MPP for each probabilistic constraint. RBDO with PMA

is often considered more robust than RIA due to the relative simplicity of searching for the

inverse MPP given the spherical location constraint in inverse reliability assessment versus

searching for the MPP for a negative or zero limit state condition in forward reliability

assessment. However, there are situations where RIA is more computationally efficient,

such as when the probabilistic constraints are being violated as discussed in [36]. PMA

holds the advantage when the constraints are not active.

2.2.2 Decoupled RBDO

Applying the double loop methods for RBDO may involve many iterations of the outer loop

which must perform numerous reliability assessments for design sets which are far from

feasible, driving the cost of such analysis unreasonably high. Considerable computational

cost savings can be achieved by formulating the nested probabilistic optimization problem

as a series of decoupled deterministic optimization and reliability assessment operations.

In decoupled RBDO formulations such as the Sequential Optimization and Reliability As-

sessment (SORA) method intruduced by Du (2004) [13], a shifting vector is applied to

the random set for the purpose of moving infeasible constraint boundaries into the feasi-

ble region. This shifting vector is selected by computing the inverse MPP for the most
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recent design set from the deterministic optimization step with inverse reliability analy-

sis. In SORA, the formulation for one cycle of deterministic optimization, equivalent to

probabilistic optimization, is expressed as

find {dk, µk
X}

minimize f (d,X, P )

subject to gj

(
d, µX − s(k−1)j , x∗

(k−1)

j,inv,P

)
≥ 0 j = 1, ..., npc

(2.22)

where s(k−1)i is the shifting vector computed in the previous cycle associated with the jth

constraint, x∗(k−1)

j,inv,P is the physical space inverse MPP computed in the previous cycle with

respect to only the random parameter portion of the random set associated with the jth

constraint, and k is the current SORA iteration. The shifting is vector computed using

s
(k−1)
j = µ

(k−1)
X − x∗(k−1)

j,inv,X (2.23)

where µ(k−1)
X is a vector containing the mean values for the random design variables found

by the optimizer in the previous cycle and x∗(k−1)

j,inv,X is the physical space inverse MPP com-

puted in the previous cycle with respect to only the random design variable portion of the

random set. Here, one cycle of SORA contains the deterministic optimization to solve for

the most optimum design set given the most recently computed shifting vector shown in

equation 2.22 followed by inverse reliability analysis shown in equation 2.21 using the de-

sign set which was just determined to update the shifting vector for use in the next cycle.

The mean values associated with the initial random set are used in place of the inverse MPP

in the first iteration of SORA for both the deterministic optimization and computation of

the shifting vector. The termination criteria for SORA is the convergence of the design set

which is tested following each deterministic optimization operation during and after the

second iteration.
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The cost savings in decoupled RBDO is mostly due to the avoidance of many reliability

assessment operations with only one of these being performed for each deterministic opti-

mization. The cost savings in doing so are very significant when compared to double loop

formulations as suggested by comparison studies presented in [2].

2.3 Surrogate-Based Optimization

The general process for surrogate based optimization involves the strategic selection of

training points, building of a surrogate with quantification of prediction uncertainty, and

the section of a supplemental sample in an area of interest in the design domain. This

section provides an overview of popular methods to achieve these steps.

2.3.1 Design of Experiments

Surrogate based analysis requires a finite set of sample responses to be evaluated from the

truth model for which to build the approximation model upon. The number of samples eval-

uated and their locations in design space necessary for adequate response approximation is

problem dependent and generally unknown. The Design of Experiments (DOE) stage of

surrogate based analysis is concerned with determining the best possible initial sampling

plan given the number of degrees of freedom and the range of each degree which is under

investigation. Without prior information about the system response, which is the assump-

tion in the work presented here, the best sampling plan is often considered to be one which

is optimally filling of the design space. This is important for two reasons, firstly, when

using samples whose locations are equally distributed throughout the problem domain, it

can be assumed the greatest possible amount of features from the truth model have been
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captured, and secondly, it avoids local regions within the problem domain which have a

high sampling density providing redundant information and possibly opening the door for

surrogate model building problems down the road depending on the surrogate type selected.

Latin Hypercube Sampling (LHS) is a popular method for determining an initial sampling

plan for surrogate modeling. It achieves domain stratification by dividing the range for

each degree of freedom into sections with the number of intervals equal to the number

of samples required. For the two dimensional case, where the intervals can be visualized

as a grid of cells, a point would be chosen at random from each cell of a Latin Square

which is determined by selecting exactly one cell in each row and column. A sample plan

formed using this method guarantees the domain of each individual degree of freedom be

fully represented, however the design space as a whole may not be optimally space filled.

For instance, a group of cells formed by taking those which occupy the diagonal of our

grid technically comprises a Latin square. Many extensions to LHS have been proposed to

avoid poorly filling sample plans such as random orthogonal arrays [30], cascading Latin

hypercubes [18], and optimal Latin hypercubes [16].

To determine the relative optimality with respect to space-fillingness for one sample plan

versus another, criteria to measure this property must be derived. Firstly, the distance

between any two points in space can be expressed by

ρp

(
x(i1), x(i2)

)
=

ndof∑
j=1

∣∣∣x(i1)j − x(i2)j

∣∣∣p
 1

p

(2.24)

where ρp is the distance measure of the pth order between two points in space represented

by x(i1) and x(i2) and ndof is the number of dimensions associated with each point. Here,

p ≥ 1 with p = 1 representing rectangular distance and p = 2 representing Euclidean

distance. A sample plan which exhibits decent space-filling properties will contain points

which are spread out, representing the entire design domain while having no two points
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located too close together. An optimization formulation for determining a sample plan

with this property to the highest degree can be formulated as

find Dsf

maximize minxi∈D

[
ρp

(
x(i1), x(i2)

)] (2.25)

where Dsf is the optimal space filling design, referred to as the maxmin design, which

maximizes the minimum distance between any two points in a trial Latin hypercube design,

specified here as D. This criteria as well as other more sophisticated definitions required

for thorough algorithm design are are discussed by Morris (1995) [29]. This search can

be carried out in a number of ways, such as randomly creating a predetermined number

of LHS designs and selecting the one which has the best properties according to equation

2.25. However, a superior approach to meet this end may be through the use of an evolu-

tionary strategy as suggested by Forrester (2008) [16]. Applying an evolutionary strategy

to this problem involves randomly mutating a promising sampling plan to varying degrees

over a series generations while selecting the best resulting designs for further mutation. Al-

gorithms of this type can have self adapting rates of mutation or linearly declining mutation

rates in order to converge to a best design. The mutation operation for guaranteeing that

each trial design maintains its Latin hypercube properties generally involves the random

swapping of dimension values across different points in the sample plan.

The notation to describe the sampling plan with associated responses is as follows. A single

point within the design space is described by

x =

{
x1 x2 . . . xndof

}
(2.26)

where ndof is the dimensionality of the sampling space. The sampling plan resulting from
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the optimal Latin hypercube procedure is described by

Dsf =



x(1)

x(2)

...

x(nts)


(2.27)

where nts is the number of samples specified to be selected. The truth model response

vector at these locations are arranged as

Y =



y
(
x(1)
)

y
(
x(2)
)

...

y
(
x(nts)

)


(2.28)

where y is the truth response function.

2.3.2 Gaussian Process Modeling

Though many options are available for approximating a truth model using set of sampled

responses, Kriging has become an especially popular surrogate modeling method which is

a special case of a Gaussian process model. This method is selected by many due to its

ability to both capture nonlinear truth model behavior and provide statistical information

regarding the approximation. Another advantage is the fact that Kriging is an interpolation

approximation with a zero mean squared error at training point locations.

In Kriging, the predicted response at a point is formulated as the sum of a mean regression

baseline value and a stochastic “error” term which specifies the deviation of the approxi-
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mated value from the baseline mean. These errors are assumed to be continuous and corre-

lated with respect to the weighted distance between sample point locations. This weighted

distance between two points is described by

dw

(
x(i), x(j)

)
=

ndof∑
h=0

θh

∣∣∣x(i)h − x
(j)
h

∣∣∣ph (
θh ≥ 0, ph ∈ [1, 2]

)
(2.29)

where θh and ph can be thought of as the activeness and function smoothness, respectively,

for the hth design space dimension [21]. By using the weighted distances between all pairs

of points, a matrix Rs containing the corresponding correlations for these point pairs based

on the observed data can be formed. Each element of the matrix is defined by

corr
[
Ed
(
x(i)
)
, Ed
(
x(j)
)]

= exp
[
−dw

(
x(i), x(j)

)]
(2.30)

so that

Rs =


corr

[
Ed
(
x(1)
)
, Ed
(
x(1)
)]

. . . corr
[
Ed
(
x(1)
)
, Ed
(
x(n)
)]

... . . . ...

corr
[
Ed
(
x(n)
)
, Ed
(
x(1)
)]

. . . corr
[
Ed
(
x(n)
)
, Ed
(
x(n)
)]
 (2.31)

where Ed (x) is the approximation stochastic error at x.

The values θ and p for each design space dimension are selected to maximize the likelihood

of the sample which is described by

L
(
µ, σ2

)
=

1

(2π)
n
2 (2σ2)

n
2 |Rs|

1
2

exp

[
−(Y − 1µ)′R−1s (Y − 1µ)

2σ2

]
(2.32)
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where

µ =
1′R−1s Y

1′R−1s 1
(2.33)

and

σ2 =
(Y − 1µ)′R−1s (Y − 1µ)

n
(2.34)

with 1 being an n-vector of ones. Once all the optimal values for θ and p have been found,

a predicted value at point x is formulated as

ŷ (x) = µ+R′pR
−1
s (Y − 1µ) (2.35)

where Rp is the vector containing the correlations between all sample and prediction point

locations, described by

Rp =



corr
[
Ed (x) , Ed

(
x(1)
)]

corr
[
Ed (x) , Ed

(
x(2)
)]

...

corr
[
Ed (x) , Ed

(
x(n)
)]


. (2.36)

The overhead of building a Kriging model is normal subject to the dimensionality of the

approximation and the method used to select the optimal hyper parameters θ and p. Many

optimization algorithms have been used for the optimization of these parameters for maxi-

mization of equation 2.32. Since the maximum likelihood surface is generally multimodal

with noncontinuous gradients, a global optimization technique is normally applied.
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2.3.3 Surrogate Prediction Error

The quality of a surrogate model with respect to how well it represents the truth model, said

to be the prediction error, can be calculated using multiple methods. Two popular measures

of this error are the root mean squared error (RMSE) and the correlation coefficient (r2).

The formulation for computing the RMSE is

RMSE =

√√√√√ n∑
i=0

(
y(i) − ŷ(i)

)2
nts

(2.37)

where y and ŷ are the truth and surrogate model responses, respectively, for the ith location

in the design space among the nts samples. The formulation for r2 is

r2 =

(
σ (y, ŷ)

σyσŷ

)2

(2.38)

where σ (y, ŷ) is the covariance between the truth and surrogate model responses, σy is the

standard deviation of the truth model responses, and σŶ is the standard deviation of the

surrogate model responses. While it is desirable to obtain a model with the lowest RMSE

and r2 as close to 1.0 as possible, in practice, a RMSE value less than 10% of the range of

model responses and a r2 value of greater than 0.8 is normally associated with an approxi-

mation which has reasonable predictive capabilities [16]. To be used with interpolation ap-

proximations such as Kriging, it is necessary to withhold a certain number of sample points

from the approximation training data to use for testing since the approximated responses at

the training data points match the true responses exactly. Calculating the RMSE and r2

using responses from the surrogate and truth models which were used to train the surrogate

will yield values of 0.0 and 1.0, respectively, which does not provide useful information

regarding the accuracy of the interpolated regions between sampled points. Saving sample
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points for calculating this type of prediction error is often considered a luxury which cannot

be afforded when using data from an expensive computational model.

Another widely used method for calculating the prediction error of an approximation model

is cross validation. In a cross validation procedure, the sampled points are randomly divided

into q equally sized testing subsets [20]. The truth responses for each subset are then

compared against the responses from a surrogate model generated from the combined data

in the remaining q−1 subsets. The result is n response differences which can be associated

with each corresponding sample point. The prediction error is expressed as the average of

these differences by

Ecv =
1

n

n∑
i=0

[
y(i) − ŷ(i) (Xt)

]
(2.39)

with

Xt = {x | x ∈ X ∧ x /∈ Xq} (2.40)

where X , Xq, and Xt are sets of sample points containing the total samples set, current

cross validation subset which contains the ith group of sample points, and current surrogate

training set. The prediction error calculated by cross validation can be bias in regards to

the selection of q. If q = n, the procedure is referred to as leave one out cross validation.

Using this variant of cross validation can largely eliminate the bias related to specifying an

alternative q value, but does increase the computational demands since n surrogates must

be trained. However, the cost of creating the surrogate model is often considered negligible

when compared to the expensive computational model.

Also obtainable during cross validation are two quantities which attempt to describe the

amount of local variation in the model, and thereby the prediction error [20]. These are

the percent residual error and standardized residual error. The percent residual error is the
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more simple of the two to quantify and described by

Epe =

∣∣∣∣∣y(i) − ŷ(i) (Xt)

y(i) + α

∣∣∣∣∣× 100 (2.41)

where α is a small number. The standardized residual is described by

Esr =
y(i) − ŷ(i) (Xt)

s(i) (Xt)
(2.42)

where s(i) is the square root of the mean square error from Kriging at the point left out of

the training set. The mean square error in terms of the Kriging variance and correlation

matrices is

s2 (x) = σ2
[
1−R′pR−1s Rp

]
(2.43)

for a point x at any location within the approximation domain. Having these values at every

sample point provides a means to compare the prediction variation and hopefully determine

a location where the model could use improvement if the prediction error is found to be too

large either globally or locally.

2.3.4 Expected Improvement Infilling

To globally optimize on a surrogate, an infilling criterion must be selected. Infill points,

locations selected to be evaluation by the expensive truth model, are selected based on

the potential gain of useful knowledge at points of particular interest and generally driven

by two mechanisms - exploration and exploitation of the surrogate. Exploration of the

surrogate is concerned with adding information to the surrogate building process for the

improvement of prediction accuracy. Sequentially selecting infill points at the location

of the maximum prediction variance would be an example of pure surrogate exploration.
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Exploitation of the surrogate is concerned with searching for a location which provides the

most optimal point. Sequentially selecting infill points at the location of the current best

solution would be an example of pure surrogate exploitation.

A balanced goal seeking criterion to achieve both exploration and exploitation simulta-

neously is an attractive criterion attribute the for selecting infill point locations. One such

method from the Efficient Global Optimization (EGO) algorithm proposed by Jones (1998)

[21] is the Expected Improvement function. The expected improvement criterion is a func-

tion of both the uncertainty of a prediction and current best solution. This quantity is

expressed as

E
[
I (x)

]
= (fmin − ŷ) Φ

(
fmin − ŷ

s

)
+ sφ

(
fmin − ŷ

s

)
(2.44)

for global minimization where fmin is the most optimal training sample response, ŷ is the

surrogate predicted response at x, s is the standard error of the predicted response, Φ (·)

is the standard normal cumulative distribution function, and φ (·) is the standard normal

probability distribution function. Equation 2.44 provides a measure of the how much the

objective value at x is expected to be less than the current best solution predicted response.

For each iteration of EGO, multiple steps are taken as shown in figure 2.1. After initial

sampling of the design domain and a a Kriging model trained, a global minimization upon

the predicted response surface is be performed. The algorithm termination criterion is a

predefined ratio between the current best surrogate response and the expected improve-

ment value. As suggested by Jones (1998) [21], algorithm termination occurs when the

maximum expected improvement value is greater than one percent of the current best so-

lution. If this condition is not met, one additional training sample is added to the surrogate

building set at the location of the maximum expected improvement.
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Construct Surrogate

Initial Sample Plan

Global Minimization: Y0x.

Global Maximization: E[I0x.]

Evaluate Truth Model at Location of
max0E[I].F Add to Training Set

max0E[I]. > 0.011min0Y.

Solution Found at Location of min0Y.

Yes

No

Figure 2.1: Expected Improvement Optimization Process Flowchart

A one degree of freedom optimization problem is solved using expected improvement to

illustrate this process. The closed form truth model for this problem is expressed by

f (x) =
x2 + 10 sin (x)

50
∈ [−10, 10] . (2.45)

This example, like all optimization demonstrations presented in this work, has been scaled

between [1, 0] for the range shown in equation 2.45. Figure 2.2 describes the true behavior
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of the problem which will be minimized globally with indication of the true solution.
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Figure 2.2: 1D Global Optimization Example Truth Behavior

Expected Improvement is shown to solve this problem using three infill samples for an

initial Gaussian process trained using six truth samples. The algorithm progress is shown

in figures 2.3 through 2.6. These progress figures indicate the largest expected improvement

value was observed in iteration two, and after the selection of two additional infill samples,

fell below the threshold value. The final solution, shown in figure 2.6a, determined by

expected improvement for this problem agrees with the true solution with negligible error.
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Figure 2.3: 1D Expected Improvement Iteration 1
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Figure 2.4: 1D Expected Improvement Iteration 2
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Figure 2.5: 1D Expected Improvement Iteration 3
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Local Surrogate SORA

Among the first actions taken leading to the development of the proposed methodology

was an implementation of SORA which uses local validated surrogates for all analysis re-

sponses, referred to as Local Surrogate SORA. The core features of this tool were selected

based on deliverables specified by research funding party, Caterpillar Inc. Such requests in-

cluded the usage of preferred analysis tool, Dakota (Design Analysis Kit for Optimization

and Terascale Applications), which is developed and maintained by Sandia National Lab-

oratories. Operations handled by Dakota include design of experiments, surrogate model

generation, constrained optimization, and inverse MPP searches. These operations utiliz-

ing Dakota, necessary for the driving of the local surrogate SORA algorithm, are prepared,

invoked, and post processed using a framework developed in Python. Each constrained

optimization and inverse MPP search is performed upon surrogate surfaces validated using

cross validated and updated when necessary in the vicinity of the highest cross validation

error.

3.1 Analysis Features

Among being a surrogate driven version of SORA utilizing Dakota, there are several no-

table features included in the local surrogate SORA tool for performing RBDO, some of
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which are described in the following sections.

3.1.1 Input File Specification

For the problem definition of an RBDO procedure, information such as variable and pa-

rameter uncertainty as well as objective and limit state evaluation must be defined. Further-

more, for local surrogate based analysis, information such as sampling criteria, acceptable

prediction error, and surrogate training method must also be supplied. For initialization of

such information in local surrogate SORA, an input file parsing module was implemented

supporting a clear method for all input arguments. In total, seven groupings of input spec-

ification, each identifiable by keyword headers, were created to fully define the surrogate

based RBDO procedure. Upon program invocation from a terminal, this input file is passed

as the only input argument. In addition to accepting program input from the previously

described input file, both a python dictionary and “pickled” python object can be used for

this purpose. An example of an input file is presented at the end of this chapter before

demonstrating local surrogate SORA.

The first input header, simulation, identifies the grouping for general process input

specification. Here, the simulation name, output verbosity level, maximum iterations, and

design convergence tolerance is specified using secondary keywords. Since the results

from local surrogate SORA can be incrementally appended to a file while within a com-

plex subroutine call stack, a certain amount of output stream syncing must take place but

can significantly reduce the speed of the overall process. Therefore an additional input ar-

gument is specified for the turning off of output file syncing with all results being presented

upon process termination.

The second through fourth input headers, deterministic_design, random_design,

and random_parameter define each class of system variable and parameter. Secondary
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keywords common between all these groups exist for specifying the number of, and de-

scriptors for, the corresponding variables or parameters. Unique to the design class group-

ings are a means of entering the starting point and side constraints for each variable. Unique

to the random class groupings are means of entering the distribution type along with the

mean and standard deviation for each random variable or parameter.

The fifth header, responses exists for the entering the simulation evaluation informa-

tion. This includes the overall number of responses implemented and defined in the RBDO

formulation, the truth module which contains the callable evaluation functions, and the re-

liability requirements for each limit state function. Here, descriptive identifiers can also be

entered for differentiation between responses in the process output file.

The sixth header specifies the analysis methods within Dakota to be used for the process

operations with keyword dakota_methods. Algorithms for four types of analyses must

be specified, all of which must be included in Dakota. These analyses include the methods

for the initial design of computer experiments, surrogate model type, constrained deter-

ministic optimization, and MPP search. The text representation for each Dakota algorithm

must appear as it would in the Dakota input file itself.

The seventh and final header keyword, surrogate, is used to specify information related

to surrogate region validation. The initial search region size of the surrogate and the num-

ber of initial samples used to construct surrogates for each operation are entered in this

grouping. Since three different surrogate based operations can take place in local surrogate

SORA, different initial sample counts for optimization, inverse MPP searches, and relia-

bility assessment can be assigned. Also contained in this grouping is the acceptable cross

validation error threshold for surrogate based analysis.
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3.1.2 Utilization of Dakota

As previously stated, design of experiments, surrogate training, optimization, and MPP

searching is outsourced to Dakota in local surrogate SORA. A wide variety of methods for

each of these procedures is available in Dakota, most of which can be utilized using the file

input described above. Most heavily tested algorithms include the gradient based methods

for optimization and inverse reliability assessment. For a complete description of all the

algorithms in Dakota, the reader is referred to the Dakota users manual [1]. It was found

that under most circumstances for most optimization algorithms, the optimal results were

located with the expected performance characteristics per algorithm. However, in support-

ing the use of numerous routines, it was observed that expecting successful termination

from all requested algorithms, and thereby ignoring search failures, would not provide a

robust software package. Most observed failures of Dakota algorithms were due to conver-

gence criteria not being met prior to exceeding the maximum amount of iterations. Even

with the most thoughtful convergence and maximum iteration specifications, it was clear

a static setting would not work 100% of the time for the many runs necessary for one lo-

cal surrogate SORA procedure. Therefore, one exhaustive algorithm for both constrained

optimization and inverse MPP searches were implemented in local surrogate SORA to be

executed when an algorithm failure was detected in the Dakota results. With this addition

to local surrogate SORA, the software as a whole becomes much more reliable regarding

solutions found.

3.1.3 Local Validated Surrogates

A major feature of local surrogate SORA is the usage of local regions for all optimization

and MPP searches, similar to a trust region method for optimization. The location, size,

and sampling density of subsequent regions is based on movement of the optimal point and
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number of samples required for surrogate validation. To ensure the generation of a local

surrogate with prescribed accuracy, a surrogate validation procedure was included in the

tool.

The initial size of the approximated region for an analysis procedure is based on a specified

percent of the total design or uncertain space. Each regional surface is optimized upon with

the requested Dakota analysis method, and when the optimal solution is located at a region

bound, the next region is reconstructed centered at the current most optimal point. The next

reconstructed region size is governed by the distance between the previous and current best

solution point, each of which must have occurred at a bound or been the starting point.

The range for each dimension within a region is equal to twice the point movement in the

corresponding direction. The interval, half the range of the next region, is expressed as

L
(k+1)
i,int =

∣∣∣x∗(k−1)

i − x∗(k)i

∣∣∣ (3.1)

with the lower and upper bounds for the next local region expressed respectively as

L
(k+1)
i,lb = x∗

(k)

i − L(k+1)
i,int (3.2)

and

L
(k+1)
i,ub = x∗

(k)

i + L
(k+1)
i,int (3.3)

where x∗(k−1)

i is the previous optimum point and x∗
(k)

i is the current optimum point for

the ith dimension. Given this, it can be seen the size of the next region compared to the

current region cannot increase in size. At most, it can retain the same size, but only if the

current optimum point is located in a corner of the region. If the optimum point is located

at one dimensional bound, the interval for the next region will be largest in that particular

direction, but the interval will decrease with respect to all other dimensions.
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The initial number of truth model samples used for training each surrogate region is dictated

by a sampling factor. Using this approach, the goal is to anticipate the number of samples

required for a validated surrogate given the size of a new region. The sampling factor

is computed as the ratio between the number of samples and the region size. Since new

regions are very near previous ones, here the assumption is a similar number of samples

per design space volume is required to approximate the surface with the same level of

required accuracy.

Validation of each local surrogate is performed using leave one out cross validation. Since

a residual amount is computed at each truth model observation, an average prediction error

can be computed for the local region or the maximum of these residuals can be used an

uncertainty measure. If the maximum residual exceeds the specified error threshold, a two

step iterative process is undergone to locate supplemental samples. Starting with the initial

design obtained by optimal Latin hypercube sampling, supplemental points are added to

the surrogate training points until the bounds for standardized residual suggested by Jones

1998 [21] are satisfied as well as a threshold percent error.

The first step after initial sampling is to determine if supplemental samples are required

to improve the standardized residual values. If the maximum value within the set of stan-

dardized residuals is outside of [-3.0,3.0], then at least one supplemental point is required.

Let the point corresponding to the highest standardized residual be xE,max. The nearest

3k points to xE,max are located using a sorted in ascending order vector containing the

euclidean distance from each sample point to xE,max described by

de = sort

([∥∥∥xE,max − x(1)
∥∥∥ ,∥∥∥xE,max − x(2)

∥∥∥ , . . . ,∥∥∥xE,max − x(n)
∥∥∥]) (3.4)

The first 3k points are extracted from de and defined as the vicinity points, Xv.

To avoid the risk of inadvertently selecting a supplemental point near an already existing
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sample, the angles between all the possible pairs of vectors formed by xE,max to each point

in Xv are compared. The list of vicinity vectors is described by

Vv =
[
X(1)

v − xE,max, X(2)
v − xE,max, . . . , X(3k)

v − xE,max
]

(3.5)

with the angles for every pair of vicinity vectors is described by

γi,j =

arccos

 V
(i)
v∥∥∥V (i)
v

∥∥∥ · V
(j)
v∥∥∥V (j)
v

∥∥∥

 . (3.6)

The magnitudes of each vector for any pair of vectors whose angle is less than a specified

amount, γmin, is compared with the vicinity point with the larger magnitude being removed

from the vicinity list. Generally, γmin = 30◦ is used. All remaining points are referred to

as the reduced vicinity points, Xrv. The point in Xrv which corresponds with the highest

standardized residual in that subgroup is selected as xE,max
rv . The supplemental point is

selected as the midpoint between xE,max and xE,max
rv as

xsp =
xE,max + xE,max

rv

2
. (3.7)

Supplemental points are repeatedly added until all standardized residuals are within the

bounds [-3.0,3.0]. The process is then repeated once more to decrease the maximum per-

cent error which correspond with the sample points by setting xE,max and xE,max
rv to the

points which contains the largest amount of percent error rather than standardized residual.

The supplemental sampling procedure is terminated only after the largest cross validation

percent error is below the specified threshold after the standardized residual bounds have

already be satisfied in the first step.
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3.2 Implementation

The local surrogate SORA tool was implemented in Python taking full advantage of the

object oriented programming paradigm. This section is devoted to providing an overview

of the major operations from a development standpoint which make the above features

possible. A class hierarchy was designed, utilizing inheritance in appropriate situations to

avoid redundant properties and functionality in multiple class definitions.

3.2.1 SORA Process

The highest level procedure taking place in local surrogate SORA is the SORA process

itself which invokes all sub-processes. A flowchart showing program flow of the general

SORA algorithm is shown in figure 3.1. This main procedure is defined within its own class

where all lower level procedures belong to sub-classes which are attributes of the SORA

process. It can be seen from figure 3.1 that two sub-processes, optimization and inverse

reliability assessment, are referred to as ‘core operations’. Classes defining actions taken

during these sub-processes of SORA inherit base attributes from a core operation class.

Defining characteristics of a core operation are the usage of a local validated surrogate and

call of a Dakota algorithm for optimization solutions. It should be noted that one core oper-

ation may include multiple local region optimization calls before locating a solution which

does not occur at one or more region bounds. The first core operation for deterministic

optimization determines the new optimal design given the current shifting vector, provid-

ing information to check algorithm termination criteria. The second core operation, inverse

MPP search, provides information for the updating of the shifting vector if the design has

not yet converged.
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Initialize SORA Parameters

SORA Input

Update Shift Vector

Perform Core Operation: Optimization

Perform Core Operation: Inverse Reliability Assessment

Design Convergence?

Solution Design

Yes

No

K = K + 1

Figure 3.1: SORA Process Flowchart

3.2.2 Core Operation

The second highest level procedures are each of the core operation objects which reside on

the SORA process object. The goal of a core operation is to find a search point with cer-

tain characteristics within a locally defined surrogate region. As mentioned in the previous

section, classes which implement specialized search routines for both general constrained
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optimization and inverse MPP searches exist which inherit the overall optimization process

common in both procedures from the core operation class. This overall procedure is de-

scribed in figure 3.2. The core operation is responsible for defining the current local region

and updating it after each local point search until the overall solution is identified as well

as acting as invoking the generation of the validated surrogate building process as well as

the Dakota processes.

Set Initial Search Region Bounds

Core Operation Input

Generate Region Surrogate Model

Run Dakota Simulation to Locate Region Search Point

Set New Region Bounds

Bound Occurance?

Search Point

Yes

No

Figure 3.2: Core Operation Flowchart
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3.2.3 Surrogate Building

The process for the building of a validated surrogate within a specified region is described

in figure 3.3. The class defining functionality for this process can be considered a third

highest level optimization since the resulting objects reside upon a core operation object.

For this process, since part of the current region may overlap previous regions, all reusable

samples are identified and combined with samples from a Dakota LHS for which the num-

ber of samples is defined by the sampling factor. With this initial sampling, the resulting

surrogates in the cross validation procedure are generated by Dakota with the supplemental

sampling procedure invoked when required.
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Determine Predicted Number of Samples

Region Location & Sample Factor

Perform DOE for New Samples

Determine Surrogate Prediction Error

Add Supplemental Sample to Surrogate Training Points

Error Beyond Threshold?

Validated Local Surrogate

Yes

No

Figure 3.3: Surrogate Builder Flowchart

3.2.4 Dakota Operation

The lowest level, though arguably the most complex procedure included in local surrogate

SORA is the Dakota operation class for which the process is described in figure 3.4. This

class is also home to two sub-classes, the Dakota input generator and Dakota output parser.

Since all input defining a Dakota simulation is text based within an input file, they must
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be generated dynamically on the fly for every operation which may be required including

optimization, MPP searches, design of experiments, truth model parameter studies, and

surrogate model parameter studies. Here, the general process is to create the input file for

the requested analysis, invoke Dakota using the input file from the command line - piping

the results to an output file, and finally parsing the output file for the results required to

continue driving local surrogate SORA.

Set Dakota Input Generator Specifications

Dakota Operation Input

Generate Dakota Input File for Operation

Run Dakota Simulation

Parse Dakota Output

Dakota Result

Set Dakota Output Parser Specifications

Figure 3.4: Dakota Operation Flowchart

Performing optimization using surrogate responses generated with a known set of truth

samples turned out to be a non-trivial task while using Dakota. It was necessary to nest

a surrogate parameter study as the analysis driving response function inside of the Dakota

optimization routine. This leads to multiple Dakota simulations running simultaneously,
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with one waiting for output from another to continue. Due to the complexity required

to achieve the described overall process, it is clear the Dakota developers did not intend

for their software to essentially be used as a callable library to drive an outside analysis.

Dakota includes optimization under uncertainty algorithms which can easily be configured

but has yet to include an implementation of SORA. Nevertheless, this software develop-

ment project provided knowledge and motivation to be applied in developing the main

contribution of this thesis, proposed in the next chapter.

Although the described procedure was functionally sound, this method used for surrogate

validation was not optimal for the searching of inverse MPPs for use with decoupled RBDO

formulations which apply a shifting vector to the deterministic constraints. This is due

to the importance of the spacial location of the MPP rather than the limit state response

associated with it. Since the sifting vector is computed using the difference between the

mean values of the random design variables for the current design and the corresponding

inverse MPP dimensions, an inaccurate MPP location will lead to an inaccurate shifting

vector causing an unnecessary large number of SORA iterations. The accuracy of the

predicted limit state response had been verified within acceptable parameters, but this was

not the case for its location accuracy in random space.

3.3 Demonstration

This section is devoted to offering an application example of local surrogate SORA. The

focus of this demonstration will be concerned with the usage of local regions with the

optimization step in SORA.
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3.3.1 Cantilever Example

A closed form cantilever example is used to demonstrate local surrogate SORA. This popu-

lar benchmark example contains one object for the minimization of structure weight while

upholding reliability requirements against two failure modes involving stress and deflection

due to two tip loading conditions. A figure describing the system is shown in figure 3.5.

Figure 3.5: Cantilever with Loading

Two deterministic design parameters are defined for the system, the width and thickness of

the beam. The objective response for the system under minimization is expressed by

f = wt (3.8)

where w is the width of the beam and t is the thickness of the beam. Four random pa-

rameters are also defined, the yield strength and elastic modulus of the beam as well as

horizontal and vertical tip loads. This particular problem does not include any random

design variables. The stress limit state is expressed by

gs =
stress

R
− 1 (3.9)

where

stress =

(
600

wt2

)
Y +

(
600

w2t

)
X (3.10)

for which Y is the transverse tip load with distribution parameters N (1000, 100), X is the
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axial tip load with distribution parameters N (500, 100), and R is the yield strength with

distribution parameters N (40000, 2000). The deflection limit stat is expressed by

gd =
displacement

D0

− 1 (3.11)

where

displacement =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

(3.12)

for which L is the length of the beam, E is the elasticity with distribution parameters

N (2.9E + 7, 1.45E + 6), and D0 is the allowable tip displacement, set to D0 = 2.2535.

Here, the modeling of normally distributed values is N (µ, σ).

The input file for solving this problem using local surrogate SORA is shown in figure

3.6. Here, it can be seen that the starting location and side constraints for each design

variable is set to 2.5 and between 1.0 and 9.0, respectively. The convergence tolerance

used for termination of the SORA process is 0.01, which corresponds to the magnitude of

the vector representing design point movement from one design to the next. The reliability

constraints, entered next to the keyword betas, for each limit state defined in the truth

driver is set to 3.0, corresponding to a 99.87% probability of success. The initial sample

plan used to generate all surrogates is determined by Latin hypercube sampling, as denoted

next to the keyword dace doe_methods. All surrogates used are Gaussian process

models. Under the surrogate_methods header, it can be seen that the initial local

surrogate size has been set to ten percent of the total design space and the number of

samples selected to approximate the objective response is 20 while the number of samples

selected to approximate the limit state responses is 40. Also specified in this section is

the acceptable average percent error for each surrogate built, set to one percent for this

example.
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cantileverRbdoInput.txt

simulation
name cantileverRbdo
output verbose
output_synced on
max_iterations 12
conv_tolerance 1e-3

deterministic_design
count 2
initial 2.5 2.5
lower_bounds 1.0 1.0
upper_bounds 9.0 9.0
descriptors w t

random_parameter
normal

count 4
means 4.0E+4 2.9E+7 500.0 1000.0
stdevs 2000.0 1.45E+6 100.0 100.0
descriptors R E X Y

responses
count 3
betas 0.0 3.0 3.0
truth_module cantilever
descriptors crossArea_obj stress_ls deflection_ls

dakota_methods
dace_doe lhs
global_approx_model gaussian_process dakota
optimization optpp_q_newton
mpp_search no_approx

surrogate
initial_space_percent 10
initial_opt_samples 20
initial_ims_samples 40
initial_ras_samples 40
error_percent 1.0

Figure 3.6: Local Surrogate SORA Input File for Cantilever Example

Table 3.1 shows the iterative history of the local surrogate SORA process in solving the

cantilever example. Here, it can be seen the width and thickness variables for the cantilever

beam converged after six iterations. It is notable however, that the reliability indexes exceed
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the specified target amount. This is likely due to the inaccuracies within the constraint

response surrogate models even after the cross validation based infilling process. Even a

model which tends to generalize well, may provide inverse most probable points which are

relatively accurate, but not accurate enough the proper convergence of SORA. The main

contribution of this work in the next chapter aims to address the difficulty involved with

these searches.

Iter w t P (gs ≥ 0) P (gd ≥ 0) βgs βgd

1 2.3709 3.3000 0.55668 0.48285 0.142 -0.042
2 2.4286 3.9119 0.99974 0.99984 3.470 3.612
3 2.4650 3.8549 0.99968 0.99996 3.418 3.993
4 2.4525 3.8749 0.99965 0.99993 3.391 3.826
5 2.4596 3.8636 0.99973 0.99991 3.470 3.755
6 2.4611 3.8614 0.99968 0.99995 3.418 3.924

Table 3.1: Local Surrogate SORA Cantilever Design History

In this problem, three local surrogate regions were used in the first iteration. Figure 3.7

shows the locations of these regions and the optimal point found for each. It should be

point out the design space represented in figure 3.7 does not encapsulate the global design

space. It has been reduced in the vicinity of the initial starting point to better visualize

the described process. Here, it can be seen the starting point was not within the feasible

region, however, the small feasible section within the first local region was located with the

most optimal point within said region being used as the center point for the second local

region. Each iteration shown in table 3.1 uses however many local regions are necessarily to

locate the optimum point following constraint shifting. Generally, only a few local regions

are necessary for each iteration with thoughtful selection of the initial space percent, and

decrease in size as the algorithm continues. By only approximating a subsection of the

design space, computation effort can be saved. However, using local regions in this manner

introduces the typical risks of locating a locally optimal solution rather than a globally

optimal solution.
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Distributed Surrogate PMA

4.1 Literature Review

Many methods have been proposed which aim at defining the most computationally ef-

ficient procedure for performing surrogate based analysis. An enduring framework for

surrogate based optimization was proposed by Jones (1998) [21] which uses a stochastic

process model based upon Kriging for response approximations. Using this approxima-

tion model, described by Sacks (1989) [35], yields uncertainly information concerning the

predicted value. The search for an optimal point within design space as well as model ac-

curacy improvement is performed simultaneously by globally maximizing a figure of merit

referred to as expected improvement (EI). The EI is a function of both the uncertainty of

the surrogate prediction and current minimum sample response first described by Mockus

(1978) [27]. When a point which maximizes the EI is identified, it is evaluated by the truth

model and added to the surrogate training set after which a new EI is found and repeated

until the expected improvement is reduced beyond a specified ratio.

Further developments for the usage of EI in surrogate based optimization were proposed

by Forrester (2008) [15]. It is pointed out that for multimodal responses being approx-

imated with few samples by Kriging, the optimized model parameters estimated during

the likelihood maximization building process may not represent the degree of correlation
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present in the true response leading to poor mean square error estimations. Since the EI

depends on accurate mean square errors, the infill points determined otherwise could lead

to unnecessary iterations. The accuracy of the kriging parameters can be increased by in-

stead maximizing a conditional ln-likelihood for a prediction model passing through a goal

response at a trial location for EI maximization in a nested optimization formulation. How-

ever, the nested formulation for the modified EI increases computational expense to a large

degree since the model parameters must be solved for each EI trial point.

Youn (2004) [40] proposed a response surface methodology for PMA based RBDO using

a sensitivity enhanced moving least square approximation model. Including the design

sensitivities in the model building information is shown to improve the accuracy of results

when performing a gradient based analysis but may not be necessary for strictly response

based global methods. The sampling sites comprising the design of experiments (DOE)

used to build the response approximation are determined using axial star (AS) and selective

interaction (SI) sampling. Here, the mean value (MV) first order reliability method is used

to identify the iteration region for the SI DOE component. The overall area which the

DOE occupies is ultimately determined by a target reliability index and the nonlinearity of

the limit state response. Additionally, the hybrid mean value (HMV) method described by

Youn (2003) [41] is used for the PMA solution due to its increased robustness.

Apley (2006) [3] discussed the quantification of response uncertainties for surrogate based

robust design for which they propose a methodology considering uncertainties from both

the probabilistic system parameters and the interpolation surrogate itself using a Bayesian

framework resulting in a closed form prediction interval by viewing the true response sur-

face as a random process.

A method for constraint boundary sampling (CBS) was used by Lee (2008) [25] where the

figure of sampling merit is proposed using the stochastic properties of a Kriging prediction.

Since a higher degree of sampling occurs near the boundaries in this method, the surrogate

50



will be more accurate along the curve where the MPP is located following reliability assess-

ment using RIA. By using the predicted Kriging response along with its associated mean

square error, a probability of feasibility can be computed for all potential sampling loca-

tions in the random domain. This probability then weighted according to the normalized

distance from the nearest sample in the current surrogate training set to form the sampling

criteria.The sequential sampling continues until a termination condition of low relative er-

ror and feasibility for the latest found sample is observed in three consecutive iterations.

The prediction error of the surrogate model itself for RBDO was addressed by Kim (2008)

[22] where the usage of prediction intervals is suggested for moving least square models.

By using upper and lower prediction intervals based on residual response variances and

a specified confidence level, a formulation for RBDO which constrains the reliability so-

lutions for an upper and lower reliability level can be constructed. Between the two, the

conservative design is ultimately used to account for the uncertainties present in the surro-

gate due to amount and location of sampling. Additional sampling at the MPP of the most

dominant constraint is performed when any probabilistic constraints have not been satis-

fied, which in this case, means the determined reliability amounts for the upper and lower

interval responses are outside of the specified reliability bounds. The prediction interval

decreases with every new training sample.

A sequential sampling strategy applicable to forward or inverse reliability assessment based

RBDO was outlined by Zhao (2009) [44]. Here, a Kriging model is produced by adding

samples at the location where the “bandwidth” of the prediction interval is largest in the

neighborhood of the point of interest. Sampling continues until the average of the normal-

ized prediction standard deviation is below a specified threshold. The region for which the

surrogate is built is an augmented hyper-sphere in standard normal space where the amount

of augmentation beyond the target reliability index is variable in the hope of reusing sam-

ples from previous reliability analysis iterations. The change in region size is based on the
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magnitude of design change where larger changes reduce the region size.

Lee (2011) [24] proposed performing stochastic sensitivity analysis for sampling based

RBDO. Here, all reliability assessments and corresponding sensitives are determined us-

ing monte carlo simulations. The Kriging variant used by Lee is dynamic, refereed to as

D-Kriging and described by Zhao (2011) [42], in the sense that it selects the most opti-

mal basis function for each new model build rather than specifying which to use for all

training sample sets. This optimal polynomial basis function is determined using a genetic

algorithm and the optimal correlation parameters, normally denoted as θ, is found using

a global pattern search. Also described by Zhao (2011) is a purely exploratory sequential

sampling strategy for model improvement in which a new sampling location is found by

maximizing the prediction mean square error. In addition to outlining stochastic sensitiv-

ity analysis, Lee suggests multiple numerical strategies for sampling based RBDO such as

a variable radius hyper-spherical local window for surrogate model generation, a uniform

local initial sampling strategy, and feasible constraint filtering.

Dubourg (2011) [14] used subset simulations for the computation of reliabilities and their

sensitives where the probabilistic constraint Kriging surrogate errors are propagated to the

failure probabilities. Insufficient surrogate accuracy is addressed by a population based

adaptive refinement strategy which allows the addition of a set of points to the training

samples. This set is identified by first determining a candidate population using a weighted

margin of epistemic uncertainty in the form of a density function related to the level of

confidence specified. To find the new individual sampling points, a K-means clustering

procedure is then applied in order to find the center points of the population groups.

Zhuang (2012) [45] applied expected improvement (EI) as sampling criteria for surrogate

based inverse reliability assessment inside a sequential RBDO loop. Following an initial

Latin hypercube sampling (LHS), EI is used to simultaneously explore the β-sphere and

locate the minimum limit state response using the PMA formulation. For use with multiple
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constraints the EI measure is modified to be an expected relative improvement (ERI) so

it may provide a valid comparison between functions of different response magnitudes.

Furthermore, the optimization to maximize the ERI is performed in polar coordinates to

eliminate the β-sphere constraint.

Chen (2014) [10] proposed a means for reliability assessment surrogate accuracy improve-

ment in the vicinity of the current design point using a Local Adaptive Sampling (LAS)

region for which to add sample points. The location of the new sample point within the

LAS region is that which maximizes either the Constraint Boundary Sampling (CBS) or

Mean Square Error (MSE) criterion where the CBS is used if the LAS region contains

the limit state constraint boundary. The LAS region radius is formulated to be 1.2 ∼ 1.5

times larger than the target reliability index where the magnitude of the scaling factor is

dependent on the non linearity of the limit state response within the β-sphere region. In

[9], the same author proposed the use of importance boundary sampling (IBS) for RBDO

using Kriging models. Here, the importance coefficients used for selecting sample points

are determined using the objective response as well as the joint probability density of the

design variables.

Work with using support vector machines (SVM) for modeling decisions functions such as

constraints or limit states for reliability analysis was conducted by Basudhar (2008) [5]. An

adaptive sampling scheme was presented to identify the location with respect to the design

variables, rather than the response, of the decision function boundary. This is accomplished

through classifying the feasible and unfeasible regions regardless of the continuity of the

simulation responses with the aid of clustering analysis. With the boundaries constructed,

the reliability of performance can efficiently be computed using monte carlo simulations

(MCS). The adaptive sampling criteria is the prospective distance from the decision bound-

ary itself and any previously sampled points.

Modification of the EGO algorithm for application to the surrogate based reliability as-
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sessment problem was done by Bichon (2008) [6] referred to as efficient global reliability

analysis (EGRA). Here, the figure of merit for adaptive sampling not only takes into con-

sideration the potential for the true value of the response to violate a constraint, such as the

expected violation function introduced by Audet (2000) [4], but additionally, it is concerned

with the equality constraint in forward reliability analysis. The merit function, referred to

as expected feasibility, returns a large value for points in space which are close to the limit

state boundary as well as as having large Kriging prediction uncertainty. The same au-

thor in [7] applied EGRA to inverse reliability analysis as well as discussing an approach

for computing the confidence intervals for the target probability of failure which the final

solution contains.

Choi (2001) [11] proposed a response surface methodology for performance measure ap-

proach (PMA) based RBDO using a sensitivity enhanced moving least square (MLS) ap-

proximation model. The sampling sites used to build the PMA response approximation are

determined using axial star (AS) and selective interaction (SI) sampling with the hybird

mean value (HMV) method being used to perform PMA.

Work on increasing the accuracy of a multi-fidelity Kriging model sequentially was done

by Gratiet (2012) [17]. Improvement of the Kriging accuracy is achieved by the addition

of new samples defined by a criterion computed using leave one out cross validation error

terms and the mean square error of the prediction provided by Kriging.

A value based global optimization (VGO) was presented by Moore (2014) [28] in which

a sequential sampling strategy is defined for kriging-like surrogates. The approximation

model is based on a weighted fit of data from numerous sources of varying fidelity. The se-

quentially selected points are determined using a value of information criterion. Upon the

addition of new samples, the accuracy and expense of each analysis model available is con-

sidered using the current prediction responses. The value of information is a measure of the

benefit which can be expected from the addition of said information and is meant to trading
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between solution quality, potential for improvement, and the cost of further information

gathering.

An approach for constraint handling in surrogate based optimization was presented by Parr

(2012) [31]. The addition of a penalty term to infill sampling criterion is a popular method

of performing constrained optimization with surrogates. This increases the difficulty in the

optimization phase of the sampling figure of merit. To alleviate this, it was proposed to use

a multi-objective formulation to address objective improvement and constraint satisfaction

separately.

The termination criteria for surrogate based optimization was considered by Queipo (2009)

[32]. Here it is acknowledged that for the utilization of parallel computing, short cycle SBO

is useful in decreasing the overall expense of analysis since the overall number of algorithm

iterations becomes the limiting factor. To reduce the number of algorithm iterations, multi-

ple supplement points can be evaluated and added to the surrogate building sample set at a

time. Furthermore, it is suggested to assess the merit of additional iterations rather than ac-

cepting the current best solution based on target specifications. This is done by calculating

the probability of improving the current best solution beyond a certain amount at a given

set of supplemental points using the covariance matrix of a Gaussian process as well as the

regression trend response at each of the prospective evaluation points.

Viana (2010) [37] proposed the running of the efficient global optimization algorithm with

multiple surrogate types within the same iteration. By doing so, multiple supplemental

points per cycle may be selected and evaluated in parallel per algorithm cycle. If the pre-

diction mean square error is unavailable within the domain of a particular type of surrogate,

the uncertainty information from Kriging is used for the computation of the expected im-

provement.

Wang (2014) [38] proposed a method for sequential sampling applicable to monte carlo
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simulation based reliability assessment using Kriging models. A cumulative confidence

level for the computed reliability is presented with supplemental sampling criteria based on

the maximization of expected improvement of this cumulative value. The confidence level

is computed for each monte carlo trial evaluation, and when averaged, produces a quantity

representing the accuracy of the entire estimation. Using the cumulative distribution func-

tion, high confidence is computed for points in space returning limit state values near zero

and small mean squared errors. Samples are added to the surrogate training set until the

reliability converges and the cumulative confidence level is above a certain threshold. This

work also proposes a method for sensitivity analysis of the modnte carlo reliability with

respect to the random variables without requiring additional monte carlo simulations.

Zhao (2013) [43] proposed the use of a conservative surrogate model for reliability assess-

ment using monte carlo simulations to assure the probabilistic constraints of RBDO are

satisfied. Using a conservative design methodologies had been previously proposed such

as the constant safety margin approach by Viana (2010) [8] using cross validation error.

However, it is argued by Zhao that using a constant margin in this manner produces a sur-

rogate which is overly conservative. Rather, it is suggested to form the conservative margin

using the Kriging variance weighted using the relative change in the corrected akaike infor-

mation information criterion. This method of weighting is shown to reduce fluctuation in

the prediction bound while accounting for large amounts of uncertainty present in sparsely

sampled regions of the model domain.

4.2 Motivation and Challenges

The efforts involved with the implementation of the Local Surrogate SORA tool for RBDO

led to findings which pointed out a fundamental lack of support for sequential surrogate

infilling procedures geared toward inverse MPP searches. As the literature review suggests,
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there has not been a lack of work in the area of surrogate based optimization infilling, but

due to the nature of the shifting vector calculation for decoupled RBDO, the accuracy of the

limit state response at the inverse MPP is irrelevant. Only the location of the inverse MPP

is of importance. For previous work in the literature, infill criterion is primarily concerned

with the accuracy of the objective response and the potential for that response to improve.

Surrogate based inverse MPP searches for the task at hand should be primarily concerned

with identifying the potential locations of the solution point based on the discovery of

important response contours, only increasing the accuracy of responses at extrema locations

when doing so will have an impact on solution location.

Another shortcoming which the proposed methodology attempts to address is the arbitrary

nature of the termination criterion often specified in adaptive sampling procedures. In using

the expected improvement infill criterion, the engineer must decide the termination thresh-

old ratio. Doing this does not offer the assurance of solution confidence with regards to

an acceptable uncertainty amount. Selecting a threshold too small may lead to inaccurate

results while selecting a threshold too large will encourage redundant information gather-

ing. It has also become common for a static number of infill points to be specified at the

beginning of the optimization process if the available computing resources are known for a

particular analysis. Neither of these termination methods are driven by the solution uncer-

tainty with respect to the predicted response or the spacial location. If the uncertainty for a

solution is quantified, the engineer is able to place meaningful termination criteria upon the

adaptive sampling process with real world physical meaning for every degree of freedom

for the system.

Computing the uncertainty for a spacial solution based on the uncertainty present within a

surrogate prediction is not a trivial task, nor is the selection of infill points to most effec-

tively reduce the solution uncertainty if it is found to be too large. A means of perturbing

the surrogate from its mean state based on its continuous variance across the problem do-
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main is required. Once a method of perturbation is developed, the approximation error of

the uncertainty results based on different numbers of perturbations must be quantified or at

least eliminated to a certain degree. Even after an accurate uncertainty approximation has

been obtained, it is also unclear how this information can be used to select the next supple-

mental point. Care must be taken to still simultaneously explore and exploit the surrogate

model by narrowing in on promising regions of the surrogate while still providing as much

new information as possible to the training process.

4.3 Methodology Approach

The prediction associated with a Gaussian process model represents the most likely re-

sponse outcome given the truth samples used during training. The surrogate response at

every point in the design domain has two properties, a mean and standard deviation which

is equal to the square root of the prediction standard error. Therefore, the surrogate can be

theorized as containing the random parameters describing a population of infinitely many

individual models which follow a correlated Gaussian distribution at every point. The

greater the amount of information used to train the surrogate, the fewer the differences

between each individual realization following this distribution.

To approximate the uncertainty of a surrogate based solution point, the distribution param-

eters, mean and standard deviation, must be approximated for every degree of freedom at

that point. The standard deviation for one or more degrees of freedom being large could

be interpreted as evidence supporting low solution confidence. If there existed a group of

solutions which represented the global optimum points for a sufficiently large number of

different realizations of the population surrogate, computing the mean and standard de-

viation along each dimension would be simple. The mean, or centroid, for the group of

solutions can be considered the overall solution if the standard deviation for that same
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group of solutions is sufficiently low.

With the continual sequential adaptive sampling within design space, the standard devia-

tion for a group of prospective solutions should decrease while converging to a low value

assuming only one true optimal location exists. Intermittently however, it should be an-

ticipated the solution standard deviation may increase if and when new potential solution

regions are identified. The odds of standard deviation increasement grow with sparsity of

the initial sampling plan. Therefore, addition of new information to the surrogate building

process through infilling may result in either increasing or decreasing the standard deviation

of a group of prospective solutions, but over the course of surrogate based optimization, the

standard deviation is expected to decrease.

The infill locations should be selected while taking into consideration the potential solution

regions identified which have high densities of solution points. Supplemental sample eval-

uation in these areas can systematically eliminate possible solution regions until only one

remains. Further infilling in the final solution region vicinity will effectively decrease the

solution region to a solution point. Rather than only infilling within solution regions, the

criterion for this action must include incentive for the discovery of new solution regions.

The goals for exploration and exploitation must be maintained in attempting to discover

new as well as eliminate solution regions simultaneously.

Following the described approach, a procedure of surrogate based optimization based on

the usage of distributed surrogates can be developed. This procedure is outlined in figure

4.1. Each group of “distributed” surrogates is determined using prediction parameters from

a “base” surrogate. The base surrogate is simply the initial Gaussian process, but using

this terminology will become useful in the content which follows. The group of distributed

surrogates are formed after determining a set of virtual samples to be added to the training

set of the base surrogate. The optimal solution for each distributed surrogate is solved,

yielding a group of distributed solutions which can be used to approximate the uncertainty
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of the spacial solution by computing the standard deviation for every degree of freedom,

providing values which serve as adaptive sampling termination criteria. The infilling pro-

cedure is invoked for situations where the spread in the distributed solutions are too large,

in which truth samples are added to the surrogate training set in the vicinity of solution

regions at supplemental candidate points which exhibit space filling properties.

Construct Base Surrogate and Determine Virtual Samples

Initial Sample Plan

Search Distributed Surfaces and Determine Spread in Solutions

Determine Supplemental Point Candidates

std(distSols) > stdMax

Solution Identified at mean(distSols)

Yes

No

Select and Evaluate Supplemental Point(s)

Figure 4.1: Distributed Surrogate Optimization Process Flowchart
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4.4 Distributed Surrogate Assessment

The first part of the proposed methodology is concerned with assessing the uncertainty as-

sociated with the current best solution within a surrogate based optimization process. This

section describes the data driven method used to make this approximation, referred to as

distributed surrogate assessment. The theory and reasoning for this process is presented

followed by the process specification itself. A convergence study is presented as evidence

supporting the criterion for the number of mean surrogate perturbations necessary for so-

lution uncertainty approximation.

The goal of a distributed surrogate assessment is to produce a certain number of distributed

solutions from the global optimization of the same number of distributed surrogates and

compute the resulting centroid and spread in the distributed solution data. Essentially, this

proposes investing computational effort to determine if the probable solutions, given the

prediction uncertainty, vary to a large degree and using this in deciding if the adaptive

sampling process should be terminated.

4.4.1 Distributed Search

For the formation of each distributed surrogate a certain number of “virtual” samples is

added to the base surrogate training set. This results in the mixture of both truth responses

and speculative responses based on uncertainties in the predicted surface. Each virtual

sample consists of a virtual point representing its location in space and a number of virtual

responses based on the mean and standard deviation of the base surrogate at that partic-

ular point in space. Since the virtual points must be determined in order to obtain the

corresponding base surrogate distribution parameters, their determination is the fist step in

searching for the distributed solutions.
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Given a sufficiently large specified number of distributed surrogates, the virtual points

could be randomly selected within the design space. This approach was initially inves-

tigate with some success, but doing so requires the correlation of the virtual responses with

respect to the distances between the virtual points, especially if two or more virtual points

are selected near each other. Another disadvantage with this method of virtual point selec-

tion is the small prediction response standard deviation values for points selected near truth

samples which limits base surrogate perturbation. To select the virtual points at the loca-

tions of the maximum standard error is a superior method since it maintains good space

filling characteristics once the truth and virtual samples are aggregated together for the

training of a distributed surrogate, capturing the largest amount of variation in the predic-

tion population. Using this method for virtual point selection, the number of virtual points

found is proportional to the number of samples used to train the based surrogate. As the

number of training samples increase, so does the number of virtual points since the mean

squared error surface will become more multimodal.

For a surrogate model built using five samples, such as the one shown in figure 4.2 for a

one degree of freedom system, the virtual points are located as shown in figure 4.3. The

prediction MSE surface is optimized upon locally to determine all the points corresponding

to local maximum values. By inspecting the locations of the virtual points in figure 4.2 and

comparing them to the surrogate building point locations, it can be seen the virtual points

occur nearly halfway between build points and the number of virtual samples are one plus

the number of build samples for a one dimensional design space.
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Figure 4.2: Initial Gaussian Process Surrogate
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Figure 4.3: Virtual Point Selection

Two pieces of information are extracted from the base surrogate at the location of each vir-

tual point. Both the mean prediction value and standard deviation at each of these points is

used to the determine the group of distributed surrogates. For the situation described by fig-

ures 4.2 and 4.3, these values are illustrated in 4.1, fully defining the prediction distribution

at each virtual point.

Parameter Values per Virtual Point ID

Parameter Type 1 2 3 4 5 6

Mean 1.416 1.066 0.256 -0.070 0.989 1.767
Std. Deviation 0.265 0.202 0.188 0.156 0.186 0.291

Table 4.1: Prediction Distribution Parameters at Virtual Points

The virtual responses are selected using a Latin hypercube sample from the corresponding
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base surrogate prediction distribution at each virtual point. This provides a means of strat-

ified sampling from the Gaussian distribution associated with each virtual point response

prediction as well as a decent combination of one sample from each virtual point location

for the defining of a virtual sample set added to the truth samples for one distributed sur-

rogate. If it were computationally feasible, a full factorial design could be generated using

all the possible standard score permutations based on a random draw from the prediction

distribution, but the resulting number of distributed surrogates could quickly grow beyond

a practical number. For instance, for a full factorial design, if there were just five virtual

points with nine stratified standard scores, or levels per virtual point, the number of dis-

tributed surrogates specified would be equal to five raised to the ninth power - nearly two

million. Using the Latin hypercube sampling method is much more convent for represent-

ing the uncertainty in the base surrogate with far fewer distributed surrogates, allowing the

specification of the number of distributed surrogates desired regardless of the number of

virtual points located.

Figure 4.4 describes the design of experiments for nine distributed surrogates using the pre-

diction parameters shown in table 4.1. Here, the grey region centered at each virtual point

represents the probability density function for a certain level above or below the mean pre-

diction. The responses for each of the virtual samples is shown in table 4.2. The “Dist

ID” in 4.2 refers to each separate distributed surrogate to be generated, short for distributed

surrogate identification number. The way in which each response value for a certain virtual

point is paired with virtual responses from other virtual points to form a distributed surro-

gate is the primary reason Latin hypercube sampling is being used. If provided with a list

of response levels randomly drawn from the prediction parameters at each virtual point,

stratified or not, the mapping of responses to form the distributed surrogate could also be

determined by randomly selecting one response level per distributed surrogate from each

list corresponding to a virtual point. However, the selected virtual response mapping may

not be representative of the random field which the Gaussian process represents if it does
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not contain stratification properties, especially for low numbers of distributed surrogates.

Thus, it is advantageous to determine the response levels as well as their pairings with

responses from other virtual points simultaneously while maintaining the properties of a

Latin square in the virtual design space.
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Figure 4.4: Virtual Response Design of Experiments

Virtual Response Values Per Point ID

Dist ID 1 2 3 4 5 6

1 1.079 0.686 0.257 -0.303 0.777 1.803
2 1.381 1.007 0.125 -0.115 1.241 2.092
3 1.929 1.352 0.074 0.147 1.043 2.344
4 1.139 1.108 0.218 -0.029 0.987 1.85
5 1.598 0.892 -0.012 -0.084 0.865 1.241
6 1.306 1.233 0.536 0.078 1.073 1.659
7 1.520 1.056 0.369 -0.177 0.947 1.452
8 1.282 0.932 0.484 -0.241 0.654 1.553
9 1.651 1.172 0.294 0.019 1.187 1.962

Table 4.2: Virtual Response Design of Experiments
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An enlarged view of the virtual response design of experiments with labels indicating the

distributed surrogate identification number is shown in figure 4.5 for the fourth and sixth

virtual points to better visualize the described process.
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(b) Virtual Point 6 Responses

Figure 4.5: Enlarged Virtual Sample Design of Experiments View

Following the design of experiments for the virtual response sets, each distributed surrogate

is trained and globally optimized upon yielding a group distributed solutions. The spread

of the solutions with respect to each degree of freedom can be examined and compared to

the acceptable real world parameter variation and used termination criterion. The spread

in the response values can also be used as termination criterion as well, but generally this

criterion is less critical for inverse MPP searches.

To compare the effects of using different numbers of distributed surfaces, the initial Gauas-

sian process shown in figure 4.2 and prediction parameters shown in table 4.1 are used for
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three distributed surrogate assessments with said variation. Figures 4.6a, 4.7a, and 4.8a

show the distributed surfaces formed using 15, 45, and 135 virtual response levels at each

virtual point, respectively. The corresponding distributed solutions, gained by global opti-

mizing on each distributed surface are shown in figures 4.6b, 4.7b, and 4.8b.
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(b) Distributed Surrogate Solutions

Figure 4.6: Distributed Surrogates and Solutions for 15 Surfaces
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(a) Distributed Surrogate Predictions

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

ŷ
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(b) Distributed Surrogate Solutions

Figure 4.7: Distributed Surrogates and Solutions for 45 Surfaces
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(a) Distributed Surrogate Predictions
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(b) Distributed Surrogate Solutions

Figure 4.8: Distributed Surrogates and Solutions for 135 Surfaces

It can be seen the set of distributed solutions gained from each amount of distributed sur-

faces exhibits a similar pattern. Furthermore, table 4.3 shows the distributed solution mean

and standard deviation for the group of points and responses, indicating relative agreement

regarding solution uncertainty.

Dist Count µx∗ σx∗ µŷ∗ σŷ∗

15 0.5803 0.0652 -0.1123 0.1432
45 0.5845 0.0559 -0.1108 0.1198

135 0.5766 0.0604 -0.1142 0.1173

Table 4.3: Distributed Solution Parameters for Different Surface Counts

The standard deviations for the distributed solutions in the x and ŷ directions can be com-

pared with the uncertainty threshold specified for surrogate based optimization. For stan-

dard deviations exceeding these settings, distributed surrogate infilling will take place under

the proposed distributed surrogate optimization procedure.
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4.4.2 Multi-Level Assessment

The usage of a discrete set of distributed surfaces in determining the spacial uncertainty of a

surrogate based solution may provide approximations which are deceptively low. Since the

method of surface perturbation described in the previous section selects virtual responses at

a limited number of points, the shape of the perturbed surface is also limited. This hinders

the adaptability of each perturbed surface to capture the potential underlying truth behavior.

This is most easily recognizable by observing the single modal shape of each distributed

surface between truth responses. A more realistic perturbed response could be formed by

using a set of virtual samples whose responses are correlated with each other based on the

distance between them in regions void of truth samples.

Using a nested approach for the searching of virtual points and their selection of responses

is a superior method for producing a set of distributed surfaces regarding solution uncer-

tainty accuracy. Since every distributed surrogate is built upon a base surrogate, there is

no reason prohibiting the use of each resulting distributed surrogate as the base for a sec-

ond level of distributed surfaces. The formation of the second level distributed surface is

described in figure 4.9.
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Figure 4.9: Two Level Distributed Surrogate Formation
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For the comparison of distributed solutions found using one and two levels, the results of

a two dimensional example of such assessments is presented. Since a discrete number of

distributed surrogates is selected for the inner and outer distributed surrogates, the product

of the two quantities is the amount of total distributed surrogates formed. For a consistent

comparison with the single level distributed surrogate counts of 15, 45, and 135, two level

distributed count sets are specified as Set = [5 3], Set = [9 5], and Set = [15 9] to produce

the distributed surrogates in figures 4.10b, 4.11b, and 4.12b.
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(a) One Level, Set = [15]
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(b) Two Level, Set = [5 3]

Figure 4.10: Multi-Level 15 Distributed Solutions Comparison
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(a) One Level, Set = [45]
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(b) Two Level, Set = [9 5]

Figure 4.11: Multi-Level 45 Distributed Solutions Comparison
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(a) One Level, Set = [135]
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(b) Two Level, Set = [15 9]

Figure 4.12: Multi-Level 135 Distributed Solutions Comparison

The standard deviation values found for each distributed solution set using one and two

level assessments are shown in tables 4.4 and 4.5. Here, it can be seen that the spread in the

solutions is generally larger for the two level assessments. Since the two level assessments

are assumed to be more accurate for reasons discussed, a two level assessment is incorpo-

rated into the procedure for the assessment results used for the numerical results presented

at the end of this chapter. However, since two level assessments are more computational

expensive than one level assessments, two stages of the algorithm are performed. The first

stage involves running of the distributed surrogate optimization algorithm with a one level

set of distributed surfaces until the solution uncertainty converges to a small amount. The

second stage then uses a two level set of distributed surrogates for the remainder of the

process. This generally reduces the time required to perform surrogate based optimization

with little effect on final results compared to using two level assessments for the duration

of the entire optimization process.
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Distributed Set Distributed Count σx1
∗ σx2

∗ σŷ∗

[15] 15 0.0048 0.0141 0.4067
[45] 45 0.0056 0.0146 0.3657
[135] 135 0.0056 0.0156 0.4002

Table 4.4: One Level Assessment Spread in Solutions

Distributed Set Distributed Count σx1
∗ σx2

∗ σŷ∗

[5 3] 15 0.0124 0.0401 0.3007
[9 5] 45 0.0100 0.0253 0.4936
[15 9] 135 0.0082 0.0225 0.5088

Table 4.5: Two Level Assessment Spread in Solutions

4.4.3 Uncertainty Convergence Study

It is important to acknowledge the training of multiple distributed surrogates does not have

computational expense which can be neglected. Each full training of a Kriging surrogate

will involve the optimization of the training parameters as well as linear algebra expense

depending on the number of degrees of freedom and the number of points used to build it.

Therefore, a number of distributed surrogates must be selected which provides an accurate

enough representation of the solution uncertainty.

The distributed surrogate assessment can be replicated for the same distributed surrogates

for the computation of a mean solution uncertainty and repeated with increasing number of

distributed surrogates until the termination the solution standard deviations for all degrees

of freedom converge. To show the effect of replicating distributed surrogate assessments

in this manner, a convergence study is conducted. Using the 1D example problem as a test

case, 25 assessment repetitions are conducted for distributed surrogate counts ranging from

9 to 625 built using both one and two level surfaces. The import results gained by these

computational experiments are the mean and standard deviation of the distributed solution
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mean and standard deviation from each individual assessment. Figures 4.13, 4.14, 4.15,

and 4.16 show the converge of the solution point mean, point standard deviation, response

mean, and response standard deviation, respectively. These results confirm that as the num-

ber of distributed surrogates increase, the both the spacial solution centroid and spread in

the solutions converge. In addition, the general trend of the confidence interval for each

mean quantity presented decreases as the number of distributed surfaces increases. This is

expected behavior since with higher amounts of distributed surrogates, more space within

the virtual design of experiments space is filled. As this space is saturated with a greater

number of points, the difference between multiple uncertainty and centroid approximations

decrease. To increase the robustness of the distributed surrogate assessment procedure for

the numerical results shown at the end of this chapter, the mean of five assessment is gener-

ally used for comparison with the solution uncertainty termination criteria. In addition, the

number of distributed surfaces used in increased until the solution uncertainty converges

up to a predetermined maximum distributed set.
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Figure 4.13: Solution Mean Point Convergence for 1D Assessment
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Figure 4.14: Solution St. Deviation Point Convergence for 1D Assessment
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Figure 4.15: Solution Mean Response Convergence for 1D Assessment
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Figure 4.16: Solution St. Deviation Response Convergence for 1D Assessment
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4.5 Distributed Surrogate Infilling

Since computational effort is put forth in determining the distributed solutions during the

distributed surrogate assessment, it would be beneficial to use this data for the selection of

surrogate infills. Since regions which contain the best odds of harboring the true optimal

point should be more densely population with distributed solutions, it makes intuitive sense

that these vicinities should be under consideration for infilling. However, to avoid evalua-

tion of new samples near preexisting ones, criteria which enforces an exploratory element

should be included. The proposed method of infilling determines supplemental candidates,

of which all have high exploratory value. The distributed solutions and candidate locations

are then compared for determination of infill points.

4.5.1 Supplemental Candidates

Candidates which can be selected after comparison to distributed solution locations must

be generated to provide an exploratory mechanism within the algorithm. These candidates

are found by identifying all the local maximum mean square error points for the predic-

tion using the same method as the virtual points search during the distributed surrogate

assessment stage. In fact, under certain circumstances no additional candidate need to be

found, they can simply be assigned to the previously found virtual point set. This is the case

for one dimensional problems such as the example used to illustrate distributed surrogate

assessment procedure in the previous section. The initial Gaussian process trained using

five initial samples shown in figure 4.2 provided the virtual points shown in 4.3. Similarly,

the supplemental candidate points for this same surrogate are shown in 4.17. Here, each

supplemental candidate is represented as a vertical dotted line.
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Figure 4.17: Supplemental Candidates

4.5.2 Infill Selection

With the distributed solutions and supplemental candidates located, a subset of the candi-

date points can be selected as infill points. The distance between each distributed solution

and each supplemental candidate is computed with the nearest candidate being selected as

a infill point. Using this selection method, the number of infill points selected in a single

iteration is only bounded by the number of candidates or distributed solutions, whichever

is fewer. Normally however, numerous distributed solutions should be nearest to just a

few supplemental candidates unless the initial sampling plan was not appropriate for the

dimensionality of the problem regarding the number of truth points, leading to distributed

solutions throughout the design space.
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Figure 4.18 describes the infill point selection criteria for the distributed solutions shown

in figure 4.7b. Here it can be seen two of the six supplemental candidates occur clos-

est to at least one of the distributed solutions. Therefore, the infilling procedure selects

the candidates marked by three and four to be evaluated by the truth model for surrogate

improvement.
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Figure 4.18: Distributed Infill Selection Points

If a limit must be placed on the number of infill evaluations per iteration, a clustering algo-

rithm can be applied to the distributed solutions. Using this method, the distances between

the cluster centroids and candidates are compared instead of the distributed solutions them-

selves. Here, the density based clustering algorithm described by Daszykowski (2001) [12],

called Density-based spatial clustering of applicates with noise (DBSCAN) is an attractive

method for clustering the distributed solutions. Density based clustering is advantageous

for this application because it does not require the number of clusters as an input. Rather,
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the two inputs into DBSCAN are the minimum number of points per cluster and the clus-

tering radius. With these two pieces of information the clustering algorithm identifies the

natural patterns in the data. Either the radius of the number of minimum points per cluster

can be increased sequentially to decrease the number of total clusters identified until the

infill limit has been satisfied. This reduction of the distributed solution data leads to an

infilling procedure which is less exploratory overall since it is likely to lessen the num-

ber of infill point per iteration, possibly increasing of total number of algorithm iterations

necessary to reduce the solution uncertainty to an acceptable amount.

4.5.3 Infilling Heuristics

As the distributed surrogate optimization algorithm continues infilling the design space,

the supplemental candidates from each successive iteration should become increasingly

concentrated around any remain regions for which distributed solutions continue to appear.

This is a natural consequence of using the locations of local maximum prediction MSE as

supplemental candidates since every point added to the training set will result in an MSE

surface which contains a larger number of local maximums. Furthermore, since infills are

added in the vicinity of distributed solution groups, it is intuitive that the new local max

MSE locations will appear even closer to the distributed solutions with every new iteration.

This phenomena is especially clear when examining the iterative history of one dimensional

problems when each candidate selected as an infill is replaced by two candidates flanking

its location in the next iteration. The concentration of supplemental candidates around

distributed solutions is required for continual solution uncertainty reduction.

With problems having more than one degree of freedom, the iterative concentration of

supplemental candidates is slower to develop, and in some cases fails to develop altogether.

This results in the infilling of locations around the perimeter of a group of distributed
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solutions rather than the center by evaluating points which are located further from the

distributed solutions than in previous iterations which do not reduce the uncertainty of

the solution. To eliminate this issue, the number of supplemental candidate levels can

be increased as the algorithm continues to iterate. This involves the aggregation of the

supplemental candidate points found by determining the local max MSE locations of the

Gaussian process with a second level of candidate points, also at local max MSE locations

for a model which has been trained using the truth samples as well as samples located at

the supplemental points whose response is the mean of the Gaussian process.

Figures 4.19 4.20 show the infilling process for the first and second iteration, respectively,

of distributed surrogate optimization for a 2D problem. Here, two candidate levels have

been used to locate the supplemental candidates. It is observed that the number of and

density of supplemental candidates increases, making it possible to select infills which are

closer to solution regions as the algorithm continues. For all numerical results presented,

the maximum number of candidate levels is set to the number of degrees of freedom.
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Figure 4.19: Iteration 1 Infilling of 2D Design Space
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Figure 4.20: Iteration 2 Infilling of 2D Design Space

4.6 Numerical Results

Example problem results using the proposed distributed surrogate method for both global

optimization and inverse most probable point searching are presented for one and two de-

grees of freedom. These results are compared with solutions obtained using Expected

Improvement. For one dimensional problems, 90 different initial sample plans generated

using Latin hypercube sampling are used. These plans include three subsets of thirty plans,

each having either 6, 7, or 8 samples. Similarly, for two dimensional problems, distributed

surrogate optimization and expected improvement is conducted using forty different ini-

tial sample plans with four subsets of ten plans, each containing 17, 19, 21, or 23 initial

samples. These 40 initial sample plans are generated using optimal Latin hypercube sam-

pling. Statistics are shown for each batch of results using the two surrogate based opti-

mization methods. The standard deviation termination criteria for the distributed surrogate

method are selected to be 1% of the range of each degree of freedom and expected re-

sponse range. The distributed set products used in both of the two assessment levels used
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are Set = [15 45 135].

To ensure the validity of each comparison, the termination criteria used for the expected

improvement results is not based on a threshold ratio. Rather, they are based on the same

termination criteria as distributed surrogate, the uncertainty of the final distributed solution.

This requires a distributed surrogate assessment in each iteration of the expected improve-

ment process and only provides termination criteria without having an impact on infill

locations. Since distributed surrogate has the goal of reducing solution uncertainty while

expected improvement has the goal of finding a more optimal solution, selecting equivalent

termination settings with the use of a threshold ratio is not possible leading to the described

alteration.

4.6.1 Global Optimization

Two global optimization example problems are used to demonstrate the distributed surro-

gate optimization procedure using benchmark problems. The first problem, the 1D prob-

lem which has been used to demonstrate parts of the methodology up to the point as well

as Expected Improvement, is solved with the distributed surrogate and expected improve-

ment methods using the described batch of initial sample plans. The true response for this

problem is shown in 4.21a with the resulting optimum points for both methods shown in

4.21b. Statistics describing the distributed surrogate benchmark are shown in table 4.6

while statistics describing the expected improvement benchmarks are shown in table 4.7.

Here, it can be seen that on average, the final amount of truth samples required to terminate

the distributed surrogate infilling process, nts, is nearly 10 samples while the correspond-

ing statistic for expected improvement was nearly 9 samples with negligible differences

regarding average final solution, mean (x∗) and mean (ŷ∗). However, the standard devia-

tion regarding the solution point, std (x∗), for the distributed surrogate method is nearly one
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third that of expected improvement. Another observation worth mentioning is the average

number of iterations required, nk, was nearly 1 iteration greater for expected improvement.
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Figure 4.21: Benchmark Results for 1D Optimization

Statistic nk nts x∗ ŷ∗

min (·) 1 8 0.4329 -0.1681
max (·) 2 13 0.4395 -0.1505
mean (·) 1.051 9.974 0.4348 -0.1596
std (·) 0.223 0.986 0.0010 0.0024
true (·) — — 0.4346 -0.1589

Table 4.6: Distributed Surrogate 1D Optimization Benchmark Results

Statistic nk nts x∗ ŷ∗

min (·) 0 7 0.4191 -0.1698
max (·) 4 10 0.4513 -0.1378
mean (·) 1.740 8.753 0.4352 -0.1591
std (·) 0.833 0.746 0.0033 0.0037
true (·) — — 0.4346 -0.1589

Table 4.7: Expected Improvement 1D Optimization Benchmark Results

The second problem used to test the global optimization functionality of the distributed

surrogate method is a 2D function for which the true response is shown in figure 4.22a.
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The distributed solutions found was well as process statistics are shown in figure 4.22b and

tables 4.8 and 4.9, respectively. It can be seen the optimal solutions found for both re-

sponses agree well with the overall true solution. However, the average number of samples

required for the distributed surrogate method was nearly 1.5 samples greater than that of

expected improvement. Once again however, the average number of iterations required for

distributed surrogate is 1 iteration less.
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Figure 4.22: Benchmark Results for 2D Optimization

Statistic nk nts x1
∗ x2

∗ ŷ∗

min (·) 1 21 0.3063 0.2235 1.8374
max (·) 4 28 0.3123 0.2429 2.1204
mean (·) 1.950 24.55 0.3090 0.2327 1.9464
std (·) 0.749 1.616 0.0012 0.0041 0.0566
true (·) — — 0.3089 0.2315 1.9557

Table 4.8: Distributed Surrogate 2D Optimization Benchmark Results

Statistic nk nts x1
∗ x2

∗ ŷ∗

min (·) 1 19 0.3049 0.2270 1.8350
max (·) 5 26 0.3131 0.2494 2.0346
mean (·) 3.075 23.07 0.3093 0.2321 1.9507
std (·) 0.971 1.940 0.0014 0.0033 0.0240
true (·) — — 0.3089 0.2315 1.9557

Table 4.9: Expected Improvement 2D Optimization Benchmark Results
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This study provides a comparison between the robustness of both distributed surrogate opti-

mization and expected improvement, however, the efficiency between distributed surrogate

and expected improvement is extremely dependent on termination criteria settings. The re-

sults shown here reflect those which can be expected by using sensible criteria with respect

to the solution spread from a distributed assessment. Although the overall number of truth

evaluations required is on average greater for distributed surrogate, it often requires less

iterations to arrive at a final solution. The main value of the distributed surrogate method

is that it provides information which expected improvement is incapable of approximating

such as the solution confidence which is arguably a more meaning termination criteria than

a response threshold ratio and the spacing between infills.

To demonstrate the desirably of the selected infill samples by the distributed surrogate

method, two initial sample plans used for the 2D problem benchmark results above are

presented with the infills selected by both methods. The final infills for the first plan of

17 initial samples are shown in figure 4.23 with the corresponding information for the

second plan of 21 initial samples shown in figure 4.24. Upon inspection of each, it can

clearly be seen the infills selected by the distributed surrogate method maintain far greater

space filling characteristics. In each of the final sample plans for expected improvement,

three infills are tightly grouped together near the optimal solution thereby adding redundant

information to the surrogate training process. Each final plan shows elements of global

exploration, however the infills selected by distributed surrogate maintain good spacing

even in the vicinity of the solution.
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Figure 4.23: Sampling Upon Algorithm Termination, Plan 1
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Figure 4.24: Sampling Upon Algorithm Termination, Plan 2

4.6.2 Inverse MPP Search

In addition to the case studies presented for global optimization, three inverse MPP search

example problems are also solved using both the distributed surrogate method and expected

improvement. For each inverse MPP search, the number of degrees of freedom being

optimized is one less than the probabilistic constraint for which it is associated. This is
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due to the optimization taking place in n-spherical coordinates with a known radius, the

target reliability index, βt. Since the limit state response is only trying to be minimized,

and its final response is not important is RBDO using SORA, the distributed surrogate

termination criterion regrading solution response uncertainty is removed, leaving only the

spacial point uncertainty criterion.

The true response for the first inverse MPP example is shown in figure 4.25a. The only

degree of freedom here, θ, is an angle in polar coordinates which specifies a two dimen-

sional point in standard normal space, u1 and u2. Figure 4.25b shows the closeness of all

benchmark solutions for this example. Tables 4.10 and 4.11 show the corresponding statis-

tics. It can be seen that the two methods perform in much the same nature with the selected

termination criteria, however the final spacial solution standard deviation for distributed

surrogate method is shown to be less for this example.
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Figure 4.25: Benchmark Results for 1D Inverse MPP Search
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Statistic nk nts x∗ ŷ∗

min (·) 3 9 0.6626 -32.628
max (·) 4 13 0.6643 -31.991
mean (·) 3.753 11.07 0.6641 -32.157
std (·) 0.433 0.899 0.0002 0.1167
true (·) — — 0.6641 -32.106

Table 4.10: Distributed Surrogate 1D Inverse MPP Search Benchmark Results

Statistic nk nts x∗ ŷ∗

min (·) 3 7 0.6316 -151.96
max (·) 6 11 0.6709 -32.099
mean (·) 4.766 9.883 0.6634 -36.721
std (·) 0.741 1.012 0.0042 19.992
true (·) — — 0.6641 -32.106

Table 4.11: Expected Improvement 1D Inverse MPP Search Benchmark Results

The second and third inverse MPP search examples are taken from the cantilever RBDO

example, each of which have two degrees of freedom, angles θ and φ, when transformed to

standard normal space. The first is the stress probabilistic constraint described in equation

3.9. The truth response and benchmark solutions are shown in figure 4.26. The statistics for

the two methods, shown in tables 4.12 and 4.13 indicate the closeness of the final results.
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Figure 4.26: Benchmark Results for Cantilever Stress Inverse MPP Search
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Statistic nk nts θ1
∗ φ2

∗ ŷ∗

min (·) 3 20 0.6463 0.6321 0.0001
max (·) 7 27 0.6619 0.6397 0.0068
mean (·) 4.275 24.10 0.6533 0.6354 0.0046
std (·) 0.960 1.808 0.0037 0.0013 0.0014
true (·) — — 0.6531 0.6346 0.0056

Table 4.12: Distributed Surrogate Cantilever Stress MPP Search Benchmark Results

Statistic nk nts θ1
∗ φ2

∗ ŷ∗

min (·) 3 19 0.6446 0.6319 0.0051
max (·) 6 26 0.6614 0.6413 0.0058
mean (·) 4.250 22.25 0.6537 0.6354 0.0055
std (·) 0.839 1.808 0.0029 0.0017 0.0001
true (·) — — 0.6531 0.6346 0.0056

Table 4.13: Expected Improvement Cantilever Stress MPP Search Benchmark Results

The second inverse MPP search corresponding the cantilever RBDO problem is the de-

flection probabilistic constraint shown in equation 3.11. The spread in final benchmark

solutions for this example is larger along the θ axis than for the stress example for each

method used, but is especially evident for the expected improvement results shown in fig-

ure 4.27. The statistics for the results for each method’s final results are shown in tables

4.14 and 4.15.
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Figure 4.27: Benchmark Results for Cantilever Deflection Inverse MPP Search

Statistic nk nts θ∗ φ∗ ŷ∗

min (·) 3 19 0.7182 0.5924 0.2373
max (·) 6 29 0.7654 0.6015 0.2481
mean (·) 4.225 25.22 0.7318 0.5946 0.2456
std (·) 0.697 2.154 0.0077 0.0015 0.0017
true (·) — — 0.7314 0.5938 0.2459

Table 4.14: Distributed Surrogate Cantilever Deflection MPP Search Benchmark Results

Statistic nk nts θ∗ φ∗ ŷ∗

min (·) 3 20 0.7259 0.5929 0.2453
max (·) 9 26 0.7381 0.5982 0.2461
mean (·) 5.100 23.10 0.7315 0.5943 0.2459
std (·) 1.277 1.629 0.0024 0.0011 0.0001
true (·) — — 0.7314 0.5938 0.2459

Table 4.15: Expected Improvement Cantilever Deflection MPP Search Benchmark Results

The inverse MPP problem results indicate the robustness of the distributed surrogate method

in determining a globally optimal result using only the spacial uncertainty approximation

information. Each group of results obtained using different amounts of truth model knowl-

edge located in difference areas of the design space, and the distributed surrogate method
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performs competitively with expected improvement with the supplied termination crite-

ria. The trends identified in the global optimization comparison are maintained here, that

a greater number of truth samples may be required for the distributed surrogate method,

but it generally takes less iterations to arrived at a solution. The characteristic of using

less iterations becomes valuable when parallel computing capabilities are at the disposal of

the design engineer, facilitating the running of truth responses simultaneously withing the

same iteration.
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Conclusion and Future Work

Work aiming to provide a more meaningful termination criteria for surrogate based opti-

mization has been conducted. This work follows the development of an analysis tool for

surrogate based RBDO, which inspired the need for such criteria. The proposed method,

a distributed surrogate method for global optimization, has been developed to address en-

gineering design optimization problems in which the probable spacial solution distribution

based on the model prediction uncertainty is needed to quantify solution confidence with

response to all degrees of freedom as well as system response. Reasoning behind the Gaus-

sian process perturbation strategy to achieve this has been discussed and outlined though

example usage for simple global optimization problems. A study which supports solution

uncertainty convergence as more resources are put forth for its approximation is presented

and used to justify the resources used in application. Infilling the design space for the im-

provement of solution certainty is also discussed with an accompanying proposed strategy

which uses the distributed solution information previously collected. This infill strategy

was developed with short cycle surrogate based optimization in mind, in which multiple

supplemental points are evaluated in each of a few algorithm iterations to better utilize

available computing resources. Evidence suggesting the robustness of the distributed sur-

rogate algorithm has also been presented with case study results involving the optimization

of multiple benchmark problems using different amounts of initial surrogate building infor-

mation and the regions in which this information is supplied within design space. Since the
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distributed surrogate method for optimization operates for the purpose of reducing spacial

uncertainty, it is found to be specifically well suited for problems which require a solution

point only without the corresponding optimal response. However, the proposed method

facilitates the enforcement of solution confidence to a specified degree regarding the re-

sponse, location, or both if necessary.

Next steps for the continued development of the described algorithm will be work aiming to

improve efficiency. During the distributed surrogate assessment, the number of distributed

surfaces formed is increased until the standard deviation of the distributed solutions has

converged or reached the maximum allowable amount specified. This process is performed

even for uncertainty approximations which are not approaching the termination criteria,

therefore the continuation of this process until convergence is unnecessary for situations

in which the projected converged uncertainty would still exceed the allowable amount.

Distributed solutions using less overall distributed surfaces can still provide abundant in-

formation for the placement of infill points.

Further work could also be directed at improving the supplemental candidates for problems

in higher dimensions. As the number of supplemental candidates increases, the difficulty

in locating all the local maximum MSE points increases. This is due to the addition of can-

didates from previous levels to the building process decreasing the MSE surface values to

such a degree that the response becomes unreliable due to numerical noise. An alternative

criteria for locating the supplemental points after the first or second level would be useful

in maintaining the desired relative spacing filling nature of the distributed infilling process.
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