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Abstract The use of Surrogate Based Optimization (SBO) is widely spread in en-
gineering design to find optimal performance characteristics of expensive simulations
(forward analysis: from input to optimal output). However, often the practitioner knows
a priori the desired performance and is interested in finding the associated input param-
eters (reverse analysis: from desired output to input). A popular method to solve such
reverse (inverse) problems is to minimize the error between the simulated performance
and the desired goal. However, there might be multiple quasi-optimal solutions to the
problem. In this paper, the authors propose a novel method to efficiently solve inverse
problems and to sample Quasi-Optimal Regions (QORs) in the input (design) space
more densely. The development of this technique, based on the probability of improve-
ment criterion and kriging models, is driven by a real-life problem from bio-mechanics,
i.e., determining the elasticity of the (rabbit) tympanic membrane, a membrane that
converts acoustic sound wave into vibrations of the middle ear ossicular bones.

Keywords inverse problem · surrogate modeling · kriging · bio-mechanics

1 Introduction

This paper is concerned with efficiently solving complex, computational expensive de-
sign problems using surrogate modeling techniques [28]. Surrogate models, also known
as metamodels, are cheap approximation models for computational expensive (black-
box) simulations. Surrogate modeling techniques are well-suited to handle, for exam-
ple, expensive finite element (FE) simulations, computational fluid dynamic (CFD)
simulations and, of course, physical experiments. In particular, the research in this
paper is concerned with deterministic computer codes, in contrast to non-deterministic
(stochastic) problems.
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Fig. 1: Flow chart of the surrogate modeling process [14].

Depending on the construction and usage of surrogate models several modeling
flavors can be distinguished. Surrogate models can be built upfront to approximate
the simulation code accurately over the entire input (design) space and, hence, can
afterwards be used to replace the expensive code for design, analysis and optimization
purposes. On the other hand, the construction of surrogate models can also be inte-
grated in the optimization process. Usually, the latter case, known as Surrogate Based
Optimization (SBO), generates surrogate models on the fly that are only accurate in
certain regions of the input space, e.g., around optimal regions.

The construction of surrogate models as efficiently as possible is an entire research
domain in itself. In order to come to an acceptable model, numerous problems and de-
sign choices need to be overcome (what data collection strategy to use, which variables
are relevant, how to integrate domain knowledge, etc.). Other aspects of surrogate
modeling include choosing the right type of approximation model for the problem at
hand, a tuning strategy for the surrogate model parameters (=hyperparameters), and
a performance measure to asses the accuracy of the surrogate model [14].

The general work-flow of surrogate modeling is illustrated in Figure 1. First, an ex-
perimental design, e.g., from Design of Experiments (DOE), is specified and evaluated.
Subsequently, surrogate models are built to fit this data as well as possible, according
to a set of measures (e.g., cross validation). The hyperparameters are estimated using
an optimization algorithm. The accuracy of the set of surrogate models is improved
until no further improvement can be obtained (or when another stopping criterion,
such as a time limit, is met). If the stopping criteria are satisfied the process is halted
and the final, best surrogate model is returned. On the other hand, when no stopping
criterion is met, a sequential design strategy, also known as active learning or adaptive
sampling, will select new data points to be evaluated and the surrogate models are
updated with this new data.

Most often, surrogate models are used to solve so-called “forward problems”. The
practitioner is interested in the output or performance characteristics of the simulation
system given the input (design) parameters. The surrogate models define the mapping
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Figure 2: The inverse problem is often solved by minimizing the error function between
the simulation output and the measured data.

between the input space (design space) and the output space (performance space). Ex-
amples of forward problems are found in validation and verification, sensitivity analysis,
and optimization.

In contrast, the focus of the “reverse (inverse) problem” is on exploring the input
space. Ideally, a surrogate model could be created that maps the output parameters
to the input parameters (as opposite to forward modeling) of the complex system over
the entire output space. However, many inverse problems are ill-posed. Considering
Hadamard’s definition of ill-posedness [15], the two outstanding problems hampering
the creation of a full inverse surrogate model are non-uniqueness and instability. A good
overview of the associated intricacies is presented by Barton in [3]. For all the above
reasons, the inverse problem is often reduced to the task of finding one (or more) input
parameter combination for a certain output characteristic. Still, it is possible that,

1. no such input parameter combination exists,
2. more than one input parameter combination satisfies the given output characteris-

tic(s).

A typical inverse problem is the estimation of some (physical) material or design pa-
rameter, e.g., the permittivity of a substrate [5] or the elasticity of rubber [1], given the
desired output or system behavior. A popular solution is to convert the reverse prob-
lem to a (forward) optimization problem. Namely, a simulation model is constructed,
parametrized by the properties or design parameters of interest. By minimizing the
error between the parametrized simulation model and the measured data the input
parameters (material properties) of the simulation model are obtained that correspond
with the measurements or desired output, see Figure 1.

The focus of this paper is to efficiently solve inverse problems where an infinite
number of input parameter combinations is possible, i.e., whole regions in the input
space that satisfy the cost function sufficiently well. From now on these regions in
the input space will be denoted Quasi-Optimal Regions (QORs). Hence, traditional
(surrogate-based) optimization of the cost function is insufficient.

Recently, Picheny et al. [20] presented a scheme to sample the input regions that
correspond to an output region of interest. While using a similar approach, our work
focusses on finding QORs as efficiently as possible. Moreover, the approach of Picheny
et al. requires expensive numerical integration and the kriging model must be updated
for every new sample point (though alternative, faster approaches are discussed). We
present in this work a simple and cheap criterion in combination with a space-filling
criterion to ensure proper coverage of the input domain.

The main contribution of this paper is a novel sequential design strategy, denoted
as the “QOR sampling algorithm”, that is able to efficiently sample QORs densely, in a
quasi-uniform way. The surrogate model of choice is the Gaussian Process (GP) based
kriging. Kriging is a popular surrogate model for the approximation of deterministic
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computer code [22]. GPs enable the use of statistical infill criteria in a sequential
design strategy. The presented method consists of the extension of such a statistical
infill criterion, namely, the Probability of Improvement (PoI) [17], and a new search
strategy to exploit the infill criterion.

The QOR sampling algorithm has been implemented in a flexible research plat-
form for surrogate modeling, the SUrrogate MOdeling (SUMO) Toolbox [14] (The
SUMO Toolbox can be downloaded from: http://sumo.intec.ugent.be. An AGPL
open source license is available for research purposes) and has been applied to a real-
life problem from bio-mechanics, i.e., determining the elasticity of the (rabbit) tym-
panic membrane, a membrane that converts acoustic sound wave into vibrations of the
middle ear ossicular bones.

Section 2 gives a brief overview of kriging, including the extension of kriging to
handle noisy cost functions, which are typical for inverse problems. Section 3 describes
the use of infill criteria and, in particular, describes an extension of PoI needed to
solve the engineering problem at hand. A new search strategy to exploit infill criteria
is described in section 4. The QOR sampling algorithm is applied to the Branin and
Hartman functions in, respectively, sections 5 and 6. The engineering problem from
bio-mechanics is presented in section 7. Details of the SUMO Toolbox configuration
are found in section 7.2. Results of the engineering problem and conclusions form the
last two sections of this paper, i.e., sections 7.3 and 8.

2 Kriging

Kriging is a popular surrogate model to approximate deterministic noise-free data. First
conceived by Danie Krige in geostatistics, these Gaussian Process [13] based surrogate
models are compact and cheap to evaluate, and have proven to be very useful for
tasks such as optimization [18], design space exploration, visualization, prototyping,
and sensitivity analysis [28].

A thorough mathematically treatment of kriging is given by [22,23,11]. Basically,
kriging is a two-step process: first a regression function f(x) is constructed based on the
data, and, subsequently, a Gaussian process Z(x) is constructed through the residuals.

Y (x) = f(x) + Z(x), (1)

where f(x) is a regression function and Z(x) ∼ N (0, σ2Ψ) is a Gaussian process with
mean 0, variance σ2 and a correlation matrix Ψ .

Assume a set of n samples, (x1, . . . ,xn)
′ in d dimensions (see Equation 2) and

associated function values, y = (y1, . . . , yn)
′, where (·)′ is the transpose of a vector or

matrix.

X =
(
x1, . . . ,xn

)′
=

 x1,1 . . . x1,d
...

. . .
...

xn,1 . . . xn,d

 (2)

Essentially, the regression part is encoded in the n × p model matrix F (Van-
dermonde matrix) using basis functions bi(x) for i = 1 . . . p (e.g., a power base for
polynomials),
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F =

 b1(x1) b2(x1) · · · bp(x1)
...

...
...

...
b1(xn) b2(xn) · · · bp(xn)

 ,

while the stochastic process is mostly defined by the n× n correlation matrix Ψ ,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

where ψ(·, ·) is the correlation function. ψ(·, ·) is parametrized by a set of hyperparam-
eters θ, which are identified by Maximum Likelihood Estimation (MLE) (though other
approaches are possible). Subsequently, the Best Linear Unbiased Predictor (BLUP)
of kriging is derived as,

ŷ(x) =Mα+ r(x) · Ψ−1 · (y−Fα), (3)

where M =
(
b1(x) b2(x) . . . bp(x)

)
is the model matrix of the predicting point x, α

is a p × 1 vector denoting the coefficients of the regression function, determined by
Generalized Least Squares (GLS), and r(x) is an 1× n vector of correlations between
the point x and the samples X.

Note that kriging is an interpolation technique. This is easily seen by substituting
the ith sample point xi in the BLUP (Equation 3) and considering that r(xi) is the
ith column of Ψ , hence, r(xi) · Ψ−1 is an unit vector ei with a 1 at the ith position,

ŷ(xi) =Mα+ ei · (y−Fα) =Mα+yi −Mα = yi. (4)

While this is a nice property for many simulation problems, it might produce unde-
sired results when dealing with stochastic simulations and/or in the presence of noise.
Therefore, the formal work of Staum et al. [27] is adapted in this paper to extend
kriging for approximation instead of interpolation, also known as regression kriging or
stochastic kriging. To that end, the noise is modeled as a separate Gaussian process
ξ(x),

Y (x) = f(x) + Z(x) + ξ(x), (5)

where ξ ∼ N (0, τ2
∑

) is a Gaussian process with mean 0, variance τ2 and correlation
matrix

∑
. The BLUP then becomes,

ŷ(x) =Mα+ r(x) · (Ψ +
1

σ2

∑
)−1 · (y − Fα), (6)

where 1
σ2

∑
is a matrix resembling signal-to-noise ratios. Depending on the type and

distribution of noise the matrix
∑

has different forms. For the problem in this paper
it can be assumed that the noise is homogeneous distributed across the input space.
This results in a scalar value (10λ) on the diagonal of the correlation matrix, i.e.,∑

= 10λIn.
While in stochastic simulation the matrix

∑
, and thus λ, can be created based

on repeated simulations this is not true for a deterministic simulation problem, as
presented in this paper. Therefore the variable λ is estimated as part of the likelihood
optimization of kriging. After the kriging surrogate model has been constructed an
estimate of the noise variance τ2 is calculated as τ̂2 = 10λσ2.
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3 Infill criteria

In engineering, infill criteria are (sampling) functions, also known as figures of merit or
metrics, that measure how interesting a data point is in the input space. Starting from
an initial approximation of the simulation system, new sample points (infill or update
points) are selected based on an infill criterion. The scope of infill criteria ranges from
increasing the accuracy of the prediction (e.g., for creating globally accurate surrogate
models) to the prediction itself to facilitate optimization. In global SBO it is crucial that
the infill criterion is a balance between exploration (enhancing the overall accuracy of
the surrogate model) and exploitation (enhancing the accuracy of the surrogate model
solely in the region of the (current) optimum).

A well-known infill criterion that is able to effectively solve this trade-off is Ex-
pected Improvement (EI), which has been popularized by Jones et al. [18,25,11] as the
Efficient Global Optimization (EGO) algorithm. Jones wrote an excellent discussion
regarding the infill criteria approach in [17]. Subsequently, Sasena compared different
infill criteria for optimization and investigated extensions of those infill criteria for
constrained optimization problems in [24].

3.1 Probability of Improvement (PoI)

Among several statistical infill criteria investigated by Jones the Probability of Im-
provement (PoI) is used and generalized in this work. The PoI equation (7), defined
below, can be interpreted graphically (see Figure 3). At x = 0.5, a Gaussian probabil-
ity density function (PDF) is drawn and expresses the uncertainty about the predicted
function value of a sampled and unknown function y = f(x). Thus, the uncertainty
at any point x is treated as the realization of a random variable Y (x) with mean
ŷ = f̂(x) (= prediction) and variance ŝ2 = σ̂2(x) (= prediction variance). The predic-
tion variance can be corrected to account for the estimation of the hyperparameters
[19]. Assuming the random variable Y (x) is normally distributed, then the shaded
area under the Gaussian PDF is the PoI of any newly calculated function value f(x)
over the intermediate minimum function value f̂min(the dotted line). PoI is denoted
as P (Y (x) ≤ f̂min), i.e.,

PoI = P (Y (x) ≤ f̂min) =
f̂minˆ

−∞

Y (x) dY

= Φ

(
f̂min − ŷ

ŝ

)
, (7)

where Φ(t) is the standard normal cumulative distribution function Φ(t) = 1
2

[
1 + erf

(
t√
2

)]
and erf(·) is the error function.

PoI or any other statistical infill criteria (e.g., EI) are optimized over x to find the
subsequent data point to evaluate. Note, however, that besides the prediction ŷ = f̂(x)

of the surrogate model, a point-wise variance estimation ŝ2 = σ̂2(x) of the surrogate is
also required. Both predictions (ŷ and ŝ2) are provided by the kriging surrogate model.
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Fig. 3: Graphical illustration of a Gaussian Process (GP) and Probability of Improve-
ment (PoI). A surrogate model (dashed line) is constructed based on some data points
(circles). For each point the surrogate model predicts a Gaussian probability density
function (PDF). E.g., at x = 0.5 an example of such a PDF is drawn. The volume of
the shaded area is the PoI over the minimum function value fmin.

3.2 Generalized Probability of Improvement (gPoI)

While PoI is a very useful infill criterion for optimization, it only focuses on the global
optimum, not on a range of output values. The authors extend the idea of the PoI cri-
terion to allow identification of an arbitrarily band in the output space. Let [T1, T2] be
the range of interest in the output space. The generalized Probability of Improvement
(gPoI) is defined as the probability that the function value f(x) at a point x lies with
the output range [T1, T2],

gPoI(x) = P (T1 ≤ Y (x) ≤ T2) =
T2ˆ

T1

Y (x) dY

= P (T2 ≤ Y (x))− P (T1 ≤ Y (x))

=

T2ˆ

−∞

Y (x) dY −
T1ˆ

−∞

Y (x) dY

= Φ

(
T2 − ŷ
ŝ

)
− Φ

(
T1 − ŷ
ŝ

)
, (8)

where Φ(t) is the standard normal cumulative distribution function Φ(t) = 1
2

[
1 + erf

(
t√
2

)]
and erf(·) is the error function. Note that the standard abbreviation “PoI” is not well-
suited anymore as the focus is now on sampling an interval instead of improving the
optimum.
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Fig. 4: Graphical illustration of a Gaussian Process (GP) and the generalized Prob-
ability of Improvement (gPoI). A surrogate model (dashed line) is constructed based
on some data points (circles). For each point the surrogate model predicts a Gaussian
probability density function (PDF). E.g., at x = 0.5 an example of such a PDF is
drawn. The volume of the shaded area is the gPoI based on the desired output range
[T1, T2].

The gPoI criterion has recently been successfully applied to quasi-uniformly sample
the region(s) in the input space that correspond to a desired interval [T1, T2] in the
output space [6] (T1 and T2 are defined upfront). In essence, input (design) parameters
are sought that correspond with a certain set of performances (= inverse problem).

In this paper, one wants to find the QORs which include all near-optimal solutions.
So, the lower bound can be defined as T1 = −∞ and T2 is defined on the fly. By varying
and tightening the upper bound T2 of the integral (see Eq. 8) dynamically during the
optimization process the QOR can be accurately identified.

The authors suggests to use the intermediate minimal function value f̂min plus a
percentage p of |f̂min| as upper bound, namely, T2 = f̂min+ p · |f̂min|. Thus, all input
parameter combinations are sought that lie within a desired percentage p of f̂min.

Furthermore noise can be taking into account by adding an extra offset to the upper
bound. This might be required as many inverse problems involve noisy measurements,
as will be shown in the application of section 7. To that end, regression kriging [27] is
used, as explained in section 2, where a parameter 10λ gives an indication of the amount
of noise. Furthermore, as λ is determined during the MLE of kriging an estimate of the
noise variance τ2 can be calculated as τ̂2 = 10λσ2.

Assuming the noise being Gaussian distributed, the 68% confidence interval on the
exact (intermediate) minimum function value fmin is given by [fmin−ατ̂ , fmin+ατ̂ ],
where α = 1 (95% confidence intervals can be obtained by using α = 2). Assuming the
intermediate lowest (noisy) function value f̂min is the lower bound, namely, f̂min =

fmin − ατ̂ , then it is easy to see that the upper bound can be expressed in terms of
f̂min, namely, fmin+ατ̂ = f̂min+2ατ̂ . Thus, in sum, assuming that the measurements
errors are homogeneous distributed in the input space and the estimated λ is correct,
the upper bound is defined by T2 = (f̂min+2ατ̂)+p · |f̂min+2ατ̂ |. Note that this is by
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no means an unerring formula. While no extra parameters are introduced the estimate
of λ may not be accurate and the type of error is often unknown.

Unlike PoI, the gPoI cannot be simply optimized over x to identify new data
samples. Available samples that are already lying in the desired output range [T1, T2]

have a high probability (see Figure 6a), and, hence, straightforward optimization of
the criterion might result in duplicate samples. Other (space-filling) strategies have to
be devised that makes fully use of the information provided by gPoI. This problem is
further explored in the next section.

4 Search strategies

The techniques explained in the previous sections (e.g., EI, PoI, gPoI, etc.) are all
utility functions. Such utility functions are used to identify interesting new points in
a sequential design strategy. Various search strategies exist to exploit these utility
functions.

For instance, the original EGO algorithm [18] simply optimizes the EI. In particular,
the deterministic branch and bound methodology was used to find the global optimum.
To that end, a convex upper bound had to be calculated for the EI. However, if one
wants to use other utility functions (or other types of surrogate models) this upper
bound must be redefined. In later work more black-box optimization methods were
used with similar results, e.g., the DIviding REctangles (DIRECT) [16] or an extensive
pattern search. Moreover, multi-modal optimization methods are suggested in literature
(e.g., in [21,26]) to select multiple samples in one iteration, taking full advantage of
parallel computing.

Global optimization methods are not suited to directly exploit the new gPoI cri-
terion because there might exist multiple (or even an infinite number of) solutions.
Therefore the authors adapt a generic sampling framework for sequential design [7].
The algorithmic flow is depicted in Figure 5. The search strategy is configured as
followed: First, n candidate samples are drawn from the uniform distribution. Sub-
sequently, these candidates are ranked according to two (k = 2) criteria: the gPoI
criterion (see Figure 6a) and a Minimum Distance (MD) criterion that calculates the
Euclidean distance to the closest sample. The MD criterion is defined by,

MD(x) =
(l + 1)(1/l−1)

2
min

p∈samples

√√√√ d∑
j=1

(xj − pj)2, (9)

where d is the number of input parameters and the factor (l+1)(1/l−1)

2 (upper bound
estimate) scales the MD criterion into the same range as the gPoI criterion, namely
[0, 1]. The estimate on the upper bound is calculated as follows, if the current number
of samples is l, the optimal maximin configuration of these samples is a

√
l×
√
l uniform

grid. Hence, the maximin distance of this layout is a maximum and can be used as an
upper bound. Maximizing the MD criterion takes care of the space-filling properties
in the input space (see Figure 6b). Furthermore, kriging implies that new input points
close to existing samples result in highly correlated output values. Hence, dense clusters
of points do not provide much new valuable information and are avoided by the search
strategy. The combined sequential sampling criterion is now defined as the weighted
average of the two criteria, see Figure 6c. Pseudocode of the QOR sampling algorithm
is found in Algorithm 1.
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Fig. 5: General flow of a sequential design strategy.

Algorithm 1 Pseudocode of the QOR sampling algorithm.

1 samples0 = g en e r a t e I n i t i a lD e s i g n () // e . g . , a Lat in Hypercube Design
2 values0 = s imulate (samples0) // c a l l the s imu la t i on code
3
4 T1 = lowerbound // f r a c t i o n of the maximal function value , e . g . , 0 . 5
5 T2 = upperbound // e . g . , i n f i n i t y
6
7 i = 0
8 while |samplesi| < maxSamples
9 krigei = f i tK r i g i n g (samplesi, valuesi) // Build su r roga t e model

10
11 ptest = generateTestPo int s (n = 100× |samplesi|) // Generate n t e s t po in t s
12 score1 = gPoI(krigei, ptest, T1, T2) // eva luate gPoI , s e e Equation (8 )
13 score2 = MD(ptest) // eva luate the minimum dis tance , s e e Equation (9 )
14 score = w1 × score1 + w2 × score2 // weighted g l oba l score , e . g . , w1 = w2 = 0.5
15 pnew = s e l e c tBe s tPo i n t s (ptest, score,m = 10) // s e l e c t m best po in t s from ptest
16 ynew = s imulate (pnew) // c a l l the s imu la t i on code
17
18 samplesi+1 = samplesi ∪ pnew

19 valuesi+1 = valuesi ∪ ynew

20 i = i+ 1
21 end

This approach is a nice balance between exploration (space-filling) and exploitation
(uniform sampling in the input range that satisfies the QORs). If the gPoI criterion
is low across the whole input space the MD criterion will dominate and, hence, the
input space will be further explored, enhancing the accuracy of the surrogate model.
On the other hand, as the number of samples increases, the influence of the MD score
will decrease, enabling the exploitation of the gPoI criterion.

5 Example 1: Determining the QORs of the Branin function

5.1 Problem setting

The Branin function is a well-known benchmark function for optimization, it has two
input variables (x1, x2) and its equation is given by,

f(x1, x2) = (x2 −
5.1

4π2
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10. (10)

In this research, the goal is not to identify the unique optimum of the Branin
function over the design space, but the goal is to sample the regions corresponding to
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(a) Contour plot of the gPoI criterion.
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(b) Contour plot of the MD criterion.
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Fig. 6: Example 1: Snapshot of the two sequential sampling criteria (gPoI and MD) and
the combined weighted average at 20 samples (white dots) for the 2D Branin function.

the 50% highest function values densely in a space-filling way. So, in this section the
QORs correspond with the top 50% of the Branin function.

5.2 Experimental setup

Version 7.0.2 of the SUMO toolbox is used to determine the QORs of (10). An initial
set of 10 samples is generated by an optimal maximin Latin Hypercube Design (LHD;
[8]). Subsequently, 90 infill points are selected based on the gPoI and MD figures of
merit as discussed in section 4. To find the QORs, we adapt the bounds [T1, T2] of the
gPoI criterion in consecute steps, namely, [T1,T2] = [f̂max−0.5·|f̂max|,∞], where f̂max
is the intermediate maximal function value. Samples are selected in batches of m = 10

and the sequential sampling is halted when the number of samples reaches 100. Thus,
after the initial set of 10 samples, we have a total of 20, 30, . . . , 90, 100 samples. The
kriging surrogate model is configured using the standard Gaussian correlation function
and a constant regression function. The hyperparameters, including the λ parameter,
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Fig. 7: Example 1: Final results of the Branin function (100 samples). It is seen that
the QORs of interest are densely samples in an uniform way (samples are denoted by
the dots).

are efficiently estimated using SQPLab [4] (http://www-rocq.inria.fr/~gilbert/
modulopt/optimization-routines/sqplab/sqplab.html), utilizing likelihood deriva-
tive information.

5.3 Results

An intermediate snapshot of the different sampling criteria (at 20 samples) is shown in
Figure 6. The gPoI emphasizes the highest regions of the Branin function (i.e., exploit-
ing the function behavior) while the MD criterion takes care of the exploration aspect.
The combination of the two criteria is the actual metric used to select new samples in
a sequential way. A landscape plot of the final kriging model and corresponding gPoI
contour plot is shown in Figure 7. Note that, while the QORs are sampled densely,
other regions of the input space have not been neglected completely.

6 Example 2: Determining the QORs of the Hartman function

6.1 Problem setting

The six-dimensional Hartman function is another well-known benchmark function for
optimization, the Hartman equations are given by,
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A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 ,

c =
(
1 1.2 3 3.2

)′
,

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 ,

f(x1, . . . , x6) = −
4∑
i=1

ci · exp

− 6∑
j=1

Ai,j(xj − pi,j)2
 . (11)

The goal is to sample the QORs corresponding to the 50% lowest function values
densely in a space-filling way.

6.2 Experimental setup

Version 7.0.2 of the SUMO toolbox is used to determine the QORs of (11). An initial set
of 51 samples is generated by an optimal maximin Latin Hypercube Design (LHD; [8]).
Subsequently, 950 infill points are selected based on the gPoI and MD figures of merit
as discussed in section 4. To find the QORs, we adapt the bounds [T1, T2] of the gPoI
criterion in consecute steps, namely, [T1,T2] = [−∞, f̂min + 0.5 · |f̂min|], where f̂min
is the intermediate minimal function value. Samples are selected in batches of m = 10

and the sequential sampling is halted when the number of samples exceeds 1000. Hence,
after the initial set of 51 samples, we have a total of 61, 71, . . . , 511, 521, . . . , 991, 1001
samples. The kriging surrogate model is configured using the standard Gaussian cor-
relation function and a constant regression function. The hyperparameters, including
the λ parameter, are estimated using SQPLab.

6.3 Results

The number of samples (in percent) that are inside the QORs versus the number of
evaluated samples is given in Figure 8. Only 1.9% (= 1 sample) of the initial design of
51 samples satisfies the QORs, using the exact global minimal function value fmin in
the bound calculation (in contrast to the estimated f̂min). As the search progresses the
number of samples that satisfies the output range increases rapidly. At 301 samples 53%
of the output values (= 160 samples) lie within the desired range. The slight decline
from 600 samples onwards is due to the saturation of the QORs with samples, hence,
the QOR sampling algorithm starts focussing more on exploring the input domain. A
similar trend is observed when using the estimated f̂min to calculate the bounds of the
QORs.

Of particular interest is the observation that identifying QORs is less prohibited
by the curse of dimensionality than creating a global accurate surrogate model, but
more expensive than SBO. While SBO methods only need to evaluate a series of points
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Fig. 8: Evolution of the number of samples (in percent) inside the QORs for the Hart-
man function.

towards finding the optimum, a global accurate surrogate model needs exponentially
more data points to cover the whole input domain, whereas the QOR sampling algo-
rithm only needs enough data points to identify and uniformly cover the QORs.

7 Example 3: Elasticity of the middle ear tympanic membrane

7.1 Problem setting

In hearing science, finite element modeling is commonly used to study the mechanical
behavior of the middle ear, e.g. [12]. In such models, tympanic membrane elasticity
parameters have a significant influence on the output [10]. However, good data for the
mechanical properties of the tympanic membrane are still lacking [9].

In order to fill this gap, a setup was developed to determine tympanic membrane
elasticity in situ by Aernouts et al. [1]. The characterization method consists of four
steps: (1) doing a point indentation perpendicular on the membrane surface; (2) mea-
suring the indentation depth, the resulting force and the three-dimensional shape data;
(3) simulating the experiment with a finite element model, and (4) adapting the model
to fit the measurements using optimization procedures. A detailed description of the
application of this method on a rabbit tympanic membrane sample is given in [2].

The tympanic membrane sample (in this case obtained from a rabbit) was placed
on a translation and rotation stage, a schematic drawing is shown in Figure 9a. Inden-
tations in and out in a direction perpendicular to the surface membrane were carried
out using a stepper motor with indentation depths up to 400 micrometer. The resulting
force was measured with a load cell and the exact indentation depth was assessed with
a Linear Variable Differential Transformer (LVDT).

In order to construct a finite element model, an LCD-Moiré profilometer was used
to obtain a three-dimensional shape of the membrane before and during indentation.
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(a) (b)

Fig. 9: Example 2: Bio-mechanical characterization example. (a) Schematic drawing
of the point indentation setup: (1) translation and rotation stage, (2) cross section of
tympanic membrane sample, (3) needle connected to a load cell, (4) stepper motor
and (5) Linear Variable Differential Transformer. (b) Finite element model of the tym-
panic membrane with indentation. The number of membrane shell elements equal to
5988. The effective strain in the point indentation area after indentation rises up to
approximately 15%.

On the basis of these Moiré shape images a highly detailed non-uniform finite element
mesh was created. In the needle indentation area and in the manubrium neighborhood,
mesh density was increased. This is illustrated in Figure 9. The tympanic membranes
was modeled as a linear isotropic homogeneous elastic material which is described
with two independent elasticity parameters: the Young’s modulus E and Poission’s
ratio ν. The numerical simulations were performed with the finite element code FEBio
(http://mrl.sci.utah.edu/software/febio), which is specifically designed for bio-
mechanical applications.

Determining the value of the linear elasticity parameters is done by minimizing
the discrepancy between the model and the experimental measurements. Namely, by
calculating,

arg min
E,m

(errorforce), (12)

where,

errorforce =
1

N

N∑
j=1

(Fexp(qj)− Fmod(qj))2, (13)

with N the number of measured points, qj the indentation depth, Fexp(qj) the exper-
imental force and Fmod(qj) the simulated force.

7.2 Experimental setup

Version 7.0.2 of the SUMO toolbox is used to determine the QOR of (13). An initial
set of samples is generated by an optimal maximin Latin Hypercube Design (LHD; [8])
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of 7 points together with four corner points, adding up to a total of 11 initial points.
Subsequently, infill points are selected based on the gPoI and MD figures of merit. For
this problem the upper bound is defined as T2 = (f̂min+2τ̂)+0.5 · |f̂min+2τ̂)|, namely
we are interested in all quasi-optimal solutions that deviate maximally 50% of the best
solution found, taking noise into account. Samples are selected and evaluated one by
one (m = 1) to ensure optimal space-fillingness.

The kriging surrogate model is configured using the standard Gaussian correla-
tion function and a constant regression function. The hyperparameters, including the
λ parameter, are efficiently estimated using SQPLab. The process is halted when the
number of samples exceeds 100. The average computation time of FEBio for one sim-
ulation is about five to ten minutes.

7.3 Results

Contour plots of the intermediate kriging model of errorforce, and the associated gPoI,
at various stages in the sampling process are shown in Figure 10. The initial kriging
model based on 11 samples has not yet discovered the QOR completely. After a stage
of mostly exploration-based sampling, the full QOR is outlined after approximately 50

samples. The focus is now shifted to sampling the identified QOR densely (exploitation)
until the stopping criterion of 100 samples is reached.

A contour plot of the final kriging surrogate model is shown in Figure 10e. Obvi-
ously, the QOR is quite densely sampled in comparison with other parts of the input
domain. Moreover, in Figure 10f the contour plot of the gPoI of the final kriging model
shows a clearly defined band in the input domain (= optimal curve) with probability
one. The gray zone of uncertainty is reduced to a very small region at the edge of the
optimal curve.

8 Conclusion

This paper introduced a simple but powerful method to solve (inverse) problems con-
sisting of multiple quasi-optimal solutions. The Quasi-Optimal Regions (QORs) are
identified with a limited number of expensive function evaluations. The QORs offers the
user a trade-off between several solutions, similar to the pareto front in multi-objective
optimization. The QOR sampling method, based on the generalized Probability of Im-
provement (gPoI) criterion, is implemented in the SUMO Matlab toolbox [14], and
successfully applied on the Branin and Hartman functions, and used to determine the
elasticity of the middle ear tympanic membrane.

Within the QOR sampling algorithm framework several variations are possible.
For instance, the gPoI has been successfully applied to identify input regions in the
design space that correspond to a certain band in the output space, providing a tool to
solve inverse problems directly. Furthermore, the method is relatively dimension-free,
i.e., it does not pose any extra restrictions than those already inherent in the kriging
surrogate model.

Acknowledgements Ivo Couckuyt and Jef Aernouts are funded by the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
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Fig. 10: Example 2: Left column: Contour plots of the intermediate kriging model of
errorforce at various stages in the sampling process (samples are denoted by dots). The
QOR is densely and quasi-uniformly sampled. Right column: Corresponding contour
plots of the new gPoI criterion. The QOR is identified properly by the criterion.
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