8,021 research outputs found

    On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile

    Get PDF
    Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency

    Scalable Video Coding

    Get PDF
    International audienceWith the evolution of Internet to heterogeneous networks both in terms of processing power and network bandwidth, different users demand the different versions of the same content. This has given birth to the scalable era of video content where a single bitstream contains multiple versions of the same video content which can be different in terms of resolutions, frame rates or quality. Several early standards, like MPEG2 video, H.263, and MPEG4 part II already include tools to provide different modalities of scalability. However, the scalable profiles of these standards are seldom used. This is because the scalability comes with significant loss in coding efficiency and the Internet was at its early stage. Scalable extension of H.264/AVC is named scalable video coding and is published in July 2007. It has several new coding techniques developed and it reduces the gap of coding efficiency with state-of-the-art non-scalable codec while keeping a reasonable complexity increase. After an introduction to scalable video coding, we present a proposition regarding the scalable functionality of H.264/AVC, which is the improvement of the compression ratio in enhancement layers (ELs) of subband/wavelet based scalable bitstream. A new adaptive scanning methodology for intra frame scalable coding framework based on subband/wavelet coding approach is presented for H.264/AVC scalable video coding. It takes advantage of the prior knowledge of the frequencies which are present in different higher frequency subbands. Thus, by just modification of the scan order of the intra frame scalable coding framework of H.264/AVC, we can get better compression, without any compromise on PSNR

    Livrable D3.4 of the PERSEE project : 2D coding tools final report

    Get PDF
    Livrable D3.4 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.4 du projet. Son titre : 2D coding tools final repor

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Efficient algorithms for scalable video coding

    Get PDF
    A scalable video bitstream specifically designed for the needs of various client terminals, network conditions, and user demands is much desired in current and future video transmission and storage systems. The scalable extension of the H.264/AVC standard (SVC) has been developed to satisfy the new challenges posed by heterogeneous environments, as it permits a single video stream to be decoded fully or partially with variable quality, resolution, and frame rate in order to adapt to a specific application. This thesis presents novel improved algorithms for SVC, including: 1) a fast inter-frame and inter-layer coding mode selection algorithm based on motion activity; 2) a hierarchical fast mode selection algorithm; 3) a two-part Rate Distortion (RD) model targeting the properties of different prediction modes for the SVC rate control scheme; and 4) an optimised Mean Absolute Difference (MAD) prediction model. The proposed fast inter-frame and inter-layer mode selection algorithm is based on the empirical observation that a macroblock (MB) with slow movement is more likely to be best matched by one in the same resolution layer. However, for a macroblock with fast movement, motion estimation between layers is required. Simulation results show that the algorithm can reduce the encoding time by up to 40%, with negligible degradation in RD performance. The proposed hierarchical fast mode selection scheme comprises four levels and makes full use of inter-layer, temporal and spatial correlation aswell as the texture information of each macroblock. Overall, the new technique demonstrates the same coding performance in terms of picture quality and compression ratio as that of the SVC standard, yet produces a saving in encoding time of up to 84%. Compared with state-of-the-art SVC fast mode selection algorithms, the proposed algorithm achieves a superior computational time reduction under very similar RD performance conditions. The existing SVC rate distortion model cannot accurately represent the RD properties of the prediction modes, because it is influenced by the use of inter-layer prediction. A separate RD model for inter-layer prediction coding in the enhancement layer(s) is therefore introduced. Overall, the proposed algorithms improve the average PSNR by up to 0.34dB or produce an average saving in bit rate of up to 7.78%. Furthermore, the control accuracy is maintained to within 0.07% on average. As aMADprediction error always exists and cannot be avoided, an optimisedMADprediction model for the spatial enhancement layers is proposed that considers the MAD from previous temporal frames and previous spatial frames together, to achieve a more accurateMADprediction. Simulation results indicate that the proposedMADprediction model reduces the MAD prediction error by up to 79% compared with the JVT-W043 implementation

    Computational Complexity Optimization on H.264 Scalable/Multiview Video Coding

    Get PDF
    The H.264/MPEG-4 Advanced Video Coding (AVC) standard is a high efficiency and flexible video coding standard compared to previous standards. The high efficiency is achieved by utilizing a comprehensive full search motion estimation method. Although the H.264 standard improves the visual quality at low bitrates, it enormously increases the computational complexity. The research described in this thesis focuses on optimization of the computational complexity on H.264 scalable and multiview video coding. Nowadays, video application areas range from multimedia messaging and mobile to high definition television, and they use different type of transmission systems. The Scalable Video Coding (SVC) extension of the H.264/AVC standard is able to scale the video stream in order to adapt to a variety of devices with different capabilities. Furthermore, a rate control scheme is utilized to improve the visual quality under the constraints of capability and channel bandwidth. However, the computational complexity is increased. A simplified rate control scheme is proposed to reduce the computational complexity. In the proposed scheme, the quantisation parameter can be computed directly instead of using the exhaustive Rate-Quantization model. The linear Mean Absolute Distortion (MAD) prediction model is used to predict the scene change, and the quantisation parameter will be increased directly by a threshold when the scene changes abruptly; otherwise, the comprehensive Rate-Quantisation model will be used. Results show that the optimized rate control scheme is efficient on time saving. Multiview Video Coding (MVC) is efficient on reducing the huge amount of data in multiple-view video coding. The inter-view reference frames from the adjacent views are exploited for prediction in addition to the temporal prediction. However, due to the increase in the number of reference frames, the computational complexity is also increased. In order to manage the reference frame efficiently, a phase correlation algorithm is utilized to remove the inefficient inter-view reference frame from the reference list. The dependency between the inter-view reference frame and current frame is decided based on the phase correlation coefficients. If the inter-view reference frame is highly related to the current frame, it is still enabled in the reference list; otherwise, it will be disabled. The experimental results show that the proposed scheme is efficient on time saving and without loss in visual quality and increase in bitrate. The proposed optimization algorithms are efficient in reducing the computational complexity on H.264/AVC extension. The low computational complexity algorithm is useful in the design of future video coding standards, especially on low power handheld devices

    Error resilient H.264 coded video transmission over wireless channels

    Get PDF
    The H.264/AVC recommendation was first published in 2003 and builds on the concepts of earlier standards such as MPEG-2 and MPEG-4. The H.264 recommendation represents an evolution of the existing video coding standards and was developed in response to the growing need for higher compression. Even though H.264 provides for greater compression, H.264 compressed video streams are very prone to channel errors in mobile wireless fading channels such as 3G due to high error rates experienced. Common video compression techniques include motion compensation, prediction methods, transformation, quantization and entropy coding, which are the common elements of a hybrid video codecs. The ITU-T recommendation H.264 introduces several new error resilience tools, as well as several new features such as Intra Prediction and Deblocking Filter. The channel model used for the testing was the Rayleigh Fading channel with the noise component simulated as Additive White Gaussian Noise (AWGN) using QPSK as the modulation technique. The channel was used over several Eb/N0 values to provide similar bit error rates as those found in the literature. Though further research needs to be conducted, results have shown that when using the H.264 error resilience tools in protecting encoded bitstreams to minor channel errors improvement in the decoded video quality can be observed. The tools did not perform as well with mild and severe channel errors significant as the resultant bitstream was too corrupted. From this, further research in channel coding techniques is needed to determine if the bitstream can be protected from these sorts of error rate
    • …
    corecore