96 research outputs found

    Color Image Enhancement via Combine Homomorphic Ratio and Histogram Equalization Approaches: Using Underwater Images as Illustrative Examples

    Get PDF
    The histogram is one of the important characteristics of grayscale images, and the histogram equalization is effective method of image enhancement. When processing color images in models, such as the RGB model, the histogram equalization can be applied for each color component and, then, a new color image is composed from processed components. This is a traditional way of processing color images, which does not preserve the existent relation or correlation between colors at each pixel. In this work, a new model of color image enhancement is proposed, by preserving the ratios of colors at all pixels after processing the image. This model is described for the color histogram equalization (HE) and examples of application on color images are given. Our preliminary results show that the application of the model with the HE can be effectively used for enhancing color images, including underwater images. Intensive computer simulations show that for single underwater image enhancement, the presented method increases the image contrast and brightness and indicates a good natural appearance and relatively genuine color

    A Multi-Sensor Fusion-Based Underwater Slam System

    Get PDF
    This dissertation addresses the problem of real-time Simultaneous Localization and Mapping (SLAM) in challenging environments. SLAM is one of the key enabling technologies for autonomous robots to navigate in unknown environments by processing information on their on-board computational units. In particular, we study the exploration of challenging GPS-denied underwater environments to enable a wide range of robotic applications, including historical studies, health monitoring of coral reefs, underwater infrastructure inspection e.g., bridges, hydroelectric dams, water supply systems, and oil rigs. Mapping underwater structures is important in several fields, such as marine archaeology, Search and Rescue (SaR), resource management, hydrogeology, and speleology. However, due to the highly unstructured nature of such environments, navigation by human divers could be extremely dangerous, tedious, and labor intensive. Hence, employing an underwater robot is an excellent fit to build the map of the environment while simultaneously localizing itself in the map. The main contribution of this dissertation is the design and development of a real-time robust SLAM algorithm for small and large scale underwater environments. SVIn – a novel tightly-coupled keyframe-based non-linear optimization framework fusing Sonar, Visual, Inertial and water depth information with robust initialization, loop-closing, and relocalization capabilities has been presented. Introducing acoustic range information to aid the visual data, shows improved reconstruction and localization. The availability of depth information from water pressure enables a robust initialization and refines the scale factor, as well as assists to reduce the drift for the tightly-coupled integration. The complementary characteristics of these sensing v modalities provide accurate and robust localization in unstructured environments with low visibility and low visual features – as such make them the ideal choice for underwater navigation. The proposed system has been successfully tested and validated in both benchmark datasets and numerous real world scenarios. It has also been used for planning for underwater robot in the presence of obstacles. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle (AUV) Aqua2 in challenging underwater environments with poor visibility, demonstrate performance never achieved before in terms of accuracy and robustness. To aid the sparse reconstruction, a contour-based reconstruction approach utilizing the well defined edges between the well lit area and darkness has been developed. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures and the shadow contours. The proposed method utilizes these contours to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a visual odometry system. Experimental results in an underwater cave demonstrate the performance of our system. This enables more robust navigation of autonomous underwater vehicles using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications
    corecore