753 research outputs found

    Achieving Functional Correctness in Large Interconnect Systems.

    Full text link
    In today's semi-conductor industry, large chip-multiprocessors and systems-on-chip are being developed, integrating a large number of components on a single chip. The sheer size of these designs and the intricacy of the communication patterns they exhibit have propelled the development of network-on-chip (NoC) interconnects as the basis for the communication infrastructure in these systems. Faced with the interconnect's growing size and complexity, several challenges hinder its effective validation. During the interconnect's development, the functional verification process relies heavily on the use of emulation and post-silicon validation platforms. However, detecting and debugging errors on these platforms is a difficult endeavour due to the limited observability, and in turn the low verification capabilities, they provide. Additionally, with the inherent incompleteness of design-time validation efforts, the potential of design bugs escaping into the interconnect of a released product is also a concern, as these bugs can threaten the viability of the entire system. This dissertation provides solutions to enable the development of functionally correct interconnect designs. We first address the challenges encountered during design-time verification efforts, by providing two complementary mechanisms that allow emulation and post-silicon verification frameworks to capture a detailed overview of the functional behaviour of the interconnect. Our first solution re-purposes the contents of in-flight traffic to log debug data from the interconnect's execution. This approach enables the validation of the interconnect using synthetic traffic workloads, while attaining over 80% observability of the routes followed by packets and capturing valuable debugging information. We also develop an alternative mechanism that boosts observability by taking periodic snapshots of execution, thus extending the verification capabilities to run both synthetic traffic and real-application workloads. The collected snapshots enhance detection and debugging support, and they provide observability of over 50% of packets and reconstructs at least half of each of their routes. Moreover, we also develop error detection and recovery solutions to address the threat of design bugs escaping into the interconnect's runtime operation. Our runtime techniques can overcome communication errors without needing to store replicate copies of all in-flight packets, thereby achieving correctness at minimal area costsPhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116741/1/rawanak_1.pd

    Dependable reconfigurable multi-sensor poles for security

    Get PDF
    Wireless sensor network poles for security monitoring under harsh environments require a very high dependability as they are safety-critical [1]. An example of a multi-sensor pole is shown. Crucial attribute in these systems for security, especially in harsh environment, is a high robustness and guaranteed availability during lifetime. This environment could include molest. In this paper, two approaches are used which are applied simultaneously but are developed in different projects. \u

    Social Insect-Inspired Adaptive Hardware

    Get PDF
    Modern VLSI transistor densities allow large systems to be implemented within a single chip. As technologies get smaller, fundamental limits of silicon devices are reached resulting in lower design yields and post-deployment failures. Many-core systems provide a platform for leveraging the computing resource on offer by deep sub-micron technologies and also offer high-level capabilities for mitigating the issues with small feature sizes. However, designing for many-core systems that can adapt to in-field failures and operation variability requires an extremely large multi-objective optimisation space. When a many-core reaches the size supported by the densities of modern technologies (thousands of processing cores), finding design solutions in this problem space becomes extremely difficult. Many biological systems show properties that are adaptive and scalable. This thesis proposes a self-optimising and adaptive, yet scalable, design approach for many-core based on the emergent behaviours of social-insect colonies. In these colonies there are many thousands of individuals with low intelligence who contribute, without any centralised control, to complete a wide range of tasks to build and maintain the colony. The experiments presented translate biological models of social-insect intelligence into simple embedded intelligence circuits. These circuits sense low-level system events and use this manage the parameters of the many-core's Network-on-Chip (NoC) during runtime. Centurion, a 128-node many-core, was created to investigate these models at large scale in hardware. The results show that, by monitoring a small number of signals within each NoC router, task allocation emerges from the social-insect intelligence models that can self-configure to support representative applications. It is demonstrated that emergent task allocation supports fault tolerance with no extra hardware overhead. The response-threshold decision making circuitry uses a negligible amount of hardware resources relative to the size of the many-core and is an ideal technology for implementing embedded intelligence for system runtime management of large-complexity single-chip systems

    Pre-validation of SoC via hardware and software co-simulation

    Get PDF
    Abstract. System-on-chips (SoCs) are complex entities consisting of multiple hardware and software components. This complexity presents challenges in their design, verification, and validation. Traditional verification processes often test hardware models in isolation until late in the development cycle. As a result, cooperation between hardware and software development is also limited, slowing down bug detection and fixing. This thesis aims to develop, implement, and evaluate a co-simulation-based pre-validation methodology to address these challenges. The approach allows for the early integration of hardware and software, serving as a natural intermediate step between traditional hardware model verification and full system validation. The co-simulation employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware model. This setup enables the execution of software components, such as device drivers, on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware models. The thesis focuses on two primary applications of co-simulation. Firstly, it allows software unit tests to be run in conjunction with hardware models, facilitating early communication between device drivers, low-level software, and hardware components. Secondly, it offers an environment for using software in functional hardware verification. A significant advantage of this approach is the early detection of integration errors. Software unit tests can be executed at the IP block level with actual hardware models, a task previously only possible with costly system-level prototypes. This enables earlier collaboration between software and hardware development teams and smoothens the transition to traditional system-level validation techniques.Järjestelmäpiirin esivalidointi laitteiston ja ohjelmiston yhteissimulaatiolla. Tiivistelmä. Järjestelmäpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista laitteisto- ja ohjelmistokomponenteista. Tämä monimutkaisuus asettaa haasteita niiden suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat usein laitteistomalleja eristyksissä kehityssyklin loppuvaiheeseen saakka. Tämän myötä myös yhteistyö laitteisto- ja ohjelmistokehityksen välillä on vähäistä, mikä hidastaa virheiden tunnistamista ja korjausta. Tämän diplomityön tavoitteena on kehittää, toteuttaa ja arvioida laitteisto-ohjelmisto-yhteissimulointiin perustuva esivalidointimenetelmä näiden haasteiden ratkaisemiseksi. Menetelmä mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien luonnollisena välietappina perinteisen laitteistomallin varmennuksen ja koko järjestelmän validoinnin välillä. Yhteissimulointi käyttää QEMU suoritinemulaattoria, joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. Tämä mahdollistaa ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejärjestelmän käskysarja-arkkitehtuurilla (ISA) yhdessä kellosyklitarkkojen RTL laitteistomallien kanssa. Työ keskittyy kahteen yhteissimulaation pääsovellukseen. Ensinnäkin se mahdollistaa ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien välillä. Toiseksi se tarjoaa ympäristön ohjelmiston käyttämiseen toiminnallisessa laitteiston varmennuksessa. Merkittävä etu tästä lähestymistavasta on integraatiovirheiden varhainen havaitseminen. Ohjelmiston yksikkötestejä voidaan suorittaa jo IP-lohkon tasolla oikeilla laitteistomalleilla, mikä on aiemmin ollut mahdollista vain kalliilla järjestelmätason prototyypeillä. Tämä mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien välisen yhteistyön ja helpottaa siirtymistä perinteisiin järjestelmätason validointimenetelmiin

    A PCI Express board designed to interface with the electronic phase-2 upgrades of the ATLAS detectors at CERN

    Get PDF
    Nei prossimi 10 anni è in previsione un aggiornamento radicale dell'acceleratore LHC al CERN finalizzato al raggiungimento di più alti valori di luminosità istantanea (oltre \begin{math}5 \times 10^{34}cm^{-2}s^{-1}\end{math}) ed integrata (oltre un fattore 10 rispetto a quella attuale). Conseguentemente, anche i rilevatori degli esperimenti che lavorano al CERN, così come i loro sistemi di acquisizione dati, dovranno essere aggiornati per poter gestire un flusso notevolmente maggiore rispetto a quello utilizzato finora. Questa tesi tratta in particolare di una nuova scheda elettronica di lettura, progettata e testata nel laboratorio di elettronica del Dipartimento di Fisica ed Astronomia dell'Università di Bologna e nel laboratorio di elettronica della Sezione INFN (Istituto Nazionale di Fisica Nucleare) di Bologna. Le motivazioni che hanno indotto lo sviluppo della scheda prototipale sono molteplici. Un primo obiettivo da perseguire è stato quello di aggiornare la versione attuale delle schede elettroniche di acquisizione dati usate oggi nel Pixel Detector dell'esperimento ATLAS, visto che sono anch'esse sotto la responsabilità della sezione INFN di Bologna. Secondariamente, la scheda (nominata Pixel-ROD) è orientata a gestire le esigenze elettroniche che seguiranno l'upgrade di LHC durante la fase 2. La complessità del progetto e l'inerzia intrinseca di una vasta collaborazione come quella di ATLAS, hanno poi indotto lo sviluppo di questo progetto elettronico in largo anticipo rispetto al vero upgrade di fase 2 di LHC, previsto per il 2024. In questo modo saranno anche più facilmente eseguibili eventuali aggiornamenti tecnologici in corso d'opera, senza dover riprogettare da zero un sistema di acquisizione dati completo

    Enhancing the CDF's B physics program with a faster data acquisition system.

    Full text link
    corecore