269 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    A Survey on Virtualization of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    Cloud Computing

    Get PDF
    In the recent years, Cloud Computing has become very popular and an interesting subject in the field of science and technology. The research efforts in the Cloud Computing have led to a number of applications used for the convenience in daily life. Cloud Computing is not only providing solutions at the enterprise level but it is also suitable in organizing a centralized database which is accessible from every corner of the world. It is said that, 10 to 15 years later when all the enterprises have adopted the Cloud Computing, there will be no more perception for the data center in the company. The aim of this Master’s thesis “Cloud Computing: Server Configuration and Software Implementation for the Data Collection with Wireless Sensor Nodes” was to integrate the Wireless Sensor Network with Cloud Computing in a such a way that the data received from the Sensor node can be access able from anywhere in the world. To accomplish this task, a Wireless Sensor Network was deployed to measure the environmental conditions such as Temperature, Light and the Sensor’s battery information and the measured values are sent to a web server from where the data can be accessed. The project also includes the software implementation to collect the sensor’s measurements and a Graphical User Interface (GUI) application which reads the values from the sensor network and stores it to the database.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    A Survey of Limitations and Enhancements of the IPv6 Routing Protocol for Low-power and Lossy Networks: A Focus on Core Operations

    Get PDF
    Driven by the special requirements of the Low-power and Lossy Networks (LLNs), the IPv6 Routing Protocol for LLNs (RPL) was standardized by the IETF some six years ago to tackle the routing issue in such networks. Since its introduction, however, numerous studies have pointed out that, in its current form, RPL suffers from issues that limit its efficiency and domain of applicability. Thus, several solutions have been proposed in the literature in an attempt to overcome these identified limitations. In this survey, we aim mainly to provide a comprehensive review of these research proposals assessing whether such proposals have succeeded in overcoming the standard reported limitations related to its core operations. Although some of RPL’s weaknesses have been addressed successfully, the study found that the proposed solutions remain deficient in overcoming several others. Hence, the study investigates where such proposals still fall short, the challenges and pitfalls to avoid, thus would help researchers formulate a clear foundation for the development of further successful extensions in future allowing the protocol to be applied more widely

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Performance Assessment of Routing Protocols for IoT/6LoWPAN Networks

    Get PDF
    The Internet of Things (IoT) proposes a disruptive communication paradigm that allows smart objects to exchange data among themselves to reach a common goal. IoT application scenarios are multiple and can range from a simple smart home lighting system to fully controlled automated manufacturing chains. In the majority of IoT deployments, things are equipped with small devices that can suffer from severe hardware and energy restrictions that are responsible for performing data processing and wireless communication tasks. Thus, due to their features, communication networks that are used by these devices are generally categorized as Low Power and Lossy Networks (LLNs). The considerable variation in IoT applications represents a critical issue to LLN networks, which should offer support to different requirements as well as keeping reasonable quality-of-service (QoS) levels. Based on this challenge, routing protocols represent a key issue in IoT scenarios deployment. Routing protocols are responsible for creating paths among devices and their interactions. Hence, network performance and features are highly dependent on protocol behavior. Also, based on the adopted protocol, the support for some specific requirements of IoT applications may or may not be provided. Thus, a routing protocol should be projected to attend the needs of the applications considering the limitations of the device that will execute them. Looking to attend the demand of routing protocols for LLNs and, consequently, for IoT networks, the Internet Engineering Task Force (IETF) has designed and standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). This protocol, although being robust and offering features to fulfill the need of several applications, still presents several faults and weaknesses (mainly related to its high complexity and memory requirement), which limits its adoption in IoT scenarios. An alternative to RPL, the Lightweight On-demand Ad Hoc Distancevector Routing Protocol – Next Generation (LOADng) has emerged as a less complicated routing solution for LLNs. However, the cost of its simplicity is paid for with the absence of adequate support for a critical set of features required for many IoT environments. Thus, based on the challenging open issues related to routing in IoT networks, this thesis aims to study and propose contributions to better attend the network requirements of IoT scenarios. A comprehensive survey, reviewing state-of-the-art routing protocols adopted for IoT, identified the strengths and weaknesses of current solutions available in the literature. Based on the identified limitations, a set of improvements is designed to overcome these issues and enhance IoT network performance. The novel solutions are proposed to include reliable and efficient support to attend the needs of IoT applications, such as mobility, heterogeneity, and different traffic patterns. Moreover, mechanisms to improve the network performance in IoT scenarios, which integrate devices with different communication technologies, are introduced. The studies conducted to assess the performance of the proposed solutions showed the high potential of the proposed solutions. When the approaches presented in this thesis were compared with others available in the literature, they presented very promising results considering the metrics related to the Quality of Service (QoS), network and energy efficiency, and memory usage as well as adding new features to the base protocols. Hence, it is believed that the proposed improvements contribute to the state-of-the-art of routing solutions for IoT networks, increasing the performance and adoption of enhanced protocols.A Internet das Coisas, do inglĂȘs Internet of Things (IoT), propĂ”e um paradigma de comunicação disruptivo para possibilitar que dispositivos, que podem ser dotados de comportamentos autĂłnomos ou inteligentes, troquem dados entre eles buscando alcançar um objetivo comum. Os cenĂĄrios de aplicação do IoT sĂŁo muito variados e podem abranger desde um simples sistema de iluminação para casa atĂ© o controle total de uma linha de produção industrial. Na maioria das instalaçÔes IoT, as “coisas” sĂŁo equipadas com um pequeno dispositivo, responsĂĄvel por realizar as tarefas de comunicação e processamento de dados, que pode sofrer com severas restriçÔes de hardware e energia. Assim, devido Ă s suas caracterĂ­sticas, a rede de comunicação criada por esses dispositivos Ă© geralmente categorizada como uma Low Power and Lossy Network (LLN). A grande variedade de cenĂĄrios IoT representam uma questĂŁo crucial para as LLNs, que devem oferecer suporte aos diferentes requisitos das aplicaçÔes, alĂ©m de manter nĂ­veis de qualidade de serviço, do inglĂȘs Quality of Service (QoS), adequados. Baseado neste desafio, os protocolos de encaminhamento constituem um aspecto chave na implementação de cenĂĄrios IoT. Os protocolos de encaminhamento sĂŁo responsĂĄveis por criar os caminhos entre os dispositivos e permitir suas interaçÔes. Assim, o desempenho e as caracterĂ­sticas da rede sĂŁo altamente dependentes do comportamento destes protocolos. Adicionalmente, com base no protocolo adotado, o suporte a alguns requisitos especĂ­ficos das aplicaçÔes de IoT podem ou nĂŁo ser fornecidos. Portanto, estes protocolos devem ser projetados para atender as necessidades das aplicaçÔes assim como considerando as limitaçÔes do hardware no qual serĂŁo executados. Procurando atender Ă s necessidades dos protocolos de encaminhamento em LLNs e, consequentemente, das redes IoT, a Internet Engineering Task Force (IETF) desenvolveu e padronizou o IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). O protocolo, embora seja robusto e ofereça recursos para atender Ă s necessidades de diferentes aplicaçÔes, apresenta algumas falhas e fraquezas (principalmente relacionadas com a sua alta complexidade e necessidade de memĂłria) que limitam sua adoção em cenĂĄrios IoT. Em alternativa ao RPL, o Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) emergiu como uma solução de encaminhamento menos complexa para as LLNs. Contudo, o preço da simplicidade Ă© pago com a falta de suporte adequado para um conjunto de recursos essenciais necessĂĄrios em muitos ambientes IoT. Assim, inspirado pelas desafiadoras questĂ”es ainda em aberto relacionadas com o encaminhamento em redes IoT, esta tese tem como objetivo estudar e propor contribuiçÔes para melhor atender os requisitos de rede em cenĂĄrios IoT. Uma profunda e abrangente revisĂŁo do estado da arte sobre os protocolos de encaminhamento adotados em IoT identificou os pontos fortes e limitaçÔes das soluçÔes atuais. Com base nas debilidades encontradas, um conjunto de soluçÔes de melhoria Ă© proposto para superar carĂȘncias existentes e melhorar o desempenho das redes IoT. As novas soluçÔes sĂŁo propostas para incluir um suporte confiĂĄvel e eficiente capaz atender Ă s necessidades das aplicaçÔes IoT relacionadas com suporte Ă  mobilidade, heterogeneidade dos dispositivos e diferentes padrĂ”es de trĂĄfego. AlĂ©m disso, sĂŁo introduzidos mecanismos para melhorar o desempenho da rede em cenĂĄrios IoT que integram dispositivos com diferentes tecnologias de comunicação. Os vĂĄrios estudos realizados para mensurar o desempenho das soluçÔes propostas mostraram o grande potencial do conjunto de melhorias introduzidas. Quando comparadas com outras abordagens existentes na literatura, as soluçÔes propostas nesta tese demonstraram um aumento do desempenho consistente para mĂ©tricas relacionadas a qualidade de serviço, uso de memĂłria, eficiĂȘncia energĂ©tica e de rede, alĂ©m de adicionar novas funcionalidades aos protocolos base. Portanto, acredita-se que as melhorias propostas contribuiem para o avanço do estado da arte em soluçÔes de encaminhamento para redes IoT e aumentar a adoção e utilização dos protocolos estudados

    A Multi-Hop 6LoWPAN Wireless Sensor Network for Waste Management Optimization

    Get PDF
    In the first part of this Thesis several Wireless Sensor Network technologies, including the ones based on the IEEE 802.15.4 Protocol Standard like ZigBee, 6LoWPAN and Ultra Wide Band, as well as other technologies based on other protocol standards like Z-Wave, Bluetooth and Dash7, are analyzed with respect to relevance and suitability with the Waste Management Outsmart European FP7 Project. A particular attention is given to the parameters which characterize a Large Scale WSN for Smart Cities, due to the amount of sensors involved and to the practical application requested by the project. Secondly, a prototype of sensor network is proposed: an Operative System named Contiki is chosen for its portability on different hardware platforms, its Open Source license, for the use of the 6LoW-PAN protocol and for the implementation of the new RPL routing protocol. The Operative System is described in detail, with a special focus on the uIPv6 TCP/IP stack and RPL implementation. With regard to this innovative routing proto col designed specifically for Low Power Lossy Networks, chapter 4 describes in detail how the network topology is organized as a Directed Acyclic Graph, what is an RPL Instance and how downward and upward routes are constructed and maintained. With the use of several AVR Atmel modules mounting the Contiki OS a real WSN is created and, with an Ultrasonic Sensor, the filling level of a waste basket prototype is periodically detected and transmitted through a multi-hop wireless network to a sink nodeope
    • 

    corecore