5,330 research outputs found

    Noninvasive brain stimulation techniques can modulate cognitive processing

    Get PDF
    Recent methods that allow a noninvasive modulation of brain activity are able to modulate human cognitive behavior. Among these methods are transcranial electric stimulation and transcranial magnetic stimulation that both come in multiple variants. A property of both types of brain stimulation is that they modulate brain activity and in turn modulate cognitive behavior. Here, we describe the methods with their assumed neural mechanisms for readers from the economic and social sciences and little prior knowledge of these techniques. Our emphasis is on available protocols and experimental parameters to choose from when designing a study. We also review a selection of recent studies that have successfully applied them in the respective field. We provide short pointers to limitations that need to be considered and refer to the relevant papers where appropriate

    Access to consciousness of briefly presented visual events is modulated by transcranial direct current stimulation of left dorsolateral prefrontal cortex

    Get PDF
    Adaptive behaviour requires the ability to process goal-relevant events at the expense of irrelevant ones. However, perception of a relevant visual event can transiently preclude access to consciousness of subsequent events — a phenomenon called attentional blink (AB). Here we investigated involvement of the left dorsolateral prefrontal cortex (DLPFC) in conscious access, by using transcranial direct current stimulation (tDCS) to potentiate or reduce neural excitability in the context of an AB task. In a sham-controlled experimental design, we applied between groups anodal or cathodal tDCS over the left DLPFC, and examined whether this stimulation modulated the proportion of stimuli that were consciously reported during the AB period. We found that tDCS over the left DLPFC affected the proportion of consciously perceived target stimuli. Moreover, anodal and cathodal tDCS had opposing effects, and exhibited different temporal patterns. Anodal stimulation attenuated the AB, enhancing conscious report earlier in the AB period. Cathodal stimulation accentuated the AB, reducing conscious report later in the AB period. These findings support the notion that the DLPFC plays a role in facilitating information transition from the unconscious to the conscious stage of processing

    Transcranial direct current stimulation for memory enhancement: from clinical research to animal models

    Get PDF
    There is a growing demand for new brain-enhancing technologies to improve mental performance, both for patients with cognitive disorders and for healthy individuals. Transcranial direct current stimulation (tDCS) is a non-invasive, painless, and easy to use neuromodulatory technique that can improve performance on a variety of cognitive tasks in humans despite its exact mode of action remains unclear. We have conducted a mini-review of the literature to first briefly summarize the growing amount of data from clinical trials assessing the efficacy of tDCS, focusing exclusively on learning and memory performances in healthy human subjects and in patients with depression, schizophrenia, and other neurological disorders. We then discuss these findings in the context of the strikingly few studies resulting from animal research. Finally, we highlight future directions and limitations in this field and emphasize the need to develop translational studies to better understand how tDCS improves memory, a necessary condition before it can be used as a therapeutic tool

    Drugs, games, and devices for enhancing cognition: implications for work and society

    Get PDF
    As work environments change, the demands on working people change. Cognitive abilities in particular are becoming progressively more important for work performance and successful competition in a global environment. However, work-related stress, performance over long hours, lack of sleep, shift work, and jet lag affect cognitive functions. Therefore, an increasing number of healthy people are reported to use cognitive-enhancing drugs, as well as other interventions, such as noninvasive brain stimulation, to maintain or improve work performance. This review summarizes research on pharmacological and technical methods as well as cognitive training, including game apps for the brain, in healthy people. In neuropsychiatric disorders, impairments in cognitive functions can drastically reduce the chances of returning to work; therefore, this review also summarizes findings from pharmacological and cognitive-training studies in neuropsychiatric disorders.All cited psychopharmacological work from Professor Sahakian laboratory was funded by a Wellcome Trust Grant (089589/Z/09/Z) awarded to T.W. Robbins, B.J. Everitt, A.C. Roberts, J.W. Dalley, and B.J. Sahakian, and it was conducted at the Behavioural and Clinical Neuroscience Institute, which is supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354). ABB was supported by a grant from the The Wallitt Foundation.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/nyas.1304

    Enhancing interactivity with transcranial direct current stimulation

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) is a non-invasive type of neural stimulation known for modulation of cortical excitability leading to positive effects on working memory and attention. The availability of low-cost and consumer grade tDCS has democratized access to such devices allowing us to explore its applicability to HCI. We review the relevant literature and identify potential avenues for exploration within the context of enhancing interactivity and use of tDCS in the context of HCI
    corecore